[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

GB2481720A - Radio access network monitors communication characteristics to identify interruptions, preferably related to jamming of security communications - Google Patents

Radio access network monitors communication characteristics to identify interruptions, preferably related to jamming of security communications Download PDF

Info

Publication number
GB2481720A
GB2481720A GB1111331.3A GB201111331A GB2481720A GB 2481720 A GB2481720 A GB 2481720A GB 201111331 A GB201111331 A GB 201111331A GB 2481720 A GB2481720 A GB 2481720A
Authority
GB
United Kingdom
Prior art keywords
network
terminals
control means
data
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1111331.3A
Other versions
GB201111331D0 (en
GB2481720B (en
Inventor
Roger Beck
David Andrew Fox
Youssef Chami
Mark Tait
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vodafone Group PLC
Original Assignee
Vodafone Group PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1015219.7A external-priority patent/GB2473717B/en
Application filed by Vodafone Group PLC filed Critical Vodafone Group PLC
Publication of GB201111331D0 publication Critical patent/GB201111331D0/en
Publication of GB2481720A publication Critical patent/GB2481720A/en
Application granted granted Critical
Publication of GB2481720B publication Critical patent/GB2481720B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/08Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using communication transmission lines
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/123Checking intermittently signalling or alarm systems of line circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • H04K3/222Countermeasures against jamming including jamming detection and monitoring wherein jamming detection includes detecting the absence or impossibility of intelligible communication on at least one channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/16Jamming or countermeasure used for a particular application for telephony
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/18Jamming or countermeasure used for a particular application for wireless local area networks or WLAN
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An application 1440 within a platform 700 at a node 800 within a radio access network monitors characteristics of communications 1430 to identify interruptions. The communications may relate to a secondary wireless communications path associated with a home security/alarm installation 1400. The home security system may have a primary wired path 1420. The application may make provisional determinations of interruptions and then gather more data, possibly obtaining data from other geographically close terminals. The data gathering may be used to identify signal jamming and possibly locate the source of the jamming. If network terminals are identified as being the source of any jamming the network may initiate responses against them. Determining interruptions may involve monitoring both wired and wireless communication channels.

Description

Telecommunication Networks
Field of the Invention
The present invention relates to a mobile telecommunications network including a core and a radio access network having radio means for wireless communication with mobile terminals registered with the network, and to a method of operating such a mobile telecommunications network.
Background
Recently, a dramatic rise in sales of both smart-phones and laptop data cards has resulted in a substantial increase in the amount of data communications passing through mobile telecommunications networks. This volumetric increase can also be attributed to enhancements made to the capabilities of the networks. In fact it has been reported that mobile data growth grew 30 percent over the course of the second quarter of 2009. The most popular use for mobile data was HTTP browsing, although usage of HTTP streaming is growing considerably. Other mobile data uses include HTTP downloading and Peer-to-Peer (P2P) activities such as file sharing.
This ability to use the cellular networks for mobile data services, such as Internet browsing is resulting in subscribers treating their mobile networks in much the same way as they treat their fixed networks. That is, users are tending to expect the same service from the Internet, irrespective of their access method. However, mobile networks have a more restricted capacity and are more costly to operate, as compared to fixed networks.
In this regard, from the network operator's viewpoint, as the mobile broadband traffic volume carried over 2G, 3G and HSPA (High Speed Packet Access) networks continues to grow, the cost of supporting this data volume is becoming more and more expensive based on the current network architecture and deployments. In fact, access and data volumes are likely to rise faster than the revenue used to build and maintain the networks. This cost differential is exacerbated by one of the current business models being utilised, whereby operators charge a flat rate for unlimited amounts of data.
The increased usage is also unfortunately likely to result in an increase of data traffic jams, and hence a degradation of service for mobile users if not properly managed.
It has been proposed to control data-heavy users by "choking" the bandwidth available to them when a maximum data volume limit is exceeded. Whilst this addresses the problem on an individual level, it does not address the network capacity problem as a whole.
It is therefore apparent that mobile broadband is at a crossroads as networks and business models are strained by bandwidth demand that is unmatched by revenue generation.
These problems will only get worse with moves to position mobile data as a replacement for fixed DSL (Digital Subscriber Line) access and with the advent of higher radio access speeds with the proposed 4G LTE/SAE (Long Term EvolutionlSystem Architecture Evolution) network. A large percentage of this traffic will consist of data which is destined for the public Internet, a significant proportion of which mobile operators will not be able to add value to, despite carrying the data on their own backhaul transport, core transport or cellular core infrastructure.
In addition to the problems discussed above, conventional mobile telephone communications networks have architectures that are hierarchical and expensive to scale. Many of the network elements, such as the BTS, routers, BSC/RNC etc are proprietary: devices of one manufacturer often do not interface with devices from another manufacturer. This makes it difficult to introduce new capabilities into the network as a different interface will be required for devices from each manufacturer. Further, conventional base stations are not capable of intelligent local routing or processing. Furthermore, the capacity of existing networks is not always used effectively. For example, many cell sites are under used, whilst others are heavily used.
The current network architecture has the following disadvantages:- * Hierarchical and expensive to scale 10. Backhaul is a major problem * Proprietary platforms: BTS, BSC/RNC, SGSN etc * Closed nodes and interfaces * Very limited application or customer awareness (except for Q0S priority) 15. No intelligent local routing or processing * Inefficient use of installed capacity There is therefore a need to overcome or ameliorate at least one of the problems of the prior art. In particular there is a need to address the needs of both the network operators and the users in improving the provision of mobile broadband data services.
Summary of the Invention
According to a first aspect of the present invention, there is provided a mobile telecommunications network including a core and a radio access network having radio means for wireless communications with terminals using the network, wherein the radio access network includes control means operable to control the use of network resources by said terminals, and wherein the control means is operable to monitor data received from said terminals to identify interruption of the radio access network.
The data received from the terminals may be signals, such as control signalling, or data containing content.
The terminals may be terminals registered with the network, for example by having a subscription with the network. The terminals may also be terminals that are not registered with the network but which nevertheless are capable of interrupting the proper operation of the network. Such terminals may be jamming devices: devices configured to deliberately disrupt the network. The terminals may also be non-telecommunications devices which are sources of interference, causing disruption or performance implications to the operation of the network.
The control means may be provided on a novel "platform" of the type described in detail below.
The control means may be operable to monitor and analyse data received from other control means relating to other terminals (terminals served by the other control means). The control means may communicate with neighbouring control means of neighbouring radio sites/base stations to retrieve radio performance metrics measured at their geographic location. The neighbouring control means may retrieve performance measurements from terminals in the creation of radio performance metrics. The neighbouring control means may aggregate and analyse the distributed radio performance across the geographical area covered by the control means. Control means may aggregate and analyse the radio performance across the geographic areas covered by the control means and the neighbouring control means. The control means may use the data that itself gathers, and that obtained from other controls means to build the database of historical performance across the geographic area served by each control means (which area may overlap to a greater of lesser extent).
The control means may be operable to measure a characteristic radio link to/from the terminals. For example, the control means may measure the network performance of the uplink in each of the cells. The network performance of the uplink may be assessed by measuring the receive interference, the transmit power of the terminals, the cell throughput, the aggregate cell/site throughput, the dropped call rate and/or the H-ARQ rate.
The characteristic of the radio is advantageously an indication of radio quality between a mobile terminal and a base station associated with the control means.
The control means may be operable to compare the data with interruption criteria to identify the interruption of the radio access network. Interruption may be caused by a modified or malfunctioning terminal registered with the network. The interruption may be caused by a device that is not registered with the network but which is (deliberately) configured to jam or interrupt the network. The control means may also obtain information indicating the location of, of may calculate the location of, the mobile terminals providing data.
The control means may be operable to additionally use measurements from a fixed telecommunications network to identify interruption. For example, if it is detected that there is interruptionljamming of the radio access network, the status of the fixed network at the same location may also be checked.
The location of the terminals providing the data may be compared to historic average radio performance at that location, as collected previously by the control means (or by any other mechanism). The control means may compare the measured performance against a predefined set of jamming criteria to identify attempts to interrupt the radio access network.
The control means may be operable to provisionally identify interruption of the radio access network and, in response thereto, to control the collection of further data from the terminals. For example, the control means may analyse the initially provided data for a particular geographic area against interruptionljamining criteria to determine whether additional information is required. The initial analysis may indicate the likelihood (or otherwise) of interruptionljamming occurring, and additional data may be determined to be required if it is indicated that interruptionljamming is a possibility.
If additional information is determined to be required, then the control means may instruct terminals to provide further performance measurements. The control means may trigger a dummy paging procedure to wake up additional terminals from the idle/inactive state to the active/connected state, for example to allow further performance measurements to be provided by, these additional terminals. This dummy paging procedure may be triggered by the injection of dummy data packets into the system, or triggering data delivery or retrieval associated with other services for the terminal, or scheduling an SMS. The control means may trigger terminals to provide performance measurements at their geographic location. The terminals may be instructed to report performance measurements for a fixed duration or periodically. The control means may instruct neighbouring control means to increase the granularity of the performance measurements. The control means may instruct additional neighbouring control means to provide radio performance metrics measured at their geographical location.
The control means may be operable to identify the terminals in the location of the interruption source. The control means may contact these terminals. The control means may instruct these terminals to operate in a predefined manner for a period of time whilst a control means performs diagnostics. The predefined manner may be a reduction in data rate, a limitation on the maximum transmit power, a predefined scheduling pattern for the terminal and/or predetermined times and durations when the terminal cannot transmit or receive. The identified terminals may simply be all the terminals in the location of the interruption source, or may be each terminal in turn which is thought to be the interruption source itself The control means may be operable to take action in response to any of the terminals causing the interruption. For example, the control means may include information identifying such a terminal on a network performance blacklist, such identification information being an IMSI and IMEI combination, for example. The network and/or control means may restrict service for terminals that are on the blacklist. The control means may notify the service operator or customer service function of the offending terminal and its location. The control means may contact the offending terminal by SMS, email or any other suitable message to notify it or its user that its performance is being temporally compromised.
Control means may trigger an alarm when the control means identifies that the source of the degraded network performance is not a terminal connected to the operating network (that is, registered with the network or used with the network). An alarm may also be triggered when the control means identifies that the source of the degraded network performance is a terminal and is registered with a network (that is, a terminal with a legitimate subscription with a network). The criticality of the alarm may be dependent on the size of the impacted geographical region, dependent on the assessed impact on network performance and/or dependent on the predicted number of the impacted terminals. The alarm may trigger the control means to modify the cell reselection and/or handover criteria to change the mobility and selection process to preference another network technology or frequency layer. The terminal may be informed through system information or through the inability to connect to the operator network that it cannot use the network, and the terminal may be configured to automatically change the handover/reselection parameters to prefer different network technology (e.g. switching from 3G to 2G, 3G to Wifi, or 3G to Ethernet), or frequency layer or network operator. The terminal may be configured to store network outage or performance degradation against it location locally, reporting this information to the network or application in the network at a later time when connectivity is restored.
The control means may use the information gathered from the terminals in conjunction with information received from other external sources; e.g. loss of DSL/Fibre (i.e. Wireline technology) connectivity with the location or customer.
The control means may trigger communication with terminals with specific applications at specific geographic locations, when network performance issues have been resolved.
The detection of interrupting the network may be particularly advantageous when the network is being used to monitor a premises (or other entity).
Interruption of the radio access network in the location of the monitored premises may be an indication that security at this premises is being breached.
Identification of the interruption attempt can alert security personnel to take appropriate action.
The control means may be operable to identify the location of a device that interrupts the radio access network.
The control means may be operable to re-route communication from terminals if it detects interruption of the radio access network. The control means may also be operable to insert or change information that is broadcasted by the network to inform customers in the impacted area of consequences and any actions to be performed by the customers. The control means may also be operable to modify the properties or configuration of the network, e.g. increasing transmit power, or increasing coding protection.
In another aspect, the present invention provides a mobile telecommunications network including a core and a radio access network having radio means for wireless communication with terminals registered with the network, wherein the radio access network includes control means operable to control the use of network resources by said terminals, wherein some of said terminals are security terminals arranged to monitor security, and wherein the control means is operable to receive data from said security terminals, and to monitor signals received from said terminals, including said security terminals, to identify attempts to interrupt the radio access network. The control means may indentify the location of a device that interrupts the radio access network. The control means may re-route communications from said security terminals if it detects interruption of the radio access network.
Brief Description of the Drawings
An embodiment of the present invention will now be described in more detail with reference to the accompanying Figures in which: Figure 1 illustrates a high level packet data network architecture, useful for explaining the prior art and embodiments of the present invention; Figure 2 illustrates the introduction of a new functional "platform" in a 3G network; Figure 3 illustrates a flow chart of an example offload decision process as implemented in the 3G network of Figure 2 Figure 4 illustrates a flow chart of an example offload decision making process that may be implemented by a redirection module Figure 5 shows the novel "platform" in more detail provided in the Radio Access Network in accordance with an embodiment of the invention; Figure 6 shows possible locations of the platform within a mobile telecommunications network; Figure 7 is a flow chart showing the steps performed when a mobile terminal is activated; Figure 8 shows the optiinisation of content delivery to a mobile terminal; Figure 9 shows a further optimisation of content delivery to a mobile terminal; Figure 10 is a flow chart showing the procedures performed when a mobile terminal moves within the network; Figure 11 shows the transfer of information between platforms; and Figure 12 shows a security arrangement for a premises in accordance with an embodiment of the invention.
In the drawings like elements are generally designated by the same reference numerals.
Detailed Description
Key elements of a 3G mobile telecommunications network, and its operation, will now briefly be described with reference to Figure 1.
Each base station (e.g. Node B 1 and Femto 2) corresponds to a respective cell of the cellular or mobile telecommunications network and receives calls from and transmits calls to a mobile terminal (not shown) in that cell by wireless radio communication in one or both of the circuit switched or packet switched domains. The mobile terminal may be any portable telecommunications device, including a handheld mobile telephone, a personal digital assistant (PDA) or a laptop computer equipped with a network access datacard.
The nodeB 1 or Femto 2 can be considered to comprise two main parts: a radio frequency part and a baseband part. The radio frequency part handles the transmission of radio frequency signals between the antenna of the nodeB 1 or Femto 2 and the mobile terminal, and for converting radio frequency signals into digital baseband signals (and vice versa). The baseband part is responsible for controlling and managing the transmission of the baseband signals to other components of the mobile telecommunications network.
In a macro 3G network, the Radio Access Network (RAN) comprises Node Bs and Radio Network Controllers (RNCs). The Node B is the function within the 3G network that provides the physical and transport radio link between the mobile terminal (User Equipment, UE) and the network. The Node B performs the transmission and reception of data wirelessly across the radio interface, and also applies the codes that are necessary to describe channels in a CDMA system. The RNC is responsible for control the Node Bs that are connected to it. The RNC performs Radio Resource Management (RRM), some of the mobility management functions and is the point where encryption is done before user data is sent to and from a mobile terminal. The RNC connects to the Circuit Switched Core Network through a Media Gateway (MGW) and to an SGSN (Serving GPRS Support Node) 5 in the Packet Switched Core Network. In Figure 1, Node B 1 is controlled by RNC 3 across the lub interface. An RNC may control more than one node B. Figure 1 also illustrates a Femto 3G RAN, with Femto 2 operating as the base station. Femto 2 is connected to an Access Gateway (AGW) (a.k.a Concentrator) 4 via an Iuh interface. Femto is an abbreviation of "femto-cells", and many other different names have been used, including home access points (HAPs), access points (APs) and femto-base stations, but all names refer to the same apparatus.
The radio link between the Femto 2 and the mobile terminal uses the same cellular telecommunication transport protocols as Node B 1 but with a smaller range -for example 25m. The Femto 2 appears to the mobile terminal as a conventional base station, so no modification to the mobile terminal is required for it to operate with the Femto 2. The Femto 2 performs a role corresponding to that of Node B 1 in the macro 3G RAN.
The Femto 2 would typically be configured to serve a Wireless Local Area Network (WLAN) located in a home or office, in addition to GSM/UMTS/LTE networks. The WLAN could belong to the subscriber of the mobile terminal, or be an independently operated WLAN. The owner of Femto 2 can prescribe whether it is open or closed, whereby an open AP is able to carry communications from any mobile device in the GSM/UMTS/LTE network, and a closed AP is only able to carry communications from specific pre-assigned mobile devices.
Conventionally, in a 3G network (macro or Femto), the RANs are controlled by a mobile switching centre (MSC) and an SGSN (Serving GPRS Support Node) of the core network. The MSC supports communications in the circuit switched domain, whilst the SGSN 5 supports communications in the packet switched domain -such as GPRS data transmissions. The SGSN is responsible for the delivery of data packets from and to the mobile terminals within its geographical service area. It performs packet routing and transfer, mobility management (attachldetach and location management), logical link management, and authentication and charging functions. A location register of the SGSN stores location information (e.g., current cell, current VLR) and user profiles (e.g., IMSI, address(es) used in the packet data network) of all mobile terminals registered with this SGSN. In Figure 1, since the embodiment is concerned with data transmission, only the SGSN is illustrated as being in communication with RNC 3 and AGW 4, across the lu interface. The RNC 3 typically has a dedicated (not shared) connection to its SGSN 5, such as a cable connection.
Communications between the AGW 4 and the SGSN 5 are preferably IP based communications, and may be, for example, transmitted over a broadband IP network. Further, the connection between the Femto and the AGW 4 may use the PSTN (Public Switched Telephone Network). Typically a DSL cable connects the AGW to the PSTN, and data is transmitted there-between by IP transport/DSL transport. The Femto or AGW converts the cellular telecommunications transport protocols used between the mobile terminal and the Femto 2 to the appropriate IP based signalling.
The femto 2 may be connected to the AGW by means other than a DSL cable and the PSTN network. For example, the femto 2 may be connected to the AGW by a dedicated cable connection that is independent of the PSTN, or by a satellite connection.
The SGSN 5 is in communication with the GGSN 6 (Gateway GPRS Support Node) across the Gn interface. The GGSN is responsible for the interworking between the GPRS network and external packet switched networks, e.g. the Internet. The GGSN enables the mobility of mobile terminals in the networks.
It maintains routing necessary to tunnel the Protocol Data Units (PDUs) to the SGSN that service a particular mobile terminal. The GGSN converts the GPRS packets coming from the SGSN into the appropriate packet data protocol (PDP) format (e.g., IP or X.25) and sends them out on the corresponding packet data network. In the other direction, PDP addresses of incoming data packets are converted to the mobile network address of the destination user. The readdressed packets are sent to the responsible SGSN. For this purpose, the GGSN stores the current SGSN address of the user and their profile in its location register. The GGSN is responsible for IP address assignment and is the default router for the connected mobile terminal. The GGSN also performs authentication and charging functions. Other functions include IP Pool management and address mapping, Q0S and PDP context enforcement.
In turn the GGSN 6 may route data via any applicable Value Added Service (VAS) equipment 7, before data is forwarded towards its intended destination via the Internet 8. As an example of the functionality of the VAS equipment, the traffic may be inspected for adult content before reaching the end-user if this user is under 18 years of age.
For billing purposes in particular, a PCRF (Policy and Charging Rules Function) apparatus 9 is also provided, in communication with both the SGSN and the GGSN 6.
The SGSN 5, GGSN 6, VAS 7 and PCRF apparatus 9 comprise the core network of the mobile telecommunications network.
Mobile telecommunications networks have an active state of communication with their mobile terminals and an inactive/idle state of communication with their terminals. When in the active state, as the mobile terminals move between different cells of the network, the communication session is maintained by performing a "handover" operation between the cells. In the inactive/idle state, as a mobile terminal moves between different cells of the network the mobile terminal performs "cell reselection" to select the most appropriate cell on which to "camp" in order that the mobile terminal can be paged by the network when mobile terminating data is destined for that mobile terminal.
Conventionally, the mobile terminal or network determines whether a handover/cell reselection procedure should be triggered in dependence upon measurements of the radio signals of the cells in the region of the mobile terminal. A filter is applied to the signals (either by the network or by the mobile terminal) which calctilates an average (e.g. arithmetical mean) value of these signals over a partictilar time period. This filtered/average values of the cells are then compared with each other or with a threshold value. In dependence upon these comparisons, cell reselectionlhandover related procedures are triggered. This cell reselection/handover process generally comprises taking radio signal measurements of neighbouring cells and comparing these to each other and to the radio signal of the current cell to determine which cell provides the best signal strengthlquality.
Handover/reselection to the best cell can then occur.
Generally calculations to determine whether to perform a handover from one base station to another base station are performed by the network, whereas calculations whether to perform cell reselection are performed by the mobile terminal.
Data in a mobile telecommunications network can be considered to be separated into "control plane" and "user plane ". The control plane performs the required signalling, and includes the relevant application protocol and signalling bearer, for transporting the application protocol messages. Among other things, the application protocol is used for setting tip the radio access bearer and the radio network layer. The user plane transmits data traffic and includes data streams and data bearers for the data streams. The data streams are characterised by one or more frame protocols specific for a particular interface. Generally speaking, the user plane carries data for use by a receiving terminal -such as data that allow a voice or picture to be reproduced -and the control plane controls how data are transmitted.
In addition to the elements and functions described above, mobile telecommunications networks also include facilities for transmitting SMS messages. SMS messages are transmitted over the control plane only (and not the user plane).
This architecture is what currently is being used to cariy all packet data to and from mobile terminals. That is, in today's implementation of the Packet data architecture, user plane traffic traverses across all the network elements shown between the Node B or Femto on which the user is camped and the internet.
That is, all data is directed from the applicable RAN through the core network components SGSN, GGSN and VAS before reaching the internet. All PS traffic accordingly follows the same path and therefore has the same network costs.
All applications are processed on the client (on the mobile device) or on the server (which is connected to the internet), and the network core therefore acts like a bit-pipe in the current architecture. For data, where the mobile network operator cannot add any value by carrying it on its own backhaul transport, core transport or cellular core infrastructure (the core network), such as data destined for the public internet without required intervention from the core network, there is no benefit to routing this data via the core network.
However, a large percentage of this traffic can be handled in a more intelligent manner for example through content optirnisation (Video & Web), content caching, or locally routed or directly routing content to the public Internet. All these techniques reduce the investment required by a mobile operator to carry the data on its own backhaul and core transport or cellular core infrastructure.
In order to offer low cost packet data, to support new services and to manage customer expectation, a step-change reduction in the end-to-end cost per bit is required.
Mobile operators want to reduce their packet data handling costs through alternate network architectures based on commoditised IT platforms, breaking away from the traditional architecture based on their voice legacy. These new network architectures overcome the Access architecture issues of today In order to successfully offer cheap packet data and be able to compete with the fixed broadband offers (flat fee) a solution is proposed which focuses on the reduction of the end-to-end cost per bit, especially for Internet access service.
This enables mobile operators to reduce packet data handling costs by means of an alternative network cost model architecture, which breaks out of the traditional network architecture and nodes and utilises lower cost transport networks to optilnise the data flow.
In this regard, Figure 2 shows a high level description of the architecture that may be adopted to deploy this on a 3G network.
According to this arrangement, novel "platforms" 24, 25, 26 for performing functions such as caching, routing, optimisation and offload/return decision functionality are integrated into the network. This decision functionality may be incorporated in the radio architecture. In this regard, the platforms 24, 25, 26 may be incorporated into the NodeBs 1 (25), RNCs 3 (26) or exist as separate physical entities (24). It is these platforms 24, 25, 26 that, for example, determine the path of communications originating from the mobile terminals.
The exact placement of the platform 24, 25, 26 is not essential, and, for a macro 3G network, it can be placed at or between the Node Bs and the RNCs, and also between the RINCs and the SGSNs (or any combination thereof). It would also be possible to place the platform 24, 25, 26 at the GGSN (although not the SGSN as this does not control user data, only control data).
In the 3G Macro network, the aim is to offload a high percentage of the macro network traffic from the core and transport (IuPS, Gn, etc) by diverting specific traffic type for certain user(s) class directly to the Internet.
Where the platform 24, 25 is located in the Node Bs (or on the lub interface), it may be possible to redirect the data from all the remaining mobile network elements (e.g. the RNC, SGSN, GGSN and VAS for macro 3G), and sending the data directly to the Internet 8. In a similar manner, where the platform 26 is located at the RNC (or on the lu interface), it becomes possible to redirect the data from the SGSN 5, GGSN 6 and the VAS 7. The alternative data route is preferably a DSL using ADSL.
It is also preferable to aggregate the alternative data routes for each cell, where applicable. In this regard, each cell will have at least one RNC 3 and a plurality of Node Bs, so where the decision blocks are situated at or in the vicinity of the Node Bs, for instance, there will be a plurality of links which should ideally be aggregated before being passed to the Internet 8. At the point of this aggregation 42, there is preferably a further decision block which enables data to be returned to the legacy route. For instance, a new policy rule may have been implemented, which requires or enables previously offloaded data to be returned to the core network route. This new policy nile may be communicated to the return decision module by the core network policy module. In Figure 2, this returning of data is only shown to the VAS 7, but the data may be returned to one or more of the other core network elements.
Each of the NodeBs 1 is connected to the mobile network core through a Point of Concentration (PoC) 27. All traffic from the NodeBs 1 which is to be routed through the core mobile network is routed to the PoC 27. This includes both user plane and control plane data. On the control plane level, the PoC 27 routes data to and from the SGSN 5 and the GGSN 6. Control data is also sent to and from other core network components, including the Lawful Interception Database (LI DB) 30, DNS Server 32, Policy Server 9 (including Charging rules and IT Network 9A) and Home Location Register/Home Subscriber Server (HLR/HSS) 36 (which contains subscriber and device profile and state information).
User plane data is transmitted by the PoC 27 to the SGSN 5 and the GGSN 6.
From the GGSN 6, data is routed across a VAS 7 node to the Internet 8. In 3G this is the standard data path from the mobile terminals to the Internet.
To implement an advantageous feature, an alternative path on which to re-route certain data to the internet 8 is provided, whereby, each NodeB 1 and Femto 2 may be connected to a fixed line connection 40 (e.g xDSL) which is directly connected to the internet 8. These xDSL connections may be made directly to the NodeB and/or Femto or made to the NodeB/Femto via other components, such as the PoC 27. In figure 2, the xDSL Network 40 may be a third party network or may be a network owned or controlled by the owner of the mobile telecommunications network. By using such an alternative path, radio capacity, backhaul transport resource, core transport resource, cellular core network resources can be saved as well as improving performance and enhancing revenue for the mobile network operator.
As each Node B 1 and/or PoC 27 is associated with a platform 24, 25, 26, for each data packet request originating from a mobile terminal, a decision at the platform 24, 25, 26 is made as to whether the traffic may bypass the core mobile network entirely or may be passed into the core mobile network. The location at which the traffic is routed towards the internet is preferably at the platform 24, 25, 26; however, it may alternatively be routed out from the core network towards the internet at a different component. Traffic offloaded from the macro network is routed by the platform 26 to the xDSL network 40 by link 44 (the decision to offload this traffic may have been made at platform 24, 25 or 26 -although the decision is implemented at platform 26) Preferably the Offload/Return decision is dependent upon the type of data or user. To exemplify this feature of the embodiment, Figure 3 is a flow diagram showing the steps taken when deciding how to route the traffic in the architecture of figure 2. For instance, consider an NodeB receives a request to set up a data call from a user device which is camped on the NodeB at 300.
Once the NodeB has identified the request as a data call and the type of traffic/user, rather than automatically routing the data traffic to the core network, the data request is held at the NodeB at 310 until a decision has been made as to how to route the data, in particular whether to offload the traffic directly to the internet or whether to return the data through the core mobile network. Typically, the signalling (control plane) for the connection will continue through the normal route but the user data traffic will be held at the NodeB, this is possible by virtue of the separate user and control planes, as shown in figure 2.
The decision as to whether or not to use the Core mobile Network to route the data traffic can be based on various aspects, particularly relating to the properties of the data being routed and/or status of the user routing the data.
The Mobile Network may add value to traffic by providing a number of services, such as compressing the user data to speed-up the data transfer while downloading (if this functionality is not already supported by the platforms 24, 25, 26). These different services can be broken up into groups and provided by different entities (e.g. this enables greater flexibility in the provision of the services, such as the mandated Internet Watch Foundation -IWF -requirement, which can only be supported by the mobile operator). The platforms 24, 25, 26 therefore make a decision on whether to service the data locally through caching, fetch the data from other node or from the internet via offload functionally or whether to route the traffic through the core network, based on the applicability of one or more of the services to the traffic. That is, platform 24, 25, 26 decides when data traffic requires one or more of the services and when it can do without them.
It should also be noted that these services are ones that could be provided without using the core network. These are services that add value to the customer, and which subscribers will pay for (explicitly or implicitly).
Referring again to Figure 3, the platform 24, 25, 26 decides at 320 what to do with the traffic (from coming for the network! internet or orientated by the device). This decision may be made by interrogating certain servers or databases stored centrally within the core network which can compare the type of service, type of user etc with criteria which identifies the type of action shall be considered, e.g whether the traffic is suitable for offloading directly to the internet (at 330) from the NodeB or whether the traffic should be routed through the core (at 340). Examples of some of the considerations used in influencing the decision of whether to offload the traffic are discussed below in more detail. The implementation of this data offload technique needs to be carefully considered, as it places additional constraints on the network design.
The following is a non-exhaustive list of examples of challenges that have to be considered when implementing the data offload technique: a) maintaining Customer Services provided by the core network or otherwise; b) maintaining Network Services (e.g. Charging Rate Limiting!application control); and c) maintaining Regulatory Services (e.g. to enable Lawful Interception and Regulatory Content Filtering).
Some specific examples of Customer Services that can be taken into account by the offload decision module include: i) Parental Control: A service which customers subscribe to that filters content in order to shield children from unwanted websites and programs.
Whether traffic from a given user needs to be filtered can be determined by a Common User Repository (CUR) lookup, where the CUR stores user profile information, such as whether the user is an adult or a child etc. If traffic needs to be filtered, then either the traffic cannot be offloaded or it needs to be filtered somewhere other than the core network.
ii) Traffic Optimisation: Optimisation is only required for low bandwidth connections (2G). By looking at the Radio Access Type (RAT) and the International Mobile Equipment Identity (IMEI) it can be determined whether or not a subscriber needs these services. Where traffic optimisation is not required, the traffic can be offloaded iii) Marketing Proposition: The mobile network is typically setup to provide full mobility with acceptable Quality of Service (QoS). A further option could be to offer best effort Q0S without guaranteed full mobility. As an example, for when a heavy user has exceeded their fair usage limit, their traffic could be designated as low priority traffic and offloaded.
The Network Services that can be taken into account by the offload decision module are typically those that the network operator needs to manage its network. Some examples include: i) Charging: The charging plan that a user subscribes to can be used to determine whether or not to offload that user's data. For instance, it is most easily avoided when the customer has a flat rate plan. That is, users on flat rate plans do not need their usage tracked for charging purposes in real time and so can be offloaded onto the alternative route. For users who are roaming or whose charging plan depends upon usage, then, the operator/supplier needs to track their total usage in real-time, and so their data needs to be maintained on the core network route so that rate-limits and data usage can be accurately tracked and alarms/alerts activated when usage exceeds allowances. This is because, if this is not avoidable then Call Data Records (CDRs) need to be generated by the module for the real time charging.
ii) Rate-limiting/application control: This is currently used to manage the traffic flow according to a certain usage policy. Excessive bandwidth usage or controlling P2P applications are common reasons to rate limit users.
Therefore, where a user transmitting data is determined to be under a rate restriction (i.e. throttling) or the data they are transmitting has an application restriction (i.e. the application is blocked), then that data can be offloaded. This exceeded allowance information would typically be communicated to the decision module (24, 25, 26) by the HLR/HSS. This traffic management enables the total traffic volume to be reduced and is typically fully managed by the network operator.
iii) Q0S: The network uses QoS to manage traffic during high load situations and to support marketing propositions. To enable Q0S considerations to be enforced by the offload decision module, a connection is established between the offload module and the Policy and Charging Rules Function (PCRF) entity. This enables decision criteria to be dynamically fed to the offload module, for instance to maintain high priority users on the core network path and/or high priority application types, such as VoIP. It is to be appreciated that the connection to the PCRF is not essential, and alternatively, static or semi-static rules, pre-stored with the offload module, can be considered.
iv) Mobility: Mobility, such as cell handover, is an issue that needs to be managed by the core network. Therefore, terminals that are in motion should not be offloaded. The mobility of a mobile terminal could be determined by querying the Node B. Some users could be provided with a contract that allows only fixed or limited mobility use, so that the service provided was equivalent to a fixed broadband package. Different charging tariffs could be applied depending on whether a user was at a fixed location or mobile. Two ways the offload decision module can handle a mobile terminal's mobility are as follows: 1. The offload decision module can have the capability to characterise the radio link between the device and the network by monitoring the number of handovers implemented for the mobile terminal. If a certain number of handovers occur over a fixed duration, the mobile terminal can be classified as in motion, and any data from the mobile terminal can thereafter be routed back into the core network to avoid any further packet data delay. This of course assumes that the mobile terminal had been designated for data offload on the bypass link.
2. The offload decision module is situated on the IuPS for the 3G network (i.e. between the RNC and the SGSN) or Si for the LTE (i.e. between the eNode B and the PoC), and checks the lur or X2 signalling information (i.e. between a set of RNCs controlled by a given 3G SGSN and between a corresponding set of eNode Bs for LTE). If this monitoring shows that a mobile terminal is hopping between cells one of which is not connected to (and therefore managed by) the offload decision module, any data from the mobile terminal can thereafter be routed back to the legacy path through the core network.
Regulatory Services are services that are mandated by legislation, and are typically provided to all traffic. Some specific examples of Regulatory Services that can be taken into consideration by the offload decision module include: i) Lawful Interception (LI): The ability to provide Lawful interception will be maintained in any offload or local breakout plans. The options for offload are: -Maintain the evaluation of LI in the core network, and not offload users whose traffic needs to be intercepted (e.g. where the user has been tagged by the police for communication interception). Since the LI functionality is handled by the core network, the core network accordingly cannot be bypassed; -Add LI capability to the offload decision module, which will require a local LI interface with a dedicated database identifying the users to be intercepted. With this option, upon identifying traffic from a user on the list, a copy of the data can be made at the local LI interface and the traffic offloaded. The copied data can then be reported to the appropriate authorities; or -Alternatively, LI may be performed at the Internet Service Provider (ISP). With this option, since LI is considered at the ISP it is not a consideration at the offload decision engine, and so the data may be offloaded, where possible. However, to effect this option, a Service Level Agreement (SLA) with relevant ISP providers may need to be amended in order to include the support of LI in the ISP network rather than in the mobile network infrastructure.
ii) Regulatory Content Filtering (e.g. for Internet Watch Foundation (IWF)): This required functionality blocks illegal websites. This functionality could easily be added to the offload decision module as it is not processor intensive. An http proxy server, for instance, could be used to support this functionality. Otherwise, the traffic will be returned back to a dedicated core node(s).
A further criterion that the platform (24, 25, 26) module may consider is the priority of the customer. In this regard, a network operator may wish to prioritise traffic across its network based on the priority level of the customer.
For example, a high value customer (e.g. a corporate customer or a subscriber with on a high tariff contract) may be given priority over a low value customer.
In this situation, a network may decide to offload lower value customers directly to the internet. This is related to the QoS criterion mentioned above, although the QoS criterion is generally linked to traffic management to maintain a balanced network, whereas the priority referred to can be used to ensure subscribers get a level of service commensurate with their service agreement.
The embodiment of Figure 2 is in relation to a 3G network. Embodiments of the invention are equally applicable to 4G (LTE/SAE) networks.
The LTE/SAE macro network includes eNode Bs which make up the RAN.
The eNode Bs effectively combine the functionality of the node B and the RNC of the 3G network. These eNodeBs are the network components which communicate with the mobile communication devices. It is envisaged that the eNodeBs will be arranged in groups and each group controlled by a Mobility Management Entity (MME) and a User Plane Entity (UPE).
The MME performs many of the mobility functions traditionally provided by the SGSN. The MME terminates the control plane with the mobile device. It is responsible for terminating NAS (Non Access Stratum) Signalling such as MM (Mobility Management) and SM (Session Management) information as well as coordinating Idle Mode procedures. Other responsibilities of the MME include gateway selection inter MME Mobility and authentication of the mobile device.
The UPE manages protocols on the user plane such as, storing mobile terminal contexts, terminating the Idle Mode on the user plane, and PDP context encryption.
The platforms would operate in the same manner as described in relation to the 3G network. The platforms may be located at many different locations in the 4G network.
A more specific example of how the platform 24, 25, 26 may be implemented is described in relation to Figure 4. Figure 4 is a flow diagram illustrating a preferred method for deciding whether to offload data traffic to the internet.
The decision structure is composed in a hierarchical form in order that certain types of user or data are always directed through the core network. The example of figure 4 is described for a 3G network but it will be clear to those skilled in the art that these decisions could be applied to any type of radio access technology.
Once a PS HSPA data call (or other connection) is made and received at the Node B at 600, a primary consideration by the platform 24, 25, 26 at 610 is whether the device is operating on its home network or whether it is roaming. If the device is roaming then all traffic is automatically routed through the core network. The reason for this is that the home network would want to guarantee the security and accurate billing (due to different charging principle between home and visited operator) of the user's traffic. The platform 24, 25, 26 at 610 will also consider other factors, such as what application types running on the mobile terminal require connections. If the mobile device is operating on its home network at 610, or if the applications do not require a connection to the core network, the platform 24, 25, 26 considers secondary offloading criteria at 620. Examples of secondary criteria may include the functions required by the device, the radio bearer currently used by the device, the APN, or the priority level of the customer identified, for example, through IMSI, IMEI or the target subscriber. If the offloading criteria are met at 620, the decision moves to the tertiary criteria, otherwise, the traffic is not offloaded.
At 630, the system checks the mobility of the user. If the user is moving, he is considered not suitable for offload due to an expected interruption delay of the user data when moving between source and target cell.
Finally, at 640 the system conducts a contents and policy check to confirm whether the user is suitable for offload. If it is determined that the user is suitable for offload to the internet, the eNodeB offloads the traffic to the internet at 650. If it is determined that the user is not suitable for offloading to the internet at 640 then the procedure returns "home" at 660. A connection is provided by a network core in a conventional way and the tests of the flowchart shown in figure 4 are repeated periodically to determine whether offloading directly to the internet becomes possible subsequently.
If the device is determined to be roaming at step 610, then the device is not offloaded directly to the internet, but remains connected via the network core in a conventional way at 670. Similarly, if the offloading criteria are not met at steps 620, the mobile device remains communicating via the network core in the conventional way, again at 670.
The hierarchical decision method is useful because it reduces the number of challenges across the network. It will be evident to those skilled in the art that different hierarchical structures will be appropriate for different networks, different conditions etc and that the example of figure 4 is just one way the decision could be made.
For instance, whilst arrangements have chiefly been described in relation to transmitting data traffic from a mobile terminal to a data network, the principles may also be applied to transmissions from a data network towards a mobile terminal.
In the arrangements described above the decision regarding the route is said to be made at call set-up. However, it should be appreciated that a decision to change the routing of data may be made at the beginning of a communication session (for example establishment of a PDP context), or during a communication session. The routing of data may change several times during a single communication session. For example, when a communication session is initiated it may be detected that the user is not moving, in which case a decision will be made to offload the data over the alternative data route. Subsequently it may be detected that the user is moving, and at this point a decision may be made to beginning routing data for the communication session via the mobile network. During the communication session, the mobile terminal may become stationary for a prolonged period of time again, and at this time a further decision may be made to send subsequent data during the communication session via the alternative data route. Subsequently again, the user may then attempt to access age-restricted content, and it will be detected that parental control is required. In response for the requirement for parental control, a decision may be made to redirect subsequent data during the Communication session via the core network so that core network parental controls can be applied.
It is to be appreciated that the present embodiments of the invention are to be distinguished from HSDPA offload, a technique used on the lub interface between the Node B and the RINC. HSDPA offload which serves to separate data traffic from voice traffic, so that non-real time data traffic is sent down a less expensive backhaul to complement or replace the expensive El/Ti TDM backhaul link between the two. Once this diverted traffic reaches the RNC, however, it is returned to the cellular and transport core networks and there is no differentiation made based upon data traffic type.
In the arrangement described above the platform 24, 25, 26 primarily handles data offload decisions. As will be described below, the platform can perform may other functions.
Embodiments of the invention in which the Radio Access Network controls the use of resources by mobile terminals will now be described.
Platform Architecture As discussed above, a mobile telecommunication network is modified by the introduction of a "platform" 24,25,26. Such a platform is shown in more detail at 700 figure 5 and which includes three principal parts: soft nodes 702 (physical/transport layer), network functions 704 and services 706 (application layer).
The platform 700 communicates with the radio frequency (RF) part of a base station, such as a NodeB 1. The soft nodes 702 of the platform 700 comprise components such as a soft NodeB 708, soft BTS 710, soft eNodeB 711 and soft RNC 712 and soft SGSN/GGSN 714. The soft nodeB 708 provides functions equivalent to the baseband part of a conventional NodeB in a 3G telecommunications network. The soft BTS 710 provides baseband functions equivalent to the baseband functions of a BTS in a conventional 2G mobile telecommunications network. The soft enodeB 711 provides baseband functions equivalent to the baseband functions provided by a conventional enodeB in a 4G mobile telecommunications network. The platform 700 may therefore communicate with the radio frequency part of a 2G, 3G or 4G base station and provide appropriate baseband services for 2G, 3G or 4G technologies (or indeed for other technologies). A 3G mobile terminal that wishes to obtain telecommunication services from the mobile telecommunications networks connects wirelessly to the radio frequency part of a NodeB. Baseband functions may be provided either by a baseband part of the conventional NodeB or by the soft NodeB 708 forming an element of the soft node part of the platform 700. For example, the soft NodeB 708 may receive radio measurements from the radio frequency part of the NodeB to which it is connected, and may provide these radio measurements to other elements of the platform 700.
The network functions part 704 of the platform 700 includes modules for performing functions similar to those performed by the core network of a mobile telecommunications network, such as billing 720, location tracking 722 and the radio resource management (RRM) 724. The network functions may further comprise an offload decision module 726 that performs a function similar to the offload decision modules 24, 25 and 26 described above. The network functions part 704 may further comprise a caching function 728 and Content Delivery Network function 730.
The network functions parts 704 of the platform 700 provides an Application Programming Interface (API) framework to the services part 706 of the platform 700. The services part 706 of the platform supports a plurality of applications 740, 742 etc. The network functions fall into three main categories, those that enable the network operation (e.g. charging, O&M), those that support service operation (e.g. Location) and those that optimise the usage of the network by certain applications and services (e.g. Caching, Video Optimisation).
The applications supported on the Platform 700 are the entities that supply or demand the flow of data on the network, akin to a server on the internet, e.g. gaming server, navigation server.
The API is implemented by a software program running on the network function part 704 which presents a novel standardised interface for the applications 740, 742 etc of the services part 706. The novel standardised API provides a consistent interface, defining communication protocols, ports etc. Full details of the API may be published to allow a multiplicity of applications to be developed for the platform 700 by multiple developers. This should be contrasted with prior art arrangements where each component of a mobile telecommunications network (such as BTS, BSC/RINC, SGSN etc) is proprietary and tends to have a unique interface, meaning that a different application must be written for each node of a conventional network.
The applications 740, 742 etc may provide services to users of the telecommunications network by co-operating with other parts of the platform 700.
The details of the use of each application used by the a user of the mobile telecommunications network is stored in an application context! container. The Application context contains application names, protocol used to carry such application, their characteristics that are measured! reported over period of time and some statistical information about these applications (volume, number of users using these applications, etc.).
As shown in figure 6, a platform 700 may be provided at each base station of the mobile network (where it is connected to the radio frequency part of the base station -NodeB 1 in figure 2), forming an access node 800. Platform 700 may also be provided at the RINC (item 3 in figure 2) where it forms a gateway 802. The access node 800 and the gateway 802 are both configured to communicate directly with the network core 804 (for example, comprising the SGSN 5, GGSN 6 and VAS 7 (as shown in figure 4)). The access node 800 and gateway 802 may also be connected to the internet 8 for direct internet access via direct links 806 and 808, respectively, such that at least a portion of the core network 804 is bypassed in the manner described above.
The following are examples of access technologies that can be provided within the access node 700: 3GPP: GSM/GPRS, UMTS/HSPA & LTE IEEE: 802.11 family & 802.16 family ITU: DSL, ADSL, VDSL, VDSL2 Allocation of Functions to Platforms The steps performed when a mobile terminal is activated at a NodeB, at the Femto or at the Access Point (AP) of the network which includes the novel platform 700 will now be described with reference to figure 7. At step 9A the mobile terminal (UE) is activated within the coverage area of a particular NodeB, at the Femto or at the AP. The access part of the NodeB, at the Femto or at the AP communicates information from the mobile terminal to the platform 700 associated with the NodeB, at the Femto or at the AP. At step 9B the platform 700 then allocates the baseband NodeB, at the Femto or at the AP function and the RNC or BRAS (Broadband Remote Access Server) function either at access node 800 at the NodeB at the Femto or at the AP site or at the gateway 802 at the RNC or BRAS site of the network or even from neighbouring nodes that have spare resources to pull. The decision as to whether the RNC or BRAS function is allocated at the platform 700 of access node 800 or the gateway node 802 may be made depending on various criteria, including: * The device type -for example this decision can be based on the radio access capabilities that the mobile terminal indicates upon activation, such as whether it is operating in the circuit switched or packet switched domains.
* The location of the mobile terminal. If the mobile terminal is near the edge of the cell (which can be determined by network power measurements or neighbour cell measurements from the mobile terminal, within a plus or minus 3dB range for the RACH).
* The establishment cause of the connection request: such that the NodeB can filter the unnecessary signalling information from the mobile terminal which is not critical -for example periodic routing area update messages.
Upon allocating the baseband NodeB at the Femto or at the AP and the RNC or BRAS function, the NodeB at the Femto or at the AP may allocate the mobile terminal to a particular carrier dedicated to the RNC or BRAS function.
Once the RNC or BRAS function is allocated to either the access node 800 or the gateway 802 at step 9C, other functions performed by the platform 700 at the access node 800 (or other access node) and the gateway 802 (or other gateway) are allocated to the mobile device. All other platform functions may be provided by the platform where the RNC or BRAS function is allocated to the mobile terminal. However, a platform at a different location to that which provides the RNC or BRAS function to the mobile terminal may provide some or all other functions.
At step 9D the platform which is allocated the RNC or BRAS function is provided with a Common ID message from the core network 804.
At step 9E, this message is used by the platform 700 to look up the complete subscription information for the mobile terminal, as well as the resource requirements (QoS) of the services required and negotiated PDP context, this information being provided by the core network 804.
The subscription information relating to the device that is obtained from the central nodes (e.g, core network) 804 is used to allocate the other functions at access node 800 and/or the gateway 802 in dependence upon various factors, including: Detailed information regarding the mobile terminal type obtained from the core network.
The subscription characteristics of the mobile terminal.
The applications previously used most frequently by the mobile terminal.
The characteristics of the applications previously used by the mobile device and the performance requirements thereof The historic mobility of the mobile terminal (speed, connection, distance travelled etc).
The location of the mobile terminal and the likely destination of traffic from the mobile terminal based on historic usage patterns.
The load of the NodeB providing RF services to the mobile terminal, and the historic traffic trends at that NodeB at Femto or at AP.
The characteristics of the NodeB at the Femto or at the AP providing RF services (for example, the location, what other devices are connected through the NodeB at the Femto or at the AP, the number of machine to machine devices being attached and served by the NodeB, etc).
As mentioned above, a single mobile terminal may have platform functions/applications allocated on a plurality of platforms. Generally, when a mobile terminal is near-stationary it is most efficient for its functions/applications to be served from an access node 800 (i.e. distributed), whereas mobile terminals with greater mobility (or lower anticipated cell hold times) will be most efficiently served by having fewer or no functions/applications served from the access Node 800, and more or all functions/applications served from a gateway 802 (i.e. centralised). The assignment of functions/applications to a mobile terminal between an access node 800 and a gateway 802 will also depend upon the characteristics of the service type provided by the application (for example, the average IP session duration, the popularity of the particular application, the average mobility of mobile terminal using the service provided by the application etc).
Traffic management may be performed at the access node 800, where there is access to real-time radio information from the radio frequency part of the NodeB, the Femto or the AP serving the mobile device.
Centralised Radio Resource Management (RRM) may be provided at the gateway 802, and maintains performance across different access modes 800, which may have different radio access technologies, frequency bands, coverage etc. The RRM function 724 of the platform 700 of the gateway 802 may obtain information regarding radio traffic management from each access node 800 to dynamically position subscribers to particular radio technology. This technique will be used to allocate network resources based on the resource availability, application used and user mobility, For example, the traffic management information may be provided by the soft NodeB 708, Femto or AP of the platform 700 at the access node 800. This soft NodeB 708 obtains radio information relating to the mobile terminal from the radio frequency part of the NodeB to which the mobile terminal is wirelessly connected.
For a particular mobile terminal, functions provided by an access node 800 and gateway 802 may be coordinated to work together in an advantageous manner (i.e. a hybrid or distributed arrangement). For example, the gateway 802 may set operating limits or ranges within which functions performed by the access node 800 may be performed, without reference to the gateway 802. When the functions move outside the ranges set, control of those functions may be passed to the gateway 802.
Further, the access node 800 and the gateway 802 may cooperate to advantageously optimise content deliveiy to a mobile terminal.
The optimisation of content delivery will now be described with reference to figure 8 of the drawings. Content may be optimised at gateway 802 and at an access node 800. The gateway 802 may serve multiple access nodes 800, and my distribute content to those multiple access nodes 800, for onward transmissions from each of those access nodes 800 to a mobile terminal via the radio frequency part of NodeB, the Feinto or the AP serving that node. Radio quality measurements are reported by the mobile terminal to the access node 800 at regular intervals, such as 2 millisecond intervals. Radio quality measurement relating to that mobile terminal are transmitted between the radio frequency part of the NodeB, the Femto or the AP serving the mobile terminal to the access node 800 at regular intervals, such as between 2 and 10 millisecond intervals. These radio measurements are received at the soft nodes 702 and are passed to functions 704 (e.g. to Q0S function 732 for analysis).
These radio frequency measurements from the mobile terminal and the NodeB are reported by the access node 800 to the gateway 802 (e.g. to Q0S function 732 of the gateway 802 for analysis) at regular intervals, such as intervals of between 1 and 10 seconds. The gateway 802 may receive radio information from multiple access nodes 800. The radio measurements received by the gateway 802 may be analysed over a relatively long period, such as between 1 and 2 minutes. The radio quality measurements may be averaged (for example, the arithmetical mean of the radio quality maybe determined) over this time period. The transmission of content from the gateway 802 may then be optimised according to this calculation. Where the content is distributed by the gateway 802 to a plurality of access nodes gOO, the content distribution will be based on the analysis of the radio quality indicators from all of the access nodes 800. The analysis may consider the maximum or peak radio performance over the time period of between 1 and 2 minutes.
When the content is received by each access node 800, the access node 800 then distributes the content to each mobile terminal. This distribution is optimised based on real-time network mode and mobile terminal specific radio link quality, as determined over a period of, for example, between 1 and 10 milliseconds. That is, content delivered to a mobile terminal that has high radio link quality may be optirnised in a different manner to a mobile terminal that had poor radio link quality.
The co-operation between access nodes 800 and gateways 802 may further enhance the distribution of content in a manner now to be described with reference to figure 9.
When a mobile terminal requests a particular content item, this request is transmitted to the access node 800 serving that mobile terminal, assuming that this is the first request for this content item to the access node 800, the access node 800 passes this request to the gateway 802 serving the access node 800.
Assuming that this is the first request for this content item from the gateway 802, the gateway 802 retrieves the content from a content server. The content is then provided by the content server to the gateway 802, and from there is distributed to the access node 800, and onwardly to the requesting mobile terminal. Advantageously, the gateway 802 maintains a record of content items that are requested frequently. When a content item is determined by the gateway 802 to be requested frequently, this is stored in a cache 1110 associated with the gateway 802 (which may be the cache 728 of the platform 700). Subsequent requests for that content item from access nodes 800 to the gateway 802 can then be serviced by retrieving the content item from the cache 1110 and distributing the content item to the requesting access node 800, and thus avoiding the need to request the content from the content server.
The gateway 802 may be further configured to identify popular content items that are likely to be requested by a large number of access nodes 800. When it is determined that a content item is popular, the gateway 802 may push these content items to each of the access nodes 800 associated therewith (so that this content is hosted at the access node 800, using Content Delivery Network (CDN) function 730 of the network functions 704 of the gateway 802 and the access node 800). The content is then available at the access node 800 for transmission to any mobile terminal that requests it, without having to retrieve this content from the gateway 802 or the content server. Advantageously, the distribution of such content items is performed in a manner which takes into account the capacity or the congestion of the link between the mobile terminal and the gateway 802 and the nature of the content. For example, typically a link between a mobile terminal and the gateway 802 may experience very little usage and congestion in the early hours of the morning. The content item can be advantageously transmitted in between the gateway 802 and the access node 800 at this time, when there is spare capacity. The gateway 802 will determine whether the content item is suitable for transmission on this basis, for example, by taking into account a number of times that the content item has been requested, the size of the content item and the storage space at the access node 800. If a content item is relatively small and is time-critical, such as news headlines, then such a content item may be distributed frequently throughout the day, as such content is not suitable for transmission once a day at early hours of the morning, as it becomes quickly out of date.
Relocation of Mobile Terminal The procedures performed when a mobile terminal moves between cells in the mobile telecommunications network will now be described with reference to figure 10. In the conventional manner at step 12A, when the mobile terminal moves to the edge of its current serving cell, the radio measurements reported from the mobile terminal and the radio frequency part of the NodeB, the Femto or the AP serving that mobile terminal are used by the core network to determine when to perform a handover and to which target cell the handover should be performed. When the best target cell has been identified, handover to that target cell from the serving cell it is performed at 12B in a conventional manner.
At step 12C selected platform functions may be relocated from the source access node (that served the old cell) to the destination access node (that serves the new target cell).
When the source and destination access nodes are served by the same gateway, only base station function (such as soft NodeB functions 708) may be relocated to the destination access node.
The relocation of functions of the access nodes is performed independently to the radio handover, so for some time after the radio handover, the source access node continues to serve content to the mobile terminal through the destination access node. The routing of data packets for the 3G network between the destination and the source access nodes may be performed using an lu interface between the RNC or BRAS function 712 of the destination access node and the SGSN/GGSN function 714 of the source access node. Alternatively, the routing of data packets between the destination and the source access nodes can be completed by the SGSN/ GGSN function 714 of the destination access node connecting directly to functions of the source access node through an IP interface.
After handover has been completed at step 12B, the access node controlling the mobile terminal may be relocated from the source access node to the destination access node in coordination with the gateway. the standardised handover decisions (mainly based on coverage, quality, power, interference, etc.) for 2G, 3G, LTE & fixed network are used to move the mobile from one node or system to another. However, the platform 700 introduces new opportunity to make the handover decision based on type or characteristics of the certain application, type of user and the QoS requirements.
The timing of the relocation of access node functions from the source to destination platform may be dependent on the following: * the duration of the current connectionlcoininunication of the mobile terminal * the speed of movement of the mobile terminal 5. the characteristics of the applications being used by the mobile device, the quality of service, the predicated type and amounts of transmission ongoing.
* The radio resource allocations status at the mobile terminal * The respective node of the source and destination and access nodes.
At step 12D, optionally, some functions will be reallocated from the access nodes to the gateway. For example, if the destination access node is heavily loaded and is congested, or has a lower capability then the source access node, or the mobile terminal is determined to be very mobile, it may be advantageous to transfer functions to the gateway. Functions are reallocated from the access node to the gateway by, for example, a Serving Radio Network Subsystem (SRNS) relocation between the RNC function 712 of the access node and the gateway. Alternatively the functions may be reallocated by performing a radio reconfiguration of user connection to the mobile terminal.
The reallocation of functions from an access node to the gateway may be performed at call/communication sessions set-up. At call/communication session set-up, further subscriber information will be provided, which may be used by the access node or gateway to be determine whether it would be advantageous to reallocate functions from the access node to the gateway.
Reallocation of functions from the access node 800 to the gateway 802 may be performed during an active connection when a requirement of the communication sessions has been modified, or where the required resource is not available at the access node 800.
According to the same principles, applications may be (re)located (or distributed) between access nodes 800 and for gateways 802 to provide optimised application delivery/best use of the communication resources.
As mentioned above, information about each application used by the user at the mobile terminal is stored in an application context. The application context is shared between each access node 800 and gateway 802 that control the user connection for that mobile terminal. One of the access nodes 800/gateways 802 will be the "master" for that particular application, and that will also be the master of an application specific record in the application context. The application context is advantageously periodically synchronised between the access node 800 and the gateway 802.
The application information is the application context specific to a particular mobile terminal, and this is passed between access nodes and gateways during reallocation for a mobile terminal, enabling the application to be seamlessly passed access nodes/gateways, avoiding impacts to the user experience.
Figure 11 shows the transfer of application information between access nodes and gateways.
Tailorin Bandwidth to Application Radio measurements received from the radio frequency part of the NodeB, the Femto or the AP serving the mobile terminal are passed to the soft nodes 702 of the platform 700 (of the access node 800 or gateway 802 serving the mobile terminal), and are passed to the network functions 704 of the platform 700, which then distributes the measurements to where necessary within the platform 700. The platform 700 has access to the subscriber information from the core network, which allows the network functions 704 to deliver data traffic in a manner that is optirnised for radio conditions as indicated by the radio measurements. The data traffic may also be optimised according to the subscription of the user of the mobile terminal available radio resource, mobile terminal capability, and/or for the class of the terminal (e.g. access technologies used). This optimisation allows bandwidth usage to be balanced with customer experience. The subscriber information may include information about the price plan of the user of the mobile terminal. The mobile network operator may track the type of application used by the user, the total data usage of the user, and may differentially target radio resources the highest data value stream of users.
By hosting applications 740, 742 in the services part 706 of the platform the access node 800 (or at least the gateway 802), the point of the network that is aware of the application being used by the user of the mobile terminal closer in the link between the mobile terminal and the core network to the NodeB serving the mobile terminal. This enables the sharing of network resources to the most appropriate data streams, such as the most profitable data streams.
Such awareness of the application to which a request for data transmission relates allows the use of low value data streams, such as peer-to-peer file sharing, to be allocated only limited bandwidth, so that remaining bandwidth can be targeted to particular users. In the uplink, transmission of data can be controlled by the access node 800 (or gateway 802) hosting the application to control data flow appropriately before data is onwardly transmitted towards the core of the network (which was not possible with conventional arrangements).
Application Prorammin Interface (API) As mentioned above, a novel API is provided which defines the language that each of the software modules 740, 742 of the platform 700 use to communicate to coordinate to optimise application delivery to users. The platform 700 negotiates which each application 740, 742 the specific resource and performance requirements based on the application characteristics, allowing the application to directly communicate the scheduling performance requirements, rather than using a predefined set of quality of service parameters. This negotiation between the platform 700 and the applications 740, 742 is facilitated by the API.
The API may also facilitate the provision of radio link quality information (e.g. from Q0S function 732) to applications 740, 742.
The API may further enable the platform 700 to control use of the applications 740, 742 -e.g. to allow, disallow or adapt the applications.
By way of example, the application 740 may be a Voice over IP (VoIP) application. The nature of Voice over IP communications is that there is a virtually continuous succession of small data packets in which voice data is communicated. The voice data must be communicated with no or minimal latency in order that a two-way conversation can be performed successfully.
The Voice over IP application 740 is able to compress voice data before transmission using a variety of techniques/CODECs. The compression techniques/CODECs may range from a relatively low compression technique, which provides high quality voice reproduction but requires a large bandwidth, to a much higher compression technique which provides reduced voice quality and which requires a much lower bandwidth.
The API is operable to provide details of the application characteristics to the network functions part 704 of the platform 700. This makes the network functions part 704 of the platform aware of the characteristics of the application. In the present example, as the application is a Voice over IP application, the network functions part 704 may be made aware that the application will tend to transmit continuous successions of small data packets that require transmission with no or low latency. The network function 704 may then be configured appropriately.
The API may further be operable to allow the network functions part 704 to communicate radio link quality information to the application 740. For example, when the network functions part 704 received information regarding the application characteristics (via the API), it may allocate radio link resources to that application 740. This allocation of radio link resources may be communicated by the network functions part 704 to the application 740 (via the API). The application 740 may then select an appropriate compression technique/CODEC in dependence upon the radio link quality available. During a Voice over IP call, the available radio link quality may be communicated regularly from the network functions part 704 to the application 740 (via the API) to allow the application 740 to vary the compression technique/CODEC used in accordance with changes to the radio link quality.
The network functions part 704 may control how the applications 740, 742 work (via the API). The network functions part 704 may allow, disallow or adapt the applications 740, 742 hosted in the services part 706 of the platform 700. For example, the network functions part 704 may require the Voice over IP application 740 to use a particular compression technique/CODEC if radio link bandwidth is restricted.
Another example of how the network functions part 704 may advantageously provide radio link quality information to an application (via the API) is when the application 742 is a gaming application used by several users. If the radio link quality information received by the application 742 indicates that bandwidth is restricted, the application 742 may adapt is communications to the users such that latency of the communications is increased uniformly for all of the users (so that they all experience the same delay), in order that each of the users is provided with the same gaming experience.
In the embodiments described, the devices that connect to the platforms 700 are mobile devices that connect to the platforms via the radio access network of a mobile/cellular telecommunications network. It should be appreciated that non-mobile (fixed) devices may be connected to the platforms 700, for example by a wired or cable connection.
Allocation of Services The control means is responsible for allocating the service instance for each UE, based on the UE locations and the control means capacity, capability and available resources to host another instance of a service.
For certain low popularity services or where the available serving control means capacity or capability is limited, the service can be hosted from a central control means, or from a neighbouring distributed control means.
For some services/functions, where the source and destination client applications are in the same geographical region, being served by the same site (e.g. BTS location) or site cluster (e.g. finite number of sites), the access node 800/gateway 802 ensures that the server for the service is located close to both users, and the traffic is routed between the users within the site.
Security Protection As broadband connectivity becomes ubiquitous existing standalone services will move to "the cloud". One example of this is processing and management of Home Security systems.
When a secure link is required the fixed infrastructure has the deficiency that the line can be severed; it would therefore in some situations be beneficial to use the mobile network as connection resiliency.
The mobile network relies on reception of radio communications between the two parties. This communication link could be severed by use of ajammer.
Jammers are illegal for use by the public, however, but are used by Government agencies to maintain national security. Use of jammers, in these cases, is typically in static locations or follow normal patterns.
The system of Figure 12 may be used for the support of a Home security service, the principles of which will now be briefly described.
The Secured Home' 1400 is managed by a Home Security Server 1410 in the Network through both Fixed 1420 and Mobile (wireless) 1430 connections.
Identification that the network has been jammed The probability that connectivity of both the radio and the fixed networks is lost at the same time for a home security system can be made small, as both systems are typically, and in future can be, designed to be independent.
The loss of connectivity of both the fixed and mobile network can be used to determine that there is a high probability that Home security is being compromised. Detection of loss of connectivity in a fixed network is relatively straightforward (e.g. by loss of "heart-beat" transmissions over the medium), and will not be described further. Detection of suspicious loss of connectivity in a mobile network is more difficult as, due to variations in radio quality across the network, the quality and availability of connectivity will naturally vary.
As discussed above, the platform 700 allows application environments to move closer to the radio site. This enables more complex functions to be moved to the Radio Access Network and for them to be hosted on the platform 700. That is, the services part 706 of the platform 700 may host applications (e.g. 740 and 742). The applications may be hosted by a platform 700 at access node 800 at the NodeB, or at the Femto or at the AP site, or at the gateway 802 at the RNC or BRAS site of the network Also, as devices such as telephones and laptops become increasingly more advanced, additional functionality can be implemented in the application and operating system environment of these devices, allowing the devices to play a greater role in the end-to-end data pipe.
The platform 700, in the services part 706, hosts the home security application 1440. The home security application 1440 has an associated electronic store (memory) 1212.
The platform 700 may: * Make measurements of the radio load; * Identify the frequency and technology layer each terminal is currently using; * Make measurements of 2G/3G/4G user coverage/distance from the site per technology, and the overlapped coverage areas; * Makes measurements of Quality of the radio link to the subscriber; * Identifies the terminal type used; * Assess the properties of that technology/frequency in a specific cell/location.
These measurements may be received at the soft nodes 702 (e.g. eNodeB 711) and passed to functions part 704 (e.g. Q0S function 732).
The functions part 704 (e.g. Q0S function 732) may then pass required parts of this information to the home security application 1440 hosted on the platform 700.
The home security application 1440 is shown in Figure 12 provided in the services part 706 of the platform 700 of an access node 800, but could also be provided in the platform 700 of a gateway 802.
Briefly, the home security application 1440 records measurements of the interference experienced or dropped call rates on the cell it serves, to determine whether the network performance is diverging outside normal levels; and triggers an alarm to the Home Security Server 1410, which may be located at the network core.
The following network performance metrics can be used by the application 1440 to determine that it is being jammed: -Dropped Calls -Uplink Noise Rise -Neighbour cell measurements -C/I measurements from other devices in the cell -Etc.
Service and platform interaction The application 1440 may capture information on radio and initiate radio procedures to improve statistical network measurements.
Identifying the location of the jammer One advantage of a mobile network is that there are large numbers of devices that are connected through a single base station at any one time; these devices currently provide measurements to the network of the radio conditions they experience, and thereby act as an array of remote sensors. When an interference source is turned on, the power that the Jammer device is transmitting can be measured at a number of locations; using these measurements the network can triangulate to determine the location of the interference source.
When other devices are in calls and these fail, the location of these devices before their call drop can be used in the calculation, along with information on their power budget to determine the interference level that is needed to block this device from accessing the network.
In HSPA and LTE devices can remain in a sub-state of connected mode where they are idle but the location on a Cell or URA area basis is known by the radio network. When the network gauges that there may be an attack in progress the radio network can bring some of these devices back into active state to provide additional network measurements.
Such analysis may be performed by an application at gateway 802.
Use of other mobile technologies and operators during an attack If an attack targets purely the uplink, the device may not know that its use of the network is being blocked by a third party. The current normal operating procedure for the device would be to repeat its attempt to access the cell it is currently camped on, and wait for ever extending periods until the network "fault" gets rectified.
It is proposed that these special Security devices would after attempting to access the camped cell and failing; move quickly onto different carriers of the same technology; before shifting to different frequency bands.
In this way the attacker would need to jam the network across a wide range of frequencies and technologies.
In most countries national roaming is prohibited in much of the network, and as such a device cannot just access another network when it falls off coverage of its own operator. In occasions where there is an attack, national roaming can be enabled. If the Home Security Application 1440 indicates that there is a radio problem on this site then the national roaming is permitted.
Actions after connectivity is restored When the Home Security server 1410 restores connectivity to the premises 1400, it initiates a procedure to pull all the buffered information at the sensors and video cameras at the premises 1400 to the network for processing, such that they can be analysed.
An embodiment of the invention, useful for providing home security, will now be described in more detail. However, it should be appreciated that the embodiment is applicable to identify interruption of the radio access network in general. Identifying such interruption is particularly useful in security applications, such as the home security application described above, because it can indicate security has been compromised at a premises. However, it is also often useful to detect interruption of the radio access network for other reasons.
For example, a person or organisation may try to interrupt the radio access network to cause general inconvenience to users or to help perpetrate a crime, such as a terrorist attack. Further, the network may be interrupted not by a special jamming device, but by a malfunctioning terminal. For example, a malfunctioning terminal may continuously transmit at very high power which interrupts the service available to other terminals.
As mentioned above, the platform 700 receives data from the terminals that it serves. This data is made available to the security application 1440. The data may relate to the radio access network performance in the uplink between the terminals and the base station to which the platform 700 is connected. The network performance in the uplink may be assessed by determining the receive interference (the interference present in signals received from the terminals), the transmit power of the terminals (a high transmit power being an indication of high interference), the cell throughput (for example, the rate at which transmitted data packets are acknowledged as received by each of the terminals, the aggregated cell/site throughput, the dropped call rate and/or the H-ARQ rate).
The platform 700 is operable to communicate with other platforms associated with other base stations. This communication between platforms 700 may be used to retrieve from the other platforms the data relating to communications between those other platforms and the terminals that they serve.
The data obtained from the terminals may include an indication of the location of the terminals. For example, the location of the terminals may be provided directly by GPS information transmitted from the terminals. The location may also be calculated from other data received from the mobile terminals -for example, by detecting how long it takes for a transmitted data packet to be acknowledged. Various methods of determining the location of mobile terminals in cellular networks are known to those skilled in the art, and any of these may be used. The radio quality information and the location information may be used to build a database which indicates the radio quality of different locations within the cell served by the base station associated with the platform 700. The radio quality may vary at different times, and this may also be represented in the database.
The information obtained from neighbouring platforms advantageously also includes location/geographical information relating to the mobile terminals from which the performance data is derived. This allows the control means 700 to include in the database radio performance measurements for not only its own cell but also for neighbouring cells (and cells further afield). The area served by the cells of respective platforms may overlap, and this provides greater detail about the radio conditions in such an area. Further, one platform or multiple platforms, may provide multiple radio access technologies (e.g. 2G and 3G) in the same geographical area, and this information too is included in the database to provide more detailed radio performance information in such geographical areas.
The radio quality and geographical information from the platform 700 and the neighbouring platforms is passed to security application 1440 to create the database, which is stored in the store 1212. The application 1440 may aggregate and analyse the radio performance across a geographical area. The database in store 1212 may therefore give an indication of the historic radio quality over a geographical area. The database may indicate the historic radio quality over the geographical area at different times (such as at different times of day). Typically, the radio quality will follow a similar pattern over a particular time period (such as a day).
At any given time, the radio quality information (e.g. mobile terminal measurement of serving and neighbour cells, Network measurements of mobile terminals) currently being obtained from terminals served by the platform 700 will be passed to the security application 1440 and analysed. The application 1440 compares this current radio quality data with historical radio quality data taking into account the current time and the location of the mobile terminals making the current measurements. The security application 1440 determines whether the current measurements are significantly different from those that would be expected based on the historical information in the database. If there is a significant difference, then this is an indication that an interruption of radio access network may be occurring.
The store 1212 may also store details of radio quality patterns that indicate that an interruption is occurring, such as deliberate jamming of the radio access network (or part thereof). These criteria may be pre-stored in the store 1212 and may be based on known interruptionljamming patterns, and not based on the historical data mentioned above. The security application 1440 is operable to compare the current radio quality measurements with these criteria to determine whether it is likely that interruption or jamming is being attempted.
Comparison by the security application 1440 of the current radio quality measurements with the historical measurement and the interruptionljamming criteria may be performed, or one other of those comparisons only may be performed.
When the security application 1440 determines that it is likely that interruption or jamming of the radio access network is occurring, the application may then take steps to obtain further information in order to confirm that interruptionljamming is indeed occurring by performing analysis of the further information. Whether or not this confirming step is performed may depend upon the result of the initial analysis step. Analysis of some radio quality data may indicate a very high probability that interruptionljamming is occurring, whereas other radio quality data may indicate that there is a small possibility that interruptionlj ammning is occurring.
If it is desired to perform the confirming step, then the application 1440 may send commands to terminals served by the platform 700, for example via the soft eNodeB 711, to instruct the terminals to provide further performance measurements. These performance measurements may result in the gathering of further types of radio quality data (in addition to the types of radio quality data mentioned above). The terminals may be instructed to transmit the radio quality information of the types mentioned above, but with greater frequency. The application 1440 may also instruct the platform 700 to trigger a dummy paging procedure which causes mobile terminals that are in the idle/inactive state to move to the active/connected state, so that radio quality information may be obtained from those terminals. Such a dummy paging procedure may "trick" the terminals into expecting that a call or data session is to take place.
The application 1440 may instruct terminals to provide performance measurements at their geographical location. For example, the terminals may be instructed to gather the information about the radio conditions at the geographical location similar to information that will be collected to determine whether to perform a handover to a different cell. This data is then transmitted to the platform 700 for analysis by the application 1440.
The application 1440 may contact further platforms 700 to obtain radio performance data from these platforms as part of the interruptionljamining confirmation step, so that the radio quality is known over a larger geographical area.
The security application 1440 may also instruct neighbouring platforms to acquire additional radio quality information like that mentioned above, for the terminals registered with those other platforms.
The additional information obtained by the confirmation step may be used to perform a further analysis so that the presence of an interruptionljamining source can be verified with greater accuracy.
The gathering of additional information in the confirmation step may optionally be performed without the initial analysis step.
If it is determined by the application 1440 that interruptionljamming is occurring (whether using the confirmation step in addition to the initial analysis or not), then appropriate steps may be taken.
The application 1440 is operable to interpret the radio quality data to determine the location of the interruption/jamming source.
The application 1440 may use the information provided about the geographical location of each of the mobile terminals for which it has radio quality data to determine which mobile terminals are in the location where the source of the interruptionljamming is determined to be.
If the source of the interference/jamming is determined to be in a location that is served by a different platform to the platform 700 which hosts the security application 1440, then the data relating to the interruptionljamming may be passed to the appropriate platform for processing by an associated security application on that platform.
The application 1440 may instruct the platform 700, for example by soft eNodeB 711, to instruct the mobile terminals in the location that is the source of the interruptionljamming to operate in a predetermined manner for a period of time.
The instruction to the terminal may be to reduce the data rate used, to limit the maximum transmit power, to adopt a predefined scheduling pattern, and/or to set predetermined times and durations during which the terminal must not transmit or receive.
During the period of time when the identified terminals are operating in a manner specified by the application 1440, diagnostic activities may be performed. Because the terminals in the location of the interruptionljamming are operating in a predefined manner, the application 1440 can calculate what radio quality measurements should be received during the period. If radio quality measurements actually received differ considerably from the expected results, then this is a further indication that interruption/jamming is occurring.
The analysis performed by the security application 1440 may identify a particular terminal or group of terminals that are likely to be the source of the interruptionljamming. The security application 1440 may then instruct the identified terminal (or terminals) to operate in a predetermined manner like that mentioned above for a predetermined time during which diagnostics can be performed to confirm whether or not that terminal (or terminals) are indeed the source of the interruptionljamming.
If a particular terminal (or terminals) is identified as being the source (or likely source) of the interruptionljamming, then details of that terminal may be put on a network performance "blacklist". The details may be the IMSI and/or the IMSI or a combination of these. The security application 1440 may instruct that the service to the terminals included on the blacklist is restricted, or that no service is provided at all. The security application 1440 may further notify the network operator or customer service function of the identity of the interrupting/jamming terminal (or terminals) and its (or their) location. The network operator may restrict or stop services provided to the terminal. For example the terminal may be restricted to SMS messaging only.
The security application 1440 may notify the terminal that is the source of the interrupting/jamming by any suitable mechanism, such as SMS, email, that its services being restricted and/or that it is a source of interruptionljamming.
The interruptionljamining source may be a terminal registered with the network -for example that has been modified in an authorised manner or that is malfunctioning. Alternatively, the source of interruption/jamming may be a device that is not registered with the network but which, nevertheless, affects the network operation.
If the interrupting/jamming source is not a terminal that is registered with the network, then the security application 1440 triggers an alarm to indicate that the source of the degraded network performance is not a terminal registered with the network. A different alarm may be triggered if the source of the interrupting/jamming is a terminal registered with a network.
The alarm triggered may have a criticality dependent upon the size of the impacted geographical region, as determined by the analysis performed by the security application 1440. The criticality of the alarm may be dependent upon the assessed impact by the application 1440 to the network performance. The criticality of the alarm may additionally or alternatively be dependent upon the predicted number of terminals that will be impacted by the interrupting/jamming, as determined by the application 1440.
The alarm may instruct a network function part 704 of the platform 700 to modify the cell reselection and/or handover criteria used by the mobile terminals served by the platform 700 to change the mobility and selection processes so that the terminals are more likely to move to a radio access technology or frequency layer that is unaffected or less affected by the interruption/jamming. The cell reselection criteria may be modified by sending system information to the terminals.
Terminals may be configured to automatically change reselection parameters to a different radio access technology or frequency layer, or network operator, if the terminal cannot use the network.
As mentioned above, movement between network operators in the home countly of a mobile terminal (national roaming) is not normally permitted. This restriction may be temporally removed when interruptionljarnming is detected.
The detection of interruptionljamming discussed above has many applications.
It is useful for performing network diagnostics and for identifying modified or malfunctioning terminals.
It is also useful, as discussed above, in security applications, where the security of a premises 1400 (or other entity) is monitored by a device (such as a camera) which transmits data (such as images) to a home security server 1410 via the cellular (wireless) network connection 1430 and/or a fixed (wired) network connection 1420. If it is detected that interruptionljarnming is occurring at the secured location 1400, then an alert may be given to security personnel so that the secured premises 1400 can be visited and checked for a security breach. If it is detected that there is interruptionljamming of the radio access network, the status of the fixed network 1420 at the secured premises 1400 may also be checked. If the fixed network 1420 is operating correctly, it may be sufficient to review the security data provided via that network to verify whether or not a security breach is indeed occurring, without requiring to visit the secured premises 1400. However, if the fixed network 1420 at the secured premises 1400 is also detected to be non-operational, then this is an indication that security breach is very likely to have occurred, making a visit from security personnel more urgent. The security application 1440 may be provided with data relating to the status of a fixed network 1420 by the home security server 1410 (e.g. by a fixed (wired) connection), in addition to the radio quality information received from the base stations served by the platform 700 on which the security application 1440 is hosted.
The section headings in this patent specification are provided for ease of reference and should not affect the interpretation of any part of the patent
specification.

Claims (18)

  1. Claims 1. A mobile telecommunications network including a core and a radio access network having radio means for wireless communication with terminals using the network, wherein the radio access network includes control means operable to control the use of network resources by said terminals, wherein the control means is operable to monitor data received from said terminals to identify interruption of the radio access network.
  2. 2. The network of claim 1, wherein the control means is operable to monitor and analyse data received from other control means relating to other terminals.
  3. 3. The network of claim 1 or 2, wherein the control means is operable to measure characteristics of the radio link between the radio access network and the terminals.
  4. 4. The network of claims 1, 2 or 3, wherein the control means is operable to compare the data with interruption criteria to identify the interruption of the radio access network.
  5. 5. The network of claims 1, 2, 3 or 4, wherein the control means is operable to provisionally identify interruption of the radio access network, and, in response thereto, to control the collection of further data from said terminals.
  6. 6. The network of claim 1, 2, 3, 4 or 5, wherein the control means is operable to identify the terminals in the location of the interruption source.
  7. 7. The network of claim 6, wherein the control means is operable to take action in response to any of the terminals causing the interruption.
  8. 8. A method of operating a mobile telecommunications network including a core and a radio access network having radio means for wireless communication with terminals using the network, the radio access network including control means operable to control the use of network resources by said terminals, the method including the control means monitoring data received from said terminals to identify interruption of the radio access network.
  9. 9. The method of claim 8, wherein the control means monitors and analyses data received from other control means relating to other terminals.
  10. 10. The method of claim 8 or 9, wherein the control means measures a characteristics of the radio link between the radio access network and the terminals.
  11. 11. The method of claims 8, 9 or 10, wherein the control means compares the data with interruption criteria to identify the interruption of the radio access network.
  12. 12. The method of claims 8, 9, 10 or 1 1, wherein the control means provisionally identifies interruption of the radio access network, and, in response thereto, controls the collection of further data from said terminals.
  13. 13. The method of claim 8, 9, 10, 11 or 12, wherein the control means identifies the terminals in the location of the interruption source.
  14. 14. The method of claim 13, wherein the control means takes action in response to any of the terminals causing the interruption.
  15. 15. The network or method of any one of the preceding claims, wherein some of the terminals are security terminals arranged to monitor security.
  16. 16. The network or method of any one of the preceding claims, wherein the control means is operable to additionally use measurements from a fixed telecommunications network to identify interruption.
  17. 17. A mobile telecommunications network substantially as hereinbefore described with reference to and/or as illustrated figure 12 of the accompanying drawings.
  18. 18. A method of operating a mobile telecommunications network, substantially as hereinbefore described with reference to and/or as illustrated figure 12 of the accompanying drawings.*::r: INTELLECTUAL . ... PROPERTY OFFICE Application No: GB 1111331.3 Examiner: Owen Wheeler Claims searched: 1-18 Date of search: 28 October 2011 Patents Act 1977: Search Report under Section 17 Documents considered to be relevant: Category Relevant Identity of document and passage or figure of particular relevance to claims X 1,3,4,8,10 US 2005/2 15257 Al 11 [LACROIX] See abstract.X 1,3,4,8,10 EP 1501329 A2 11 [MOTOROLA] See abstract Categories: X Document indicating lack of novelty or inventive A Document indicating technological background and/or state step of the art.Y Document indicating lack of inventive step if P Document published on or after the declared priority date but combined with one or more other documents of before the filing date of this invention.same category.& Member of the same patent family E Patent document published on or after, but with priority date earlier than, the filing date of this application.Field of Search:Search of GB, EP, WO & US patent documents classified in the following areas of the UKCX: Worldwide search of patent documents classified in the following areas of the IPC GO8B; HO4W The following online and other databases have been used in the preparation of this search report EPODOC, WPI International Classification: Subclass Subgroup Valid From HO4W 0088/08 01/01/2009 GO8B 0029/12 01/01/2006 GO8B 0025/10 01/01/2006 Intellectual Property Office is an operating name of the Patent Office www.ipo.gov.uk
GB1111331.3A 2010-07-02 2011-07-04 Telecommunication networks Expired - Fee Related GB2481720B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1011174.8A GB201011174D0 (en) 2010-07-02 2010-07-02 Improving security using telecommuncation networks
GB1015219.7A GB2473717B (en) 2009-09-16 2010-09-13 Telecommunication network

Publications (3)

Publication Number Publication Date
GB201111331D0 GB201111331D0 (en) 2011-08-17
GB2481720A true GB2481720A (en) 2012-01-04
GB2481720B GB2481720B (en) 2014-02-12

Family

ID=42669109

Family Applications (2)

Application Number Title Priority Date Filing Date
GBGB1011174.8A Ceased GB201011174D0 (en) 2010-07-02 2010-07-02 Improving security using telecommuncation networks
GB1111331.3A Expired - Fee Related GB2481720B (en) 2010-07-02 2011-07-04 Telecommunication networks

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GBGB1011174.8A Ceased GB201011174D0 (en) 2010-07-02 2010-07-02 Improving security using telecommuncation networks

Country Status (1)

Country Link
GB (2) GB201011174D0 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665214A1 (en) * 2012-05-14 2013-11-20 Gemalto M2M GmbH Method of detecting a jamming transmitter affecting a communication user equipment,device and user equipment and system with the user equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1501329A2 (en) * 2003-07-25 2005-01-26 Motorola Inc. Wireless communication system, wireless communication unit and method for reducing the impact of jamming interference
US20050215257A1 (en) * 2002-10-03 2005-09-29 Evolium S.A.S. Method and device for managing radio link interruption in a radio communication shadow zone

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050215257A1 (en) * 2002-10-03 2005-09-29 Evolium S.A.S. Method and device for managing radio link interruption in a radio communication shadow zone
EP1501329A2 (en) * 2003-07-25 2005-01-26 Motorola Inc. Wireless communication system, wireless communication unit and method for reducing the impact of jamming interference

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665214A1 (en) * 2012-05-14 2013-11-20 Gemalto M2M GmbH Method of detecting a jamming transmitter affecting a communication user equipment,device and user equipment and system with the user equipment

Also Published As

Publication number Publication date
GB201111331D0 (en) 2011-08-17
GB2481720B (en) 2014-02-12
GB201011174D0 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US9654357B2 (en) Telecommunication networks
EP2642817B1 (en) Self organising network functions in telecommunication networks
EP2315412B1 (en) Distributed platform for controlling resources in a radio access network
GB2481715A (en) Control of transmission of data based on assessed/predicted radio conditions
US8644837B2 (en) Telecommunications networks
EP3072332B1 (en) Telecommunication networks
EP2852892B1 (en) Mobile telecommunications network and method of operating a mobile telecommunications network
GB2481716A (en) Radio access network control means operable to control the transfer of data between a mobile device and a central data backup store
EP3072330B1 (en) Telecommunication networks for content delivery and lawful interception, content filtering and further content services using a savi platform
GB2481719A (en) Controlling resources in a mobile telecommunications network by performing self organising network functions
GB2481899A (en) An application aware scheduling system for mobile network resources
GB2481723A (en) Broadband data services provision irrespective of terminal communicating via a macro base station or an access point
GB2481720A (en) Radio access network monitors communication characteristics to identify interruptions, preferably related to jamming of security communications
GB2481718A (en) A mobile telecommunications network including a radio access network comprising control means to control the charging for use of network resources.
GB2481722A (en) Cellular wireless terminal application controlled from platform in radio access network, preferably controlling CCTV bandwidth usage
GB2481900A (en) Radio access network nodes which monitor for malfunctioning mobile terminals and initiate counter measures to mitigate network effects
GB2481902A (en) Monitoring and dynamic Radio Resource allocation at a radio access network (network edge)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 20160704