FR3128988A1 - Stellar sighting device with rotating stage and method of implementation - Google Patents
Stellar sighting device with rotating stage and method of implementation Download PDFInfo
- Publication number
- FR3128988A1 FR3128988A1 FR2111863A FR2111863A FR3128988A1 FR 3128988 A1 FR3128988 A1 FR 3128988A1 FR 2111863 A FR2111863 A FR 2111863A FR 2111863 A FR2111863 A FR 2111863A FR 3128988 A1 FR3128988 A1 FR 3128988A1
- Authority
- FR
- France
- Prior art keywords
- stellar
- vehicle
- star
- plate
- inertial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000019892 Stellar Nutrition 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims description 7
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 230000001133 acceleration Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/02—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
- G01C21/025—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means with the use of startrackers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/36—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
- B64G1/361—Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using star sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
- G01C21/1656—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments with passive imaging devices, e.g. cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/78—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
- G01S3/782—Systems for determining direction or deviation from predetermined direction
- G01S3/785—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
- G01S3/786—Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
- G01S3/7867—Star trackers
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Astronomy & Astrophysics (AREA)
- Electromagnetism (AREA)
- Testing Of Balance (AREA)
- Machine Tool Units (AREA)
Abstract
Dispositif de visée stellaire (3), comprenant un dispositif de mesure inertielle (320), au moins un viseur stellaire, caractérisé en ce qu’il comprend une table rotative (310) comportant bâti (311) fixe, une platine (312) montée sur le bâti 1 pour pivoter autour d’un axe de rotation (313) et un moteur d’entraînement en rotation de la platine (312) par rapport au bâti (311), et en ce que le viseur stellaire et le dispositif de mesure inertielle sont fixés sur la platine (312). FIGURE DE L’ABREGE : Fig. 1Star sighting device (3), comprising an inertial measurement device (320), at least one star sight, characterized in that it comprises a rotary table (310) comprising a fixed frame (311), a plate (312) mounted on the frame 1 to pivot around an axis of rotation (313) and a motor for driving the plate (312) in rotation with respect to the frame (311), and in that the stellar viewfinder and the measuring device inertial are fixed on the plate (312). FIGURE OF THE ABRIDGE: Fig. 1
Description
La présente invention concerne le domaine de la navigation des véhicules, c’est-à-dire la localisation des véhicules le long de leur trajectoire d’un point de départ à un point d’arrivée. L’invention concerne plus particulièrement la navigation stellaire.The present invention relates to the field of vehicle navigation, that is to say the location of vehicles along their trajectory from a starting point to an ending point. The invention relates more particularly to stellar navigation.
ARRIERE PLAN DE L’INVENTIONBACKGROUND OF THE INVENTION
Il est connu des dispositifs de visée stellaire comprenant au moins un viseur stellaire ou capteur d’image fixé au véhicule porteur et relié à un circuit électronique de traitement programmé pour reconnaître des objets célestes dans les images fournies par le capteur d’image et en déduire une position stellaire du véhicule porteur.Stellar sighting devices are known comprising at least one star sight or image sensor attached to the carrier vehicle and connected to an electronic processing circuit programmed to recognize celestial objects in the images supplied by the image sensor and to deduce therefrom a stellar position of the carrier vehicle.
Pour ce faire, le circuit électronique de traitement est agencé pour :To do this, the electronic processing circuit is arranged to:
- déterminer la direction de pointage du capteur d’image et la portion de ciel entrant dans le champ du capteur d’image à partir d’une position estimée du véhicule porteur et de la verticale locale au viseur stellaire ;determine the pointing direction of the image sensor and the portion of sky entering the field of the image sensor from an estimated position of the carrier vehicle and the local vertical to the star finder;
- identifier les objets célestes présents dans le champ en question au moyen d’une éphéméride ;identify the celestial objects present in the field in question by means of an ephemeris;
- déterminer dans un repère de mesure du dispositif de visée stellaire l’ascension et la déclinaison des objets célestes et en déduire par triangulation la position stellaire du véhicule porteur.determine in a measurement frame of the stellar sighting device the ascension and declination of celestial objects and deduce therefrom by triangulation the stellar position of the carrier vehicle.
La verticale locale est déterminée à partir d’une attitude inertielle fournie par un dispositif de mesure inertielle associé physiquement au dispositif de visée stellaire. Le dispositif de mesure inertielle comprend une unité de mesure inertielle qui est fixée au véhicule porteur et qui comporte des capteurs inertiels linéaires (des accéléromètres) et des capteurs inertiels angulaires (généralement des gyromètres) disposés selon les axes d’un repère de mesure pour fournir des signaux, ou incréments, représentatifs de l'intégrale, sur des pas de temps successifs, du vecteur de force spécifique par rapport à un repère inertiel de référence (la force spécifique - en anglais « specific force », « g-force » ou « mass-specific force » - est une représentation de la somme, d’une part, de l’accélération du véhicule porteur de l’unité de mesure inertielle par rapport au repère inertiel et, d’autre part, de la pesanteur terrestre). Les capteurs sont reliés à un circuit électronique de traitement programmé pour exploiter les signaux fournis par l’unité de mesure inertielle de manière à déterminer une attitude inertielle du plan horizontal du viseur stellaire et donc la verticale locale du viseur stellaire.The local vertical is determined from an inertial attitude provided by an inertial measurement device physically associated with the stellar sighting device. The inertial measurement device comprises an inertial measurement unit which is fixed to the carrier vehicle and which comprises linear inertial sensors (accelerometers) and angular inertial sensors (generally gyrometers) arranged along the axes of a measurement frame to provide signals, or increments, representative of the integral, over successive time steps, of the specific force vector with respect to an inertial reference frame (the specific force - in English “specific force”, “g-force” or "mass-specific force" - is a representation of the sum of, on the one hand, the acceleration of the vehicle carrying the inertial measurement unit with respect to the inertial frame and, on the other hand, the earth's gravity) . The sensors are connected to an electronic processing circuit programmed to exploit the signals provided by the inertial measurement unit so as to determine an inertial attitude of the horizontal plane of the star finder and therefore the local vertical of the stellar finder.
OBJET DE L’INVENTIONOBJECT OF THE INVENTION
L’invention a notamment pour but d’améliorer les dispositifs de visée stellaire.The aim of the invention is in particular to improve stellar sighting devices.
A cet effet, on prévoit, selon l’invention un dispositif de visée stellaire, comprenant un dispositif de mesure inertielle, au moins un viseur stellaire, et une table rotative comportant bâti fixe, une platine montée sur le bâti 1 pour pivoter autour d’un axe de rotation et un moteur d’entraînement en rotation de la platine par rapport au bâti. Le viseur stellaire et le dispositif de mesure inertielle sont fixés sur la platine.To this end, provision is made, according to the invention, for a stellar sighting device, comprising an inertial measurement device, at least one stellar sight, and a rotary table comprising a fixed frame, a plate mounted on the frame 1 to pivot around an axis of rotation and a motor for driving the plate in rotation relative to the frame. The stellar finder and the inertial measurement device are fixed on the plate.
Le bâti est destiné à être fixé au véhicule porteur de sorte que la platine peut être entrainée en rotation par rapport au véhicule porteur. Ainsi, il est possible d’orienter le viseur stellaire par rapport au véhicule porteur tout en conservant une détermination précise de la verticale locale du viseur stellaire, cette détermination étant indépendante des jeux de guidage en rotation de la platine par rapport au bâti. Le fait de pouvoir orienter le viseur stellaire par rapport au véhicule présente plusieurs avantages. Elle permet d’orienter le viseur par exemple pour éviter qu’il ne soit aveuglé par le soleil. De plus, elle peut permettre de distinguer l’une de l’autre l’erreur d’attitude du plan horizontal défini par le dispositif de mesure inertielle et l’erreur d’harmonisation entre le dispositif de mesure inertielle et le dispositif de visée stellaire qui conditionnent la précision de la position inertielle. Or, l’une de ces erreurs est modulée par la rotation en cap alors que l’autre ne l’est pas et il est intéressant de pouvoir connaître qu’elle est la contribution de ces deux erreurs.The frame is intended to be fixed to the carrier vehicle so that the plate can be rotated relative to the carrier vehicle. Thus, it is possible to orient the stellar finder relative to the carrier vehicle while maintaining a precise determination of the local vertical of the stellar finder, this determination being independent of the guide games in rotation of the plate relative to the frame. Being able to orient the starfinder relative to the vehicle has several advantages. It allows you to orient the viewfinder, for example, to prevent it from being blinded by the sun. In addition, it can make it possible to distinguish from each other the attitude error of the horizontal plane defined by the inertial measurement device and the harmonization error between the inertial measurement device and the stellar sighting device which condition the accuracy of the inertial position. However, one of these errors is modulated by the heading rotation while the other is not and it is interesting to be able to know what the contribution of these two errors is.
L’invention concerne également un véhicule pourvu d’un tel dispositif de visée stellaire et un procédé de mise en oeuvre.The invention also relates to a vehicle provided with such a stellar sighting device and to a method of implementation.
D’autres caractéristiques et avantages de l’invention ressortiront à la lecture de la description qui suit d’un mode de réalisation particulier et non limitatif de l’invention.Other characteristics and advantages of the invention will become apparent on reading the following description of a particular and non-limiting embodiment of the invention.
Il sera fait référence aux dessins annexés, parmi lesquels :Reference will be made to the attached drawings, among which:
Claims (6)
- commander des mouvements du support selon différents caps de visée du dispositif de visée stellaire en faisant pivoter la platine (312),
- simultanément à ces mouvements, calculer dans un plan horizontal, des premières positions du véhicule à partir d’un premier algorithme de navigation utilisant des mesures stellaires, et des deuxièmes positions du véhicule à partir d’un deuxième algorithme de navigation utilisant des premières mesures inertielles issues du dispositif de mesure inertielle en couplage avec des mesures satellitaires,
- calculer des premiers écarts entre les premières positions et les deuxièmes positions correspondant à chaque cap de visée et les représenter dans un repère polaire (P) en fonction du cap correspondant et des valeurs des premiers écarts,
- effectuer une régression circulaire sur lesdits premiers écarts pour déterminer dans ce repère polaire un premier cercle (C1) représentatif de l’ensemble des premiers écarts,
- déterminer un rayon (r1) du cercle et un deuxième écart entre un centre (o1) du premier cercle et une origine (O) du repère polaire.
- control movements of the support according to different aiming headings of the stellar aiming device by pivoting the plate (312),
- simultaneously with these movements, calculating in a horizontal plane, first positions of the vehicle from a first navigation algorithm using stellar measurements, and second positions of the vehicle from a second navigation algorithm using first inertial measurements from the inertial measurement device coupled with satellite measurements,
- calculating first deviations between the first positions and the second positions corresponding to each aiming heading and representing them in a polar coordinate system (P) according to the corresponding heading and the values of the first deviations,
- perform a circular regression on said first deviations to determine in this polar reference a first circle (C1) representative of all the first deviations,
- determining a radius (r1) of the circle and a second difference between a center (o1) of the first circle and an origin (O) of the polar coordinate system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2111863A FR3128988B1 (en) | 2021-11-09 | 2021-11-09 | Star sighting device with rotating stage and method of implementation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2111863A FR3128988B1 (en) | 2021-11-09 | 2021-11-09 | Star sighting device with rotating stage and method of implementation |
FR2111863 | 2021-11-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3128988A1 true FR3128988A1 (en) | 2023-05-12 |
FR3128988B1 FR3128988B1 (en) | 2024-01-12 |
Family
ID=82019361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR2111863A Active FR3128988B1 (en) | 2021-11-09 | 2021-11-09 | Star sighting device with rotating stage and method of implementation |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3128988B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160337574A1 (en) * | 2014-01-04 | 2016-11-17 | Jack Chen | Automatic astronomical observation system and observation method |
-
2021
- 2021-11-09 FR FR2111863A patent/FR3128988B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160337574A1 (en) * | 2014-01-04 | 2016-11-17 | Jack Chen | Automatic astronomical observation system and observation method |
Also Published As
Publication number | Publication date |
---|---|
FR3128988B1 (en) | 2024-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2705448A1 (en) | System and method for determining the attitude of a spacecraft using stellar or terrestrial sensors | |
EP2710334B1 (en) | Method of calibrating an inertial assembly comprising a dynamic phase between two static phases | |
EP2361368A1 (en) | Method for determining a heading in the direction of true north using an inertial measurement unit | |
WO2008023108A1 (en) | Method of aligning an axisymmetric vibrating sensor inertial navigation system and corresponding inertial navigation system | |
EP0484202A1 (en) | System for the transfer of alignment between the inertial system of a carried vehicle and that of the carrier vehicle | |
CN111366144B (en) | Multi-position north-seeking method for gyro north-seeking instrument | |
FR2953588A1 (en) | METHOD FOR DETERMINING A CAP BY ROTATING AN INERTIAL DEVICE | |
CN115343743A (en) | Astronomical satellite integrated navigation positioning system and method independent of horizontal reference and satellite signal | |
CA3100115C (en) | Method for harmonising two inertial measurement units with one another and navigation system implementing this method | |
FR3128988A1 (en) | Stellar sighting device with rotating stage and method of implementation | |
US20050268473A1 (en) | Viewing and display apparatus position determination algorithms | |
EP2667155A1 (en) | Inertial unit with vibratory gyroscopes mounted on a carousel and angle measuring method | |
US4159419A (en) | Three axis stellar sensor | |
FR3027118A1 (en) | METHOD FOR NAVIGATING A VEHICLE, NAVIGATION DEVICE AND VEHICLE FOR IMPLEMENTING SAID METHOD | |
FR3128989A1 (en) | Harmonization performance indicator hybrid inertial/stellar navigation method | |
CN109813302B (en) | Method for quickly determining optimal available navigation satellite | |
EP4217681A1 (en) | Method for updating a plurality of landmarks, and associated computer program product and updating device | |
CN113406786A (en) | Automatic star finding method, device, storage medium and system for astronomical telescope | |
FR2979022A1 (en) | Terrestrial sighting device e.g. binoculars, for sighting e.g. moon, has calculating module calculating ephemeris and arranged to realign magnetic compass from position of identified celestial body | |
EP3374736B1 (en) | Method for designing a navigation path and method for orienting a sighting member from said navigation path | |
EP4103958B1 (en) | Method for correcting positioning data between two platforms and associated threat inter-designation method | |
WO2024089353A2 (en) | Detection and correction of drift in a star tracking navigation device | |
EP3980720B1 (en) | Method and device for resetting an inertial unit of a transport means on the basis of information delivered by a viewfinder of the transport means | |
FR2965345A1 (en) | Inertial navigator for use in vehicle i.e. ship, has control unit connected to pivoting unit to take angular measurements by gyroscopes in two orientations of gyroscopes around corresponding pivoting axis | |
EP0838019B1 (en) | Triaxial inertial navigation unit with several types of gyrometers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20230512 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |