FR3030013A1 - RESERVOIR FOR PRESSURIZED FLUIDS COMPOUND OF SMALL DIAMETER TUBES - Google Patents
RESERVOIR FOR PRESSURIZED FLUIDS COMPOUND OF SMALL DIAMETER TUBES Download PDFInfo
- Publication number
- FR3030013A1 FR3030013A1 FR1402900A FR1402900A FR3030013A1 FR 3030013 A1 FR3030013 A1 FR 3030013A1 FR 1402900 A FR1402900 A FR 1402900A FR 1402900 A FR1402900 A FR 1402900A FR 3030013 A1 FR3030013 A1 FR 3030013A1
- Authority
- FR
- France
- Prior art keywords
- valve
- gas
- tubes
- tube
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 title 1
- 238000003860 storage Methods 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims description 43
- 238000004804 winding Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 239000003546 flue gas Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 claims 1
- 239000007800 oxidant agent Substances 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 34
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000004880 explosion Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000282414 Homo sapiens Species 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920000271 Kevlar® Polymers 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- -1 fuel Chemical compound 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0138—Shape tubular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0147—Shape complex
- F17C2201/0166—Shape complex divided in several chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/054—Size medium (>1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/056—Small (<1 m3)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/05—Size
- F17C2201/058—Size portable (<30 l)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0617—Single wall with one layer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0103—Exterior arrangements
- F17C2205/0111—Boxes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0123—Mounting arrangements characterised by number of vessels
- F17C2205/013—Two or more vessels
- F17C2205/0134—Two or more vessels characterised by the presence of fluid connection between vessels
- F17C2205/0142—Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0332—Safety valves or pressure relief valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0302—Fittings, valves, filters, or components in connection with the gas storage device
- F17C2205/0323—Valves
- F17C2205/0335—Check-valves or non-return valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0388—Arrangement of valves, regulators, filters
- F17C2205/0394—Arrangement of valves, regulators, filters in direct contact with the pressure vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/03—Fluid connections, filters, valves, closure means or other attachments
- F17C2205/0388—Arrangement of valves, regulators, filters
- F17C2205/0394—Arrangement of valves, regulators, filters in direct contact with the pressure vessel
- F17C2205/0397—Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/012—Hydrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/014—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/01—Pure fluids
- F17C2221/016—Noble gases (Ar, Kr, Xe)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/031—Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/01—Improving mechanical properties or manufacturing
- F17C2260/012—Reducing weight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/03—Dealing with losses
- F17C2260/035—Dealing with losses of fluid
- F17C2260/037—Handling leaked fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2260/00—Purposes of gas storage and gas handling
- F17C2260/04—Reducing risks and environmental impact
- F17C2260/042—Reducing risk of explosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0186—Applications for fluid transport or storage in the air or in space
- F17C2270/0189—Planes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Système de stockage de gaz sous pression composé d'un grand nombre de tubes fins(21) munis à chacune de leur extrémité de clapets anti-retour ayant pour effet d'éviter que la rupture d'un tube (21) ne provoque la vidange complète du système. Ces tubes fins peuvent préférentiellement être enroulés en bobines ou en galettes. Une enveloppe (33) peut entourer le tout, permettant de contenir le gaz d'un tube(21) cci dentellement fuyard. Une des plus intéressante application de ce système réside dans son utilisation comme réservoir de méthane pour la propulsion automobile.Pressurized gas storage system composed of a large number of fine tubes (21) provided at each end with non-return valves preventing the rupture of a tube (21) from causing the draining complete system. These fine tubes may preferentially be wound into coils or slabs. An envelope (33) can surround the whole, making it possible to contain the gas of a tube (21) cccly leaky. One of the most interesting applications of this system is its use as a methane tank for automotive propulsion.
Description
La raréfaction future du pétrole conduit déjà l'industrie automobile à chercher d'autres combustibles pour ses moteurs thermiques. Le gaz de pétrole liquéfié --(G.P.L) est utilisé, mais présente certains inconvénients : Tout d'abord, c'est un dérivé du pétrole et il suivra la même évolution que lui en ce qui concerne son coût. Ensuite, combustible fossile, il participe à l'augmentation du taux d'oxyde de carbone dans l'atmosphère. Par ailleurs, le gaz liquéfié est sous pression (variable selon la température) et présente un risque d'explosion en cas d'accident. On fonde de gros espoirs sur l'hydrogène, mais il est coûteux de l'extraire de l'eau et il est difficile à stocker. H n'est pas pensable, avant longtemps, de munir l'automobile de « Monsieur Tout Le Monde » d'un réservoir cryogénique à -253° centigrades ; seule l'industrie aérospatiale peut se le permettre. Le stockage de l'hydrogène avec adsorption par des composés --métalliques n'en est qu'à ses balbutiements et risque d'entraîner des surpoids importants. Une bonne façon de le stocker est de le faire sous forme de méthane qui comporte quatre atomes d'hydrogène dans sa molécule. La chaleur de combustion du méthane est d'environ 37 000 Kilojoules par m3 (à la pression atmosphérique). La chaleur de combustion de l'hydrogène n'est que d'environ 12 000 Kilojoules par m3. Pour une même énergie de combustion le méthane occupe donc un volume trois fois moindre que l'hydrogène. Bien entendu, si l'on veut respecter l'environnement, on se doit d'utiliser du méthane naturel, énergie renouvelable, issue du cycle biologique du carbone : photosynthèse, puis dégradation des plantes mortes avec production de méthane. Le méthane provoquant un effet de serre bien plus important que le CO2, brûler du méthane provenant de la décomposition de végétaux est bénéfique, puis qu'il remplace une molécule de méthane par une molécule de CO2, moins dommageable pour l'environnement. Mais, quel que soit le gaz utilisé, hydrogène, méthane, acétylène, hydrocarbures gazeux divers, sans que cette liste soit limitative, il apparaît qu'aujourd'hui la seule technique praticable connue de stockage est le stockage sous pression dans des réservoirs à parois épaisses. Il en va de même d'ailleurs pour le stockage de gaz comburants, comme l'air ou l'oxygène ou même de gaz neutres (azote, argon, etc.), sans que cette liste soit limitative également et pour des applications qui peuvent être autres que l'automobile. 3030013 -2- La présente invention concerne une technique de stockage de fluide sous pression ne présentant pas les dangers d'explosion des systèmes connus de réservoirs monoblocs. Il est important de faire une remarque préliminaire : un calcul simple montre que pour une masse donnée de gaz avec un matériau 5 donné pour la fabrication du réservoir contenant cette masse de gaz, la partie cylindrique de ce réservoir (fonds exclus donc) a une masse indépendante de la pression utilisée et du diamètre du réservoir. Cette masse ne dépend que de la masse de gaz à stocker et de la contrainte admise pour le matériau du réservoir. Selon la présente invention, le dispositif de stockage de gaz proposé est 10 constitué d'un ensemble de plusieurs tubes de très faible diamètre, chaque tube étant remplie par une extrémité et débitant sont contenu par l'autre extrémité. Cette manière de stockage en tube fin est déjà connue et décrite notamment dans les brevets : allemand DE 23 05 840 du 7 février 1973 et anglais GB 2 204 390 du 30 avril 1987. Par très faible diamètre on entend des tubes d'un 15 diamètre tel que, eu égard à la pression de gaz qu'ils renferment la rupture d'un tel tube n'entraînent pas de conséquences dommageables. Là encore il y a une différence entre dommageables pour du matériel seulement, comme lorsque un réservoir sous pression explose dans un local en absence de toute personne humaine, l'objectif dans ce cas là étant de minimiser les dommages matériels ; -20 et dommageables pour les personnes humaines, comme les passagers d'un véhicule où est installé un tel réservoir sous pression. Il y a donc une certaine subjectivité dans l'appréciation du mot tube de « très faible diamètre » (dit encore tube fin). Le brevet allemand utilise simplement l'expression « sehr kleinen durchmesser » (très petit diamètre) et le brevet anglais « capillary 25 tubing » (tube capillaire). Nous utiliserons dans la suite de la description l'appellation « tube fuis ». Dans la majorité des applications, réservoirs pour gaz combustible embarqués sur des véhicules entre autres, « tubes fins » désignera des tubes de diamètre inférieur à 10 mm, cette valeur n'étant cependant pas limitative. Selon l'invention l'extrémité de remplissage de 30 chaque tube est muni d'un bloc contenant un clapet anti retour autorisant le passage du flux de remplissage de gaz et interdisant le flux inverse. L'autre 3030013 -3- extrémité de chaque tube est munie de même d'un bloc clapet anti retour autorisant le soutirage du gaz et interdisant le flux inverse. Tous les blocs d'extrémités de remplissage sont implantés clans un corps muni d'une connexion de remplissage depuis la source de gaz haute pression. Tous les 5 blocs d'extrémité de soutirage sont implantés dans un corps muni d'une connexion de soutirage au profit de l'organe utilisateur du gaz sous pression. Les tubes fins permettent l'utilisation de matériaux travaillant, comme les aciers à ressorts, à des contraintes élevées. De plus on fait l'économie de fonds massifs. Les systèmes de blocs de clapets anti retour empêchent la vidange de 10 tout l'ensemble en cas de rupture de l'un des tubes. Enfin, les tubes fins acceptent d'être enroulés sur un mandrin d'un rayon égal à environ 10 fois leur diamètre, possiblement en plusieurs couches sur toute la longueur du mandrin. On peut aussi les enrouler par galettes ne faisant chacune qu'une fraction de la longueur du mandrin. À titre d'exemple pour un volume de 70 1 sous 300 bars, 15 en utilisant des tubes d'acier de 5 mm de diamètre extérieur e t de 0,1 mm d'épaisseur supportant une contrainte de 75 x 10 7 Pascals (soit 75 kg/mm2) la longueur totale des tubes nécessaire est de 3868 m. Si l'on enroule ces tubes sur un mandrin de 100 mm de diamètre et de 1,015 m de long, compte tenu de l'imbrication des couches, le calcul donne 27 couches de 203 spires chacune.The future scarcity of oil is already driving the automobile industry to look for other fuels for its engines. Liquefied petroleum gas - (LPG) is used, but has some disadvantages: First, it is a petroleum derivative and it will follow the same evolution as it regards its cost. Then, fossil fuel, it contributes to the increase of carbon monoxide in the atmosphere. In addition, the liquefied gas is under pressure (variable depending on the temperature) and presents a risk of explosion in case of accident. Hydrogen is high hopes, but it is expensive to extract from the water and is difficult to store. It is not conceivable, for a long time, to provide the automobile with "Monsieur Tout Le Monde" a cryogenic tank at -253 ° Centigrade; only the aerospace industry can afford it. Storage of hydrogen with adsorption by metal compounds is still in its infancy and may result in significant overweight. A good way to store it is to do it in the form of methane that has four hydrogen atoms in its molecule. The heat of combustion of methane is about 37,000 kilojoules per cubic meter (at atmospheric pressure). The heat of combustion of hydrogen is only about 12,000 kilojoules per m3. For the same combustion energy, methane occupies a volume three times less than hydrogen. Of course, if we want to respect the environment, we must use natural methane, renewable energy, resulting from the biological cycle of carbon photosynthesis, then degradation of dead plants with methane production. Since methane causes a much greater greenhouse effect than CO2, burning methane from the decomposition of plants is beneficial, replacing a methane molecule with a CO2 molecule, which is less harmful to the environment. But, whatever the gas used, hydrogen, methane, acetylene, various gaseous hydrocarbons, without this list being limiting, it appears that today the only practicable known technique of storage is the pressure storage in tanks with walls thick. The same goes for the storage of oxidizing gases, such as air or oxygen, or even neutral gases (nitrogen, argon, etc.), without this list being equally limiting and for applications that can to be other than the automobile. The present invention relates to a technique for storing fluid under pressure that does not present the explosion hazards of the known monoblock tank systems. It is important to make a preliminary remark: a simple calculation shows that for a given mass of gas with a given material for the manufacture of the tank containing this mass of gas, the cylindrical part of this reservoir (thus excluded funds) has a mass independent of the pressure used and the diameter of the tank. This mass depends only on the mass of gas to be stored and the stress allowed for the material of the tank. According to the present invention, the proposed gas storage device consists of a set of several tubes of very small diameter, each tube being filled by one end and discharging are contained by the other end. This method of storage in a thin tube is already known and described in particular in the patents: German DE 23 05 840 of February 7, 1973 and English GB 2 204 390 of April 30, 1987. Very small diameter means tubes of a diameter such that, in view of the gas pressure that they contain, the rupture of such a tube does not entail any harmful consequences. Here again there is a difference between damaging for hardware only, such as when a pressure vessel explodes in a room in the absence of any human being, the objective in this case being to minimize material damage; -20 and damaging to human beings, such as passengers in a vehicle where such a pressure vessel is installed. There is therefore a certain subjectivity in the appreciation of the word tube of "very small diameter" (also called thin tube). The German patent simply uses the term "sehr kleinen durchmesser" (very small diameter) and the English patent "capillary 25 tubing" (capillary tube). We will use in the rest of the description the term "tube fuis". In the majority of applications, tanks for fuel gas embedded on vehicles among others, "fine tubes" will mean tubes with a diameter of less than 10 mm, this value not being however limiting. According to the invention the filling end of each tube is provided with a block containing an anti-return valve allowing passage of the gas filling flow and prohibiting the reverse flow. The other end of each tube is also equipped with a check valve block allowing the withdrawal of gas and prohibiting the reverse flow. All filler end blocks are implanted into a body having a fill connection from the high pressure gas source. All 5 end-of-withdrawal units are located in a body provided with a withdrawal connection in favor of the user organ of the gas under pressure. Thin tubes allow the use of working materials, such as spring steels, at high stresses. In addition, it saves massive funds. The check valve block systems prevent the entire assembly from being emptied if one of the tubes breaks. Finally, the fine tubes agree to be wound on a mandrel with a radius equal to about 10 times their diameter, possibly in several layers over the entire length of the mandrel. They can also be rolled up by pancakes each making only a fraction of the length of the mandrel. As an example for a volume of 70 1 at 300 bar, using steel tubes having a diameter of 5 mm and a thickness of 0.1 mm and a stress of 75 × 10 7 Pascals (75 kg / mm2) the total length of the tubes required is 3868 m. If these tubes are wound on a mandrel 100 mm in diameter and 1.015 m long, taking into account the interlocking of the layers, the calculation gives 27 layers of 203 turns each.
20 La masse d'acier nécessaire ressort alors de 47 kg. Si l'on tient compte des masses des blocs et des corps de remplissage et de soutirage ainsi que de la masse du mandrin (qui peut être en plastique), on peut donc estimer qu'il est possible de fabriquer ainsi un réservoir de 70 litres sous 300 bars d'une masse de 50 kg. En comparaison un réservoir monobloc composée d'un cylindre 25 (muni de deux fonds hémisphériques), de 350 mm de diamètre intérieur, d'une longueur de 500 mm, pour lequel, par sécurité, on ne peut accepter comme contrainte dans l'acier que 25x 101 Pascals (25 Kg/mm2), la masse, avec l'épaisseur alors nécessaire de 20 mm, est de 146 kg, auxquels il faut ajouter les masses des vannes de service et de la valve de sécurité, relativement 30 massive. On obtient une masse totale d'environ 150 kg. La solution faite d'un grand nombre de tubes fins est donc trois fois plus légères et apporte une grande sécurité en ce qui concerne le risque d'explosion. Toujours avec 3030013 -4- l'exemple choisi, l'ensemble réservoir plus carburant (15kg de méthane sous 300 bars' ) a une masse de 65kg. Pour le même service rendu z 50 litres de gazole ont une masse d'environ 40kg et sont contenus dans un réservoir d'environ 5kg. L'augmentation de masse, avec la présente invention, en utilisant du méthane 5 contenu sous haute pression dans un réservoir composé d'un grand nombre de tubes fins, n'est que de 20kg, ce qui est peu pénalisant au regard de l'affranchissement du pétrole et même du gaz fossile, puisque le méthane peut:: être produit biologiquement. Il est a remarquer que dans le type d'enroulement selon l'invention, décrit pour les tubes de petit diamètre, les tubes laissent entre 10 eux un volume inférieur à 15% du volume total de l'enroulement. Selon l'invention, il peut être avantageux de faire occuper ce volume par un enroulement concomitant en résine filamentaire avec des fibres de verre, de carbone, de kevlar ou autres, sans que cette liste soit limitative. Ce faisant la contrainte dans les parois des tubes est reportée sur la résine. Les tubes peuvent 15 alors être constitués d'un matériau très mince et peu résistant, ils n'agissent alors que comme une chambre à air pneumatique, n'ayant pour fonction que l'étanchéité. Le matériau interstitiel n'a qu'une propriété nécessaire : être incompressible ; une résistance mécanique peut ou non lui être demandée. Si non, vers l'extérieur, la pression doit être contenue et un enroulement en matériaux à 20 haute résistante est nécessaire en épaisseur suffisante. Suivant cette technique, avec enroulement sur un cylindre, il apparaît que des plaques de fond, tenant la haute pression, sont nécessaires. On peut s'affranchir de cette obligation en procédant à un enroulement, selon l'invention, non pas sur un cylindre, mais sur un tore. Pour une meilleure occupation de l'espace il est souvent avantageux de 25 posséder des volumes plus ou moins rectangulaires. Il est alors possible, selon l'invention, de déformer le tore support de l'enroulement pour lui donner une forme où sa fibre moyenne est d'allure rectangulaire, mais avec des angles arrondis bien entendu. Dans ces dernières dispositions, le tube central, support de l'enroulement, peut être mis sous pression de façon avantageuse car il rend 30 l'ensemble isobarique, seules, comme dit plus haut, les enroulements à la surface extérieure étant sous contrainte. Par ailleurs les structures ainsi décrites peuvent participer à la structure mécanique du véhicule qui les reçoit, qu'il soit 3030013- -5- terrestre, maritime, ou aérien. Dans le cas où le réservoir, remplis d'un gaz inflammable est susceptible de se trouver placé dans un endroit clos, comme un _ parking souterrain pour automobiles, une fuite peut présenter un danger l'incendie, voire d'explosion si le mélange air gaz atteint le pourcentage 5détonant. Ce problème n'est d'ailleurs pas résolu pour les véhicules emportant du gaz liquéfié (GPL). Selon l'invention, telle que décrite, le réservoir est constitué d'un grand nombre de tubes, tous indépendants les uns des autres, grâce aux clapets anti retour dont sont munies leurs extrémités. S'il y a dix tubes, par exemple non limitatif, seul 1/10 du volume s'échappe en cas de fuite ;10 sur un des tubes. Il est alors possible de contenir cette fuite sous basse pression, dans une enveloppe entourant tout l'ensemble, munie d'un détecteur de pression et d'une soupape de sécurité. Selon l'invention, la soupape de sécurité peut être munie d'un brûleur à allumage automatique qui assure ainsi que seuls des gaz brûlés peuvent se répandre dans le local. Il est d'ailleurs à noter que le 15 problème de fuite de gaz n'est pas différent de celui de l'alimentation des immeubles en gaz de ville, pour lequel une cuisinière mal fermée peut répandre du gaz dans tout l'immeuble. Les parkings pour automobiles ont même l'avantage de pouvoir être munis de puissants systèmes de ventilation. La figure 1 de la planche unique montre l'état de l'art suivant le brevet anglais 20 GB 2204390A. La figure 2 est une vue en coupe d'un dispositif suivant invention. La figure 3 est une vue en coupe des blocs porte clapets anti retour de chaque tube pour le remplissage et le soutirage. La figure 4 est une vue en coupe d'un système suivant l'invention en disposition 25 oroïdale. En référence à la figure 1, vue en coupe selon le brevet anglais, on constate que chaque tube (11) est bien muni de clapets anti retour (18) pour le remplissage et le soutirage, comme mentionné plus haut, mais les blocs porte clapet anti retour ne sont pas implantés dans un corps commun destiné au remplissage et, 30 dans un second corps pour ceux destines au soutirage ; au contraire ils sont placés à l'intérieur de ces corps, ce qui fait que les tubes fms raccordés aux blocs porte clapet pénètrent à l'intérieur des volumes de ces corps. De ce fait, 3030013 -6- une déchirure d'un de ces tubes fms (11), se propageant le long d'une génératrice, comme c'est le cas en général lors d'une rupture par surpression, atteignant un point (20), à l'intérieur du corps (19), provoquerait la vidange à l'atmosphère de la totalité des tubes, ce qui va évidemment à l'inverse de l'objectif visé par l'utilisation de clapets anti retour. Toujours concernant l'état antérieur de l'art, il est à noter que le brevet allemand DE 2 305 840 qui ne comportent qu'un seul tube, voit évidemment le gaz s'échapper aussi intégralement en cas de rupture de ce tube. En référence à la figure 2, qui montre, selon l'invention, plusieurs couches de 10 tubes fms (21), enroulées autour d'un mandrin (22), on peut voir la pénétration de l'extrémité (23) de remplissage d'un tube (21) dans un bloc porte clapet (24) et son autre extrémité (25), de soutirage, pénétrant dans le bloc porte clapet (26). Les blocs porte clapet (24) et (26) sont implantés respectivement dans les corps (27) d'arrivée de gaz sous pression et (28) de départ vers les organes i< utilisateurs et ce, de façon étanche grâce aux joints (29) et (30). Bien entendu, tous les blocs (24) de remplissage de chaque tube (21) sont implantés dans un seul et même corps d'alimentation (27) et tous les blocs (26) de soutirage sont implantés dans un seul et même corps (28) de départ de gaz. Le corps (27) comporte un canal (31) d'arrivée de gaz sous pression pouvant être relié à un 20 système de remplissage, vanne ou autre. Le corps (28) comporte un canal (32) de sortie de gaz pouvant être relié à un système de distribution, vanne ou autre. Selon l'invention, une enveloppe (33) peut recueillir le gaz s'échappant d'un tube (21) fuyard. Cette enveloppe (33), légère, n'est conçue que pour résister à une pression relativement faible. Une soupape de sécurité (34) limite cette 25 pression. Selon l'invention également, si le gaz sous pression est un gaz combustible l'enveloppe (33) peut être préalablement remplie d'azote ou d'un gaz neutre, afm d'éviter la constitution d'un mélange explosif en cas de fuite d'un des tubes fins. Toujours selon l'invention, un brûleur (35), à allumage automatique, déclenché par l'ouverture de la soupape de sécurité (34), permet 30 de n'évacuer à l'atmosphère ou dans un local clos que des gaz ininflammables. En référence à la figure 3, qui est une coupe agrandie des blocs porte clapet de remplissage (24) et de soutirage (26), implantés respectivement dans le 3030013 -7- corps d'alimentation (27) et le corps de départ (28) du gaz sous pression, il est présenté le système d'attache de l'extrémité (23) d'un tube fm ( 21) dans le bloc porte clapett241ainsi que le système d'attache identique de l'autre extrémité (25) du tube (21) concerné dans le bon bloc porte clapet(26).Ces porte clapet (24) et - 5 (26) comportent chacun des logements (36) et (37) respectivement, dans lesquelles viennent s'engager des verrous (38) et (39) respectivement, traversant les tubes (21), sous la pression des ressorts (40 ) et (41) respectivement également. Ces dispositifs ont l'avantage de fixer efficacement les tubes fins, dont la faible épaisseur rendrait très délicate une opération de 10 soudure ou de vissage. Des joints (42) assurent l'étanchéité de l'assemblage. Les clapets (43) et (44) assurent les fonctions anti-retour demandées. Sur cette figure 3 ces clapets sont représentés sphériques, mais cette disposition n'est pas limitative et d'autres sont possibles, comme des rondelles battantes par exemple. Grâce aux joints (42) ces dispositions évitent l'erreur du brevet 15 anglais 2204390A signalée plus haut, où la déchirure d'un tube peut entraîner la vidange de tout l'ensemble. En référence à la figure 4, la disposition toroïdale, avec les tubes fins enroulés sur un mandrin (22) refermé sur lui-même, permet de s'affranchir des fonds (45) et (46) ; les corps (27) et (28) sont alors disposés latéralement. Il est 20 également possible de torsader les tubes (21) pour réaliser des ensembles rigides pouvant participer à la structure mécanique des appareils utilisateurs. Le dispositif de stockage de gaz sous pression selon la présente invention peut recevoir des applications industrielles : - Pour l'automobile : Le méthane peut alors remplacer le pétrole, avec une 25 augmentation de masse de 20 à 30Kg seulement pour une voiture moyenne). - Pour les bateaux : La masse est peu pénalisante et le méthane économique comme carburant, pour l'industrie de la pêche en particulier. - Pour les aéronefs: Là, l'augmentation de masse est pénalisante mais peut être en partie compensée par le fait que les tubes peuvent participer aux structures.The required mass of steel then stands at 47 kg. If we take into account the masses of the blocks and the filling and drawing bodies as well as the mass of the mandrel (which can be made of plastic), we can therefore consider that it is possible to manufacture a 70-liter tank. under 300 bars with a mass of 50 kg. In comparison, a monoblock tank composed of a cylinder 25 (provided with two hemispherical bottoms), of 350 mm internal diameter, of a length of 500 mm, for which, for safety, it can not be accepted as a constraint in steel 25x 101 Pascals (25 Kg / mm2), the mass, with the necessary thickness of 20 mm, is 146 kg, to which must be added the masses of the service valves and safety valve, relatively massive. A total mass of about 150 kg is obtained. The solution made of a large number of fine tubes is therefore three times lighter and provides great security with regard to the risk of explosion. Still with the example chosen, the fuel tank assembly (15 kg of methane at 300 bars) has a mass of 65 kg. For the same service rendered, 50 liters of diesel have a mass of about 40 kg and are contained in a tank of about 5 kg. The increase in mass, with the present invention, using methane 5 contained under high pressure in a tank composed of a large number of fine tubes, is only 20 kg, which is not very penalizing with regard to the postage of oil and even fossil fuels, since methane can be produced biologically. It should be noted that in the type of winding according to the invention, described for small diameter tubes, the tubes leave between them a volume less than 15% of the total volume of the winding. According to the invention, it may be advantageous to occupy this volume by a concomitant winding of filamentary resin with glass fibers, carbon, kevlar or others, without this list being limiting. In doing so, the stress in the walls of the tubes is transferred to the resin. The tubes can then be made of a very thin and weak material, they then act only as a pneumatic tube, whose function is only sealing. The interstitial material has only one necessary property: to be incompressible; mechanical resistance may or may not be required. If not, to the outside, the pressure must be contained and a winding of high-strength materials is necessary in sufficient thickness. According to this technique, with winding on a cylinder, it appears that bottom plates, holding the high pressure, are necessary. This obligation can be dispensed with by winding, according to the invention, not on a cylinder, but on a torus. For a better occupation of the space it is often advantageous to have more or less rectangular volumes. It is then possible, according to the invention, to deform the toroid support of the winding to give it a shape where its average fiber is of rectangular shape, but with rounded angles of course. In these latter provisions, the central tube, the support of the winding, can advantageously be pressurized because it renders the whole isobaric, only, as said above, the windings on the outer surface being under stress. Furthermore, the structures thus described can participate in the mechanical structure of the vehicle that receives them, whether 3030013- -5- land, sea, or air. In the case where the tank, filled with a flammable gas is likely to be placed in an enclosed area, such as an underground car park, a leak may present a danger fire or even explosion if the mixture air gas reaches the 5% unsaturating percentage. This problem is not solved for vehicles carrying liquefied gas (LPG). According to the invention, as described, the tank consists of a large number of tubes, all independent of each other, thanks to the check valves which are provided with their ends. If there are ten tubes, for example non-limiting, only 1/10 volume escapes in case of leakage, 10 on one of the tubes. It is then possible to contain this leak under low pressure, in a casing surrounding the whole set, provided with a pressure sensor and a safety valve. According to the invention, the safety valve can be provided with an automatic ignition burner which thus ensures that only flue gases can spread in the room. It should also be noted that the problem of gas leakage is not different from that of the supply of buildings in city gas, for which a poorly closed range can spread gas throughout the building. Car parks have the added advantage of being equipped with powerful ventilation systems. Figure 1 of the single plate shows the state of the art according to British Patent GB 2204390A. Figure 2 is a sectional view of a device according to the invention. FIG. 3 is a sectional view of the non-return valve bearing blocks of each tube for filling and withdrawal. Figure 4 is a sectional view of a system according to the invention in an oroidal arrangement. Referring to Figure 1, sectional view according to the English patent, it is found that each tube (11) is provided with nonreturn valves (18) for filling and withdrawal, as mentioned above, but the valve door blocks anti return are not implanted in a common body for filling and in a second body for those intended for withdrawal; on the contrary they are placed inside these bodies, so that the fms tubes connected to the valve blocks penetrate inside the volumes of these bodies. As a result, a tear of one of these fms tubes (11), propagating along a generator, as is usually the case during a rupture by overpressure, reaching a point ( 20), inside the body (19), would cause the emptying of all the tubes to the atmosphere, which is obviously the opposite of the purpose of the use of nonreturn valves. Still concerning the state of the art, it should be noted that the German patent DE 2 305 840 which have only one tube, obviously sees the gas also escape completely in case of rupture of this tube. With reference to FIG. 2, which shows, according to the invention, several layers of 10 fms tubes (21), wound around a mandrel (22), the penetration of the filling end (23) can be seen. a tube (21) in a valve holder block (24) and its other end (25) for withdrawal, penetrating into the valve holder block (26). The valve bearing blocks (24) and (26) are respectively implanted in the bodies (27) for supplying pressurized gas and (28) to the user bodies in a leaktight manner thanks to the seals (29). ) and (30). Of course, all the filling blocks (24) of each tube (21) are implanted in one and the same feed body (27) and all the withdrawal units (26) are implanted in one and the same body (28). ) starting gas. The body (27) comprises a channel (31) for supplying pressurized gas that can be connected to a filling system, valve or the like. The body (28) has a gas outlet channel (32) connectable to a dispensing system, valve or the like. According to the invention, an envelope (33) can collect the gas escaping from a leaking tube (21). This envelope (33), lightweight, is designed only to withstand a relatively low pressure. A safety valve (34) limits this pressure. According to the invention also, if the pressurized gas is a combustible gas the casing (33) may be previously filled with nitrogen or a neutral gas, to avoid the formation of an explosive mixture in case of leakage of one of the fine tubes. Still according to the invention, a burner (35), with automatic ignition, triggered by the opening of the safety valve (34), allows to evacuate to the atmosphere or in an enclosed room that non-flammable gases. Referring to FIG. 3, which is an enlarged cross section of the filler (24) and filler (26) valve bearing blocks respectively implanted in the feed body (27) and the starting body (28). ) pressurized gas, it is presented the fastening system of the end (23) of a tube fm (21) in the clapett door block 241 and the identical fastening system of the other end (25) of the tube (21) concerned in the good valve door block (26) .Ces door valve (24) and - 5 (26) each comprise housing (36) and (37) respectively, in which are engaged locks (38). ) and (39) respectively, passing through the tubes (21), under the pressure of the springs (40) and (41) respectively. These devices have the advantage of effectively fixing the thin tubes, the small thickness of which would make very delicate a welding or screwing operation. Seals (42) seal the assembly. The valves (43) and (44) provide the required non-return functions. In this figure 3 these valves are represented spherical, but this provision is not limiting and others are possible, such as swing washers for example. Thanks to the seals (42) these provisions avoid the error of the English patent 2204390A indicated above, where the tearing of a tube can cause the entire assembly to be drained. With reference to FIG. 4, the toroidal arrangement, with the fine tubes wound on a mandrel (22) closed on itself, makes it possible to dispense with the bottoms (45) and (46); the bodies (27) and (28) are then arranged laterally. It is also possible to twist the tubes (21) to form rigid assemblies that can participate in the mechanical structure of the user devices. The pressurized gas storage device according to the present invention can receive industrial applications: - For the automobile: Methane can then replace oil, with a mass increase of 20 to 30 kg only for an average car). - For the boats: The mass is little penalizing and the economic methane like fuel, for the industry of the fishing in particular. - For the aircraft: There, the increase of mass is penalizing but can be partly compensated by the fact that the tubes can participate in the structures.
30 Il faut enfin noter qu'à fourniture d'énergie égale, la combustion du méthane occasionne une émission de CO2 environ moitié de celle du gazole, la molécule du méthane ayant proportionnellement moins de carbone et plus 3030013 d'atomes d'hydrogène que les molécules composant le gazole, le poids de carburant consommé, à énergie fournie égale, étant de plus bien moindre. Par ailleurs, le stockage sous pression d'un gaz comburant, tel que l'air ou l'oxygène, offre la possibilité de réaliser des moteurs thermiques en 5 s'affranchissant d'un compresseur. Il faut enfin mentionner la possibilité de réaliser le stockage d'air comprimé pour la propulsion d'un véhicule à moteur pneumatique grâce à des dispositifs de contrôle de l'alimentation en air comprimé de ce moteur. Ce dernier type de véhicule n'émet aucune pollution.Finally, it should be noted that at the same energy supply, the combustion of methane causes a CO2 emission approximately half that of diesel fuel, the methane molecule having proportionally less carbon and more than 3030013 of hydrogen atoms molecules constituting diesel fuel, the weight of fuel consumed, equal energy supplied, being much lower. Furthermore, the storage under pressure of an oxidizing gas, such as air or oxygen, offers the possibility of producing heat engines by eliminating a compressor. Finally, mention must be made of the possibility of storing compressed air for the propulsion of a pneumatic motor vehicle by means of devices for controlling the compressed air supply of this engine. This last type of vehicle emits no pollution.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1402900A FR3030013B1 (en) | 2014-12-12 | 2014-12-12 | RESERVOIR FOR PRESSURIZED FLUIDS COMPOUND OF SMALL DIAMETER TUBES |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1402900A FR3030013B1 (en) | 2014-12-12 | 2014-12-12 | RESERVOIR FOR PRESSURIZED FLUIDS COMPOUND OF SMALL DIAMETER TUBES |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3030013A1 true FR3030013A1 (en) | 2016-06-17 |
FR3030013B1 FR3030013B1 (en) | 2017-07-21 |
Family
ID=53298404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1402900A Expired - Fee Related FR3030013B1 (en) | 2014-12-12 | 2014-12-12 | RESERVOIR FOR PRESSURIZED FLUIDS COMPOUND OF SMALL DIAMETER TUBES |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3030013B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3125103A1 (en) * | 2021-07-07 | 2023-01-13 | Edmond Thuries | Compartmentalization of a tank in small diameter tubes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3432060A (en) * | 1965-04-23 | 1969-03-11 | Therapeutic Research Corp Ltd | Tubular pressure vessel |
GB2204390A (en) * | 1987-04-30 | 1988-11-09 | Nash Frazer Ltd | Gas storage bottle |
FR2706578A1 (en) * | 1993-06-18 | 1994-12-23 | Inst Francais Du Petrole | Hydrocarbon storage tank under pressure. |
WO2001068446A1 (en) * | 2000-03-17 | 2001-09-20 | Arthur Patrick Agnew | Submersible apparatus for transporting compressed gas |
DE102010044035A1 (en) * | 2010-11-17 | 2012-05-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Radio frequency identification integrated system for supplying gaseous fuel e.g. hydrogen, to e.g. fuel cell of passenger car, has pressure regulating valve to produce outflow of fuel, if external pressure is less than preset pressure |
-
2014
- 2014-12-12 FR FR1402900A patent/FR3030013B1/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3432060A (en) * | 1965-04-23 | 1969-03-11 | Therapeutic Research Corp Ltd | Tubular pressure vessel |
GB2204390A (en) * | 1987-04-30 | 1988-11-09 | Nash Frazer Ltd | Gas storage bottle |
FR2706578A1 (en) * | 1993-06-18 | 1994-12-23 | Inst Francais Du Petrole | Hydrocarbon storage tank under pressure. |
WO2001068446A1 (en) * | 2000-03-17 | 2001-09-20 | Arthur Patrick Agnew | Submersible apparatus for transporting compressed gas |
DE102010044035A1 (en) * | 2010-11-17 | 2012-05-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Radio frequency identification integrated system for supplying gaseous fuel e.g. hydrogen, to e.g. fuel cell of passenger car, has pressure regulating valve to produce outflow of fuel, if external pressure is less than preset pressure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3125103A1 (en) * | 2021-07-07 | 2023-01-13 | Edmond Thuries | Compartmentalization of a tank in small diameter tubes |
Also Published As
Publication number | Publication date |
---|---|
FR3030013B1 (en) | 2017-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0629809B1 (en) | Pressurised hydrocarbons storage container | |
US7287558B2 (en) | Hydrogen handling or dispensing system | |
CN105683643B (en) | fuel tank | |
JP5841680B2 (en) | LNG tank | |
EP1490624B1 (en) | Storage tank for cryogenic liquids | |
FR3034836A1 (en) | STATION AND METHOD FOR FILLING A TANK WITH A FUEL GAS | |
CA2359409A1 (en) | Pressurized gas storage device | |
CN104094039A (en) | A pressure vessel and a method of loading cng into a pressure vessel | |
FR3030013A1 (en) | RESERVOIR FOR PRESSURIZED FLUIDS COMPOUND OF SMALL DIAMETER TUBES | |
EP3710741B1 (en) | Device for inerting a liquefied gas storage tank for a ship for transporting this gas | |
EP1634024A1 (en) | Process and arrangement for the backup supply of a pressurized gas through cryogenic liquid spraying | |
EP0417004A1 (en) | Process for maintaining the pressure within a two-phase product storage under a pre-determined limit during the filling and associated condensation installation | |
FR2844337A1 (en) | SYSTEM AND METHOD FOR TRANSPORTING COMPRESSED NATURAL GAS | |
FR3112841A1 (en) | Method of filling a liquefied gas tank | |
US20150121906A1 (en) | Systems and Methods for Converting Liquid Natural Gas to Compressed Natural Gas and to Low Pressure Natural Gas | |
US20180119885A1 (en) | Systems and Methods for Converting Cryogenic Liquid Natural Gas to High Pressure Natural Gas and to Low Pressure Natural Gas and Retain All Converted Product and To Further Dispense Only By Voluntary Actions of the User | |
WO2018015641A1 (en) | Advance purging of a cryogenic tank | |
WO2008133608A1 (en) | Pressurized hydrogen storage system | |
FR2840971A1 (en) | Storage of compressible fluid in gaseous form in storage tank involves supplying temperature and pressure lower than final conditions to obtain denser, cooled fluid, which is released as gas into storage tank to fill it | |
RU2382268C2 (en) | Fuel tank and gas storage and supply plant | |
EP4098539B1 (en) | Vessel for transporting or using a cold fluid | |
CA2619895C (en) | Hydrogen handling or dispensing system | |
HU219730B (en) | Gasholder | |
OA20382A (en) | Method and Mechanism for Producing Kerosene Gas for Short, Medium and/or Long Range Pipeline Distribution Model for Energy Needs. | |
Minkasheva et al. | Space Fitting Design of LNG Fuel Tank for a Small Truck and BOG Analysis of LNG Tank |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20160617 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
ST | Notification of lapse |
Effective date: 20190906 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
RN | Application for restoration |
Effective date: 20191024 |
|
FC | Decision of inpi director general to approve request for restoration |
Effective date: 20191219 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |