FR3059332A1 - PROCESS FOR PRODUCING AN INTERFERENTIAL FILTER ON MICROPARTICLES - Google Patents
PROCESS FOR PRODUCING AN INTERFERENTIAL FILTER ON MICROPARTICLES Download PDFInfo
- Publication number
- FR3059332A1 FR3059332A1 FR1661648A FR1661648A FR3059332A1 FR 3059332 A1 FR3059332 A1 FR 3059332A1 FR 1661648 A FR1661648 A FR 1661648A FR 1661648 A FR1661648 A FR 1661648A FR 3059332 A1 FR3059332 A1 FR 3059332A1
- Authority
- FR
- France
- Prior art keywords
- microparticles
- film
- evaporation
- tetraacetoxysilane
- interference filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0021—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a core coated with only one layer having a high or low refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0024—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating high and low refractive indices, wherein the first coating layer on the core surface has the high refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/0015—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings
- C09C1/0051—Pigments exhibiting interference colours, e.g. transparent platelets of appropriate thinness or flaky substrates, e.g. mica, bearing appropriate thin transparent coatings comprising a stack of coating layers with alternating low and high refractive indices, wherein the first coating layer on the core surface has the low refractive index
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/28—Compounds of silicon
- C09C1/30—Silicic acid
- C09C1/3045—Treatment with inorganic compounds
- C09C1/3054—Coating
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/06—Treatment with inorganic compounds
- C09C3/063—Coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4417—Methods specially adapted for coating powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/442—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/32—Spheres
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/63—Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
- C01P2006/64—Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/10—Interference pigments characterized by the core material
- C09C2200/1004—Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2
- C09C2200/1016—Interference pigments characterized by the core material the core comprising at least one inorganic oxide, e.g. Al2O3, TiO2 or SiO2 comprising an intermediate layer between the core and a stack of coating layers having alternating refractive indices
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/302—Thickness of a layer with high refractive material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/303—Thickness of a layer with low refractive material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2200/00—Compositional and structural details of pigments exhibiting interference colours
- C09C2200/30—Interference pigments characterised by the thickness of the core or layers thereon or by the total thickness of the final pigment particle
- C09C2200/308—Total thickness of the pigment particle
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C2220/00—Methods of preparing the interference pigments
- C09C2220/20—PVD, CVD methods or coating in a gas-phase using a fluidized bed
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
L'invention concerne un procédé de fabrication d'un filtre interférentiel sur des microparticules (40) dans une enceinte de dépôt (20), la formation du filtre interférentiel comprenant la formation d'au moins un premier film, fait d'un premier matériau, et d'au moins un second film, fait d'un second matériau différent du premier matériau par dépôt chimique en phase vapeur, le procédé comprenant en outre la formation d'un film de passivation directement sur la surface des microparticules (40), avant la formation du filtre interférentiel, le film de passivation étant formé, par la technique de dépôt chimique en phase vapeur, par évaporation de tétraacétoxysilane sur la surface des microparticules (40).The invention relates to a method for manufacturing an interference filter on microparticles (40) in a deposition chamber (20), the formation of the interference filter comprising the formation of at least a first film, made of a first material and at least one second film, made of a second material different from the first material by chemical vapor deposition, the method further comprising forming a passivation film directly on the surface of the microparticles (40), before formation of the interference filter, the passivation film being formed, by the chemical vapor deposition technique, by evaporation of tetraacetoxysilane on the surface of the microparticles (40).
Description
Titulaire(s) : COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES Etablissement public, CHANEL PARFUMS BEAUTE.Holder (s): COMMISSIONER FOR ATOMIC ENERGY AND ALTERNATIVE ENERGIES Public establishment, CHANEL PARFUMS BEAUTE.
Demande(s) d’extensionExtension request (s)
Mandataire(s) : BREVALEX Société à responsabilité limitée.Agent (s): BREVALEX Limited liability company.
PROCEDE DE FABRICATION D'UN FILTRE INTERFERENTIEL SUR DES MICROPARTICULES.METHOD FOR MANUFACTURING AN INTERFERENTIAL FILTER ON MICROPARTICLES.
FR 3 059 332 - A1 _ L'invention concerne un procédé de fabrication d'un filtre interférentiel sur des microparticules (40) dans une enceinte de dépôt (20), la formation du filtre interférentiel comprenant la formation d'au moins un premier film, fait d'un premier matériau, et d'au moins un second film, fait d'un second matériau différent du premier matériau par dépôt chimique en phase vapeur, le procédé comprenant en outre la formation d'un film de passivation directement sur la surface des microparticules (40), avant la formation du filtre interférentiel, le film de passivation étant formé, par la technique de dépôt chimique en phase vapeur, par évaporation de tétraacétoxysilane sur la surface des microparticules (40).FR 3 059 332 - A1 _ The invention relates to a method of manufacturing an interference filter on microparticles (40) in a deposition chamber (20), the formation of the interference filter comprising the formation of at least a first film , made of a first material, and at least a second film, made of a second material different from the first material by chemical vapor deposition, the method further comprising forming a passivation film directly on the surface of the microparticles (40), before the formation of the interference filter, the passivation film being formed, by the technique of chemical vapor deposition, by evaporation of tetraacetoxysilane on the surface of the microparticles (40).
ii
PROCEDE DE FABRICATION D'UN FILTRE INTERFERENTIEL SUR DES MICROPARTICULESMETHOD FOR MANUFACTURING AN INTERFERENTIAL FILTER ON MICROPARTICLES
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
La présente invention concerne un procédé de formation d'un filtre interférentiel sur des microparticules. Plus particulièrement, la présente invention concerne un procédé permettant la formation d'un filtre interférentiel sur des microparticules et présentant une saturation en couleur améliorée par rapport à l'état de la technique.The present invention relates to a method of forming an interference filter on microparticles. More particularly, the present invention relates to a method allowing the formation of an interference filter on microparticles and having improved color saturation compared to the state of the art.
ART ANTÉRIEURPRIOR ART
Les filtres interférentiels formés sur des poudres ou des microparticules sont particulièrement intéressants pour l'industrie de la cosmétique qui cherche à créer des couleurs saturées.Interference filters formed on powders or microparticles are particularly interesting for the cosmetic industry which seeks to create saturated colors.
Ces filtres interférentiels comprennent généralement une alternance d'un moins un premier film, fait d'un premier matériau, et d'au moins un second film, fait d'un second matériau différent du premier matériau. Aussi, afin de limiter le nombre de premiers films et de seconds films, il est généralement imposé au premier matériau de présenter un indice de réfraction suffisamment éloigné de celui du second matériau. Par exemple, le premier matériau et le second matériau peuvent comprendre, respectivement, du dioxyde de titane et du dioxyde de silicium.These interference filters generally comprise an alternation of at least a first film, made of a first material, and of at least a second film, made of a second material different from the first material. Also, in order to limit the number of first films and second films, it is generally imposed on the first material to have a refractive index sufficiently distant from that of the second material. For example, the first material and the second material may comprise, respectively, titanium dioxide and silicon dioxide.
Par ailleurs, les propriétés optiques, par exemple la pureté de leur couleur (leur saturation), des filtres interférentiels sont très dépendantes de leur épaisseur, et plus particulièrement de leur variation d'épaisseur. En effet, la pureté de la couleur d'un filtre interférentiel est généralement garantie par le contrôle de la variation de l'épaisseur du premier et du second films.Furthermore, the optical properties, for example the purity of their color (their saturation), of interference filters are very dependent on their thickness, and more particularly on their variation in thickness. Indeed, the purity of the color of an interference filter is generally guaranteed by controlling the variation in the thickness of the first and second films.
Ainsi, la formation de films par dépôt chimique en phase vapeur (« CVD » ou « Chemical Vapor Déposition » selon la terminologie Anglo-Saxonne), connue de l'homme du métier, semble être une technique particulièrement adaptée pour la formation de films avec un contrôle précis de leur épaisseur.Thus, the formation of films by chemical vapor deposition ("CVD" or "Chemical Vapor Deposition" according to Anglo-Saxon terminology), known to those skilled in the art, seems to be a technique particularly suitable for the formation of films with precise control of their thickness.
Cependant, l'état de surface des microparticules présente généralement des irrégularités susceptibles de dégrader les propriétés optiques des filtres interférentiels. Ces irrégularités, qui peuvent comprendre des contaminants, ou de la rugosité, affectent directement la ou les interfaces entre les différents films du filtre interférentiel, et peuvent ainsi faire apparaître des phénomènes d'irisation (figure 1).However, the surface condition of the microparticles generally exhibits irregularities liable to degrade the optical properties of the interference filters. These irregularities, which may include contaminants, or roughness, directly affect the interface (s) between the different films of the interference filter, and can thus give rise to iridescence phenomena (Figure 1).
Aussi, la suppression des irrégularités de surface sur des microparticules peut requérir plusieurs types de traitement comme des étapes de nettoyage et de gravure qui rendent le procédé de fabrication complexe.Also, the removal of surface irregularities on microparticles may require several types of treatment such as cleaning and etching steps which make the manufacturing process complex.
Un but de la présente invention est alors de proposer un procédé de fabrication d'un filtre interférentiel sur des microparticules présentant une saturation améliorée par rapport à l'état de la technique.An object of the present invention is therefore to propose a method for manufacturing an interference filter on microparticles having improved saturation compared to the prior art.
Un autre but de la présente invention est également de proposer un procédé de fabrication d'un filtre interférentiel sur des microparticules simplifié par rapport à l'état de la technique.Another object of the present invention is also to propose a method of manufacturing an interference filter on microparticles simplified compared to the state of the art.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
Le but de l'invention est au moins en partie atteint par un procédé de fabrication d'un filtre interférentiel sur des microparticules par une technique de dépôt chimique en phase vapeur dans une enceinte de dépôt, la formation du filtre interférentiel comprenant la formation d'au moins un premier film, fait d'un premier matériau, et d'au moins un second film, fait d'un second matériau différent du premier matériau par dépôt chimique en phase vapeur de sorte que le filtre interférentiel comprenne une alternance de l'au moins un premier film, et de l'au moins un second film, le procédé comprenant en outre la formation d'un film de passivation directement sur la surface des microparticules, avant la formation du filtre interférentiel, le film de passivation étant formé, par la technique de dépôt chimique en phase vapeur, par évaporation de tétraacétoxysilane sur la surface des microparticules.The object of the invention is at least partially achieved by a method of manufacturing an interference filter on microparticles by a chemical vapor deposition technique in a deposition chamber, the formation of the interference filter comprising the formation of at least a first film, made of a first material, and at least a second film, made of a second material different from the first material by chemical vapor deposition so that the interference filter comprises an alternation of the at least a first film, and at least a second film, the method further comprising forming a passivation film directly on the surface of the microparticles, before the formation of the interference filter, the passivation film being formed, by the chemical vapor deposition technique, by evaporation of tetraacetoxysilane on the surface of the microparticles.
Selon un mode de mise en œuvre, les microparticules disposées sur une face principale d'un support poreux traversé sur toute son épaisseur E par un gaz inerte de sorte que les microparticules forment un lit fluidisé.According to one embodiment, the microparticles disposed on a main face of a porous support traversed over its entire thickness E by an inert gas so that the microparticles form a fluidized bed.
Selon un mode de mise en œuvre, le support est maintenu à une température inférieure à 200°C, avantageusement inférieure à 150°C, par exemple 110°C.According to one embodiment, the support is maintained at a temperature below 200 ° C, advantageously below 150 ° C, for example 110 ° C.
Selon un mode de mise en œuvre, le tétraacétoxysilane est dilué dans un solvant organique, le solvant organique comprenant avantageusement au moins un des solvants choisi parmi : isopropanol, cyclohexane, un solvant aromatique (xylène, toluène).According to one embodiment, the tetraacetoxysilane is diluted in an organic solvent, the organic solvent advantageously comprising at least one of the solvents chosen from: isopropanol, cyclohexane, an aromatic solvent (xylene, toluene).
Selon un mode de mise en œuvre, le tétraacétoxysilane présente une concentration dans le solvant organique comprise entre 0,01 mol/L, et 0,03 mol/L.According to one embodiment, tetraacetoxysilane has a concentration in the organic solvent of between 0.01 mol / L and 0.03 mol / L.
Selon un mode de mise en œuvre, le tétraacétoxysilane est maintenu à une température comprise entre 80°C et 150°C avant d'être pulvérisé sur la surface des microparticules.According to one embodiment, the tetraacetoxysilane is maintained at a temperature between 80 ° C and 150 ° C before being sprayed onto the surface of the microparticles.
Selon un mode de mise en œuvre, les microparticules ont une taille comprise entre 100 nm et 500 pm, les microparticules étant avantageusement des billes.According to one embodiment, the microparticles have a size of between 100 nm and 500 μm, the microparticles advantageously being beads.
Selon un mode de mise en œuvre, les microparticules comprennent de la silice.According to one embodiment, the microparticles comprise silica.
Selon un mode de mise en œuvre, l'évaporation du tétraacétoxysilane est exécutée selon de cycles d'évaporation, et en alternance avec des cycles d'injection de dioxygène dans l'enceinte de dépôt.According to one mode of implementation, the evaporation of the tetraacetoxysilane is carried out according to cycles of evaporation, and in alternation with cycles of injection of oxygen in the deposit enclosure.
Selon un mode de mise en œuvre, une purge de l'enceinte de dépôt est exécutée avant chaque cycle d'évaporationet chaque cycle d'injection, de sorte que la pression dans ladite enceinte est inférieure à 30 mBar à l'issue de la purge.According to one embodiment, a purging of the deposition enclosure is carried out before each evaporation cycle and each injection cycle, so that the pressure in said enclosure is less than 30 mBar at the end of the purging .
Selon un mode de mise en œuvre, à l'issue de chaque cycle d'évaporation et de chaque cycle d'injection, la pression dans l'enceinte de dépôt est supérieure à 100 mBar et 60 mBar, respectivement.According to one mode of implementation, at the end of each evaporation cycle and of each injection cycle, the pressure in the deposition enclosure is greater than 100 mBar and 60 mBar, respectively.
Selon un mode de mise en œuvre, chaque cycle d'évaporation dure de 5 secondes à 20 secondes et/ou entre 20 et 100 cycles d'évaporation et d'injection sont exécutés.According to an implementation mode, each evaporation cycle lasts from 5 seconds to 20 seconds and / or between 20 and 100 evaporation and injection cycles are executed.
Selon un mode de mise en œuvre, le premier matériau comprend du dioxyde de titane, avantageusement formé par la technique de dépôt en phase vapeur.According to one embodiment, the first material comprises titanium dioxide, advantageously formed by the vapor deposition technique.
Selon un mode de mise en œuvre, le second matériau comprend du dioxyde de silicium, avantageusement formé par la technique de dépôt chimique en phase vapeur.According to one embodiment, the second material comprises silicon dioxide, advantageously formed by the chemical vapor deposition technique.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages apparaîtront dans la description qui va suivre du procédé de formation d'un filtre interférentiel sur des microparticules selon l'invention, donnés à titre d'exemples non limitatifs, en référence aux dessins annexés dans lesquels :Other characteristics and advantages will appear in the following description of the process for forming an interference filter on microparticles according to the invention, given by way of nonlimiting examples, with reference to the appended drawings in which:
- la figure 1 est une image par microscopie à balayage électronique en coupe (selon l'épaisseur) d'un film de dioxyde de titane formé sur une microparticule de silice,FIG. 1 is an image by scanning electron microscopy in section (depending on the thickness) of a film of titanium dioxide formed on a silica microparticle,
- la figure 2 est une représentation schématique d'un dispositif de formation de films par CVD adapté pour la mise en œuvre du procédé selon l'invention,FIG. 2 is a schematic representation of a device for forming films by CVD suitable for implementing the method according to the invention,
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Pour les différents modes de mise en œuvre, les mêmes références seront utilisées pour des éléments identiques ou assurant la même fonction, par souci de simplification de la description.For the different modes of implementation, the same references will be used for identical elements or ensuring the same function, for the sake of simplification of the description.
L'invention décrite de manière détaillée ci-dessous met en œuvre un procédé de formation d'un filtre interférentiel sur des microparticules par une technique de dépôt chimique en phase vapeur. Plus particulièrement, le procédé selon l'invention met en œuvre la formation d'un film de passivation de la surface des microparticules avant la formation du filtre interférentiel. Ce film de passivation permet d'encapsuler les contaminants susceptibles d'être présents sur la surface des microparticules, et également de lisser la rugosité de ladite surface. Ainsi, après la formation du film de passivation, la surface des microparticules présente un aspect « lisse », permettant ainsi un meilleur contrôle des interfaces entre les différents films constituant le filtre interférentiel.The invention described in detail below implements a method of forming an interference filter on microparticles by a chemical vapor deposition technique. More particularly, the method according to the invention implements the formation of a passivation film on the surface of the microparticles before the formation of the interference filter. This passivation film makes it possible to encapsulate the contaminants likely to be present on the surface of the microparticles, and also to smooth the roughness of said surface. Thus, after the formation of the passivation film, the surface of the microparticles has a “smooth” appearance, thus allowing better control of the interfaces between the different films constituting the interference filter.
A la figure 2, on peut voir un dispositif de dépôt chimique en phase vapeur 10 adapté pour la mise en œuvre de l'invention.In Figure 2, we can see a chemical vapor deposition device 10 adapted for the implementation of the invention.
La présente invention comprend la formation d'un film de passivation sur des microparticules 40 plus particulièrement directement sur la surface des microparticules 40.The present invention includes the formation of a passivation film on microparticles 40 more particularly directly on the surface of microparticles 40.
Les microparticules 40 peuvent comprendre de la silice.The microparticles 40 can comprise silica.
Les microparticules 40 peuvent avoir une taille comprise entre 100 nm etThe microparticles 40 can have a size of between 100 nm and
500 pm.500 pm.
Les microparticules 40 peuvent avantageusement être des billes.The microparticles 40 can advantageously be beads.
Par taille des microparticules 40, on entend la plus grande des dimensions desdites microparticules 40. Par ailleurs, au sens de l'invention, toutes les microparticules 40 d'un même lot ne présentent pas nécessairement la même taille. Aussi, dès lors que l'on considère un lot de microparticules 40 présentant une taille donnée, il est clair que ladite taille est une taille moyenne.By size of the microparticles 40 is meant the largest of the dimensions of said microparticles 40. Furthermore, within the meaning of the invention, all the microparticles 40 of the same batch do not necessarily have the same size. Also, when we consider a batch of microparticles 40 having a given size, it is clear that said size is an average size.
Avantageusement, lors de la formation du film de passivation, les microparticules 40 peuvent former un lit fluidisé.Advantageously, during the formation of the passivation film, the microparticles 40 can form a fluidized bed.
Par lit fluidisé, on entend un ensemble de microparticules 40 mises en suspension par un courant gazeux ascendant. A cet égard l'homme du métier peut consulter le document [1] cité à la fin de la description.By fluidized bed is meant a set of microparticles 40 suspended by an ascending gas stream. In this regard, a person skilled in the art can consult the document [1] cited at the end of the description.
Afin de mettre en œuvre le procédé de formation d'un filtre interférentiel sur des microparticules 40, lesdites microparticules 40 sont disposées dans une enceinte de dépôt 20, s'étendant selon un axe XX', du dispositif de dépôt chimique en phase vapeur 10.In order to implement the method of forming an interference filter on microparticles 40, said microparticles 40 are arranged in a deposition chamber 20, extending along an axis XX ′, of the chemical vapor deposition device 10.
L'enceinte de dépôt 20 comprend dans sa partie basse B un support 30 sur lequel reposent les microparticules 40.The deposition enclosure 20 comprises in its lower part B a support 30 on which the microparticles 40 rest.
Le support 30 comprend deux faces principales 31 et 32 parallèles entre elles (et perpendiculaires à l'axe XX').The support 30 comprises two main faces 31 and 32 which are mutually parallel (and perpendicular to the axis XX ').
Le support 30 est avantageusement poreux de sorte qu'un gaz puisse le traverser sur toute son épaisseur E. L'épaisseur E du support 30 est la distance la plus courte entre les faces principales 31 et 32. Le support 30 peut comprendre au moins un des matériaux choisi parmi : aluminium, acier type inox.The support 30 is advantageously porous so that a gas can pass through it over its entire thickness E. The thickness E of the support 30 is the shortest distance between the main faces 31 and 32. The support 30 may comprise at least one materials chosen from: aluminum, stainless steel type.
Ainsi, dès lors que des microparticules 40 sont disposées sur le support 30, et que ce dernier est traversé par un gaz sur toute son épaisseur E, lesdites microparticules 40 sont mises en mouvement et un lit fluidisé est créé. Par exemple, le gaz permettant la mise en œuvre du lit fluidisé entre dans l'enceinte de dépôt 20 par une première entrée 51. Cette configuration est donc particulièrement avantageuse, dès lors que l'on veut former un film sur toute la surface de chacune des microparticules 40. En effet, aussitôt que les microparticules 40 forment un lit fluidisé, toute leur surface est exposée à un gaz réactif susceptible d'être présent dans l'enceinte de dépôt 20. Plus particulièrement, statistiquement, chaque portion de surface de chacune des microparticules 40 formant le lit fluidisé est exposée au gaz réactif de manière équivalente (en termes de durée et de quantité de gaz réactif), de sorte que la formation du film est homogène sur chacune des microparticules 40 et entre les microparticules 40.Thus, as soon as microparticles 40 are arranged on the support 30, and that the latter is traversed by a gas over its entire thickness E, said microparticles 40 are set in motion and a fluidized bed is created. For example, the gas allowing the implementation of the fluidized bed enters the deposit enclosure 20 through a first inlet 51. This configuration is therefore particularly advantageous, since it is desired to form a film over the entire surface of each microparticles 40. In fact, as soon as the microparticles 40 form a fluidized bed, their entire surface is exposed to a reactive gas capable of being present in the deposition enclosure 20. More particularly, statistically, each surface portion of each microparticles 40 forming the fluidized bed are exposed to the reactive gas in an equivalent manner (in terms of duration and quantity of reactive gas), so that the formation of the film is homogeneous on each of the microparticles 40 and between the microparticles 40.
Par gaz réactif, nous entendons un gaz adapté pour réagir chimiquement avec la surface des microparticules 40 est ainsi former un film, la nature du gaz réactif sera discutée plus tard dans la description. Par ailleurs, nous notons que le gaz réactif traverse d'abord le support 30, sur toute son épaisseur E, avant d'atteindre le lit fluidisé formé par les microparticules 40.By reactive gas, we mean a gas adapted to react chemically with the surface of the microparticles 40 and thus form a film, the nature of the reactive gas will be discussed later in the description. Furthermore, we note that the reactive gas first crosses the support 30, over its entire thickness E, before reaching the fluidized bed formed by the microparticles 40.
Avantageusement, le dispositif de dépôt chimique en phase vapeur 10 comprend deux systèmes de régulation thermique (pour le chauffage et/ou le refroidissement) 60 et 61, disposés respectivement dans la partie basse B et la partie haute H de l'enceinte de dépôt 20. Cette disposition permet de chauffer de manière différentiée les parties basse B et haute H de l'enceinte de dépôt 20. Plus particulièrement, le lit fluidisé de microparticules 40 en suspension dans le volume de l'enceinte de dépôt 20 peut être chauffé à une température plus élevée que le support 30. Plus particulièrement, le support 30 peut être maintenu, par le système de régulation thermique 60, à une température inférieure à la température de réaction ou de décomposition des gaz réactifs qui sont susceptibles de le traverser, évitant ainsi tout colmatage dudit support 30.Advantageously, the chemical vapor deposition device 10 comprises two thermal regulation systems (for heating and / or cooling) 60 and 61, disposed respectively in the lower part B and the upper part H of the deposition enclosure 20 This arrangement allows differentiated heating of the lower B and upper H parts of the deposition enclosure 20. More particularly, the fluidized bed of microparticles 40 suspended in the volume of the deposition enclosure 20 can be heated to a temperature higher than the support 30. More particularly, the support 30 can be maintained, by the thermal regulation system 60, at a temperature below the reaction or decomposition temperature of the reactive gases which are liable to pass through it, thus avoiding any clogging of said support 30.
Par exemple, la température du lit fluidisé formé par les microparticules 40, à proximité ou dans la partie haute H de l'enceinte de dépôt, peut être comprise entre 200°C et 350°C, avantageusement entre 250°C et 350°C.For example, the temperature of the fluidized bed formed by the microparticles 40, near or in the upper part H of the deposition enclosure, can be between 200 ° C and 350 ° C, advantageously between 250 ° C and 350 ° C .
La température du support 30 peut être comprise entre 100°C et 150°CThe temperature of the support 30 can be between 100 ° C and 150 ° C
La formation du film de passivation sur la surface des microparticules 40 comprend l'évaporation d'un précurseur organométallique dans l'enceinte de dépôt 20. Par évaporation dans l'enceinte de dépôt 20, on entend que le précurseur organométallique est introduit dans l'enceinte de dépôt 20 sous forme d'une solution finement divisée. Par ailleurs, l'évaporation du précurseur organométallique se fait sur la surface des microparticules 40.The formation of the passivation film on the surface of the microparticles 40 comprises the evaporation of an organometallic precursor in the deposition enclosure 20. By evaporation in the deposition enclosure 20, it is meant that the organometallic precursor is introduced into the deposit enclosure 20 in the form of a finely divided solution. Furthermore, the evaporation of the organometallic precursor takes place on the surface of the microparticles 40.
Il est entendu que le précurseur organométallique est un gaz réactif.It is understood that the organometallic precursor is a reactive gas.
Par ailleurs, le précurseur organométallique est introduit dans l'enceinte de dépôt par une seconde entrée 52.Furthermore, the organometallic precursor is introduced into the deposition enclosure through a second inlet 52.
Selon l'invention, le précurseur organométallique est du tetraacetoxysilane. Ce composé chimique est particulièrement avantageux puisqu'il se décompose à partir de 175°C, et permet donc de former des films de dioxyde de silicium sur la surface des microparticules 40, les microparticules 40 étant avantageusement mises sous forme d'un lit fluidisé.According to the invention, the organometallic precursor is tetraacetoxysilane. This chemical compound is particularly advantageous since it decomposes from 175 ° C., and therefore makes it possible to form films of silicon dioxide on the surface of the microparticles 40, the microparticles 40 being advantageously formed in the form of a fluidized bed.
Il est entendu, sans qu'il soit nécessaire de le préciser, que le tetraacetoxysilane réagit avec une espèce chimique oxydante pour former un film de dioxyde de silicium par CVD. L'espèce oxydante peut par exemple être du dioxygène, ou de l'ozone.It is understood, without it being necessary to specify it, that tetraacetoxysilane reacts with an oxidizing chemical species to form a film of silicon dioxide by CVD. The oxidizing species can for example be dioxygen, or ozone.
La surface des microparticules 40 formant le lit fluidisé est alors avantageusement maintenue à une température comprise entre 200°C et 350°C, préférentiellement entre 250°C et 350°C.The surface of the microparticles 40 forming the fluidized bed is then advantageously maintained at a temperature between 200 ° C and 350 ° C, preferably between 250 ° C and 350 ° C.
De manière avantageuse, le tetraacetoxysilane, avant d'être injecté dans l'enceinte de dépôt, peut être dilué dans un solvant organique.Advantageously, the tetraacetoxysilane, before being injected into the deposition enclosure, can be diluted in an organic solvent.
Le solvant organique peut avantageusement comprendre au moins un des solvants choisi parmi : isopropanol, cyclohexane, un solvant aromatique (par exemple du toluène, ou du xylène).The organic solvent can advantageously comprise at least one of the solvents chosen from: isopropanol, cyclohexane, an aromatic solvent (for example toluene, or xylene).
Les inventeurs ont par ailleurs démontré que le pouvoir solvatant de l'isopropanol permet d'obtenir une excellente accroche du tetraacetoxysilane sur la surface des microparticules 40, favorisant ainsi la réactivité dudit précurseur avec la surface des microparticules 40.The inventors have also demonstrated that the solvating power of isopropanol makes it possible to obtain excellent adhesion of tetraacetoxysilane to the surface of the microparticles 40, thus promoting the reactivity of said precursor with the surface of the microparticles 40.
Après dilution, la concentration du tetraacetoxysilane peut être comprise entre 0,01 mol/L, et 0,03 mol/L.After dilution, the concentration of tetraacetoxysilane can be between 0.01 mol / L and 0.03 mol / L.
Toujours de manière avantageuse, avant d'être injecté dans l'enceinte de dépôt, le tetraacetoxysilane peut être maintenu à une température comprise entre 80°C et 150°C, par exemple 100°C.Still advantageously, before being injected into the deposition enclosure, the tetraacetoxysilane can be maintained at a temperature between 80 ° C. and 150 ° C., for example 100 ° C.
La formation du film de passivation selon l'invention peut comprendre en outre l'injection de dioxygène dans l'enceinte de dépôt 20.The formation of the passivation film according to the invention may also comprise the injection of dioxygen into the deposition enclosure 20.
Le dioxygène peut être injecté dans l'enceinte à température ambiante. Autrement dit, la température de l'oxygène, dès qu'il est dans l'enceinte, est imposée par la température à l'intérieur de ladite enceinte.The oxygen can be injected into the enclosure at room temperature. In other words, the temperature of the oxygen, as soon as it is in the enclosure, is imposed by the temperature inside said enclosure.
Le dioxygène est destiné à réagir avec le tetraacetoxysilane pour former un film de dioxyde de silicium sur la surface des microparticules 40.The dioxygen is intended to react with tetraacetoxysilane to form a film of silicon dioxide on the surface of the microparticles 40.
Le film de passivation ainsi formé est un film de dioxyde de silicium (S1O2).The passivation film thus formed is a film of silicon dioxide (S1O2).
Par ailleurs, dès lors que les microparticules sont en silice, le film de passivation et les microparticules 40 sont de même nature chimique, de sorte que leurs indices de réfraction respectifs sont voisins, voire identiques. Une telle configuration évite la formation d'une interface optique entre le film de passivation et la microparticule 40, ainsi que la création ou l'amplification de défauts susceptibles d'être présents sur la surface des microparticules 40.Furthermore, as soon as the microparticles are made of silica, the passivation film and the microparticles 40 are of the same chemical nature, so that their respective refractive indices are close to, or even identical. Such a configuration avoids the formation of an optical interface between the passivation film and the microparticle 40, as well as the creation or the amplification of defects likely to be present on the surface of the microparticles 40.
Le dépôt du film de passivation permet en outre d'exécuter un nettoyage in situ de la surface des microparticules 40 formant le lit fluidisé, et avant que la croissance du film de passivation ne débute. La contamination de la surface des microparticules peut ainsi être réduite.The deposition of the passivation film also makes it possible to perform an in situ cleaning of the surface of the microparticles 40 forming the fluidized bed, and before the growth of the passivation film begins. Contamination of the surface of the microparticles can thus be reduced.
La réduction de la contamination de la surface des microparticules permet de limiter le transfert de défauts au niveau de couches additionnelles susceptibles d'être formées sur le film de passivation.The reduction in contamination of the surface of the microparticles makes it possible to limit the transfer of defects at the level of additional layers capable of being formed on the passivation film.
Par transfert de défaut, on entend la reproduction de défaut topologique présent sur a surface de la microparticule.By defect transfer is meant the reproduction of topological defect present on the surface of the microparticle.
Enfin, la présence du film de passivation permet de contrôler la vitesse de dépôt d'un film de TiO2 susceptible d'être déposée sur ledit film de passivation dans le cadre de la formation d'un filtre interférentiel.Finally, the presence of the passivation film makes it possible to control the rate of deposition of a TiO 2 film capable of being deposited on said passivation film in the context of the formation of an interference filter.
De manière avantageuse, l'injection (l'évaporation) du tetraacetoxysilane peut être exécutée selon de cycles d'évaporation, et en alternance avec des cycles d'injection de dioxygène dans l'enceinte de dépôt 20. Autrement dit, l'injection du tetraacetoxysilane et l'injection du dioxygène sont exécutées sur des plages temporelles différentes, et sans recouvrement (autrement dit distinctes). Nous parlons alors de CVD pulsée.Advantageously, the injection (evaporation) of the tetraacetoxysilane can be carried out according to cycles of evaporation, and in alternation with cycles of injection of oxygen into the deposit enclosure 20. In other words, the injection of the tetraacetoxysilane and the injection of dioxygen are carried out over different time periods, and without overlap (in other words distinct). We then speak of pulsed CVD.
La CVD pulsée permet de mieux contrôler la décomposition des espèces, donc de mieux maîtriser les cinétiques de dépôt, donc les vitesses de dépôt. Ceci est d'autant plus important lorsque les épaisseurs déposées sont très faibles.Pulsed CVD allows better control of the decomposition of species, therefore better control of the deposition kinetics, and therefore the deposition rates. This is all the more important when the thicknesses deposited are very small.
Nous parlons de cycles d'évaporation dès lors qu'il s'agit de l'injection du tetraacetoxysilane, et cycles d'injection dès qu'il s'agit de l'injection de dioxygène.We talk about evaporation cycles when it comes to the injection of tetraacetoxysilane, and injection cycles when it comes to the injection of dioxygen.
Le dioxygène injecté lors des cycles d'injection peut être mélangé avec un gaz inerte, par exemple de l'azote. Dans ce cas de figure, la proportion d'azote par rapport au dioxygène peut être comprise entre 30% et 60 %, par exemple 50%.The dioxygen injected during the injection cycles can be mixed with an inert gas, for example nitrogen. In this case, the proportion of nitrogen relative to the oxygen can be between 30% and 60%, for example 50%.
Toujours de manière avantageuse, une purge de l'enceinte de dépôt 20 est exécutée avant chaque cycle d'évaporation et chaque cycle d'injection, de sorte que la pression dans ladite enceinte est inférieure à 30 mBar à l'issue de la purge. La purge peut être exécutée par un système de pompage connecté à l'enceinte de dépôt 20.Still advantageously, a purge of the deposition enclosure 20 is carried out before each evaporation cycle and each injection cycle, so that the pressure in said enclosure is less than 30 mBar at the end of the purge. The purge can be carried out by a pumping system connected to the deposit vessel 20.
A l'issue de chaque cycle d'évaporation, la pression dans l'enceinte de dépôt 20 peut être supérieure à 100 mBar.At the end of each evaporation cycle, the pressure in the deposition enclosure 20 can be greater than 100 mBar.
A l'issue de chaque cycle d'injection, la pression dans l'enceinte de dépôt 20 peut être supérieure à 60 mBar.At the end of each injection cycle, the pressure in the deposition chamber 20 can be greater than 60 mBar.
Les cycles d'évaporation peuvent durer de 5 secondes à 20 secondes.Evaporation cycles can last from 5 seconds to 20 seconds.
De manière avantageuse, 20 à 100 cycles d'évaporation et d'injection peuvent être exécutés.Advantageously, 20 to 100 evaporation and injection cycles can be performed.
ίοίο
Ainsi, bien que formé à des températures relativement basses (inférieure à 350°C), le film de passivation présentent une densité ainsi que des propriétés optiques comparables à celles du même film formé à plus haute température avec un précurseur organométallique standard.Thus, although formed at relatively low temperatures (below 350 ° C), the passivation film has a density as well as optical properties comparable to those of the same film formed at higher temperature with a standard organometallic precursor.
Par ailleurs, afin d'encapsuler des contaminants susceptibles d'être présents sur la surface des microparticules 40, et de lisser ladite surface, un film de passivation d'épaisseur inférieure à 10 nm peut suffire.Furthermore, in order to encapsulate contaminants likely to be present on the surface of the microparticles 40, and to smooth said surface, a passivation film of thickness less than 10 nm may be sufficient.
Ainsi, le procédé de formation du film de passivation sur les microparticules 40 peut comprendre les étapes suivantes :Thus, the process for forming the passivation film on the microparticles 40 can comprise the following steps:
- l'introduction des microparticules 40 dans l'enceinte de dépôt, plus particulièrement sur le support 30,the introduction of the microparticles 40 into the deposition enclosure, more particularly on the support 30,
- la formation du lit fluidisé par passage d'un courant gazeux ascendant au travers du support 30,the formation of the fluidized bed by passing an ascending gas stream through the support 30,
- le chauffage de la zone de l'enceinte occupée par le lit fluidisé à une température comprise entre 200°C et 350°C, et le chauffage du support 30 à une température inférieure à 200°C, avantageusement inférieure à 110°C,the heating of the zone of the enclosure occupied by the fluidized bed at a temperature between 200 ° C and 350 ° C, and the heating of the support 30 at a temperature below 200 ° C, advantageously below 110 ° C,
- évaporation de tetraacetoxysilane,- evaporation of tetraacetoxysilane,
- injection de dioxygène.- injection of oxygen.
La formation du film de passivation est alors suivie de la formation du filtre interférentiel.The formation of the passivation film is then followed by the formation of the interference filter.
Le filtre interférentiel peut avantageusement être formé dans la même enceinte de dépôt. Ainsi, le procédé selon l'invention ne nécessite pas de manipulations inutiles des microparticules 40.The interference filter can advantageously be formed in the same deposition enclosure. Thus, the method according to the invention does not require unnecessary manipulation of the microparticles 40.
Le filtre interférentiel comprenant une alternance d'au moins un premier film, fait d'un premier matériau, et d'au moins un second film, fait d'un second matériau différent du premier matériau.The interference filter comprising an alternation of at least a first film, made of a first material, and of at least a second film, made of a second material different from the first material.
Le premier film et le second film sont formés par la technique de dépôt chimique en phase vapeur.The first film and the second film are formed by the chemical vapor deposition technique.
De manière particulièrement avantageuse, le premier matériau comprend du dioxyde de titane.In a particularly advantageous manner, the first material comprises titanium dioxide.
Un premier film fait de dioxyde de titane peut avantageusement être formé par CVD avec du TTIP (Tetraisopropoxyde de titane) comme précurseur, par exemple dilué dans du toluène à une concertation de 0,03 Mol/L.A first film made of titanium dioxide can advantageously be formed by CVD with TTIP (titanium tetraisopropoxide) as a precursor, for example diluted in toluene at a concertation of 0.03 Mol / L.
Le second film peut comprendre du dioxyde de silicium, et être formé par CVD avec comme précurseur du tétraacétoxysilane.The second film can comprise silicon dioxide, and be formed by CVD with tetraacetoxysilane as precursor.
La formation du second film reprend avantageusement les conditions de formation du film de passivation, permettant ainsi de simplifier le procédé de formation du filtre interférentiel.The formation of the second film advantageously takes up the conditions for the formation of the passivation film, thus making it possible to simplify the process for forming the interference filter.
Préalablement à la formation du filtre interférentiel, les propriétés optiques des premier et second films peuvent être caractérisées. Par exemple, il est possible de déterminer avec précision leurs indices de réfraction. La détermination de l'indice de réfraction d'un film fait partie des connaissances générales de l'homme du métier et n'est donc pas détaillée dans la présente invention.Prior to the formation of the interference filter, the optical properties of the first and second films can be characterized. For example, it is possible to accurately determine their refractive indices. Determining the refractive index of a film is part of the general knowledge of a person skilled in the art and is therefore not detailed in the present invention.
La connaissance des propriétés optiques du premier film et du second film permet de dimensionner précisément le filtre interférentiel (par dimensionnement, on entend le nombre de premier et second films ainsi que leurs épaisseurs pour l'obtention d'une couleur donnée). Le dimensionnement peut être exécuté par des calculs interférométriques faisant partie des connaissances générales de l'homme du métier, par exemple avec un logiciel de dimensionnement optique du type « OPTILAYER™ ».Knowledge of the optical properties of the first film and of the second film makes it possible to precisely size the interference filter (by dimensioning is meant the number of first and second films as well as their thicknesses for obtaining a given color). The dimensioning can be carried out by interferometric calculations forming part of the general knowledge of the person skilled in the art, for example with an optical dimensioning software of the "OPTILAYER ™" type.
A titre d'exemple, le tableau suivant donne les épaisseurs des films de T1O2 et de S1O2 composant deux filtres interférentiels. Chacun des deux filtre interférentiel présente une couleur référencée selon des coordonnée colorimétriques x et y selon le nuancier CIE parue en 1931.By way of example, the following table gives the thicknesses of the films of T1O2 and of S1O2 making up two interference filters. Each of the two interference filters has a color referenced according to colorimetric coordinates x and y according to the CIE color chart published in 1931.
Dans les deux cas présentés dans le tableau précédent, le filtre interférentiel est de couleur pourpre.In the two cases presented in the previous table, the interference filter is purple in color.
Le procédé selon l'invention ne se limite pas à la formation d'un filtre 5 interférentiel comprenant une alternance de film de TiO2 et de SiO2. En effet, d'autres films peuvent être considérés, par exemple : AI2O3, CeO2, YSZ, ZnO V2Os, BaO.The method according to the invention is not limited to the formation of an interference filter 5 comprising an alternating film of TiO2 and SiO2. Indeed, other films can be considered, for example: AI2O3, CeO 2 , YSZ, ZnO V 2 Os, BaO.
La maîtrise des conditions opératoires et de la morphologie des interfaces selon l'invention permet de fabriquer des filtres interférentiels sur des microparticules présentant une meilleure saturation.The control of the operating conditions and the morphology of the interfaces according to the invention makes it possible to manufacture interference filters on microparticles having better saturation.
REFERENCES [1] C. Vahlas et al., « Fluidization, Spouting, and Metal-Organie CVD of Platinum Group Metals on Powders, Chem. Vap. Déposition, Volume 8, Issue 4, July, 2002, pages 127-144.REFERENCES [1] C. Vahlas et al., “Fluidization, Spouting, and Metal-Organie CVD of Platinum Group Metals on Powders, Chem. Vap. Deposition, Volume 8, Issue 4, July, 2002, pages 127-144.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1661648A FR3059332B1 (en) | 2016-11-29 | 2016-11-29 | PROCESS FOR PRODUCING AN INTERFERENTIAL FILTER ON MICROPARTICLES |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1661648A FR3059332B1 (en) | 2016-11-29 | 2016-11-29 | PROCESS FOR PRODUCING AN INTERFERENTIAL FILTER ON MICROPARTICLES |
FR1661648 | 2016-11-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3059332A1 true FR3059332A1 (en) | 2018-06-01 |
FR3059332B1 FR3059332B1 (en) | 2019-05-17 |
Family
ID=57796689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1661648A Expired - Fee Related FR3059332B1 (en) | 2016-11-29 | 2016-11-29 | PROCESS FOR PRODUCING AN INTERFERENTIAL FILTER ON MICROPARTICLES |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3059332B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19614637A1 (en) * | 1996-04-13 | 1997-10-16 | Basf Ag | Goniochromatic gloss pigments based on coated silicon dioxide platelets |
EP0947266A1 (en) * | 1996-06-10 | 1999-10-06 | Nittetsu Mining Co., Ltd. | Powder coated with multilayer coating |
DE19822046A1 (en) * | 1998-05-16 | 1999-11-18 | Basf Ag | Goniochromatic gloss pigments based on heated, titanium-coated silicate plates in a reducing atmosphere |
EP2826822A1 (en) * | 2013-07-19 | 2015-01-21 | Merck Patent GmbH | Pigment mixture based on spherical particles |
-
2016
- 2016-11-29 FR FR1661648A patent/FR3059332B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19614637A1 (en) * | 1996-04-13 | 1997-10-16 | Basf Ag | Goniochromatic gloss pigments based on coated silicon dioxide platelets |
EP0947266A1 (en) * | 1996-06-10 | 1999-10-06 | Nittetsu Mining Co., Ltd. | Powder coated with multilayer coating |
DE19822046A1 (en) * | 1998-05-16 | 1999-11-18 | Basf Ag | Goniochromatic gloss pigments based on heated, titanium-coated silicate plates in a reducing atmosphere |
EP2826822A1 (en) * | 2013-07-19 | 2015-01-21 | Merck Patent GmbH | Pigment mixture based on spherical particles |
Non-Patent Citations (2)
Title |
---|
C. VAHLAS, F. JUAREZ, R. FEURER, P. SERP AND B. CAUSSAT: "Fluidization, Spouting, and Metal-Organic CVD of Platinum Group Metals on Powders", CHEMICAL VAPOUR DEPOSITION, vol. 8, no. 4, 2 July 2002 (2002-07-02), pages 127 - 144, XP002772942, DOI: 10.1002/1521-3862(20020704)8:4<127 * |
JIN-WOOK HA, YOUNG-WOONG DO, JAE-HYUN PARK, CHUL-HEE HAN: "Preparation and photocatalytic performance of nano-TiO2-coated beads formethylene blue decomposition", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 15, no. 5, 25 September 2009 (2009-09-25), pages 670 - 673, XP002772943, DOI: 10.1016/j.jiec.2009.09.042 * |
Also Published As
Publication number | Publication date |
---|---|
FR3059332B1 (en) | 2019-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2908137A1 (en) | THIN FILM DEPOSITION METHOD AND PRODUCT OBTAINED | |
KR101697494B1 (en) | Cleaning method, method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium | |
EP2720986B1 (en) | Process for manufacturing glazing comprising a porous layer | |
BE1019991A3 (en) | METHOD FOR DEPOSITION OF LAYERS ON LOW PRESSURE PECVD GLASS SUBSTRATE. | |
EP0970025B1 (en) | Method for preparing a multilayer optical material with crosslinking-densifying by ultraviolet radiation and resulting optical material | |
CA2279828C (en) | Inorganic polymeric material with tantalic acid anhydride base, in particular with high refractive index, mechanically abrasionproof, method of manufacture, optical materials comprising such material | |
EP1644554A1 (en) | Method for deposition of titanium oxide by a plasma source | |
EP4439193A2 (en) | Method for treating a surface of a timepiece component and timepiece component obtained by such a method | |
FR2711983A1 (en) | Transparent substrate provided with a layer of metal nitride. | |
EP1899048A1 (en) | Low wetting hysteresis hydrophobic surface coating, method for depositing same, microcomponent and use | |
KR101338976B1 (en) | Method of manufacturing semiconductor device, semiconductor device, and substrate processing apparatus | |
LU87997A1 (en) | PROCESS FOR FORMING A COATING ON GLASS | |
JP2016184685A (en) | Method of manufacturing semiconductor device, substrate processing device, and program | |
US20090071535A1 (en) | Antireflective coating on solar cells and method for the production of such an antireflective coating | |
EP2081217A2 (en) | Method for manufacturing films of hydrogenated amorphous silicon carbide equipped with through pores and films thus obtained | |
FR3059332A1 (en) | PROCESS FOR PRODUCING AN INTERFERENTIAL FILTER ON MICROPARTICLES | |
CH675416A5 (en) | ||
FR3059339A1 (en) | PROCESS FOR FORMING SILICON DIOXIDE FILMS | |
JP7551130B2 (en) | Method for manufacturing anti-reflective coating | |
EP2744760B1 (en) | Antireflection glazing unit equipped with a porous coating and method of making | |
US20120288984A1 (en) | Method for operating a vacuum Coating apparatus | |
EP0735160B1 (en) | Process and apparatus for microwave assisted low temperature CVD of silica layers | |
CH714139A2 (en) | Protective coating for complex watch component. | |
Yates et al. | Durable high‐performance anti‐reflection coatings via atmospheric pressure processing | |
Sarantopoulos | TiO {sub 2} based photo-catalysts prepared by chemical vapor infiltration (CVI) on micro-fibrous substrates; Photocatalyseurs a base de TiO {sub 2} prepares par infiltration chimique en phase vapeur (CVI) sur supports microfibreux |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20180601 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
ST | Notification of lapse |
Effective date: 20220705 |