FR2903345A1 - DEVICE FOR PREVENTILATION, VENTILATION, HEATING AND / OR AIR CONDITIONING OF A VEHICLE HABITACLE UTILIZING A PULSER AND THERMOELECTRIC UNITS WITH PELTIER EFFECT - Google Patents
DEVICE FOR PREVENTILATION, VENTILATION, HEATING AND / OR AIR CONDITIONING OF A VEHICLE HABITACLE UTILIZING A PULSER AND THERMOELECTRIC UNITS WITH PELTIER EFFECT Download PDFInfo
- Publication number
- FR2903345A1 FR2903345A1 FR0606245A FR0606245A FR2903345A1 FR 2903345 A1 FR2903345 A1 FR 2903345A1 FR 0606245 A FR0606245 A FR 0606245A FR 0606245 A FR0606245 A FR 0606245A FR 2903345 A1 FR2903345 A1 FR 2903345A1
- Authority
- FR
- France
- Prior art keywords
- air
- channel
- housing
- passenger compartment
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/00478—Air-conditioning devices using the Peltier effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/24—Devices purely for ventilating or where the heating or cooling is irrelevant
- B60H1/26—Ventilating openings in vehicle exterior; Ducts for conveying ventilating air
- B60H1/262—Openings in or on the vehicle roof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H3/00—Other air-treating devices
- B60H3/06—Filtering
- B60H3/0608—Filter arrangements in the air stream
- B60H3/0625—Filter arrangements in the air stream with provisions for by-passing the filter element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B21/00—Machines, plants or systems, using electric or magnetic effects
- F25B21/02—Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2321/00—Details of machines, plants or systems, using electric or magnetic effects
- F25B2321/02—Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
- F25B2321/025—Removal of heat
- F25B2321/0251—Removal of heat by a gas
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
L'invention a pour objet un dispositif de préventilation, de ventilation, de chauffage et/ou la climatisation de l'habitacle d'un véhicule. Ce dispositif comprend un boîtier (1) logeant un pulseur (2) et une unité thermoélectrique (8) à effet PELTIER, et comporte au moins une bouche d'admission d'air (4,5) en provenance de l'intérieur et/ou en provenance de l'extérieur de l'habitacle, et au moins une bouche d'évacuation d'air (12,13) vers l'intérieur et/ou vers l'extérieur de l'habitacle. Le boîtier (1) comprend un canal d'évacuation d'air (6) qui s'étend entre une bouche d'admission d'air (4,5) et une bouche d'évacuation d'air (12,13), et un canal de traitement thermique (7) de l'air qui loge intégralement l'unité thermoélectrique (8) et qui s'étend entre une bouche d'admission d'air (4,5) et une bouche d'évacuation d'air (12,13).The invention relates to a device for pre-ventilation, ventilation, heating and / or air conditioning of the passenger compartment of a vehicle. This device comprises a housing (1) housing a blower (2) and a thermoelectric unit (8) PELTIER effect, and comprises at least one air intake port (4,5) from the inside and / or from the outside of the passenger compartment, and at least one exhaust air outlet (12, 13) towards the inside and / or towards the outside of the passenger compartment. The housing (1) comprises an exhaust duct (6) extending between an air inlet (4, 5) and an exhaust air outlet (12, 13), and a heat treatment channel (7) for the air which fully houses the thermoelectric unit (8) and which extends between an air inlet (4, 5) and an exhaust port of air (12,13).
Description
1 Dispositif de préventilation, de ventilation, de chauffage et/ou de1 Preventilation, ventilation, heating and / or
climatisation d'un habitacle de véhicule, mettant en oeuvre un pulseur et des unités thermoélectriques à effet PELTIER. air conditioning of a vehicle interior, using a blower and thermoelectric units PELTIER effect.
Domaine technique de l'invention. L'invention est du domaine des installations de ventilation, de chauffage et/ou de climatisation, pour habitacle de véhicule. Elle a pour objet un dispositif de préventilation, de ventilation, de chauffage et/ou de climatisation d'un habitacle de véhicule mettant en oeuvre un pulseur et des unités thermoélectriques à effet PELTIER. Etat de la technique. Technical Field of the Invention The invention is in the field of ventilation, heating and / or air conditioning, for vehicle interior. It relates to a device for pre-ventilation, ventilation, heating and / or air conditioning of a vehicle interior employing a blower and thermoelectric units PELTIER effect. State of the art
Dans le domaine automobile, il est courant d'aérer l'habitacle d'un véhicule à partir d'une installation principale de ventilation, de chauffage et/ou de climatisation. Une telle installation est habituellement localisée à l'avant du véhicule et comporte une pluralité de conduites débouchant dans divers endroits de l'habitacle pour son aération. In the automotive field, it is common to ventilate the passenger compartment of a vehicle from a main installation of ventilation, heating and / or air conditioning. Such an installation is usually located at the front of the vehicle and has a plurality of pipes opening into various locations of the passenger compartment for ventilation.
Se pose le problème d'une préventilation de l'habitacle. On comprendra par préventilation l'opération consistant à aérer l'habitacle lorsque le véhicule est en station de parking. Plus particulièrement, en milieu extérieur du véhicule en station de parking, les conditions climatiques induisent dans l'habitacle des températures basses ou inversement hautes selon les saisons, qui sont source d'inconfort pour les passagers lorsqu'ils pénètrent à l'intérieur du véhicule. Une préventilation permet de procurer un confort aux passagers lorsqu'ils pénètrent dans le véhicule, indépendamment d'une ventilation qui est susceptible d'être opérée pour aérer l'habitacle lorsque le véhicule est en mode de roulage, c'est-à-dire lorsque le véhicule circule. 2903345 2 II a été proposé d'équiper l'habitacle du véhicule d'au moins un dispositif autonome de ventilation, de chauffage et/ou de climatisation pour permettre de préventiler l'habitacle en situation de parking extérieur en saison chaude. Plus particulièrement, ce dispositif met en oeuvre un boîtier logeant un pulseur et au 5 moins une unité thermoélectrique à effet PELTIER, qui sont avantageusement alimentés en énergie à partir de cellules photovoltaïques disposées à l'extérieur de l'habitacle, sur le toit du véhicule. La mise en oeuvre du pulseur et de l'unité thermoélectrique est placée sous la dépendance de moyens de commande, comprenant un capteur de température placé à l'intérieur de l'habitacle et/ou un 10 bouton de commande. Pour palier à un manque de lumière extérieure susceptible de rendre les cellules photovoltaïques inopérantes, le pulseur et l'unité thermoélectrique sont en outre alimentés en énergie à partir d'une source rechargeable à partir des cellules photovoltaïques, un commutateur permettant de sélectionner en cas de besoin la source d'énergie adaptée à mettre en oeuvre. De 15 tels dispositifs sont décrits par le document DE4207283 (WEBASTO KAROSSERIESYSTEME) par exemple. L'avantage de tels dispositifs réside dans leur structure simple, peu encombrante et peu coûteuse. Cependant, leur organisation n'est adaptée qu'à la préventilation 20 de l'habitacle en milieu extérieur ensoleillé, et n'est pas adaptée pour une ventilation et/ou un traitement thermique de l'air présent dans l'habitacle, qui soient efficaces lorsque l'éclairage extérieur est faible, en saison froide et/ou en station couverte de parking du véhicule. II en ressort finalement des conditions de fonctionnement limitées de ces dispositifs qui ne sont pas satisfaisantes au regard 25 d'une rentabilisation optimisée de leur installation à l'intérieur de l'habitacle. Une difficulté générale à surmonter pour l'agencement de tels dispositifs autonomes de ventilation, de chauffage et/ou de climatisation réside dans leur encombrement souhaité le plus faible possible, dans leur obtention à moindre 30 coût et dans leur faculté à pouvoir être aisément installés en un quelconque endroit de l'habitacle. En outre, l'agencement de tels dispositifs doit permettre d'optimiser les effets que procurent le pulseur et l'unité thermoélectrique pour une 2903345 3 capacité donnée de ces organes. II est donc recherché de réduire les pertes de charge aérauliques et thermiques en adaptant en conséquence les modalités de circulation du flux d'air à l'intérieur du boîtier. Une telle adaptation ne doit néanmoins pas être faite ni au détriment d'une optimisation des différentes 5 modalités de fonctionnement possibles du dispositif visant à refroidir ou réchauffer l'habitacle en fonction des conditions climatiques, ni à la capacité du dispositif à réchauffer et/ou refroidir efficacement l'habitacle. Objet de l'invention. 10 Le but de la présente invention est de proposer un dispositif de préventilation, de ventilation, de chauffage et/ou de climatisation d'un l'habitacle d'un véhicule, qui soit apte à permettre un traitement thermique de l'air de l'habitacle sans pour autant être d'une structure complexe et coûteuse, et qui soit d'un encombrement 15 réduit. Il est plus particulièrement visé par la présente invention de proposer un tel dispositif mettant en oeuvre un pulseur et des unités thermoélectriques à effet PELTIER susceptibles d'être alimentés en énergie à partir de cellules photovoltaïques, qui soit apte à être utilisé tant pour la préventilation de l'habitacle quelles que soient les conditions climatiques, que pour accompagner le traitement 20 de l'air de l'habitacle opéré par une installation principale de ventilation, de chauffage et/ou de climatisation lorsque le véhicule est en mode de roulage. Le dispositif de la présente invention est un dispositif de préventilation, de ventilation, de chauffage et/ou de climatisation de l'habitacle d'un véhicule ou 25 analogue. Ce dispositif comprend au moins un boîtier logeant au moins un pulseur et au moins une unité thermoélectrique à effet PELTIER. Une telle unité thermoélectrique comprend au moins une cellule de type PELTIER avantageusement équipée à l'une quelconque au moins de ses faces d'un élément de dissipation thermique. Le pulseur et l'unité thermoélectrique sont 30 alimentés en énergie à partir d'une source d'énergie électrique équipant le véhicule. Le boîtier comporte au moins une bouche d'admission d'air en provenance de l'intérieur et/ou en provenance de l'extérieur de l'habitacle, et au 2903345 4 moins une bouche d'évacuation d'air vers l'intérieur et/ou vers l'extérieur de l'habitacle. Un tel dispositif est un dispositif annexe à une installation principale de ventilation, 5 de chauffage et/ou de climatisation équipant le véhicule. Plus particulièrement, un tel dispositif est destiné à fonctionner indépendamment du fonctionnement d'une telle installation principale, pour apporter un confort spécifique. Selon la présente invention, un tel dispositif est principalement reconnaissable en 10 ce que le boîtier comprend au moins un premier canal d'évacuation d'air qui s'étend entre la bouche d'admission d'air et le bouche d'évacuation d'air, et au moins un deuxième canal destiné au traitement thermique de l'air qui loge intégralement l'unité thermoélectrique et qui s'étend entre la bouche d'admission d'air et la bouche d'évacuation d'air. 15 Selon l'invention, le boîtier est subdivisé en au moins deux canaux. Un premier canal est destiné à véhiculer un flux d'air en provenance d'au moins une bouche d'admission d'air vers au moins une bouche d'évacuation d'air hors du boîtier, sans que ce flux d'air ne soit thermiquement traité. En cela ce premier canal est 20 fondamentalement exempt de l'unité thermoélectrique. Un deuxième canal est destiné à véhiculer un flux d'air en provenance d'au moins une bouche d'admission d'air vers au moins une bouche d'évacuation d'air hors du boîtier, ce flux d'air étant destiné à être thermiquement traité par l'unité thermoélectrique. Cette dernière est fondamentalement seulement et dans sa totalité logée à 25 l'intérieur du deuxième canal. Une telle unité thermoélectrique comporte deux zones à échange thermique qui sont toutes deux contenues dans le deuxième canal, et est en cela intégralement et exclusivement contenue dans le deuxième canal. Tel que visé plus loin, ce deuxième canal est susceptible d'être subdivisé en deux canaux élémentaires, rigoureusement distincts du premier canal réservé 30 à la simple évacuation d'air hors du boîtier. Chacun de ces canaux élémentaires est affecté à une dite zone respective de l'unité thermoélectrique, pour en exploiter la source de frigories et inversement de calories. La bouche d'admission 2903345 5 d'air au moins et la bouche d'évacuation d'air au moins sont susceptibles d'être communes pour le premier canal et pour le deuxième canal. Ces dispositions sont telles qu'à partir d'un même dispositif de structure simple et 5 de faible encombrement, l'habitacle du véhicule peut soit être préventilé en station parking en limitant avantageusement les pertes de charge aérauliques pour accroître le débit d'air sans augmenter la consommation électrique du pulseur, soit être ventilé et/ou traité thermiquement en mode de roulage du véhicule. 10 Le dispositif est plus particulièrement destiné à être mis en oeuvre en fonction du mode de station dans lequel le véhicule se trouve, en station de parking ou en station de roulage. L'organisation du dispositif permet alternativement en mode parking d'optimiser la préventilation de l'habitacle, et en mode roulage d'optimiser la ventilation de l'habitacle et/ou de réaliser un traitement thermique de l'air 15 prélevé à l'intérieur de l'habitacle. L'optimisation de la préventilation et/ou de la ventilation tend à maximiser le débit de renouvellement d'air de l'habitacle et est obtenue en limitant les pertes de charges aérauliques, l'air étant prélevé de l'habitacle et/ou de l'extérieur pour être refoulé vers l'intérieur et/ou vers l'extérieur de l'habitacle de manière à ne pas passer ou passer partiellement à travers l'unité 20 thermoélectrique susceptible de constituer un obstacle à la libre circulation du flux d'air. Selon le mode de réalisation envisagé, l'optimisation du renouvellement d'air de l'habitacle est, soit amélioré du fait qu'une partie du flux d'air circule dans le canal d'évacuation d'air, soit maximum lorsque tout le flux d'air circule uniquement dans le canal d'évacuation d'air. Le traitement thermique de l'air en 25 provenance de l'habitacle est réalisé au moins partiellement, sinon complètement, selon les besoins ponctuels requis par le ou les passagers. Plus particulièrement selon un mode de fonctionnement du dispositif en préventilation et/ou en ventilation de l'habitacle, l'air est susceptible d'être prélevé 30 depuis l'intérieur et/ou l'extérieur de l'habitacle pour circuler à l'intérieur du canal d'évacuation d'air et être refoulé sans avoir été aucunement en contact avec l'unité thermoélectrique. Une telle circulation de l'air à l'intérieur du boîtier est 2903345 6 avantageusement réalisée en limitant les pertes de charge aérauliques et les nuisances sonores, l'air circulant librement à travers le canal d'évacuation d'air exempt d'organe susceptible de gêner le passage du flux d'air. Selon le mode de réalisation du dispositif, la préventilation s'effectue par soit un prélèvement de l'air 5 de l'habitacle refoulé vers l'extérieur de l'habitacle, soit un prélèvement de l'air de l'habitacle refoulé vers l'intérieur de l'habitacle, soit un prélèvement de l'air extérieur refoulé vers l'intérieur de l'habitacle. Par exemple, l'air en provenance de l'intérieur de l'habitacle est refoulé vers l'extérieur de l'habitacle, en vue du rafraîchissement de l'habitacle en station de parking, ou encore l'air en 10 provenance de l'habitacle d'être refoulé vers l'intérieur de l'habitacle, en vue de sa préventilation en mode parking et/ou de sa ventilation en mode roulage par recyclage de l'air de l'habitacle. Ces opérations visent à éviter la stratification de l'air de l'habitacle lors du mode parking ou en vue d'une ventilation pour le confort des passagers en mode de roulage du véhicule, un tel recyclage en mode roulage 15 intervenant de préférence en complément du fonctionnement d'une installation principale de ventilation, de chauffage et/ou de climatisation équipant le véhicule. L'air est aussi susceptible d'être prélevé depuis l'extérieur et d'être refoulé vers l'intérieur de l'habitacle, par exemple lors d'une préventilation en mode parking du véhicule pour une diminution de la température de l'air de l'habitacle, et/ou lors 20 d'une ventilation en mode de roulage pour le confort du ou des passagers. Plus particulièrement encore selon un autre mode de fonctionnement du dispositif, l'air est susceptible d'être prélevé depuis l'intérieur et/ou l'extérieur de l'habitacle, que se soit en station de parking ou en mode de roulage du véhicule, pour être 25 traité thermiquement à partir de son passage à travers le canal de traitement thermique. Par exemple, un tel traitement thermique est susceptible d'intervenir en station de parking pour refroidir l'habitacle en cas d'ensoleillement, ou encore en mode de roulage du véhicule pour réchauffer et/ou inversement refroidir l'air de l'habitacle en complément d'une installation principale de ventilation, de chauffage 30 et/ou de climatisation équipant le véhicule. 2903345 7 Le canal de traitement thermique s'étendant avantageusement en adjacence du canal d'évacuation d'air il est possible de mettre en commun le pulseur et les modalités d'admission et/ou d'évacuation du flux d'air pour simplifier la structure du boîtier et limiter son encombrement, et pour limiter les coûts d'obtention du 5 dispositif. Il ressort de ces dispositions qu'à partir d'un dispositif peu encombrant, de structure simple et peu coûteuse, celui-ci peu être utilisé tant pour une préventilation optimisée de l'habitacle en station de parking du véhicule que pour 10 améliorer le confort des passagers en mode de roulage du véhicule, par une ventilation optimisée et/ou un traitement thermique de l'air prélevé de l'habitacle, un tel traitement thermique pouvant intervenir sélectivement en tout ou partie du volume d'air globalement prélevé. On entend par traitement thermique partiel du volume d'air globalement prélevé, le traitement thermique de la fraction du flux 15 d'air traversant le canal de traitement thermique, l'autre fraction du flux d'air n'étant pas traitée thermiquement puisqu'elle traverse le canal d'évacuation d'air. Un tel traitement thermique partiel de ce volume d'air est obtenu en limitant les pertes de charge aéraulique, puisque seule la fraction d'air à traiter est acheminée à travers l'unité thermoélectrique. L'amélioration du confort du ou des passagers 20 intervient indépendamment pour une zone spécifique de l'habitacle à laquelle le dispositif est affecté, et/ou en en complément du fonctionnement d'une installation principale de ventilation, de chauffage et/ou de climatisation équipant le véhicule. Le dispositif est alimenté en énergie lors de son fonctionnement en station de parking par des moyens secondaires de type photovoltaïques et/ou par la source 25 principale d'énergie électrique du véhicule. Une telle alimentation électrique à partir d'une source secondaire est avantageusement relayée par la source principale d'énergie du véhicule en mode de roulage de ce dernier. En outre, les variations thermiques du flux d'air admis à l'intérieur du boîtier interviennent rapidement et selon des écarts pouvant être réduits en associant un mélange d'air 30 en provenance de l'un et l'autre des canaux d'évacuation d'air et de traitement thermique. 2903345 8 Selon un agencement particulier du boîtier, l'un quelconque du canal d'évacuation d'air et du canal de traitement thermique peut disposé à l'intérieur d'un conduit formant l'autre canal. 5 L'adjacence des canaux d'évacuation d'air et de traitement thermique l'un par rapport à l'autre est à considérer au regard de l'une quelconque au moins des dimensions du boîtier. Une telle adjacence est susceptible d'être partielle, et les différents canaux sont susceptibles d'être renvoyés suivant des directions concourantes. Par exemple, le canal d'évacuation d'air et le canal de traitement 10 thermique sont placés en superposition l'un par rapport à l'autre par rapport à l'épaisseur du boîtier, c'est-à-dire par rapport à sa dimension en hauteur au regard de la hauteur de l'habitacle. Par exemple encore, le canal d'évacuation d'air et le canal de traitement thermique s'étendent parallèlement suivant la longueur et/ou la largeur du boîtier, en étant disposés au moins partiellement côte 15 à côte. Selon l'agencement des canaux d'évacuation d'air et de traitement thermique l'un par rapport à l'autre, l'emplacement sur le boîtier et/ou l'orientation de la ou des bouches d'admission d'air et l'emplacement sur le boîtier et/ou l'orientation de la ou des bouches d'évacuation d'air sont adaptés pour être mises en relation avec le canal auxquelles elles sont affectées. De même le cas échéant 20 pour les différents organes de répartition d'air que comporte le boîtier. Le boîtier est muni d'un organe principal de répartition d'air du flux d'air admis à l'intérieur du boîtier entre le canal d'évacuation d'air et le canal de traitement thermique. Une telle répartition d'air est susceptible d'être en tout ou rien ou 25 progressive, l'organe principal de répartition d'air étant par exemple constitué d'un volet papillon, d'un volet à clapet, d'un volet tambour ou organe de répartition d'un flux d'air analogue. Cet organe principal de répartition d'air est disposé en amont de l'un au moins du canal d'évacuation d'air et du canal de traitement thermique, pour orienter un flux d'air admis vers l'un et/ou l'autre de ces canaux, en vue de 30 sa simple évacuation hors du boîtier et/ou en vue de son traitement thermique préalable à une telle évacuation. On comprendra par amont et/ou aval une position déterminée au regard du sens général d'écoulement du flux d'air à 2903345 9 l'intérieur du boîtier entre la bouche d'admission d'air et la bouche d'évacuation d'air. Il en ressort qu'à partir d'une manoeuvre de l'organe de répartition d'air, le dispositif achemine l'air de manière à obtenir une préventilation en station de parking du véhicule, avec éventuellement un traitement thermique de ce flux, 5 et/ou une ventilation de habitacle en station de roulage du véhicule, avec éventuellement un traitement thermique du flux. Le dispositif permet simplement de préventiler l'habitacle ou à le traiter thermiquement, en réduisant les pertes de charge aéraulique et en limitant son encombrement. 10 Selon diverses modalités d'organisation de l'organe principal de répartition d'air, celui-ci est par exemple disposé en amont du canal d'évacuation d'air et du canal de traitement thermique, ou encore est par exemple disposé à l'intérieur de l'un quelconque au moins du canal d'évacuation d'air et du canal de traitement thermique, voire tel que décrit plus loin à l'intérieur de l'un quelconque au moins 15 de canaux élémentaires subdivisant le canal de traitement thermique, ou encore est par exemple subdivisé en au moins deux organes principaux élémentaires de répartition d'air respectivement disposés à l'intérieur de l'un et de l'autre du canal d'évacuation d'air et du canal de traitement thermique, voire tel que décrit plus loin à l'intérieur de l'un quelconque au moins de canaux élémentaires subdivisant le 20 canal de traitement thermique. Selon une forme préférée de réalisation, le canal de traitement thermique est subdivisé en un premier et un second canaux élémentaires en relation respectivement avec l'une et l'autre des faces de l'unité thermoélectrique. Pour 25 traiter thermiquement l'air admis à l'intérieur du boîtier, celui-ci est acheminé à travers l'un des canaux élémentaires. Le traitement thermique visant à chauffer ou inversement refroidir l'air est par exemple obtenu à partir d'une inversion correspondante de la polarité de la cellule PELTIER de l'unité thermoélectrique, et/ou à partir de la sélection du canal élémentaire vers lequel est dirigé le flux d'air 30 admis à l'intérieur du boîtier. 2903345 10 De telles modalités de circulation du flux d'air à traiter offre une large possibilité de variation de température associée à un choix de direction de refoulement de l'air hors du boîtier vers l'intérieur et/ou l'extérieur de l'habitacle, sans pour autant que l'organisation de la structure du boîtier s'en trouve considérablement complexifiée. 5 Une chambre d'admission d'air et/ou une chambre d'évacuation d'air sont de préférence disposées respectivement en amont et en aval de l'ensemble des canaux. Cet ensemble de canaux comprend plus particulièrement le canal d'évacuation d'air, le canal de traitement thermique et les deux canaux 10 élémentaires. Le pulseur est préférentiellement placé dans la chambre d'admission d'air mais est néanmoins susceptible d'être en pluralité et/ou d'être placé indifféremment dans la chambre d'admission d'air et/ou dans la chambre d'évacuation d'air, selon 15 l'organisation des différents canaux envisagés à l'intérieur du boîtier. Plus particulièrement, le boîtier comporte deux bouches d'évacuation d'air dont une bouche d'évacuation d'air intérieure pour l'évacuation du flux d'air vers l'intérieur de l'habitacle et une bouche d'évacuation d'air extérieure pour 20 l'évacuation du flux d'air vers l'extérieur de l'habitacle. Selon diverses variantes de réalisation, le boîtier comporte une bouche d'admission d'air intérieure pour l'admission d'air en provenance de l'intérieur de l'habitacle, et/ou une bouche d'admission d'air extérieure pour l'admission d'air en 25 provenance de l'extérieur de l'habitacle. Le cas échéant, le boîtier est muni d'un organe sélectif de répartition de l'admission d'air entre la bouche d'admission d'air extérieure et la bouche d'admission d'air intérieure. Le boîtier loge cet organe sélectif de répartition d'air 30 de manière à évacuer l'air admis à l'intérieur du boîtier, que ce soit un flux d'air circulant à travers le canal d'évacuation d'air et/ou un flux d'air circulant à 2903345 11 l'intérieur du canal de traitement thermique, vers l'une et/ou l'autre de la bouche d'admission d'air extérieure et de la bouche d'admission d'air intérieure. Selon une première variante de réalisation, le canal d'évacuation d'air est en 5 communication avec la bouche d'évacuation d'air extérieure et le premier canal élémentaire est en communication avec la bouche d'évacuation d'air extérieure tandis que le second canal élémentaire est en communication avec la bouche d'évacuation d'air intérieure au moyen d'une seconde paroi ou d'un organe secondaire de répartition d'air ou d'une troisième paroi et une cellule à effet 10 PELTIER. Selon une deuxième variante de réalisation, le canal d'évacuation d'air est en communication avec la bouche d'évacuation d'air intérieure et le premier canal élémentaire est en communication avec la bouche d'évacuation d'air intérieure 15 tandis que le second canal élémentaire est en communication avec la bouche d'évacuation d'air extérieure au moyen d'une seconde paroi ou d'un organe secondaire de répartition d'air ou d'une troisième paroi et une cellule à effet PELTIER. 20 La chambre d'évacuation d'air est de préférence en relation avec le canal d'évacuation d'air et le premier canal élémentaire. Plus précisément la chambre d'évacuation d'air permet de recevoir de l'air en provenance du canal d'évacuation d'air et/ou de l'un des canaux élémentaires du 25 canal de traitement thermique. L'air en provenance de ce canal élémentaire est respectivement selon les deux variantes susvisées, soit de l'air à une température non souhaitée que l'on cherche à évacuer hors de l'habitacle, soit de l'air à une température souhaitée que l'on cherche à introduire à l'intérieur de l'habitacle. 30 Le boîtier est accessoirement muni d'un organe secondaire de répartition d'air du flux d'air en provenance de l'un quelconque des premier et second canaux élémentaires entre l'une et l'autre des bouches d'évacuation d'air. Plus 2903345 12 précisément, l'air traversant les deux canaux élémentaires est réparti en deux flux d'air élémentaires. A partir de la manoeuvre de l'organe secondaire de répartition d'air, ces flux d'air élémentaires sont soit respectivement évacués vers l'une et/ou l'autre des bouches d'évacuation d'air, le traitement thermique de l'un des flux 5 d'air élémentaires étant exploité pour améliorer le confort de l'habitacle, soit conjointement évacués vers l'une et/ou l'autre des bouches d'évacuation d'air. Ces dispositions visent à optimiser le débit d'air traversant le boîtier, pour son évacuation hors de l'habitacle, en évitant une éventuelle fuite d'air à travers le canal élémentaire en communication avec la bouche d'admission d'air intérieure. 10 Le canal élémentaire véhiculant le flux d'air réparti entre l'une et l'autre des bouches d'évacuation d'air est plus particulièrement en relation avec la chambre d'évacuation d'air par l'intermédiaire de l'organe secondaire de répartition d'air. 15 Le boîtier est muni d'un organe secondaire de répartition d'air permettant de diriger le flux d'air en provenance de l'un quelconque des premier et second canaux élémentaires vers l'une et/ou l'autre des bouches d'évacuation d'air. Le pulseur et l'unité thermoélectrique sont avantageusement alimentés en énergie 20 à partir d'une source autonome d'énergie comprenant des cellules photovoltaïques, et/ou à partir de la source d'énergie principale du véhicule. La mise en oeuvre du pulseur et/ou de l'unité thermoélectrique et/ou des organes de répartition d'air est placée sous la dépendance de deuxièmes moyens de 25 commande. Ces deuxièmes moyens de commande comprennent l'un quelconque au moins de moyens de commande de l'inversion de la polarisation de l'unité thermoélectrique et/ou de moyens de contrôle de la température de l'unité thermoélectrique. 30 De préférence, les deuxièmes moyens de commande comprennent en outre des moyens de contrôle du débit d'air du pulseur. 2903345 13 L'un quelconque au moins des moyens de commande de l'inversion de la polarisation de l'unité thermoélectrique, des moyens de contrôle de la température de l'unité thermoélectrique et/ou des moyens de contrôle du débit d'air du pulseur sont portés par au moins une carte électronique placée à l'intérieur de l'un 5 quelconque du canal d'évacuation d'air ou du canal de traitement thermique, dans une zone aval ou amont de sa subdivision en canaux élémentaires, voire à l'intérieur de l'un quelconque des canaux élémentaires. Le boîtier est avantageusement porteur d'un tableau de commande à l'une de ses 10 faces externes, pour permettre au passager de commander sa mise en oeuvre et la température de l'air ventilé souhaitée et les modalités de passage du flux d'air à l'intérieur du boîtier. Tel que visé plus haut, l'unité thermoélectrique comporte avantageusement au 15 moins un organe de dissipation d'énergie thermique affecté à l'une au moins des faces de la cellule PELTIER. Le dispositif loge de préférence au moins un organe de filtration et/ou d'épuration de l'air admis, tel qu'un filtre à particules ou analogue. Un tel organe de filtration 20 est susceptible d'être placé dans la chambre d'admission d'air en amont, voire en aval du pulseur, ou encore et de préférence dans la zone de chacune des bouches d'admission d'air. Le dispositif est avantageusement agencé en plafonnier d'un véhicule automobile, 25 en étant par exemple muni de moyens de montage sur un toit ouvrant du véhicule. Le cas échéant, les cellules photovoltaïques de la source autonome d'énergie sont installées à la surface extérieure d'un tel toit. Ces dispositions visent à dispenser le dispositif de la présence de conduits notoirementencombrants à l'intérieur de l'habitacle, pour acheminer l'air en provenance de 30 l'extérieur de l'habitacle vers l'une quelconque au moins des bouches d'admission d'air et/ou d'évacuation d'air. Cependant le dispositif est susceptible d'être 2903345 14 implanté en un quelconque lieu de l'habitacle, en étant le cas échéant équipé de tels conduits. Description des figures. 5 La présente invention sera mieux comprise à la lecture de la description qui va en être faite de diverses variantes de réalisation, en relation avec les figures des planches annexées, dans lesquelles : Les fig.1 et fig.2 sont des schémas illustrant un dispositif de l'invention selon une 10 première variante de réalisation, suivant deux modes respectifs de fonctionnement. Les fig.3 et fig.4 sont des schémas illustrant un dispositif de l'invention selon une deuxième variante de réalisation, suivant deux modes respectifs de fonctionnement. 15 Les fig. 5 et fig.6 sont des schémas illustrant un dispositif de l'invention selon une troisième variante de réalisation, suivant deux modes respectifs de fonctionnement. Les fig.7 et fig.9 sont des schémas illustrant un dispositif de l'invention selon une quatrième variante de réalisation, suivant deux modes respectifs de 20 fonctionnement. Les fig.10 et fig.11 sont des schémas illustrant un dispositif de l'invention selon une cinquième variante de réalisation, suivant deux modes respectifs de fonctionnement. Les fig.12 et fig.13 sont des schémas illustrant un dispositif de l'invention selon 25 une sixième variante de réalisation, suivant deux modes respectifs de fonctionnement. La fig.14 est un schéma illustrant les moyens de commande du fonctionnement d'un dispositif de l'invention. La fig.15 est un schéma illustrant une vue du dessus du dispositif de l'invention 30 comprenant deux boîtiers symétriques l'un par rapport à l'autre. La fig.16 est un schéma illustrant un des deux boîtiers du dispositif selon la fig. 15. 2903345 15 Sur les figures, un dispositif de préventilation, de ventilation, de chauffage et/ou de climatisation est destiné à améliorer le confort de l'habitacle d'un véhicule. Selon divers modes de fonctionnement, l'air traversant le dispositif est évacué 5 d'une part avec ou sans un traitement thermique, et d'autre part vers l'intérieur ou l'extérieur de l'habitacle. Ce dispositif comprend principalement un boîtier 1 à l'intérieur duquel de l'air est prélevé au moyen d'un pulseur 2. Ce boîtier est formé d'une paroi 1 a. Cette paroi 10 1 a délimite tout le volume intérieur du boîtier 1. Ce pulseur 2 est logé à l'intérieur d'une chambre d'admission d'air 3 que comporte le boîtier 1. Cette chambre d'admission d'air 3 est en communication avec une bouche d'admission d'air intérieure 4 pour l'admission d'air en provenance de l'intérieur de l'habitacle, voire aussi avec une bouche d'admission d'air extérieure 5 pour l'admission d'air en 15 provenance de l'extérieur de l'habitacle, tel que représenté sur la variante de réalisation illustrée sur les fig.12 et fig.13. Ces bouches d'admission d'air 4,5 sont préférentiellement chacune munies d'un organe de filtration de l'air, tel qu'un filtre à particules ou analogue. Le boîtier 1 comporte divers canaux en communication avec la chambre d'admission d'air 3 à travers lesquels l'air admis circule 20 respectivement et/ou conjointement, en vue de son traitement thermique ou de sa simple évacuation. L'un de ces canaux est un premier canal d'évacuation d'air 6 à travers lequel circule librement l'air admis. Un autre canal est un deuxième canal de traitement thermique 7 de l'air admis, qui loge intégralement une unité thermoélectrique 8 à effet PELTIER. Une telle unité thermoélectrique 8 comprend 25 une cellule à effet PELTIER, munie sur ses faces d'un organe de dissipation thermique. Bien entendu, dans un autre mode de réalisation, le boîtier 1 pourra comprendre une pluralité d'unité thermoélectrique 8 et l'unité thermoélectrique pourra comprendre une pluralité de cellules à effet PELTIER. Le canal de traitement thermique 7 est lui-même subdivisé en un premier canal élémentaire 9 30 et en un second canal élémentaire 10. Chacun de ces canaux élémentaires 9,10 est en relation avec une face respective de l'unité thermoélectrique 8, de sorte que l'air qu'ils véhiculent respectivement est traité thermiquement en vue de son 2903345 16 réchauffement et/ou inversement de son refroidissement en fonction de la polarité appliquée à l'unité thermoélectrique 8. Une chambre d'évacuation d'air 11 est ménagée en aval de l'ensemble des canaux. Cette chambre d'évacuation d'air 11 est en communication avec deux bouches d'évacuation d'air, dont une bouche 5 d'évacuation d'air intérieure 12 pour l'évacuation de l'air admis vers l'intérieur de l'habitacle et une bouche d'évacuation d'air extérieure 13 pour l'évacuation de l'air admis vers l'extérieur de l'habitacle. La bouche d'évacuation d'air intérieure 12 est préférentiellement munie d'un aérateur non représenté permettant de diriger sélectivement le flux d'air évacué. La bouche d'évacuation d'air extérieure 13 10 permet une évacuation de l'air hors de l'habitacle entre le plafond et le toit du véhicule. La chambre d'évacuation d'air 11 est aussi en communication avec le canal d'évacuation d'air 6, et le premier canal élémentaire 9. Un organe principal de répartition d'air 14 est placé à l'intérieur du boîtier 1 pour une admission sélective de l'air en provenance de la chambre d'admission d'air 3 vers le canal 15 d'évacuation d'air 6 et/ou le canal de traitement thermique 7, et plus particulièrement l'un quelconque aux moins des canaux élémentaires 9,10 composant ce dernier. Cet organe principal de répartition d'air 14 du flux d'air admis à l'intérieur du boîtier 1 se localise entre le canal d'évacuation d'air 6 et le canal de traitement thermique 7. 20 Le canal d'évacuation 6 et le canal de traitement thermique 7 s'étendent entre la bouche d'admission d'air 4 et la bouche d'évacuation d'air intérieure 12. Ces deux canaux 6, 7 sont adjacents l'un de l'autre, et plus précisément sont l'un sur l'autre dans le sens de la hauteur du boîtier 1. Le canal d'évacuation d'air 6 et le canal 25 de traitement thermique 7 sont formés par une première paroi 100 et par la paroi 1 a du boîtier 1. Cette première paroi 100 est commune aux deux canaux 6, 7 et s'étend entre la bouche d'admission d'air 4 et la bouche d'évacuation d'air 12. Cette première paroi 100 comporte une extrémité libre amont 100a délimitant une portion de périphérie des entrées respectives 6a, 7a du canal d'évacuation 6 et du 30 canal de traitement thermique 7 et comporte une extrémité libre aval 100b délimitant une portion de périphérie des sorties respectives 6b, 7b du canal d'évacuation 6 et du canal de traitement thermique 7. 2903345 17 De même, les canaux élémentaires 9, 10 sont formés par une seconde paroi 200, disposée à l'intérieur du canal de traitement thermique 7. Cette seconde paroi 200 est commune aux deux canaux élémentaires 9, 10 et s'étend entre la bouche 5 d'admission d'air 4 et la paroi 1 a du boîtier 1. Cette seconde paroi 200 comporte une extrémité libre amont 200a et son extrémité aval 200b est en contact avec la paroi 1 a du boîtier de sorte que le flux d'air traversant le second canal élémentaire 10 ne peut pas atteindre la chambre d'évacuation d'air 11. La seconde paroi 200 s'étend donc de l'entrée 7a du canal de traitement thermique 7 à au-delà de la 10 sortie 7b du canal de traitement thermique 7, c'est-à-dire jusqu'à la paroi 1 a du boîtier 1. Ainsi, le premier canal élémentaire 9 est délimité par la première paroi 100, par la seconde paroi 200 et par la paroi 1 a du boîtier 1. Le second canal élémentaire 10 est, quant à lui, délimité par la seconde paroi 200 et par la paroi la du boîtier 1. 15 Sur les figures 1 à 13, Le pulseur 2 et l'unité thermoélectrique 8 sont alimentés en énergie à partir d'une source autonome du type à cellules photovoltaïques 20 non représentée ou à partir de la source principale d'alimentation 21 non représentée du véhicule. 20 Sur les fig.1 à fig.9, La chambre d'évacuation d'air 11 est en communication avec la bouche d'évacuation d'air extérieure 13, et le second canal élémentaire 10 est en communication avec la bouche d'évacuation d'air intérieure 12. Sur les fig.10 à fig.13, La chambre d'évacuation d'air 11 est en communication avec la bouche 25 d'évacuation d'air intérieure 12, et le second canal élémentaire 10 est en communication avec la bouche d'évacuation d'air extérieure 13. Selon un mode de fonctionnement, le dispositif est en mode de préventilation de l'habitacle, visant à préventiler celui-ci lorsque le véhicule est en station de 30 parking. Le renouvellement de l'air à l'intérieur de l'habitacle est obtenu à partir des zones de fuite de ce dernier. Selon un autre mode de fonctionnement, le dispositif est en mode de ventilation de l'habitacle lorsque le véhicule est en mode 2903345 18 de roulage. Selon un autre mode de fonctionnement, le dispositif est en mode de traitement thermique de l'air de l'habitacle, éventuellement en mode parking mais préférentiellement en mode roulage du véhicule. L'air circule à travers le canal de traitement thermique 7, et plus particulièrement à travers chacun des canaux 5 élémentaires 9,10 de manière à être en contact avec une face respective de l'unité thermoélectrique 8. Selon la polarité appliquée à l'unité thermoélectrique 8, le dispositif permet un réchauffement et/ou inversement un refroidissement de l'air de l'habitacle à partir d'un traitement thermique de l'air circulant à travers le second canal élémentaire 10. Le passage de l'air à travers le premier canal 10 élémentaire 9 permet d'évacuer les calories indésirables. Sur les fig.1 et fig.2, l'organe principal de répartition d'air 14 est placé en amont du canal d'évacuation d'air 6 et du canal de traitement thermique 7. L'organe principal de répartition d'air 14 est placé dans le boîtier 1 de sorte que son axe de 15 rotation A est parallèle à l'extrémité libre amont 100a de la première paroi 100. L'axe de rotation A de l'organe de répartition d'air 14 se situe entre le canal d'évacuation d'air 6 et le canal de traitement thermique 7 et passe par l'extrémité libre amont 100a de la première paroi 100. Cet axe de rotation A est contenu dans un plan P1 contenant la première paroi 100. 20 Sur la fig.1, le dispositif fonctionne en mode de préventilation. L'organe principal de ventilation 14 est manoeuvré de manière à obturer le canal de traitement thermique 7 et à laisser un passage libre de l'air admis à l'intérieur du boîtier 1 à travers le canal d'évacuation d'air 6. Plus particulièrement, l'air est admis à 25 l'intérieur de la chambre d'admission d'air 3 à travers la bouche d'admission d'air intérieure 4, puis chemine à travers le canal d'évacuation d'air 6 pour son refoulement hors de l'habitacle du véhicule à travers la bouche d'évacuation d'air extérieure 13. Si nécessaire, l'organe principal de ventilation 14 peut également empêcher un éventuel retour de l'air dans l'habitacle en rendant étanche les 30 conduits 9 et 10 l'un vis-à-vis de l'autre. Cette étanchéité est obtenue par le fait que l'organe principal de ventilation 14 est en contact direct avec l'extrémité libre 2903345 19 amont 200a de la seconde paroi 200 lorsque l'organe principal de répartition de ventilation 14 obture le canal de traitement thermique 7. Sur la fig.2, le dispositif fonctionne en mode de traitement thermique de l'air de 5 l'habitacle et/ou en mode de ventilation de ce dernier. L'organe principal de ventilation 14 est manoeuvré de manière à obturer le canal d'évacuation d'air 6 et à laisser un passage de l'air admis à l'intérieur du boîtier 1 à travers le canal de traitement thermique 7. L'air est thermiquement traité ou non, selon la mise sous tension de l'unité thermoélectrique 8. L'air circule à travers le second canal 10 élémentaire 10 pour être refoulé à travers la bouche d'évacuation d'air intérieure 12, tandis que de l'air circulant à travers le canal élémentaire 9 est refoulé à travers la bouche d'évacuation d'air extérieure 13, en étant le cas échéant thermiquement traité pour évacuer les calories indésirables. 15 Sur les fig.3 et fig.4, l'organe principal de répartition d'air 14 est composé de deux organes principaux élémentaires de répartition d'air, premier 15 et deuxième 16, qui sont respectivement disposés à l'intérieur de l'un et de l'autre du canal d'évacuation d'air 6 et du canal de traitement thermique 7. Le deuxième organe de répartition d'air élémentaire 16 affecté au canal de traitement thermique 7 est 20 plus particulièrement disposé dans une zone de celui- ci située en amont de sa subdivision en deux canaux élémentaires 9,10. Le deuxième organe de répartition d'air élémentaire 16 possède un axe de rotation B parallèle à l'extrémité libre amont 200a de la seconde paroi 200. Cet axe de rotation B est contenu dans un plan P2 contenant la seconde paroi 200. 25 Sur la fig.3, le dispositif fonctionne en mode de préventilation à la manière de la variante de réalisation représentée sur la fig.1. Le premier organe principal élémentaire de répartition d'air 15 There is the problem of pre-ventilation of the passenger compartment. It will be understood by pre-ventilation the operation of ventilating the passenger compartment when the vehicle is in the parking station. More particularly, in the outside environment of the vehicle in the parking station, the climatic conditions induce in the passenger compartment low or inversely high temperatures according to the seasons, which are a source of discomfort for passengers when they enter the vehicle interior. . Preventilation provides passengers with comfort when they enter the vehicle, independently of a ventilation that is likely to be operated to ventilate the passenger compartment when the vehicle is in driving mode, that is to say when the vehicle is moving. It has been proposed to equip the passenger compartment of the vehicle with at least one autonomous ventilation, heating and / or air conditioning device to enable the cabin to be pre-ventilated in an outdoor parking situation during the hot season. More particularly, this device uses a housing housing a blower and at least one thermoelectric unit PELTIER effect, which are advantageously supplied with energy from photovoltaic cells arranged outside the passenger compartment, on the roof of the vehicle . The implementation of the blower and the thermoelectric unit is placed under the control of control means, comprising a temperature sensor placed inside the passenger compartment and / or a control button. To compensate for a lack of external light that can render the photovoltaic cells inoperative, the blower and the thermoelectric unit are furthermore supplied with energy from a rechargeable source from the photovoltaic cells, a switch making it possible to select in case of need the energy source adapted to implement. Such devices are described by DE4207283 (WEBASTO KAROSSERIESYSTEME) for example. The advantage of such devices lies in their simple structure, compact and inexpensive. However, their organization is adapted only to the pre-ventilation 20 of the passenger compartment in sunny outdoor environment, and is not suitable for ventilation and / or heat treatment of the air present in the cabin, which are effective when outdoor lighting is low, in the cold season and / or covered car parking station. Finally, it results from the limited operating conditions of these devices which are unsatisfactory with regard to optimized profitability of their installation inside the passenger compartment. A general difficulty to overcome for the arrangement of such autonomous ventilation, heating and / or air conditioning devices lies in their desired smallest footprint, in obtaining them at a lower cost and in their ability to be easily installed. any place in the cabin. In addition, the arrangement of such devices must make it possible to optimize the effects provided by the blower and the thermoelectric unit for a given capacity of these devices. It is therefore sought to reduce the aeraulic and thermal pressure losses by correspondingly adapting the flow of the flow of air inside the housing. Such an adaptation must nevertheless not be made at the expense of optimizing the various possible operating modes of the device for cooling or heating the cabin according to the climatic conditions, nor the capacity of the device to heat and / or effectively cool the cabin. Object of the invention The object of the present invention is to provide a device for pre-ventilation, ventilation, heating and / or air conditioning of the passenger compartment of a vehicle, which is capable of allowing a thermal treatment of the air of the vehicle. cabin without being a complex and expensive structure, and which is of reduced size. It is more particularly the object of the present invention to provide such a device using a pulser and thermoelectric units with PELTIER effect capable of being supplied with energy from photovoltaic cells, which can be used both for the pre-ventilation of the cockpit whatever the climatic conditions, that to accompany the air treatment of the passenger compartment operated by a main installation of ventilation, heating and / or air conditioning when the vehicle is in driving mode. The device of the present invention is a device for pre-ventilation, ventilation, heating and / or air conditioning of the passenger compartment of a vehicle or the like. This device comprises at least one housing housing at least one blower and at least one thermoelectric unit PELTIER effect. Such a thermoelectric unit comprises at least one PELTIER type cell advantageously equipped with at least one of its faces with a heat dissipation element. The blower and the thermoelectric unit are supplied with energy from a source of electrical energy equipping the vehicle. The housing comprises at least one air intake port coming from the inside and / or coming from the outside of the passenger compartment, and at least 2903345 4 minus an air outlet mouth inwards and / or towards the outside of the passenger compartment. Such a device is a device annexed to a main ventilation, heating and / or air conditioning installation equipping the vehicle. More particularly, such a device is intended to operate independently of the operation of such a main installation, to provide specific comfort. According to the present invention, such a device is mainly recognizable in that the housing comprises at least a first air evacuation channel which extends between the air intake mouth and the exhaust port of air, and at least a second channel for the heat treatment of air which fully houses the thermoelectric unit and which extends between the air intake mouth and the air outlet mouth. According to the invention, the housing is subdivided into at least two channels. A first channel is intended to convey a flow of air from at least one air intake mouth to at least one air outlet mouth out of the housing, without this air flow is thermally treated. In this respect, this first channel is basically free of the thermoelectric unit. A second channel is intended to convey a flow of air from at least one air intake mouth to at least one air outlet mouth out of the housing, this air flow being intended to be thermally treated by the thermoelectric unit. The latter is basically only and in its entirety housed inside the second channel. Such a thermoelectric unit comprises two heat exchange zones which are both contained in the second channel, and is in this respect integrally and exclusively contained in the second channel. As referred to later, this second channel can be subdivided into two elementary channels, strictly separate from the first channel reserved for the simple evacuation of air from the housing. Each of these elementary channels is assigned to a said respective zone of the thermoelectric unit, to exploit the source of frigories and conversely of calories. At least one air intake port and at least one exhaust air port are likely to be common for the first channel and for the second channel. These arrangements are such that, from the same device of simple structure and compactness, the passenger compartment of the vehicle can be preventilated in the parking station by advantageously limiting the aeraulic pressure drops to increase the air flow without increase the electrical consumption of the blower, either be ventilated and / or heat-treated in vehicle running mode. The device is more particularly intended to be implemented depending on the station mode in which the vehicle is in the parking station or taxi station. The organization of the device allows alternatively in parking mode to optimize the pre-ventilation of the passenger compartment, and in taxi mode to optimize the ventilation of the passenger compartment and / or to perform a heat treatment of the air 15 taken from the passenger compartment. interior of the cockpit. The optimization of pre-ventilation and / or ventilation tends to maximize the air exchange rate of the passenger compartment and is obtained by limiting the air-pressure losses, the air being taken from the passenger compartment and / or from the outside to be pushed inwardly and / or outwardly of the passenger compartment so as not to pass or pass partially through the thermoelectric unit 20 may constitute an obstacle to the free flow of the flow of air. According to the embodiment envisaged, the optimization of the renewal of air of the passenger compartment is either improved because a part of the air flow circulates in the exhaust duct, or maximum when all Airflow circulates only in the exhaust air channel. The heat treatment of the air from the passenger compartment is carried out at least partially, if not completely, according to the specific needs required by the passenger or passengers. More particularly according to a mode of operation of the device in pre-ventilation and / or ventilation of the passenger compartment, the air is likely to be taken from inside and / or outside of the passenger compartment to circulate to the passenger compartment. inside the air exhaust duct and be discharged without having been in any way in contact with the thermoelectric unit. Such a flow of air inside the housing is advantageously achieved by limiting the aeraulic pressure losses and noise pollution, the air flowing freely through the organ-free air outlet duct to impede the passage of the air flow. According to the embodiment of the device, the pre-purge is carried out by either a withdrawal of air 5 from the passenger compartment pushed towards the outside of the passenger compartment, or a removal of air from the passenger compartment pushed towards the passenger compartment. interior of the passenger compartment, that is to say a withdrawal of the outside air pushed towards the interior of the cockpit. For example, the air coming from the interior of the passenger compartment is pushed towards the outside of the passenger compartment, with a view to cooling the passenger compartment in the parking station, or the air coming from the passenger compartment. cockpit to be pushed towards the interior of the passenger compartment, with a view to its pre-ventilation in parking mode and / or its ventilation in the taxi mode by recycling the cabin air. These operations are intended to avoid the stratification of the air of the passenger compartment during the parking mode or for a ventilation for the comfort of passengers in the vehicle running mode, such a recycling mode taxiing 15 preferably acting in addition the operation of a main ventilation, heating and / or air conditioning system fitted to the vehicle. The air is also likely to be taken from the outside and to be pushed towards the interior of the passenger compartment, for example during a pre-ventilation in parking mode of the vehicle for a decrease of the air temperature. of the passenger compartment, and / or during a ventilation in taxi mode for the comfort of the passenger or passengers. More particularly still according to another mode of operation of the device, the air is likely to be taken from inside and / or outside the passenger compartment, whether parking station or vehicle running mode to be thermally treated from its passage through the heat treatment channel. For example, such heat treatment is likely to intervene in a parking station to cool the passenger compartment in case of sunshine, or in the vehicle running mode to heat and / or conversely cool the air of the passenger compartment. complement of a main installation of ventilation, heating and / or air conditioning equipping the vehicle. Since the thermal treatment channel advantageously extends adjacent to the air exhaust duct, it is possible to pool the blower and the admission and / or evacuation modes of the air flow to simplify the process. housing structure and limit its size, and to limit the costs of obtaining the device. It emerges from these provisions that from a compact device, of simple and inexpensive structure, it can be used both for optimized pre-ventilation of the passenger compartment parking station of the vehicle to improve comfort passengers in vehicle running mode, by optimized ventilation and / or heat treatment of the air taken from the passenger compartment, such a heat treatment can selectively intervene in all or part of the volume of air generally collected. The term "partial heat treatment" of the volume of air generally taken is understood to mean the heat treatment of the fraction of the air flow passing through the heat treatment channel, the other fraction of the air flow being not treated thermally, since it crosses the air evacuation channel. Such partial heat treatment of this volume of air is obtained by limiting the aeraulic pressure losses, since only the fraction of air to be treated is conveyed through the thermoelectric unit. Improving the comfort of the passenger or passengers 20 operates independently for a specific area of the passenger compartment to which the device is assigned, and / or in addition to the operation of a main ventilation, heating and / or air conditioning equipping the vehicle. The device is supplied with energy during its operation in a parking station by secondary means of photovoltaic type and / or by the main source 25 of electrical energy of the vehicle. Such a power supply from a secondary source is advantageously relayed by the main energy source of the vehicle running mode of the latter. In addition, the thermal variations in the flow of air admitted into the interior of the housing intervene rapidly and in accordance with differences that can be reduced by combining a mixture of air 30 coming from one and the other of the evacuation channels. air and heat treatment. According to a particular arrangement of the housing, any one of the exhaust air channel and the heat treatment channel may be disposed within a conduit forming the other channel. The adjacency of the air exhaust and heat treatment channels with respect to each other is to be considered with regard to at least one of the dimensions of the housing. Such an adjacency is likely to be partial, and the different channels are likely to be returned in concurrent directions. For example, the exhaust air channel and the heat treatment channel are superimposed relative to one another with respect to the thickness of the housing, i.e. its dimension in height with regard to the height of the passenger compartment. For example again, the air exhaust duct and the heat treatment duct extend parallel along the length and / or the width of the casing, being arranged at least partially side by side. According to the arrangement of the air exhaust and heat treatment channels with respect to each other, the location on the housing and / or the orientation of the air intake orifice (s) and the location on the housing and / or the orientation of the exhaust air outlet (s) are adapted to be related to the channel to which they are assigned. Similarly, if applicable, for the various air distribution members that the housing comprises. The housing is provided with a main air distribution member of the air flow admitted inside the housing between the exhaust air channel and the heat treatment channel. Such an air distribution is likely to be all or nothing or progressive, the main air distribution member being for example constituted by a butterfly flap, a flap flap, a drum flap or member for distributing a similar air flow. This main air distribution member is disposed upstream of at least one of the air evacuation channel and the heat treatment channel, to direct a flow of air admitted to the one and / or the Another of these channels, for its simple evacuation out of the housing and / or for heat treatment prior to such evacuation. It will be understood by upstream and / or downstream a determined position with regard to the general direction of flow of air flow to the interior of the housing between the air inlet and the air outlet mouth . It emerges that from a maneuver of the air distribution member, the device conveys the air so as to obtain pre-ventilation parking station of the vehicle, possibly with a heat treatment of this flow, 5 and / or passenger compartment ventilation at the vehicle's taxi station, possibly with heat treatment of the flow. The device simply makes it possible to pre-ventilate the cabin or to treat it thermally, by reducing the aeraulic pressure drops and by limiting its bulk. According to various methods of organization of the main air distribution member, it is for example arranged upstream of the air exhaust duct and the heat treatment channel, or is for example disposed of the interior of at least one of the exhaust air channel and the heat treatment channel, or as further described within any one or more elementary channels subdividing the treatment channel. thermal, or is for example subdivided into at least two main elementary air distribution organs respectively disposed within each of the air evacuation channel and the heat treatment channel, or as further described within any one or more elementary channels subdividing the heat treatment channel. According to a preferred embodiment, the heat treatment channel is subdivided into a first and a second elementary channel in relation respectively to the one and the other of the faces of the thermoelectric unit. To thermally treat the air admitted into the housing, it is routed through one of the elementary channels. The heat treatment for heating or conversely cooling the air is for example obtained from a corresponding inversion of the polarity of the PELTIER cell of the thermoelectric unit, and / or from the selection of the elementary channel to which is directed the air flow 30 admitted inside the housing. Such circulating modes of the air flow to be treated offers a wide possibility of temperature variation associated with a choice of direction of discharge of the air out of the casing towards the inside and / or the outside of the casing. cabin, without the organization of the structure of the housing is considerably complicated. An air intake chamber and / or an air evacuation chamber are preferably disposed respectively upstream and downstream of the set of channels. This set of channels more particularly comprises the air exhaust channel, the heat treatment channel and the two elementary channels. The blower is preferably placed in the air intake chamber but is nevertheless likely to be in plurality and / or to be placed indifferently in the air intake chamber and / or in the exhaust chamber. according to the organization of the various channels envisaged inside the casing. More particularly, the housing has two air exhaust vents including an air outlet for the internal air evacuation to the interior of the passenger compartment and an exhaust air outlet external for the evacuation of the air flow to the outside of the passenger compartment. According to various alternative embodiments, the housing comprises an interior air intake port for the admission of air from the interior of the passenger compartment, and / or an external air intake port for the air intake. intake of air from outside the cabin. Where appropriate, the housing is provided with a selective member for distributing the air intake between the outside air intake and the indoor air inlet. The housing houses this selective air distribution member 30 so as to evacuate the air admitted inside the housing, whether it is a flow of air flowing through the exhaust duct and / or a flow of air flowing inside the heat treatment channel to one and / or the other of the outside air intake and the interior air inlet. According to a first variant embodiment, the air evacuation channel is in communication with the external air evacuation mouth and the first elementary channel is in communication with the external air evacuation mouth while the The second elementary channel is in communication with the interior air outlet via a second wall or a secondary air distribution member or a third wall and a PELTIER effect cell. According to a second variant embodiment, the air evacuation channel is in communication with the internal air evacuation mouth and the first elementary channel is in communication with the internal air evacuation mouth 15 while the second elementary channel is in communication with the external air outlet by means of a second wall or a secondary member of air distribution or a third wall and a PELTIER effect cell. The air evacuation chamber is preferably in relation to the air evacuation channel and the first elementary channel. More precisely, the air evacuation chamber makes it possible to receive air coming from the air evacuation channel and / or from one of the elementary channels of the heat treatment channel. The air coming from this elementary channel is respectively according to the two abovementioned variants, either air at an undesired temperature that one seeks to evacuate out of the passenger compartment, or air at a desired temperature that we try to introduce inside the cockpit. The casing is incidentally provided with a secondary air distribution member of the air flow coming from any one of the first and second elementary channels between the one and the other of the air outlet mouths. . More specifically, the air passing through the two elementary channels is divided into two elementary air streams. From the operation of the secondary air distribution member, these elementary air flows are respectively discharged to one and / or the other of the air outlet vents, the heat treatment of the one of the elementary air streams being operated to improve the comfort of the passenger compartment, either jointly discharged to one and / or the other of the air outlet vents. These provisions are to optimize the flow of air through the housing for its evacuation from the passenger compartment, avoiding any air leakage through the elementary channel in communication with the indoor air intake port. The elementary channel conveying the flow of air distributed between the one and the other of the air evacuation vents is more particularly in relation with the air evacuation chamber via the secondary organ. air distribution. The housing is provided with a secondary air distribution member for directing the flow of air from any one of the first and second elementary channels to one or both of the mouths. exhaust air. The blower and the thermoelectric unit are advantageously supplied with energy from an autonomous source of energy comprising photovoltaic cells, and / or from the main energy source of the vehicle. The implementation of the blower and / or the thermoelectric unit and / or the air distribution members is placed under the control of second control means. These second control means comprise at least one polarization reversal control means of the thermoelectric unit and / or means for controlling the temperature of the thermoelectric unit. Preferably, the second control means further comprise means for controlling the air flow of the blower. At least one of the polarization reversal control means of the thermoelectric unit, the temperature control means of the thermoelectric unit and / or the means for controlling the air flow of the thermoelectric unit. pulsator are carried by at least one electronic card placed inside any one of the air evacuation channel or the heat treatment channel, in a downstream or upstream zone of its subdivision into elementary channels, or even inside any of the elementary channels. The housing is advantageously carrying a control panel at one of its 10 outer faces, to allow the passenger to control its implementation and the desired temperature of the ventilated air and the flow of the air flow inside the case. As referred to above, the thermoelectric unit advantageously comprises at least one thermal energy dissipation member assigned to at least one of the faces of the PELTIER cell. The device preferably houses at least one filtering element and / or purification of the intake air, such as a particulate filter or the like. Such a filter member 20 may be placed in the air inlet chamber upstream or downstream of the blower, or even and preferably in the area of each of the air intake ports. The device is advantageously arranged as a ceiling lamp of a motor vehicle, being for example provided with mounting means on a sunroof of the vehicle. If necessary, the photovoltaic cells of the autonomous source of energy are installed on the outer surface of such a roof. These provisions are intended to dispense the device of the presence of noteciously darkened ducts inside the passenger compartment, for conveying the air coming from outside the passenger compartment to at least one of the at least intake mouths. air and / or exhaust air. However the device is likely to be implanted in any place of the passenger compartment, being possibly equipped with such conduits. Description of the figures. The present invention will be better understood on reading the description which will be made of various embodiments, in connection with the figures of the attached plates, in which: FIGS. 1 and fig. 2 are diagrams illustrating a device of the invention according to a first embodiment variant, according to two respective modes of operation. Figs. 3 and fig. 4 are diagrams illustrating a device of the invention according to a second variant embodiment, according to two respective modes of operation. Figs. 5 and fig. 6 are diagrams illustrating a device of the invention according to a third embodiment, according to two respective modes of operation. Figs. 7 and fig. 9 are diagrams illustrating a device of the invention according to a fourth variant embodiment, according to two respective modes of operation. Figs. 10 and fig. 11 are diagrams illustrating a device of the invention according to a fifth embodiment, according to two respective modes of operation. Figs. 12 and fig. 13 are diagrams illustrating a device of the invention according to a sixth variant embodiment, according to two respective modes of operation. Fig. 14 is a diagram illustrating the means for controlling the operation of a device of the invention. Fig. 15 is a diagram illustrating a view from above of the device of the invention comprising two boxes symmetrical with respect to each other. Fig. 16 is a diagram illustrating one of the two housings of the device according to FIG. 15. In the figures, a device for pre-ventilation, ventilation, heating and / or air conditioning is intended to improve the comfort of the passenger compartment of a vehicle. According to various modes of operation, the air passing through the device is discharged on the one hand with or without a heat treatment, and on the other hand towards the inside or outside of the passenger compartment. This device mainly comprises a housing 1 inside which air is taken by means of a blower 2. This housing is formed of a wall 1 a. This wall 10 1a delimits the entire interior volume of the housing 1. This blower 2 is housed inside an air intake chamber 3 that includes the housing 1. This air intake chamber 3 is in communication with an interior air intake opening 4 for the admission of air from inside the passenger compartment, or even with an intake air intake port. external air 5 for the admission of air from outside the passenger compartment, as shown in the variant embodiment illustrated in FIGS. 12 and fig. 13. These air intake ports 4,5 are preferably each provided with an air filtering member, such as a particulate filter or the like. The casing 1 comprises various channels in communication with the air intake chamber 3 through which the admitted air circulates respectively and / or together, for heat treatment or simple evacuation. One of these channels is a first air evacuation channel 6 through which the air admitted freely circulates. Another channel is a second heat treatment channel 7 of the intake air, which fully houses a thermoelectric unit 8 PELTIER effect. Such a thermoelectric unit 8 comprises a PELTIER effect cell provided on its faces with a heat dissipation member. Of course, in another embodiment, the housing 1 may comprise a plurality of thermoelectric unit 8 and the thermoelectric unit may comprise a plurality of PELTIER effect cells. The heat treatment channel 7 is itself subdivided into a first elementary channel 9 and a second elementary channel 10. Each of these elementary channels 9, 10 is in relation to a respective face of the thermoelectric unit 8, so that the air which they convey respectively is heat-treated for the purpose of its heating and / or conversely of its cooling. according to the polarity applied to the thermoelectric unit 8. An air evacuation chamber 11 is provided downstream of all the channels. This air evacuation chamber 11 is in communication with two air evacuation vents, including an interior air evacuation port 12 for the evacuation of the air admitted to the interior of the room. cockpit and an external exhaust air outlet 13 for the evacuation of the intake air to the outside of the passenger compartment. The inner air outlet 12 is preferably provided with a not shown aerator for selectively directing the flow of exhaust air. The external exhaust air outlet 13 10 allows an evacuation of air from the passenger compartment between the ceiling and the roof of the vehicle. The air evacuation chamber 11 is also in communication with the air evacuation channel 6, and the first elementary channel 9. A main air distribution member 14 is placed inside the housing 1 for selective admission of the air from the air intake chamber 3 to the air evacuation channel 6 and or the heat treatment channel 7, and more particularly any one at least elementary channels 9,10 component thereof. This main air distribution member 14 of the air flow admitted inside the housing 1 is located between the air evacuation channel 6 and the heat treatment channel 7. The evacuation channel 6 and the heat treatment channel 7 extend between the air inlet 4 and the interior air outlet 12. These two channels 6, 7 are adjacent to each other, and more precisely are one on the other in the direction of the height of the housing 1. The air evacuation channel 6 and the heat treatment channel 25 are formed by a first wall 100 and by the wall 1a of the housing 1. This first wall 100 is common to the two channels 6, 7 and extends between the air intake port 4 and the air outlet 12. This first wall 100 has an upstream free end 100a delimiting a peripheral portion of the respective inlets 6a, 7a of the evacuation channel 6 and the heat treatment channel 7 and comprises a free end downstream 100b delimiting a periphery portion of the respective outlets. 6b, 7b of the evacuation channel 6 and the heat treatment channel 7. Similarly, the elementary channels 9, 10 are formed by a second wall 200 disposed inside the heat treatment channel 7. This second wall 200 is common to the two elementary channels 9, 10 and extends between the air intake opening 5 and the wall 1a of the housing 1. This second wall 200 has an upstream free end 200a and its downstream end 200b is in contact with the wall 1a of the housing so that the air flow passing through the second elementary channel 10 can not reach the evacuation chamber. air 11. The second wall 200 thus extends from the inlet 7a of the heat treatment channel 7 to beyond the outlet 7b of the heat treatment channel 7, that is to say up to the wall 1a of the casing 1. Thus, the first elementary channel 9 is delimited by the first wall 100, the second wall 200 and the wall 1a of the housing 1. The second elementary channel 10 is delimited by the second wall 200 and the wall 1a of the housing 1. In FIGS. 1 to 13, the blower 2 and the thermoelectric unit 8 are supplied with energy from an autonomous source of the photovoltaic cell type 20 not shown or from the main power source 21, not shown in FIG. vehicle. In FIGS. 1 to fig. 9, the air evacuation chamber 11 is in communication with the external air evacuation outlet 13, and the second elementary channel 10 is in communication with the interior air evacuation outlet 12. In figs. 10 to fig. 13, the air evacuation chamber 11 is in communication with the interior air outlet mouth 12, and the second elementary channel 10 is in communication with the external air outlet mouth 13. According to one mode of operation, the device is in the pre-ventilation mode of the passenger compartment, aiming to prevent it when the vehicle is in the parking station. The renewal of the air inside the passenger compartment is obtained from the trailing areas of the latter. According to another mode of operation, the device is in ventilation mode of the passenger compartment when the vehicle is in rolling mode. According to another mode of operation, the device is in thermal air treatment mode of the passenger compartment, possibly in parking mode, but preferably in vehicle taxi mode. The air flows through the heat treatment channel 7, and more particularly through each of the elementary channels 9, 10 so as to be in contact with a respective face of the thermoelectric unit 8. According to the polarity applied to the thermoelectric unit 8, the device allows heating and / or conversely cooling of the air of the passenger compartment from a heat treatment of the air flowing through the second elementary channel 10. The passage of air through the first elementary channel 9 allows the unwanted calories to be removed. In figs. 1 and fig. 2, the main air distribution member 14 is placed upstream of the air evacuation channel 6 and the heat treatment channel 7. The main air distribution member 14 is placed in the housing 1 so that its axis of rotation A is parallel to the upstream free end 100a of the first wall 100. The axis of rotation A of the air distribution member 14 is located between the air evacuation channel 6 and the heat treatment channel 7 and passes through the upstream free end 100a of the first wall 100. This axis of rotation A is contained in a plane P1 containing the first wall 100. In FIG. 1, the device operates in pre-purge mode. The main ventilation member 14 is operated so as to close the heat treatment channel 7 and to leave a free passage of the air admitted inside the housing 1 through the air evacuation channel 6. More particularly, air is admitted to the interior of the air intake chamber 3 through the interior air intake port 4, and then travels through the air exhaust channel 6 to its discharge from the passenger compartment of the vehicle through the outside air outlet 13. If necessary, the main ventilation member 14 can also prevent a possible return of air into the passenger compartment by sealing the ducts 9 and 10 vis-à-vis the other. This sealing is obtained by the fact that the main ventilation member 14 is in direct contact with the free end upstream 200a of the second wall 200 when the main ventilation distribution member 14 closes the heat treatment channel 7 . In fig. 2, the device operates in the heat treatment mode of the air of the passenger compartment and / or in the ventilation mode of the latter. The main ventilation member 14 is operated so as to close the air evacuation channel 6 and to allow a passage of the air admitted inside the casing 1 through the heat treatment channel 7. The air is thermally treated or not, depending on the energization of the thermoelectric unit 8. The air flows through the second elementary channel 10 to be forced through the interior air outlet 12, while air flowing through the elementary channel 9 is forced through the outlet outside air 13, being optionally thermally treated to remove undesirable calories. In Figs. 3 and fig. 4, the main air distribution member 14 is composed of two main elementary air distribution members, first 15 and second 16, which are respectively disposed inside the one and the other of the channel exhaust air 6 and heat treatment channel 7. The second elementary air distribution member 16 assigned to the heat treatment channel 7 is more particularly disposed in an area thereof upstream of its subdivision into two elementary channels 9, 10. The second elementary air distribution member 16 has an axis of rotation B parallel to the upstream free end 200a of the second wall 200. This axis of rotation B is contained in a plane P2 containing the second wall 200. In FIG. 3, the device operates in pre-ventilation mode in the manner of the embodiment variant shown in FIG. 1. The first primary element of air distribution 15
est en position d'ouverture de manière à laisser le passage de l'air à travers le canal d'évacuation d'air 6, tandis que le deuxième 30 organe principal élémentaire de répartition d'air 16 est en position de fermeture de manière à obturer le canal de traitement thermique 7. Plus particulièrement, l'air est admis à l'intérieur de la chambre d'admission d'air 3 à travers la bouche 2903345 20 d'admission d'air intérieure 4, puis chemine à travers le canal d'évacuation d'air 6 pour son refoulement hors de l'habitacle du véhicule à travers la bouche d'évacuation d'air extérieure 13. is in the open position so as to allow the passage of air through the air evacuation channel 6, while the second elementary main air distribution member 16 is in the closed position so as to The heat treatment channel 7 is closed. More particularly, the air is admitted inside the air intake chamber 3 through the interior air intake port 4, and then travels through the air inlet chamber 4. exhaust duct 6 for discharging out of the passenger compartment of the vehicle through the outside exhaust air outlet 13.
5 Dans les modes de réalisation des figures 1 et 3, la totalité du flux d'air admis dans le boîtier 1 est évacué du boîtier 1 par l'intermédiaire du canal d'évacuation d'air 6. Le débit de renouvellement d'air de l'habitacle est alors optimisé au maximum lors de la préventilation.In the embodiments of FIGS. 1 and 3, the entire flow of air admitted into the casing 1 is discharged from the casing 1 via the air evacuation duct 6. The air exchange rate The passenger compartment is optimized to the maximum during pre-ventilation.
10 Sur la fig.4, le dispositif fonctionne en mode de traitement thermique de l'air de l'habitacle et/ou en mode de ventilation de ce dernier à la manière de la variante de réalisation représentée sur la fig.2. Le premier organe principal élémentaire de répartition d'air 15 est en position de fermeture de manière à obturer le canal d'évacuation d'air 6, tandis que le deuxième organe principal élémentaire de 15 répartition d'air 16 est en position d'ouverture de manière à laisser le passage de l'air à travers le canal de traitement thermique 7. Sur les fig.5 à fig.9, l'organe principal de répartition d'air 14 est disposé à l'intérieur du canal d'évacuation d'air 6. En position d'ouverture de l'organe 20 principal de répartition d'air 14 tel que représenté sur les fig.5 et fig.7, l'air circule librement à l'intérieur du canal d'évacuation d'air 6 pour un fonctionnement du dispositif en mode de préventilation et/ou en mode de ventilation. Lorsque l'organe principal de répartition 14 est en position d'ouverture, le flux d'air traverse à la fois le canal d'évacuation d'air 6 et le canal de traitement thermique 7. Le 25 débit de renouvellement d'air est alors amélioré par rapport à une situation où tout le flux d'air passerait à travers un unique canal comportant à l'intérieur une unité thermoélectrique. En effet, les pertes de charge sont grardement diminuées du fait qu'une fraction du flux d'air traverse le canal d'évacuation d'air 6 exempt de tout obstacle.In FIG. 4, the device operates in a mode of heat treatment of the air of the passenger compartment and / or in the ventilation mode of the latter in the manner of the variant embodiment shown in FIG. The first primary air distribution element 15 is in the closed position so as to close off the air evacuation channel 6, while the second elementary main air distribution element 16 is in the open position so as to allow the passage of air through the heat treatment channel 7. In Fig.5 to Fig.9, the main air distribution member 14 is disposed within the evacuation channel 6. In the open position of the main air distribution member 14 as shown in FIGS. 5 and 7, the air circulates freely inside the exhaust duct. 6 for operation of the device in the pre-purge mode and / or in the ventilation mode. When the main distribution member 14 is in the open position, the air flow passes through both the air exhaust duct 6 and the heat treatment channel 7. The air exchange rate is then improved compared to a situation where all the air flow would pass through a single channel having inside a thermoelectric unit. Indeed, the pressure losses are greatly reduced by the fact that a fraction of the air flow passes through the air evacuation channel 6 without any obstacle.
30 En position de fermeture de l'organe principal de répartition d'air 14 tel que représentée sur les fig.6, fig.8 et fig.9, l'air circule à l'intérieur du canal de 2903345 21 traitement thermique 7 pour un fonctionnement du dispositif en mode de traitement thermique de l'air de l'habitacle et/ou en mode de ventilation de ce dernier par simple recyclage de l'air. Sur les fig.7 à fig.9, il est proposé une variante visant à éviter une fuite d'air à travers le second canal élémentaire 10, et 5 visant à optimiser le fonctionnement du dispositif en mode de ventilation de l'habitacle. La seconde paroi 200 s'étend dans les limites du canal de traitement thermique 7, c'est-à-dire que la seconde paroi 200 s'étend de l'entrée 7a jusqu'au au plus la sortie 7b. Un organe secondaire de répartition d'air 17 du flux d'air est placé en aval du canal de traitement thermique 7, permettant ainsi d'orienter le 10 flux d'air traversant le canal de traitement thermique 7 selon le mode de fonctionnement choisi (préventilation, ventilation ou traitement thermique). En figure 7, le dispositif est en mode de préventilation de l'habitacle. L'organe principal de répartition d'air 14 est en position d'ouverture et l'organe secondaire de répartition d'air 17 est positionné de sorte à ce que tout l'air prélevé de 15 l'habitacle par la bouche d'admission d'air 4 est évacué hors du boîtier 1 sans aucune fuite au niveau de la bouche d'évacuation d'air intérieure 12. Ainsi, le débit de renouvellement de l'air de l'habitacle est amélioré et l'organe secondaire de répartition d'air 17 permet d'éviter un retour de l'air prélevé non traité vers l'habitacle. En mode de traitement thermique de l'air de l'habitacle tel que 20 représenté sur la fig.8, l'organe principal de répartition d'air 14 est manoeuvré à la fermeture pour obturer le canal d'évacuation d'air 6, et l'organe secondaire de répartition d'air 17 est manoeuvré pour provoquer une évacuation de l'air en provenance du premier canal élémentaire 9 à travers la bouche d'évacuation d'air extérieure 13. Sur la fig.9, les volets 14 et 17 sont disposés pour induire un 25 passage de la totalité de l'air admis à l'intérieur du boîtier 1 vers l'habitacle à travers les deux canaux élémentaires 9,10, sans que cet air admis ne soit thermiquement traité par l'unité thermoélectrique 8. Un tel mode de fonctionnement correspond plus particulièrement à une exploitation du dispositif pour ventiler l'habitacle lorsque le véhicule est en mode de roulage.In the closed position of the main air distribution member 14 as shown in FIGS. 6, 8 and 9, the air circulates inside the heat treatment channel 7 for operation of the device in the air heat treatment mode of the passenger compartment and / or ventilation mode of the latter by simple air recycling. On fig.7 to fig.9, there is proposed a variant to prevent air leakage through the second elementary channel 10, and 5 to optimize the operation of the device in the ventilation mode of the passenger compartment. The second wall 200 extends within the limits of the heat treatment channel 7, i.e. the second wall 200 extends from the inlet 7a to at most the outlet 7b. A secondary air distribution member 17 of the air flow is placed downstream of the heat treatment channel 7, thus making it possible to orient the flow of air passing through the heat treatment channel 7 according to the chosen mode of operation ( pre-ventilation, ventilation or heat treatment). In Figure 7, the device is in the preventilation mode of the passenger compartment. The main air distribution member 14 is in the open position and the secondary air distribution member 17 is positioned so that all the air taken from the passenger compartment by the intake mouth 4 air is discharged out of the housing 1 without any leakage at the inner air exhaust port 12. Thus, the rate of renewal of the air of the passenger compartment is improved and the secondary distribution member air 17 prevents a return of the untreated air taken to the passenger compartment. In the cabin air heat treatment mode as shown in FIG. 8, the main air distribution member 14 is operated on closing to close off the air exhaust duct 6, and the secondary air distribution member 17 is operated to cause an evacuation of the air from the first elementary channel 9 through the external air discharge opening 13. In FIG. 9, the flaps 14 and 17 are arranged to induce a passage of all the air admitted inside the housing 1 to the passenger compartment through the two elementary channels 9, 10, without this admitted air being thermally treated by the thermoelectric unit 8. Such a mode of operation corresponds more particularly to an operation of the device for ventilating the passenger compartment when the vehicle is in driving mode.
30 II est également possible d'incorporer l'organe secondaire de répartition d'air 17 dans un boîtier 1 tel que représenté en figure 1 à 4 ou 10 à 13.It is also possible to incorporate the secondary air distribution member 17 into a housing 1 as shown in FIG. 1 to 4 or 10 to 13.
2903345 22 Sur les fig.10 à fig.13, le canal de traitement thermique 7 est au-dessus du canal d'évacuation d'air 6 de sorte que le second canal élémentaire 10 soit en communication avec la bouche d'évacuation d'air extérieure 13 et que la canal 5 d'évacuation d'air 6 ainsi que le premier canal élémentaire 9 soient en communication avec la bouche d'évacuation d'air intérieure 12 via la chambre d'évacuation 11. La seconde paroi 200 est disposée à l'intérieur du canal de traitement thermique 7 et conformée de la même manière que celle illustrée aux figures 1 à 4. L'organe principal de répartition d'air 14 est placé en amont du canal 10 d'évacuation d'air 6 et du canal de traitement thermique 7 à la manière illustrée sur la variante de réalisation représentée sur les fig.1 et fig.2. Sur la fig.10, le dispositif est en mode de préventilation et/ou ventilation de l'habitacle, tandis que sur la fig.11, le dispositif est en mode de traitement 15 thermique de l'air de l'habitacle. Sur les fig.12 et fig.13, le boîtier 1 comporte la bouche d'admission d'air extérieure 5, et est muni d'un organe sélectif de répartition d'air 18 de l'admission d'air entre la bouche d'admission d'air extérieure 5 et la bouche d'admission d'air intérieure 20 4. Cet organe sélectif de répartition d'air 18 est placé à l'intérieur de la chambre d'admission d'air 3. Sur la fig.12, le dispositif est en mode de préventilation de l'habitacle. L'organe sélectif de répartition d'air 18 est manoeuvré de sorte que la bouche d'admission d'air intérieure 4 soit obturée, tandis que l'air peut être admis à l'intérieur du boîtier 1 en provenance de l'extérieur de l'habitacle à travers la 25 bouche d'admission d'air extérieure 5. L'air admis circule à travers le canal d'évacuation d'air 6 pour être refoulé à travers la bouche d'évacuation d'air intérieure 12 vers l'intérieur de l'habitacle. Sur la fig.13, le dispositif est en mode de traitement thermique de l'air de l'habitacle. L'organe sélectif de répartition d'air 18 est manoeuvré de sorte que la bouche d'admission d'air extérieure 5 soit 30 obturée, tandis que l'air peut être admis à l'intérieur du boîtier 1 en provenance de l'intérieur de l'habitacle à travers la bouche d'admission d'air intérieure 4. L'air admis circule à travers le canal de traitement thermique 7, pour être refoulé d'une 2903345 23 part à travers la bouche d'évacuation d'air intérieure 12 après son passage à l'intérieur du premier canal élémentaire 9, et d'autre part à travers la bouche d'évacuation d'air extérieure 13 après son passage à l'intérieur du second canal élémentaire 10.In Figs. 10 to Fig. 13, the heat treatment channel 7 is above the air evacuation channel 6 so that the second elementary channel 10 is in communication with the exhaust port of outside air 13 and that the air evacuation channel 5 as well as the first elementary channel 9 are in communication with the inner air outlet 12 via the evacuation chamber 11. The second wall 200 is arranged inside the heat treatment channel 7 and shaped in the same manner as that illustrated in FIGS. 1 to 4. The main air distribution member 14 is placed upstream of the air evacuation channel 6 and of the heat treatment channel 7 in the manner illustrated on the embodiment shown in Fig.1 and fig.2. In Fig.10, the device is in the mode of pre-ventilation and / or ventilation of the passenger compartment, while in Fig.11, the device is in the thermal air treatment mode of the passenger compartment. In FIGS. 12 and 13, the casing 1 comprises the outside air intake opening 5, and is provided with a selective air distribution member 18 of the air inlet between the air intake port. 5 and the inner air inlet 20 4. This selective air distribution member 18 is placed inside the air intake chamber 3. In FIG. 12, the device is in the pre-ventilation mode of the passenger compartment. The selective air distribution member 18 is operated so that the interior air intake port 4 is closed, while the air can be admitted inside the housing 1 from the outside of the passenger compartment through the outside air intake opening 5. The admitted air flows through the exhaust air duct 6 to be discharged through the interior air exhaust vent 12 to the air outlet channel 6. inside the cockpit. In Fig.13, the device is in thermal air mode of the passenger compartment. The selective air distribution member 18 is operated so that the outside air intake port 5 is closed, while air can be admitted inside the housing 1 from the inside. from the passenger compartment through the interior air intake opening 4. The admitted air flows through the heat treatment channel 7, to be discharged from a side through the exhaust air outlet internal 12 after passing inside the first elementary channel 9, and secondly through the outside air outlet 13 after its passage inside the second elementary channel 10.
5 Selon ce mode de réalisation, le mode de fonctionnement ventilation, non représenté, consiste à obturer la bouche d'admission d'air extérieure 5 par l'intermédiaire de l'organe sélectif de répartition d'air 18, comme illustré en figure 13 et l'organe principal de répartition d'air 14 obture le canal de traitement 10 thermique 7. L'agencement et/ou la position des divers organes de répartition d'air, et plus particulièrement l'organe principal de répartition d'air 14, le premier organe principal élémentaire de répartition d'air 15, le deuxième organe principal élémentaire de répartition d'air 16, l'organe secondaire de répartition d'air 17 et 15 l'organe sélectif de répartition d'air 18 sont susceptibles d'être quelconques, dès lors qu'ils remplissent la fonction qui leur est destinée à savoir diriger l'air admis à l'intérieur du boîtier 1 vers le canal d'évacuation d'air 6 et/ou le canal de traitement thermique 7. Par exemple, les modalités d'agencement et de position de l'organe principal de répartition d'air 14 représentées sur les fig.3 à fig.9 sont 20 transposables aux modes de réalisation des dispositifs représentés sur les fig.10 à fig.14. L'agencement et/ou la position des canaux entre eux sont indifférents dès lors d'une part que l'air admis à l'intérieur du boîtier peut être répartis entre le canal 25 d'évacuation d'air 6 et/ou le canal de traitement thermique 7, et d'autre part que l'air admis à l'intérieur du canal de traitement thermique 7 peut être divisé en deux flux élémentaires destinés à être respectivement en contact avec l'une et/ou l'autre des zones d'échange thermique de l'unité thermoélectrique 8, ces flux élémentaires étant respectivement et/ou conjointement évacués vers l'une au 30 moins des bouches d'évacuation d'air 12,13. Plus particulièrement, les dispositifs représentés sur les figures sont agencés de manière à disposer le canal d'évacuation d'air 6 et le canal de traitement thermique 7 en superposition.According to this embodiment, the ventilation operating mode, not shown, consists of closing off the outside air intake opening 5 via the selective air distribution member 18, as illustrated in FIG. 13. and the main air distribution member 14 closes the heat treatment channel 7. The arrangement and / or position of the various air distribution members, and more particularly the main air distribution member 14 the first primary air distribution element 15, the second elementary main air distribution member 16, the secondary air distribution member 17 and the selective air distribution member 18 are capable of be any, provided that they fulfill the function intended for them to know how to direct the air admitted inside the housing 1 towards the air evacuation channel 6 and / or the heat treatment channel 7. For example, the arrangements for arranging and position of the main air distribution member 14 shown in Fig.3 to Fig.9 are transposable to the embodiments of the devices shown in Fig.10 to Fig.14. The arrangement and / or the position of the channels between them are indifferent therefore on the one hand that the air admitted inside the housing can be distributed between the air discharge channel 6 and / or the channel heat treatment 7, and secondly that the air admitted inside the heat treatment channel 7 can be divided into two elementary streams intended to be respectively in contact with one and / or the other of the zones thermal exchange of the thermoelectric unit 8, these elementary flows being respectively and / or jointly discharged to at least one of the exhaust air outlets 12,13. More particularly, the devices shown in the figures are arranged to have the air evacuation channel 6 and the heat treatment channel 7 superimposed.
2903345 24 Cependant, l'orientation et/ou la disposition de ces canaux 6,7 l'un par rapport à l'autre sont susceptibles d'être quelconques. Par exemple, ces canaux 6,7 sont susceptibles d'être disposés latéralement et/ou de manière imbriquée l'un dans l'autre, les positions respectives des bouches d'admission d'air 4,5 et des 5 bouches d'évacuation d'air 12,13 étant adaptées en conséquence. Par exemple encore, les orientations d'extension respectives des différents canaux 6, 7, 9, 10 sont susceptibles de varier pour chacun de ces canaux, et d'être différentes d'un canal à l'autre. Les divers organes de répartition d'air, et plus particulièrement l'organe principal de répartition d'air 14, le premier organe principal élémentaire 10 de répartition d'air 15, le deuxième organe principal élémentaire de répartition d'air 16, l'organe secondaire de répartition d'air 17 et l'organe sélectif de répartition d'air 18 sont alors agencés et/ou positionnés en correspondance. Sur la fig.14, le dispositif est agencé en plafonnier. Le boîtier 1 est équipé de 15 moyens de montage 19 sur le toit du véhicule, tel que sur des rails que comporte ce dernier. Le pulseur 2 et l'unité thermoélectrique 8 sont alimentés en énergie à partir d'une source autonome du type à cellules photovoltaïques 20. De telles cellules photovoltaïques 20 sont placées sur le toit du véhicule, et plus particulièrement sur un toit ouvrant sur lequel est monté le boîtier 1. Un tel toit 20 ouvrant est propre à compléter la préventilation de l'habitacle fournie par la mise en oeuvre du dispositif en station de parking du véhicule. Cette source d'alimentation autonome 20 est destinée à être utilisée en station de parking du véhicule. Lorsque le véhicule est roulant, le pulseur 2 et l'unité thermoélectrique 8 sont alimentés en énergie à partir de la source principale d'alimentation 21 du 25 véhicule. Cette source principale d'alimentation 21 est aussi exploitée lorsque l'ensoleillement est insuffisant pour exploiter ces dernières. Des moyens de sélection 22 permettent de mettre oeuvre l'une et/ou l'autre des sources d'énergie 20,21 en fonction des besoins. Ces moyens de sélection 22 sont placés sous la dépendance de premiers moyens de commande 23 comprenant par exemple des 30 moyens de mesure de la puissance disponible de la source d'énergie autonome 20 et/ou des moyens de détection du démarrage du véhicule.However, the orientation and / or the disposition of these channels 6,7 with respect to each other may be arbitrary. For example, these channels 6, 7 are likely to be arranged laterally and / or nested one inside the other, the respective positions of the air inlet mouths 4, 5 and the 5 evacuation mouths. 12,13 air being adapted accordingly. For example again, the respective extension orientations of the different channels 6, 7, 9, 10 are likely to vary for each of these channels, and to be different from one channel to another. The various air distribution members, and more particularly the main air distribution member 14, the first elementary main air distribution member 15, the second main element of the air distribution element 16, secondary air distribution member 17 and the selective air distribution member 18 are then arranged and / or positioned in correspondence. In Fig.14, the device is arranged ceiling. The casing 1 is equipped with mounting means 19 on the roof of the vehicle, such as on rails that comprise the latter. The blower 2 and the thermoelectric unit 8 are supplied with energy from an autonomous source of the photovoltaic cell type 20. Such photovoltaic cells 20 are placed on the roof of the vehicle, and more particularly on a sunroof on which is mounted housing 1. Such a roof 20 opening is suitable to complete the pre-ventilation of the passenger compartment provided by the implementation of the device parking station of the vehicle. This autonomous power source 20 is intended to be used as parking station of the vehicle. When the vehicle is traveling, the blower 2 and the thermoelectric unit 8 are supplied with power from the main power source 21 of the vehicle. This main power source 21 is also exploited when the sun is insufficient to exploit the latter. Selection means 22 make it possible to implement one and / or the other of the energy sources 20, 21 as required. These selection means 22 are placed under the control of first control means 23 comprising, for example, means for measuring the available power of the autonomous energy source 20 and / or means for detecting the starting of the vehicle.
2903345 25 Le dispositif comprend des deuxièmes moyens de commande 24 sous la dépendance desquels est placée la mise en oeuvre du pulseur 2 et de l'unité thermoélectrique 8. Ces deuxièmes moyens de commande 24 comprennent des moyens de commande 25 de l'inversion de la polarisation de l'unité 5 thermoélectrique 8 et/ou de moyens de contrôle 26 de la température de l'unité thermoélectrique. Ces deuxièmes moyens de commande 24 comprennent aussi des moyens de contrôle 27 du débit d'air du pulseur 2. La mise en oeuvre des deuxièmes moyens de commande 24 est placée sous la dépendance de moyens de contrôle 28, comprenant par exemple des moyens de mesure de la 10 température à l'intérieur de l'habitacle, des moyens chronométriques, des moyens de mémoire d'une température de consigne, des moyens de mémoire d'un débit d'air de consigne évacué hors du boîtier, ou un tableau de commande porté par le boîtier, voire des moyens de commande à distance tels qu'une télécommande.The device comprises second control means 24 under whose control is placed the implementation of the blower 2 and the thermoelectric unit 8. These second control means 24 comprise control means 25 of the inversion of the polarization of the thermoelectric unit 8 and / or control means 26 of the temperature of the thermoelectric unit. These second control means 24 also comprise means 27 for controlling the air flow rate of the blower 2. The implementation of the second control means 24 is placed under the control of control means 28, comprising, for example, measuring means of the temperature inside the passenger compartment, chronometric means, means for storing a set temperature, means for storing a set air flow evacuated from the housing, or a table of control carried by the housing, or remote control means such as a remote control.
15 Une autre architecture possible représentée en figure 15 consiste en un dispositif bi-zone permettant de distribuer l'air traversant le dispositif selon deux zones de l'habitacle, à savoir le côté gauche et le côté droit des places arrières du véhicule. Ce dispositif comprend deux boîtiers 1, 1' selon l'invention symétriques par rapport à un plan P3. Ce plan P3 médian traverse longitudinalement le 20 dispositif. En conséquence, seul un boîtier 1 sera décrit ci-dessous. Le boîtier 1 loge un pulseur 2. Le pulseur 2 est logé dans une chambre d'admission d'air 3. La chambre d'admission d'air 3 est en communication avec une bouche d'admission d'air 4 en provenance de l'intérieur de l'habitacle. La 25 bouche d'admission d'air 4 est en relation avec le pulseur 2. Le boîtier 1 comprend également un canal d'évacuation d'air 6 disposé et un canal de traitement thermique 7. Le canal d'évacuation d'air 6 et le canal de traitement thermique 7 sont disposés dans le boîtier 1 de sorte à être superposés. Ainsi, Le canal d'évacuation d'air 6 est disposé au-dessus du canal de traitement thermique 30 7 de manière identique au mode de réalisation représenté en figure 1. Le canal d'évacuation d'air 6 est en communication avec une bouche d'évacuation d'air extérieure 13 via une chambre d'évacuation d'air 11. Dans le canal de traitement 2903345 26 thermique 7 est logé intégralement une unité thermoélectrique 8. Le canal de traitement thermique 7 comporte également un premier et un second canal élémentaire 9 et 10. Le premier canal élémentaire 9 est en communication avec la chambred'évacuation d'air 11 et le second canal élémentaire 10 est en 5 communication avec la bouche d'évacuation d'air intérieure 12. Les deux canaux élémentaires 9 et 10 sont formés à la fois par la cellule à effet PELTIER 20 et par une troisième paroi 300. Dans le canal de traitement thermique 7, c'est-à-dire entre l'entrée 7a et la sortie 7b de ce canal, la cellule à effet PELTIER permet de délimiter les canaux élémentaires 9, 10. Autrement dit, d'une part le canal 10 élémentaire 9 est délimité par la cellule à effet PELTIER 20, la première paroi 100 et la paroi 1 a du boîtier 1 et d'autre part le canal élémentaire 10 est délimité par la cellule à effet PELTEIR 20 et la paroi 1a du boîtier 1. A partir de la sortie 7b du canal de traitement thermique 7, les canaux élémentaires sont séparés l'un de l'autre par une troisième paroi 300 commune. Cette troisième paroi 300 s'étend 15 dans le prolongement de la cellule à effet PELTIER 20 jusqu'à la paroi 1a du boîtier 1. Cette troisième paroi 300 comprend une extrémité amont 300a en contact avec la cellule à effet PELTIER et une extrémité aval 300b en contact avec la paroi 1 a du boîtier 1. Ainsi, le second canal élémentaire 10 n'est pas en communication avec la chambre d'évacuation d'air 11, ce qui signifie que l'air 20 traversant le second canal élémentaire 10 ne rencontre jamais à l'intérieur du boîtier 1 l'air circulant dans le premier canal élémentaire 9. L'organe de répartition d'air 14 est sous la forme d'un volet tambour 14a. Le volet tambour 14a comprend deux dômes cylindriques 15 reliés l'un à l'autre par leurs extrémités 15a. Ces deux dômes sont munis à leurs extrémités 15b de deux 25 secteurs circulaires parallèles l'un par rapport à l'autre et dont les centres sont montés en rotation sur l'axe A. A chaque extrémité 15a des dômes cylindriques se situe en saillie une paroi 17 permettant d'assurer une étanchéité lorsque le canal d'évacuation d'air 6 ou le canal de traitement thermique 7 est obturé par ce volet 14a. Le volet tambour 14a est placé en aval, et plus particulièrement en sortie, de 30 la chambre d'admission d'air 3 et en amont du canal d'évacuation d'air 6 et du canal de traitement thermique 7. Plus précisément, l'axe de rotation A du volet tambour 14a se situe dans la chambre d'admission d'air 3 de sorte que la paroi 17 2903345 27 soit en contact avec la première paroi 100 lorsque le canal d'évacuation d'air 6 est totalement obturé par le volet tambour 14a, comme représenté en figure 15.Another possible architecture shown in FIG. 15 consists of a bi-zone device for distributing the air passing through the device in two zones of the passenger compartment, namely the left side and the right side of the rear seats of the vehicle. This device comprises two housings 1, 1 'according to the invention symmetrical with respect to a plane P3. This median plane P3 extends longitudinally through the device. As a result, only one housing 1 will be described below. The housing 1 houses a blower 2. The blower 2 is housed in an air intake chamber 3. The air intake chamber 3 is in communication with an air intake port 4 from the air intake chamber 3. inside the cockpit. The air inlet 4 is in connection with the blower 2. The housing 1 also comprises an air discharge channel 6 disposed and a heat treatment channel 7. The air exhaust duct 6 and the heat treatment channel 7 are arranged in the housing 1 so as to be superimposed. Thus, the air evacuation channel 6 is disposed above the heat treatment channel 30 in the same manner as the embodiment shown in FIG. 1. The air evacuation channel 6 is in communication with a mouth external air discharge 13 via an air evacuation chamber 11. In the thermal treatment channel 7, a thermoelectric unit 8 is housed integrally. The heat treatment channel 7 also comprises a first and a second channel 9 and 10. The first elementary channel 9 is in communication with the air evacuation chamber 11 and the second elementary channel 10 is in communication with the interior air outlet mouth 12. The two elementary channels 9 and 10 are formed both by the PELTIER effect cell 20 and by a third wall 300. In the heat treatment channel 7, that is to say between the inlet 7a and the outlet 7b of this channel, the cell PELTIER effect allows to delimit the elementary channels 9, 10. In other words, on the one hand the elementary channel 9 is delimited by the PELTIER effect cell 20, the first wall 100 and the wall 1a of the housing 1 and on the other hand the channel element 10 is delimited by the PELTEIR effect cell 20 and the wall 1a of the housing 1. From the outlet 7b of the heat treatment channel 7, the elementary channels are separated from each other by a third wall 300 common . This third wall 300 extends in the extension of the PELTIER effect cell 20 to the wall 1a of the housing 1. This third wall 300 comprises an upstream end 300a in contact with the PELTIER effect cell and a downstream end 300b in contact with the wall 1a of the housing 1. Thus, the second elementary channel 10 is not in communication with the air evacuation chamber 11, which means that the air 20 passing through the second elementary channel 10 does not never meets inside the housing 1 the air flowing in the first elementary channel 9. The air distribution member 14 is in the form of a drum flap 14a. The drum flap 14a comprises two cylindrical domes 15 connected to each other by their ends 15a. These two domes are provided at their ends 15b with two circular sectors parallel to one another and whose centers are rotatably mounted on the axis A. At each end 15a of the cylindrical domes is projecting a wall 17 to ensure a seal when the air outlet channel 6 or the heat treatment channel 7 is closed by this flap 14a. The drum flap 14a is placed downstream, and more particularly at the outlet, of the air intake chamber 3 and upstream of the air evacuation channel 6 and the heat treatment channel 7. rotation axis A of the drum flap 14a is located in the air intake chamber 3 so that the wall 17 is in contact with the first wall 100 when the air evacuation channel 6 is completely closed off by the drum flap 14a, as shown in FIG.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0606245A FR2903345B1 (en) | 2006-07-07 | 2006-07-07 | DEVICE FOR PREVENTILATION, VENTILATION, HEATING AND / OR AIR CONDITIONING OF A VEHICLE HABITACLE UTILIZING A PULSER AND THERMOELECTRIC UNITS WITH PELTIER EFFECT |
PCT/IB2007/052537 WO2008007286A1 (en) | 2006-07-07 | 2007-06-29 | Device for preventilating, ventilating, heating and/or air-conditioning a vehicle cabin, comprising peltier-effect thermoelectric units |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0606245A FR2903345B1 (en) | 2006-07-07 | 2006-07-07 | DEVICE FOR PREVENTILATION, VENTILATION, HEATING AND / OR AIR CONDITIONING OF A VEHICLE HABITACLE UTILIZING A PULSER AND THERMOELECTRIC UNITS WITH PELTIER EFFECT |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2903345A1 true FR2903345A1 (en) | 2008-01-11 |
FR2903345B1 FR2903345B1 (en) | 2011-04-08 |
Family
ID=37434154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0606245A Active FR2903345B1 (en) | 2006-07-07 | 2006-07-07 | DEVICE FOR PREVENTILATION, VENTILATION, HEATING AND / OR AIR CONDITIONING OF A VEHICLE HABITACLE UTILIZING A PULSER AND THERMOELECTRIC UNITS WITH PELTIER EFFECT |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR2903345B1 (en) |
WO (1) | WO2008007286A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007080A1 (en) * | 2009-07-17 | 2011-01-20 | Peugeot Citroën Automobiles SA | Method for operating electrical power storage device ventilation system |
DE102012009909A1 (en) * | 2012-05-18 | 2013-11-21 | Volkswagen Aktiengesellschaft | Air conditioning device for motor car, has channels connected with outside chamber at input side by independent controllable flaps, and fan devices comprising independent controllable fans to which channels are attached |
FR2998653A1 (en) * | 2012-11-28 | 2014-05-30 | Peugeot Citroen Automobiles Sa | Device for treatment of air in enclosure i.e. passenger compartment, of car, has diffusion unit arranged to supply small drops of liquid i.e. water to pipe, where drops of liquid are intended to act on one under-part of treatment unit |
CN110100135A (en) * | 2016-12-21 | 2019-08-06 | 株式会社电装 | Humidifier |
EP3560737A1 (en) * | 2018-04-28 | 2019-10-30 | Beijing Xiaomi Mobile Software Co., Ltd. | Air purification apparatus, method of controlling the apparatus, device of controlling the apparatus and vehicle using the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2577553B (en) | 2018-09-28 | 2021-03-17 | Dyson Technology Ltd | Vehicle air conditioning |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285010A (en) * | 1988-06-25 | 1990-03-26 | Nippon Denso Co Ltd | Cooling device |
DE19651279A1 (en) * | 1995-12-13 | 1997-06-19 | Denso Corp | Air-conditioning system e.g. for diesel vehicle or electric vehicle |
US5890371A (en) * | 1996-07-12 | 1999-04-06 | Thermotek, Inc. | Hybrid air conditioning system and a method therefor |
-
2006
- 2006-07-07 FR FR0606245A patent/FR2903345B1/en active Active
-
2007
- 2007-06-29 WO PCT/IB2007/052537 patent/WO2008007286A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285010A (en) * | 1988-06-25 | 1990-03-26 | Nippon Denso Co Ltd | Cooling device |
DE19651279A1 (en) * | 1995-12-13 | 1997-06-19 | Denso Corp | Air-conditioning system e.g. for diesel vehicle or electric vehicle |
US5890371A (en) * | 1996-07-12 | 1999-04-06 | Thermotek, Inc. | Hybrid air conditioning system and a method therefor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011007080A1 (en) * | 2009-07-17 | 2011-01-20 | Peugeot Citroën Automobiles SA | Method for operating electrical power storage device ventilation system |
FR2948072A1 (en) * | 2009-07-17 | 2011-01-21 | Peugeot Citroen Automobiles Sa | METHOD FOR COOLING SYSTEM OF ELECTRIC ENERGY STORAGE DEVICES |
DE102012009909A1 (en) * | 2012-05-18 | 2013-11-21 | Volkswagen Aktiengesellschaft | Air conditioning device for motor car, has channels connected with outside chamber at input side by independent controllable flaps, and fan devices comprising independent controllable fans to which channels are attached |
DE102012009909B4 (en) | 2012-05-18 | 2022-07-28 | Volkswagen Aktiengesellschaft | Air conditioning device for a motor vehicle, method for its operation and motor vehicle |
FR2998653A1 (en) * | 2012-11-28 | 2014-05-30 | Peugeot Citroen Automobiles Sa | Device for treatment of air in enclosure i.e. passenger compartment, of car, has diffusion unit arranged to supply small drops of liquid i.e. water to pipe, where drops of liquid are intended to act on one under-part of treatment unit |
CN110100135A (en) * | 2016-12-21 | 2019-08-06 | 株式会社电装 | Humidifier |
EP3560737A1 (en) * | 2018-04-28 | 2019-10-30 | Beijing Xiaomi Mobile Software Co., Ltd. | Air purification apparatus, method of controlling the apparatus, device of controlling the apparatus and vehicle using the same |
US11383586B2 (en) | 2018-04-28 | 2022-07-12 | Beijing Xiaomi Mobile Software Co., Ltd. | Air purification apparatus, method of controlling the apparatus, device of controlling the apparatus and vehicle using the same |
Also Published As
Publication number | Publication date |
---|---|
FR2903345B1 (en) | 2011-04-08 |
WO2008007286A1 (en) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2902700A1 (en) | Cab interior air-conditioning, heating, ventilating and pre-ventilating device for e.g. dome light of vehicle, has partition subdividing channel into air passages at respective unit`s surfaces, where integrality of air flow traverses unit | |
EP2228242B1 (en) | Heating, ventilating and/or air conditioning device with modified air duct depending on the version. | |
FR2876223A1 (en) | DEVICE FOR COOLING BATTERIES OF A MOTORIZED ELECTRIC AND / OR HYBRID VEHICLE | |
FR2886217A1 (en) | INDEPENDENT AIR CONDITIONING MODULE, IN PARTICULAR FOR THERMAL TREATMENT OF A VEHICLE'S CAR AREA | |
FR2716414A1 (en) | Device for controlling an air conditioning system for a vehicle. | |
FR2903345A1 (en) | DEVICE FOR PREVENTILATION, VENTILATION, HEATING AND / OR AIR CONDITIONING OF A VEHICLE HABITACLE UTILIZING A PULSER AND THERMOELECTRIC UNITS WITH PELTIER EFFECT | |
EP2889168B1 (en) | Heating, ventilation and/or air conditioning device | |
EP3046786B1 (en) | Heating, ventilation and/or air conditioning installation for a motor vehicle passenger compartment | |
WO2017103358A1 (en) | Intake blower intended for a motor vehicle heating, ventilation and/or air conditioning device, and heating, ventilation and/or air conditioning device | |
FR2914229A1 (en) | Auxiliary ventilation module for motor vehicle, has valve isolating main chamber from outer air when air pressure of chamber is lesser than or equal to outer air pressure, where valve is situated in outer blocking duct | |
EP3481655B1 (en) | Heating, ventilation and/or air conditioning device for a motor vehicle | |
EP2132053B1 (en) | Cooling of electrical components by diverting an air flow in a vehicle ventilation installation | |
EP3046784B1 (en) | Air conditioning device for a motor vehicle with dual stream and distributor of cold | |
EP2106941A1 (en) | Heating, ventilating and / or air conditioning apparatus for motor vehicle | |
FR2995256A1 (en) | COMPACT HEATING / AIR CONDITIONING ASSEMBLY FOR MOTOR VEHICLE | |
EP1640196B1 (en) | Structural element of a vehicle passenger compartment comprising a selective air distribution module | |
FR2905898A1 (en) | Air flow e.g. cold air flow, circulation managing device for cab interior of motor vehicle, has control units controlling quantity of intake air, where position of one of units having one inlet is subjected to position of obturation unit | |
FR2718682A1 (en) | Air conditioning installation with improved control for a motor vehicle. | |
FR3133661A1 (en) | Motorized ventilation unit | |
EP1882603B1 (en) | Air mixing and/or distribution module for ventilating specific areas of a vehicle passenger compartment | |
FR3010658A1 (en) | AIR CONDITIONING DEVICE FOR MOTOR VEHICLE LIMITING AIR HEATING IN COOLING MODE | |
EP2836381A1 (en) | Device for the thermal conditioning of a vehicle passenger compartment | |
EP1510379A1 (en) | Air distribution module for an air conditioning system of a passenger compartment | |
FR2863947A1 (en) | Motor vehicle, has auxiliary heating apparatus arranged in front of blower in air conditioning case, in direction of air flow to be flown back into cab interior, where heated air is introduced in upstream of blower | |
WO2016131679A1 (en) | Equipment for thermal conditioning of a passenger compartment of a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 12 |
|
PLFP | Fee payment |
Year of fee payment: 13 |
|
PLFP | Fee payment |
Year of fee payment: 14 |
|
PLFP | Fee payment |
Year of fee payment: 15 |
|
PLFP | Fee payment |
Year of fee payment: 16 |
|
PLFP | Fee payment |
Year of fee payment: 17 |
|
PLFP | Fee payment |
Year of fee payment: 18 |