FR2980380A1 - Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support - Google Patents
Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support Download PDFInfo
- Publication number
- FR2980380A1 FR2980380A1 FR1158504A FR1158504A FR2980380A1 FR 2980380 A1 FR2980380 A1 FR 2980380A1 FR 1158504 A FR1158504 A FR 1158504A FR 1158504 A FR1158504 A FR 1158504A FR 2980380 A1 FR2980380 A1 FR 2980380A1
- Authority
- FR
- France
- Prior art keywords
- laser beam
- powder layer
- metal powder
- electron beam
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 70
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 title claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000010408 sweeping Methods 0.000 title abstract 12
- 238000000034 method Methods 0.000 claims abstract description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000007711 solidification Methods 0.000 claims abstract description 5
- 230000008023 solidification Effects 0.000 claims abstract description 5
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910000601 superalloy Inorganic materials 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 230000004927 fusion Effects 0.000 abstract description 5
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 238000001033 granulometry Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 238000009434 installation Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/362—Process control of energy beam parameters for preheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/364—Process control of energy beam parameters for post-heating, e.g. remelting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/44—Radiation means characterised by the configuration of the radiation means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/44—Radiation means characterised by the configuration of the radiation means
- B22F12/45—Two or more
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Stratégie de fabrication d'une pièce métallique par fusion sélective d'une poudre La présente invention concerne un procédé de fabrication couche par couche d'une pièce métallique par fusion sélective d'une poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons, un tel procédé étant également connu sous les noms de Direct Metal Laser Sintering ou Electron Beam Melting. On connaît une technique qui consiste à fabriquer une pièce par fusion de couches successives de poudre au moyen d'un faisceau laser ou d'un faisceau d'électrons commandé par un système de traitement de l'information dans lequel on a enregistré les coordonnées tridimensionnelles des points des couches successives à réaliser. De façon pratique, on dispose dans une cuve dont le fond est formé par un plateau mobile en translation, une première couche de poudre à l'aide d'un racleur. La couche présente alors une surface inférieure correspondant à la surface du plateau et une surface supérieure sur laquelle est dirigé et déplacé le faisceau laser ou le faisceau d'électrons. L'énergie apportée par ce faisceau provoque la fusion locale de la poudre qui, en se solidifiant, forme une première couche de la pièce métallique. Après formation de cette première couche, le plateau est descendu d'une distance correspondant à l'épaisseur d'une couche, puis une seconde couche de poudre est amenée par le racleur sur la couche précédente. De la même manière que précédemment, une seconde couche de la pièce métallique est formée à l'aide du faisceau. Ces opérations sont répétées jusqu'à fabrication complète de la pièce. Un tel procédé permet de réduire les temps de fabrication des pièces d'environ 30%, par rapport à un usinage classique. The present invention relates to a method of manufacturing layer by layer of a metal part by selective melting of a powder with the aid of a laser beam or a laser beam. an electron beam, such a process also being known as Direct Metal Laser Sintering or Electron Beam Melting. A technique is known which consists in making a part by melting successive layers of powder by means of a laser beam or an electron beam controlled by an information processing system in which the three-dimensional coordinates have been recorded. points of successive layers to achieve. Conveniently, in a vessel whose bottom is formed by a movable plate in translation, a first layer of powder is provided with a scraper. The layer then has a lower surface corresponding to the surface of the plate and an upper surface on which is directed and displaced the laser beam or the electron beam. The energy provided by this beam causes the local melting of the powder which, solidifying, forms a first layer of the metal part. After forming this first layer, the plate is lowered by a distance corresponding to the thickness of a layer, then a second layer of powder is fed by the scraper on the previous layer. In the same way as before, a second layer of the metal part is formed using the beam. These operations are repeated until complete production of the part. Such a method makes it possible to reduce the manufacturing times of the parts by approximately 30% compared with conventional machining.
On a toutefois constaté que les pièces fabriquées à l'aide d'un tel procédé peuvent ne pas présenter les caractéristiques mécaniques recherchées. Des études menées par la Demanderesse ont permis de constater que le matériau de ces pièces n'est pas toujours suffisamment dense et peut être fissuré et/ou peut présenter une quantité de porosités trop importante. La taille de ces pores doit être la plus faible possible pour réduire les risques d'amorce de fissure qu'ils constituent. Plus les amorces de fissures sont grandes, plus les fissures générées peuvent se propager et endommager gravement la pièce, en particulier si cette dernière est soumise à des sollicitations telles qu'une fatigue vibratoire ou oligocyclique. Dans le cas de la fusion sélective à l'aide d'un faisceau laser ou d'un faisceau d'électrons, plus l'énergie du faisceau est importante, plus le matériau obtenu après solidification du bain de poudre fondue est dense. Cependant, un faisceau dont l'énergie est élevée génère des gradients thermiques importants en avant et en arrière du bain liquide obtenu par fusion, ce qui peut générer des fissures qui dégradent les propriétés mécaniques de la pièce, en particulier si le matériau est sensible à la fissuration tel que le René 77, le TiAI, etc... Le matériau des pièces obtenues par un tel procédé peut également présenter une hétérogénéité relativement importante, ce qui est défavorable en termes de propriétés mécaniques. However, it has been found that parts made using such a process may not have the desired mechanical characteristics. Studies conducted by the Applicant have found that the material of these parts is not always dense enough and can be cracked and / or may have too much porosity. The size of these pores must be as small as possible to reduce the risk of crack initiation they constitute. The larger the crack initiators, the more the cracks generated can spread and seriously damage the part, especially if the latter is subjected to stresses such as vibratory or oligocyclic fatigue. In the case of selective fusion using a laser beam or an electron beam, the higher the energy of the beam, the more the material obtained after solidification of the molten powder bath is dense. However, a beam whose energy is high generates significant thermal gradients ahead and behind the melt liquid bath, which can generate cracks that degrade the mechanical properties of the part, especially if the material is sensitive to cracking such as René 77, TiAI, etc ... The material of the parts obtained by such a process can also have a relatively large heterogeneity, which is unfavorable in terms of mechanical properties.
L'objectif recherché est d'obtenir des pièces dont le matériau est le plus dense possible, avec des porosités les plus petites possibles, sans pour autant présenter de fissures. L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ces problèmes. The objective is to obtain parts whose material is as dense as possible, with the smallest possible porosities, without presenting cracks. The invention aims in particular to provide a simple, effective and economical solution to these problems.
A cet effet, elle propose un procédé de fabrication d'une pièce métallique, réalisée couche par couche par dépôt d'une couche de poudre métallique sur un support ou sur une partie déjà réalisée de la pièce, puis par fusion sélective de la couche de poudre par balayage de la surface de la couche de poudre par un faisceau laser ou un faisceau d'électrons, une couche de la pièce étant obtenue après solidification de la couche de poudre fondue, caractérisé en ce que, pour chaque couche de la pièce ainsi réalisée, le procédé comprend au moins deux balayages successifs d'une même zone de la couche de poudre par un faisceau laser ou un faisceau d'électrons. Alors qu'auparavant, la couche de poudre n'était balayée qu'une seule fois par le faisceau, l'invention propose donc de réaliser deux balayages successifs de cette couche. Ceci permet de mieux contrôler le procédé de fabrication, de réduire les risques de fissuration et de générer des couches de matière de plus grande densité sans provoquer de gradients thermiques trop importants, ainsi que d'homogénéiser le matériau des pièces ainsi fabriquées. De préférence, les deux balayages successifs de la même zone sont réalisés avec des faisceaux laser ou d'électrons d'énergie différente. En particulier, le premier balayage peut être effectué avec un faisceau laser ou un faisceau d'électrons dont l'énergie est, par rapport à celle dudit faisceau qui assure le balayage suivant : - soit inférieure, afin de préchauffer la poudre pour réduire le gradient thermique au passage du deuxième balayage qui créé la fusion ; - soit supérieure, afin d'obtenir une double fusion. For this purpose, it proposes a method of manufacturing a metal part, carried out layer by layer by depositing a layer of metal powder on a support or on a part already made of the part, then by selective melting of the layer of powder by scanning the surface of the powder layer by a laser beam or an electron beam, a layer of the part being obtained after solidification of the layer of melted powder, characterized in that for each layer of the piece and realized, the method comprises at least two successive scans of the same area of the powder layer by a laser beam or an electron beam. Whereas before, the powder layer was scanned only once by the beam, the invention therefore proposes to perform two successive scans of this layer. This allows better control of the manufacturing process, reduce the risk of cracking and generate layers of higher density material without causing excessive thermal gradients, as well as to homogenize the material of the parts thus manufactured. Preferably, the two successive scans of the same area are made with laser beams or electrons of different energy. In particular, the first scan may be performed with a laser beam or an electron beam whose energy is, relative to that of said beam which provides the following scan: - is lower, in order to preheat the powder to reduce the gradient thermal at the passage of the second sweep that creates the fusion; - higher, in order to obtain a double fusion.
Chaque balayage peut ainsi être réalisé à l'aide d'un faisceau ayant une énergie adaptée à l'effet recherché. Le premier balayage permet par exemple d'obtenir la bonne densité du matériau ainsi que la taille de porosité recherchée. Le second balayage peut alors être effectué avec une énergie moindre, sans détruire l'effet du premier balayage car la poudre a déjà été fondue. Ce second balayage permet d'accroître l'homogénéité du matériau et abaisse le niveau de contraintes résiduelles du matériau. Selon une autre caractéristique de l'invention, pour obtenir un état de surface moins rugueux, la périphérie de la pièce est balayée deux fois par un faisceau laser ou un faisceau d'électrons dont l'énergie est inférieure à celle utilisée pour balayer le coeur de la pièce. Each scan can thus be performed using a beam having an energy adapted to the desired effect. The first scan makes it possible, for example, to obtain the right density of the material as well as the desired porosity size. The second scan can then be performed with less energy, without destroying the effect of the first scan because the powder has already been melted. This second scan makes it possible to increase the homogeneity of the material and lowers the level of residual stresses of the material. According to another characteristic of the invention, in order to obtain a rougher surface condition, the periphery of the part is scanned twice by a laser beam or an electron beam whose energy is less than that used to scan the core. of the room.
Dans un premier mode d'exécution du procédé selon l'invention, on réalise un premier balayage complet de la couche de poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons avant d'effectuer au moins un second balayage complet de la zone précédemment balayée à l'aide du faisceau laser ou du faisceau d'électrons. Ce premier mode permet de n'utiliser qu'une seule source laser qui réalise deux balayages complets, l'un après l'autre. Dans un second mode d'exécution de ce procédé, on réalise un balayage de la couche de poudre à l'aide d'un premier et d'un second faisceau, au moins, déplacés en synchronisme et décalés l'un par rapport à l'autre de façon à ce que la trajectoire du second faisceau suive, au moins partiellement, celle du premier faisceau. Ce second mode d'exécution permet de réaliser des pièces avec un temps de cycle très faible. In a first embodiment of the method according to the invention, a first complete scan of the powder layer is carried out using a laser beam or an electron beam before carrying out at least a second complete scanning of the previously scanned area using the laser beam or the electron beam. This first mode makes it possible to use only one laser source which carries out two complete sweeps, one after the other. In a second embodiment of this method, the powder layer is scanned using a first and a second beam, at least, moved in synchronism and offset with respect to the other so that the trajectory of the second beam follows, at least partially, that of the first beam. This second embodiment makes it possible to produce parts with a very short cycle time.
Dans le cadre du second mode d'exécution, les deux faisceaux peuvent être produits par une même source, dont le faisceau a été divisé en au moins deux parties, ou par deux sources distinctes. Il est à noter que l'utilisation d'une seule source permet d'obtenir deux faisceaux d'énergies différentes. In the context of the second embodiment, the two beams may be produced by the same source, whose beam has been divided into at least two parts, or by two separate sources. It should be noted that the use of a single source makes it possible to obtain two beams of different energies.
Avantageusement, la poudre est en superalliage à base Nickel, la granulométrie moyenne de la poudre étant comprise entre 40 et 45 lm, le premier balayage de la couche de poudre étant réalisé à l'aide d'un faisceau laser d'énergie linéaire comprise entre 0,22 et 0,26 Watt.s/mm, le second balayage étant réalisé à l'aide d'un faisceau laser d'énergie comprise entre 0,11 et 0,13 Watt.s/mm. En outre, pour améliorer l'état de surface, la périphérie de la pièce peut être balayée par un premier faisceau laser dont l'énergie linéaire est comprise entre 0,14 et 0,18 Watt.s/mm, puis par un second faisceau laser dont l'énergie est comprise 0,09 et 0,11Watt.s/mm. Advantageously, the powder is made of nickel-based superalloy, the mean particle size of the powder being between 40 and 45 μm, the first scan of the powder layer being made using a laser beam of linear energy between 0.22 and 0.26 Watt s / mm, the second scan being performed using a laser energy beam of between 0.11 and 0.13 Watt s / mm. In addition, to improve the surface condition, the periphery of the part can be scanned by a first laser beam whose linear energy is between 0.14 and 0.18 Watt s / mm, then by a second beam laser whose energy is between 0.09 and 0.11 Watts / mm.
L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels : - la figure 1 est une vue schématique d'une installation de fusion sélective de poudre ; - les figures 2 à 4 sont vues d'une partie de l'installation, selon trois variantes de réalisation de l'invention. La figure 1 représente une installation de fusion sélective de poudre utilisée pour la fabrication de pièces telles par exemple que des aubes de turbomachine. Cette installation comporte un réservoir 1 contenant une poudre métallique 2 et dont le fond 3 est mobile et déplaçable en translation verticale par une tige 4 d'un vérin, et une cuve voisine 5 dont le fond est constitué par un plateau mobile 6, également déplaçable en translation verticale par une tige 7 d'un vérin. L'installation comporte en outre un racleur 8 permettant d'amener de la poudre du réservoir 1 vers la cuve 5, par déplacement dans un plan horizontal A, et des moyens de génération 9 d'un faisceau laser ou d'un faisceau d'électrons, couplés à un dispositif 10 commandé par ordinateur pour orienter et déplacer le faisceau 11. Un bac de réception 12 de la poudre excédentaire 13, adjacent à la cuve 5, peut également être prévu. The invention will be better understood and other details, features and advantages of the invention will become apparent on reading the following description given by way of non-limiting example with reference to the accompanying drawings, in which: FIG. 1 is a view schematic diagram of a selective powder melting plant; - Figures 2 to 4 are seen from a portion of the installation, according to three embodiments of the invention. FIG. 1 represents a selective powder melting installation used for the manufacture of parts such as, for example, turbomachine blades. This installation comprises a tank 1 containing a metal powder 2 and whose bottom 3 is movable and movable in vertical translation by a rod 4 of a jack, and a neighboring tank 5 whose bottom is constituted by a movable plate 6, also movable in vertical translation by a rod 7 of a jack. The installation further comprises a scraper 8 for feeding powder from the tank 1 to the tank 5, by displacement in a horizontal plane A, and means 9 for generating a laser beam or a beam of electrons, coupled to a computer controlled device 10 for orienting and moving the beam 11. A receiving tray 12 of the excess powder 13, adjacent to the tank 5, can also be provided.
Le fonctionnement de cette installation est le suivant. Tout d'abord, le fond 3 du réservoir 1 est déplacé vers le haut de manière à ce qu'une certaine quantité de poudre 2 soit située au-dessus du plan horizontal A. Le racleur 8 est déplacé de la gauche vers la droite, de manière à racler ladite couche de poudre 2 dans le réservoir 1 et déposer une couche mince de poudre métallique sur la surface plane horizontale du plateau 6. La quantité de poudre 2 et la position du plateau 6 sont déterminées de façon à former une couche de poudre d'une épaisseur choisie et constante. The operation of this installation is as follows. First, the bottom 3 of the tank 1 is moved upwards so that a certain amount of powder 2 is located above the horizontal plane A. The scraper 8 is moved from left to right, in order to scrape said powder layer 2 in the reservoir 1 and deposit a thin layer of metal powder on the horizontal flat surface of the plate 6. The quantity of powder 2 and the position of the plate 6 are determined so as to form a layer of powder of a chosen and constant thickness.
Dans un premier mode d'exécution du procédé, un faisceau laser 11 ou un faisceau d'électrons, perpendiculaire au plan A, balaye une première fois une zone déterminée de la couche de poudre formée dans la cuve 5, de manière à la préchauffer ou la faire fondre localement. Les zones fondues se solidifient ensuite en formant une première couche de matière 14, cette couche ayant par exemple une épaisseur de l'ordre de 10 à 200 pm. Cette couche est ensuite balayée une seconde fois par le faisceau laser 11 ou par le faisceau d'électrons. Dans ce cas, il est donc procédé à un premier balayage complet de la couche de poudre à l'aide d'un faisceau laser ou d'un faisceau d'électrons avant d'effectuer au moins un second balayage complet de la zone précédemment balayée à l'aide d'un faisceau laser ou d'un faisceau d'électrons. Une seule source laser ou d'électrons 9 peut être utilisée pour la mise en oeuvre d'un tel procédé, comme cela est illustré schématiquement à la figure 2. In a first embodiment of the method, a laser beam 11 or an electron beam, perpendicular to the plane A, scans for a first time a determined zone of the powder layer formed in the tank 5, so as to preheat it or melt it locally. The melted zones then solidify by forming a first layer of material 14, this layer having, for example, a thickness of the order of 10 to 200 μm. This layer is then scanned a second time by the laser beam 11 or by the electron beam. In this case, a first complete scan of the powder layer with a laser beam or an electron beam is then performed before performing at least a second complete scan of the previously scanned area. using a laser beam or an electron beam. A single laser or electron source 9 can be used for the implementation of such a method, as shown schematically in FIG. 2.
En variante, il est également possible de procéder à un balayage de la couche de poudre à l'aide d'un premier et d'un second faisceaux 11a, 11b, déplacés simultanément en synchronisme et décalés l'un par rapport à l'autre de façon à ce que la trajectoire du second faisceau 11 b suive, au moins partiellement, celle du premier faisceau 11 a. Alternatively, it is also possible to scan the powder layer using a first and a second beam 11a, 11b, moved simultaneously in synchronism and offset with respect to each other so that the trajectory of the second beam 11b follows, at least partially, that of the first beam 11a.
Dans un tel cas, les deux faisceaux 11a, llb peuvent être produits par deux sources 9 distinctes (figure 3), ou par une seule source 9 dont le faisceau a été divisée en deux parties par un système optique bifocal 15 ou par tout autre moyen de séparation du faisceau (figure 4), chacun des deux faisceaux étant ensuite piloté par un dispositif de balayage et/ou par un montage optique 16 distinct afin d'obtenir le balayage et l'énergie escomptés. Selon l'invention, les deux balayages successifs de la même zone sont réalisés avantageusement avec des faisceaux laser ou d'électrons d'énergies différentes. En particulier, le premier balayage est effectué avec 30 un faisceau laser ou un faisceau d'électrons dont l'énergie est, par rapport à celle dudit faisceau lors du balayage suivant, soit inférieure (préchauffage), soit supérieure (double fusion). En outre, la périphérie de la pièce est avantageusement balayée successivement par un faisceau laser ou un faisceau d'électrons dont l'énergie est inférieure à celle utilisée pour balayer le coeur de la pièce. A titre d'exemple, dans le cas où la poudre est en superalliage à base Nickel et où la granulométrie moyenne de la poudre est comprise entre 40 et 45 lm, le premier balayage de la couche de poudre est réalisé à l'aide d'un faisceau laser d'énergie comprise entre 0,22 et 0,26 10 Watt.s/mm, le second balayage de la couche de poudre étant réalisé à l'aide d'un faisceau laser d'énergie comprise entre 0,11 et 0,13 Watt.s/mm. Dans ce cas également, la périphérie de la pièce est balayée par un premier faisceau laser dont l'énergie est comprise entre 0,14 et 0,18 Watt.s/mm, puis par un second faisceau laser dont l'énergie est comprise 15 entre 0,09 et 0,11 Watt.s/mm. La périphérie présente par exemple une largeur comprise entre 50 et 100 lm. L'épaisseur de chaque couche de la pièce est comprise entre 10 et 45 pm, respectivement entre 45 et 150 pm, lorsque la poudre est fondue à 20 l'aide d'un faisceau laser ou respectivement à l'aide d'un faisceau d'électrons. Les couches minces sont privilégiées car elles permettent de contrôler la rugosité. Une fois qu'une première couche de la pièce a été réalisée, le plateau 6 est descendu puis une seconde couche de poudre est amenée, 25 de la même manière que précédemment, sur la première couche de poudre. Ces opérations sont répétées jusqu'à la formation complète de la pièce. Les couches présentent sensiblement la même épaisseur. Dans le cas où la pièce est construite couche par couche par 30 fusion sélective de la poudre à l'aide d'un faisceau laser, la poudre présente une taille de grain moyenne comprise entre 10 et 50 lm, préférentiellement comprise entre 40 et 45 i_tm. Dans le cas où la pièce est construite couche par couche par fusion sélective de la poudre à l'aide d'un faisceau d'électrons, la poudre présente une taille de grain moyenne comprise entre 50 et 100 lm. Le procédé selon l'invention permet de générer des pièces de plus grande densité sans provoquer de gradients thermiques trop importants, et d'homogénéiser le matériau des pièces ainsi fabriquées. En outre, les pièces réalisées à l'aide de ce procédé n'ont pas nécessairement besoin de subir une opération supplémentaire de traitement thermique et/ou de compactage isostatique à chaud, ce qui est un gain évident en termes de temps et de coût du cycle de fabrication. In such a case, the two beams 11a, 11b may be produced by two separate sources 9 (FIG. 3), or by a single source 9 whose beam has been divided into two parts by a bifocal optical system 15 or by any other means beam separation (Figure 4), each of the two beams being then controlled by a scanning device and / or by a separate optical arrangement 16 to obtain the expected scan and energy. According to the invention, the two successive scans of the same zone are advantageously made with laser beams or electrons of different energies. In particular, the first scan is performed with a laser beam or an electron beam whose energy is, relative to that of said beam during the next scan, either lower (preheating) or higher (double melting). In addition, the periphery of the part is advantageously scanned successively by a laser beam or an electron beam whose energy is less than that used to scan the heart of the part. By way of example, in the case where the powder is made of nickel-based superalloy and the mean particle size of the powder is between 40 and 45 μm, the first sweep of the powder layer is carried out using an energy laser beam of between 0.22 and 0.26 Watt s / mm, the second scan of the powder layer being carried out using an energy laser beam of between 0.11 and 0.13 Watt s / mm. In this case also, the periphery of the part is scanned by a first laser beam whose energy is between 0.14 and 0.18 Watt s / mm, then by a second laser beam whose energy is included. between 0.09 and 0.11 Watt s / mm. The periphery has for example a width of between 50 and 100 lm. The thickness of each layer of the part is between 10 and 45 μm, respectively between 45 and 150 μm, when the powder is melted with the aid of a laser beam or with a laser beam respectively. electrons. Thin films are preferred because they control the roughness. Once a first layer of the piece has been made, the plate 6 is lowered and then a second layer of powder is fed, in the same manner as before, onto the first layer of powder. These operations are repeated until the complete formation of the piece. The layers have substantially the same thickness. In the case where the part is built layer by layer by selective melting of the powder by means of a laser beam, the powder has an average grain size of between 10 and 50 μm, preferably between 40 and 45 μm. . In the case where the part is built layer by layer by selective melting of the powder with the aid of an electron beam, the powder has an average grain size of between 50 and 100 μm. The method according to the invention makes it possible to generate parts of greater density without causing excessive thermal gradients, and to homogenize the material of the parts thus produced. In addition, the parts made using this method do not necessarily need to undergo an additional heat treatment operation and / or hot isostatic compaction, which is an obvious gain in terms of time and cost of the process. manufacturing cycle.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1158504A FR2980380B1 (en) | 2011-09-23 | 2011-09-23 | STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1158504A FR2980380B1 (en) | 2011-09-23 | 2011-09-23 | STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2980380A1 true FR2980380A1 (en) | 2013-03-29 |
FR2980380B1 FR2980380B1 (en) | 2015-03-06 |
Family
ID=45757545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1158504A Active FR2980380B1 (en) | 2011-09-23 | 2011-09-23 | STRATEGY FOR MANUFACTURING A METAL PIECE BY SELECTIVE FUSION OF A POWDER |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2980380B1 (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014187606A1 (en) * | 2013-05-23 | 2014-11-27 | Arcam Ab | Method and apparatus for additive manufacturing |
US20150090074A1 (en) * | 2013-09-27 | 2015-04-02 | Alstom Technology Ltd | Method for manufacturing a metallic component by additive laser manufacturing |
CN104550952A (en) * | 2014-12-19 | 2015-04-29 | 江苏大学 | Rapid laser printing device and method for water pump shell |
US20150283612A1 (en) * | 2014-04-04 | 2015-10-08 | Matsuura Machinery Corporation | Three-Dimensional Molding Equipment and Method for Manufacturing Three-Dimensional Shaped Molding Object |
EP2878409B1 (en) | 2013-11-27 | 2016-03-30 | SLM Solutions Group AG | Method of and device for controlling an irradiation system |
US9550207B2 (en) | 2013-04-18 | 2017-01-24 | Arcam Ab | Method and apparatus for additive manufacturing |
EP3102389A4 (en) * | 2014-02-06 | 2017-02-22 | United Technologies Corporation | An additive manufacturing system with a multi-energy beam gun and method of operation |
CN106424725A (en) * | 2016-09-09 | 2017-02-22 | 赵晴堂 | Method and device for three-section type hot-melt metal material additive molding |
US9664505B2 (en) | 2014-08-20 | 2017-05-30 | Arcam Ab | Energy beam position verification |
US9676032B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US9676031B2 (en) | 2013-04-23 | 2017-06-13 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US9721755B2 (en) | 2015-01-21 | 2017-08-01 | Arcam Ab | Method and device for characterizing an electron beam |
US9718129B2 (en) | 2012-12-17 | 2017-08-01 | Arcam Ab | Additive manufacturing method and apparatus |
US9782933B2 (en) | 2008-01-03 | 2017-10-10 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US9789563B2 (en) | 2013-12-20 | 2017-10-17 | Arcam Ab | Method for additive manufacturing |
US9789541B2 (en) | 2014-03-07 | 2017-10-17 | Arcam Ab | Method for additive manufacturing of three-dimensional articles |
US9802253B2 (en) | 2013-12-16 | 2017-10-31 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9950367B2 (en) | 2014-04-02 | 2018-04-24 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
CN108057886A (en) * | 2017-11-17 | 2018-05-22 | 深圳市圆梦精密技术研究院 | The scan method of electronics selective melting |
US10130993B2 (en) | 2013-12-18 | 2018-11-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
FR3066705A1 (en) * | 2017-05-29 | 2018-11-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | PARTICLE FOR THE PRODUCTION OF METALLIC PARTS BY 3D PRINTING AND PROCESS FOR PRODUCING METALLIC PARTS |
US10144063B2 (en) | 2011-12-28 | 2018-12-04 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
US10189086B2 (en) | 2011-12-28 | 2019-01-29 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
WO2019025135A1 (en) * | 2017-08-02 | 2019-02-07 | Siemens Aktiengesellschaft | Method for forming a defined surface roughness in a region of a component for a turbomachine, which component is to be manufactured or is manufactured additively |
US10369662B2 (en) | 2009-07-15 | 2019-08-06 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US10434572B2 (en) | 2013-12-19 | 2019-10-08 | Arcam Ab | Method for additive manufacturing |
US10529070B2 (en) | 2017-11-10 | 2020-01-07 | Arcam Ab | Method and apparatus for detecting electron beam source filament wear |
US10525547B2 (en) | 2016-06-01 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10525531B2 (en) | 2015-11-17 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10549348B2 (en) | 2016-05-24 | 2020-02-04 | Arcam Ab | Method for additive manufacturing |
US10583483B2 (en) | 2015-10-15 | 2020-03-10 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US10610930B2 (en) | 2015-11-18 | 2020-04-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
CN111036902A (en) * | 2019-12-13 | 2020-04-21 | 同济大学 | Porous forming method for selective laser additive manufacturing |
FR3088837A1 (en) | 2018-11-27 | 2020-05-29 | Safran Aircraft Engines | SCRAPER FOR ADDITIVE MANUFACTURE OF METAL PARTS BY POWDER BED PROCESS |
US10786865B2 (en) | 2014-12-15 | 2020-09-29 | Arcam Ab | Method for additive manufacturing |
US10792757B2 (en) | 2016-10-25 | 2020-10-06 | Arcam Ab | Method and apparatus for additive manufacturing |
US10800101B2 (en) | 2018-02-27 | 2020-10-13 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US10807187B2 (en) | 2015-09-24 | 2020-10-20 | Arcam Ab | X-ray calibration standard object |
US10821721B2 (en) | 2017-11-27 | 2020-11-03 | Arcam Ab | Method for analysing a build layer |
US10987752B2 (en) | 2016-12-21 | 2021-04-27 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11014161B2 (en) | 2015-04-21 | 2021-05-25 | Arcam Ab | Method for additive manufacturing |
US11059123B2 (en) | 2017-04-28 | 2021-07-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11072117B2 (en) | 2017-11-27 | 2021-07-27 | Arcam Ab | Platform device |
US11185926B2 (en) | 2017-09-29 | 2021-11-30 | Arcam Ab | Method and apparatus for additive manufacturing |
US11247274B2 (en) | 2016-03-11 | 2022-02-15 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US11267051B2 (en) | 2018-02-27 | 2022-03-08 | Arcam Ab | Build tank for an additive manufacturing apparatus |
US11292062B2 (en) | 2017-05-30 | 2022-04-05 | Arcam Ab | Method and device for producing three-dimensional objects |
US11325191B2 (en) | 2016-05-24 | 2022-05-10 | Arcam Ab | Method for additive manufacturing |
US11400519B2 (en) | 2018-03-29 | 2022-08-02 | Arcam Ab | Method and device for distributing powder material |
US11517975B2 (en) | 2017-12-22 | 2022-12-06 | Arcam Ab | Enhanced electron beam generation |
WO2023047044A1 (en) | 2021-09-27 | 2023-03-30 | Addup | Method for the additive manufacture of a copper object |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5536467A (en) * | 1993-01-28 | 1996-07-16 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
US5985204A (en) * | 1997-04-25 | 1999-11-16 | Toyota Jidosha Kabushiki Kasiha | Method for producing laminated object |
DE10208150A1 (en) * | 2001-02-26 | 2002-09-12 | Matthias Fockele | Rapid prototyping by consolidating layers with laser beam includes oscillating beam impact zone to improve surface finish |
US20060119012A1 (en) * | 2004-12-07 | 2006-06-08 | 3D Systems, Inc. | Controlled densification of fusible powders in laser sintering |
WO2008013483A1 (en) * | 2006-07-27 | 2008-01-31 | Arcam Ab | Method and device for producing three-dimensional objects |
EP2119530A1 (en) * | 2008-05-15 | 2009-11-18 | General Electric Company | Preheating Using a Laser Beam |
JP2011052289A (en) * | 2009-09-03 | 2011-03-17 | Nakashima Medical Co Ltd | Method for producing implant made of titanium alloy |
-
2011
- 2011-09-23 FR FR1158504A patent/FR2980380B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5536467A (en) * | 1993-01-28 | 1996-07-16 | Eos Gmbh Electro Optical Systems | Method and apparatus for producing a three-dimensional object |
US5985204A (en) * | 1997-04-25 | 1999-11-16 | Toyota Jidosha Kabushiki Kasiha | Method for producing laminated object |
DE10208150A1 (en) * | 2001-02-26 | 2002-09-12 | Matthias Fockele | Rapid prototyping by consolidating layers with laser beam includes oscillating beam impact zone to improve surface finish |
US20060119012A1 (en) * | 2004-12-07 | 2006-06-08 | 3D Systems, Inc. | Controlled densification of fusible powders in laser sintering |
WO2008013483A1 (en) * | 2006-07-27 | 2008-01-31 | Arcam Ab | Method and device for producing three-dimensional objects |
EP2119530A1 (en) * | 2008-05-15 | 2009-11-18 | General Electric Company | Preheating Using a Laser Beam |
JP2011052289A (en) * | 2009-09-03 | 2011-03-17 | Nakashima Medical Co Ltd | Method for producing implant made of titanium alloy |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9782933B2 (en) | 2008-01-03 | 2017-10-10 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US10369662B2 (en) | 2009-07-15 | 2019-08-06 | Arcam Ab | Method and apparatus for producing three-dimensional objects |
US11161177B2 (en) | 2011-12-28 | 2021-11-02 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
US11141790B2 (en) | 2011-12-28 | 2021-10-12 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
US10189086B2 (en) | 2011-12-28 | 2019-01-29 | Arcam Ab | Method and apparatus for manufacturing porous three-dimensional articles |
US10144063B2 (en) | 2011-12-28 | 2018-12-04 | Arcam Ab | Method and apparatus for detecting defects in freeform fabrication |
US10406599B2 (en) | 2012-12-17 | 2019-09-10 | Arcam Ab | Additive manufacturing method and apparatus |
US9718129B2 (en) | 2012-12-17 | 2017-08-01 | Arcam Ab | Additive manufacturing method and apparatus |
US9950366B2 (en) | 2013-04-18 | 2018-04-24 | Arcam Ab | Apparatus for additive manufacturing |
US9550207B2 (en) | 2013-04-18 | 2017-01-24 | Arcam Ab | Method and apparatus for additive manufacturing |
US9713844B2 (en) | 2013-04-18 | 2017-07-25 | Arcam Ab | Method and apparatus for additive manufacturing |
US9676031B2 (en) | 2013-04-23 | 2017-06-13 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
RU2630096C2 (en) * | 2013-05-23 | 2017-09-05 | Аркам Аб | Method and device for manufacture by additive technologies |
JP2016526098A (en) * | 2013-05-23 | 2016-09-01 | ア−カム アーベー | Method and apparatus for additive manufacturing |
US9415443B2 (en) | 2013-05-23 | 2016-08-16 | Arcam Ab | Method and apparatus for additive manufacturing |
WO2014187606A1 (en) * | 2013-05-23 | 2014-11-27 | Arcam Ab | Method and apparatus for additive manufacturing |
US9676033B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US10814393B2 (en) | 2013-09-20 | 2020-10-27 | Arcam Ab | Apparatus for additive manufacturing |
US9676032B2 (en) | 2013-09-20 | 2017-06-13 | Arcam Ab | Method for additive manufacturing |
US10814392B2 (en) | 2013-09-20 | 2020-10-27 | Arcam Ab | Apparatus for additive manufacturing |
CN104511589A (en) * | 2013-09-27 | 2015-04-15 | 阿尔斯通技术有限公司 | Method for manufacturing metallic component by additive laser manufacturing |
US20150090074A1 (en) * | 2013-09-27 | 2015-04-02 | Alstom Technology Ltd | Method for manufacturing a metallic component by additive laser manufacturing |
EP2878409B1 (en) | 2013-11-27 | 2016-03-30 | SLM Solutions Group AG | Method of and device for controlling an irradiation system |
US10099289B2 (en) | 2013-12-16 | 2018-10-16 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9919361B2 (en) | 2013-12-16 | 2018-03-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US9802253B2 (en) | 2013-12-16 | 2017-10-31 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10130993B2 (en) | 2013-12-18 | 2018-11-20 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10974448B2 (en) | 2013-12-18 | 2021-04-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10434572B2 (en) | 2013-12-19 | 2019-10-08 | Arcam Ab | Method for additive manufacturing |
US11517964B2 (en) | 2013-12-19 | 2022-12-06 | Arcam Ab | Method for additive manufacturing |
US9789563B2 (en) | 2013-12-20 | 2017-10-17 | Arcam Ab | Method for additive manufacturing |
EP3102389A4 (en) * | 2014-02-06 | 2017-02-22 | United Technologies Corporation | An additive manufacturing system with a multi-energy beam gun and method of operation |
US9789541B2 (en) | 2014-03-07 | 2017-10-17 | Arcam Ab | Method for additive manufacturing of three-dimensional articles |
US10071424B2 (en) | 2014-03-07 | 2018-09-11 | Arcam Ab | Computer program products configured for additive manufacturing of three-dimensional articles |
US10071423B2 (en) | 2014-04-02 | 2018-09-11 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US9950367B2 (en) | 2014-04-02 | 2018-04-24 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US10058921B2 (en) | 2014-04-02 | 2018-08-28 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US10821517B2 (en) | 2014-04-02 | 2020-11-03 | Arcam Ab | Apparatus, method, and computer program product for fusing a workpiece |
US11084098B2 (en) | 2014-04-02 | 2021-08-10 | Arcam Ab | Apparatus for fusing a workpiece |
CN104972118B (en) * | 2014-04-04 | 2019-09-27 | 株式会社松浦机械制作所 | The manufacturing method of three-dimensional moulding device and three dimensional structure |
US20150283612A1 (en) * | 2014-04-04 | 2015-10-08 | Matsuura Machinery Corporation | Three-Dimensional Molding Equipment and Method for Manufacturing Three-Dimensional Shaped Molding Object |
CN104972118A (en) * | 2014-04-04 | 2015-10-14 | 株式会社松浦机械制作所 | Three-dimensional molding equipment and method for manufacturing three-dimensional shaped molding object |
EP2926925A3 (en) * | 2014-04-04 | 2015-10-21 | Matsuura Machinery Corporation | Three-dimensional molding equipment and method for manufacturing three-dimensional shaped molding object |
US9897513B2 (en) | 2014-08-20 | 2018-02-20 | Arcam Ab | Energy beam size verification |
US9915583B2 (en) | 2014-08-20 | 2018-03-13 | Arcam Ab | Energy beam position verification |
US9664505B2 (en) | 2014-08-20 | 2017-05-30 | Arcam Ab | Energy beam position verification |
US9664504B2 (en) | 2014-08-20 | 2017-05-30 | Arcam Ab | Energy beam size verification |
US10786865B2 (en) | 2014-12-15 | 2020-09-29 | Arcam Ab | Method for additive manufacturing |
CN104550952A (en) * | 2014-12-19 | 2015-04-29 | 江苏大学 | Rapid laser printing device and method for water pump shell |
US9721755B2 (en) | 2015-01-21 | 2017-08-01 | Arcam Ab | Method and device for characterizing an electron beam |
US10586683B2 (en) | 2015-01-21 | 2020-03-10 | Arcam Ab | Method and device for characterizing an electron beam |
US11014161B2 (en) | 2015-04-21 | 2021-05-25 | Arcam Ab | Method for additive manufacturing |
US12036731B2 (en) | 2015-04-21 | 2024-07-16 | Arcam Ab | Method for additive manufacturing |
US11806800B2 (en) | 2015-09-24 | 2023-11-07 | Arcam Ab | X-ray calibration standard object |
US10807187B2 (en) | 2015-09-24 | 2020-10-20 | Arcam Ab | X-ray calibration standard object |
US10583483B2 (en) | 2015-10-15 | 2020-03-10 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US11571748B2 (en) | 2015-10-15 | 2023-02-07 | Arcam Ab | Method and apparatus for producing a three-dimensional article |
US10525531B2 (en) | 2015-11-17 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11623282B2 (en) | 2015-11-18 | 2023-04-11 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US10610930B2 (en) | 2015-11-18 | 2020-04-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11247274B2 (en) | 2016-03-11 | 2022-02-15 | Arcam Ab | Method and apparatus for forming a three-dimensional article |
US11325191B2 (en) | 2016-05-24 | 2022-05-10 | Arcam Ab | Method for additive manufacturing |
US10549348B2 (en) | 2016-05-24 | 2020-02-04 | Arcam Ab | Method for additive manufacturing |
US10525547B2 (en) | 2016-06-01 | 2020-01-07 | Arcam Ab | Additive manufacturing of three-dimensional articles |
CN106424725A (en) * | 2016-09-09 | 2017-02-22 | 赵晴堂 | Method and device for three-section type hot-melt metal material additive molding |
CN106424725B (en) * | 2016-09-09 | 2019-07-05 | 赵晴堂 | Three-stage fuse metal material increases the molding method of material |
US10792757B2 (en) | 2016-10-25 | 2020-10-06 | Arcam Ab | Method and apparatus for additive manufacturing |
US10987752B2 (en) | 2016-12-21 | 2021-04-27 | Arcam Ab | Additive manufacturing of three-dimensional articles |
US11059123B2 (en) | 2017-04-28 | 2021-07-13 | Arcam Ab | Additive manufacturing of three-dimensional articles |
FR3066705A1 (en) * | 2017-05-29 | 2018-11-30 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | PARTICLE FOR THE PRODUCTION OF METALLIC PARTS BY 3D PRINTING AND PROCESS FOR PRODUCING METALLIC PARTS |
EP3409349A1 (en) * | 2017-05-29 | 2018-12-05 | Commissariat à l'énergie atomique et aux énergies alternatives | Particle for manufacturing metal parts by 3d printing and method for manufacturing metal parts |
US11123795B2 (en) | 2017-05-29 | 2021-09-21 | Commissariat à l'énergie atomique et aux énergies alternatives | Particle for making metal parts using 3D printing and method for making metal parts |
US11292062B2 (en) | 2017-05-30 | 2022-04-05 | Arcam Ab | Method and device for producing three-dimensional objects |
WO2019025135A1 (en) * | 2017-08-02 | 2019-02-07 | Siemens Aktiengesellschaft | Method for forming a defined surface roughness in a region of a component for a turbomachine, which component is to be manufactured or is manufactured additively |
US11993008B2 (en) | 2017-09-29 | 2024-05-28 | Arcam Ab | Method and apparatus for additive manufacturing |
US11185926B2 (en) | 2017-09-29 | 2021-11-30 | Arcam Ab | Method and apparatus for additive manufacturing |
US10529070B2 (en) | 2017-11-10 | 2020-01-07 | Arcam Ab | Method and apparatus for detecting electron beam source filament wear |
CN108057886A (en) * | 2017-11-17 | 2018-05-22 | 深圳市圆梦精密技术研究院 | The scan method of electronics selective melting |
US10821721B2 (en) | 2017-11-27 | 2020-11-03 | Arcam Ab | Method for analysing a build layer |
US11072117B2 (en) | 2017-11-27 | 2021-07-27 | Arcam Ab | Platform device |
US11517975B2 (en) | 2017-12-22 | 2022-12-06 | Arcam Ab | Enhanced electron beam generation |
US11458682B2 (en) | 2018-02-27 | 2022-10-04 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US11267051B2 (en) | 2018-02-27 | 2022-03-08 | Arcam Ab | Build tank for an additive manufacturing apparatus |
US10800101B2 (en) | 2018-02-27 | 2020-10-13 | Arcam Ab | Compact build tank for an additive manufacturing apparatus |
US11400519B2 (en) | 2018-03-29 | 2022-08-02 | Arcam Ab | Method and device for distributing powder material |
US11724316B2 (en) | 2018-03-29 | 2023-08-15 | Arcam Ab | Method and device for distributing powder material |
FR3088837A1 (en) | 2018-11-27 | 2020-05-29 | Safran Aircraft Engines | SCRAPER FOR ADDITIVE MANUFACTURE OF METAL PARTS BY POWDER BED PROCESS |
CN111036902B (en) * | 2019-12-13 | 2021-09-03 | 同济大学 | Porous forming method for selective laser additive manufacturing |
CN111036902A (en) * | 2019-12-13 | 2020-04-21 | 同济大学 | Porous forming method for selective laser additive manufacturing |
WO2023047044A1 (en) | 2021-09-27 | 2023-03-30 | Addup | Method for the additive manufacture of a copper object |
FR3127422A1 (en) | 2021-09-27 | 2023-03-31 | Addup | Additive manufacturing process of a copper object |
Also Published As
Publication number | Publication date |
---|---|
FR2980380B1 (en) | 2015-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR2980380A1 (en) | Manufacturing metal part such as blade of turboshaft engine, comprises performing two successive sweepings of same zone of metal powder layer by laser beam or electron beam, where metal powder layer is coated with deposit on support | |
EP2588263B1 (en) | Process for manufacturing a metal part by selectively melting a powder | |
EP2156942B1 (en) | Method for manufacturing a part by selective laser fusion or sintering of powders of different materials | |
EP2794151B1 (en) | Method and apparatus for producing three-dimensional objects | |
EP2670547B1 (en) | Sintering and laser fusion device, comprising a means for heating powder by induction | |
FR2998819A1 (en) | PROCESS FOR POWDER FUSION WITH HEATING OF THE AREA ADJACENT TO THE BATH | |
CA2853381C (en) | Apparatus for manufacturing parts by selective melting of powder | |
EP2771140B1 (en) | Method for producing a metal part for an aircraft turbo-engine | |
FR2998496A1 (en) | PROCESS FOR THE ADDITIVE PRODUCTION OF A PIECE BY SELECTIVE FUSION OR SELECTIVE SINTING OF HIGH ENERGY OPTIMIZED POWDER BEDS | |
WO2017118806A1 (en) | Method for manufacturing a workpiece by additive manufacturing | |
EP3600727B1 (en) | Specimen for the validation of operating parameters of an additive manufacturing process of a part by laser powder bed fusion | |
FR2991613A1 (en) | PROCESS FOR MANUFACTURING PIECE BY SELECTIVE FUSION OR SELECTIVE SINTING OF POWDER BEDS (S) BY MEANS OF A HIGH ENERGY BEAM | |
FR2962357A1 (en) | Repairing/reloading metal piece of turbomachine e.g. turboreactor, by determining geometry of piece, positioning and fixing piece on plate, positioning mask on plate and piece, and depositing thin metallic powder layer on surface of mask | |
FR2912674A1 (en) | METHOD FOR RECHARGING AN ALUMINUM ALLOY PIECE | |
FR2998497A1 (en) | Manufacturing e.g. intermetallic part, comprises providing a material in form of powder particles, depositing a first layer of powder of the material on support, and scanning an area of first layer by a beam to heat the powder | |
FR3064519A1 (en) | PROCESS FOR MANUFACTURING A METAL PIECE BY ADDITIVE MANUFACTURE | |
EP3509774B1 (en) | Method for manufacturing a part of electroconductive material by additive manufacturing | |
WO2019224497A1 (en) | Method for preparing the upper surface of an additive manufacturing platen by depositing a bed of powder | |
CA2835541A1 (en) | Tool for manufacturing a part by selectively melting a powder | |
FR3090459A1 (en) | Improved machine for additive manufacturing of a part and associated method | |
FR3095974A1 (en) | DEVICE AND METHOD FOR ADDITIVE MANUFACTURING BY LASER FUSION ON POWDER BED | |
FR3102079A1 (en) | Additive manufacturing process on single-piece powder beds allowing a reduction, or even elimination, of the holding elements usually required | |
FR3141631A1 (en) | Additive manufacturing process for parts, particularly for turbomachines | |
FR3098742A1 (en) | SELECTIVE ADDITIVE MANUFACTURING ON BED OF POWDER, ESPECIALLY FOR TURBOMOTOR PARTS | |
FR2981155A1 (en) | Simulating and validating propagation of cracks in metal part of turboshaft engine, comprises performing digital simulation and validation by comparing characteristics of cracks in real part with characteristics of cracks in virtual part |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
CD | Change of name or company name |
Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170719 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
PLFP | Fee payment |
Year of fee payment: 10 |
|
PLFP | Fee payment |
Year of fee payment: 11 |
|
PLFP | Fee payment |
Year of fee payment: 12 |
|
PLFP | Fee payment |
Year of fee payment: 13 |
|
PLFP | Fee payment |
Year of fee payment: 14 |