[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

FR2627013A1 - Semiconductor photovoltaic generator made on a substrate of different mesh parameter - Google Patents

Semiconductor photovoltaic generator made on a substrate of different mesh parameter Download PDF

Info

Publication number
FR2627013A1
FR2627013A1 FR8801347A FR8801347A FR2627013A1 FR 2627013 A1 FR2627013 A1 FR 2627013A1 FR 8801347 A FR8801347 A FR 8801347A FR 8801347 A FR8801347 A FR 8801347A FR 2627013 A1 FR2627013 A1 FR 2627013A1
Authority
FR
France
Prior art keywords
layer
substrate
phosphide
photovoltaic generator
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR8801347A
Other languages
French (fr)
Inventor
Manijeh Razeghi
Jean-Pascal Duchemin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thomson CSF SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson CSF SA filed Critical Thomson CSF SA
Priority to FR8801347A priority Critical patent/FR2627013A1/en
Publication of FR2627013A1 publication Critical patent/FR2627013A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Photovoltaic generator made from layers of indium phosphide on a silicon substrate. If the silicon substrate 1 is n<+> doped, the InP confinement layer 2 is n<+> doped and the InP contact layer 4 is p<+> doped. A matching grid 7 makes it possible to match the mesh cells of the InP to the silicon. Application: photovoltaic generator for the space industry.

Description

GENERATEUR PHOTOVOLTAIQUE A
SEMICONDUCTEURS
REALISE SUR UN SUBSTRAT DE PARAMETRE
DE MAILLE DIFFERENT
L'invention concerne un générateur photovoltaïque à semiconducteurs réalisé sur un substrat de paramètre de maille différent de celui des matériaux semiconducteurs du générateur photovoltaÏque .
PHOTOVOLTAIC GENERATOR A
SEMICONDUCTORS
REALIZED ON A SUBSTRATE OF PARAMETER
DIFFERENT MESH
The invention relates to a semiconductor photovoltaic generator produced on a substrate with a mesh parameter different from that of the semiconductor materials of the photovoltaic generator.

Les générateurs photovoltaïques trouvent des applica tions préférentielles dans l'lndustrie spatiale. Cependant dans l'envfronnement spatial ces générateurs sont soumis à des épreuves telles que des radiations radioactives qui peuvent perturber leur fonctionnement. Photovoltaic generators find preferred applications in the space industry. However, in the space environment, these generators are subjected to tests such as radioactive radiation which can disrupt their operation.

Les générateurs photovoltaïques à base de silicium semblent être parmi les moins coûteux mais ils ne possèdent un rendement quantique que de 20% et on observe dans ces générateurs une dégradation rapide des cellules dans l'espace à cause de la sensibilité du silicium aux radiations radioactives. The silicon-based photovoltaic generators seem to be among the least expensive but they only have a quantum efficiency of 20% and we observe in these generators a rapid degradation of the cells in space because of the sensitivity of silicon to radioactive radiation.

Les générateurs photovoltaïques à base d'arséniure de gallium (Ga As) sont plus utilisés dans l'industrie spatiale. Gallium arsenide (Ga As) photovoltaic generators are more widely used in the space industry.

Ils présentent généralement un rendement atteignant 25% et sont moins sensibles aux rayonnements radioactifs que les générateurs à base de silicium.They generally have an efficiency of up to 25% and are less sensitive to radioactive radiation than silicon-based generators.

Cependant les problèmes du rendement de ces générateurs et de leur sensibilité aux radiations radioactives restent cruciaux même dans les générateurs à base de Ga As. However, the problems of the efficiency of these generators and of their sensitivity to radioactive radiation remain crucial even in generators based on Ga As.

C'est pourquoi l'invention concerne un générateur photovoltaïque présentant les avantages suivants
- un rendement meilleur comparé aux générateurs exis tante
- une meilleure insensibüité aux radiations radloacti
- une possibilité de fabrication en grande surface
- une moins grande fragilité
- une bonne conductibilité thermique
- un coût réduit.
This is why the invention relates to a photovoltaic generator having the following advantages
- better efficiency compared to existing generators
- better insensitivity to radloacti radiations
- a possibility of manufacturing in supermarkets
- less fragility
- good thermal conductivity
- a reduced cost.

L'invention concerne donc un générateur photovoltaïque à semiconducteurs comportant, sur un substrat, une couche de confinement, laquelle est recouverte par une couche active, elle-même recouverte par une couche de contact, la couche de contact possédant en outre au moins un premier contact métallique et le substrat possédant également au moins un deuxième contact métallique, caractérisé en ce que
- le substrat est en silicium dopé d'un premier type (n+ ou p
- la couche de confinement est en phosphure d'indium (InP) dopé du même type que le substrat (n+ ou
- la couche active est en phosphure d'indium non dopé,
- la couche de contact est en phosphure d'indium dopé d'un deuxième type (p + ou n+) différent du premier type
- le générateur photovoltaïque possède en outre entre le substrat et la couche de confinement au moins une couche d'adaptation.
The invention therefore relates to a semiconductor photovoltaic generator comprising, on a substrate, a confinement layer, which is covered by an active layer, itself covered by a contact layer, the contact layer also having at least a first metal contact and the substrate also having at least one second metal contact, characterized in that
- the substrate is made of doped silicon of a first type (n + or p
- the confinement layer is indium phosphide (InP) doped of the same type as the substrate (n + or
- the active layer is made of undoped indium phosphide,
- the contact layer is of doped indium phosphide of a second type (p + or n +) different from the first type
the photovoltaic generator also has between the substrate and the confinement layer at least one adaptation layer.

Les différents objets et caractéristiques de l'invention apparaîtront plus clairement dans la description qui va suivre faite à titre d'exemple non limitatif en se reportant aux figures annexées qui représentent
- la figure 1, un exemple de réalisation du générateur photovoltaïque selon l'invention;
- la figure 2, une variante de réalisation du générateur photovoltaïque selon l'invention.
The various objects and characteristics of the invention will emerge more clearly in the description which follows, given by way of nonlimiting example, with reference to the appended figures which represent
FIG. 1, an exemplary embodiment of the photovoltaic generator according to the invention;
- Figure 2, an alternative embodiment of the photovoltaic generator according to the invention.

En se reportant à la figure 1, on va décrire un exemple de réalisation du générateur photovoltaïque selon l'invention. Referring to FIG. 1, an exemplary embodiment of the photovoltaic generator according to the invention will be described.

Le- générateur comporte, sur un substrat 1 en silicium monocristallin dopé du type n+, une couche de confinement 2 en phosphure d'indium (@@@) dopé n+, une couche active @ en phosphure d'indium non dopée ou faiblement dopée n et une
+ couche de contact 4 en phosphure d'indium dopé p
En effet, selon l'invention on prévoit d'utiliser le phosphure d'indium pour la couche de confinement 2, la couche active 3 et la couche de contact 4. On obtient ainsi un générateur photovoltaïque ayant un bon rendement (dépassant 30%) et présentant une bonne insensibilité aux rayonnements radioactifs.
The generator comprises, on a substrate 1 of n + type doped monocrystalline silicon, a confinement layer 2 of n + doped indium phosphide (@@@), an active layer @ of undoped or lightly n doped indium phosphide and an
+ p-doped indium phosphide contact layer 4
Indeed, according to the invention, provision is made to use indium phosphide for the confinement layer 2, the active layer 3 and the contact layer 4. A photovoltaic generator is thus obtained having a good efficiency (exceeding 30%). and exhibiting good insensitivity to radioactive radiation.

Le fait d'utiliser un substrat en silicium permet d'obtenir un générateur peu coûteux et d'avoir une bonne dissipation thermique.The fact of using a silicon substrate makes it possible to obtain an inexpensive generator and to have good heat dissipation.

Cependant la croissance de la couche de confinement 2 sur le substrat I donne lieu à des dislocations en raison des différences de mailles entre le silicium et le phosphure dtin- dium. Pour permettre la réalisation d'un tel dispositif, l'lnven- tion prévoit en outre, entre la couche de confinement 2 et le substrat 1, une couche d'adaptation ou réseau d'adaptation 7 appelé également super-réseau. However, the growth of the confinement layer 2 on the substrate I gives rise to dislocations due to the mesh differences between the silicon and the indium phosphide. To enable such a device to be produced, the invention further provides, between the confinement layer 2 and the substrate 1, an adaptation layer or adaptation network 7 also called a super-network.

Ce réseau d'adaptation comporte une alternance de couches de phosphure d'indium 70.1, 70.2, . 70.n et de couches d'un matériau semiconducteur 71.1, 71.2, .. 71 n dont le paramètre de maille est sensiblement égal à celui du silicium. This matching network comprises an alternation of layers of indium phosphide 70.1, 70.2,. 70.n and layers of a semiconductor material 71.1, 71.2, .. 71 n, the lattice parameter of which is substantially equal to that of silicon.

A titre d'exemple, le matériau utilisé pour les couches 71.1, 71.2, . 71.n pourra être au choix
- du phosphure d'arsénic, de gallium et d'indium, et on aura alors un super-réseau InP/Ga In As P;
- du phosphure de gallium et on aura alors un super-réseau InP/Ga P
- du phosphure d'indium et de gallium et on aura alors un super-réseau InP/Ga InP.
For example, the material used for the layers 71.1, 71.2,. 71.n can be as desired
- arsenic, gallium and indium phosphide, and we will then have an InP / Ga In As P super-lattice;
- gallium phosphide and we will then have an InP / Ga P super-lattice
- indium and gallium phosphide and we will then have an InP / Ga InP super-lattice.

Pour réaliser une bonne adaptation une dizaine de couches de chaque type (70.1 à 70.n d'une part et 71.1 à 71.n d'autre part) convient avec des couches d'épaisseurs sensiblement égales conduisant à une épaisseur du super-réseau 7 pouvant atteindre environ 1000 Angstroems par exemple. To achieve a good adaptation, ten layers of each type (70.1 to 70.n on the one hand and 71.1 to 71.n on the other hand) are suitable with layers of substantially equal thickness leading to a thickness of the super-network 7 can reach around 1000 Angstroems for example.

A titre d'exemple de réalisation on peut également indiquer que
- la couche de confinement 2 peut avoir une épaisseur de 1 à 5 micromètres et être dopée à 1018 par cm3
- la couche active 3 peut avoir une épaisseur de 1 à 10 micromètres,
- la couche active 3 peut avoir une épaisseur de 1 à 10 micromètres,
- la couche de contact å une épaisseur de 1000
Angstroems et est dopée å 1018 par cm3.
As an example of an embodiment, it can also be indicated that
- the confinement layer 2 can have a thickness of 1 to 5 micrometers and be doped at 1018 per cm3
- the active layer 3 can have a thickness of 1 to 10 micrometers,
- the active layer 3 can have a thickness of 1 to 10 micrometers,
- the contact layer has a thickness of 1000
Angstroems and is spiked to 1018 per cm3.

Un tel générateur photovoltaïque peut être réalisé par épitaxie sur une plaquette de substrat silicium par un procédé d'épitaxie tel que par
- MOCVD = Epitaxie en phase vapeur d'organométalliques;
- MOMBE = épitaxie par jet moléculaire d'organométalliques.
Such a photovoltaic generator can be produced by epitaxy on a silicon substrate wafer by an epitaxy method such as by
- MOCVD = Vapor phase epitaxy of organometallics;
- MOMBE = epitaxy by molecular beam of organometallics.

On peut ainsi réaliser des générateurs sur des plaquettes de substrat silicium pouvant atteindre 8 pouces de diamètre et obtenir des cellules de cette dimension. It is thus possible to produce generators on silicon substrate wafers that can reach 8 inches in diameter and obtain cells of this dimension.

La surface supérieure 40 de la couche de contact 4 possède un élément de contact électrique 5. Selon un exemple de réallsation préféré, cet élément 5 est disposé à la périphérie de la surface 40 et entoure cette surface 40. Par exemple dans le cas d'une surface 40, de forme circulaire dans le cas où le dispositif est réalisé sur une plaquette 1 circulaire, le contact 5 a la forme d'une couronne. La lumière permettant le fonctionnement du générateur photovoltaïque accède ainsi à la couche active selon le chemin indiqué par les flèches F. The upper surface 40 of the contact layer 4 has an electrical contact element 5. According to a preferred embodiment, this element 5 is disposed at the periphery of the surface 40 and surrounds this surface 40. For example in the case of a surface 40, of circular shape in the case where the device is produced on a circular plate 1, the contact 5 has the shape of a ring. The light allowing the operation of the photovoltaic generator thus accesses the active layer according to the path indicated by the arrows F.

La surface inférieur 10 du substrat 1 possède également un élément de contact électrique 6. Pour des raisons d'efficacité, cet élément 6 recouvre de préférence toute la surface 10. The lower surface 10 of the substrate 1 also has an electrical contact element 6. For reasons of efficiency, this element 6 preferably covers the entire surface 10.

Les éléments de contact 5 et 6 permettent les con nexions électriques vers des organes utilisateurs non représen tés . Contact elements 5 and 6 allow electrical connections to user members not shown.

Selon l'exemple de réalisation de la figure 1, l'élément de contact 5 est en matériau à base d'or et de zinc (Au-Zn) et l'élément de contact 6 est en matériau à base d'or et de germanium (Au-Ge). According to the embodiment of FIG. 1, the contact element 5 is made of a material based on gold and zinc (Au-Zn) and the contact element 6 is made of a material based on gold and germanium (Au-Ge).

Selon une variante de réalisation représentée en fi~ gure 2, le substrat 1 en silicium peut être dopé de type p
La couche de confinement 2 est alors également dopé p, tandis que la couche de contact 4 est dopé n
Le contact 5 est alors réalisé h base d'or et de germa nium et le contact 6 est réalisé à base d'or et de zinc.
According to an alternative embodiment shown in fi ~ Figure 2, the silicon substrate 1 can be p-type doped
The confinement layer 2 is then also p-doped, while the contact layer 4 is n-doped
Contact 5 is then made on a basis of gold and germa nium and contact 6 is made on a basis of gold and zinc.

On obtient ainsi en raison de l'utilisation d'un substrat silicium, un dispositif qui présente l'avantages d'être
- moins fragile;
- moins épais, la densité du silicium étant plus faible ce qui permet d'amincir la structure et de réduire le poids
- meilleur dissipateur thermique
- plus économique
- réalisable en grande surface.
There is thus obtained, due to the use of a silicon substrate, a device which has the advantages of being
- less fragile;
- less thick, the density of the silicon being lower, which makes it possible to thin the structure and reduce the weight
- better heat sink
- more economical
- achievable in supermarkets.

La réalisation avec du phosphure d'indium apporte les avantages
- d'un meilleur rendement
- d'une meilleure insensibilité aux rayonnements radioactifs.
The realization with indium phosphide brings the advantages
- better performance
- better insensitivity to radioactive radiation.

Il est bien évident que la description qui précède n'a été faite qu'a titre d'exemple non limitatif. Les exemples numériques, notamment, et les types de matériaux utilisables n'ont été indiquées que pour illustrer la description D'autres variantes peuvent être envisagées sans sortir du cadre de l'invention. It is obvious that the foregoing description has only been given by way of non-limiting example. The numerical examples, in particular, and the types of materials which can be used have been indicated only to illustrate the description. Other variants can be envisaged without departing from the scope of the invention.

Claims (10)

REVENDICATIONS 1. Générateur photovoltaïque à semiconducteurs comportant, sur un substrat (1), une couche de confinement (2), laquelle est recouverte par une couche active (3), elle-même recouverte par une couche de contact (4), la couche de contact(4) possédant en outre au moins un premier contact métallique (5) et le substrat possédant également au moins un deuxième contact métallique (6), caractérisé en ce que 1. Photovoltaic semiconductor generator comprising, on a substrate (1), a confinement layer (2), which is covered by an active layer (3), itself covered by a contact layer (4), the layer of contact (4) further having at least one first metal contact (5) and the substrate also having at least one second metal contact (6), characterized in that - le substrat est en silicium dopé d'un premier type (n+ ou p ), - the substrate is made of doped silicon of a first type (n + or p), - la couche de confinement (2) est en phosphure d'in dlum (InP) dopé du même type que le substrat (n ou p ), - the confinement layer (2) is in dlum phosphide (InP) doped of the same type as the substrate (n or p), - la couche active (3) est en phosphure d'indium non dopé ou faiblement dopé, - the active layer (3) is made of undoped or lightly doped indium phosphide, - la couche de contact (4) est en phosphure d'indium dopé d'un deuxième type (p + ou n+) différent du premier type - the contact layer (4) is of doped indium phosphide of a second type (p + or n +) different from the first type - le générateur photovoltaïque possède en outre, entre le substrat et la couche de confinement (2), au moins une couche d'adaptation (7). - the photovoltaic generator also has, between the substrate and the confinement layer (2), at least one adaptation layer (7). 2. Générateur photovoltaïque selon la revendication 1, caractérisé en ce que le substrat (1) est en silicium dopé de type n, la couche de confinement est en phosphure d'indium dopé de type n et la couche de contact en phosphure d'in 2. Photovoltaic generator according to claim 1, characterized in that the substrate (1) is of n-type doped silicon, the confinement layer is of n-type doped indium phosphide and the contact layer of n-type phosphide. + dium dopé de type p + p-type doped dium 3. Générateur photovoltaïque selon la revendication 1, caractérisé en ce que le substrat (1) est en silicium dopé de type p, la couche de confinement en phosphure d'indium dopé de type p, la couche de confinement en phosphure d'indium dopé de type p+ et la couche de contact en phosphure dtin- 3. Photovoltaic generator according to claim 1, characterized in that the substrate (1) is p-type doped silicon, the p-type doped indium phosphide confinement layer, the doped indium phosphide confinement layer p + type and the dtin- phosphide contact layer + dlum dopé de type n + dlum doped type n 4.Générateur photovoltaïque selon la revendication 2, caract4rise en ce que le premier contnct métallique 5} sst en alliage d'or et zinc (Au-Zn) et le deuxième contact métallique (6) est un alliage d'or et de germanium (Au-Ge). 4. Photovoltaic generator according to claim 2, caract4rise in that the first metal contnct 5} is made of gold and zinc alloy (Au-Zn) and the second metal contact (6) is an alloy of gold and germanium ( Au-Ge). 5. Générateur photovoltaïque selon la revendication 3, caractérisé en ce que le premier contact métallique (5) est en alliage d'or et de germanium (Au-Ge) et le deuxième contact métallique (6) est un alliage d'or et de zinc (Au-Zn). 5. Photovoltaic generator according to claim 3, characterized in that the first metal contact (5) is an alloy of gold and germanium (Au-Ge) and the second metal contact (6) is an alloy of gold and zinc (Au-Zn). 6.GEénérateur photovoltaïque selon la revendication 1, caractérisé en ce que la couche d'adaptation (7) est un super-réseau d'adaptation comportant une alternance de couches (70.1 à 70.n) de phosphure d'indium et de couche (71.1 à 71.nu d'un matériau semiconducteur ayant un paramètre de maille proche de celui du silicium et permettant une adaptation de la couche de confinement (2) sur le substrat. 6.Generator photovoltaic according to claim 1, characterized in that the matching layer (7) is a matching super-network comprising an alternation of layers (70.1 to 70.n) of indium phosphide and layer ( 71.1 to 71.nu of a semiconductor material having a lattice parameter close to that of silicon and allowing adaptation of the confinement layer (2) on the substrate. 7. Générateur photovoltaïque selon la revendication 6, caractérisé en ce que le super-réseau (7) est une alternance de couches (70.1 à 70.n) de phosphure d'indium (InP) et de couches (71.1 à 71.n) de phosphure d'arséniure d'indium et de gallium (Ga In As P). 7. Photovoltaic generator according to claim 6, characterized in that the super-network (7) is an alternation of layers (70.1 to 70.n) of indium phosphide (InP) and of layers (71.1 to 71.n) of indium gallium arsenide phosphide (Ga In As P). 8. Générateur photovoltaïque selon la revendication 6, caractérisé en ce que le super-réseau (7) est une alternance de couches (70.1 à 70. n) de phosphure d'indium et de couches (71.1 à 71.n) d'arséniure d'indium et de gallium (Ga In As). 8. Photovoltaic generator according to claim 6, characterized in that the super-network (7) is an alternation of layers (70.1 to 70. n) of indium phosphide and layers (71.1 to 71.n) of arsenide. indium and gallium (Ga In As). 9. Générateur photovoltaïque selon la revendication 6, caractérisé en ce que le super-réseau (7) est une alternance de couches (70.1 à 7O.n) de phosphure d'indium (InP) et de couches (71.1 à 71.n) de phosphure de gallium (GaP). 9. Photovoltaic generator according to claim 6, characterized in that the super-network (7) is an alternation of layers (70.1 to 7O.n) of indium phosphide (InP) and layers (71.1 to 71.n) gallium phosphide (GaP). 10. Générateur photovoltaïque selon la revendication 6, caractérisé en ce que le super-réseau (7) est une alternance de couches de (70.1 à 70.n) de phosphure d'indium (InP) et de couches (71.1 à 71.n) de phosphure d'indium et de gallium (Ga 10. Photovoltaic generator according to claim 6, characterized in that the super-network (7) is an alternation of layers of (70.1 to 70.n) of indium phosphide (InP) and of layers (71.1 to 71.n ) indium and gallium phosphide (Ga In P). In P).
FR8801347A 1988-02-05 1988-02-05 Semiconductor photovoltaic generator made on a substrate of different mesh parameter Pending FR2627013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR8801347A FR2627013A1 (en) 1988-02-05 1988-02-05 Semiconductor photovoltaic generator made on a substrate of different mesh parameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8801347A FR2627013A1 (en) 1988-02-05 1988-02-05 Semiconductor photovoltaic generator made on a substrate of different mesh parameter

Publications (1)

Publication Number Publication Date
FR2627013A1 true FR2627013A1 (en) 1989-08-11

Family

ID=9362969

Family Applications (1)

Application Number Title Priority Date Filing Date
FR8801347A Pending FR2627013A1 (en) 1988-02-05 1988-02-05 Semiconductor photovoltaic generator made on a substrate of different mesh parameter

Country Status (1)

Country Link
FR (1) FR2627013A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678774A1 (en) * 1991-07-05 1993-01-08 Thomson Csf ELECTROMAGNETIC WAVE DETECTOR.
US6010937A (en) * 1995-09-05 2000-01-04 Spire Corporation Reduction of dislocations in a heteroepitaxial semiconductor structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163878A (en) * 1983-03-09 1984-09-14 Fujitsu Ltd Semiconductor photo detector
FR2549642A1 (en) * 1983-07-18 1985-01-25 Nippon Telegraph & Telephone SOLAR CELL
JPS60218881A (en) * 1984-04-13 1985-11-01 Nippon Telegr & Teleph Corp <Ntt> Gaas solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163878A (en) * 1983-03-09 1984-09-14 Fujitsu Ltd Semiconductor photo detector
FR2549642A1 (en) * 1983-07-18 1985-01-25 Nippon Telegraph & Telephone SOLAR CELL
JPS60218881A (en) * 1984-04-13 1985-11-01 Nippon Telegr & Teleph Corp <Ntt> Gaas solar battery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
IEEE JOUNRAL OF QUANTUM ELECTRONICS, vol. QE-22, no. 10, octobre 1986, pages 1986-1991, IEEE, New York, US; F.OSAKA et al.: "Electron and hole impact ionization rates in InP/Ga0.47In0.53As superlattice" *
PATENT ABSTRACTS OF JAPAN, vol. 10, no. 69 (E-389)[2126], 18 mars 1986; & JP-A-60 218 881 (NIPPON DENSHIN DENWA KOSHA) 01-11-1985 *
PATENT ABSTRACTS OF JAPAN, vol. 9, no. 15 (E-291)[1738], 22 janvier 1985; & JP-A-59 163 878 (FUJITSU K.K.) 14-09-1984 *
SOLAR CELLS, vol. 19, no. 1, novembre 1986, pages 85-96, Elsevier Sequoia, Lausanne, CH; M.YAMAGUCHI et al.: "A new approach for thin film InP solar cells" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678774A1 (en) * 1991-07-05 1993-01-08 Thomson Csf ELECTROMAGNETIC WAVE DETECTOR.
EP0526265A1 (en) * 1991-07-05 1993-02-03 Thomson-Csf Electromagnetic wave detector
US5326984A (en) * 1991-07-05 1994-07-05 Thomson-Csf Electromagnetic wave detector
US6010937A (en) * 1995-09-05 2000-01-04 Spire Corporation Reduction of dislocations in a heteroepitaxial semiconductor structure

Similar Documents

Publication Publication Date Title
US3293513A (en) Semiconductor radiant diode
JP2009290161A (en) Optical semiconductor device
US4207586A (en) Semiconductor device having a passivating layer
EP3610518A1 (en) Nanostructure
FR2764118A1 (en) STABILIZED BIPOLAR TRANSISTOR WITH ELECTRICAL INSULATING ELEMENTS
FR2492168A1 (en) SEMICONDUCTOR PHOTODIODE
EP0001728B1 (en) Light emitting and receiving diode, in particular for optical telecommunication
EP3563426B1 (en) Method for producing an optoelectronic device comprising a step of etching the rear face of the growth substrate
FR2954996A1 (en) PHOTODIODE, PHOTODIODE NETWORK AND METHOD FOR PASSIVATION OF A PHOTODIODE OF II-VI GROUPS
JPS60244078A (en) Back surface illumination photodiode having wide band gap cap layer
FR2757684A1 (en) INFRARED DETECTOR WITH QUANTUM STRUCTURE, NOT COOLED
Liu et al. Enhanced photoresponse of single GaN microwire ultraviolet photodetectors by heteroepitaxial AlN coating layer
WO2017051005A1 (en) Photodetector comprising a stack of vertically adjacent layers
US6081019A (en) Semiconductor diode with suppression of auger generation processes
FR2627013A1 (en) Semiconductor photovoltaic generator made on a substrate of different mesh parameter
JPH05102504A (en) Photovoltaic element
EP3384534A1 (en) Optoelectronic device comprising three-dimensional semiconductor structures with a wider single-crystal portion
JP2001525117A (en) Avalanche semiconductor device having epitaxial growth layer
EP0015835B1 (en) High-frequency semiconductor switching device and process for its manufacture
US5959239A (en) Thermovoltaic semiconductor device including a plasma filter
EP0277318B1 (en) Semiconductor electro-optical conversion device
US5776793A (en) Method of fabricating opto-electronic device
EP3973579B1 (en) Optoelectronic device with light-emitting diodes a doped region of which incorporates an external segment based on aluminium and gallium nitride
JPS61204988A (en) Semiconductor light receiving element
EP0249624A1 (en) Photodetectors and methods for making such detectors