FR2483608A1 - Demultiplexer for light signals with different wavelengths - has photodetectors on upper and lower side of transparent support plate, which selectively absorb desired wavelength - Google Patents
Demultiplexer for light signals with different wavelengths - has photodetectors on upper and lower side of transparent support plate, which selectively absorb desired wavelength Download PDFInfo
- Publication number
- FR2483608A1 FR2483608A1 FR8011798A FR8011798A FR2483608A1 FR 2483608 A1 FR2483608 A1 FR 2483608A1 FR 8011798 A FR8011798 A FR 8011798A FR 8011798 A FR8011798 A FR 8011798A FR 2483608 A1 FR2483608 A1 FR 2483608A1
- Authority
- FR
- France
- Prior art keywords
- photodetectors
- photodiodes
- photodiode
- light signals
- wavelengths
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4202—Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29346—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
- G02B6/29361—Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
- G02B6/29362—Serial cascade of filters or filtering operations, e.g. for a large number of channels
- G02B6/29365—Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
- G02B6/29367—Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
- G02B6/4215—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/671—Optical arrangements in the receiver for controlling the input optical signal
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Couplings Of Light Guides (AREA)
- Light Receiving Elements (AREA)
- Optical Communication System (AREA)
Abstract
Description
La présente invention se rapporte d'une manière générale aux systèmes de transmission et concerne plus particulièrement un dispositif de séparation de deux signaux lumineux de longueurs d'onde différentes transmis sur une même voie de transmission, telle que par exemple une fibre optique. The present invention relates generally to transmission systems and relates more particularly to a device for separating two light signals of different wavelengths transmitted over the same transmission channel, such as for example an optical fiber.
Pour démultiplexer simultanément deux longueurs d'onde différentes, pour un système de transmission sur fibre optique, il est connu d'utiliser des dispositifs optiques complexes comprenant par exemple des filtres à couches minces diélectriques, des réseaux de diffraction ou des prismes dispersifs. Ces dispositifs sont toutefois volumineux et fragiles. To demultiplex two different wavelengths simultaneously, for a transmission system on optical fiber, it is known to use complex optical devices comprising for example dielectric thin film filters, diffraction gratings or dispersive prisms. These devices are, however, bulky and fragile.
A la place de tels dispositifs optiques, il est connu d'utiliser une photodiode dont la structure permet de détecter et de démultiplexer simultanément deux longueurs d'onde, comme cela est décrit dans l'article publié dans la revue "Applìed Physics Letters" volume 34, n0, 15 Mars 1979, page 401, intitulé "Dual-wavelength demultiplexing InGaAsP photodiode". Instead of such optical devices, it is known to use a photodiode whose structure makes it possible to detect and demultiplex simultaneously two wavelengths, as described in the article published in the journal "Applìed Physics Letters" volume 34, n0, March 15, 1979, page 401, entitled "Dual-wavelength demultiplexing InGaAsP photodiode".
Selon cet article, la photodiode est constituée dtun substrat sur lequel on a fait croitre par épitaxie une succession de couches. Deux de ces couches sont dopées de manière à former deux photodiodes. De plus, ces deux couches ont des structures cristallines différentes, de sorte qu'elles absorbent sélectivement les longueurs d'onde de deux signaux lumineux transmis sur une fibre optique.According to this article, the photodiode consists of a substrate on which a succession of layers has been grown by epitaxy. Two of these layers are doped so as to form two photodiodes. In addition, these two layers have different crystal structures, so that they selectively absorb the wavelengths of two light signals transmitted over an optical fiber.
Toutefois, un photodétecteur du type décrit précédemment présente des inconvénients. En effet, du point de vue technologique, il est très difficile de réaliser une croissance cristalline parfaitement homogène des différentes couches. En outre, une parfaite séparation des réponses spectrales des deux couches formant photodiodes est très difficile à obtenir. De plus, les valeurs des longueurs d'onde détectées, 1,08pm et 1,17pu, ne constituent pas des valeurs de longueurs d'onde habituellement utilisées dans un système de transmission sur fibres optiques et du fait de leurs valeurs relativement voisines, ces longueurs d'onde sont difficiles à contrôler. However, a photodetector of the type described above has drawbacks. Indeed, from the technological point of view, it is very difficult to achieve perfectly homogeneous crystal growth of the different layers. Furthermore, perfect separation of the spectral responses of the two layers forming photodiodes is very difficult to obtain. In addition, the values of the detected wavelengths, 1.08pm and 1.17pu, do not constitute the wavelength values usually used in a transmission system over optical fibers and, because of their relatively close values, these wavelengths are difficult to control.
D'autre part, la diaphonie entre les réponses des deux couches formant photodiodes est élevée.On the other hand, the crosstalk between the responses of the two layers forming photodiodes is high.
La présente invention a pour but de remédier à ces inconvénients en proposant un dispositif de s- paration d'au moins deux signaux lumineux de longueurs d'onde différentes transmis sur une fibre optique, qui est d'une structure simple, et est peu coûteux. The object of the present invention is to remedy these drawbacks by proposing a device for separating at least two light signals of different wavelengths transmitted over an optical fiber, which is of simple structure and is inexpensive. .
Ce dispositif se prête donc fort bien à la fabrication en grande série, et s'adapte parfaitement à la microélectronique.This device therefore lends itself very well to mass production, and adapts perfectly to microelectronics.
Plus précisément, le dispositif de séparation selon l'invention comporte principalement au moins deux photodétecteurs superposés et fixés respectivement sur les faces supérieure et inférieure d'au moins une plaque formant support en matériau transparent à la lumière, les photodétecteurs absorbant sélectivement les longueurs d'onde. More specifically, the separation device according to the invention mainly comprises at least two superimposed photodetectors and fixed respectively on the upper and lower faces of at least one plate forming a support made of material transparent to light, the photodetectors selectively absorbing the lengths of wave.
L'invention vise également un récepteur d'un système de transmission comportant un tel dispositif de séparation de deux longueurs d'onde différentes. The invention also relates to a receiver of a transmission system comprising such a device for separating two different wavelengths.
D'autres caractéristiques et avantages de l'invention apparaÎtront mieux dans la description détaillée qui suit et se réfère à l'unique dessin annexé donné uniquement à titre d'exemple et qui est une coupe longitudinale du dispositif de séparation selon l'invention. Other characteristics and advantages of the invention will appear better in the detailed description which follows and refers to the single appended drawing given solely by way of example and which is a longitudinal section of the separation device according to the invention.
Suivant un exemple de réalisation, et en se reportant au dessin annexé, on a représenté une fibre monomode ou multimode comprenant un coeur 1 et une gaine 2, l'extrémité 3 de la fibre étant taillée en biseau (360) . According to an exemplary embodiment, and with reference to the accompanying drawing, a single-mode or multi-mode fiber is shown comprising a core 1 and a sheath 2, the end 3 of the fiber being cut at a bevel (360).
Dans le but d'augmenter la capacité de la transmission sur fibre optique, il est d'usage d'utiliser plusieurs sources, telles que par exemple des lasers qui émettent simultanément des signaux lumineux de longueurs d'onde, c'est--dire de couleurs, distinctes. Ces signaux lumineux sont transmis dans la fibre optique, comme représentés en 4, et subissent une réflexion totale sur l'extrémité 3 de la fibre. Ces signaux lumineux réfléchis sont ensuite séparés par le dispositif selon l'invention, que l'on va maintenant décrire. In order to increase the capacity of the transmission over optical fiber, it is customary to use several sources, such as for example lasers which simultaneously emit light signals of wavelengths, that is to say of distinct colors. These light signals are transmitted in the optical fiber, as shown in 4, and undergo a total reflection on the end 3 of the fiber. These reflected light signals are then separated by the device according to the invention, which will now be described.
Comme il apparaît clairement sur la figure, ce dispositif de séparation comporte deux photodétecteurs 5 et 6, tels que par exemple des photodiodes, destinés à absorber sélectivement les deux longueurs d'onde habituellement utilisées dans la transmission sur fibre optique,égales à 0,85m et 1,3pu. As can be clearly seen in the figure, this separation device comprises two photodetectors 5 and 6, such as for example photodiodes, intended to selectively absorb the two wavelengths usually used in transmission over optical fiber, equal to 0.85m and 1.3pu.
Avantageusement, les deux photodiodes 5 et 6 sont choisies parmi celles existant sur le marché, donc de propriétés d'absorption connues. Ainsi, par exemple, la photodiode 5 est au silicium dont on sait qu'elle est absorbante à 0,85pm et transparente à l,-3pm ; et la photodiode 6 est constituée de corps appartenant aux groupes III et V de la classification périodique des éléments de Mendeleeff, couramment désignée sous le nom de photodiode aux composés III - V .Ainsi, on place la photodiode au silicium 5 au-dessus de la photodiode 6 aux composés III - V , et on positionne la fibre de telle manière que la lumière réfléchie par l'extrémité 3 de la fibre traverse les deux photodiodes ; chaque photodiode extraira alors une longueur d'onde préférentielle;
Plus précisément, les deux photodiodes 5 et 6 superposées sont fixées, par collage, respectivement sur les faces supérieure 7 et inférieure-8 d'une plaque formant support 9 réalisée en un matériau transparent à la lumière, tel que par exemple du verre.Advantageously, the two photodiodes 5 and 6 are chosen from those existing on the market, therefore with known absorption properties. Thus, for example, the photodiode 5 is made of silicon which is known to be absorbent at 0.85 pm and transparent at 1.3 pm; and the photodiode 6 is made up of bodies belonging to groups III and V of the periodic classification of the elements of Mendeleeff, commonly known as the photodiode with the compounds III - V. Thus, the silicon photodiode 5 is placed above the photodiode 6 with compounds III - V, and the fiber is positioned in such a way that the light reflected by the end 3 of the fiber passes through the two photodiodes; each photodiode will then extract a preferred wavelength;
More specifically, the two superimposed photodiodes 5 and 6 are fixed, by gluing, respectively to the upper 7 and lower 8 faces of a support plate 9 made of a material transparent to light, such as for example glass.
Comme on le voit bien sur la figure, seules les faces supérieure 11 et inférieure 12 des photodiodes respectives 5 et 6, c'est-à-dire leurs faces respectives les plus éloignées de la plaque de verre 9, sont recouvertes d'une métallisation en forme d'anneau. La seconde métallisation de chaque photodiode 5 et 6 est assurée par une mince couche 14 déposée uniformément sur les faces 7 et 8 de la plaque de verre 9, et réalisée en un matériau conducteur de l'électricité et transparent à la lumière, tel que par exemple de l'oxyde d'étain. On a représenté en 15 les connexions effectuées sur les métallisations 11 et 14 de la photodiode 5 et en 16 les connexions effectuées sur les métallisations 12 et 14 de la photodiode 6. As can be clearly seen in the figure, only the upper 11 and lower 12 faces of the respective photodiodes 5 and 6, that is to say their respective faces furthest from the glass plate 9, are covered with a metallization in the shape of a ring. The second metallization of each photodiode 5 and 6 is provided by a thin layer 14 uniformly deposited on the faces 7 and 8 of the glass plate 9, and made of an electrically conductive material and transparent to light, such as by example of tin oxide. The connections made on the metallizations 11 and 14 of the photodiode 5 are shown at 15 and at 16 the connections made on the metallizations 12 and 14 of the photodiode 6.
Lorsque les deux signaux lumineux de longueurs d'onde 0,85pm et 1,3pm sont réfléchis par l'extrémité 3 de la fibre, la photodiode au silicium 5 absorbe la longueur d'onde 0,85pm et laisse passer, comme un filtre, le signal lumineux de longueur d'onde 1,3pu. Ce dernier traverse la couche d'oxyde d'étain 14 et la plaque de verre 9, et la photodiode 6 aux composés III - V absorbe la longueur d'onde 1,3pu. Dans le cas où des réflexions parasites apparaissent à l'interface entre les photodiodes et la plaque de verre, il suffit de recouvrir ces photodiodes d'une couche mince en matériau anti-réflecteur. When the two light signals of wavelength 0.85pm and 1.3pm are reflected by the end 3 of the fiber, the silicon photodiode 5 absorbs the wavelength 0.85pm and lets through, like a filter, the light signal of wavelength 1.3pu. The latter passes through the tin oxide layer 14 and the glass plate 9, and the photodiode 6 with compounds III - V absorbs the wavelength 1.3 pu. In the case where parasitic reflections appear at the interface between the photodiodes and the glass plate, it suffices to cover these photodiodes with a thin layer of anti-reflective material.
Dès lors, on détecte aux bornes 15 et 16 des signaux électriques dont l'amplitude est proportionnelle à la puissance optique émise par les deux sources. Ces signaux électriques sont ensuite traités par un circuit électronique approprié. Consequently, electrical signals are detected at terminals 15 and 16, the amplitude of which is proportional to the optical power emitted by the two sources. These electrical signals are then processed by an appropriate electronic circuit.
Bien entendu, le dispositif qui vient d'être décrit pour démultiplexer deux longueurs d'onde, pourrait tout aussi bien être conçu pour démultiplexer une troisième longueur d'onde égale par exemple à 1,06pu, sans sortir du adre de l'invention. Dans ce cas, il suffirait de monter sur une plaque de verre une troisième photodiode, du type aux composés III - V , dopée de telle manière qu'elle soit absorbante à 1,06pm. Of course, the device which has just been described for demultiplexing two wavelengths, could just as easily be designed to demultiplex a third wavelength equal for example to 1.06pu, without departing from the scope of the invention. In this case, it would suffice to mount on a glass plate a third photodiode, of the III-V compound type, doped in such a way that it is absorbent at 1.06 μm.
On a donc réalisé suivant l'invention un dispositif de démultiplexage d'au moins deux longueurs d'onde, particulièrement simple, très efficace, et avantageux du point de vue coût de fabrication. A device for demultiplexing at least two wavelengths has therefore been produced according to the invention, which is particularly simple, very effective, and advantageous from the point of view of manufacturing cost.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8011798A FR2483608A1 (en) | 1980-05-28 | 1980-05-28 | Demultiplexer for light signals with different wavelengths - has photodetectors on upper and lower side of transparent support plate, which selectively absorb desired wavelength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8011798A FR2483608A1 (en) | 1980-05-28 | 1980-05-28 | Demultiplexer for light signals with different wavelengths - has photodetectors on upper and lower side of transparent support plate, which selectively absorb desired wavelength |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2483608A1 true FR2483608A1 (en) | 1981-12-04 |
FR2483608B1 FR2483608B1 (en) | 1984-03-09 |
Family
ID=9242405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR8011798A Granted FR2483608A1 (en) | 1980-05-28 | 1980-05-28 | Demultiplexer for light signals with different wavelengths - has photodetectors on upper and lower side of transparent support plate, which selectively absorb desired wavelength |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR2483608A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3107302A (en) * | 1959-09-25 | 1963-10-15 | Westinghouse Electric Corp | Two color background elimination detector |
US3962578A (en) * | 1975-02-28 | 1976-06-08 | Aeronutronic Ford Corporation | Two-color photoelectric detectors having an integral filter |
DE2629356A1 (en) * | 1976-06-30 | 1978-01-05 | Licentia Gmbh | Simultaneous MODEM of optical signals - with one of two diodes being transparent for wavelength delivered or received by second diode |
-
1980
- 1980-05-28 FR FR8011798A patent/FR2483608A1/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3107302A (en) * | 1959-09-25 | 1963-10-15 | Westinghouse Electric Corp | Two color background elimination detector |
US3962578A (en) * | 1975-02-28 | 1976-06-08 | Aeronutronic Ford Corporation | Two-color photoelectric detectors having an integral filter |
DE2629356A1 (en) * | 1976-06-30 | 1978-01-05 | Licentia Gmbh | Simultaneous MODEM of optical signals - with one of two diodes being transparent for wavelength delivered or received by second diode |
Non-Patent Citations (1)
Title |
---|
EXBK/77 * |
Also Published As
Publication number | Publication date |
---|---|
FR2483608B1 (en) | 1984-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0138698B1 (en) | Optical wavelength division multiplexer-demultiplexer for bidirectional communication | |
FR2595477A1 (en) | OPTICAL DEMULTIPLEXING / MULTIPLEXING CIRCUIT | |
FR2694816A1 (en) | Tunable optical filter. | |
WO2010109134A1 (en) | High data-rate soi optical modulator | |
EP0017571A1 (en) | Light intensity modulator in integrated optics and integrated optical circuit comprising such a modulator | |
EP0527670A1 (en) | Magneto-optical read head | |
EP0147862A1 (en) | Optical wavelength multiplexer-demultiplexer using optical fibres | |
FR2655430A1 (en) | OPTICAL CUTTER AND COMPUTER SYSTEM WITH DISTRIBUTED PROCESSORS. | |
EP0252565B1 (en) | Integrated semiconductor coupling device between a photodetector and a lightwave guide | |
JP2002033503A (en) | Semiconductor photodetector | |
FR2661513A3 (en) | OPTICAL FIBER FUNCTION. | |
FR2483608A1 (en) | Demultiplexer for light signals with different wavelengths - has photodetectors on upper and lower side of transparent support plate, which selectively absorb desired wavelength | |
EP0992842B1 (en) | Device for regenerating a wavelength division multiplexed signal comprising a saturable absorber | |
EP1494293A2 (en) | Vertical resonant cavity photodetector, its correspondant array and telecommunication system | |
EP1508064A1 (en) | Method for collective production of optical filter components | |
EP0200613B1 (en) | Optical multiplexer/demultiplexer and method of manufacturing it | |
EP3276385B1 (en) | Method for manufacturing a germanium slow wave guide and photodiode incorporating said slow wave guide | |
EP0299840B1 (en) | Optical fiber correlator | |
FR2794534A1 (en) | OPTICAL MULTIPLEXER / DEMULTIPLEXER WITH THREE WAVEGUIDES | |
EP1516212A2 (en) | Device for directional and wavelength selective optical coupling | |
EP3830873B1 (en) | Device for detecting electromagnetic radiation | |
EP1509794B1 (en) | Optical filtration device | |
EP1291707A1 (en) | Optical saturable absorber and its use for regenerating a wavelength division multiplexed signal | |
EP0992825A1 (en) | Electro-optical monolithic component with multi-sections | |
FR2832223A1 (en) | MULTI-SECTION ELECTRO-OPTICAL MONOLITHIC COMPONENT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |