[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

FI102288B - Starch - based biodegradable products and method for their preparation - Google Patents

Starch - based biodegradable products and method for their preparation Download PDF

Info

Publication number
FI102288B
FI102288B FI905511A FI905511A FI102288B FI 102288 B FI102288 B FI 102288B FI 905511 A FI905511 A FI 905511A FI 905511 A FI905511 A FI 905511A FI 102288 B FI102288 B FI 102288B
Authority
FI
Finland
Prior art keywords
starch
weight
acrylic acid
less
ethylene
Prior art date
Application number
FI905511A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI102288B1 (en
FI905511A0 (en
Inventor
Catia Bastioli
Vittorio Bellotti
Giudice Luciano Del
Roberto Lombi
Angelos Rallis
Tredici Gianfranco Del
Original Assignee
Novamont Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from IT8941002A external-priority patent/IT1235543B/en
Priority claimed from IT8967666A external-priority patent/IT1232893B/en
Application filed by Novamont Spa filed Critical Novamont Spa
Publication of FI905511A0 publication Critical patent/FI905511A0/en
Application granted granted Critical
Publication of FI102288B publication Critical patent/FI102288B/en
Publication of FI102288B1 publication Critical patent/FI102288B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen
    • C08L23/0869Copolymers of ethene with unsaturated hydrocarbons containing atoms other than carbon or hydrogen with unsaturated acids, e.g. [meth]acrylic acid; with unsaturated esters, e.g. [meth]acrylic acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/15203Properties of the article, e.g. stiffness or absorbency
    • A61F13/15252Properties of the article, e.g. stiffness or absorbency compostable or biodegradable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Materials For Medical Uses (AREA)
  • Orthopedics, Nursing, And Contraception (AREA)
  • Medicinal Preparation (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Measurement Of Radiation (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Endoscopes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Saccharide Compounds (AREA)
  • Steroid Compounds (AREA)

Abstract

PCT No. PCT/EP90/00375 Sec. 371 Date Nov. 5, 1990 Sec. 102(e) Date Nov. 5, 1990 PCT Filed Mar. 8, 1990 PCT Pub. No. WO90/10671 PCT Pub. Date Sep. 20, 1990.Formed articles comprising destructurized starch, an ethylene-acrylic acid copolymer and a product of the interaction of starch and ethylene-acrylic acid copolymer wherein the starch not bound to the copolymer is in the form of particles having sizes below 1 micron. The water content of such articles is lower than the one usually present in the starch. Said formed articles can also contain urea in an amount no higher than 30% by weight and/or ammonia in an amount not higher than 0.5% by weight. The process for obtaining such articles comprises the steps of extruding starch, an ethylene-acrylic acid copolymer and optionally water, urea and/or ammonia at a temperature ranging from 90 DEG to 150 DEG C., reducing the water content to values lower than 6% by weight and injection molding or extrusion blowing the resulting composition.

Description

, 102288 Tärkkelykseen perustuvia biologisesti hajoavia tuotteita ja menetelmä niiden valmistamiseksi Tämä keksintö koskee tärkkelykseen perustuvia bio-5 logisesti hajoavia tuotteita ja ohuita kalvoja ja menetel mää niiden valmistamiseksi.The present invention relates to starch-based biodegradable products and thin films and to a process for their preparation.

Ilmaisu "muotoillut tuotteet" käytettynä milloin tahansa tässä selitysosassa ja patenttivaatimuksissa tarkoittaa kaikkia tuotteita, joiden paksuus on yli 0,2 mm, 10 kuten laatikoita, yleensä säiliöitä, levyjä, pakkaustar- vikkeita, lankoja yms.The term "shaped articles" as used at any time in this specification and claims means all articles having a thickness of more than 0.2 mm, such as boxes, generally containers, plates, packaging materials, yarns, and the like.

Viime vuosina on tehty runsaasti yrityksiä saada aikaan biologisesti hajoavia tuotteita.In recent years, many attempts have been made to produce biodegradable products.

Niiden materiaalien joukossa, joita on ehdotettu 15 muotoiltujen tuotteiden ja ohuiden kalvojen valmistami seen, tärkkelykset ovat olleet epäilemättä suosituimpia, koska ne ovat luonnollisia, hinnaltaan edullisia ja biologisesti täysin hajoavia tuotteita, joita on luonnossa runsaasti saatavissa.Among the materials proposed for the production of shaped articles and thin films, starches have undoubtedly been the most popular because they are natural, inexpensive and completely biodegradable products that are abundantly available in nature.

20 U.S.-patentissa no. 4 591 475 kuvataan ruiskupuris- tusprosessia, jossa lähtöaineena käytetään hajottamatonta tärkkelystä. Tässä tapauksessa prosessi havaittiin hyvin epästabiiliksi johtuen siitä, että tuotteen viskositeetti sulassa tilassa riippui leikkausmuodonmuutosnopeudesta, 25 minkä vuoksi puristusprosessi riippuu voimakkaasti olosuh teista kuten ruuvin nopeudesta, lämpötilasta, paineesta ja/tai vesipitoisuudesta, ja huonontaa saatujen tuotteiden laatua.20 U.S. Pat. 4,591,475 describes an injection molding process using non-degradable starch as a starting material. In this case, the process was found to be very unstable due to the fact that the viscosity of the product in the molten state depended on the rate of shear deformation, therefore the compression process strongly depends on conditions such as screw speed, temperature, pressure and / or water.

Julkaistussa Eurooppalaisessa patenttihakemuksessa . 30 no. 304 401 kuvataan koteloiden ruiskupuristusprosessia, jossa lähtöaineena käytettiin hajotettua tärkkelystä. Tällä menetelmällä saaduilla tuotteilla on kutenkin huonot mekaaniset ominaisuudet, sen lisäksi että ne ovat erittäin vesiliukoisia.In a published European patent application. 30 no. 304 401 describes an injection molding process for casings using degraded starch as a starting material. However, the products obtained by this method have poor mechanical properties, in addition to being highly water-soluble.

2 1022882 102288

On ehdotettu myös tärkkelyksen yhdistämistä muihin materiaaleihin, jotta saataisiin tuotteita, joilla on tyydyttävät luonteenomaiset piirteet. Polyeteeni on se materiaali, jota on tavallisesti ehdotettu tähän tarkoituk-5 seen. Erilaiset yritykset, joita on tehty muotoiltujen kappaleiden valmistamiseksi käyttäen lähtöaineina tärkke-lys-polyeteeniseoksia, eivät kuitenkaan ole antaneet tyydyttäviä tuloksia. Itse asiassa tuotteet ovat muodottomia ja heikkoja, koska niissä on paljon huokosia kosteuden 10 muuttuessa höyryksi muovausprosessin aikana. Lisäksi saa tujen tuotteiden kosketustuntuma on kuten paperilla.It has also been proposed to combine starch with other materials to obtain products with satisfactory characteristics. Polyethylene is the material commonly proposed for this purpose. However, various attempts to make shaped articles using starch-polyethylene blends as starting materials have not yielded satisfactory results. In fact, the products are shapeless and weak because they have a lot of pores as the moisture 10 turns to steam during the molding process. In addition, the products obtained have a tactile feel like paper.

US-patentissa nro 4 133 784 kuvataan koostumuksia, jotka sisältävät tärkkelystä ja eteeni-akryylihappo-kopo-lymeeriä (EAA) ja jotka ovat sopivia muutettaviksi ohuiksi 15 kalvoiksi ja jotka ovat joustavia, vedenkestäviä, lämpö- hitsattavia ja biologisesti hajoavia.U.S. Patent No. 4,133,784 describes compositions containing starch and ethylene-acrylic acid copolymer (EAA) that are suitable for conversion into thin films and that are flexible, water resistant, heat sealable, and biodegradable.

Mainitut koostumukset on muutettu ohuiksi kalvoiksi käyttäen menetelmiä kuten valamista, yksinkertaista ekst-ruusiota tai jauhamista. Nämä prosessit ovat kuitenkin 20 hitaita ja hyvin kalliita. Lisäksi tietyillä tärkkelyspi- toisuuksilla, jotka ovat tarpeen haluttujen mekaanisten ominaisuuksien saavuttamiseksi, biologinen hajoamisaste ja stabiilisuus ultraviolettisäteille ovat voimakkaasti huonontuneet .Said compositions are converted into thin films using methods such as casting, simple extrusion or grinding. However, these processes are 20 slow and very expensive. In addition, at certain starch concentrations necessary to achieve the desired mechanical properties, the degree of biodegradation and stability to ultraviolet rays are severely degraded.

25 Toisaalta hakijan monet yritykset näiden koostumus ten muovaamiseksi ruiskuttamalla eivät olleet menestyksellisiä saatujen tuotteiden huonojen fysikaalis-mekaanisten ominaisuuksien vuoksi; itse asiassa tuotteilla oli vähäinen lujuus ja suuri venymä kuormitettaessa.25 On the other hand, many of the applicant's attempts to mold these compositions by spraying were unsuccessful because of the poor physico-mechanical properties of the products obtained; in fact, the products had low strength and high elongation under load.

. 30 U.S.-patentissa nro 4 337 181 ehdotetaan tärkkelys- >· EEA-kopolymeerikoostumukseen lisättäväksi riittävä määrä neutraloivaa ainetta kuten ammoniakkia tai amiinia, jotta osa tai kaikki EEA:n happoryhmät neutraloituisivat, ja sitten puhallusmuovattavaksi käyttäen kosteuspitoisuutta 35 2-10 %.. U.S. Patent No. 4,337,181 proposes adding a sufficient amount of a neutralizing agent, such as ammonia or amine, to the starch-> EEA copolymer composition to neutralize some or all of the EEA acid groups, and then blow molding using a moisture content of 2-10%.

3 1022883 102288

Neutraloivan aineen lisäys tekee mahdolliseksi päästä joistakin vaikeuksista, jotka liittyvät kalvonmuo-dostusprosessiin, kun taas haitat, jotka riippuvat saatujen tuotteiden vähäisestä lujuudesta, pysyvät samoina tai 5 kasvavat.The addition of a neutralizing agent makes it possible to overcome some of the difficulties associated with the film-forming process, while the disadvantages which depend on the low strength of the products obtained remain the same or increase.

Julkaisussa Ind. Eng. Chem. Res. 1987, 26, s. 1659-1663 ehdotettiin urean ja/tai polyolien lisäämistä tärkke-lys-EAA-kopolymeerikoostumuksiin valmistuksen helpottamiseksi ja talouden ja saatavien ohuiden kalvon laatuominai-10 suuksien parantamiseksi. Urean mukana olon vaikutus on tehdä mahdolliseksi tärkkelyksen kiderakenteen rikkoutuminen pienillä määrillä vettä ja siten mahdollistaa kalvon muodostavien rakeiden muodostuminen suoraan koostumuksesta, jonka vesipitoisuus on noin 16 %, sekä poistaa tärkke-15 lys-EEA-kopolymeerin esiseoksen muodostamisen välttämättö myys hyvin monimutkaisessa sekoittimessa suuren vesimäärän kanssa ennen ekstruusioprosessia. Sen vuoksi urean lisääminen parantaa tärkkelys-EEA-kopolymeeriseoksen prosessi-olosuhteita, kun taas saatujen tuotteiden huonot fysikaa-20 lismekaaniset ominaisuudet jäävät ennalleen.In Ind. Eng. Chem. Res. 1987, 26, pp. 1659-1663, it was proposed to add urea and / or polyols to starch-EAA copolymer compositions to facilitate preparation and to improve the economy and quality characteristics of the resulting thin film. The effect of the presence of urea is to allow the crystal structure of the starch to break down with small amounts of water, thus allowing film-forming granules to form directly from a composition with a water content of about 16%, and eliminating the need to form a starch-15 EEA copolymer premix in a very complex mixer. before the extrusion process. Therefore, the addition of urea improves the process conditions of the starch-EEA copolymer blend, while the poor physico-mechanical properties of the obtained products remain.

Hakija on nyt havainnut, että muotoilluilla kappaleilla, joita valmistetaan ruiskupuristustekniikan avulla, ja ohuilla kalvoilla, joita valmistetaan ekstruusiopuhal-luksen avulla, on erinomaiset fysikaalis-mekaaniset omi-. 25 naisuudet kuten murtositkeys, suuri taivutuslujuus ja -kerroin, jotka ovat paljon suurempia kuin yksittäisten komponenttien arvot, samoin kuin liukenemattomuus veteen, kun mainitut kappaleet ja ohuet kalvot sisältävät seuraa-vat kolme komponenttia täysin toisiinsa tunkeutuneina: 30 (1) komponentin, joka koostuu hajotetusta, hiukkas- : muodossa olevasta tärkkelyksestä, jossa hiukkasten luku- keskimääräinen halkaisija on alle 1 μιη, (2) komponentin, joka koostuu eteeni-akryylihappo-kopolymeerista (EAA), 4 102288 (3) komponentin, joka koostuu IPN-rakenteesta, joka on saatu tärkkelyksen ja eteeni-akryylihappokopolymeerin vuorovaikutuksesta sekoittamalla 90 - 150 °C lämpötilaan kuumennetussa ekstruuderissa tärkkelystä ja eteeni-akryy- 5 lihappokopolymeeria painosuhteessa 1:9 - 9:1, kunnes tärk kelys on oleellisesti hajonnut ja aineet ovat tunkeutuneet toisiinsa, ja valinnaisesti (4) vettä, jota on alle 6 paino-% mainitun kolmen faasin kokonaispainosta.The applicant has now found that shaped articles produced by injection molding technology and thin films produced by extrusion blow molding have excellent physico-mechanical properties. Such as fracture toughness, high flexural strength and coefficient, which are much higher than the values of the individual components, as well as insolubility in water, when said bodies and thin films contain the following three components completely penetrated: 30 (1) component consisting of decomposed , starch in particulate form with a number average particle diameter of less than 1 μιη, (2) a component consisting of ethylene-acrylic acid copolymer (EAA), 4 102288 (3) a component consisting of an IPN structure consisting of obtained from the interaction of starch and ethylene-acrylic acid copolymer by mixing starch and ethylene-acrylic acid copolymer in a weight ratio of 1: 9 to 9: 1 in an extruder heated to 90-150 ° C until the starch has substantially decomposed and the substances have infiltrated () water less than 6% by weight of the total weight of said three phases.

10 Tuotetta tärkkelyksen ja EAA-kopolymeerin vuorovai kutuksesta saadaan in situ lähtöaineiden muuttumisprosessin aikana muotoilluksi kappaleeksi.10 The product from the interaction of starch and EAA copolymer is obtained in situ during the conversion process of the starting materials into a shaped body.

Edullisesti etyleeni-akryylihappo-kopolymeerin (EAA) akryylihappopitoisuus on 3 - 30 paino-%, ja hajotet-15 tu tärkkelysfaasi, joka ei ole sitoutunut EEA-kopolymee- riin, on tasaisesti dispergoituneena seokseen hiukkasina, joiden lukukeskimäärinen halkaisija on alle 1 μπι, ja hiuk-kaskoon alle 3, olevana dispersiona.Preferably, the ethylene-acrylic acid copolymer (EAA) has an acrylic acid content of 3 to 30% by weight, and the decomposed starch phase not bound to the EEA copolymer is uniformly dispersed in the mixture as particles having a number average diameter of less than 1 μπι. particle size less than 3, as a dispersion.

Hajotettujen tärkkelyshiukkasten dispersio määri-20 tellään lukukeskimääräisen halkaisijan ja keskimääräisen pinnan halkaisijan välisenä suhteena.The dispersion of the dispersed starch particles is defined as the ratio between the number average diameter and the average surface diameter.

Koostumuksen eri komponenttien suhde voi vaihdella saatavien ominaisuuksien, lämpötilan ja muotoiluprosessin mukaan. Tavallisesti muotoillut kappaleet ja ohuet kalvot, • 25 joilla on erinomaiset fysikaalis-mekaaniset ominaisuudet ja liukenemattomuus veteen, sisältävät: - 10 - 90 paino-% kokonaismäärästä hajotettua tärkkelystä; - 10 - 90 paino-% kokonaismäärästä EAA-kopolymee- 30 riä, jonka akryylihappopitoisuus on 3 - 30 paino-%; ja ’· - 0 - 6 % vettä, jolloin alle 40 paino-% ja edullisesti alle 20 paino-% kokonaistärkkelyksestä on vapaana ja hiukkasina, joiden lukukeskimääräinen halkaisija on alle 1 μτη, kun taas jäl-35 jellä oleva tärkkelys on sitoutunut EAA-kopolymeeriin muo dostaen IPN-tuotetta.The ratio of the various components of the composition may vary depending on the properties obtained, the temperature and the shaping process. Usually shaped bodies and thin films with excellent physico-mechanical properties and insolubility in water contain: - 10 to 90% by weight of the total amount of degraded starch; - 10 to 90% by weight of the total amount of EAA copolymer having an acrylic acid content of 3 to 30% by weight; and '· - 0 to 6% water, wherein less than 40% by weight and preferably less than 20% by weight of the total starch is free and in particles with a number average diameter of less than 1 μτη, while the remaining 35 starch is bound to the EAA copolymer forming an IPN product.

5 1022885 102288

Muotoillut kappaleet ja ohuet kalvot, jotka ovat tämän keksinnön kohteena, voivat sisältää myös ureaa, jota on lisätty lähtöaineseokseen parantamaan sen prosessoita-vuutta. Jos ureaa on mukana, sen määrä ei ylitä 30 paino-5 prosenttia ja edullisesti sen määrä on 5 - 20 paino-% seoksen suhteen.The shaped bodies and thin films which are the subject of this invention may also contain urea added to the starting material mixture to improve its processability. If urea is present, its amount does not exceed 30% to 5% by weight and preferably 5 to 20% by weight of the mixture.

Tämän keksinnön mukaisten kappaleiden vesipitoisuus on tavallisesti pienempi kuin tärkkelyksessä tavallisesti mukana oleva veden määrä. Tavallisesti vesipitoisuus ei 10 ylitä 6 painoprosenttia, ja vesi voi olla myös kokonaan poissa.The water content of the bodies of this invention is usually less than the amount of water normally present in the starch. Usually the water content does not exceed 6% by weight, and the water may also be completely absent.

Ammoniakki, jota on mahdollisesti lisätty lähtöaineseokseen parantamaan koostumuksen valmistusta, poistetaan joko ekstruusioprosessin aikana tai sen jälkeen kui-15 vausvaiheen aikana, minkä vuoksi tämän keksinnön mukaiset tuotteet eivät sisällä ammoniakkia tai ammoniakkipitoisuus ei ylitä enimmillään 0,5 painoprosenttia seoksen suhteen.Ammonia, optionally added to the starting material mixture to improve the preparation of the composition, is removed either during the extrusion process or after the drying step, so that the products of this invention do not contain ammonia or the ammonia content does not exceed 0.5% by weight of the mixture.

Menetelmä muotoiltujen kappaleiden ja ohuiden kalvojen valmistamiseksi, joka on tämän keksinnön toinen koh-20 de, koostuu seoksen, joka sisältää tärkkelystä ja EEA-ko- polymeeriä tärkkelys/EEA-kopolymeeri-painosuhteessa 1 : 9 -9:1, vettä ja mahdollisesti ureaa ja ammoniakkia, komponenttien sekoittamisesta ekstruuderissa, joka on lämmitetty lämpötilaan 90 - 150 °C, vesipitoisuuden muuttami-‘ 25 sesta arvoon alle 6 paino-% ja ammoniakkipitoisuuden muut tamisesta arvoon alle 0,5 paino-%.The process for making shaped articles and thin films, which is another object of the present invention, consists of a mixture of starch and EEA copolymer in a starch / EEA copolymer weight ratio of 1: 9 to 9: 1, water and optionally urea and ammonia, mixing the components in an extruder heated to 90-150 ° C, changing the water content to less than 6% by weight and changing the ammonia content to less than 0.5% by weight.

Vesipitoisuuden vähentäminen ennen koostumuksen jatkoprosessointia on keksinnön mukaisen menetelmän tärkeä piirre.Reducing the water content prior to further processing of the composition is an important feature of the method of the invention.

. 30 Vesipitoisuuden ja mahdollisesti ammoniakkipitoi- ·· suuden vähentäminen voidaan suorittaa joko tuulettamalla suoraan ektruuderissa tai kuivaamalla lämpötilassa noin 70 - 100 °C ilmavirrassa tai alennetussa paineessa ektruusio-vaiheen jälkeen.. The reduction of the water content and possibly the ammonia content can be carried out either by direct ventilation in an extruder or by drying at a temperature of about 70 to 100 ° C in an air stream or under reduced pressure after the extrusion step.

35 Tämän keksinnön mukaisten muotoiltujen kappaleiden ja ohuiden kalvojen valmistamiseksi edullisen menetelmän 6 102288 mukaisesti vesipitoisuuden alentaminen suoritetaan ekst-ruusioprosessin välivaiheena olevassa kaasunpoistovaihees-sa.In accordance with the preferred method 6 102288 for producing the shaped bodies and thin films of the present invention, the reduction of the water content is performed in an intermediate degassing step of the extrusion process.

Sen mukaan tähän menetelmään kuuluu materiaalin 5 syöttäminen ekstruuderiin, joka on kuumennettu lämpötilaan 90 - 150 °C, jolloin materiaalina on tärkkelys ja etylee-ni-etikkahappo-kopolymeeri, jossa suhde tärkkelys/kopoly-meeri onl : 9-9 : 1, ja vesi, jonka määrä on 10 - 25 paino-% tärkkelyskomponentista, ja syötetyn materiaalin 10 käsittely seuraavasti: - ensimmäinen vaihe, jossa syötetty tärkkelys sekoitetaan tehokkaasti kopolymeeriin, kunnes se on oleellisesti hajonnut ja aineet ovat läpäisseet toisensa, - vaihe, jossa sekoitusvaiheesta poistuvasta mate- 15 riaalista poistetaan kaasut sen vesipitoisuuden alentami seksi arvoon korkeintaan 2 paino-% koostumuksen painosta, ja - vaihe, jossa materiaali, josta kaasut on poistettu, siirretään ja puristetaan paineessa yli 500 Pa ja ma- 20 teriaali ekstrudoidaan lämpötilassa 105 - 130 °C.Accordingly, this method involves feeding material 5 to an extruder heated to 90 to 150 ° C, wherein the material is starch and an ethylene-acetic acid copolymer having a starch / copolymer ratio of 1: 9 to 9: 1, and water , in an amount of 10 to 25% by weight of the starch component, and treating the fed material 10 as follows: - a first step in which the fed starch is effectively mixed with the copolymer until it is substantially decomposed and the substances have passed through each other, the material is degassed to reduce its water content to not more than 2% by weight of the composition, and - a step of transferring and compressing the degassed material at a pressure of more than 500 Pa and extruding the material at a temperature of 105 to 130 ° C.

Ensimmäisen sekoitusvaiheen jälkeen syötetty materiaali saatetaan edullisesti kuljetusvaiheeseen, jonka aikana materiaalin lämpötila kohoaa jatkuvasti arvoon 60 -100 °C. Ekstruuderin kuljetusvyöhykkeen pituus on tyypil-• 25 lisesti välillä 4-20 kertaa ekstruuderin ruuvin hal kaisija.After the first mixing step, the fed material is preferably subjected to a transport step, during which the temperature of the material continuously rises to 60-100 ° C. The length of the transport zone of the extruder is typically between 4 and 20 times the diameter of the extruder screw.

Seuraava sekoitusvaihe suoritetaan edullisesti lämpötilassa välillä 105 - 140 °C sellaisissa olosuhteissa, että tärkkelys samalla kertaa oleellisesti hajoaa ja tun-30 keutuu kopolymeerin läpi. Sekoitusvyöhyke on edullisesti ·· 4-20 kertaa ekstruuderin ruuvin halkaisijan pituinen, ja materiaaliin kohdistuu leikkausmuodonmuutos nopeudella 50 - 5000 S1.The next mixing step is preferably carried out at a temperature between 105 and 140 ° C under conditions such that the starch at the same time substantially decomposes and penetrates the copolymer. The mixing zone is preferably ·· 4-20 times the length of the screw of the extruder, and the material is subjected to a shear deformation at a speed of 50 to 5000 S1.

Ilmiöt, jotka tapahtuvat tässä vaiheessa ja jotka 35 johtavat tärkkelyksen hajoamiseen, ovat tunnettuja ja ne 7 102288 selitetään tavallisesti epäjärjestyksen muodostumisella tärkkelyshiukkasten molekyylirakenteessa, mikä on seurausta lämpökäsittelystä sen komponenttien lasisiirtymälämpö-tilan ja sulamispisteiden yläpuolella.The phenomena which occur at this stage and which lead to the decomposition of starch are known and are usually explained by the formation of a disorder in the molecular structure of the starch particles as a result of heat treatment above the glass transition temperature and melting points of its components.

5 Kaasunpoistovaiheeseen voi tyypillisesti kuulua 1 - 4 kaasunpoistovyöhykettä, joissa ekstruuderin runkoon saadaan aikaan ilmanpainetta alempi paine, tavallisesti 690 -700 mm Hg. Tässä vaiheessa veden määrä voi laskea arvoihin 2 - 0,1 %, edullisesti alle 1 %. Kaasunpoisto suoritetaan 10 käyttäen yhtä tai useampaa tunnettua tyyppiä olevaa vesi- rengaspumppua.The degassing step may typically include 1 to 4 degassing zones in which a pressure below atmospheric pressure is applied to the body of the extruder, usually 690 to 700 mm Hg. At this stage, the amount of water can fall to values of 2 to 0.1%, preferably less than 1%. Degassing is performed using one or more water ring pumps of a known type.

Sen jälkeen materiaali, josta kaasut on poistettu, menee läpi seuraavan kuljetusvaiheen, jossa on vain kulje-tuselementtejä tai sekoituslelementtejä ja niiden jälkeen 15 kuljetuselementtejä parantamaan tunkeutumista ja estämään seosta menettämästä yhtenäisyyttä, joka on muodostunut ensimmäisen sekoitusvaiheen aikana. Kuljetusvyöhykkeen pituus on tavallisesti 4 - 20 kertaa ekstruuderin ruuvin halkaisija.The degassed material then goes through the next transport step with only transport elements or mixing elements and then transport elements to improve penetration and prevent the mixture from losing the uniformity formed during the first mixing step. The length of the conveying zone is usually 4 to 20 times the diameter of the extruder screw.

20 Sen jälkeen sulatettu materiaali puristetaan pai neeseen yli 500 Pa, edullisesti yli 1500 Pa ja edullisemmin yli 3000 Pa käyttäen puristussuhteita 1:1,5 - 1:4. Sen jälkeen puristettu materiaali ekstrudoidaan lankoina tai levyinä edullisesti lämpötilassa välillä 105 - 130 °C.The molten material is then compressed to a pressure of more than 500 Pa, preferably more than 1500 Pa and more preferably more than 3000 Pa using compression ratios of 1: 1.5 to 1: 4. The extruded material is then extruded into wires or sheets, preferably at a temperature between 105 and 130 ° C.

1 25 Ekstrudoitua levyä voidaan käyttää lämpömuovaukseen joko alipainetekniikan tai uros/naarasmuovausmenetelmän avulla. Rakeita tai palasia voidaan valmistaa ekstrudoi-dusta langasta tai vastaavasti kalvosta ja niitä voidaan sitten käyttää kalvopuhallukseen edullisesti lämpötilassa : 30 välillä 100 - 140 °C perinteisten menetelmien avulla tai niitä voidaan käyttää ruiskupuristukseen.1 25 Extruded sheet can be used for thermoforming using either vacuum technology or male / female molding method. The granules or pieces can be made of extruded yarn or film, respectively, and can then be used for film blowing, preferably at a temperature of: between 100 and 140 ° C by conventional methods, or can be used for injection molding.

Erityisesti on havaittu, että vesipitoisuuden alentamiseksi alle 2 painoprosenttiin ja edullisemmin alle 1 painoprosenttiin toteutettava kaasunpoistovaihe kahden 35 sekoitus-ja siirto-puristus-vaiheen välillä toteutettuna 8 102288 sellaisissa olosuhteissa, että tärkkelys hajoaa ja saadaan toisiinsa tunkeutunut rakenne, saa aikaan ekstrudaatin, joka sopii erityisen hyvin seuraavan ekstruusion ja puristuksen avulla suoritettavaan prosessivaiheeseen.In particular, it has been found that in order to reduce the water content to less than 2% by weight and more preferably to less than 1% by weight, a degassing step between two mixing and transfer-compression steps carried out under conditions such that the starch decomposes and enters an infiltrated structure provides a particularly suitable extrudate. well to the next step of the process by extrusion and compression.

5 Kalvopuhalluskupla on täydellisen tasainen ja saa duilla putkilla ei ole tahmeusongelmia. Lisäksi ohuiden kalvojen moduuli on kasvanut ja ne pystyvät vastustamaan muodonmuutoksia ja jännityksiä, jotka ovat suurempia tai yhtä suuria kuin edellä tarkoitetut US-hakemusjulkaisussa 10 4 133 784 ja US-hakemus julkaisussa 4 227 181 kuvattujen ohuiden kalvojen kestämät.5 The film blowing bubble is perfectly flat and the ducts do not have tack problems. In addition, the modulus of the thin films is increased and they are able to withstand deformations and stresses greater than or equal to those tolerated by the thin films described in U.S. Patent Application No. 10,413,784 and U.S. Patent No. 4,227,181.

Muotoiltuja kappaleita saadaan ruiskupuristamalla saatua koostumusta lämpötilassa, joka on 130 - 180 °C, edullisesti 130 - 160 °C, leikkausmuodonmuutosnopeudella 15 1000 - 10 000 s'1 aikana, joka on 10 - 120 s, edullisesti 3 - 60 s, riippuen halutun kappaleen paksuudesta.Molded bodies are obtained by injection molding the composition obtained at a temperature of 130 to 180 ° C, preferably 130 to 160 ° C, with a shear deformation rate of 15 to 10,000 s'1 over a period of 10 to 120 s, preferably 3 to 60 s, depending on the desired body. thickness.

Muovauslämpötila ja leikkausnopeus koostumuksen am-moniakkipitoisuuden ja vesipitoisuuden lisäksi ovat tämän keksinnön mukaisen menetelmän kriittiset parametrit, jotta 20 saataisiin muovattuja tuotteita, joilla on vaaditut tyy pilliset ominaisuudet.The molding temperature and shear rate, in addition to the ammonia and water content of the composition, are critical parameters of the process of this invention to obtain molded articles having the required typical properties.

Itse asiassa havaittiin, että jos työskennellään sellaisissa olosuhteissa, on mahdollista saada hajonneita tärkkelyshiukkasia, jotka ovat levinneet yhtenäisesti mat-25 riisiin ja joiden lukukeskimääräinen halkaisija on alle 1 μιη, edullisesti 0,1 - 0,5 μπι, ja joiden hiukkaskokodisper-sio on alle 3, ja saada muodostumaan in situ tärkkelyksen ja EEA-kopolymeerin välinen vuorovaikutustuote sellaisessa suhteessa, että se sitoo vähintään 60 % ja edullisesti 80 ; 30 - 100 % lähtöaineena käytetystä tärkkelyksestä.In fact, it was found that if working under such conditions, it is possible to obtain disintegrated starch particles which are uniformly distributed in the matrix and have a number average diameter of less than 1 μιη, preferably 0.1 to 0.5 μπι, and a particle size dispersion of less than 3, and to form an in situ interaction product between the starch and the EEA copolymer in a ratio such that it binds at least 60% and preferably 80; 30 to 100% of the starch used as starting material.

Tämän keksinnön mukaisilla muotoilluilla tuotteilla on hyvät fysikaalis-mekaaniset ominaisuudet kuten moduuli, joka on yli 500 0 kg/cm2, hyvä murtolujuus; suuri taivutus-lujuus luokkaa 300 - 4 00 kg/cm2, ja ne ovat veteen liu- 9 102288 kenemattomia. Sellaisilla kappaleilla tapahtuu fysikaalis-mekaanisten ominaisuuksien huononemista, kun ne kastetaan veteen, mutta niiden muoto pysyy muuttumattomana eikä niiden pinnalla tapahdu mitään muutoksia; ilmastoimalla niitä 5 ilmassa lämpötilassa 25 °C ja 50 % suhteellista kosteutta sellaisilla kappaleilla on taipumus tulla läpikuultaviksi ja hauraammiksi.The shaped articles of this invention have good physico-mechanical properties such as a modulus of more than 500 kg / cm 2, good tensile strength; they have a high flexural strength of the order of 300 to 400 kg / cm2 and are insoluble in water. Such bodies suffer from a deterioration in their physical-mechanical properties when immersed in water, but their shape remains unchanged and no changes occur on their surface; by aeration them in 5 atmospheres at 25 ° C and 50% relative humidity, such bodies tend to become translucent and more brittle.

Termillä "tärkkelys" tarkoitetaan aina tässä selitysosassa ja patenttivaatimuksissa käytettynä tavallisesti 10 kaikkia luonnollista tai kasvialkuperää olevia tärkkelyksiä, jotka koostuvat oleellisesti amyloosista ja/tai amy-lopektiinistä. Niitä voidaan uuttaa erilaisista kasveista kuten esimerkiksi perunasta, riisistä, tapiokasta, maissista ja viljoista kuten rukiista, kaurasta, vehnästä jne. 15 Maissitärkkelys on edullista. Termillä "tärkkelys" tarkoitetaan myös tärkkelystä, joka on modifioitu happoluvun alentamiseksi alueella 3-6, sekä perunatärkkelystä, jossa fosfaattiryhmään liittyneiden kationien tyyppiä ja kon-sentraatiota on modifioitu. Etoksyloituja tärkkelyksiä, 20 asetaattitärkkelyksiä, kationisia tärkkelyksiä, hapetettuja tärkkelyksiä, silloittuneita tärkkelyksiä jne. voidaan myös käyttää tämän keksinnön mukaisessa menetelmässä.The term "starch", as used in this specification and claims, generally means all starches of natural or vegetable origin, consisting essentially of amylose and / or Amy-lopectin. They can be extracted from various plants such as potatoes, rice, tapioca, corn and cereals such as rye, oats, wheat, etc. Maize starch is preferred. The term "starch" also refers to starch modified to lower the acid number in the range of 3-6, as well as potato starch in which the type and concentration of cations attached to the phosphate group have been modified. Ethoxylated starches, acetate starches, cationic starches, oxidized starches, crosslinked starches, etc. can also be used in the process of this invention.

Luonnollista alkuperää olevaa tärkkelystä voidaan käyttää sellaisenaan ilman etukäteen suoritettua kuivausta 25 sen luontaisella sidotun veden pitoisuudella, joka on luokkaa 10 - 13 paino-%. Sellainen vesimäärä, joka saa ko-konaisvesipitoisuuden arvoon korkeintaan noin 25 % kuivan tärkkelyksen kokonaispainosta, edullisesti 10 - 15 %, lisätään tärkkelykseen ekstruuderissa.Starch of natural origin can be used as such without prior drying at a natural bound water content of the order of 10 to 13% by weight. An amount of water that gives a total water content of no more than about 25% of the total weight of the dry starch, preferably 10-15%, is added to the starch in the extruder.

; 30 Menetelmässä käytetyn EAA-kopolymeerin täytyy si sältää riittävä määrä karboksyyliryhmiä ollakseen yhteensopiva tärkkelykseen kanssa. Karboksyyliryhmien mukana olo tekee myös kopolymeerin dispergoituvaksi veteen. Edullinen EAA-kopolymeeri on sellainen, jota saadaan kopolymeroimal-35 la seosta, joka sisältää 3-30 paino-%, edullisesti 20 10 102288 paino-% akryylihappoa ja vastaavasti 97 - 70 paino-%, edullisesti 20 paino-% akryylihappoa ja vastaavasti 97 -70 paino-%, edullisesti 80 paino-% etyleeniä. Tärkkelys/-EAA-kopolymeerisuhde on edullisesti välillä 1:4-4:1.; The EAA copolymer used in the process must contain a sufficient number of carboxyl groups to be compatible with the starch. The presence of carboxyl groups also makes the copolymer dispersible in water. The preferred EAA copolymer is one obtained by copolymerizing a mixture containing 3 to 30% by weight, preferably 20 to 102288% by weight of acrylic acid and 97 to 70% by weight, preferably 20% by weight of acrylic acid and 97% by weight, respectively. -70% by weight, preferably 80% by weight of ethylene. The starch / -EAA copolymer ratio is preferably between 1: 4 and 4: 1.

5 Luonnollisesti tärkkelyspitoisuuden nousu edellä annetun alueen suurempia arvoja kohti on edullista valmistettujen kalvojen biologisen hajoavuuden kannalta.Naturally, an increase in the starch content towards higher values in the above range is advantageous for the biodegradability of the films produced.

Urean lisäämisen ekstruuderiin syötettyyn materiaaliin on havaittu olevan edullista helpottamaan tärkkelyk-10 sen hajoamista ja tekemään sen yhteensopivaksi EAA-kopoly- meerin kanssa. Jos ureaa on mukana, sen määrä ei ole suurempi kuin 30 paino-% ja edullisesti se on välillä 5-20 paino-% kokonaiskoostumuksesta.The addition of urea to the material fed to the extruder has been found to be advantageous in facilitating the decomposition of the starch and making it compatible with the EAA copolymer. If urea is present, its amount is not more than 30% by weight and preferably between 5 and 20% by weight of the total composition.

Tärkkelys-EAA-kopolymeeriin voidaan mahdollisesti 15 lisätä ammoniakkia määrä, joka ei ole kriittinen ja joka on tavallisesti korkeintaan 7 paino-% (30-prosenttinen kylläinen ammoniakkiliuos) kuivan tärkkelyksen painosta. Sen jälkeen lisätty ammoniakki poistetaan kokonaan tai osittain koostumuksen ekstrudoinnin aikana tai kuivausvai-20 heen aikana tai välivaiheessa suoritettavan kaasunpoiston aikana.Ammonia may optionally be added to the starch-EAA copolymer in a non-critical amount, usually up to 7% by weight (30% saturated ammonia solution) of the weight of the dry starch. The added ammonia is then completely or partially removed during the extrusion of the composition or during the drying step or during the intermediate degassing.

Lopulliset tuotteet ovat itse asiassa tunnettuja siitä, että ne eivät oleellisesti sisällä ammoniakkia, jota joka tapauksessa jää jäljelle hyvin pieniä pitoisuuk-25 siä, jotka ovat aina alle 0,5 paino-%, edullisesti alle 0,2 %.In fact, the final products are known to be substantially free of ammonia, which in any case remains in very small concentrations, always less than 0.5% by weight, preferably less than 0.2%.

Myös polyeteeniä voidaan lisätä koostumukseen parantamaan siitä valmistetun lopullisen tuotteen kestävyyttä ultraviolettisäteilyä vastaan.Polyethylene can also be added to the composition to improve the resistance of the final product made from it to ultraviolet radiation.

30 Minkä tyyppistä polyeteeniä tahansa voidaan lisätä, *: vaikka LD-polyeteeni on se, jota tavallisesti käytetään tässä tarkoituksessa. Lisätty polyeteenin määrä on tavallisesti alle 40 paino-% seoksesta.30 Any type of polyethylene can be added, *: although LD polyethylene is the one commonly used for this purpose. The amount of polyethylene added is usually less than 40% by weight of the mixture.

Muita materiaaleja, joko polymeerisiä tai monomee- 35 risiä, voidaan lisätä koostumukseen ennen ekstruusiovai- 11 102288 hetta. Siten esimerkiksi erilaisia määriä polyvinyylial-koholia voidaan lisätä muuntamaan muotoiltujen kappaleiden vesikäyttäytyrnistä; UV-stabilisaattoreita kuten esimerkiksi nokea voidaan lisätä parantamaan kappaleiden kestävyyt-5 tä auringonvaloa vastaan; tulenkestävyysaineita voidaan lisätä sellaisessa tapauksessa, että muotoiltuina kappaleilla täytyy olla mainittu ominaisuus. Muihin lisäaineisiin kuuluvat tavalliset lisäaineet, joita tavallisesti lisätään tärkkelykseen perustuviin muovattaviin koostumuk-10 siin, kuten esimerkiksi fungisidit, herbisidit, antioksi-dantit, lannoitteet, samentimet, stabilisaattorit, plas-tisoijat yms. Kaikkia näitä lisäaineita voidaan käyttää tavallisina määrinä, jotka alan asiantuntijat tietävät tai jotka voidaan helposti selvittää tavallisten kokeiden 15 avulla, ja niiden määrä voi nousta 20 painoprosenttiin asti lopullisesta koostumuksesta.Other materials, either polymeric or monomeric, may be added to the composition prior to the extrusion step. Thus, for example, various amounts of polyvinyl alcohol may be added to convert the shaped bodies from water treatment; UV stabilizers such as carbon black can be added to improve the resistance of the bodies to sunlight; refractory materials may be added in such a case that, when shaped, the bodies must have said property. Other additives include the usual additives commonly added to starch-based moldable compositions, such as fungicides, herbicides, antioxidants, fertilizers, opacifiers, stabilizers, plasticizers, etc. All of these additives can be used in ordinary amounts known to those skilled in the art. or which can be easily determined by ordinary experiments 15 and may amount to up to 20% by weight of the final composition.

Seuraava esimerkki on esitetty selventämään tätä keksintöä.The following example is provided to illustrate the present invention.

Esimerkissä kaikki prosentit tarkoittavat painopro-20 senttejä, ellei toisin ole ilmoitettu.In the example, all percentages are by weight unless otherwise indicated.

Esimerkki 1Example 1

Valmistettiin koostumus, joka sisälsi seuraavat komponentit: - 37 paino-% tärkkelystä Globe 3401 Cerestar, jonka 25 vesipitoisuus on 11 % - 37 paino-% EEA-kopolymeeriä 5981, valmistaja Dow Chemical, joka sisältää 20 % akryylihappoa; - 6,8 paino-% NH40H, 30-prosenttinen; - 6,8 paino-% vettä ; ja 30 - 12,4 paino-% ureaa.A composition was prepared containing the following components: 37% by weight of starch Globe 3401 Cerestar with a water content of 11% to 37% by weight of EEA copolymer 5981, manufactured by Dow Chemical, containing 20% of acrylic acid; - 6.8% by weight NH 4 OH, 30%; - 6.8% by weight of water; and 30 to 12.4% by weight of urea.

Tuotteet esisekoitettiin ja sen jälkeen syötettiin annostelulaitteella Licoarbo DC-10 ekstruuderiin Baker Perkins MPC/V-30. Sellainen ekstruuderi koostui kaksiruu-visesta yhdistelmästä, joka oli jaettu kahteen osaan. Ruu-35 vin halkaisija oli 30 mm ja ruuvin pituus-halkaisija-suhde • 102288 12 (L/D) oli 10 : 1; yhdistelmä oli liitetty yksiruuviseen suulakepuristimeen, jossa oli kapillaaripää ja halkaisijaltaan 38 mm oleva ruuvi ja jossa suhde L/D oli 8 : 1 ja joka oli jaettu kolmeen osaan. Käytetyn kapillaaripään 5 halkaisija oli 4,5 mm.The products were premixed and then fed to a Baker Perkins MPC / V-30 extruder using a Licoarbo DC-10 dispenser. Such an extruder consisted of a twin-screw combination divided into two parts. The diameter of the screw-35 was 30 mm and the length-to-diameter ratio of the screw • 102288 12 (L / D) was 10: 1; the combination was connected to a single-screw extruder with a capillary head and a 38 mm diameter screw with an L / D ratio of 8: 1, divided into three parts. The diameter of the capillary head 5 used was 4.5 mm.

Käytetyt lämpötilat olivat 80 °C kaksiruuvisen yhdistelmän kahdessa osassa ja vastaavasti 120 °, 100 ° ja 130 °C yksiruuvisen ekstruuderin kolmessa osassa.The temperatures used were 80 ° C in the two parts of the twin-screw combination and 120 °, 100 ° and 130 ° C in the three parts of the single-screw extruder, respectively.

Ajo-olosuhteet olivat seuraavat: 10 - kaksiruuvisen ekstruuderin pyörimisnopeus: 250 kierrosta minuutissa - yksiruuvisen ekstruuderin pyörimisnopeus: 110 kierrosta minuutissa - paine kammiossa: < 40 atm.The driving conditions were as follows: 10 - twin screw extruder speed: 250 rpm - single screw extruder speed: 110 rpm - chamber pressure: <40 atm.

15 Ekstrudoitu tuote jäähdytettiin ilmassa ja sen jäl keen rakeistettiin OMC-rakeistimella. Saatua seosta kuivattiin 4 tuntia lämpötilassa 100 °C alennetussa paineessa ennen ruiskupuristusta. Seoksen vesipitoisuus kuivauksen jälkeen oli 0,3 paino-% ja ammoniakkipitoisuus oli alle 20 0,1 paino-%.The extruded product was cooled in air and then granulated with an OMC granulator. The resulting mixture was dried at 100 ° C under reduced pressure for 4 hours before injection molding. The water content of the mixture after drying was 0.3% by weight and the ammonia content was less than 0.1% by weight.

Kuivattu seos ruiskupuristettiin käyttäen SANDRET-TO-puristinta 57/60, jossa oli kaksi kapillaariputkea, jotka oli laitettu symmetrisesti muovattavan kappaleen pohjaan.The dried mixture was injection molded using a SANDRET-TO press 57/60 with two capillary tubes placed symmetrically at the bottom of the body to be molded.

25 Ajo-olosuhteet olivat seuraavat: .25 The driving conditions were as follows:.

- ruiskutuslämpötila: 155 °, 165 °, 180 °C- injection temperature: 155 °, 165 °, 180 ° C

- muotin lämpötila: 25 °C- mold temperature: 25 ° C

- leikkausmuodonmuutosnopeus (s-1): 2000-6000 s'1 - kokonaisruiskutusaika: 15 s -.30 - jakson kokonaisaika: 45 s : - pitopaine: 400 bar Näin saaduilla näytteillä oli laatikkomainen muoto ja geometriselta rakenteeltaan ne olivat neliömäisiä katkaistuja pyramideja, joiden pienempi pohja oli kooltaan 13 102288 60 x 60 mm ja suurempi pohja 67 x 67 mm, korkeus 60 mm ja paksuus 3 mm.- shear rate (s-1): 2000-6000 s'1 - total injection time: 15 s -.30 - total cycle time: 45 s: - holding pressure: 400 bar The samples thus obtained had a box-shaped shape and were geometric truncated pyramids with a geometric structure the smaller base had a size of 13 102288 60 x 60 mm and the larger base 67 x 67 mm, height 60 mm and thickness 3 mm.

Saatujen näytteiden alkuainekoostumus oli seuraava: C = 56,70 % 5 H = 9,55 % N = 6,6 % IR-spektrissä ei havaittu ammoniumsuolojen mukana oloa, joten se osoitti ammoniakin poissa olon.The elemental composition of the obtained samples was as follows: C = 56.70% 5 H = 9.55% N = 6.6% The presence of ammonium salts was not observed in the IR spectrum, so it showed the absence of ammonia.

EAA-kopolymeeriin sitoutumattomien hajonneiden 10 tärkkelyshiukkasten koot mitattiin analysoimalla läpiva- laisuelektronimikroskoopilla (Philips EM 300) tuotteen pienestä sirusta, joka oli saatu ultramikrotomilla (Nova LKB) .The sizes of the decomposed starch particles unbound in the EAA copolymer were measured by analysis by transmission electron microscopy (Philips EM 300) of a small chip of the product obtained with an ultramicrotome (Nova LKB).

Lukukeskimääräinen halkaisija ja keskimääräinen 15 ' pinnan halkaisija saatiin käyttäen hiukkaskokoja, jotka oli saatu mikrokuvista, joissa oli käytetty 6000- ja 10 000-kertaista suurennusta ja joita oli otettu mäytteen eri kohdista.The number average diameter and the average 15 'surface diameter were obtained using particle sizes obtained from micrographs at 6000 and 10,000x magnification taken from different points in the sample.

Saadussa tuotteessa sitoutumattomien tärkkelyshiuk-20 kasten lukukeskimäärinen halkaisija oli 0,44 μπι. Keskimää räisen pinnan halkaisijan ja lukukeskimääräisen halkaisijan suhde otettiin hiukkasten dispersion mittana. Saadussa tuotteessa mainittu suhde oli 1,44.In the obtained product, the number average diameter of unbound starch particles was 0.44 μπι. The ratio of the mean surface diameter to the number average diameter was taken as a measure of particle dispersion. In the product obtained, said ratio was 1.44.

Taivutusominaisuudet mitattuna ASTM D 790 -standar-‘ 25 din mukaan olivat seuraavat: - Youngin moduuli: 7000 kg/cm2 - myötöraja: 310 kg/cm2 - venymä: 11 % Näyte jätettiin 20 päivän ajaksi veteen lämpötilaan 30 20 °C ja sen jälkeen sen annettiin ilmastoitua yhden kuu kauden ajan huoneenlämpötilassa ja kosteudessa noin 50 %.The bending properties measured according to ASTM D 790 were as follows: - Young's modulus: 7000 kg / cm2 - yield point: 310 kg / cm2 - elongation: 11% The sample was left in water at 30 to 20 ° C for 20 days and then allowed to air for one month at room temperature and humidity of about 50%.

Ilmastoidun näytteen sentesimaalinen analyysi oli seuraava:The centesimal analysis of the conditioned sample was as follows:

C = 57,75MC = 57.75M

35 H = 9,8 % N = 2,45 %.35 H = 9.8% N = 2.45%.

14 10228814 102288

Sitoutumattomien tärkkelyshiukkasten lukukeskimää-räinen halkaisija oli 0,36 μπι ja hiukkasten dispersio oli 1,58.The number average diameter of the unbound starch particles was 0.36 μπι and the dispersion of the particles was 1.58.

Taivutusominaisuudet mitattuna ASTM D 790 -standar-5 dien mukaan, olivat seuraavat: - Youngin moduuli: 5000 kg/cm2 - myötöraja: 230 kg/cm2 - venymä: 13 %Bending properties measured according to ASTM D 790 standards were as follows: - Young's modulus: 5000 kg / cm2 - yield strength: 230 kg / cm2 - elongation: 13%

Esimerkki 2 10 Seuraava koostumus syötettiin kaksiruuviseen ekst- ruuderiin, jossa ruuvin halkaisija oli 50 mm ja ruuvin pi-tuus/halkaisija -suhde oli 36: 4.0 kg tärkkelystä GLOBE 03401 Cerestar, jota ei ollut kuivattu etukäteen, 15 1,2 kg ureaa, 4.0 kg Dow Chemical1 in kopolymeeriä EAA 5981, jonka akryylihappopitoisuus oli 20 %, 0,6 litraa vettä.Example 2 The following composition was fed to a twin screw extruder with a screw diameter of 50 mm and a screw length / diameter ratio of 36: 4.0 kg of starch GLOBE 03401 Cerestar, which had not been pre-dried, 1.2 kg of urea, 4.0 kg of Dow Chemical1 copolymer EAA 5981 with an acrylic acid content of 20%, 0.6 liters of water.

Ekstruuderissa oli seuraavat vyöhykkeet: 20 kuljetusvyöhyke: 4 halkaisijaa, ensimmäinen sekoitusvyöhyke: 20 halkaisijaa, kaasunpoistovyöhyke, joka oli yhdistetty alipaineeseen paineessa noin 690 mm Hg, kuljetusvyöhyke, jossa sekoituselementtejä: 11 hal-25 kaisijaa, puristusvyöhyke, jossa puristussuhde 1:2. Asetetut lämpötilat olivat kuljetusvyöhykeellä 60 ja 80 °C ja seuraavilla vyöhykkeillä 90 - 130 °C. Kokeet suoritettiin käyttäen ruuvin pyörimisnopeuksia 100 ja 250 30 kierrosta minuutissa ja pään painetta 40 atm (4000 Pa).The extruder had the following zones: 20 transport zone: 4 diameters, first mixing zone: 20 diameters, degassing zone connected to a vacuum at a pressure of about 690 mm Hg, transport zone with mixing elements: 11 diameters, 1 compression zone, compression zone The set temperatures were in the transport zone 60 and 80 ° C and in the following zones 90 to 130 ° C. The experiments were performed using screw speeds of 100 and 250 rpm and a head pressure of 40 atm (4000 Pa).

- : Sulatettu materiaali ekstrudoitiin käyttäen ulostu- lolämpötilaa 120 °C ja vesipitoisuutta noin 0,7 %.-: The molten material was extruded using an outlet temperature of 120 ° C and a water content of about 0.7%.

Lankamainen ekstrudaatti pelletoitiin ja pelletit syötettiin HAAKE-ekstruuderiin, jonka halkaisija oli 19 mm 35 ja suhde L/D 25 ja jossa oli kalvonpuhalluspää. Ekstruu- 102288 sio- ja puhallusprosessi suoritettiin käyttäen ruuvin pyörimisnopeuksia 30 - 65 kierrosta minuutissa ja puristus-suhde oli 1 : 2.The wire-like extrudate was pelletized and the pellets were fed into a HAAKE extruder having a diameter of 19 mm 35 and a ratio L / D 25 and a film blowing head. The extrusion and blowing process was performed using screw rotation speeds of 30 to 65 rpm and a compression ratio of 1: 2.

ASTM 882:n mukaisia vetokokeita varten kalvoista 5 otettiin suorakulmaisia testipaloja, jotka olivat paksuu deltaan noin 100 μττι.For tensile tests according to ASTM 882, rectangular test pieces with a delta thickness of about 100 μττι were taken from the films 5.

Testikappaleita ilmastoitiin lämpötilassa 23 ± 1 °C ja suhteellisessa kosteudessa 55 ± 5 % 24 tunnin ajan.The test pieces were conditioned at 23 ± 1 ° C and 55 ± 5% relative humidity for 24 hours.

Mekaanisista lujuuskokeista saatiin seuraavat tulo lokset, jotka on ilmoitettu keskiarvoina.The following results, expressed as averages, were obtained from the mechanical strength tests.

Youngin moduuli 200 kg/cm2Young's modulus 200 kg / cm2

Murtovenymä 150 %Elongation at break 150%

Murtolujuus 150 kg/cm2Tensile strength 150 kg / cm2

Kaikissa kokeissa puhaltamalla saaduilla putkilla 15 ei ollut tahmeusongelmia ja kupla oli tasainen ja vakaa.In all experiments, the tubes obtained by blowing 15 had no tack problems and the bubble was smooth and stable.

Samanlaisia tuloksia saatiin, kun edellä esitetyn kaltainen koostumus, joka lisäksi sisälsi 6,0 litraa 30-prosenttista ammoniakkiliuosta, lisättiin kaksiruuviseen ekstruuderiin.Similar results were obtained when a composition as described above, which additionally contained 6.0 liters of a 30% ammonia solution, was added to a twin-screw extruder.

20 Esimerkki 320 Example 3

Pellettejä, jotka oli valmistettu kuten esimerkissä 2, syötettiin ekstruuderiin, jonka halkaisija oli 35 mm ja suhde L/D 20 ja jossa oli tasainen päätylevy ja sylinterissä oli sisäinen vesijäähdytys (cirrol).Pellets prepared as in Example 2 were fed to an extruder with a diameter of 35 mm and an L / D 20 ratio, with a flat end plate and internal water cooling (cirrol) in the cylinder.

25 Prosessi ohuen kalvon valmistamiseksi toteutettiin ruuvin pyörimisnopeudella 40 kierrosta minuutissa ja läm pötilassa 110 - 130 °C ja puristussuhteen ollessa 1:2.The process for producing a thin film was carried out at a screw rotation speed of 40 rpm and a temperature of 110 to 130 ° C and a compression ratio of 1: 2.

Vesijäähdytyksen lämpötila oli noin 15 °C.The water cooling temperature was about 15 ° C.

Siten oli mahdollista valmistaa kalvoja, joiden 30 paksuudet olivat 20 - 299 μχη vaihtelemalla ulostulonopeut- " ta. ASTM-standardin 882 mukaan testatut ohuen kalvon veny- misominaisuudet olivat: 102288 16Thus, it was possible to produce films having a thickness of 20 to 299 μχη by varying the output rate. The stretching properties of the thin film tested according to ASTM standard 882 were: 102288 16

Ekstruusion Ekstruusion suuntaa suuntaisesti vastaan_Extrusion direction of extrusion direction_

Youngin moduuli 2200 kg/cm2 1500 kg/cm2Young's modulus 2200 kg / cm2 1500 kg / cm2

Murtovenymä 200 % 120 % 5 Murtolujuus 140 kg/cm2 115 kg/cm2Elongation at break 200% 120% 5 Tensile strength 140 kg / cm2 115 kg / cm2

Esimerkki 4Example 4

Esimerkin 1 mukaisesti valmistettuja pellettejä syötettiin ekstruuderiin, jossa 10 - halkaisija oli 50 mm, - suhde L/D = 20, - tasainen päätylevy oli noin 70 cm leveä.The pellets prepared according to Example 1 were fed into an extruder with a diameter of 50 mm, a L / D ratio of 20, a flat end plate about 70 cm wide.

Tämän tyyppisellä tasaisella ja PP:lle ja PE:lie tarkoitetulla päätylevyllä oli vääntösauva, joka varmisti, 15 että sulatetun materiaalin ulostulonopeus oli tasainen joka kohdassa.This type of flat end plate for PP and PE had a torsion bar which ensured that the outlet velocity of the molten material was constant at each point.

Paksuudeltaan 0,8 mm olevan kalvon ekstrudointiolo-suhteet olivat seuraavat: - lämpötila 140 eC läpi ekstruuderin, 20 - ruuvin pyörimisnopeus: 60 kierrosta minuutissa, - päätylevyn aukko: 1 mm.The extrusion conditions for a film with a thickness of 0.8 mm were as follows: - temperature 140 eC through the extruder, 20 - screw rotation speed: 60 rpm, - end plate opening: 1 mm.

Kalvo koottiin kalenterille, jossa oli kolmen vesijäähdytteisen rullan teline.The film was assembled on a calendar with a rack of three water-cooled rollers.

Näin saatu kalvo muotoiltiin uros/naaras-lautasmuo-‘ 25 tiliä, jonka mitat olivat 20 cm x 15 cm, sen jälkeen kun kalvo oli kuumennettu lämpötilaan 80 °C.The film thus obtained was formed into a male / female plate account measuring 20 cm x 15 cm after the film was heated to 80 ° C.

Näin saatu lautanen oli paksuudeltaan yhtenäinen.The plate thus obtained was uniform in thickness.

• «• «

Claims (18)

1. Tärkkelykseen perustuvat veteen liukenemattomat tuotteet, tunnettu siitä, että ne käsittävät 5 (1) komponentin, joka koostuu hajotetusta, hiukkas- muodossa olevasta tärkkelyksestä, jossa hiukkasten luku-keskimääräinen halkaisija on alle 1 μιη, (2) komponentin, joka koostuu eteeni-akryylihappo-kopolymeerista (EAA), 10 (3) komponentin, joka koostuu IPN-rakenteesta, joka on saatu tärkkelyksen ja eteeni-akryylihappokopolymeerin vuorovaikutuksesta sekoittamalla 90 - 150 °C lämpötilaan kuumennetussa ekstruuderissa tärkkelystä ja eteeni-akryylihappokopolymeer ia painosuhteessa 1:9 - 9:1, kunnes tärk-15 kelys on oleellisesti hajonnut ja aineet ovat tunkeutuneet toisiinsa, ja valinnaisesti (4) vettä, jota on alle 6 paino-% mainitun kolmen faasin kokonaispainosta.1. Water-insoluble products based on starch, characterized in that they comprise a 5 (1) component consisting of dispersed starch in particulate form with a number average particle diameter of less than 1 μιη, (2) a component consisting of ethylene-based starch. acrylic acid copolymer (EAA), a 10 (3) component consisting of an IPN structure obtained from the interaction of starch and ethylene-acrylic acid copolymer by mixing starch and an ethylene-acrylic acid 9 copolymer in an extruder heated to 90-150 ° C 1 until the starch has substantially disintegrated and the substances have penetrated each other, and optionally (4) water which is less than 6% by weight of the total weight of said three phases. 2. Patenttivaatimuksen 1 mukaiset tärkkelykseen 20 perustuvat tuotteet, tunnettu siitä, että niiden etyleeni-akryylihappo-kopolymeerin akryylihappopitoisuus on 3 - 30 paino-% ja hajotettu tärkkelysfaasi, joka ei ole sitoutunut etyleeni-akryylihappo-kopolymeeriin, on hieno-jakoisesti ja tasaisesti levinneenä seokseen hiukkasina, * 25 joiden lukukeskimääräinen halkaisija on alle 1 μτα, ja hiukkasten dispersiona, joka on alle 3.Starch-based products according to Claim 1, characterized in that their ethylene-acrylic acid copolymer has an acrylic acid content of 3 to 30% by weight and the decomposed starch phase which is not bound to the ethylene-acrylic acid copolymer is finely divided and evenly distributed. as particles * 25 with a number average diameter of less than 1 μτα and a particle dispersion of less than 3. 3. Tärkkelykseen perustuvia patenttivaatimuksen 1 mukaiset tuotteet, tunnettu siitä, että ne sisältävät : 30 - 10 - 90 paino-% kokonaismäärästä etyleeni-akryy- lihappo-kopolymeeriä, jonka akryylihappopitoisuus on 3 -30 paino-%, ja - alle 2 paino-% vettä; jolloin alle 40 paino-% ja edullisesti alle 20 paino-% 35 kokonaistärkkelyksestä on vapaana ja hiukkasina, joiden 102288 18 lukukeskimääräinen halkaisija on alle 1 μπι, ja jäljelle jäävä tärkkelys on sitoutunut etyleeni-akryylihappo-kopo-lymeeriin muodostaen mainitun vuorovaikutustuotteen.Starch-based products according to Claim 1, characterized in that they contain: 30 to 10 to 90% by weight of the total amount of ethylene-acrylic acid copolymer having an acrylic acid content of 3 to 30% by weight, and - less than 2% by weight. water; wherein less than 40% by weight and preferably less than 20% by weight of the total starch is free and in the form of particles having a number average diameter of less than 1 μπι, and the remaining starch is bound to the ethylene-acrylic acid copolymer to form said interaction product. 4. Tärkkelykseen perustuvat patenttivaatimuksen 3 5 mukaiset tuotteet, tunnettu siitä, että 80 - 100 % kokonaistärkkelyksestä on sitoutunut etyleeni-akryyli-happo-kopolymeeriin.Starch-based products according to Claim 3 to 5, characterized in that 80 to 100% of the total starch is bound to the ethylene-acrylic acid copolymer. 5. Tärkkelykseen perustuvat patenttivaatimuksen 2 tai 3 mukaiset kappaleet, tunnettu siitä, että 10 hiukkasten lukukeskimääräinen halkaisija on 0,1 - 0,5 μπι.Starch-based bodies according to Claim 2 or 3, characterized in that the particles have a number-average diameter of 0.1 to 0.5 μπι. 6. Tärkkelykseen perustuvat patenttivaatimuksen 1 mukaiset tuotteet, tunnettu siitä, että etyleeni-akryylihappo-kopolymeerin akryylihappopitoisuus on 20 paino- %.Starch-based products according to Claim 1, characterized in that the ethylene-acrylic acid copolymer has an acrylic acid content of 20% by weight. 7. Jonkin edellä olevan patenttivaatimuksen 1-6 mukaiset tärkkelykseen perustuvat tuotteet, tunnet -t u siitä, että vesipitoisuus on 0 - 2 paino-% seoksesta.Starch-based products according to one of the preceding claims 1 to 6, characterized in that the water content is 0 to 2% by weight of the mixture. 8. Tärkkelykseen perustuvat patenttivaatimuksen 1 mukaiset tuotteet, tunnettu siitä, että ne sisäl- 20 tävät lisäksi ureaa korkeintaan 30 paino-% seoksesta, tai ammoniakkia korkeintaan 0,5 paino-% seoksesta.Starch-based products according to Claim 1, characterized in that they additionally contain at most 30% by weight of urea from the mixture or at most 0.5% by weight of ammonia from the mixture. 9. Menetelmä tärkkelykseen perustuvien tuotteiden valmistamiseksi, tunnettu siitä, että - syötetään 90 - 150 °C lämpötilaan kuumennettuun 25 ekstruuderiin tärkkelystä ja eteeni-akryylihappo-kopoly- meeria painosuhteessa 1:9 - 9:1, vettä 10 - 25 % tärkke-lyskomponentin kokonaispainosta ja mahdollisesti ureaa ja/tai ammoniakkia, - sekoitetaan ensimmäisessä sekoitusvaiheessa tärk- 30 kelys perinpohjaisesti kopolymeeriin, kunnes se on oleel- lisesti hajonnut ja aineet ovat tunkeutuneet toisiinsa, - sekoitusvaiheesta saadusta materiaalista poistetaan kaasua ja saatetaan vesipitoisuus arvoon alle 6 paino-%, edullisesti alle 2 paino-%, ja ammoniakkipitoisuus, 35 jos ammoniakkia on mukana, arvoon alle 0,5 paino-%, ja 19 102288 - saatua materiaalia siirretään edelleen ja puristetaan yli 500 Pa paineeseen ja materiaali ekstrudoidaan lämpötilassa 105 - 130 °C.Process for the preparation of starch-based products, characterized in that - starch and ethylene-acrylic acid copolymer in a weight ratio of 1: 9 to 9: 1, water 10 to 25% of the total weight of the starch component are fed to an extruder heated to 90 to 150 ° C and optionally urea and / or ammonia, - in the first mixing step, the starch is thoroughly mixed with the copolymer until it is substantially decomposed and the substances have penetrated, - the material obtained from the mixing step is degassed and the water content is less than 6% by weight, preferably less than 2% by weight, and an ammonia content, if less ammonia, of less than 0.5% by weight, and 19 102288 - the material obtained is further transferred and pressed to a pressure of more than 500 Pa and the material is extruded at a temperature of 105 to 130 ° C. 10. Patenttivaatimuksen 9 mukainen menetelmä, 5 tunnettu siitä, että ensimmäinen kuljetusvaihe lämpötilassa 60 - 100 °C on välittömästi ensimmäisen se-koitusvaiheen jälkeen.A method according to claim 9, characterized in that the first transport step at a temperature of 60 to 100 ° C is immediately after the first mixing step. 11. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että ekstruuderiin syötettyyn ma- 10 teriaaliin kohdistuu leikkausmuodonmuutos nopeudella 50 - 5000 s'1 ensimmäisen ja toisen sekoitusvaiheen aikana.A method according to claim 9, characterized in that the material fed to the extruder is subjected to a shear deformation at a speed of 50 to 5000 s'1 during the first and second mixing steps. 12. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että ensimmäinen sekoitusvaihe on 4-20 kertaa ekstruuderin ruuvin halkaisijan pituinen.A method according to claim 9, characterized in that the first mixing step is 4 to 20 times the length of the screw of the extruder. 13. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että vaihe, jossa kaasuttomaksi tehty materiaali kuljetetaan, on 4 - 20 kertaa ekstruuderin ruuvin halkaisijan pituinen ja sisältää sekoitusele-menttejä, jotka voivat estää erottumisilmiön.A method according to claim 9, characterized in that the step of conveying the degassed material is 4 to 20 times the length of the screw of the extruder and includes mixing elements which can prevent the separation phenomenon. 14. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että puristusvaiheessa käytetään puristussuhdetta 1:1,5 - 1:4.Method according to Claim 9, characterized in that a compression ratio of 1: 1.5 to 1: 4 is used in the compression step. 15. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että ekstruuderiin syötetyssä ma- • 25 teriaalissa on korkeintaan 7 prosentin määrä ammoniakkia kuivan tärkkelyksen painosta ja jossa ammoniakkipitoisuus on alennettu korkeintaan arvoon 0,2 paino-% ekstrudoidun koostumuksen painosta kaasunpoistovaiheessa.Process according to Claim 9, characterized in that the material fed to the extruder contains at most 7% of ammonia by weight of the dry starch and in which the ammonia content is reduced to at most 0.2% by weight of the weight of the extruded composition in the degassing step. 16. Patenttivaatimuksen 9 mukainen menetelmä, 30 tunnettu siitä, että ekstruuderiin syötetyssä ma- ” teriaalissa on korkeintaan 30 painoprosentin määrä ureaa, edullisesti 5-20 paino-% koostumuksen kokonaispainosta ja vettä määrä 10 - 15 % kuivan tärkkelyskomponentin painosta . 102288 20Process according to Claim 9, characterized in that the material fed to the extruder contains at most 30% by weight of urea, preferably from 5 to 20% by weight of the total weight of the composition and from 10 to 15% by weight of water of the dry starch component. 102288 20 17. Patenttivaatimuksen 9 mukainen menetelmä, tunnettu siitä, että tärkkelys ja kopolymeeri syötetään ekstruuderiin suhteessa 1:4 - 4:1.Process according to Claim 9, characterized in that the starch and the copolymer are fed to the extruder in a ratio of 1: 4 to 4: 1. 17 10228817 102288 18. Patenttivaatimuksen 9 mukainen menetelmä muo- 5 vattujen kappaleiden valmistamiseksi, tunnettu siitä, että ekstrudoitu koostumus, jonka vesipitoisuus on alle 6 paino-%, ruiskupuristetaan lämpötilassa 130 - 180 °C leikkausmuodonmuutosnopeuksilla 1000 - 10 000 s'1 10 -120 sekunnin aikana kappaleen paksuudesta riippuen. 21 102288A method of making molded articles according to claim 9, characterized in that the extruded composition having a water content of less than 6% by weight is injection molded at a temperature of 130 to 180 ° C at shear deformation rates of 1000 to 10,000 s'1 for 10 to 120 seconds. depending on the thickness. 21 102288
FI905511A 1989-03-09 1990-11-07 Starch - based biodegradable products and method for their preparation FI102288B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
IT8941002A IT1235543B (en) 1989-03-09 1989-03-09 Biodegradable articles based on starch
IT4100289 1989-03-09
IT8967666A IT1232893B (en) 1989-08-02 1989-08-02 Biodegradable articles based on starch
IT6766689 1989-08-02
EP9000375 1990-03-08
PCT/EP1990/000375 WO1990010671A1 (en) 1989-03-09 1990-03-08 Biodegradable articles based on starch and process for producing them

Publications (3)

Publication Number Publication Date
FI905511A0 FI905511A0 (en) 1990-11-07
FI102288B true FI102288B (en) 1998-11-13
FI102288B1 FI102288B1 (en) 1998-11-13

Family

ID=26329107

Family Applications (1)

Application Number Title Priority Date Filing Date
FI905511A FI102288B1 (en) 1989-03-09 1990-11-07 Starch - based biodegradable products and method for their preparation

Country Status (19)

Country Link
US (1) US5262458A (en)
EP (1) EP0413798B1 (en)
JP (1) JP2925728B2 (en)
KR (1) KR0169087B1 (en)
CN (1) CN1038422C (en)
AT (1) ATE131505T1 (en)
AU (1) AU628495B2 (en)
BR (1) BR9004768A (en)
CA (1) CA2028130C (en)
DD (1) DD299280A5 (en)
DE (1) DE69024132T2 (en)
DK (1) DK0413798T3 (en)
ES (1) ES2081975T3 (en)
FI (1) FI102288B1 (en)
GR (1) GR1000578B (en)
HU (1) HUT56384A (en)
IL (1) IL93620A0 (en)
NO (1) NO180781C (en)
WO (1) WO1990010671A1 (en)

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043196A (en) * 1989-05-17 1991-08-27 National Starch And Chemical Investment Holding Corporation Biodegradable shaped products and the method of preparation thereof
US5035930A (en) * 1988-12-30 1991-07-30 National Starch And Chemical Investment Holding Corporation Biodegradable shaped products and the method of preparation thereof
EP0473726A4 (en) * 1989-05-19 1992-07-15 Agri-Tech Industries, Inc. Injection molded biodegradable starch polymer composite
IT1233599B (en) * 1989-05-30 1992-04-06 Butterfly Srl POLYMERIC COMPOSITIONS FOR THE PRODUCTION OF BIODEGRADABLE PLASTIC ITEMS AND PROCEDURES FOR THEIR PREPARATION
IT1234783B (en) * 1989-05-30 1992-05-27 Butterfly Srl PROCEDURE FOR THE PRODUCTION OF DESTRUCTURED STARCH-BASED COMPOSITIONS AND COMPOSITIONS SO OBTAINED
IL94587A (en) * 1989-06-19 1997-04-15 Novon International Polymer base blend compositions containing destructurized starch
JPH0725944B2 (en) * 1989-07-20 1995-03-22 ワーナー・ランバート・カンパニー Polymer-based blend composition containing modified starch
US5288765A (en) * 1989-08-03 1994-02-22 Spherilene S.R.L. Expanded articles of biodegradable plastics materials and a method for their production
US5409973A (en) * 1989-08-07 1995-04-25 Butterfly S.R.L. Polymer composition including destructured starch and an ethylene copolymer
IT1232910B (en) * 1989-08-07 1992-03-05 Butterfly Srl POLYMERIC COMPOSITIONS FOR THE PRODUCTION OF BIODEGRADABLE PLASTIC ITEMS AND PROCEDURES FOR THEIR PREPARATION
GB9017300D0 (en) * 1990-08-07 1990-09-19 Cerestar Holding Bv Starch treatment process
IT1242722B (en) * 1990-08-09 1994-05-17 Butterfly Srl LAYERED STARCH FILM AND LOW PERMEABILITY AND PROCEDURE FOR ITS PRODUCTION.
DE4038732A1 (en) * 1990-12-05 1992-06-11 Henkel Kgaa MATERIALS AND / OR COMPONENTS MODIFIED BY SYNTHETIC POLYMER COMPOUNDS AND DRY-BASED METHOD AND METHOD OF MANUFACTURING THEM
US5292782A (en) * 1991-02-20 1994-03-08 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
IT1245408B (en) * 1991-02-20 1994-09-20 Butterfly Srl BIODEGRADABLE POLYMERIC COMPOSITIONS BASED ON STARCH AND THERMOPLASTIC POLYMER
IT1245485B (en) * 1991-05-03 1994-09-20 Butterfly Srl PERMSELECTIVE MEMBRANES AND THEIR USE
EP0525245A1 (en) * 1991-08-01 1993-02-03 NOVAMONT S.p.A. Disposable absorbent articles
IT1256693B (en) * 1992-03-10 1995-12-12 Novamont Spa FILMABLE AMIDACEA POLYMERIC COMPOSITION, AND SHAPED ITEMS, PARTICULARLY FILMS AND LEAVES OBTAINED FROM SUCH COMPOSITION, HAVING HIGH BARRIER EFFECT AND RELATED PROCEDURE.
US5412005A (en) * 1991-05-03 1995-05-02 Novamont S.P.A. Biodegradable polymeric compositions based on starch and thermoplastic polymers
DE4116404A1 (en) * 1991-05-18 1992-11-19 Tomka Ivan POLYMERMISCHUNG FOR THE MANUFACTURE OF FOILS
DE9107213U1 (en) * 1991-06-12 1991-10-24 Vos, geb. Schneeberger, Petra, Wolfgantzen Sacrificial candle for setting up in churches, chapels, cult memorials, etc.
EP0591409B1 (en) * 1991-06-26 1999-10-20 The Procter & Gamble Company Biodegradable, liquid impervious films
US5217803A (en) * 1991-06-26 1993-06-08 Tredegar Industries, Inc. Disposable absorbent articles with biodegradable backsheets
CZ288193A3 (en) * 1991-06-26 1994-07-13 Procter & Gamble Disposable absorption articles with biologically degradable back layers
US5254607A (en) * 1991-06-26 1993-10-19 Tredegar Industries, Inc. Biodegradable, liquid impervious films
IT1250045B (en) * 1991-11-07 1995-03-30 Butterfly Srl PROCEDURE FOR THE PRODUCTION OF PLASTICIZED POLYVINYL ALCOHOL AND ITS USE FOR THE PREPARATION OF BIODEGRADABLE STARCH-BASED THERMOPLASTIC COMPOSITIONS.
IT1250901B (en) * 1991-12-12 1995-04-21 Novamont Spa BIODEGRADABLE ITEMS BASED ON STARCH.
US5440808A (en) * 1992-01-30 1995-08-15 Warner-Lambert Company Disposable shaped article
US5635550A (en) * 1992-02-07 1997-06-03 Solvay (Societe Anonyme) Starch-based composition
US5550177A (en) * 1992-02-28 1996-08-27 The United States Of America As Represented By The Secretary Of Agriculture Starch and poly (ethlene-co-acrylic acid) pastes and gels, and method for their making
DE4209095A1 (en) * 1992-03-20 1993-09-23 Henkel Kgaa THERMOPLASTICALLY MANUFACTURED MATERIALS BASED ON STAEREE BASE, MOLDED PARTS AND METHOD OF PRODUCTION THEREOF
US5419283A (en) * 1992-04-08 1995-05-30 Ciuffo Gatto S.R.L. Animal chew toy of starch material and degradable ethylene copolymer
AU681589B2 (en) * 1992-06-26 1997-09-04 Procter & Gamble Company, The Biodegradable, liquid impervious multilayer film compositions
US5939467A (en) * 1992-06-26 1999-08-17 The Procter & Gamble Company Biodegradable polymeric compositions and products thereof
US5582670A (en) 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5658603A (en) 1992-08-11 1997-08-19 E. Khashoggi Industries Systems for molding articles having an inorganically filled organic polymer matrix
US5618341A (en) 1992-08-11 1997-04-08 E. Khashoggi Industries Methods for uniformly dispersing fibers within starch-based compositions
US5783126A (en) 1992-08-11 1998-07-21 E. Khashoggi Industries Method for manufacturing articles having inorganically filled, starch-bound cellular matrix
US5851634A (en) 1992-08-11 1998-12-22 E. Khashoggi Industries Hinges for highly inorganically filled composite materials
US5662731A (en) 1992-08-11 1997-09-02 E. Khashoggi Industries Compositions for manufacturing fiber-reinforced, starch-bound articles having a foamed cellular matrix
US5683772A (en) 1992-08-11 1997-11-04 E. Khashoggi Industries Articles having a starch-bound cellular matrix reinforced with uniformly dispersed fibers
US5800647A (en) 1992-08-11 1998-09-01 E. Khashoggi Industries, Llc Methods for manufacturing articles from sheets having a highly inorganically filled organic polymer matrix
US5810961A (en) 1993-11-19 1998-09-22 E. Khashoggi Industries, Llc Methods for manufacturing molded sheets having a high starch content
US5830305A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Methods of molding articles having an inorganically filled organic polymer matrix
US5545450A (en) 1992-08-11 1996-08-13 E. Khashoggi Industries Molded articles having an inorganically filled organic polymer matrix
US5679145A (en) 1992-08-11 1997-10-21 E. Khashoggi Industries Starch-based compositions having uniformly dispersed fibers used to manufacture high strength articles having a fiber-reinforced, starch-bound cellular matrix
US5928741A (en) 1992-08-11 1999-07-27 E. Khashoggi Industries, Llc Laminated articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5830548A (en) 1992-08-11 1998-11-03 E. Khashoggi Industries, Llc Articles of manufacture and methods for manufacturing laminate structures including inorganically filled sheets
US5709827A (en) 1992-08-11 1998-01-20 E. Khashoggi Industries Methods for manufacturing articles having a starch-bound cellular matrix
US5506046A (en) 1992-08-11 1996-04-09 E. Khashoggi Industries Articles of manufacture fashioned from sheets having a highly inorganically filled organic polymer matrix
US5580624A (en) 1992-08-11 1996-12-03 E. Khashoggi Industries Food and beverage containers made from inorganic aggregates and polysaccharide, protein, or synthetic organic binders, and the methods of manufacturing such containers
US5508072A (en) 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
DE4228016C1 (en) * 1992-08-24 1994-03-31 Biotec Biolog Naturverpack Process for producing biodegradable films from vegetable raw materials
BE1006138A3 (en) * 1992-09-01 1994-05-24 Solvay Polymer composition for the production of articles in high frequency weldable, master blend compositions for these articles and preparation of products from them.
DE4237535C2 (en) 1992-11-06 2000-05-25 Biotec Biolog Naturverpack Biodegradable polymer blend, process and film
US5844023A (en) 1992-11-06 1998-12-01 Bio-Tec Biologische Naturverpackungen Gmbh Biologically degradable polymer mixture
KR960012444B1 (en) * 1992-11-24 1996-09-20 주식회사 유공 Biodegradable Polyethylene Composition Chemically Bonded with Starch and Method for Preparing the Same
US5716675A (en) 1992-11-25 1998-02-10 E. Khashoggi Industries Methods for treating the surface of starch-based articles with glycerin
US5352716A (en) * 1992-12-16 1994-10-04 Ecostar International, L.P. Degradable synthetic polymeric compounds
US5910520A (en) * 1993-01-15 1999-06-08 Mcneil-Ppc, Inc. Melt processable biodegradable compositions and articles made therefrom
DK169728B1 (en) 1993-02-02 1995-01-23 Stein Gaasland Process for releasing cellulose-based fibers from each other in water and molding for plastic molding of cellulosic fiber products
DE69431321T2 (en) * 1993-04-23 2003-05-22 Mitsubishi Chemical Corp., Tokio/Tokyo Highly water-absorbent polymers with improved gel strength
US5738921A (en) 1993-08-10 1998-04-14 E. Khashoggi Industries, Llc Compositions and methods for manufacturing sealable, liquid-tight containers comprising an inorganically filled matrix
CN1037515C (en) * 1993-08-24 1998-02-25 北京市星辰现代控制工程研究所 Biodegradable starch-containing polymer composition and preparation method thereof
US6083586A (en) 1993-11-19 2000-07-04 E. Khashoggi Industries, Llc Sheets having a starch-based binding matrix
US5736209A (en) 1993-11-19 1998-04-07 E. Kashoggi, Industries, Llc Compositions having a high ungelatinized starch content and sheets molded therefrom
TW324730B (en) * 1993-12-20 1998-01-11 Procter & Gamble PH modified polymer composition with improved biodegradation property
US5843544A (en) 1994-02-07 1998-12-01 E. Khashoggi Industries Articles which include a hinged starch-bound cellular matrix
US5705203A (en) 1994-02-07 1998-01-06 E. Khashoggi Industries Systems for molding articles which include a hinged starch-bound cellular matrix
US5776388A (en) 1994-02-07 1998-07-07 E. Khashoggi Industries, Llc Methods for molding articles which include a hinged starch-bound cellular matrix
DE69513889T2 (en) * 1994-06-21 2000-07-27 The B.F. Goodrich Co., Brecksville Degradable mixture composition
US5759569A (en) * 1995-01-10 1998-06-02 The Procter & Gamble Company Biodegradable articles made from certain trans-polymers and blends thereof with other biodegradable components
JP3107830B2 (en) 1995-04-07 2000-11-13 ビオ−テック ビオロギッシェ ナトゥーアフェアパックンゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Biologically degradable polymer mixtures
US6168857B1 (en) 1996-04-09 2001-01-02 E. Khashoggi Industries, Llc Compositions and methods for manufacturing starch-based compositions
US5954683A (en) * 1996-04-15 1999-09-21 Playtex Products, Inc. Composition and coating for a disposable tampon applicator and method of increasing applicator flexibility
DE19624641A1 (en) 1996-06-20 1998-01-08 Biotec Biolog Naturverpack Biodegradable material consisting essentially of or based on thermoplastic starch
ES2229591T3 (en) 1996-11-05 2005-04-16 Novamont S.P.A. BIODEGRADABLE POLYMER COMPOSITIONS THAT INCLUDE ALMIDON AND A THERMOPLASTIC POLYMER.
US5804653A (en) * 1997-03-07 1998-09-08 Playtex Products, Inc. Polyvinyl alcohol compound
US5908587A (en) * 1997-06-26 1999-06-01 General Motors Corporation Method of making fibrillose articles
IT1305576B1 (en) * 1998-09-22 2001-05-09 Novamont Spa HYDROPHOBIC CHARACTER POLYMERS LOADED WITH STARCH COMPLEXES.
US6231970B1 (en) 2000-01-11 2001-05-15 E. Khashoggi Industries, Llc Thermoplastic starch compositions incorporating a particulate filler component
US6573340B1 (en) 2000-08-23 2003-06-03 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials
ITTO20010058A1 (en) 2001-01-25 2002-07-25 Novamont Spa BIODEGRADABLE POLYESTER TERNARY MIXTURES AND PRODUCTS OBTAINED FROM THESE.
ITTO20010060A1 (en) 2001-01-25 2002-07-25 Novamont Spa TERNARTIE MIXTURES OF BIODEGRADABLE ALIPHATIC POLYESTERS AND PRODUCTS OBTAINED FROM THESE.
US7297394B2 (en) 2002-03-01 2007-11-20 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable films and sheets suitable for use as coatings, wraps and packaging materials
US7241832B2 (en) * 2002-03-01 2007-07-10 bio-tec Biologische Naturverpackungen GmbH & Co., KG Biodegradable polymer blends for use in making films, sheets and other articles of manufacture
US6660211B2 (en) 2001-04-23 2003-12-09 Kimberly-Clark Worldwide, Inc. Methods of making biodegradable films having enhanced ductility and breathability
US6905759B2 (en) 2001-04-23 2005-06-14 Kimberly Clark Worldwide, Inc. Biodegradable films having enhanced ductility and breathability
US7071249B2 (en) * 2001-10-05 2006-07-04 William Ho Biodegradable starch resin and method for making same
DE10214327A1 (en) * 2001-10-23 2003-05-22 Innogel Ag Zug Polysaccharide-based network and process for its manufacture
KR20030042572A (en) * 2001-11-23 2003-06-02 주식회사 그린메이드 Biodegradable Resin Composition and Articles Molded with the Same
ITMI20020386A1 (en) * 2002-02-27 2003-08-27 Ledysan S P A PROCEDURE FOR MAKING A BIODEGRADABLE FILM FOR SANITARY AND SANITARY ABSORBENT ITEMS AND DIAGRAMS THAT CONTAIN IT
US20040202632A1 (en) * 2003-04-10 2004-10-14 Unilever Home & Personal Care Usa, Division Of Conocpo, Inc. Fragranced solid cosmetic compositions based on a starch delivery system
US7172814B2 (en) * 2003-06-03 2007-02-06 Bio-Tec Biologische Naturverpackungen Gmbh & Co Fibrous sheets coated or impregnated with biodegradable polymers or polymers blends
US7947766B2 (en) * 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
US7241838B2 (en) * 2003-12-19 2007-07-10 Eastman Chemical Company Blends of aliphatic-aromatic copolyesters with ethylene-vinyl acetate copolymers
US6955850B1 (en) 2004-04-29 2005-10-18 The Procter & Gamble Company Polymeric structures and method for making same
US6977116B2 (en) 2004-04-29 2005-12-20 The Procter & Gamble Company Polymeric structures and method for making same
US20090160095A1 (en) * 2004-11-19 2009-06-25 Board Of Trustees Of Michigan State University Biodegradable thermoplasticized starch-polyester reactive blends for thermoforming applications
US7629405B2 (en) * 2004-11-19 2009-12-08 Board Of Trustees Of Michigan State University Starch-polyester biodegradable graft copolyers and a method of preparation thereof
US7989524B2 (en) * 2005-07-19 2011-08-02 The United States Of America, As Represented By The Secretary Of Agriculture Fiber-reinforced starch-based compositions and methods of manufacture and use
US20070021515A1 (en) * 2005-07-19 2007-01-25 United States (as represented by the Secretary of Agriculture) Expandable starch-based beads and method of manufacturing molded articles therefrom
US20070082982A1 (en) * 2005-10-11 2007-04-12 The Procter & Gamble Company Water stable compositions and articles comprising starch and methods of making the same
ITMI20061845A1 (en) 2006-09-27 2008-03-28 Novamont Spa STYLE BIODEGRADABLE POLYPHASIC COMPOSITIONS BASED ON STARCH
EP2115008B1 (en) 2007-03-01 2019-09-18 De Staat der Nederlanden, vert. door de Minister van Volksgezondheid, Welzijn en Sport, namens de Minister, Projectdirectie ALT, het INTRAVACC Biodegradable material based on opened starch
EP3233195B1 (en) * 2014-12-17 2020-04-15 L'oreal Composite particle and preparation thereof
US11046840B2 (en) 2015-06-30 2021-06-29 BiologiQ, Inc. Methods for lending biodegradability to non-biodegradable plastic materials
US11674014B2 (en) * 2015-06-30 2023-06-13 BiologiQ, Inc. Blending of small particle starch powder with synthetic polymers for increased strength and other properties
US11674018B2 (en) * 2015-06-30 2023-06-13 BiologiQ, Inc. Polymer and carbohydrate-based polymeric material blends with particular particle size characteristics
US11926940B2 (en) 2015-06-30 2024-03-12 BiologiQ, Inc. Spunbond nonwoven materials and fibers including starch-based polymeric materials
US11111363B2 (en) 2015-06-30 2021-09-07 BiologiQ, Inc. Articles formed with renewable and/or sustainable green plastic material and carbohydrate-based polymeric materials lending increased strength and/or biodegradability
US11359088B2 (en) 2015-06-30 2022-06-14 BiologiQ, Inc. Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material
US11926929B2 (en) 2015-06-30 2024-03-12 Biologiq, Inc Melt blown nonwoven materials and fibers including starch-based polymeric materials
US11879058B2 (en) 2015-06-30 2024-01-23 Biologiq, Inc Yarn materials and fibers including starch-based polymeric materials
CN108811993A (en) * 2018-07-10 2018-11-16 成都工业学院 Mulch and its preparation method and application

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US112980A (en) * 1871-03-21 Improvement in needles for sewing-machines
US3652542A (en) * 1969-07-15 1972-03-28 Penick & Ford Ltd Process for preparing etherified depolymerized starch product compatible with polyvinyl alcohol
US4133784A (en) * 1977-09-28 1979-01-09 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable film compositions prepared from starch and copolymers of ethylene and acrylic acid
US4337181A (en) * 1980-01-17 1982-06-29 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable starch-based blown films
BG46154A3 (en) * 1983-02-18 1989-10-16 Warner-Lambert Company Llc Method for preparing of capsules
US4454268A (en) * 1983-06-23 1984-06-12 The United States Of America As Represented By The Secretary Of Agriculture Starch-based semipermeable films
US4673438A (en) * 1984-02-13 1987-06-16 Warner-Lambert Company Polymer composition for injection molding
CH669201A5 (en) * 1986-05-05 1989-02-28 Warner Lambert Co AT ROOM TEMPERATURES FIXED AND FREE-FLOWING BASIC COMPOSITION FOR PRINTING.
GB2205323B (en) * 1987-03-09 1991-01-30 Warner Lambert Co Destructurized starch and process for making same
GB2206888B (en) * 1987-07-07 1991-02-06 Warner Lambert Co A destructurized starch and a process for making same
GB2208651B (en) * 1987-08-18 1991-05-08 Warner Lambert Co Shaped articles made from pre-processed starch
GB2214516B (en) * 1988-01-25 1992-10-07 Warner Lambert Co Method of producing destructurised starch
GB2214918B (en) * 1988-02-03 1992-10-07 Warner Lambert Co Polymeric materials made from starch and at least one synthetic thermoplastic polymeric material
GB2231880A (en) * 1989-04-03 1990-11-28 Warner Lambert Co Starch
IL94587A (en) * 1989-06-19 1997-04-15 Novon International Polymer base blend compositions containing destructurized starch
IL94588A0 (en) * 1989-06-22 1991-04-15 Warner Lambert Co Polymer base blend compositions containing destructurized starch
IL94589A0 (en) * 1989-06-22 1991-04-15 Warner Lambert Co Polymer base blend compositions containing destructurized starch
IL94647A0 (en) * 1989-07-06 1991-04-15 Warner Lambert Co Polymer base blend compositions containing destructurized starch
JPH0668041B2 (en) * 1989-07-11 1994-08-31 ワーナー・ランバート・カンパニー Blend compositions based on polymers containing modified starch
YU128990A (en) * 1989-07-11 1993-05-28 Warner-Lambert Co. PREPARATIONS OF POLYMER MIXTURES CONTAINING DESTRUCTURED STARCH
YU129090A (en) * 1989-07-11 1992-12-21 Warner-Lambert Company PREPARATIONS OF POLYMER MIXTURES CONTAINING DESTRUCTURED STARCH
PT94659A (en) * 1989-07-18 1991-03-20 Warner Lambert Co PROCESS FOR THE PREPARATION OF COMPOSITIONS OF POLYMERIC MIXTURES OWNING DESERATED FRUIT AND PRODUCTS CONTAINING THEM
PT94658B (en) * 1989-07-18 1997-02-28 Warner Lambert Co PROCESS FOR THE PREPARATION OF POLYMERIC BASED COMPOSITIONS OF DESERATED FRUIT AND PRODUCTS THAT CONTAIN THEM
YU134490A (en) * 1989-07-18 1992-09-07 Warner-Labmert Company PREPARATIONS OF POLYMER MIXTURES CONTAINING DESTRUCTURED STARCH
YU137090A (en) * 1989-07-20 1992-09-07 Warner-Lambert Company PREPARATIONS OF POLYMER MIXTURES CONTAINING DESTRUCTURED STARCH
JPH0725944B2 (en) * 1989-07-20 1995-03-22 ワーナー・ランバート・カンパニー Polymer-based blend composition containing modified starch

Also Published As

Publication number Publication date
CA2028130A1 (en) 1990-09-10
HU902344D0 (en) 1991-05-28
KR920700257A (en) 1992-02-19
NO180781C (en) 1997-06-18
DD299280A5 (en) 1992-04-09
KR0169087B1 (en) 1999-03-20
CA2028130C (en) 2002-02-19
JPH03505232A (en) 1991-11-14
ES2081975T3 (en) 1996-03-16
GR900100160A (en) 1990-07-31
CN1045797A (en) 1990-10-03
AU628495B2 (en) 1992-09-17
CN1038422C (en) 1998-05-20
NO180781B (en) 1997-03-10
HUT56384A (en) 1991-08-28
GR1000578B (en) 1992-08-26
DE69024132D1 (en) 1996-01-25
BR9004768A (en) 1991-07-30
US5262458A (en) 1993-11-16
NO904880D0 (en) 1990-11-09
AU5178590A (en) 1990-10-09
ATE131505T1 (en) 1995-12-15
DK0413798T3 (en) 1996-01-22
FI102288B1 (en) 1998-11-13
JP2925728B2 (en) 1999-07-28
FI905511A0 (en) 1990-11-07
DE69024132T2 (en) 1996-08-01
EP0413798B1 (en) 1995-12-13
IL93620A0 (en) 1990-12-23
WO1990010671A1 (en) 1990-09-20
EP0413798A1 (en) 1991-02-27
NO904880L (en) 1990-11-09

Similar Documents

Publication Publication Date Title
FI102288B (en) Starch - based biodegradable products and method for their preparation
CN1032919C (en) Polymer compositions for production of articles of biodegradable plastics material and methods for their preparation
US5569692A (en) Biodegradable compositions and films or moulded articles obtained therefrom
JP3049088B2 (en) Polymer composition containing modified starch and ethylene copolymer
US5322866A (en) Method of producing biodegradable starch-based product from unprocessed raw materials
US4337181A (en) Biodegradable starch-based blown films
CN113736088B (en) Polysilsesquioxane, PLA alloy and straw material
CN112708196B (en) Reinforced polypropylene material and preparation method and application thereof
CN112708234B (en) Modified polypropylene material and preparation method and application thereof
CA2020893A1 (en) Polymer base blend compositions containing destructurized starch
CN113717471B (en) High-surface tension polypropylene composite material and preparation method thereof
US4714741A (en) Degradable polymer composition
CN115651204B (en) N-carbonyl-bisamide-polyolefin compound, and preparation method and application thereof
CN111363338B (en) Alloy section containing PET and PC and preparation method thereof
CN116426058B (en) Polyethylene cast film and preparation method thereof
CN115286907B (en) Degradable heat-resistant flame-retardant plastic master batch and preparation method thereof
EP1355951A1 (en) Dimensionally water-resistant thermoplastic starch material, and method for producing the same
CN117362958B (en) High-fluidity polylactic acid composition and preparation method thereof
CN117164911A (en) Lignin modified PBAT biodegradable plastic and preparation method and application thereof
CN114437458A (en) Preparation method of biodegradable starch-based polypropylene plastic sheet
KR20010058458A (en) The Composite of Polyamide Resin for the use of Film

Legal Events

Date Code Title Description
FG Patent granted

Owner name: NOVAMONT S.P.A.