ES2574779T3 - Álabe para turbina de viento - Google Patents
Álabe para turbina de viento Download PDFInfo
- Publication number
- ES2574779T3 ES2574779T3 ES06018665.7T ES06018665T ES2574779T3 ES 2574779 T3 ES2574779 T3 ES 2574779T3 ES 06018665 T ES06018665 T ES 06018665T ES 2574779 T3 ES2574779 T3 ES 2574779T3
- Authority
- ES
- Spain
- Prior art keywords
- blade according
- bands
- blade
- fibers
- fiber composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000835 fiber Substances 0.000 claims abstract description 58
- 239000002131 composite material Substances 0.000 claims abstract description 26
- 239000002023 wood Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 36
- 229920005989 resin Polymers 0.000 claims description 27
- 239000011347 resin Substances 0.000 claims description 27
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 17
- 239000004917 carbon fiber Substances 0.000 claims description 17
- 238000001802 infusion Methods 0.000 claims description 8
- 239000011120 plywood Substances 0.000 claims description 7
- 239000012783 reinforcing fiber Substances 0.000 claims description 6
- 239000013307 optical fiber Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 1
- 238000001125 extrusion Methods 0.000 description 24
- 239000010410 layer Substances 0.000 description 18
- 239000012528 membrane Substances 0.000 description 15
- 230000003068 static effect Effects 0.000 description 13
- 238000012360 testing method Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 238000010276 construction Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011152 fibreglass Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 241000535417 Alabes Species 0.000 description 2
- 235000018185 Betula X alpestris Nutrition 0.000 description 2
- 235000018212 Betula X uliginosa Nutrition 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- -1 for example Polymers 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920001567 vinyl ester resin Polymers 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 240000007182 Ochroma pyramidale Species 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009755 vacuum infusion Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/44—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
- B29C70/443—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/50—Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
- B29C70/52—Pultrusion, i.e. forming and compressing by continuously pulling through a die
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
- Moulding By Coating Moulds (AREA)
- Wind Motors (AREA)
Abstract
Un álabe para una turbina de viento, en el que por lo menos un tercio de la longitud total, medida desde la punta hasta el cubo, de dicho álabe comprende una capa (1, 2) que está situada a lo largo de una periferia externa de la sección en corte transversal de dicho álabe, caracterizado por que la capa (1, 2) está constituida por lo menos parcialmente por un numero de bandas (2) extruidas por estiramiento y prefabricadas de un material compuesto de fibras, que están dispuestas en una secuencia a lo largo de la periferia externa, en el que dicha capa (1, 2) está comprendida dentro de una cubierta externa y en una cubierta interna que están fabricadas de un material compuesto de fibras.
Description
5
10
15
20
25
30
35
40
45
50
55
60
65
DESCRIPCION
Alabe para turbina de viento
La presente invencion se refiere a un alabe para turbinas de viento, alabe en el que la capa periferica de la seccion en corte transversal del alabe comprende un numero de bandas prefabricadas, vease por ejemplo el documento US 4 389 162.
Antecedentes de la invencion
Los alabes de las turbinas de viento se fabrican hoy dfa de tal manera que comprenden un elemento interno central de soporte, comunmente de una seccion de corte transversal cuadrada y hueca, y fabricados de una fibra de vidrio y de un compuesto de resina, rodeado de dos cubiertas que forman la superficie externa superior e inferior del alabe y determinan las propiedades aerodinamicas de los mismos.
Las cubiertas pueden ser de una sola capa o, por lo menos, una parte de la circunferencia puede ser de una construccion intercalada que comprende dos capas paralelas de fibras de vidrio y de resina que tienen un espacio en medio que esta relleno de, por ejemplo, una espuma de poliuretano. El uso de un material de madera para reforzar el lado interno de una cubierta de una sola capa o para rellenar el espacio de una construccion intercalada es muy conocido.
Se comprende que las fuerzas y el par de fuerzas aumentan escalonadamente con la longitud gradual de los alabes y que la resistencia y rigidez del elemento de soporte central debera aumentar escalonadamente igual que para los alabes conocidos, ya que las cubiertas solo contribuyen en menor medida a todas las propiedades de soporte de la carga del alabe.
A fin de que la cubierta soporte una parte sustancial de las fuerzas del elemento de soporte interno, las estructuras descritas anteriormente que estan reforzadas con un material de madera requieren, para una mayor dimension de los alabes, un grosor de la capa de madera que podna incrementar el peso del alabe significativamente, originando asf un incremento de los esfuerzos para el alabe.
El objeto de la invencion es el de proporcionar un alabe de una turbina de viento que tiene las propiedades de los productos laminados, es decir, una alta resistencia en comparacion con la cantidad de material y con los bajos costos de produccion comparados con los productos solidos, pero en donde la resistencia comparada con los costos de fabricacion del alabe se incrementara en gran manera en comparacion con otros alabes de la tecnica anterior.
Descripcion de la invencion
Este objeto se consigue mediante un alabe, dicho alabe comprende, sobre una parte longitudinal sustancial, una capa situada a lo largo de una periferia externa de la seccion de corte transversal del alabe, dicha capa esta constituida por una pluralidad de bandas prefabricadas que estan dispuestas en secuencia a lo largo de la periferia externa del alabe.
Con el termino "una parte longitudinal sustancial" se entiende una parte que se extiende sobre, por lo menos, un tercio de la longitud total del alabe desde la punta hasta el centro, preferentemente sobre por lo menos la mitad de la longitud total del alabe. De acuerdo con una realizacion preferente, del 60 al 85 % de la longitud total, tal como alrededor del 70 %, comprende dicha capa.
De esta manera, las propiedades optimas del material pueden obtenerse combinando distintos tipos de bandas, tales como unas bandas compuestas de fibras extrafdas por estiramiento que comprenden distintas fibras, tales como las fibras de carbono, las fibras de vidrio y/o las fibras naturales, las bandas de madera, las bandas compuestas conformadas como tubos huecos, etc. Cada uno de los tipos de bandas son mucho mas simples y, por lo tanto, mas baratos de fabricar que para conformar un alabe completo y las bandas pueden estar ensambladas por unos procedimientos apropiados, tales como por inyeccion de una resina o por una infusion al vado de una resina.
De acuerdo con la invencion, puede obtenerse un alabe de turbina de viento, el cual reduce las fuerzas y el par de fuerzas ejercidos sobre el elemento de soporte interno. Ademas, la resistencia contra la tension y las fuerzas de compresion en una capa que esta situada cerca de la periferia externa de la cubierta proporciona al alabe una eficacia estructural perfeccionada con respecto a un modo de flexion lateral.
De igual manera, en una realizacion preferente, por lo menos algunas de las bandas prefabricadas estan fabricadas de un material compuesto de fibras extrafdas por estiramiento, tales como la resina de carbono.
De esta manera, se obtiene una construccion con una rigidez excelente, pero que no es propensa a flexionarse. Asf, la estructura interna del alabe puede ser fabricada de una construccion mas ligera, por ejemplo, sustituyendo el elemento de soporte interno comunmente usado de una seccion de corte transversal cuadrada por dos membranas
5
10
15
20
25
30
35
40
45
50
55
60
65
mas ligeras situadas en el borde frontal y en el borde de desplazamiento, respectivamente.
En una realizacion preferente, la capa periferica puede ensamblarse inyectando una resina o por una infusion al vado de una resina. El uso de una infusion de resina nos lleva a un procedimiento de fabricacion rapido, saludable y seguro, no dejando ningun vado en la resina, o solamente unos pocos. Una limitacion del numero de vados reduce el acabado subsiguiente. Una pequena cantidad de las fibras comprendidas en el alabe estan actualmente infundidas. La resina consiste principalmente en una cola en vez de en una matriz. Esto dara como resultado una estructura que es mas tolerante a cualquier vado posible.
De acuerdo con una realizacion preferente, el alabe comprende sobre una parte longitudinal sustancial una capa situada a lo largo de la periferia externa de su seccion de corte transversal, en donde la capa esta por lo menos parcialmente constituida por unas bandas de un material de madera y por unas bandas de un material compuesto de fibras en una secuencia alternativa a lo largo de la periferia externa.
De esta manera, la rigidez excelente de los materiales compuestos de fibras y la alta resistencia contra el exceso de volumen de los materiales de madera se combinan para lograr una cubierta con unas propiedades adecuadas de una manera economicamente rentable.
Una realizacion especialmente ventajosa comprende por lo menos algunas bandas fabricadas de un material de madera, preferentemente contrachapado usado como el material de madera, y por unas extrusiones por estiramiento de fibras naturales, preferentemente las extrusiones por estiramiento de fibras de carbono, como el material compuesto de fibras.
Las ventajas obtenidas por esta realizacion son que los materiales son compatibles y que ambos tienen unos coeficientes de expansion termica bajos. Los dos tipos de material trabajan en una proporcion similar baja de esfuerzos dando como resultado la posibilidad de usar unos alabes mas ngidos comparados con el peso de los alabes. Tambien, las fibras naturales pueden ser propensas a flexionarse y, aunque la madera es voluminosa, la madera no es propensa a flexionarse, de esta manera, los dos tipos de material son muy complementarios.
Las bandas pueden, por lo general, fabricarse de madera, de madera laminada, de extrusiones por estiramiento de cualquier tipo de fibra fabricada por el hombre o natural con cualquier resina, termoendurecida, termoplastica, fabricada por el hombre o derivada naturalmente, de plasticos de espuma, de materiales de nucleo ligero en cualquier proporcion.
Por lo menos algunas de las bandas prefabricadas estan conformadas ventajosamente de un material compuesto de fibras. Las fibras del material de fibras pueden estar constituidas por cualquier tipo de fibras conocidas en la tecnica, que tienen unas propiedades adecuadas para reforzar el compuesto de madera, tales como las fibras de carbono, las fibras de vidrio, las fibras de Kevlar, las fibras naturales, por ejemplo, de canamo o lino, fibras de coco, etc., o de cualquier combinacion de las mismas.
Como un ejemplo, el carbono tiene una mayor resistencia a ceder que la madera. El carbono actua como un aditivo de rigidez, pero la madera cede primero. De lo anterior se ha sacado partido en los ensayos especiales para probar, por separado, la resistencia del carbono y de la madera. Anadiendo carbono y, de esta manera, la posibilidad de usar unos forros mas finos, pueden reducirse los margenes de flexion del forro.
Las fibras de carbono son relativamente caras, sin embargo, la madera es barata y puede cubrir el area del alabe incurriendo en costos muy bajos. No obstante, la madera por sf misma produce unos forros gruesos ineficaces en los alabes de alta tension. Las fibras de carbono combinadas con la madera pueden producir unos forros mas finos, los cuales son estructuralmente eficaces y satisfactorios. Tambien, la madera es altamente tolerante a los defectos. El porcentaje del area en seccion de corte transversal total de la cubierta conformada de un material compuesto de fibras esta comprendido en el intervalo del 3 % al 30 %, en la parte del alabe que tiene un contenido mas alto del material de fibras, mas preferentemente, comprendido en el intervalo del 6 % al 20 %.
Igualmente, el area total de la seccion en corte transversal de la cubierta compuesta de fibras esta comprendida, preferentemente, en el intervalo del 2 % al 20 %, mas preferentemente, en el intervalo del 4 % al 15 %.
En una realizacion particularmente preferente de la presente invencion, por lo menos algunas de las bandas estan constituidas por unos tubos huecos conformados de un material compuesto de fibras. De esta manera, se conserva el material y el peso al mismo tiempo que se preservan unas propiedades estructurales ventajosas.
Por lo menos algunas de las bandas del material compuesto de fibras son, preferentemente, unas extrusiones por estiramiento, es decir, unas bandas fabricadas por la extrusion por estiramiento de una mezcla de fibras y de un material matriz que se cura despues de la extrusion por estiramiento, tal como una resina procesable, por ejemplo, vinilester. De esta manera, se obtiene una banda que tiene unas fibras rectas y un contenido de vado bajo. Puede obtenerse tambien una resina de bajo contenido que induce a un pequeno encogimiento y a un curado rapido.
Por lo tanto, es ventajoso que las extrusiones por estiramiento tengan una direccion de extrusion por estiramiento
5
10
15
20
25
30
35
40
45
que este alineada sustancialmente con una direccion longitudinal del alabe, propiedades de las fibras. No obstante, las juntas de terminacion de extrusion tensiones, de manera que se esta dando una atencion especial a estas estructurales.
El material compuesto de fibras comprende, ventajosamente, una fraccion del volumen de la fibra del 50 % al 90 %, preferentemente, del 60 % al 80 %. Particularmente, el material compuesto de fibras puede comprenderun volumen de la fibra de carbono del 50 % al 90 %, preferentemente, del 60 % al 80 %.
De acuerdo con una realizacion preferente, por lo menos algunas bandas prefabricadas estan fabricadas de un material de madera ya que los materiales de madera son de bajo costo y de peso ligero, y las propiedades materiales del material de madera pueden ser completadas para conformar las propiedades de material del alabe requeridas, combinandolo con unas bandas de otros tipos de materiales, tales como unos materiales compuestos de fibras. El material de madera puede consistir en unas bandas de madera, las cuales, si fuese necesario, se peganan entre sf mediante un adhesivo en la direccion longitudinal del alabe.
Una realizacion preferente emplea contrachapado, particularmente, contrachapado unidireccional como el material de madera debido a las propiedades homogeneas del material. Otro tipo de material de madera que puede emplearse esta compuesto por unas fibras de madera mantenidas en una resina curada. Ya que la madera tiene las mismas tensiones directas, es posible usar unos modelos de ensamblaje nuevos y unos adhesivos que utilicen unos disenos establecidos disponibles, y que sigan gozando de la confianza de la estructura del material de madera.
La capa esta, de acuerdo con una realizacion, por lo menos parcialmente constituida por unas bandas de un material de madera y por unas bandas de un material compuesto de fibras en una secuencia a lo largo de la periferia externa. Preferentemente, la secuencia puede ser una secuencia alternativa de bandas de un material de madera y de bandas de un material compuesto de fibras. Preferentemente, la secuencia alternativa se distribuye solamente sobre una parte de la periferia total del alabe.
Es ventajoso que la capa anteriormente expuesta sea parte de una construccion intercalada segun se ha descrito anteriormente, es decir, que esta comprendida dentro de una cubierta externa y de una cubierta interna fabricadas de un material compuesto de fibras, tal como la membrana de fibras de vidrio mantenida por una resina sintetica curada.
Tipos de muestras:
Minisoportes -1 elemento de soporte de 2,5 mm de largo x 150 mm x 150 mm (bridas de 25 mm de grosor) con unos forros de media escala. Incluye terminaciones extruidas por estiramiento, defectos, juntas de madera.
Porciones finas de 6 m x 1,2 m - Tipo A, disenadas de manera que esten insuficientemente dotadas de sobretensiones directas, de forros de prueba, de juntas de borde frontales y posteriores. Tipo B, una muestra con unos forros relativamente finos para investigaciones de flexion.
Alabe de 31 m - Un alabe fabricado en el molde A131 con las mismas fijaciones de la base que el del AL40 (fijaciones 72xM30), con unos forros fabricados con una distribucion similar de madera y carbono que el AL40, doble membrana y una junta de borde frontal similar.
en cuya direccion se requieran las por estiramiento son productoras de en los ensayos de los elementos
- Ensayo Estructural del Elemento
- Elemento
- Ensayo Probando
- Minisoportes
- Punto de flexion estatica 3 Resistencia de los forros, juntas en madera y terminaciones de extrusion por estiramiento
- Porciones finas de 6 m "A". Forros gruesos
- Punto de flexion estatica 4 Junta borde frontal, membranas y juntas en los forros.
- Porciones finas de 6 m "B". Forros finos
- Punto de flexion estatica 4 Teona de la flexion con forros curvos
- Alabe de 31 m
- Flexion voladiza estatica lateral Rigidez, frecuencia, amortiguacion, (carga a 1,35 de tension maxima como AL40, distribucion como A131).
- Flexion voladiza estatica horizontal Como el lateral anterior pero de tension maxima 1,5 como AL40, distribucion como A131. Flexion del anillo de refuerzo (tension graduada)
- Flexion voladiza fatiga horizontal Regimen de fatiga acelerado. Programado a 1 millon de ciclos para simular el ciclo de la tension de la vida del A140.
- Horizontal estatica hasta el fallo Modo de fallo y lfmites
- Retirada y fatiga estatica de la fijacion a la base Confirmacion de los margenes de resistencia de la fijacion a la base
5
10
15
20
25
30
35
40
45
- Ensayo del Alabe de 40 m
- Flexion voladiza estatica lateral
- Rigidez, frecuencia, amortiguacion, prueba de carga hasta 1,35 de extremo.
- Flexion voladiza estatica horizontal
- Segun el lateral anterior la prueba de carga hasta 1,35 de extremo. Flexion del anillo de refuerzo (tension graduada)
- Flexion voladiza fatiga horizontal
- Regimen de fatiga. Programado a 5 millones de ciclos equivalente a la vida con un factor de carga de 1,35.
- Flexion voladiza fatiga lateral
- Regimen de fatiga. Programado a 5 millones de ciclos equivalente a la vida con un factor de carga de 1,35.
- Horizontal estatica hasta fallo
- Modo de fallo y lfmites
- Ensayo Individual Especial
- Material
- Ensayo Probando
- Extrusion por estiramiento del carbono
- Tension/compresion estatica y ensayo de fatiga de CRAG Margenes de carbono muy altos
- Madera
- Tension/compresion estatica y muestra de fatiga del tipo AL Las juntas de madera cumplen tan bien o mejor que los tipos de juntas anteriores
- Carbono con madera
- Ensayo STD de compresion estatica de la madera El carbono trabaja segun se afirma con la madera en tension de compresion de resistencia mas baia
La invencion puede incorporar un sistema de proteccion contra rayos que comprende dos elementos que atraen rayos posiblemente sustituibles, preferentemente cercanos al extremo. Uno de los elementos que atraen rayos esta situado en el lado contrario al viento y el otro elemento que atrae rayos esta situado en el lado del viento. Los dos estan conectados a una anchura de una malla de aluminio o de un material similar, que se extiende sobre el area reforzada de fibras situada debajo de la capa de la superficie del revestimiento de gel del alabe, y pasan por debajo de la base del alabe, en donde esta conectada a tierra.
Un medio de absorcion de radiofrecuencias, por ejemplo, una senal de radar, puede ser infundido opcionalmente con el resto de la estructura. Es posible tambien incrustar unas fibras opticas en el alabe, ya sea de una manera adicional a las fibras de refuerzo o en sustitucion de dichas fibras de refuerzo. Las fibras opticas pueden ser usadas para medir las cargas sobre, y dentro de la superficie del alabe durante el funcionamiento de la turbina de viento.
Alternativamente, las mediciones de la resistencia de las fibras de carbono pueden ser usadas para medir las cargas sobre, o dentro de la superficie del alabe. Tambien, las fibras de carbono usadas para medir dichas cargas pueden ser una o mas de las fibras de refuerzo o bien, pueden ser unas fibras de carbono adicionales a las fibras de refuerzo y que estan dedicadas a medir estas cargas.
Breve descripcion de los dibujos
Una realizacion preferente de la presente invencion se muestra en los dibujos adjuntos, de los que
la Figura 1 es una seccion en corte transversal de un alabe compuesto de unas bandas de contrachapado situadas en una secuencia alternativa con unas bandas de extrusion por estiramiento de fibras, la Figura 2a es una seccion en corte transversal de un alabe similar al alabe de la Figura 1, que tiene una distribucion distinta a lo largo de la periferia de las partes con las bandas de extrusion por estiramiento, la Figura 2b muestra una vision esquematica de un alabe similar a la del alabe mostrado en la seccion de corte transversal de la Figura 2a, teniendo asf una distribucion similar a lo largo de la periferia de las partes con las bandas de extrusion por estiramiento,
la Figura 2c es una fotograffa de la superficie del alabe de la Figura 2a, con la cubierta externa de un material compuesto, retirada, y
la Figura 3 ilustra el procedimiento de la infusion al vacfo de una resina.
Descripcion detallada de la invencion
El alabe mostrado en la seccion de corte transversal de la Figura 1 tiene una capa compuesta de unas bandas de contrachapado de abedul 1 de 40 x 40 mm, que estan situadas en una secuencia alternativa con unas bandas de una extrusion por estiramiento de fibras de carbono 2 de 6 x 40 mm. La capa 1,2 se extiende a lo largo de la parte central del alabe entre dos soportes en forma de C 3, 4 conformados de una membrana de fibras de vidrio y de un compuesto de resina sintetica, designando el LE (borde frontal) de la Membrana 3 y el TE (borde posterior) de la Membrana 4 y sustituyendo al soporte interno central descrito anteriormente. La capa 1, 2 esta intercalada entre una capa interna 5 y una capa externa 6 compuestas de unos forros epoxicos de vidrio que portan una tension de corte y favorecen la rigidez transversal del alabe. El espacio definido entre la cubierta superior e inferior constituido de esta manera por el contrachapado de abedul 1 y por la extrusion por estiramiento de fibras de carbono 2, y el LE de la
5
10
15
20
25
30
35
40
Membrana 3 y el TE de la Membrana 4 esta relleno de un nucleo de madera de balsa 7.
Los alabes mostrados en las Figuras 2a, 2b y 2c son similares al mostrado en la Figura 1, exceptuando que el refuerzo de las extrusiones por estiramiento de fibras de carbono 2 esta situado cerca de las areas de contacto entre la cubierta superior e inferior y el LE de la Membrana 3 y el TE de la Membrana 4, en donde la concentracion de la tension es mayor. En la realizacion mostrada, se usa una membrana doble en vez de una membrana unica. Esto es para dar un margen de flexion suficiente sobre los forros durante la compresion. Tambien, la membrana frontal reduce la carga de corte de la junta del borde frontal, permitiendo un area de la junta del borde frontal mas pequena. Esto es ventajoso durante la fabricacion del alabe.
La tecnologfa es ventajosa por que la adicion de unas extrusiones por estiramiento de fibras a una construccion de madera favorece la rigidez de la construccion. Las extrusiones por estiramiento de fibras de carbono no se usan a lo largo de toda la longitud del alabe sino que solamente en un 70 % por termino medio en donde haya sido requerido por las tensiones. La seccion en corte transversal del forro del alabe puede ser de hasta el 10% del area de las extrusiones por estiramiento de fibras de carbono en las regiones afectadas con una tension mas alta, dispersadas a traves de todo el compuesto de madera en la realizacion mostrada. Los forros comprenden normalmente el 60 % del grosor de los forros del alabe conformados puramente de madera, lo cual reduce el peso y mejora la eficacia de la estructura en el modo de flexion lateral critico. Los forros epoxicos de vidrio externos e internos son fabricados de unas fibras de vidrio orientadas mas o menos a 45 grados respecto a la direccion longitudinal del alabe.
Las extrusiones por estiramiento tienen la ventaja de garantizar unas fibras rectas y un contenido de vado bajo en el compuesto de fibra de carbono en sf. Ademas, las extrusiones por estiramiento tienen la ventaja de agilizar el procedimiento de infusion del alabe ya que las fibras de carbono finas necesitanan, por el contrario, un tiempo mas significativo para su infusion. La extrusion por estiramiento tiene una fraccion alta del volumen de las fibras, de alrededor del 70 %, con una resina provista de una resistencia media pero altamente procesable, por ejemplo, el vinilester. Preferentemente, cuando se fabrica el alabe, se suministra la resina con una "capa descascarillable” situada en los dos lados largos, que se retira para producir una superficie de textura limpia asegurando una buena union.
El procedimiento de fabricacion de una cubierta de un alabe mostrado en la Figura 3 comprende las etapas de aplicar un revestimiento de gel (no mostrado) a un molde 8 seguido por un medio de transferencia 9 tal como una malla de transferencia, de una membrana de fibra de vidrio 10 de 45 grados y de un material epoxico (no mostrado) al molde para crear el forro externo epoxico de vidrio. Despues se posiciona la madera y las bandas de extrusion por estiramiento 1, 2 y se aplica entonces una malla metalica 11 tal como una malla de aluminio para la proteccion contra rayos. La cubierta se envuelve entonces en un contenedor, en el procedimiento mostrado una bolsa de vacfo 12, la cual se vacfa a traves de un medio externo 13. Entonces, se inyecta la resina desde un deposito de resina 14 a traves de unos canales de conduccion de resina 15 que estan conformados entre las bandas adyacentes, desde los cuales la resina se esparce a traves de toda la construccion guiada por el vacfo. Una resina general usada para la infusion es la Prime 20 de Sistemas SP. Despues de curar la resina se fabricara entonces un forro epoxico de vidrio 16 en la parte superior de las bandas de madera y de las extruidas por estiramiento 1, 2.
Claims (20)
- 5101520253035404550556065REIVINDICACIONES1. Un alabe para una turbina de viento, en el que por lo menos un tercio de la longitud total, medida desde la punta hasta el cubo, de dicho alabe comprende una capa (1, 2) que esta situada a lo largo de una periferia externa de la seccion en corte transversal de dicho alabe, caracterizado por que la capa (1, 2) esta constituida por lo menos parcialmente por un numero de bandas (2) extruidas por estiramiento y prefabricadas de un material compuesto de fibras, que estan dispuestas en una secuencia a lo largo de la periferia externa, en el que dicha capa (1, 2) esta comprendida dentro de una cubierta externa y en una cubierta interna que estan fabricadas de un material compuesto de fibras.
- 2. Un alabe de acuerdo con la reivindicacion 1, en el que las bandas de la capa externa (1, 2) estan unidas por medio de una infusion de una resina.
- 3. Un alabe de acuerdo con la reivindicacion 2, en el que las bandas de la capa externa (1, 2) estan unidas por medio de una infusion al vado de una resina.
- 4. Un alabe de acuerdo con cualquiera de la reivindicaciones 1-3, en el que por lo menos algunas de las bandas (2) prefabricadas estan constituidas por unos tubos huecos conformados de un material compuesto de fibras.
- 5. Un alabe de acuerdo con la reivindicacion 4, en el que las bandas (2) tienen una direccion que esta alineada sustancialmente con una direccion longitudinal del alabe.
- 6. Un alabe de acuerdo con cualquiera de las reivindicaciones 4-5, en el que el material compuesto de fibras comprende una fraccion del volumen de las fibras entre el 50 % al 90 %.
- 7. Un alabe de acuerdo con la reivindicacion 6, en el que el material compuesto de fibras comprende una fraccion del volumen de las fibras entre el 60 % al 80 %.
- 8. Un alabe de acuerdo con cualquiera de las reivindicaciones 4-6, en el que el material compuesto de fibras comprende una fraccion del volumen de las fibras entre el 50 % al 90 %.
- 9. Un alabe de acuerdo con la reivindicacion 8, en el que el material compuesto de fibras comprende una fraccion del volumen de las fibras entre el 60 % al 80 %.
- 10. Un alabe de acuerdo con cualquiera de las reivindicaciones anteriores, en el que la capa (1, 2) esta constituida por lo menos parcialmente por un numero de bandas fabricadas de un material de madera y estan dispuestas en una secuencia a lo largo de la periferia externa.
- 11. Un alabe de acuerdo con la reivindicacion 10, en el que el material de madera es contrachapado.
- 12. Un alabe de acuerdo con la reivindicacion 10, en el que el material de madera esta compuesto por unas fibras demadera mantenidas en una resina curada.
- 13. Un alabe de acuerdo con cualquiera de las reivindicaciones 10-12, en el que la capa (1, 2) esta constituida por lo menos parcialmente por unas bandas de un material de madera y por unas bandas de un material compuesto de fibras en una secuencia a lo largo de la periferia externa.
- 14. Un alabe de acuerdo con la reivindicacion 13, en el que dicha secuencia es una secuencia alternativa de bandas de un material de madera y de bandas de un material compuesto de fibras.
- 15. Un alabe de acuerdo con cualquiera de las reivindicaciones anteriores, en el que unas fibras de medicion decarga estan comprendidas en una o en ambas de la cubierta externa y de la cubierta interna.
- 16. Un alabe de acuerdo con la reivindicacion 15, en el que las fibras de medicion de carga son unas fibras opticasque son adicionales a, o que sustituyen alternativamente a, las fibras de refuerzo.
- 17. Un alabe de acuerdo con la reivindicacion 15, en el que las fibras de medicion de carga son unas fibras de carbono que son adicionales a, o que sustituyen alternativamente a, las fibras de refuerzo.
- 18. Un alabe de acuerdo con cualquiera de las reivindicaciones anteriores, en el que unos medios de proteccion contra rayos que comprenden unos elementos que atraen rayos estan incorporados dentro de una o de ambas cubiertas.
- 19. Un alabe de acuerdo con la reivindicacion 18, en el que los elementos que atraen rayos estan conectados a una anchura de una malla metalica (11) o a un material similar que se extiende sobre el area reforzada de fibras de las cubiertas.
- 20. Un alabe de acuerdo con cualquiera de las reivindicaciones anteriores, en el que un medio de absorcion de radiofrecuencias esta incorporado dentro de una o ambas cubiertas.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK200101125 | 2001-07-19 | ||
DKPA200101125 | 2001-07-19 | ||
GB0202401A GB0202401D0 (en) | 2002-02-01 | 2002-02-01 | Wind turbine blade |
GB0202401 | 2002-02-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2574779T3 true ES2574779T3 (es) | 2016-06-22 |
ES2574779T5 ES2574779T5 (es) | 2022-02-17 |
Family
ID=59297475
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES17165491T Expired - Lifetime ES2895673T3 (es) | 2001-07-19 | 2002-07-19 | Alabe para turbina de viento |
ES04029161.9T Expired - Lifetime ES2624620T3 (es) | 2001-07-19 | 2002-07-19 | Álabe para turbina de viento |
ES06018665T Expired - Lifetime ES2574779T5 (es) | 2001-07-19 | 2002-07-19 | Alabe para aerogenerador |
ES02787103.7T Expired - Lifetime ES2240828T5 (es) | 2001-07-19 | 2002-07-19 | Pala de turbina eólica |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES17165491T Expired - Lifetime ES2895673T3 (es) | 2001-07-19 | 2002-07-19 | Alabe para turbina de viento |
ES04029161.9T Expired - Lifetime ES2624620T3 (es) | 2001-07-19 | 2002-07-19 | Álabe para turbina de viento |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES02787103.7T Expired - Lifetime ES2240828T5 (es) | 2001-07-19 | 2002-07-19 | Pala de turbina eólica |
Country Status (12)
Country | Link |
---|---|
US (2) | US7198471B2 (es) |
EP (4) | EP1417409B2 (es) |
JP (1) | JP2004535527A (es) |
CN (2) | CN1975152B (es) |
AT (1) | ATE293755T1 (es) |
AU (1) | AU2002354986B2 (es) |
CA (1) | CA2454038C (es) |
DE (1) | DE60203804T3 (es) |
DK (4) | DK1417409T4 (es) |
ES (4) | ES2895673T3 (es) |
PT (1) | PT1417409E (es) |
WO (1) | WO2003008800A1 (es) |
Families Citing this family (175)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1417409B2 (en) | 2001-07-19 | 2017-04-05 | Vestas Wind Systems A/S | Wind turbine blade |
DE10336461A1 (de) | 2003-08-05 | 2005-03-03 | Aloys Wobben | Verfahren zur Herstellung eines Rotorblattes einer Windenergieanlage |
US20050186081A1 (en) * | 2004-02-24 | 2005-08-25 | Mohamed Mansour H. | Wind blade spar cap and method of making |
DK200401225A (da) | 2004-08-13 | 2006-02-14 | Lm Glasfiber As | Metode til afskæring af laminatlag, eksempelvis et glasfiber- eller kulfiber-laminatlag i en vindmöllevinge |
WO2006051147A1 (es) * | 2004-11-11 | 2006-05-18 | Gamesa Innovation And Technology, S.L. | Sistema pararrayos para pala de aerogenerador con laminados de fibra de carbono |
AU2004326123B2 (en) * | 2004-12-29 | 2009-04-23 | Vestas Wind Systems A/S | Method of manufacturing a wind turbine blade shell member with a fastening member and a wind turbine blade with a fastening member |
CN101137841B (zh) * | 2005-02-03 | 2013-01-09 | 维斯塔斯风力系统有限公司 | 制造风轮机叶片壳体构件的方法 |
CN101194102B (zh) * | 2005-02-22 | 2012-04-25 | 维斯塔斯风力系统有限公司 | 风轮机叶片 |
CN101151457B (zh) * | 2005-03-30 | 2013-01-16 | 轻风株式会社 | 风车 |
US7802968B2 (en) * | 2005-07-29 | 2010-09-28 | General Electric Company | Methods and apparatus for reducing load in a rotor blade |
TW200726908A (en) * | 2005-10-04 | 2007-07-16 | Arthur Benjamin O Connor | Wind turbine |
US8402652B2 (en) * | 2005-10-28 | 2013-03-26 | General Electric Company | Methods of making wind turbine rotor blades |
US7438533B2 (en) * | 2005-12-15 | 2008-10-21 | General Electric Company | Wind turbine rotor blade |
US7798780B2 (en) * | 2005-12-19 | 2010-09-21 | General Electric Company | Modularly constructed rotorblade and method for construction |
JP4969098B2 (ja) * | 2005-12-21 | 2012-07-04 | 三菱重工業株式会社 | 風車翼の落雷保護装置、該落雷保護装置の組立方法、該落雷保護装置を備える風車翼、及び該風車翼を備える風車 |
US7517198B2 (en) | 2006-03-20 | 2009-04-14 | Modular Wind Energy, Inc. | Lightweight composite truss wind turbine blade |
JP4699255B2 (ja) * | 2006-03-24 | 2011-06-08 | 三菱重工業株式会社 | 風車翼 |
US20070251090A1 (en) * | 2006-04-28 | 2007-11-01 | General Electric Company | Methods and apparatus for fabricating blades |
US7654799B2 (en) * | 2006-04-30 | 2010-02-02 | General Electric Company | Modular rotor blade for a wind turbine and method for assembling same |
DE102006022279B4 (de) * | 2006-05-11 | 2016-05-12 | Aloys Wobben | Rotorblatt für eine Windenergieanlage |
US20090249779A1 (en) * | 2006-06-12 | 2009-10-08 | Daw Shien Scientific Research & Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20090211223A1 (en) * | 2008-02-22 | 2009-08-27 | James Shihfu Shiao | High efficient heat engine process using either water or liquefied gases for its working fluid at lower temperatures |
US20090044535A1 (en) * | 2006-06-12 | 2009-02-19 | Daw Shien Scientific Research And Development, Inc. | Efficient vapor (steam) engine/pump in a closed system used at low temperatures as a better stirling heat engine/refrigerator |
US20080296906A1 (en) * | 2006-06-12 | 2008-12-04 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
MX2009000466A (es) * | 2006-07-14 | 2009-03-13 | Vestas Wind Sys As | Turbina eolica que comprende una estructura de gabinete para formar una jaula de faraday. |
CN100412356C (zh) * | 2006-08-31 | 2008-08-20 | 东莞中德风电能源有限公司 | 风能发电机的叶片的制造方法 |
WO2008035038A1 (en) * | 2006-09-22 | 2008-03-27 | Bae Systems Plc | Structure |
US8454318B2 (en) * | 2006-12-15 | 2013-06-04 | Bladena Aps | Reinforced aerodynamic profile |
CN101611225B (zh) | 2007-01-16 | 2012-05-23 | 丹麦技术大学 | 用于风力涡轮机的加强叶片 |
ES2399158T3 (es) | 2007-01-25 | 2013-03-26 | Bladena Aps | Pala reforzada para aerogenerador |
EP2109713B1 (en) * | 2007-01-29 | 2013-07-24 | Bladena ApS | Wind turbine blade |
WO2008101506A2 (en) * | 2007-02-19 | 2008-08-28 | Vestas Wind Systems A/S | Wind turbine rotor blade and method of manufacturing such rotor blade |
US7895745B2 (en) * | 2007-03-09 | 2011-03-01 | General Electric Company | Method for fabricating elongated airfoils for wind turbines |
EP1978245A1 (en) | 2007-04-04 | 2008-10-08 | Siemens Aktiengesellschaft | Optimised layout for wind turbine rotor blades |
KR100879029B1 (ko) * | 2007-07-25 | 2009-01-15 | 베스타스 윈드 시스템스 에이/에스 | 고정부재를 구비한 풍력터빈 블레이드 외피부재의 제조방법및 고정부재를 구비한 풍력터빈 블레이드 |
US20090070977A1 (en) * | 2007-09-13 | 2009-03-19 | General Electric Company | Jig And Fixture For Wind Turbine Blade |
US20090084932A1 (en) * | 2007-09-27 | 2009-04-02 | General Electric Company | Wind turbine blade molds |
WO2009059604A1 (en) * | 2007-11-09 | 2009-05-14 | Vestas Wind Systems A/S | A structural mat for reinforcing a wind turbine blade structure, a wind turbine blade and a method for manufacturing a wind turbine blade |
US20090140527A1 (en) * | 2007-11-30 | 2009-06-04 | General Electric Company | Wind turbine blade stiffeners |
US8337163B2 (en) * | 2007-12-05 | 2012-12-25 | General Electric Company | Fiber composite half-product with integrated elements, manufacturing method therefor and use thereof |
DE102008007304A1 (de) | 2008-02-02 | 2009-08-06 | Nordex Energy Gmbh | Rotorblatt für Windenergieanlagen |
WO2009111468A1 (en) * | 2008-03-03 | 2009-09-11 | Abe Karem | Wing and blade structure using pultruded composites |
GB0806666D0 (en) * | 2008-04-11 | 2008-05-14 | Bond Philip C | Windfarm radar clutter mitigation |
EP2110552B2 (en) * | 2008-04-15 | 2018-12-26 | Siemens Aktiengesellschaft | Wind turbine blade with an integrated lightning conductor and method for manufacturing the same |
DE102008024644B4 (de) | 2008-05-21 | 2018-07-26 | Airbus Defence and Space GmbH | Rotorblatt mit darin integriertem Radarabsorber für eine Windkraftanlage |
US20110176928A1 (en) * | 2008-06-23 | 2011-07-21 | Jensen Find Moelholt | Wind turbine blade with angled girders |
ES2383061T3 (es) | 2008-06-24 | 2012-06-18 | Bladena Aps | Paleta de turnina eólica reforzada |
DE102008038620A1 (de) * | 2008-06-27 | 2009-12-31 | Powerblades Gmbh | Verfahren und Fertigungsform zur Fertigung eines Rotorblattes für eine Windenergieanlage |
ES2385516B1 (es) * | 2008-06-27 | 2013-05-31 | Gamesa Innovation & Technology, S.L. | Inserto de pala y método de colocación del mismo. |
DE102008045601A1 (de) * | 2008-06-27 | 2009-12-31 | Repower Systems Ag | Rotorblatt für eine Windenergieanlage und Verfahren und Fertigungform zu seiner Fertigung |
GB2451192B (en) * | 2008-07-18 | 2011-03-09 | Vestas Wind Sys As | Wind turbine blade |
EP2153964A1 (en) * | 2008-08-14 | 2010-02-17 | Lm Glasfiber A/S | A method of manufacturing a wind turbine blade comprising steel wire reinforced matrix material |
US20100045037A1 (en) * | 2008-08-21 | 2010-02-25 | Daw Shien Scientific Research And Development, Inc. | Power generation system using wind turbines |
US8137074B2 (en) * | 2008-08-21 | 2012-03-20 | General Electric Company | Wind turbine lightning protection system |
US7866951B2 (en) | 2008-08-29 | 2011-01-11 | General Electric Company | Wind turbine blades with cross webs |
DE102008049016A1 (de) | 2008-09-25 | 2010-04-15 | Repower Systems Ag | Rotorblatt mit einem Gurt mit einer in Längsrichtung abnehmenden Breite, Verfahren zur Herstellung des Rotorblattes und Verlegehilfe für Gelegebänder des Gurtes |
CN102227556A (zh) * | 2008-10-06 | 2011-10-26 | 弗洛设计风力涡轮机公司 | 具有减小的雷达信号的风力涡轮机 |
US20110020110A1 (en) * | 2008-10-06 | 2011-01-27 | Flodesign Wind Turbine Corporation | Wind turbine with reduced radar signature |
CA2741479A1 (en) * | 2008-10-22 | 2010-04-29 | Vec Industries, L.L.C. | Wind turbine blade and method for manufacturing thereof |
DE102008055771C5 (de) † | 2008-11-04 | 2018-06-14 | Senvion Gmbh | Rotorblattgurt |
BRPI0922749B1 (pt) | 2008-12-05 | 2021-01-05 | Modular Wind Energy, Inc. | pá de turbina eólica |
US7942637B2 (en) * | 2008-12-11 | 2011-05-17 | General Electric Company | Sparcap for wind turbine rotor blade and method of fabricating wind turbine rotor blade |
EP2401497B1 (en) * | 2009-02-26 | 2013-07-24 | Tecsis Tecnologia E Sistemas Avancados S.A. | Method of manufacturing aerogenerator blades |
US7942640B2 (en) * | 2009-03-19 | 2011-05-17 | General Electric Company | Method and apparatus for use in protecting wind turbine blades from lightning damage |
ES2663526T3 (es) * | 2009-04-13 | 2018-04-13 | Maxiflow Manufacturing Inc. | Pala de turbina eólica y método de construcción de la misma |
CN101865075B (zh) * | 2009-04-14 | 2012-01-11 | 上海艾郎风电科技发展有限公司 | 兆瓦级风电叶片前缘修形的方法 |
GB2469516A (en) * | 2009-04-17 | 2010-10-20 | Insensys Ltd | Rotor blade with optical strain sensors covered by erosion shield |
DE102009002637A1 (de) * | 2009-04-24 | 2010-10-28 | Wobben, Aloys | Rotorblatt für eine Windenergieanlage |
US8043065B2 (en) * | 2009-05-01 | 2011-10-25 | General Electric Company | Wind turbine blade with prefabricated leading edge segments |
BRPI1015394A2 (pt) * | 2009-05-04 | 2017-08-29 | Mag Ias Llc | Método e aparelho para rápida moldagem de pás de turbina de vento |
US8753091B1 (en) * | 2009-05-20 | 2014-06-17 | A&P Technology, Inc. | Composite wind turbine blade and method for manufacturing same |
CN102459875B (zh) * | 2009-06-30 | 2014-03-05 | 维斯塔斯风力系统集团公司 | 制造包括通过粘结剂结合的两个元件的风力涡轮机叶片的方法 |
WO2011004504A1 (ja) * | 2009-07-09 | 2011-01-13 | 三菱重工業株式会社 | 風車翼及び風車翼の製造方法 |
US20110052404A1 (en) * | 2009-08-25 | 2011-03-03 | Zuteck Michael D | Swept blades with enhanced twist response |
WO2011026009A1 (en) * | 2009-08-28 | 2011-03-03 | Polystrand, Inc | Thermoplastic rotor blade |
US8424805B2 (en) | 2009-10-07 | 2013-04-23 | Donald Smith | Airfoil structure |
CN102042162B (zh) * | 2009-10-19 | 2013-04-24 | 联合船舶设计发展中心 | 泄压装置 |
US20110103965A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Wind turbine blades |
US20110100540A1 (en) * | 2009-10-30 | 2011-05-05 | General Electric Company | Methods of manufacture of wind turbine blades and other structures |
US8702397B2 (en) * | 2009-12-01 | 2014-04-22 | General Electric Company | Systems and methods of assembling a rotor blade for use in a wind turbine |
EP2330294B1 (en) | 2009-12-02 | 2013-01-16 | Bladena ApS | Reinforced airfoil shaped body |
DE102009047570A1 (de) * | 2009-12-07 | 2011-06-09 | Repower Systems Ag | Gurt eines Rotorblatts einer Windenergieanlage |
JP5308323B2 (ja) | 2009-12-22 | 2013-10-09 | 三菱重工業株式会社 | 風車翼及びそれを用いた風力発電装置 |
CN102834608A (zh) * | 2009-12-25 | 2012-12-19 | 北京可汗之风科技有限公司 | 重组竹风力发电机叶片 |
JP5427597B2 (ja) * | 2009-12-25 | 2014-02-26 | 三菱重工業株式会社 | 風車回転翼 |
JP2011137386A (ja) * | 2009-12-25 | 2011-07-14 | Mitsubishi Heavy Ind Ltd | 風車回転翼および風車回転翼の製造方法 |
US20110135485A1 (en) * | 2009-12-30 | 2011-06-09 | Jing Wang | Spar for a wind turbine rotor blade and method for fabricating the same |
US8142164B2 (en) * | 2009-12-31 | 2012-03-27 | General Electric Company | Rotor blade for use with a wind turbine and method for assembling rotor blade |
EP2524134B1 (en) | 2010-01-14 | 2014-05-07 | Neptco, Inc. | Wind turbine rotor blade components and methods of making same |
US10137542B2 (en) | 2010-01-14 | 2018-11-27 | Senvion Gmbh | Wind turbine rotor blade components and machine for making same |
DE102010017062B4 (de) | 2010-05-21 | 2019-07-11 | Thyssenkrupp Steel Europe Ag | Rotorblatt einer Windkraftanlage |
US9500179B2 (en) | 2010-05-24 | 2016-11-22 | Vestas Wind Systems A/S | Segmented wind turbine blades with truss connection regions, and associated systems and methods |
US8043066B2 (en) * | 2010-06-08 | 2011-10-25 | General Electric Company | Trailing edge bonding cap for wind turbine rotor blades |
US8115333B2 (en) | 2010-06-23 | 2012-02-14 | Harris Corporation | Wind turbine providing reduced radio frequency interaction and related methods |
EP2400147A1 (en) * | 2010-06-25 | 2011-12-28 | Siemens Aktiengesellschaft | Root of the blade of a wind turbine |
DK2407292T3 (da) * | 2010-07-14 | 2013-12-16 | Siemens Ag | Negativ form omfattende forud definerede skumblokke til støbning af en komponent samt fremgangsmåde til fremstilling af den negative form |
CN102985683A (zh) * | 2010-07-22 | 2013-03-20 | 北京可汗之风科技有限公司 | 新型竹质叶片结构 |
US8083488B2 (en) * | 2010-08-23 | 2011-12-27 | General Electric Company | Blade extension for rotor blade in wind turbine |
US8523515B2 (en) | 2010-11-15 | 2013-09-03 | General Electric Company | Noise reducer for rotor blade in wind turbine |
US8267657B2 (en) | 2010-12-16 | 2012-09-18 | General Electric Company | Noise reducer for rotor blade in wind turbine |
CN102108946B (zh) * | 2011-01-17 | 2013-01-09 | 南京航空航天大学 | 复合铺层式风力机叶片及其制造方法 |
ES2398553B1 (es) * | 2011-02-24 | 2014-02-06 | Gamesa Innovation & Technology S.L. | Una pala de aerogenerador multi-panel mejorada. |
FR2972503B1 (fr) | 2011-03-11 | 2013-04-12 | Epsilon Composite | Renfort mecanique pour piece en materiau composite, notamment pour une pale d'eolienne de grandes dimensions |
US9580598B2 (en) | 2011-03-25 | 2017-02-28 | Covestro Llc | Polyurethane composites produced by a vacuum infusion process |
US20120027609A1 (en) * | 2011-05-17 | 2012-02-02 | Prasad Ogde | Wind turbine rotor blade with precured fiber rods and method for producing the same |
GB201108922D0 (en) * | 2011-05-27 | 2011-07-13 | Barlow Nick D | Underwater turbine blade |
US8414261B2 (en) | 2011-05-31 | 2013-04-09 | General Electric Company | Noise reducer for rotor blade in wind turbine |
DE102011105228B3 (de) * | 2011-06-10 | 2012-09-20 | Nordex Energy Gmbh | Windenergieanlagenbauteil mit einer in ein Laminat eingebetteten elektrischen Leitung |
US8728374B1 (en) | 2011-08-02 | 2014-05-20 | Crane Composites Inc. | Method of manufacturing a foundation wall panel |
US8834127B2 (en) | 2011-09-09 | 2014-09-16 | General Electric Company | Extension for rotor blade in wind turbine |
FR2980514B1 (fr) * | 2011-09-23 | 2018-01-05 | Flakt Solyvent-Ventec | Pale de machine tournante a structure modulaire renforcee |
GB2497578B (en) * | 2011-12-16 | 2015-01-14 | Vestas Wind Sys As | Wind turbine blades |
US8430638B2 (en) | 2011-12-19 | 2013-04-30 | General Electric Company | Noise reducer for rotor blade in wind turbine |
CN109113924B (zh) * | 2011-12-22 | 2021-04-20 | Lm Wp 专利控股有限公司 | 由具有不同类型的负载支承结构的内侧部分和外侧部分组装的风力涡轮机叶片 |
CN102518567A (zh) * | 2011-12-26 | 2012-06-27 | 无锡韦伯风能技术有限公司 | 轻质高强度叶片及其制造工艺 |
ES2658947T3 (es) * | 2012-09-17 | 2018-03-13 | Lm Wp Patent Holding A/S | Pala de aerogenerador con medios de sujeción |
WO2014044280A1 (en) | 2012-09-18 | 2014-03-27 | Vestas Wind Systems A/S | Wind turbine blades |
DE102012219224B3 (de) | 2012-10-22 | 2014-03-27 | Repower Systems Se | System und Verfahren zum Herstellen eines Rotorblattgurtes |
EP2922690B1 (en) | 2012-11-20 | 2017-04-19 | Vestas Wind Systems A/S | Wind turbine blades and method of manufacturing the same |
CN103862595A (zh) * | 2012-12-10 | 2014-06-18 | 中航惠腾风电设备股份有限公司 | 具双真空系统的风轮叶片模具及用其制作风轮叶片的方法 |
US9470205B2 (en) | 2013-03-13 | 2016-10-18 | Vestas Wind Systems A/S | Wind turbine blades with layered, multi-component spars, and associated systems and methods |
US9128184B1 (en) * | 2013-03-14 | 2015-09-08 | Lockheed Martin Corporation | Radar wind turbine |
US20150023799A1 (en) * | 2013-07-19 | 2015-01-22 | Kyle K. Wetzel | Structural Member with Pultrusions |
GB2519333A (en) * | 2013-10-17 | 2015-04-22 | Vestas Wind Sys As | Improvements relating to lightning protection systems for wind turbine blades |
GB2520079A (en) | 2013-11-11 | 2015-05-13 | Vestas Wind Sys As | Wind turbine blades |
GB201320166D0 (en) * | 2013-11-15 | 2014-01-01 | Vestas Wind Sys As | Wind turbine components |
US9494134B2 (en) | 2013-11-20 | 2016-11-15 | General Electric Company | Noise reducing extension plate for rotor blade in wind turbine |
ES2990977T3 (es) | 2013-12-23 | 2024-12-02 | Vestas Wind Sys As | Palas de turbina eólica |
KR20150080845A (ko) * | 2014-01-02 | 2015-07-10 | 두산중공업 주식회사 | 풍력 발전기용 블레이드의 제어장치, 제어방법, 및 이를 이용하는 풍력 발전기 |
EP2927481B1 (en) * | 2014-03-31 | 2021-09-22 | Siemens Gamesa Renewable Energy A/S | Rotor blade for a wind turbine |
AU2015256412B2 (en) | 2014-05-05 | 2018-10-25 | Horton, Inc. | Composite fan |
CN105089931A (zh) * | 2014-05-13 | 2015-11-25 | 通用电气公司 | 风机及其叶片对准方法 |
GB2528850A (en) | 2014-07-31 | 2016-02-10 | Vestas Wind Sys As | Improvements relating to reinforcing structures for wind turbine blades |
DE102014018498A1 (de) * | 2014-12-16 | 2016-06-16 | Senvion Gmbh | Anordnung pultrudierter Stäbe |
US10180125B2 (en) | 2015-04-20 | 2019-01-15 | General Electric Company | Airflow configuration for a wind turbine rotor blade |
DE102015007801A1 (de) * | 2015-06-19 | 2016-12-22 | Senvion Gmbh | Verfahren zur Herstellung eines Bauteils eines Rotorblattes einer Windenergieanlage |
US10337490B2 (en) | 2015-06-29 | 2019-07-02 | General Electric Company | Structural component for a modular rotor blade |
US9897065B2 (en) | 2015-06-29 | 2018-02-20 | General Electric Company | Modular wind turbine rotor blades and methods of assembling same |
US10669984B2 (en) * | 2015-09-22 | 2020-06-02 | General Electric Company | Method for manufacturing blade components using pre-cured laminate materials |
EP3181895A1 (en) * | 2015-12-17 | 2017-06-21 | LM WP Patent Holding A/S | Splitter plate arrangement for a serrated wind turbine blade |
JP6679738B2 (ja) | 2016-01-29 | 2020-04-15 | ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh | スパーキャップおよび製造方法 |
CN107539461A (zh) * | 2016-06-29 | 2018-01-05 | 山东龙翼航空科技有限公司 | 一种无人机用螺旋桨 |
ES2826554T3 (es) | 2016-12-05 | 2021-05-18 | Nordex Energy Se & Co Kg | Módulo de correa para una pala de rotor de una instalación de energía eólica |
US10465652B2 (en) | 2017-01-26 | 2019-11-05 | General Electric Company | Vortex generators for wind turbine rotor blades having noise-reducing features |
US11098691B2 (en) | 2017-02-03 | 2021-08-24 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10830206B2 (en) | 2017-02-03 | 2020-11-10 | General Electric Company | Methods for manufacturing wind turbine rotor blades and components thereof |
US10527023B2 (en) | 2017-02-09 | 2020-01-07 | General Electric Company | Methods for manufacturing spar caps for wind turbine rotor blades |
US10738759B2 (en) | 2017-02-09 | 2020-08-11 | General Electric Company | Methods for manufacturing spar caps for wind turbine rotor blades |
US10987879B2 (en) * | 2017-03-02 | 2021-04-27 | General Electric Company | Methods of manufacturing rotor blade components for a wind turbine |
WO2018206159A1 (en) * | 2017-05-09 | 2018-11-15 | Siemens Wind Power A/S | Wind turbine rotor blade with embedded sensors |
EP3692257B1 (en) | 2017-10-02 | 2021-12-01 | Vestas Wind Systems A/S | Improvements relating to structural components for wind turbine blades |
US10677216B2 (en) | 2017-10-24 | 2020-06-09 | General Electric Company | Wind turbine rotor blade components formed using pultruded rods |
US10731470B2 (en) * | 2017-11-08 | 2020-08-04 | General Electric Company | Frangible airfoil for a gas turbine engine |
US10865769B2 (en) | 2017-11-21 | 2020-12-15 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US11040503B2 (en) | 2017-11-21 | 2021-06-22 | General Electric Company | Apparatus for manufacturing composite airfoils |
US11390013B2 (en) | 2017-11-21 | 2022-07-19 | General Electric Company | Vacuum forming mold assembly and associated methods |
US10920745B2 (en) | 2017-11-21 | 2021-02-16 | General Electric Company | Wind turbine rotor blade components and methods of manufacturing the same |
US11248582B2 (en) | 2017-11-21 | 2022-02-15 | General Electric Company | Multiple material combinations for printed reinforcement structures of rotor blades |
US10913216B2 (en) | 2017-11-21 | 2021-02-09 | General Electric Company | Methods for manufacturing wind turbine rotor blade panels having printed grid structures |
US10821652B2 (en) | 2017-11-21 | 2020-11-03 | General Electric Company | Vacuum forming mold assembly and method for creating a vacuum forming mold assembly |
PT3501809T (pt) * | 2017-12-22 | 2025-01-24 | Siemens Gamesa Renewable Energy As | Pá de turbina eólica com pelo menos uma longarina e método de produção da referida longarina |
DE102018100302A1 (de) | 2018-01-09 | 2019-07-11 | Wobben Properties Gmbh | Windenergieanlagen-Rotorblatt |
US11738530B2 (en) | 2018-03-22 | 2023-08-29 | General Electric Company | Methods for manufacturing wind turbine rotor blade components |
US10767623B2 (en) | 2018-04-13 | 2020-09-08 | General Electric Company | Serrated noise reducer for a wind turbine rotor blade |
US10746157B2 (en) | 2018-08-31 | 2020-08-18 | General Electric Company | Noise reducer for a wind turbine rotor blade having a cambered serration |
US20200256312A1 (en) * | 2019-02-10 | 2020-08-13 | Arthur David Stanton | Method of Manufacture and the Resulting Vertical Axis Wind Turbine Airfoil |
EP3708828A1 (en) | 2019-03-14 | 2020-09-16 | Siemens Gamesa Renewable Energy A/S | A method for providing a wind turbine blade with lightning protection and a wind turbine blade |
DK3712423T3 (da) * | 2019-03-21 | 2023-01-30 | Siemens Gamesa Renewable Energy As | Fremgangsmåde til reparation af et beskadiget bjælkedæksel af en vindmøllevinge af en vindmølle |
DK3719312T3 (da) | 2019-04-03 | 2022-06-20 | Siemens Gamesa Renewable Energy As | Vindmøllevinge og vindmølle |
US11046420B2 (en) * | 2019-10-23 | 2021-06-29 | The Boeing Company | Trailing edge flap having a waffle grid interior structure |
CN111121285B (zh) * | 2019-12-31 | 2021-04-02 | 南京比尔森热力技术工程有限公司 | 一种新型热水供应设备 |
CA3176348A1 (en) * | 2020-05-08 | 2021-11-11 | Rama RAZEGHI | Wind turbine blade |
SE544491C2 (en) * | 2020-09-24 | 2022-06-21 | Modvion Ab | Rotor blade and method for assembly of a rotor blade |
EP4194683A1 (en) * | 2021-12-09 | 2023-06-14 | General Electric Renovables España S.L. | Wind turbine blades, wind turbine blade assemblies and related methods |
DE102023111928A1 (de) | 2023-05-08 | 2024-11-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Rotorblatt und Verfahren zur Wiederverwertung von Rotorblättern |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2293224A (en) * | 1939-02-24 | 1942-08-18 | Sukohl Heinrich | Propeller for aircraft |
BE508996A (es) * | 1947-11-12 | |||
GB706800A (en) * | 1951-10-09 | 1954-04-07 | Bell Aircraft Corp | Improvements in the construction of rotor blades |
FR1070262A (fr) | 1952-02-02 | 1954-07-21 | Chantiers De France Atel | Pale creuse de rotor à pas variable, notamment pour rotors de moteurs à vent |
DE1045810B (de) | 1957-05-17 | 1958-12-04 | Allgaier Werke G M B H | Aus faserverstaerkten Kunststoffschalen oder -platten bestehender Koerper, insbesondere Trag- oder Antriebsfluegel, und Verfahren und Werkzeug zu seiner Herstellung |
US3390393A (en) * | 1964-09-17 | 1968-06-25 | Bell Aerospace Corp | Airfoil radar antenna |
CA1007240A (en) * | 1973-06-04 | 1977-03-22 | James K. Pierce | (polychlorophenoxy)methyl esters of thiocyanic acid |
FR2345600A1 (fr) | 1975-06-09 | 1977-10-21 | Bourquardez Gaston | Eolienne a paliers fluides |
GB1526433A (en) * | 1975-08-06 | 1978-09-27 | Secr Defence | Helicopter rotor blades |
US4057450A (en) | 1976-12-30 | 1977-11-08 | Hitco | Method for making buoyancy members |
GB2048174B (en) | 1979-05-02 | 1983-05-18 | Pultrex Ltd | Assembling boat hulls |
DE2921152C2 (de) * | 1979-05-25 | 1982-04-22 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Rotorblatt für Windkraftwerke |
US4295790A (en) * | 1979-06-21 | 1981-10-20 | The Budd Company | Blade structure for use in a windmill |
US4474536A (en) * | 1980-04-09 | 1984-10-02 | Gougeon Brothers, Inc. | Wind turbine blade joint assembly and method of making wind turbine blades |
NL8104019A (nl) | 1981-08-28 | 1983-03-16 | Jan Bos | Werkwijze voor het vervaardigen van voorwerpen uit gewapende kunststof. |
US4597715A (en) * | 1982-05-19 | 1986-07-01 | North Wind Power Company, Inc. | Wooden wind turbine blade manufacturing process |
US4627791A (en) * | 1982-11-10 | 1986-12-09 | Marshall Andrew C | Aeroelastically responsive composite propeller |
US5786785A (en) | 1984-05-21 | 1998-07-28 | Spectro Dynamics Systems, L.P. | Electromagnetic radiation absorptive coating composition containing metal coated microspheres |
GB2168111B (en) * | 1984-12-08 | 1988-05-18 | Rolls Royce | Rotor aerofoil blade containment |
FR2575970A1 (fr) | 1984-12-21 | 1986-07-18 | Berret Pierre | Structures monolithiques en materiaux composites |
FR2586966B1 (fr) | 1985-09-11 | 1988-02-26 | France Etat Armement | Structures multicanaux en materiaux composites, procedes et demi-produits pour la fabrication de celles-ci |
GB2186833A (en) | 1986-02-20 | 1987-08-26 | Fiberforce Limited | Pultrusion method |
US4883552A (en) * | 1986-12-05 | 1989-11-28 | Phillips Petroleum Company | Pultrusion process and apparatus |
US4976087A (en) * | 1987-12-07 | 1990-12-11 | Edward Pizzino | Method of forming footing and laying first course of block |
US4902215A (en) | 1988-06-08 | 1990-02-20 | Seemann Iii William H | Plastic transfer molding techniques for the production of fiber reinforced plastic structures |
US4976587A (en) | 1988-07-20 | 1990-12-11 | Dwr Wind Technologies Inc. | Composite wind turbine rotor blade and method for making same |
US5304339A (en) | 1990-05-23 | 1994-04-19 | Le Comte Adolf | Method for manufacturing a large-sized object of fiber reinforced synthetic resin |
US5324563A (en) | 1990-08-08 | 1994-06-28 | Bell Helicopter Textron Inc. | Unidirectional carbon fiber reinforced pultruded composite material having improved compressive strength |
CN2080994U (zh) * | 1990-10-13 | 1991-07-17 | 内蒙古动力机厂 | 200w风力发电机叶片 |
WO1993005888A1 (en) | 1991-09-13 | 1993-04-01 | Bell Helicopter Textron Inc. | Unidirectional graphite pultrusion rod and manufacturing method |
AT398064B (de) | 1992-07-01 | 1994-09-26 | Hoac Austria Flugzeugwerk Wr N | Kunststoff-verbundprofil, insbesondere flügelholm für den flugzeugbau |
US5375324A (en) * | 1993-07-12 | 1994-12-27 | Flowind Corporation | Vertical axis wind turbine with pultruded blades |
DK9400343U4 (da) * | 1994-09-07 | 1995-10-13 | Bonus Energy As | Lynsikring af vindmøllevinge |
DE4436197C2 (de) * | 1994-10-11 | 1998-09-24 | Aloys Wobben | Windenergieanlage mit Blitzschutzeinrichtung |
DE4436290C1 (de) | 1994-10-11 | 1996-05-02 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzschutz |
DE19501267A1 (de) * | 1994-12-22 | 1996-08-29 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzstromableitung |
DE4445899A1 (de) | 1994-12-22 | 1996-06-27 | Autoflug Energietech Gmbh | Windkraftanlage mit Blitzstromableitung |
FR2740380B1 (fr) * | 1995-10-30 | 1998-01-02 | Eurocopter France | Procede de fabrication d'une pale a pas variable en materiau composite pour rotor d'helicoptere |
US6081955A (en) | 1996-09-30 | 2000-07-04 | Martin Marietta Materials, Inc. | Modular polymer matrix composite support structure and methods of constructing same |
DK173460B2 (da) † | 1998-09-09 | 2004-08-30 | Lm Glasfiber As | Vindmöllevinge med lynafleder |
EP1230479B1 (en) * | 1999-11-03 | 2004-09-01 | Vestas Wind Systems A/S | Method of controlling the operation of a wind turbine and wind turbine for use in said method |
GB0003029D0 (en) | 2000-02-11 | 2000-03-29 | British Aerospace | A method of reinforcing a laminated member such as a skin for an aircraft |
CN2495836Y (zh) * | 2001-04-24 | 2002-06-19 | 胡德诚 | 复合材料机翼形叶片 |
EP1417409B2 (en) | 2001-07-19 | 2017-04-05 | Vestas Wind Systems A/S | Wind turbine blade |
-
2002
- 2002-07-19 EP EP02787103.7A patent/EP1417409B2/en not_active Expired - Lifetime
- 2002-07-19 CN CN2006101670203A patent/CN1975152B/zh not_active Expired - Lifetime
- 2002-07-19 AU AU2002354986A patent/AU2002354986B2/en not_active Expired
- 2002-07-19 ES ES17165491T patent/ES2895673T3/es not_active Expired - Lifetime
- 2002-07-19 ES ES04029161.9T patent/ES2624620T3/es not_active Expired - Lifetime
- 2002-07-19 CN CNB028145437A patent/CN1294353C/zh not_active Expired - Lifetime
- 2002-07-19 DK DK02787103.7T patent/DK1417409T4/en active
- 2002-07-19 EP EP06018665.7A patent/EP1746284B2/en not_active Expired - Lifetime
- 2002-07-19 DE DE60203804.9T patent/DE60203804T3/de not_active Expired - Lifetime
- 2002-07-19 EP EP04029161.9A patent/EP1520983B1/en not_active Revoked
- 2002-07-19 US US10/483,963 patent/US7198471B2/en not_active Expired - Lifetime
- 2002-07-19 ES ES06018665T patent/ES2574779T5/es not_active Expired - Lifetime
- 2002-07-19 DK DK06018665.7T patent/DK1746284T4/da active
- 2002-07-19 DK DK17165491.6T patent/DK3219981T3/da active
- 2002-07-19 EP EP17165491.6A patent/EP3219981B1/en not_active Expired - Lifetime
- 2002-07-19 DK DK04029161.9T patent/DK1520983T3/en active
- 2002-07-19 PT PT02787103T patent/PT1417409E/pt unknown
- 2002-07-19 CA CA002454038A patent/CA2454038C/en not_active Expired - Fee Related
- 2002-07-19 JP JP2003514114A patent/JP2004535527A/ja active Pending
- 2002-07-19 AT AT02787103T patent/ATE293755T1/de not_active IP Right Cessation
- 2002-07-19 WO PCT/DK2002/000506 patent/WO2003008800A1/en active IP Right Grant
- 2002-07-19 ES ES02787103.7T patent/ES2240828T5/es not_active Expired - Lifetime
-
2007
- 2007-04-02 US US11/730,463 patent/US7503752B2/en not_active Expired - Lifetime
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2574779T3 (es) | Álabe para turbina de viento | |
ES2869238T3 (es) | Palas de turbina eólica | |
ES2674663T3 (es) | Un método para fabricar una parte de cubierta aerodinámica para una pala de turbina eólica | |
ES2747767T3 (es) | Un método para fabricar una red de cizallamiento utilizando una brida de pie de red preformada | |
ES3020339T3 (en) | A rotor sail | |
ES2510398T3 (es) | Componentes de pala de rotor de aerogenerador y métodos para fabricar los mismos | |
US8075275B2 (en) | Wind turbine spars with jointed shear webs | |
ES2478969T3 (es) | Pala de rotor de turbina eólica con borde de salida que comprende mechas | |
ES2536489T5 (es) | Pala de rotor para una central de energía eólica, central de energía eólica y procedimiento para fabricar una pala de rotor | |
ES2822563T3 (es) | Pala para energía eólica de gran tamaño con estructura de vigas múltiples y método de fabricación de la misma | |
ES2676269T3 (es) | Un método para producir una capa de refuerzo de fibra continua de esteras de fibra individuales | |
AU2002354986A1 (en) | Wind turbine blade | |
US20210086463A1 (en) | Modular wind turbine blade and associated method of manufacture | |
ES3009065T3 (en) | Wind turbine blade | |
BRPI0313189B1 (pt) | Processo para a produção de uma pá de rotor, pá de rotor e elemento de ligação para elemento de pá de rotor | |
ES2676200T3 (es) | Método de fabricación de una parte de una carcasa oblonga y tal parte de la carcasa | |
ES2743238T3 (es) | Refuerzo longitudinal para una pala de rotor de un aeorgenerador | |
ES2963699T3 (es) | Método para fabricar una sección de pestaña de un alma de cizallamiento de pala de turbina eólica y un alma de cizallamiento de pala de turbina eólica | |
ES2834056T3 (es) | Cordón de larguero del borde trasero de una pala del rotor de una planta de energía eólica, pala del rotor y método para fabricar un cordón de larguero del borde trasero | |
ES2959648T3 (es) | Alma de cizallamiento de pala de turbina eólica, método de fabricación y pala de turbina eólica | |
ES2974710T3 (es) | Pala de aerogenerador | |
AU2007200545A1 (en) | Wind turbine blade |