[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

ES2372670T3 - REACTOR FOR THE PREPARATION OF METHANOL. - Google Patents

REACTOR FOR THE PREPARATION OF METHANOL. Download PDF

Info

Publication number
ES2372670T3
ES2372670T3 ES09714360T ES09714360T ES2372670T3 ES 2372670 T3 ES2372670 T3 ES 2372670T3 ES 09714360 T ES09714360 T ES 09714360T ES 09714360 T ES09714360 T ES 09714360T ES 2372670 T3 ES2372670 T3 ES 2372670T3
Authority
ES
Spain
Prior art keywords
catalyst
tbw
synthesis gas
methanol
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES09714360T
Other languages
Spanish (es)
Inventor
Max Thorhauge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Application granted granted Critical
Publication of ES2372670T3 publication Critical patent/ES2372670T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0207Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
    • B01J8/0214Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00123Fingers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/00132Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00115Controlling the temperature by indirect heat exchange with heat exchange elements inside the bed of solid particles
    • B01J2208/0015Plates; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • B01J2219/00772Baffles attached to the reactor wall inclined in a helix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Un reactor para la producción de metanol, que comprende en una carcasa común una pluralidad de tubos de catalizador con partículas de catalizador sedimentadas en el lado del tubo de los tubos de catalizador, para la conversión de un gas de síntesis que comprende hidrógeno, monóxido de carbono y dióxido de carbono, cada uno en una cantidad para proporcionar un valor de módulo de entrada M, y que contiene una fracción de inertes A, y un agente refrigerante líquido a presión en el lado de la carcasa de los tubos de catalizador que tiene una temperatura de ebullición (TBW) que da como resultado un valor H de entre 0,5 y 1,8 según la ecuación 1, y una relación de volumen bruto de las partículas de catalizador sedimentadas a superficie de los tubos de catalizador (VCAT/ACOOL) que tiene un valor L de entre 0,4 y 5 según la ecuación 2, y en el que Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273) 2 ))/(D*P*9,87); Ecuación 2: VCAT/ACOOL [m 3 /m 2 ] = K*L*((G*DEQ[m]*(220-TBW)) 0,5 ); en las que: y M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); B = Y(CO)/Y(CO2); C = 1,0 si M es menor que 2,0, de otro modo C = Exp(-0,2*(M-2,0)); D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); E = Exp((P-13,2)/30,1); K = 0,027 (constante geométrica); G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+3); DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m 3 ])/3,14) 0,33 con partículas de catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; DEQ2 = (∑w(i)*(DEQ(i) 3 )) 0,33 , en la que w(i) es la fracción ponderal de partículas de catalizador con un diámetro equivalente de DEQ(i)[m]; P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor; LN es el logaritmo natural con la base numérica 2,71828; Exp es el antilogaritmo natural o la función exponencial con base numérica 2,71828.A reactor for the production of methanol, comprising in a common housing a plurality of catalyst tubes with catalyst particles settled on the tube side of the catalyst tubes, for the conversion of a synthesis gas comprising hydrogen, monoxide of carbon and carbon dioxide, each in an amount to provide an input module value M, and which contains a fraction of inert A, and a pressurized liquid cooling agent on the casing side of the catalyst tubes having a boiling temperature (TBW) resulting in an H value of between 0.5 and 1.8 according to equation 1, and a gross volume ratio of the catalyst particles sedimented to the surface of the catalyst tubes (VCAT / ACOOL) which has an L value between 0.4 and 5 according to equation 2, and in which Equation 1: H = E * Exp (-3978 / (TBW [° C] +273) +12.3) * ( 1 + 3978 * E * (220-TBW [° C]) / ((TBW [° C] +273) 2)) / (D * P * 9.87); Equation 2: VCAT / ACOOL [m 3 / m 2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); in which: y M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); B = Y (CO) / Y (CO2); C = 1.0 if M is less than 2.0, otherwise C = Exp (-0.2 * (M-2.0)); D = (0.072 * Ln (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp ((P-13.2) / 30.1); K = 0.027 (geometric constant); G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + 3); DEQ1 = (6 * (volume of a catalyst particle of methanol synthesis [m 3]) / 3.14) 0.33 with catalyst particles of the same size, and with catalyst particles of different size; DEQ2 = (∑w (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of catalyst particles with an equivalent diameter of DEQ (i) [m]; P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; Y (x) [molar fraction] is the concentration of each component at the reactor inlet; LN is the natural logarithm with the numerical base 2,71828; Exp is the natural antilogarithm or exponential function with numerical base 2,71828.

Description

Reactor para la preparación de metanol Methanol preparation reactor

CAMPO DE LA INVENCIÓN FIELD OF THE INVENTION

La presente invención se refiere a la producción industrial de metanol por conversión de un gas de síntesis que contiene hidrógeno, monóxido de carbono y dióxido de carbono en presencia de un catalizador de la síntesis de metanol. The present invention relates to the industrial production of methanol by conversion of a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide in the presence of a methanol synthesis catalyst.

La invención se refiere en particular a un reactor que permite una condición de equilibrio mejorada de la reacción del metanol, y de ese modo la recirculación reducida o eliminada del gas de síntesis mediante una separación in situ de metanol a medida que se forma a partir del gas de síntesis. The invention relates in particular to a reactor that allows an improved equilibrium condition of the methanol reaction, and thereby reduced or eliminated recirculation of the synthesis gas by an in situ separation of methanol as it is formed from the synthesis gas

ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION

La preparación de metanol se basa en las siguientes tres reacciones en el equilibrio: The methanol preparation is based on the following three equilibrium reactions:

(1) (one)
CO + 2 H2 <=> CH3OH CO + 2 H2 <=> CH3OH

(2) (2)
CO2 + 3 H2 <=> CH3OH + H2O CO2 + 3 H2 <=> CH3OH + H2O

(3) (3)
CO + H2O <=> CO2 + H2 CO + H2O <=> CO2 + H2

Debido al equilibrio, sólo una fracción del gas de síntesis se convierte en metanol, y la parte restante del gas de síntesis se ha de reciclar. La separación in situ de metanol a partir del gas de síntesis se describe en la patente US nº 4.731.387. En un reactor de flujo percolador de gas-sólido, el metanol se elimina mediante un material de absorción, y de ese modo mejora la condición de equilibrio. Después de haber pasado el reactor, el metanol se desorbe del material de absorción, y el material de absorción se recicla a la entrada del reactor. Los inconvenientes de tal sistema radican en la complejidad del sistema, lo que da como resultado dificultades operacionales y un mayor coste de inversión. Due to equilibrium, only a fraction of the synthesis gas is converted to methanol, and the remaining part of the synthesis gas has to be recycled. The in situ separation of methanol from the synthesis gas is described in US Patent No. 4,731,387. In a gas-solid percolator flow reactor, methanol is removed by an absorption material, and thereby improves the equilibrium condition. After the reactor has passed, methanol is desorbed from the absorption material, and the absorption material is recycled to the reactor inlet. The disadvantages of such a system lie in the complexity of the system, which results in operational difficulties and a higher investment cost.

Otra forma de superar las limitaciones del equilibrio se describe en la patente US nº 5.262.443, en la que el reactor catalítico se opera a una temperatura y presión en las que una parte del metanol producido se condensa en el lecho de catalizador. Aplicando esta invención, es posible reducir o eliminar la recirculación cara del gas de síntesis. Sin embargo, hay dos inconvenientes al operar de esta manera. Another way to overcome the limitations of equilibrium is described in US Patent No. 5,262,443, in which the catalytic reactor is operated at a temperature and pressure in which a part of the methanol produced is condensed in the catalyst bed. Applying this invention, it is possible to reduce or eliminate the expensive recirculation of the synthesis gas. However, there are two drawbacks to operating this way.

A fin de operar por debajo del punto de rocío del gas, la temperatura del catalizador se ha de reducir por debajo del nivel óptimo de temperatura para la reacción catalítica. La menor temperatura da como resultado una menor actividad, lo que incrementa el volumen de catalizador necesario y el coste del reactor. In order to operate below the dew point of the gas, the catalyst temperature must be reduced below the optimum temperature level for the catalytic reaction. The lower temperature results in lower activity, which increases the volume of catalyst needed and the cost of the reactor.

El segundo problema implica la condensación de metanol en el catalizador poroso. El gas de síntesis se ha de difundir dentro del catalizador a través del sistema de poros, para iniciar la reacción catalítica. Si los poros están llenos de metanol, la velocidad de difusión y la actividad catalítica se reducen de forma muy importante. The second problem involves the condensation of methanol in the porous catalyst. The synthesis gas must be diffused into the catalyst through the pore system, to initiate the catalytic reaction. If the pores are filled with methanol, the diffusion rate and catalytic activity are greatly reduced.

Estos dos problemas reducen la actividad catalítica varias veces en comparación con la actividad obtenida en el procedimiento de síntesis del metanol convencional. Como consecuencia de la actividad reducida, se ha de incrementar el tamaño del reactor condensador, dando como resultado reactores que son más caros que los reactores convencionales con el reciclaje del gas de síntesis. These two problems reduce the catalytic activity several times compared to the activity obtained in the conventional methanol synthesis process. As a result of the reduced activity, the size of the condenser reactor has to be increased, resulting in reactors that are more expensive than conventional reactors with the recycling of synthesis gas.

SUMARIO DE LA INVENCIÓN SUMMARY OF THE INVENTION

La presente invención proporciona en general un diseño mejorado de un método catalítico y reactor para la producción de metanol en condiciones de equilibrio, mediante el cual el metanol, según se forma, se separa de la fase gaseosa en la fase líquida dentro del reactor sin reducir la actividad catalítica del catalizador del metanol. Esto se logra ajustando el punto o temperatura de ebullición de un agente refrigerante líquido que está en contacto indirecto con las partículas del catalizador, y proporcionando una relación específica de volumen de lecho de catalizador a área superficial refrigerante. De ese modo, la condensación del metanol, a medida que se forma en la fase gaseosa, tiene lugar en la superficie refrigerante que está dispuesta uniformemente distribuida en el reactor. The present invention generally provides an improved design of a catalytic and reactor method for the production of methanol under equilibrium conditions, whereby methanol, as it is formed, separates from the gas phase in the liquid phase inside the reactor without reducing the catalytic activity of the methanol catalyst. This is achieved by adjusting the boiling point or temperature of a liquid cooling agent that is in indirect contact with the catalyst particles, and providing a specific ratio of catalyst bed volume to cooling surface area. Thus, the condensation of methanol, as it is formed in the gas phase, takes place on the cooling surface that is arranged uniformly distributed in the reactor.

Más particularmente, la invención es un reactor para la producción de metanol según las reivindicaciones 1 a 3. More particularly, the invention is a reactor for the production of methanol according to claims 1 to 3.

Una realización específica del reactor se define en la reivindicación 4. A specific embodiment of the reactor is defined in claim 4.

La invención proporciona además un método para la producción de metanol según las reivindicaciones 5 a 7. The invention further provides a method for the production of methanol according to claims 5 to 7.

Realizaciones específicas de la invención serán manifiestas a partir de la descripción detallada de la invención. Specific embodiments of the invention will be apparent from the detailed description of the invention.

E09714360 24-11-2011 E09714360 11-24-2011

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION

En general, el tipo de reactor para uso en la invención es de poca importancia. La temperatura o punto de ebullición requerido del agente refrigerante líquido será el mismo para cualquiera de los tipos de reactor, y el volumen de catalizador a área superficial refrigerante será idéntico después de la corrección para la diferente geometría. In general, the type of reactor for use in the invention is of little importance. The required temperature or boiling point of the liquid cooling agent will be the same for any of the reactor types, and the volume of catalyst to the cooling surface area will be identical after correction for the different geometry.

La “temperatura” del agente refrigerante líquido es la temperatura media, definida como la temperatura del agente refrigerante después de haber recibido la mitad del calor transferido total. Para reactores que originan vapores, la temperatura media estará próxima a la temperatura del punto de burbujeo del agente refrigerante líquido. The "temperature" of the liquid cooling agent is the average temperature, defined as the temperature of the cooling agent after receiving half of the total heat transferred. For reactors that produce vapors, the average temperature will be close to the bubble point temperature of the liquid cooling agent.

Los reactores de metanol más útiles son los tipos de reactor que originan vapor. Los tres tipos principales de reactor de metanol que origina vapor son: The most useful methanol reactors are the types of reactor that originate steam. The three main types of steam-producing methanol reactor are:

reactor tipo 1, en el que el gas de síntesis entra en la parte superior del lecho de catalizador y el lecho de catalizador está rodeado indirectamente por el agente refrigerante líquido, y el gas de síntesis y el metanol líquido condensado se mueven hacia abajo a contracorriente. En la Figura 8 en los dibujos se muestra un ejemplo de tal reactor. Type 1 reactor, in which the synthesis gas enters the upper part of the catalyst bed and the catalyst bed is indirectly surrounded by the liquid cooling agent, and the synthesis gas and the condensed liquid methanol are moved down against the flow. . An example of such a reactor is shown in Figure 8 in the drawings.

Reactor tipo 2, en el que el gas de síntesis entra en la parte superior del lecho de catalizador y el agente refrigerante líquido está rodeado indirectamente por un lecho de catalizador, y el gas de síntesis y el líquido condensado se mueven hacia abajo a contracorriente. En la Figura 9 se muestra un ejemplo de tal reactor. Type 2 reactor, in which the synthesis gas enters the upper part of the catalyst bed and the liquid cooling agent is indirectly surrounded by a catalyst bed, and the synthesis gas and the condensed liquid move downwards against the current. An example of such a reactor is shown in Figure 9.

Reactor tipo 3, en el que el gas de síntesis entra perpendicular al eje del reactor cilíndrico y el agente refrigerante líquido está rodeado indirectamente con un lecho de catalizador, y el gas de síntesis y el metanol líquido condensado pasan de manera radial a través del reactor. En la Figura 11 se muestra un ejemplo de tal reactor. Type 3 reactor, in which the synthesis gas enters perpendicular to the axis of the cylindrical reactor and the liquid cooling agent is indirectly surrounded with a catalyst bed, and the synthesis gas and the condensed liquid methanol pass radially through the reactor . An example of such a reactor is shown in Figure 11.

La expresión “rodeado indirectamente”, mencionada aquí anteriormente y en lo siguiente, se refiere al principio conocido habitualmente de intercambio de calor indirecto, en el que un agente refrigerante o calefactor está en contacto térmico indirecto con otro fluido que se separa del agente refrigerante/calefactor mediante una superficie de transferencia de calor en forma de, por ejemplo, una pared de un tubo o una placa de un intercambiador de calor. The term "indirectly surrounded", mentioned hereinabove and in the following, refers to the commonly known principle of indirect heat exchange, in which a cooling or heating agent is in indirect thermal contact with another fluid that is separated from the cooling agent / heater by means of a heat transfer surface in the form of, for example, a wall of a tube or a plate of a heat exchanger.

A fin de obtener que la condensación de metanol, a medida que se forma en el lecho de catalizador, tenga lugar sustancialmente en una superficie refrigerante según la invención, se han de cumplir dos medidas contradictorias: In order to obtain that the condensation of methanol, as it is formed in the catalyst bed, takes place substantially on a cooling surface according to the invention, two contradictory measures must be followed:

1. one.
Tener una temperatura suficientemente elevada en el lecho de catalizador, y el flujo térmico ha de ser pequeño. Esto se puede lograr disminuyendo el área de refrigeración o incrementando la temperatura del agente refrigerante. Have a sufficiently high temperature in the catalyst bed, and the thermal flux must be small. This can be achieved by decreasing the cooling area or increasing the temperature of the cooling agent.

2.2.
Una temperatura suficientemente elevada requiere una producción elevada de calor o una velocidad elevada de reacción. Si el gas de síntesis del metanol está en equilibrio termodinámico con el metanol, la reacción catalítica llegará a detenerse, y por tanto se desvanecerá la producción de calor. Por lo tanto, es necesario asegurarse que el metanol producido es transportado a la superficie refrigerante a una velocidad elevada. Esto se puede lograr incrementando el área de refrigeración, o disminuyendo la temperatura del agente refrigerante líquido.  A sufficiently high temperature requires a high heat production or a high reaction rate. If the synthesis gas of methanol is in thermodynamic equilibrium with methanol, the catalytic reaction will stop, and therefore the heat production will fade. Therefore, it is necessary to ensure that the methanol produced is transported to the cooling surface at a high speed. This can be achieved by increasing the cooling area, or by decreasing the temperature of the liquid cooling agent.

Mediante la invención, la actividad catalítica se mantiene elevada, evitando la condensación mediante el ajuste de la relación entre el volumen de catalizador y el área superficial de refrigeración, junto con una temperatura específica del agente refrigerante líquido como se describe con detalle más abajo. Through the invention, the catalytic activity is maintained high, preventing condensation by adjusting the ratio between the volume of catalyst and the surface area of refrigeration, together with a specific temperature of the liquid cooling agent as described in detail below.

La longitud del camino de transporte del metanol que se produce en el lecho de catalizador se ajusta a una longitud a la que la concentración de metanol en el lecho de catalizador es adecuadamente baja de manera que el calor de la reacción aumenta hasta una temperatura, en la que compensa la cantidad de calor eliminado por la misma longitud de transporte. Al mismo tiempo, asegura que la temperatura de la superficie refrigerante es suficientemente baja de manera que tiene lugar la condensación, y la temperatura del lecho de catalizador es tan alta que se evita la condensación sobre el catalizador y se mantiene una velocidad de reacción elevada. The length of the methanol transport path that is produced in the catalyst bed is adjusted to a length at which the concentration of methanol in the catalyst bed is adequately low so that the heat of the reaction increases to a temperature, in which compensates for the amount of heat removed by the same transport length. At the same time, it ensures that the temperature of the cooling surface is sufficiently low so that condensation takes place, and the temperature of the catalyst bed is so high that condensation on the catalyst is avoided and a high reaction rate is maintained.

Este efecto es lograble a una temperatura específica de la superficie refrigerante. El calor que es necesario eliminar del reactor es de tal magnitud que, para cualquier razón práctica, sólo se puede eliminar mediante calor de evaporación o mediante intercambio de calor con un agente refrigerante líquido. La temperatura de la superficie del área refrigerante está próxima a la de la temperatura del agente refrigerante líquido. This effect is achievable at a specific temperature of the cooling surface. The heat that needs to be removed from the reactor is of such magnitude that, for any practical reason, it can only be removed by evaporating heat or by exchanging heat with a liquid cooling agent. The surface temperature of the cooling area is close to that of the temperature of the liquid cooling agent.

A fin de evitar la condensación de metanol en el lecho de catalizador, el calor de la producción debe ser suficientemente elevado para compensar el calor eliminado en el área de refrigeración incrementando la relación de volumen de catalizador a área superficial de refrigeración, y la relación de volumen de catalizador a área superficial de refrigeración debe ser adecuada al transporte del vapor de metanol producido hacia la superficie refrigerante. In order to avoid the condensation of methanol in the catalyst bed, the heat of production must be sufficiently high to compensate for the heat removed in the cooling area by increasing the ratio of catalyst volume to cooling surface area, and the ratio of Catalyst volume to cooling surface area must be adequate to transport methanol vapor produced to the cooling surface.

Se prefiere que el rearrastre de metanol líquido se reduzca o evite sustancialmente. El rearrastre del líquido se puede evitar reduciendo la resistencia del flujo del metanol bruto que fluye hacia abajo sobre la superficie It is preferred that the re-tracing of liquid methanol be reduced or substantially avoided. Liquid re-dragging can be avoided by reducing the resistance of the raw methanol flow flowing down the surface

E09714360 24-11-2011 E09714360 11-24-2011

refrigerante, empleando por ejemplo partículas de catalizador con un diámetro equivalente de más de 0,002 m y/o por medio de un estabilizador de la película líquida, como se muestra en las Figuras 1-7. refrigerant, for example using catalyst particles with an equivalent diameter of more than 0.002 m and / or by means of a liquid film stabilizer, as shown in Figures 1-7.

El rearrastre del metanol líquido hacia el lecho de catalizador también se puede evitar introduciendo el área de calentamiento en el reactor, que mantiene la temperatura del lecho de catalizador por encima del punto de rocío del metanol. El área de calentamiento también mantendrá la temperatura del catalizador por encima del punto de rocío en los casos en los que la producción de calor es insuficiente para mantener la temperatura del catalizador por encima del punto de rocío. El área de calentamiento se distribuirá uniformemente, al igual que para el área de enfriamiento, en el lecho de catalizador a fin de obtener un gradiente de temperatura forzado en el lecho. Puesto que la producción de calor es mayor en el lado de entrada de gas de síntesis del reactor en comparación con el lado de salida del reactor, el área de calentamiento puede enfriar el lecho de catalizador en la región de entrada del reactor, y calentar solamente el lecho de catalizador en la región de salida del reactor. Se prefiere introducir el agente refrigerante en una dirección del flujo a contracorriente con el gas de síntesis. De ese modo, la región de salida del reactor se puede volver a calentar por calor en exceso desde la región de entrada. El agente calefactor para uso en el área de calentamiento es preferiblemente agua de alimentación de la caldera, vapor, o una mezcla de estos. La presión del agente calefactor está preferiblemente entre alrededor de 2,3 MPa y alrededor de 6,4 MPa. The re-tracing of liquid methanol to the catalyst bed can also be avoided by introducing the heating area into the reactor, which maintains the temperature of the catalyst bed above the dew point of methanol. The heating area will also maintain the catalyst temperature above the dew point in cases where heat production is insufficient to maintain the catalyst temperature above the dew point. The heating area will be distributed uniformly, as for the cooling area, in the catalyst bed in order to obtain a forced temperature gradient in the bed. Since the heat production is higher at the synthesis gas inlet side of the reactor compared to the outlet side of the reactor, the heating area can cool the catalyst bed in the inlet region of the reactor, and only heat the catalyst bed in the reactor outlet region. It is preferred to introduce the cooling agent in a direction of the countercurrent flow with the synthesis gas. In this way, the reactor outlet region can be reheated by excess heat from the inlet region. The heating agent for use in the heating area is preferably boiler feed water, steam, or a mixture thereof. The heating agent pressure is preferably between about 2.3 MPa and about 6.4 MPa.

La principal ventaja del método y reactor de esta invención es una conversión elevada del gas de síntesis de metanol en el reactor, obtenida por la eliminación continua del metanol formado a partir de la fase gaseosa en la fase líquida sobre la superficie refrigerante a través de condensación. Por lo tanto, el procedimiento de metanol se puede llevar a cabo en modo de entrada única, sin recirculación del gas de síntesis sin convertir. The main advantage of the method and reactor of this invention is a high conversion of methanol synthesis gas into the reactor, obtained by the continuous removal of methanol formed from the gas phase in the liquid phase on the cooling surface through condensation. . Therefore, the methanol process can be carried out in single entry mode, without recirculation of the unconverted synthesis gas.

Comparado con los reactores de metanol de agua hirviendo convencionales, una ventaja de la presente invención es una producción incrementada de vapor, puesto que el calor de condensación se utiliza en el reactor para la producción de vapor, mientras que el calor de condensación se elimina típicamente en un condensador posterior enfriado con agua. Si el calor de la reacción se elimina calentando agua de alimentación de la caldera, el agua de alimentación de la caldera se puede enfriar subsiguientemente expandiendo instantáneamente el vapor formado en un tambor de expansión súbita externo. Compared to conventional boiling water methanol reactors, an advantage of the present invention is an increased steam production, since condensation heat is used in the reactor for steam production, while condensation heat is typically eliminated. in a subsequent condenser cooled with water. If the heat of the reaction is removed by heating boiler feed water, the boiler feed water can be subsequently cooled by instantly expanding the steam formed in a sudden external expansion drum.

Como en el procedimiento de metanol convencional, se forman algunos subproductos; entre estos están acetona y metiletilcetona, que son difíciles de eliminar por destilación. Puesto que la reacción de hidrogenación es muy rápida, las cetonas estarán en equilibrio termodinámico a la temperatura dada en el reactor. Las cetonas se disolverán principalmente en el metanol bruto condensado en la superficie refrigerante, en la que el equilibrio termodinámico es más favorable hacia la conversión de las cetonas en los alcoholes correspondientes. Esto da como resultado un menor contenido de cetona en el metanol producido, en comparación con el reactor de metanol operado de forma convencional. As in the conventional methanol process, some by-products are formed; Among these are acetone and methyl ethyl ketone, which are difficult to remove by distillation. Since the hydrogenation reaction is very rapid, the ketones will be in thermodynamic equilibrium at the temperature given in the reactor. The ketones will dissolve mainly in the condensed raw methanol on the cooling surface, in which the thermodynamic equilibrium is more favorable towards the conversion of the ketones into the corresponding alcohols. This results in a lower ketone content in the methanol produced, compared to the conventionally operated methanol reactor.

Los parámetros del procedimiento descritos anteriormente, y el diseño y dimensiones del reactor, se pueden calcular por medio de las siguientes ecuaciones (Ecuación 1 – Ecuación 3) y los valores predeterminados de: The procedure parameters described above, and the design and dimensions of the reactor, can be calculated using the following equations (Equation 1 - Equation 3) and the default values of:

P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor. P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet.

MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor. MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet.

Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor. Y (x) [molar fraction] is the concentration of each component at the reactor inlet.

Entonces So

Ecuación 1: Equation 1:

H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] +273) 2) ) / (D * P * 9.87);

en la que: in which:

TBW es la temperatura media del agente refrigerante, definida como la temperatura del refrigerante después de haber recibido la mitad del calor transferido total. TBW is the average temperature of the cooling agent, defined as the temperature of the refrigerant after receiving half of the total heat transferred.

M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2));

(el módulo de gas de entrada) (the inlet gas module)

A = 1,0-Y(CO) -Y(H2) -Y(CO2)-Y(CH3OH)-Y(H2O); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O);

(la fracción de inertes) (the inert fraction)

B = Y(CO)/Y(CO2); (la relación de CO a CO2) B = Y (CO) / Y (CO2); (the ratio of CO to CO2)

si M es menor que 2,0, entonces C = 1,0, de otro modo C = Exp(0,2*(M-2,0)); (Exp es el antilogaritmo natural o la función exponencial con el número de base 2,71828) D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+ P/25,2); Ln es el logaritmo natural con número de base 2,71828). if M is less than 2.0, then C = 1.0, otherwise C = Exp (0.2 * (M-2.0)); (Exp is the natural antilogarithm or exponential function with the base number 2.71828) D = (0.072 * Ln (B) +0.244) * C * (1.125-2.5 * A) * (0.478+ P / 25 ,2); Ln is the natural logarithm with base number 2,71828).

5 E = Exp((P-13,2)/30,1) habiendo calculado la temperatura media del agente refrigerante líquido, se puede calcular la relación de volumen de catalizador a área superficial refrigerante mediante la Ecuación 2 usando el valor de diseño L, que tiene un número entre 0,4 y 5: Ecuación 2: 10 VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5) 5 E = Exp ((P-13.2) / 30.1) having calculated the average temperature of the liquid cooling agent, the ratio of catalyst volume to cooling surface area can be calculated using Equation 2 using the design value L , which has a number between 0.4 and 5: Equation 2: 10 VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5)

en la que: si M es mayor que 2,0 entonces J = (Y(CO)+Y(CO2)), de otro modo J = Y(H2)*(B+1)/(2*B + 3); G = MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); K es la constante geométrica que depende de los tipos 1-3 de reactor empleados, como se describe aquí in which: if M is greater than 2.0 then J = (Y (CO) + Y (CO2)), otherwise J = Y (H2) * (B + 1) / (2 * B + 3) ; G = MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); K is the geometric constant that depends on the types 1-3 of reactor used, as described here

15 anteriormente: tipo 1 de reactor: K = 0,027; tipo 2 de reactor: K = 0,045; tipo 3 de reactor: K = 0,02; 15 above: type 1 reactor: K = 0.027; reactor type 2: K = 0.045; type 3 reactor: K = 0.02;

y en la que: DEQ [m] es el diámetro equivalente del pelete catalítico calculado como el diámetro de una esfera que 20 tiene el mismo volumen que la partícula de catalizador DEQ = (6*(volumen de la partícula [m3])/3,14)0,33. Si se emplea más de un tamaño de peletes, se calcula un diámetro equivalente medio ponderal DEQ = and in which: DEQ [m] is the equivalent diameter of the catalytic pellet calculated as the diameter of a sphere that 20 has the same volume as the catalyst particle DEQ = (6 * (particle volume [m3]) / 3 , 14) 0.33. If more than one pellet size is used, a weight average equivalent diameter is calculated DEQ =

( ! w (i)*(DEQ(i)3))0,33, en la que w(i) es la fracción ponderal de las partículas con un diámetro equivalente de DEQ(i) [m]; VCAT [m3] es el volumen bruto sedimentado del catalizador en el reactor; y (! w (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of the particles with an equivalent diameter of DEQ (i) [m]; VCAT [m3] is the sedimented gross volume of the catalyst in the reactor; Y

25 ACOOL [m2] es el área de transferencia de calor de la superficie refrigerante donde tiene lugar la 25 ACOOL [m2] is the heat transfer area of the cooling surface where the

condensación del metanol: Para el reactor de tipo 1, ACOOL es el área interna total de los tubos de catalizador. Si los tubos de catalizador tienen aletas interiores longitudinales, ACOOL es el área exterior de los cilindros más grandes encerrados por los tubos con aletas. methanol condensation: For the type 1 reactor, ACOOL is the total internal area of the catalyst tubes. If the catalyst tubes have longitudinal inner fins, ACOOL is the outer area of the largest cylinders enclosed by the finned tubes.

30 Para los tipos 2 y 3 de reactor, ACOOL es el área exterior total de los tubos refrigerantes que contienen el agente refrigerante líquido con una temperatura media de TBW. Si los tubos de catalizador tienen aletas longitudinales, ACOOL es el área exterior de los cilindros más pequeños que encierran a los tubos con aletas. 30 For reactor types 2 and 3, ACOOL is the total outer area of the refrigerant tubes containing the liquid refrigerant with an average temperature of TBW. If the catalyst tubes have longitudinal fins, ACOOL is the outer area of the smaller cylinders that enclose the finned tubes.

Si se emplean intercambiadores de calor de placas térmicas, ACOOL es el área exterior total del rectángulo más pequeño que encierra a las placas de intercambio de calor. If thermal plate heat exchangers are used, ACOOL is the total outer area of the smallest rectangle that encloses the heat exchange plates.

35 Si tiene lugar el rearrastre al lecho de catalizador, o si la generación del calor de reacción es demasiado baja para mantener el catalizador por encima del punto de rocío del metanol, se prefiere introducir una segunda área calefactora AREHEAT [m2] en los tipos 2 y 3 del reactor como se definen previamente. Esta segunda área calefactora asegurará que la temperatura del catalizador se mantenga por encima del punto de rocío del metanol. El agente calefactor usado en el área de calentamiento puede ser agua de alimentación de la caldera, vapor, o una 35 If re-tracing to the catalyst bed takes place, or if the reaction heat generation is too low to keep the catalyst above the dew point of methanol, it is preferred to introduce a second AREHEAT [m2] heating area in types 2 and 3 of the reactor as previously defined. This second heating area will ensure that the catalyst temperature is maintained above the dew point of methanol. The heating agent used in the heating area may be boiler feed water, steam, or a

40 mezcla de estos, con un punto de ebullición entre 220ºC y 280ºC para el medio líquido, o el punto de rocío debe estar entre 220ºC y 280ºC para el vapor. Mixing these, with a boiling point between 220ºC and 280ºC for the liquid medium, or the dew point must be between 220ºC and 280ºC for steam.

DESCRIPCIÓN DETALLADA DE LAS FIGURAS Las Figuras 1A y 1B muestran un equipo interno de malla de alambre para uso en la invención. Un medio refrigerante líquido 1 está en el exterior del tubo 2 de acero. El tubo refrigerante está en su pared interna DETAILED DESCRIPTION OF THE FIGURES Figures 1A and 1B show an internal wire mesh equipment for use in the invention. A liquid cooling medium 1 is outside the steel tube 2. The refrigerant tube is in its inner wall

45 provisto con una malla de alambre cilíndrica 3 (detalle A) separada de la pared. El tubo 2 contiene un lecho de 45 provided with a cylindrical wire mesh 3 (detail A) separated from the wall. Tube 2 contains a bed of

E09714360 24-11-2011 E09714360 11-24-2011

catalizador fijo 4. Una película 5 de condensado de metanol, que se produce dentro del lecho 4 en la fase gaseosa, se condensa como película sobre la pared interna del tubo y fluye descendentemente entre la pared interna y la gasa de alambre. La disposición se puede invertir de tal manera que un agente refrigerante esté dentro del tubo y el cilindro de gasa de alambre fuera del tubo, y el lecho de catalizador esté fuera del cilindro de la gasa de alambre. fixed catalyst 4. A film 5 of methanol condensate, which is produced inside the bed 4 in the gas phase, condenses as a film on the inner wall of the tube and flows downwardly between the inner wall and the wire gauze. The arrangement can be reversed in such a way that a cooling agent is inside the tube and the wire gauze cylinder outside the tube, and the catalyst bed is outside the wire gauze cylinder.

La Figura 2 muestra un equipo interno de espiral de acero para uso en la invención. Un agente refrigerante líquido 1 está en el exterior del tubo 2 de acero. La espiral 3 de acero está dispuesta dentro del tubo 2 que contiene un lecho de catalizador fijo 4. La película 5 de condensado de metanol fluye descendentemente en el lado inferior de la espiral. Figure 2 shows an internal steel spiral equipment for use in the invention. A liquid cooling agent 1 is outside the steel tube 2. The steel spiral 3 is disposed within the tube 2 containing a fixed catalyst bed 4. The methanol condensate film 5 flows downwardly on the bottom side of the spiral.

La Figura 3 muestra un equipo interno de hélice de acero para uso en la invención. Un agente refrigerante líquido 1 fluye fuera de un tubo 2 de acero. Una hélice 3 de acero está dispuesta en el lecho de catalizador fijo Figure 3 shows an internal steel propeller kit for use in the invention. A liquid cooling agent 1 flows out of a steel tube 2. A steel propeller 3 is arranged in the fixed catalyst bed

4. Una película 5 de condensado de metanol fluye descendentemente sobre el tubo 2 de pared interna y es forzada hacia la pared 2 mediante la fuerza centrífuga creada mediante la rotación forzada de un gas de síntesis que se hace pasar en una dirección axial a través del tubo 2. El tubo 2 puede estar equipado con dos hélices 3, estando cada espiral desplazada 180º una respecto de la otra. 4. A film 5 of methanol condensate flows down the inner wall tube 2 and is forced into the wall 2 by the centrifugal force created by the forced rotation of a synthesis gas that is passed in an axial direction through the tube 2. Tube 2 can be equipped with two propellers 3, each spiral being 180 ° offset from each other.

Las Figuras 4A y 4B muestran un equipo interno de fibra porosa para uso en la invención. Un agente refrigerante líquido rodea un tubo refrigerante 2 que está equipado con un cilindro 3 de fibra tejida o un cilindro de estera de fibra unida cerámica sobre la pared interna del tubo 2. Un lecho de catalizador fijo 4 está dispuesto dentro del tubo 2. Una película 5 de condensado de metanol fluye descendentemente dentro del equipo interno de fibra porosa. La disposición se puede invertir de tal manera que el agente refrigerante esté dentro del tubo 2 y el equipo 3 esté fuera del tubo, y el lecho de catalizador 4 esté fuera del equipo 3. Figures 4A and 4B show an internal porous fiber equipment for use in the invention. A liquid cooling agent surrounds a cooling tube 2 that is equipped with a woven fiber cylinder 3 or a ceramic bonded fiber mat cylinder on the inner wall of the tube 2. A fixed catalyst bed 4 is disposed within the tube 2. A Methanol condensate film 5 flows downwardly into the internal porous fiber equipment. The arrangement can be reversed in such a way that the cooling agent is inside the tube 2 and the equipment 3 is outside the tube, and the catalyst bed 4 is outside the equipment 3.

La Figura 5 es una vista en sección transversal de un tubo catalítico 2 con aletas internas para uso en la invención. Un agente refrigerante líquido 1 está fuera del tubo 2 de acero con aletas longitudinal, en el que el número de aletas internas es preferiblemente mayor que 3,14 multiplicado por el diámetro del tubo interno nominal dividido entre el diámetro equivalente del pelete catalítico. Las aletas internas crearán un espacio vacío entre la pared de acero y el lecho de catalizador, permitiendo que el condensado de metanol fluya hacia abajo con menos resistencia. Un lecho de catalizador fijo 3 está dispuesto dentro del tubo, y una película 4 de condensado de metanol fluye descendentemente entre la pared interna del tubo y el lecho de catalizador 4. Figure 5 is a cross-sectional view of a catalytic tube 2 with internal fins for use in the invention. A liquid cooling agent 1 is outside the longitudinal finned steel tube 2, in which the number of internal fins is preferably greater than 3.14 multiplied by the diameter of the nominal internal tube divided by the equivalent diameter of the catalytic pellet. The internal fins will create an empty space between the steel wall and the catalyst bed, allowing the methanol condensate to flow down with less resistance. A fixed catalyst bed 3 is disposed within the tube, and a film 4 of methanol condensate flows downwardly between the inner wall of the tube and the catalyst bed 4.

La Figura 6 es una vista en sección transversal de un tubo refrigerante con aletas externas para uso en la invención. Un agente refrigerante líquido 1 está fuera de un tubo 2 de acero con aletas longitudinal, en el que el número de aletas externas es preferiblemente mayor que 3,14 multiplicado por el diámetro del tubo exterior nominal dividido entre el diámetro equivalente del pelete catalítico. Las aletas exteriores crearán un espacio vacío entre la pared de acero y el lecho de catalizador, permitiendo que una película 4 de condensado de metanol fluya en la pared interna del tubo con menos resistencia. Figure 6 is a cross-sectional view of a cooling tube with external fins for use in the invention. A liquid cooling agent 1 is outside a longitudinal finned steel tube 2, in which the number of external fins is preferably greater than 3.14 multiplied by the diameter of the nominal outer tube divided by the equivalent diameter of the catalytic pellet. The outer fins will create an empty space between the steel wall and the catalyst bed, allowing a film 4 of methanol condensate to flow into the inner wall of the tube with less resistance.

La Fig. 7 es un intercambiador de calor de placa corrugada para uso como un área refrigerante según la invención. Se introduce un agente refrigerante líquido 1 a través de la entrada 1a, que abandona el intercambiador de calor en forma gaseosa 2 a través de la salida 2a. Un lecho de catalizador fijo 3 rodea al intercambiador de placas. El intercambiador de calor está provisto de una superficie 4 corrugada sinoidal, que proporciona un espacio vacío entre las partículas de catalizador y la superficie del intercambiador de calor, permitiendo que el metanol 5 condensado fluya sobre la superficie con menos resistencia. La longitud de onda de la corrugación sinoidal es menor que el diámetro equivalente del catalizador. Fig. 7 is a corrugated plate heat exchanger for use as a cooling area according to the invention. A liquid cooling agent 1 is introduced through the inlet 1a, which leaves the heat exchanger in gaseous form 2 through the outlet 2a. A bed of fixed catalyst 3 surrounds the plate exchanger. The heat exchanger is provided with a sinusoidal corrugated surface 4, which provides an empty space between the catalyst particles and the surface of the heat exchanger, allowing the condensed methanol 5 to flow over the surface with less resistance. The wavelength of the sinusoidal corrugation is less than the equivalent diameter of the catalyst.

La Figura 8 muestra una vista longitudinal de un reactor de metanol multitubular según una realización específica de la invención. El reactor está provisto en su carcasa 14 de presión con una entrada 1 de gas de síntesis, un orificio 2 de acceso, una entrada 4 para un agente refrigerante líquido, una salida 5 para una mezcla de líquido-vapor del medio refrigerante, una salida 9 para el gas de síntesis sin convertir y el metanol bruto líquido, y una línea 12 de líquidos. Figure 8 shows a longitudinal view of a multitubular methanol reactor according to a specific embodiment of the invention. The reactor is provided in its pressure housing 14 with a synthesis gas inlet 1, an access port 2, an inlet 4 for a liquid cooling agent, an outlet 5 for a liquid-vapor mixture of the cooling medium, an outlet 9 for the unconverted synthesis gas and the crude liquid methanol, and a liquid line 12.

En la parte superior 3 del reactor, con una lámina 6 de tubo superior, la parte superior 3 opcionalmente se puede llenar parcialmente de un catalizador. In the upper part 3 of the reactor, with an upper tube sheet 6, the upper part 3 can optionally be partially filled with a catalyst.

En la región de salida del reactor, existe una lámina 7 del tubo inferior, un lecho de soporte de esferas inertes 8 y una rejilla 11 de soporte perforada que mantiene el lecho inerte. Una pluralidad de tubos 13 se llenan con catalizador de metanol, pudiendo cada uno de estos tubos mantener equipo estabilizador de líquidos como se describe anteriormente. Estos tubos se disponen en una inclinación triangular. El metanol que se forma dentro de los tubos condensa en la pared interior de los tubos, siendo enfriado por el agente refrigerante, y fluye descendentemente hacia la salida 9. In the reactor outlet region, there is a sheet 7 of the lower tube, a support bed of inert spheres 8 and a perforated support grid 11 that keeps the bed inert. A plurality of tubes 13 are filled with methanol catalyst, each of these tubes being able to maintain liquid stabilizer equipment as described above. These tubes are arranged in a triangular inclination. The methanol that forms within the tubes condenses on the inner wall of the tubes, being cooled by the cooling agent, and flows downwardly to the outlet 9.

La Figura 9 es una vista longitudinal de un reactor de metanol con un lecho de catalizador 8 y un intercambiador de calor tubular 11 dispuesto en el lecho de catalizador según una realización específica de la Figure 9 is a longitudinal view of a methanol reactor with a catalyst bed 8 and a tubular heat exchanger 11 disposed in the catalyst bed according to a specific embodiment of the

E09714360 24-11-2011 E09714360 11-24-2011

invención. El gas de síntesis de metanol se introduce a través de la entrada 1 y se hace pasar a través del lecho de catalizador 8. El agente refrigerante líquido se introduce vía un colector 4 de entrada en el intercambiador tubular de calor 11, y se extrae en forma de una mezcla de vapor-líquido a través del colector 5 de salida. En la parte inferior del reactor, una rejilla 6 de soporte perforada mantiene un lecho 9 de soporte de esferas inertes. La parte principal de los catalizadores está situada entre el intercambiador de calor 11, que consiste en una pluralidad de tubos, tubos con un estabilizador de película líquida sobre la superficie exterior, tubos con aletas longitudinales, o placas de intercambiador de calor corrugadas. El metanol, a medida que se forma en el lecho de catalizador, se condensa sobre la superficie del intercambiador de calor 11 y es extraído en la fase líquida a través de la salida 10. invention. The methanol synthesis gas is introduced through the inlet 1 and passed through the catalyst bed 8. The liquid cooling agent is introduced via an inlet manifold 4 in the tubular heat exchanger 11, and extracted in form of a vapor-liquid mixture through the outlet manifold 5. At the bottom of the reactor, a perforated support grid 6 maintains a support bed 9 of inert spheres. The main part of the catalysts is located between the heat exchanger 11, which consists of a plurality of tubes, tubes with a liquid film stabilizer on the outer surface, tubes with longitudinal fins, or corrugated heat exchanger plates. The methanol, as it forms in the catalyst bed, condenses on the surface of the heat exchanger 11 and is extracted in the liquid phase through the outlet 10.

La Figura 10 es una vista longitudinal de un reactor de metanol que se proporciona con un lecho fijo de catalizador 8 de metanol según una realización específica de la invención. En el lecho 8 se monta una superficie refrigerante en forma de un intercambiador 11 de calor tubular, y una superficie calefactora en forma de un intercambiador 15 de calor tubular. En la parte inferior del reactor, una rejilla 6 de soporte perforada sostiene un lecho 9 de soporte de esferas inertes. El gas de síntesis de metanol se introduce en el lecho 8 vía la entrada 1. Se introduce un agente calefactor en el intercambiador 15 de calor vía el colector 13 de entrada, y se extrae a través del colector 14 de salida. En el intercambiador 11 de calor se introduce un agente refrigerante líquido vía un colector 4 de entrada, y se extrae a través de un colector 5 de salida. El metanol que se forma en el lecho 8 se condensa en la superficie refrigerante del intercambiador 11 de calor y se extrae del reactor en fase líquida a través de la salida 10. La superficie refrigerante del intercambiador 11 de calor consiste en una pluralidad de tubos, tubos con un estabilizador de película líquida sobre la superficie exterior, tubos con aletas longitudinales o placas de intercambio de calor corrugadas, en los que se condensa el metanol bruto. El intercambiador 15 de calor mantiene la temperatura del lecho de catalizador por encima del punto de rocío del metanol formado, y consiste en una pluralidad de tubos o placas de intercambio de calor. Figure 10 is a longitudinal view of a methanol reactor that is provided with a fixed bed of methanol catalyst 8 according to a specific embodiment of the invention. In the bed 8 a cooling surface is mounted in the form of a tubular heat exchanger 11, and a heating surface in the form of a tubular heat exchanger 15. At the bottom of the reactor, a perforated support grid 6 supports a support bed 9 of inert spheres. The methanol synthesis gas is introduced into the bed 8 via the inlet 1. A heating agent is introduced into the heat exchanger 15 via the inlet manifold 13, and extracted through the outlet manifold 14. A liquid cooling agent is introduced into the heat exchanger 11 via an inlet manifold 4, and is extracted through an outlet manifold 5. The methanol that forms in the bed 8 condenses on the cooling surface of the heat exchanger 11 and is extracted from the reactor in liquid phase through the outlet 10. The cooling surface of the heat exchanger 11 consists of a plurality of tubes, tubes with a liquid film stabilizer on the outer surface, tubes with longitudinal fins or corrugated heat exchange plates, in which the crude methanol is condensed. The heat exchanger 15 maintains the temperature of the catalyst bed above the dew point of the formed methanol, and consists of a plurality of heat exchange tubes or plates.

La Figura 11 es una vista en sección del reactor de metanol de flujo radial según una realización específica de la invención. El gas de síntesis de metanol se introduce en el reactor vía la entrada 1. El gas de síntesis se hace pasar a través del lecho de catalizador 14 en dirección radial desde la periferia del reactor a través de un cilindro 7 perforado cilíndrico que sostiene el lecho de catalizador y permite que el gas de síntesis de entrada pase a un tubo 6 central que está perforado, donde está en contacto con el catalizador, para permitir que el gas de síntesis residual y el metanol bruto líquido que se forma sean extraídos a través de la salida 13. En el lecho de catalizador 14 se coloca una superficie refrigerante en forma de un intercambiador 9 de calor que consiste en una pluralidad de tubos, tubos con un estabilizador de película líquida sobre la superficie exterior, tubos con aletas longitudinales, o placas de intercambio de calor corrugadas. En el intercambiador de calor se introduce un agente refrigerante líquido a través de la entrada 4, y se extrae a través de la salida 5. El agente refrigerante se distribuye al intercambiador de calor por medio de un colector 10 circular, y se recoge en la salida desde el intercambiador de calor mediante el colector 11 de salida. Figure 11 is a sectional view of the radial flow methanol reactor according to a specific embodiment of the invention. The methanol synthesis gas is introduced into the reactor via the inlet 1. The synthesis gas is passed through the catalyst bed 14 radially from the periphery of the reactor through a cylindrical perforated cylinder 7 that supports the bed of catalyst and allows the inlet synthesis gas to pass to a central tube 6 that is perforated, where it is in contact with the catalyst, to allow the residual synthesis gas and the crude liquid methanol that is formed to be extracted through the outlet 13. In the catalyst bed 14 a cooling surface is placed in the form of a heat exchanger 9 consisting of a plurality of tubes, tubes with a liquid film stabilizer on the outer surface, tubes with longitudinal fins, or plates Corrugated heat exchange. A liquid cooling agent is introduced into the heat exchanger through the inlet 4, and it is removed through the outlet 5. The cooling agent is distributed to the heat exchanger by means of a circular manifold 10, and is collected in the output from the heat exchanger via the outlet manifold 11.

La Figura 12 muestra un diagrama de flujo del proceso para la preparación de metanol según la invención. El gas de síntesis 1 de metanol es comprimido por un compresor de gas de síntesis, y se hace pasar a un reactor 5 de agua hirviendo multitubular convencional, como se emplea típicamente en la industria hoy en día. El efluente procedente del reactor 5, que contiene metanol y gas de síntesis sin convertir, se hace pasar a un separador 9 y se separa en una corriente 10 rica en gas de síntesis y una corriente 17 rica en metanol. La corriente 10 se introduce en el reactor 11 de metanol que se diseña según la invención. El agente refrigerante, con un punto de ebullición entre 60ºC y 160ºC, se introduce en el reactor 11 vía la entrada 13, y se extrae de la salida 12. Se introduce un agente calefactor a través de la entrada 18, y se extrae a través de la salida 19. El efluente procedente del reactor 11, que contiene metanol líquido y gas de síntesis sin convertir, se hace pasar a un separador 15 y se separa en una corriente 16 de gas de síntesis y una corriente 20 de metanol líquido, que se combina con la corriente de metanol procedente del reactor 9 en la tubería 17. Figure 12 shows a process flow diagram for the preparation of methanol according to the invention. The methanol synthesis gas 1 is compressed by a synthesis gas compressor, and is passed into a conventional multitubular boiling water reactor 5, as is typically used in industry today. The effluent from reactor 5, which contains methanol and unconverted synthesis gas, is passed to a separator 9 and separated into a stream 10 rich in synthesis gas and a stream 17 rich in methanol. Stream 10 is introduced into the methanol reactor 11 which is designed according to the invention. The cooling agent, with a boiling point between 60 ° C and 160 ° C, is introduced into reactor 11 via inlet 13, and removed from outlet 12. A heating agent is introduced through inlet 18, and extracted through from outlet 19. The effluent from reactor 11, which contains liquid methanol and unconverted synthesis gas, is passed to a separator 15 and separated into a stream 16 of synthesis gas and a stream 20 of liquid methanol, which It is combined with the stream of methanol from reactor 9 in pipe 17.

EJEMPLO EXAMPLE

El diseño del reactor y las condiciones del procedimiento para un método y reactor del tipo 1 explicado anteriormente según una realización de la invención se determinan por medio de las siguientes ecuaciones, basadas en valores predeterminados de: The design of the reactor and the process conditions for a method and reactor of type 1 explained above according to an embodiment of the invention are determined by means of the following equations, based on predetermined values of:

P = 12,55 MPa de presión de reactor en la entrada de gas de síntesis; P = 12.55 MPa reactor pressure at the synthesis gas inlet;

MW = 18,89 kg/kmol de peso molecular de gas de síntesis en la entrada del reactor; MW = 18.89 kg / kmol of molecular weight of synthesis gas at the reactor inlet;

Composición del gas de síntesis en la entrada del reactor: Y(CH3OH) = 0,255; Y(H2) = 0,438; Y(CO) = 0,148; Y(CO2) = 0,075; Y(H2O) = 0,006; Composition of the synthesis gas at the reactor inlet: Y (CH3OH) = 0.255; Y (H2) = 0.438; Y (CO) = 0.148; Y (CO2) = 0.075; Y (H2O) = 0.006;

DEQ = 0,006 m, diámetro equivalente de las partículas de catalizador. DEQ = 0.006 m, equivalent diameter of catalyst particles.

Tipo 1 de reactor. Con los valores de diseño predeterminados de H = 1,0 y L = 1,1, se puede determinar el siguiente diseño de reactor con una condensación óptima de metanol dentro del reactor: M = 1,63 A = 0,078 B = 1,97 C= 1 D = 0,2656 E = 0,9788 TBW = 125ºC a H = 1 mediante la Ecuación 1 explicada anteriormente. J = 0,187 G= 1,9589 K= 0,027 para el reactor tipo 1 VCAT/ACOOL = 0,03081 m (igual a un diámetro de tubo interno de 0,1233 m). Type 1 reactor. With the default design values of H = 1.0 and L = 1.1, the following reactor design can be determined with an optimal condensation of methanol inside the reactor: M = 1.63 A = 0.078 B = 1.97 C = 1 D = 0.2656 E = 0.9788 TBW = 125 ° C at H = 1 using Equation 1 explained above. J = 0.187 G = 1.9889 K = 0.027 for the reactor type 1 VCAT / ACOOL = 0.03081 m (equal to an internal tube diameter of 0.1233 m).

Claims (6)

REIVINDICACIONES 1. Un reactor para la producción de metanol, que comprende en una carcasa común una pluralidad de tubos de catalizador con partículas de catalizador sedimentadas en el lado del tubo de los tubos de catalizador, para la conversión de un gas de síntesis que comprende hidrógeno, monóxido de carbono y dióxido de carbono, cada uno 1. A reactor for the production of methanol, comprising in a common housing a plurality of catalyst tubes with catalyst particles settled on the tube side of the catalyst tubes, for the conversion of a synthesis gas comprising hydrogen, carbon monoxide and carbon dioxide, each 5 en una cantidad para proporcionar un valor de módulo de entrada M, y que contiene una fracción de inertes A, y un agente refrigerante líquido a presión en el lado de la carcasa de los tubos de catalizador que tiene una temperatura de ebullición (TBW) que da como resultado un valor H de entre 0,5 y 1,8 según la ecuación 1, y una relación de volumen bruto de las partículas de catalizador sedimentadas a superficie de los tubos de catalizador (VCAT/ACOOL) que tiene un valor L de entre 0,4 y 5 según la ecuación 2, y en el que 5 in an amount to provide an input module value M, and containing a fraction of inerts A, and a pressurized liquid cooling agent on the side of the casing of the catalyst tubes having a boiling temperature (TBW) which results in an H value of between 0.5 and 1.8 according to equation 1, and a gross volume ratio of the catalyst particles sedimented to the surface of the catalyst tubes (VCAT / ACOOL) having an L value between 0.4 and 5 according to equation 2, and in which 10 Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); Ecuación 2: VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5); en las que: 10 Equation 1: H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] + 273) 2)) / (D * P * 9.87); Equation 2: VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); in which: M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); 15 B = Y(CO)/Y(CO2); C = 1,0 si M es menor que 2,0, de otro modo C = Exp(-0,2*(M-2,0)); D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); E = Exp((P-13,2)/30,1); K = 0,027 (constante geométrica); 15 B = Y (CO) / Y (CO2); C = 1.0 if M is less than 2.0, otherwise C = Exp (-0.2 * (M-2.0)); D = (0.072 * Ln (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp ((P-13.2) / 30.1); K = 0.027 (geometric constant); 20 G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+3); DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m3])/3,14)0,33 con partículas de 20 G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + 3); DEQ1 = (6 * (volume of a particle of the methanol synthesis catalyst [m3]) / 3.14) 0.33 with particles of catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; DEQ2 = ( !w(i)*(DEQ(i)3))0,33, en la que w(i) es la fracción ponderal de partículas de catalizador con un 25 diámetro equivalente de DEQ(i)[m]; catalyst of the same size, and with catalyst particles of different size; DEQ2 = (! W (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of catalyst particles with an equivalent diameter of DEQ (i) [m]; y P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor; Y P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; Y (x) [molar fraction] is the concentration of each component at the reactor inlet; 30 LN es el logaritmo natural con la base numérica 2,71828; y Exp es el antilogaritmo natural o la función exponencial con base numérica 2,71828. 30 LN is the natural logarithm with the numerical base 2,71828; and Exp is the natural antilogarithm or exponential function with numerical base 2,71828. 2. Un reactor para la producción de metanol, que comprende en una carcasa común un lecho de catalizador que sostiene una carga de catalizador para una conversión de un gas de síntesis en metanol, comprendiendo el gas de 35 síntesis hidrógeno, monóxido de carbono y dióxido de carbono, cada uno en una cantidad para proporcionar un valor de módulo de entrada M, y comprendiendo una fracción de inertes A, y en la carga de catalizador una unidad de intercambio de calor, consistiendo la unidad de intercambio de calor en una pluralidad de tubos o tubos con aletas o una pluralidad de intercambiadores de calor de placas que están distribuidos uniformemente en la carga de catalizador y que forman una superficie refrigerante, enfriándose la unidad de intercambio de calor mediante un 2. A reactor for the production of methanol, which comprises in a common housing a catalyst bed that holds a catalyst charge for a conversion of a synthesis gas into methanol, the hydrogen synthesis gas, carbon monoxide and dioxide comprising of carbon, each in an amount to provide an input module value M, and comprising a fraction of inerts A, and in the catalyst charge a heat exchange unit, the heat exchange unit consisting of a plurality of finned tubes or tubes or a plurality of plate heat exchangers that are uniformly distributed in the catalyst charge and that form a cooling surface, the heat exchange unit being cooled by a 40 agente refrigerante líquido a presión, en el que la temperatura de ebullición del agente refrigerante líquido tiene una temperatura de ebullición (TBW) que da como resultado un valor H entre 0,5 y 1,8 calculado por medio de la ecuación 1, y en el que la relación de volumen bruto de la carga de catalizador a superficie de la unidad de intercambio de calor (VCAT/ACOOL) se ajusta para dar como resultado un valor L de entre 0,4 y 5 calculado por medio de la ecuación 2, y en el que A liquid refrigerant under pressure, in which the boiling temperature of the liquid refrigerating agent has a boiling temperature (TBW) resulting in an H value between 0.5 and 1.8 calculated by means of equation 1, and wherein the ratio of gross volume of the catalyst charge to surface of the heat exchange unit (VCAT / ACOOL) is adjusted to result in an L value of between 0.4 and 5 calculated by means of equation 2 , and in which E09714360 24-11-2011 E09714360 11-24-2011 Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); Ecuación 2: VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5); en las que: Equation 1: H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] +273 ) 2)) / (D * P * 9.87); Equation 2: VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); in which: M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); B es Y(CO)/Y(CO2); B is Y (CO) / Y (CO2); C = 1,0 si M es menor que 2,0; de otro modo C = Exp(-0,2*(M-2,0)); C = 1.0 if M is less than 2.0; otherwise C = Exp (-0.2 * (M-2.0)); D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); D = (0.072 * Ln (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp((P-13,2)/30,1); E = Exp ((P-13.2) / 30.1); K = 0,045 (constante geométrica); K = 0.045 (geometric constant); G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+-3); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + -3); DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m3])/3,14)0,33 con partículas de DEQ1 = (6 * (volume of a particle of the methanol synthesis catalyst [m3]) / 3.14) 0.33 with particles of catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; DEQ2 = ( !w(i)*(DEQ(i)3))0,33, en la que w(i) es la fracción ponderal de partículas de catalizador con un diámetro equivalente de DEQ(i)[m]; catalyst of the same size, and with catalyst particles of different size; DEQ2 = (! W (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of catalyst particles with an equivalent diameter of DEQ (i) [m]; y Y P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; LN es el logaritmo natural con la base numérica 2,71828; y Exp es el antilogaritmo natural o la función LN is the natural logarithm with the numerical base 2,71828; and Exp is the natural antilogarithm or function exponencial con base numérica 2,71828. exponential with numerical base 2,71828. 3. Un reactor para la producción de metanol, que comprende en una carcasa común un lecho de catalizador que contiene partículas de catalizador para la conversión de un gas de síntesis en metanol, comprendiendo el gas de síntesis hidrógeno, monóxido de carbono y dióxido de carbono, en una cantidad para proporcionar un valor de módulo de entrada M, y conteniendo una fracción de inertes A, medios para proporcionar una dirección del flujo del gas de síntesis perpendicular al eje de la carcasa del reactor, estando dispuesta una unidad de intercambio de calor dentro del lecho de catalizador, consistiendo la unidad de intercambio de calor en una pluralidad de tubos, tubos con aletas o una pluralidad de intercambiadores de calor de placas que están distribuidos uniformemente en el lecho de catalizador formando una superficie refrigerante, en el que la unidad de intercambio de calor se enfría mediante un agente refrigerante líquido a presión, que tiene una temperatura de ebullición (TBW) que da como resultado un valor H entre 0,5 y 1,8 calculado por medio de la ecuación 1, y en el que la relación de volumen bruto de las partículas de catalizador a superficie de la unidad de intercambio de calor (VCAT/ACOOL) se ajusta para dar como resultado un valor L de entre 0,4 y 15 calculado por medio de la ecuación 2, y en el que 3. A reactor for the production of methanol, comprising in a common housing a catalyst bed containing catalyst particles for the conversion of a synthesis gas into methanol, the hydrogen synthesis gas, carbon monoxide and carbon dioxide comprising , in an amount to provide an input module value M, and containing a fraction of inerts A, means to provide a direction of the flow of the synthesis gas perpendicular to the axis of the reactor housing, a heat exchange unit being arranged within the catalyst bed, the heat exchange unit consisting of a plurality of tubes, finned tubes or a plurality of plate heat exchangers that are uniformly distributed in the catalyst bed forming a cooling surface, in which the unit The heat exchanger is cooled by a liquid coolant under pressure, which has a boiling temperature tion (TBW) which results in an H value between 0.5 and 1.8 calculated by means of equation 1, and in which the ratio of gross volume of catalyst particles to surface of the heat exchange unit (VCAT / ACOOL) is adjusted to result in an L value between 0.4 and 15 calculated by means of equation 2, and in which Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); Equation 1: H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] +273 ) 2)) / (D * P * 9.87); Ecuación 2: Equation 2: VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5); VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); en las que: in which: M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); B = Y(CO)/Y(CO2); B = Y (CO) / Y (CO2); C = 1,0 si M es menor que 2,0; de otro modo C = Exp(-0,2*(M-2,0)); C = 1.0 if M is less than 2.0; otherwise C = Exp (-0.2 * (M-2.0)); E09714360 24-11-2011 E09714360 11-24-2011 D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); E = Exp((P-13,2)/30,1); K = 0,020 (constante geométrica); G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+3); DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m3])/3,14)0,33 con partículas de D = (0.072 * Ln (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp ((P-13.2) / 30.1); K = 0.020 (geometric constant); G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + 3); DEQ1 = (6 * (volume of a particle of the methanol synthesis catalyst [m3]) / 3.14) 0.33 with particles of catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; catalyst of the same size, and with catalyst particles of different size; DEQ2 = ( !w(i)*(DEQ(i)3))0,13, en la que w(i) es la fracción ponderal de partículas de catalizador con un DEQ2 = (! W (i) * (DEQ (i) 3)) 0.13, where w (i) is the weight fraction of catalyst particles with a diámetro equivalente de DEQ(i)[m]; y equivalent diameter of DEQ (i) [m]; Y P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor; Y (x) [molar fraction] is the concentration of each component at the reactor inlet; LN es el logaritmo natural con la base numérica 2,71828; y Exp es el antilogaritmo natural o la función LN is the natural logarithm with the numerical base 2,71828; and Exp is the natural antilogarithm or function exponencial con base numérica 2,71828. exponential with numerical base 2,71828.
4. Four.
Un reactor para la producción de metanol según cualquiera de las reivindicaciones anteriores, que comprende dentro de la carcasa común medios calefactores adaptados para mantener indirectamente la temperatura de las partículas de catalizador por encima del punto de rocío del metanol con un agente calefactor, teniendo el medio calefactor una superficie de manera que la relación de la superficie de los medios calefactores a los medios refrigerantes está entre 0,3 y 3,0. A reactor for the production of methanol according to any of the preceding claims, comprising within the common housing heating means adapted to indirectly maintain the temperature of the catalyst particles above the dew point of methanol with a heating agent, the medium having heater a surface so that the ratio of the surface of the heating means to the cooling means is between 0.3 and 3.0.
5.5.
Un método para producir metanol en un reactor según la reivindicación 1 ó 4, que comprende las etapas de convertir un gas de síntesis de metanol en un reactor que comprende en una carcasa común una pluralidad de tubos de catalizador con partículas de catalizador sedimentadas en el lado del tubo de los tubos de catalizador en una relación de volumen bruto de las partículas de catalizador sedimentadas a superficie de los tubos de catalizador (VCAT/ACOOL) que tiene un valor L de entre 0,4 y 5 según la ecuación 2, comprendiendo el gas de síntesis hidrógeno, monóxido de carbono y dióxido de carbono, cada uno en una cantidad para proporcionar un módulo de entrada con un valor M y conteniendo una fracción de inertes A, y haciendo reaccionar el gas de síntesis en presencia de un agente refrigerante líquido a presión que está en el lado de la carcasa de los tubos de catalizador, en el que el agente refrigerante líquido se ajusta a una temperatura de ebullición (TBW) que da como resultado un valor H entre 0,5 y 1,8 según la ecuación 1, y en el que  A method for producing methanol in a reactor according to claim 1 or 4, comprising the steps of converting a methanol synthesis gas into a reactor comprising in a common housing a plurality of catalyst tubes with catalyst particles settling on the side of the tube of the catalyst tubes in a gross volume ratio of the catalyst particles sedimented to the surface of the catalyst tubes (VCAT / ACOOL) having an L value of between 0.4 and 5 according to equation 2, comprising the hydrogen synthesis gas, carbon monoxide and carbon dioxide, each in an amount to provide an input module with an M value and containing a fraction of inert A, and reacting the synthesis gas in the presence of a liquid cooling agent under pressure on the side of the casing of the catalyst tubes, in which the liquid cooling agent is adjusted to a boiling temperature (TBW) that d a as a result an H value between 0.5 and 1.8 according to equation 1, and in which
Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); Ecuación 2: VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5); en las que: Equation 1: H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] +273 ) 2)) / (D * P * 9.87); Equation 2: VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); in which: M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); B = Y(CO)/Y(CO2); B = Y (CO) / Y (CO2); C = 1,0 si M es menor que 2,0; de otro modo C = Exp(-0,2*(M-2,0)); C = 1.0 if M is less than 2.0; otherwise C = Exp (-0.2 * (M-2.0)); D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); D = (0.072 * Ln (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp((P-13,2)/30,1); E = Exp ((P-13.2) / 30.1); K = 0,027 (constante geométrica); K = 0.027 (geometric constant); G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+3); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + 3); DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m3])/3,14)0,33 con partículas de DEQ1 = (6 * (volume of a particle of the methanol synthesis catalyst [m3]) / 3.14) 0.33 with particles of catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; catalyst of the same size, and with catalyst particles of different size; DEQ2 = ( !w(i)*(DEQ(i)3))0,33, en la que w(i) es la fracción ponderal de partículas de catalizador con un diámetro equivalente de DEQ(i)[m]; y P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; DEQ2 = (! W (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of catalyst particles with an equivalent diameter of DEQ (i) [m]; and P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; 5 MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor; LN es el logaritmo natural con la base numérica 2,71828; 5 MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; Y (x) [molar fraction] is the concentration of each component at the reactor inlet; LN is the natural logarithm with the numerical base 2,71828; y Exp es el antilogaritmo natural o la función exponencial con base numérica 2,71828. Y Exp is the natural antilogarithm or exponential function with numerical base 2,71828. 10 6. Un método para producir metanol en un reactor según la reivindicación 2 ó 4, que comprende la etapa de convertir un gas de síntesis de metanol en un reactor que comprende en una carcasa común un lecho catalítico que sostiene una carga de catalizador para la conversión de un gas de síntesis en metanol y una unidad de intercambio de calor dentro de la carga de catalítica, consistiendo la unidad de intercambio de calor en una pluralidad de tubos o tubos con aletas o una pluralidad de intercambiadores de calor de placas que están distribuidos uniformemente en la carga A method for producing methanol in a reactor according to claim 2 or 4, comprising the step of converting a methanol synthesis gas into a reactor comprising in a common housing a catalytic bed that holds a catalyst charge for the conversion of a synthesis gas into methanol and a heat exchange unit within the catalytic charge, the heat exchange unit consisting of a plurality of finned tubes or tubes or a plurality of plate heat exchangers that are distributed evenly in the load 15 de catalizador y que forman una superficie refrigerante, enfriándose la unidad de intercambio de calor mediante un agente refrigerante líquido a presión, comprendiendo el gas de síntesis hidrógeno, monóxido de carbono y dióxido de carbono, cada uno en una cantidad para proporcionar un valor de módulo de entrada M y conteniendo una fracción de inertes A, en el que la temperatura de ebullición del agente refrigerante líquido se ajusta a una temperatura (TBW) que da como resultado un valor H de entre 0,5 y 1,8 calculado por medio de la ecuación 1, y en 15 of catalyst and forming a cooling surface, the heat exchange unit being cooled by a liquid pressure cooling agent, comprising the hydrogen synthesis gas, carbon monoxide and carbon dioxide, each in an amount to provide a value of input module M and containing a fraction of inerts A, in which the boiling temperature of the liquid cooling agent is adjusted to a temperature (TBW) resulting in an H value of between 0.5 and 1.8 calculated by means from equation 1, and in 20 el que la relación de volumen bruto de la carga de catalizador a superficie de la unidad de intercambio de calor (VCAT/ACOOL) se ajusta para dar como resultado un valor L de entre 0,4 y 5 calculado por medio de la ecuación 2, y en el que 20 that the ratio of gross volume of the catalyst charge to surface of the heat exchange unit (VCAT / ACOOL) is adjusted to result in an L value of between 0.4 and 5 calculated by means of equation 2 , and in which Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); Ecuación 2: VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5); Equation 1: H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] +273 ) 2)) / (D * P * 9.87); Equation 2: VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); 25 en las que: M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); B es Y(CO)/Y(CO2); C = 1,0 si M es menor que 2,0; de otro modo C = Exp(-0,2*(M-2,0)); In which: M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); B is Y (CO) / Y (CO2); C = 1.0 if M is less than 2.0; otherwise C = Exp (-0.2 * (M-2.0)); 30 D = (0,072*Ln(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); E = Exp((P-13,2)/30,1); K = 0,045 (constante geométrica); G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+3); 30 D = (0.072 * Ln (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp ((P-13.2) / 30.1); K = 0.045 (geometric constant); G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + 3); 35 DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m3])/3,14)0,33 con partículas de 35 DEQ1 = (6 * (volume of a particle of the methanol synthesis catalyst [m3]) / 3.14) 0.33 with particles of catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; DEQ2 = ( !w(i)*(DEQ(i)3))0,33, en la que w(i) es la fracción ponderal de partículas de catalizador con un diámetro equivalente de DEQ(i)[m]; y catalyst of the same size, and with catalyst particles of different size; DEQ2 = (! W (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of catalyst particles with an equivalent diameter of DEQ (i) [m]; Y P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; 40 MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor; LN es el logaritmo natural con la base numérica 2,71828; y 40 MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; Y (x) [molar fraction] is the concentration of each component at the reactor inlet; LN is the natural logarithm with the numerical base 2,71828; Y E09714360 24-11-2011 E09714360 11-24-2011 Exp es el antilogaritmo natural o la función exponencial con base numérica 2,71828. Exp is the natural antilogarithm or exponential function with numerical base 2,71828.
7. Un método para producir metanol en un reactor según la reivindicación 3 ó 4, que comprende la etapa de convertir un gas de síntesis de metanol en un reactor que comprende en una carcasa común un lecho de catalizador que contiene partículas de catalizador para la conversión de un gas de síntesis en metanol, estando dispuesta una unidad de intercambio de calor dentro del lecho de catalizador, consistiendo la unidad de intercambio de calor en una pluralidad de tubos, tubos con aletas o una pluralidad de intercambiadores de calor de placas que están distribuidos uniformemente en el lecho de catalizador formando una superficie refrigerante, hacer pasar el gas de síntesis en una dirección del flujo a través del lecho de catalizador que es perpendicular al eje de la carcasa del reactor, comprendiendo el gas de síntesis hidrógeno, monóxido de carbono y dióxido de carbono, en una cantidad para proporcionar un valor de módulo de entrada M y conteniendo una fracción de inertes A, en el que la unidad de intercambio de calor se enfría mediante un agente refrigerante líquido a presión, que tiene una temperatura de ebullición (TBW) que da como resultado un valor H entre 0,5 y 1,8 calculado por medio de la ecuación 1, y en el que la relación de volumen bruto de las partículas de catalizador a superficie de la unidad de intercambio de calor (VCAT/ACOOL) se ajusta para dar como resultado un valor L de entre 0,4 y 15 calculado por medio de la ecuación 2, y en el que 7. A method for producing methanol in a reactor according to claim 3 or 4, comprising the step of converting a methanol synthesis gas into a reactor comprising in a common housing a catalyst bed containing catalyst particles for conversion of a methanol synthesis gas, a heat exchange unit being disposed within the catalyst bed, the heat exchange unit consisting of a plurality of tubes, finned tubes or a plurality of plate heat exchangers that are distributed evenly in the catalyst bed forming a cooling surface, pass the synthesis gas in a direction of flow through the catalyst bed that is perpendicular to the axis of the reactor housing, the hydrogen synthesis gas, carbon monoxide and carbon dioxide, in an amount to provide an input module value M and containing an inert fraction is A, in which the heat exchange unit is cooled by a liquid pressure refrigerant, which has a boiling temperature (TBW) which results in an H value between 0.5 and 1.8 calculated by means of Equation 1, and in which the ratio of gross volume of catalyst particles to surface of the heat exchange unit (VCAT / ACOOL) is adjusted to result in an L value of between 0.4 and 15 calculated by middle of equation 2, and in which Ecuación 1: H = E*Exp(-3978/(TBW[ºC]+273)+12,3)*(1+3978*E*(220-TBW[ºC])/((TBW[ºC]+273)2))/(D*P*9,87); Ecuación 2: VCAT/ACOOL [m3/m2] = K*L*((G*DEQ[m]*(220-TBW))0,5); en las que: Equation 1: H = E * Exp (-3978 / (TBW [ºC] +273) +12.3) * (1 + 3978 * E * (220-TBW [ºC]) / ((TBW [ºC] +273 ) 2)) / (D * P * 9.87); Equation 2: VCAT / ACOOL [m3 / m2] = K * L * ((G * DEQ [m] * (220-TBW)) 0.5); in which: M = (Y(H2)-Y(CO2))/(Y(CO)+Y(CO2)); M = (Y (H2) -Y (CO2)) / (Y (CO) + Y (CO2)); A = 1,0-Y(CO)-Y(H2)-Y(CO2)-Y(CH3OH)-Y(H2O); A = 1,0-Y (CO) -Y (H2) -Y (CO2) -Y (CH3OH) -Y (H2O); B = Y(CO)/Y(CO2); B = Y (CO) / Y (CO2); C = 1,0 si M es menor que 2,0; de otro modo C = Exp(-0,2*(M-2,0)); C = 1.0 if M is less than 2.0; otherwise C = Exp (-0.2 * (M-2.0)); D = (0,072*LN(B)+0,244)*C*(1,125-2,5*A)*(0,478+P/25,2); D = (0.072 * LN (B) +0.244) * C * (1,125-2.5 * A) * (0.478 + P / 25.2); E = Exp((P-13,2)/30,1); E = Exp ((P-13.2) / 30.1); K = 0,02 (constante geométrica); K = 0.02 (geometric constant); G = (MW-Y(CH3OH)*32-15,5*J)/(1-D)*29*J); G = (MW-Y (CH3OH) * 32-15.5 * J) / (1-D) * 29 * J); J = (Y(CO)+Y(CO2)) si M es mayor que 2,0, de otro modo J = Y(H2)*(B+1)/(2*B+3); J = (Y (CO) + Y (CO2)) if M is greater than 2.0, otherwise J = Y (H2) * (B + 1) / (2 * B + 3); DEQ1 = (6*(volumen de una partícula del catalizador de la síntesis de metanol [m3])/3,14)0,33 con partículas de DEQ1 = (6 * (volume of a particle of the methanol synthesis catalyst [m3]) / 3.14) 0.33 with particles of catalizador del mismo tamaño, y con partículas de catalizador de diferente tamaño; catalyst of the same size, and with catalyst particles of different size; DEQ2 = ( !w(i)*(DEQ(i)3))0,33, en la que w(i) es la fracción ponderal de partículas de catalizador con un DEQ2 = (! W (i) * (DEQ (i) 3)) 0.33, where w (i) is the weight fraction of catalyst particles with a diámetro equivalente de DEQ(i)[m]; y equivalent diameter of DEQ (i) [m]; Y P [MPa] es la presión absoluta del gas de síntesis en la entrada del reactor; P [MPa] is the absolute pressure of the synthesis gas at the reactor inlet; MW [kg/kmol] es el peso molecular medio del gas de síntesis en la entrada del reactor; MW [kg / kmol] is the average molecular weight of the synthesis gas at the reactor inlet; Y(x) [fracción molar] es la concentración de cada componente en la entrada del reactor; Y (x) [molar fraction] is the concentration of each component at the reactor inlet; LN es el logaritmo natural con la base numérica 2,71828; y Exp es el antilogaritmo natural o la función LN is the natural logarithm with the numerical base 2,71828; and Exp is the natural antilogarithm or function exponencial con base numérica 2,71828. exponential with numerical base 2,71828.
ES09714360T 2008-02-25 2009-02-12 REACTOR FOR THE PREPARATION OF METHANOL. Active ES2372670T3 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DKPA200800260 2008-02-25
DK200800261 2008-02-25
DKPA200800261 2008-02-25
DK200800260 2008-02-25

Publications (1)

Publication Number Publication Date
ES2372670T3 true ES2372670T3 (en) 2012-01-25

Family

ID=40586790

Family Applications (3)

Application Number Title Priority Date Filing Date
ES09715912T Active ES2368027T3 (en) 2008-02-25 2009-02-12 METHOD AND REACTOR FOR THE PREPARATION OF METHANOL.
ES09714360T Active ES2372670T3 (en) 2008-02-25 2009-02-12 REACTOR FOR THE PREPARATION OF METHANOL.
ES11005512T Active ES2409714T3 (en) 2008-02-25 2009-02-12 Method and reactor for the preparation of methanol

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES09715912T Active ES2368027T3 (en) 2008-02-25 2009-02-12 METHOD AND REACTOR FOR THE PREPARATION OF METHANOL.

Family Applications After (1)

Application Number Title Priority Date Filing Date
ES11005512T Active ES2409714T3 (en) 2008-02-25 2009-02-12 Method and reactor for the preparation of methanol

Country Status (17)

Country Link
US (3) US8202915B2 (en)
EP (3) EP2257366B1 (en)
JP (2) JP2011515334A (en)
KR (2) KR20100122898A (en)
CN (2) CN101959585B (en)
AT (2) ATE516876T1 (en)
AU (2) AU2009218828B2 (en)
BR (2) BRPI0906447B1 (en)
CA (2) CA2730916C (en)
EA (2) EA019311B1 (en)
ES (3) ES2368027T3 (en)
MX (2) MX2010007376A (en)
NZ (2) NZ587453A (en)
PL (3) PL2249958T3 (en)
RU (1) RU2481151C2 (en)
WO (2) WO2009106231A1 (en)
ZA (2) ZA201004473B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504967B1 (en) * 2010-05-20 2015-03-23 할도르 토프쉐 에이/에스 Method and apparatus for the separation of a liquid from a gas feed stream in a catalytic reactor
MX2012014703A (en) 2010-06-24 2013-01-22 Topsoe Haldor As Co-production of methanol and ammonia.
US20130153188A1 (en) * 2011-12-16 2013-06-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Advanced smr reactor design featuring high thermal efficiency
EP3034161A1 (en) 2014-12-18 2016-06-22 Haldor Topsøe A/S Method and reactor design for the production of methanol
DE102015202680A1 (en) 2015-02-13 2016-08-18 Friedrich-Alexander-Universität Erlangen-Nürnberg Process for carrying out a chemical synthesis and synthesis reactor
US10589243B2 (en) * 2015-07-15 2020-03-17 Haldor Topsoe A/S Catalytic reactor
WO2017019961A1 (en) * 2015-07-29 2017-02-02 Primus Green Energy Inc. Two-stage reactor for exothermal and reversible reactions and methods thereof
US10676416B2 (en) 2016-01-07 2020-06-09 Total Raffinage Chimie Process for methanol synthesis using an indium oxide based catalyst
US10668450B2 (en) 2016-01-07 2020-06-02 Total Raffinage Chimie Supported indium oxide catalyst and process for methanol synthesis using the same
CN105797653A (en) * 2016-03-19 2016-07-27 江苏怡达化学股份有限公司 Green synthetic reaction device and technology for preparing epoxypropane through direct oxidation method
DE102016204718A1 (en) 2016-03-22 2017-09-28 Siemens Aktiengesellschaft reactor
DE102016204717A1 (en) 2016-03-22 2017-09-28 Siemens Aktiengesellschaft Reactor for carrying out equilibrium-limited reactions
BR112018069902B1 (en) * 2016-03-30 2021-09-21 Haldor Tops0E A/S METHANOL SYNTHESIS PROCESS CONFIGURATION FOR LARGE PRODUCTION CAPACITY
EP3401300B1 (en) * 2017-05-12 2021-06-23 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Method for the production of methanol
WO2018210827A1 (en) 2017-05-17 2018-11-22 Total Research & Technology Feluy Mto-ocp upgrading process to maximize the selectivity to propylene
EP3404005A1 (en) 2017-05-17 2018-11-21 Total Research & Technology Feluy Process for ethylene oligomerisation from diluted stream
WO2018210826A1 (en) 2017-05-17 2018-11-22 Total Research & Technology Feluy Process for ethylene aromatisation from diluted stream
AR113649A1 (en) 2017-12-20 2020-05-27 Haldor Topsoe As COOLED AXIAL FLOW CONVERTER
EP3593900A1 (en) 2018-07-10 2020-01-15 Total Raffinage Chimie Copper-iron-based catalytic composition for the conversion of syngas to higher alcohols and process using such catalyst composition
EP3599075A1 (en) 2018-07-27 2020-01-29 Siemens Aktiengesellschaft Reactor for carrying out a chemical equilibrium reaction
US11865519B2 (en) 2018-09-06 2024-01-09 Total Se Noble metal-promoted IN2O3 catalyst for the hydrogenation of CO2 to methanol
WO2020157057A1 (en) 2019-02-01 2020-08-06 Total S.A. Copper-iron-based catalytic composition comprising zeolites, method for producing such catalytic composition and process using such catalytic composition for the conversion of syngas to higher alcohols
EP3917903A1 (en) 2019-02-01 2021-12-08 Total Se Process using catalytic composition for the conversion of syngas to higher alcohols
CN114514068B (en) * 2019-08-27 2024-04-09 沙特基础工业全球技术公司 Mass transfer cyclone comprising a distribution member
WO2021052978A1 (en) * 2019-09-20 2021-03-25 Sabic Global Technologies B.V. Reactor tube assembly
EP4043424A4 (en) * 2019-09-27 2023-11-15 Sumitomo Chemical Company, Limited Chemical reaction method and chemical reaction device
JP2021154230A (en) * 2020-03-27 2021-10-07 三菱パワー株式会社 Apparatus and method for obtaining gaseous product
EP4234521A3 (en) * 2020-08-31 2023-09-27 Sumitomo Chemical Company, Limited Chemical reaction method, chemical reaction apparatus and production method
US12049438B2 (en) 2020-11-17 2024-07-30 Totalenergies Onetech Process for methanol synthesis from CO2-rich syngas
ES2914350B2 (en) * 2020-12-09 2023-01-30 Blueplasma Power S L DEVICE AND PROCESS TO PRODUCE DIMETHYL CARBONATE
CN114148553B (en) * 2021-11-12 2024-06-25 中国运载火箭技术研究院 Weightless fluid distribution form construction system and control system

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1894768A (en) * 1929-04-03 1933-01-17 Chemical Construction Corp Catalytic apparatus
US2028326A (en) * 1931-01-23 1936-01-21 Standard Oil Dev Co Apparatus for the production of hydrogen
US2185928A (en) * 1937-09-01 1940-01-02 Socony Vacuum Oil Co Inc Apparatus for catalytic conversions and other contact mass operations
US2521538A (en) * 1945-06-20 1950-09-05 Texaco Development Corp Process for synthesis of hydrocarbons and the like
US3174084A (en) * 1962-12-28 1965-03-16 Gen Electric Electron beam delection system
US3518055A (en) * 1968-03-06 1970-06-30 Japan Gasoline Hydrocarbon reforming process
DE2153437B2 (en) * 1971-10-27 1974-11-21 Metallgesellschaft Ag, 6000 Frankfurt Reactor for the production of methanol
US3970435A (en) * 1975-03-27 1976-07-20 Midland-Ross Corporation Apparatus and method for methanation
GB1565824A (en) * 1976-11-15 1980-04-23 Ici Ltd Exothermic process and apparatus therefor
US4134908A (en) * 1977-04-28 1979-01-16 Foster Wheeler Energy Corporation Methanation process
EP0027329B1 (en) * 1979-10-15 1983-03-02 Imperial Chemical Industries Plc Catalytic process and apparatus therefor
DE3266054D1 (en) * 1981-11-19 1985-10-10 Ici Plc Synthesis process and reactor
AU4695985A (en) * 1984-09-04 1986-03-13 Mitsubishi Jukogyo Kabushiki Kaisha Process for reforming methanol
DE3605792A1 (en) * 1985-09-27 1987-04-02 Gutehoffnungshuette Man STANDING REACTOR FOR CATALYTIC EXOTHERM AND ENDOTHERM REACTIONS, ESPECIALLY FOR THE PRODUCTION OF METHANOL, AMMONIA, SYNTHESIS GAS AND HIGHER ALCOHOLS
GB8524025D0 (en) 1985-09-30 1985-11-06 Shell Int Research Chemical equilibrium reaction
JPS62106834A (en) * 1985-11-01 1987-05-18 Hitachi Ltd Reaction tube of reformer
DK167242B1 (en) * 1989-02-16 1993-09-27 Topsoe Haldor As APPARATUS AND PROCEDURE FOR EXOTHERMAL REACTIONS
DE3913387A1 (en) * 1989-04-24 1990-10-25 Henkel Kgaa METHOD FOR THE CATALYTIC HYDRATION OF LIQUID FATTY ACID METHYL ESTERS
DK163578C (en) * 1990-03-19 1992-08-03 Haldor Topsoe As METHOD OF PREPARING METHANOL
US5262443A (en) 1990-03-19 1993-11-16 Haldor Topsoe A/S Method of preparing methanol
US5861353A (en) * 1992-10-06 1999-01-19 Montecatini Tecnologie S.R.L. Catalyst in granular form for 1,2-dichloroethane synthesis
EP0767000B1 (en) * 1993-07-05 2001-10-10 Packinox Catalytic process and apparatus for controlling reaction temperatures
DE69610134T2 (en) * 1995-04-10 2001-01-11 Air Products And Chemicals, Inc. Method of operating equilibrium controlled reactions
EP0914200A1 (en) * 1996-07-25 1999-05-12 Syntroleum Corporation Fixed-bed, catalytic reactor and method for manufacturing same
JP3559456B2 (en) * 1998-09-18 2004-09-02 株式会社日本触媒 Catalytic gas phase oxidation method and multitubular reactor
EP1008577B2 (en) * 1998-12-07 2006-01-25 Mitsubishi Heavy Industries, Ltd. Method of manufacturing methanol
JP4427131B2 (en) * 1999-06-28 2010-03-03 三菱重工業株式会社 Methanol synthesis catalyst equipment
DE60035746T2 (en) * 1999-08-31 2008-04-30 Nippon Shokubai Co., Ltd. Reactor for catalytic gas phase oxidation
WO2002026370A1 (en) * 2000-09-26 2002-04-04 Shell Internationale Research Maatschappij B.V. Rod-shaped inserts in reactor tubes
US20030068260A1 (en) * 2001-03-05 2003-04-10 Wellington Scott Lee Integrated flameless distributed combustion/membrane steam reforming reactor and zero emissions hybrid power system
GB0116894D0 (en) * 2001-07-11 2001-09-05 Accentus Plc Catalytic reactor
KR100440479B1 (en) * 2002-04-23 2004-07-14 주식회사 엘지화학 Hydrocarbon pyrolysis process
GB0301323D0 (en) * 2003-01-21 2003-02-19 Johnson Matthey Plc Methanol synthesis
US7161044B2 (en) * 2003-10-22 2007-01-09 Nippon Shokubai Co., Ltd. Catalytic gas phase oxidation reaction
JP4487103B2 (en) * 2004-04-13 2010-06-23 財団法人北九州産業学術推進機構 Highly efficient synthesis method of methanol and apparatus therefor
EP1600208A1 (en) * 2004-05-24 2005-11-30 Methanol Casale S.A. Plate-type heat-exchanger
JP4967517B2 (en) * 2006-08-10 2012-07-04 株式会社Ihi Methanol synthesis method

Also Published As

Publication number Publication date
MX2010008947A (en) 2010-09-07
WO2009106231A1 (en) 2009-09-03
RU2010139275A (en) 2012-04-10
JP2011515334A (en) 2011-05-19
US8513314B2 (en) 2013-08-20
CN101959585B (en) 2013-10-30
US20120269697A1 (en) 2012-10-25
ZA201004473B (en) 2011-09-28
CA2730916C (en) 2014-12-09
CN101959585A (en) 2011-01-26
ATE521407T1 (en) 2011-09-15
ES2368027T3 (en) 2011-11-11
AU2009218828B2 (en) 2013-01-17
RU2481151C2 (en) 2013-05-10
EP2257366A1 (en) 2010-12-08
US8557192B2 (en) 2013-10-15
ATE516876T1 (en) 2011-08-15
BRPI0906447A2 (en) 2021-02-23
ZA201005343B (en) 2011-10-26
KR20100138884A (en) 2010-12-31
KR20100122898A (en) 2010-11-23
EA201001350A1 (en) 2011-04-29
AU2009218827A1 (en) 2009-09-03
BRPI0906447B1 (en) 2022-03-03
PL2249958T3 (en) 2012-01-31
EA201001351A1 (en) 2011-04-29
EP2249958A1 (en) 2010-11-17
EA019311B1 (en) 2014-02-28
EP2374533B1 (en) 2013-04-03
ES2409714T3 (en) 2013-06-27
JP2011515333A (en) 2011-05-19
NZ587453A (en) 2011-10-28
CA2713874C (en) 2013-12-17
EP2374533A1 (en) 2011-10-12
PL2257366T3 (en) 2011-12-30
US20100312021A1 (en) 2010-12-09
CA2730916A1 (en) 2009-09-03
CA2713874A1 (en) 2009-09-03
CN101959586A (en) 2011-01-26
NZ586789A (en) 2011-10-28
WO2009106232A1 (en) 2009-09-03
MX2010007376A (en) 2010-08-11
EP2374533B8 (en) 2013-08-28
BRPI0907815B1 (en) 2021-04-06
AU2009218828A1 (en) 2009-09-03
BRPI0907815A2 (en) 2020-08-18
PL2374533T3 (en) 2013-09-30
US20100305222A1 (en) 2010-12-02
CN101959586B (en) 2013-12-11
EP2249958B1 (en) 2011-08-24
EP2257366B1 (en) 2011-07-20
AU2009218827B2 (en) 2014-03-27
US8202915B2 (en) 2012-06-19

Similar Documents

Publication Publication Date Title
ES2372670T3 (en) REACTOR FOR THE PREPARATION OF METHANOL.
JP2011515333A5 (en)
EP1839735B1 (en) A transverse tubular heat exchange reactor and a process for catalytic synthesis therein
JPH0376976B2 (en)
CN112204120B (en) Method for carrying out catalytic gas phase reactions, tube bundle reactor and reactor system
JPS60106527A (en) Double pipe reactor for exothermic reaction
CN208599695U (en) Horizontal shell and tube reactor
CN201288156Y (en) Novel two-stage inner-heat exchange dimethyl ether reactor
JPS6234585Y2 (en)
GB2161596A (en) Reactor for exothermic gas reactions
JPS60241926A (en) Exothermal catalytic reactor