ES2372071B1 - Procedure to alter the pattern of development and increase the growth of plants. - Google Patents
Procedure to alter the pattern of development and increase the growth of plants. Download PDFInfo
- Publication number
- ES2372071B1 ES2372071B1 ES201000499A ES201000499A ES2372071B1 ES 2372071 B1 ES2372071 B1 ES 2372071B1 ES 201000499 A ES201000499 A ES 201000499A ES 201000499 A ES201000499 A ES 201000499A ES 2372071 B1 ES2372071 B1 ES 2372071B1
- Authority
- ES
- Spain
- Prior art keywords
- plant
- plants
- starch
- microorganism
- grown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 238000011161 development Methods 0.000 title claims abstract description 16
- 230000008635 plant growth Effects 0.000 title abstract description 24
- 244000005700 microbiome Species 0.000 claims abstract description 107
- 230000012010 growth Effects 0.000 claims abstract description 58
- 241000894006 Bacteria Species 0.000 claims abstract description 48
- 230000001965 increasing effect Effects 0.000 claims abstract description 23
- 241000233866 Fungi Species 0.000 claims abstract description 16
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 11
- 239000012298 atmosphere Substances 0.000 claims abstract description 6
- 241000196324 Embryophyta Species 0.000 claims description 286
- 244000061456 Solanum tuberosum Species 0.000 claims description 80
- 108090000623 proteins and genes Proteins 0.000 claims description 70
- 150000001413 amino acids Chemical class 0.000 claims description 29
- 102000004169 proteins and genes Human genes 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 19
- 244000061176 Nicotiana tabacum Species 0.000 claims description 18
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 17
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 16
- 241000219195 Arabidopsis thaliana Species 0.000 claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 241000228143 Penicillium Species 0.000 claims description 10
- 241001104865 Bacillus subtilis GB03 Species 0.000 claims description 9
- 230000004075 alteration Effects 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 150000002894 organic compounds Chemical class 0.000 claims description 9
- 241000223600 Alternaria Species 0.000 claims description 8
- 241001057636 Dracaena deremensis Species 0.000 claims description 6
- 241000218922 Magnoliophyta Species 0.000 claims description 6
- 241000179039 Paenibacillus Species 0.000 claims description 6
- 241000589516 Pseudomonas Species 0.000 claims description 6
- 241000193744 Bacillus amyloliquefaciens Species 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 3
- 241000589158 Agrobacterium Species 0.000 claims description 2
- 241000588722 Escherichia Species 0.000 claims description 2
- 241000607142 Salmonella Species 0.000 claims description 2
- 241000209510 Liliopsida Species 0.000 claims 1
- 235000013399 edible fruits Nutrition 0.000 claims 1
- 241001233957 eudicotyledons Species 0.000 claims 1
- 230000003442 weekly effect Effects 0.000 claims 1
- 239000003039 volatile agent Substances 0.000 abstract description 94
- 239000002028 Biomass Substances 0.000 abstract description 8
- 229920002472 Starch Polymers 0.000 description 226
- 235000019698 starch Nutrition 0.000 description 224
- 239000008107 starch Substances 0.000 description 224
- 230000000694 effects Effects 0.000 description 97
- 229930006000 Sucrose Natural products 0.000 description 88
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 88
- 239000005720 sucrose Substances 0.000 description 88
- 238000009825 accumulation Methods 0.000 description 61
- 235000002595 Solanum tuberosum Nutrition 0.000 description 57
- 230000015572 biosynthetic process Effects 0.000 description 56
- 241000219194 Arabidopsis Species 0.000 description 53
- 241000223602 Alternaria alternata Species 0.000 description 51
- 239000007787 solid Substances 0.000 description 46
- 239000002609 medium Substances 0.000 description 44
- 230000014509 gene expression Effects 0.000 description 43
- 102000004190 Enzymes Human genes 0.000 description 41
- 108090000790 Enzymes Proteins 0.000 description 41
- 229940088598 enzyme Drugs 0.000 description 41
- 108010043934 Sucrose synthase Proteins 0.000 description 38
- 230000002538 fungal effect Effects 0.000 description 37
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 34
- 239000006870 ms-medium Substances 0.000 description 32
- 230000009467 reduction Effects 0.000 description 32
- 210000004027 cell Anatomy 0.000 description 29
- 230000000813 microbial effect Effects 0.000 description 29
- 235000001014 amino acid Nutrition 0.000 description 28
- 230000001105 regulatory effect Effects 0.000 description 28
- 230000004060 metabolic process Effects 0.000 description 26
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 25
- 210000003763 chloroplast Anatomy 0.000 description 25
- 239000008103 glucose Substances 0.000 description 25
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 24
- 238000004458 analytical method Methods 0.000 description 23
- VFRROHXSMXFLSN-UHFFFAOYSA-N Glc6P Natural products OP(=O)(O)OCC(O)C(O)C(O)C(O)C=O VFRROHXSMXFLSN-UHFFFAOYSA-N 0.000 description 22
- 235000018102 proteins Nutrition 0.000 description 22
- 239000008187 granular material Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 21
- 229920000945 Amylopectin Polymers 0.000 description 18
- 108010039811 Starch synthase Proteins 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 230000007423 decrease Effects 0.000 description 17
- 229920002527 Glycogen Polymers 0.000 description 16
- 230000033228 biological regulation Effects 0.000 description 16
- 229940096919 glycogen Drugs 0.000 description 16
- 238000003786 synthesis reaction Methods 0.000 description 16
- 241000589615 Pseudomonas syringae Species 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 235000000346 sugar Nutrition 0.000 description 15
- 229920000856 Amylose Polymers 0.000 description 14
- 230000015556 catabolic process Effects 0.000 description 14
- 238000006731 degradation reaction Methods 0.000 description 13
- 239000001963 growth medium Substances 0.000 description 13
- 238000003757 reverse transcription PCR Methods 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- HSCJRCZFDFQWRP-JZMIEXBBSA-N UDP-alpha-D-glucose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-JZMIEXBBSA-N 0.000 description 12
- 240000008042 Zea mays Species 0.000 description 12
- 235000018417 cysteine Nutrition 0.000 description 12
- 210000000172 cytosol Anatomy 0.000 description 12
- 230000018109 developmental process Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 230000008092 positive effect Effects 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000009261 transgenic effect Effects 0.000 description 12
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 11
- 241000588724 Escherichia coli Species 0.000 description 11
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 11
- 235000011073 invertase Nutrition 0.000 description 11
- 108700019146 Transgenes Proteins 0.000 description 10
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 10
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 10
- 230000001086 cytosolic effect Effects 0.000 description 10
- 230000002255 enzymatic effect Effects 0.000 description 10
- 229910052740 iodine Inorganic materials 0.000 description 10
- 239000011630 iodine Substances 0.000 description 10
- 244000052769 pathogen Species 0.000 description 10
- 230000029553 photosynthesis Effects 0.000 description 10
- 238000010672 photosynthesis Methods 0.000 description 10
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 9
- 101000661812 Arabidopsis thaliana Probable starch synthase 4, chloroplastic/amyloplastic Proteins 0.000 description 9
- 108010078791 Carrier Proteins Proteins 0.000 description 9
- NBSCHQHZLSJFNQ-GASJEMHNSA-N D-Glucose 6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@H]1O NBSCHQHZLSJFNQ-GASJEMHNSA-N 0.000 description 9
- 241001138501 Salmonella enterica Species 0.000 description 9
- 230000001580 bacterial effect Effects 0.000 description 9
- 230000012202 endocytosis Effects 0.000 description 9
- -1 nucleoside diphosphate Chemical class 0.000 description 9
- 230000037361 pathway Effects 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 8
- 101710088194 Dehydrogenase Proteins 0.000 description 8
- 240000005979 Hordeum vulgare Species 0.000 description 8
- 235000007340 Hordeum vulgare Nutrition 0.000 description 8
- 241000589157 Rhizobiales Species 0.000 description 8
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 8
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 229910019142 PO4 Inorganic materials 0.000 description 7
- 102000009569 Phosphoglucomutase Human genes 0.000 description 7
- 108010009413 Pyrophosphatases Proteins 0.000 description 7
- 102000009609 Pyrophosphatases Human genes 0.000 description 7
- 230000007123 defense Effects 0.000 description 7
- 239000000284 extract Substances 0.000 description 7
- 230000000977 initiatory effect Effects 0.000 description 7
- 230000001404 mediated effect Effects 0.000 description 7
- 210000000056 organ Anatomy 0.000 description 7
- 108091000115 phosphomannomutase Proteins 0.000 description 7
- 150000008163 sugars Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 102000007469 Actins Human genes 0.000 description 6
- 108010085238 Actins Proteins 0.000 description 6
- 229920001817 Agar Polymers 0.000 description 6
- 108020005544 Antisense RNA Proteins 0.000 description 6
- 108010025915 Nitrite Reductases Proteins 0.000 description 6
- 101100043638 Solanum tuberosum SS3 gene Proteins 0.000 description 6
- 102000002933 Thioredoxin Human genes 0.000 description 6
- BUFLLCUFNHESEH-UHFFFAOYSA-N [5-(2-amino-6-oxo-3h-purin-9-yl)-4-hydroxy-2-[[hydroxy(phosphonooxy)phosphoryl]oxymethyl]oxolan-3-yl] phosphono hydrogen phosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(OP(O)(=O)OP(O)(O)=O)C1O BUFLLCUFNHESEH-UHFFFAOYSA-N 0.000 description 6
- 239000008272 agar Substances 0.000 description 6
- 230000023852 carbohydrate metabolic process Effects 0.000 description 6
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 6
- 239000003184 complementary RNA Substances 0.000 description 6
- 210000004292 cytoskeleton Anatomy 0.000 description 6
- 230000003828 downregulation Effects 0.000 description 6
- 239000003112 inhibitor Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000002207 metabolite Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000001717 pathogenic effect Effects 0.000 description 6
- 239000010452 phosphate Substances 0.000 description 6
- 108060008226 thioredoxin Proteins 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 5
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 description 5
- 101000889837 Aeropyrum pernix (strain ATCC 700893 / DSM 11879 / JCM 9820 / NBRC 100138 / K1) Protein CysO Proteins 0.000 description 5
- 244000063299 Bacillus subtilis Species 0.000 description 5
- 108010017464 Fructose-Bisphosphatase Proteins 0.000 description 5
- 102000027487 Fructose-Bisphosphatase Human genes 0.000 description 5
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 5
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 108010019077 beta-Amylase Proteins 0.000 description 5
- 235000005822 corn Nutrition 0.000 description 5
- 239000001177 diphosphate Substances 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000002708 enhancing effect Effects 0.000 description 5
- 230000035558 fertility Effects 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 235000009973 maize Nutrition 0.000 description 5
- 230000002503 metabolic effect Effects 0.000 description 5
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- DTBNBXWJWCWCIK-UHFFFAOYSA-K phosphonatoenolpyruvate Chemical compound [O-]C(=O)C(=C)OP([O-])([O-])=O DTBNBXWJWCWCIK-UHFFFAOYSA-K 0.000 description 5
- 210000002706 plastid Anatomy 0.000 description 5
- 230000001737 promoting effect Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 238000010186 staining Methods 0.000 description 5
- 238000011222 transcriptome analysis Methods 0.000 description 5
- 235000014469 Bacillus subtilis Nutrition 0.000 description 4
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 4
- 241001013691 Escherichia coli BW25113 Species 0.000 description 4
- 241001507683 Penicillium aurantiogriseum Species 0.000 description 4
- 241000985548 Penicillium charlesii Species 0.000 description 4
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 4
- 238000010240 RT-PCR analysis Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 210000002421 cell wall Anatomy 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 235000021186 dishes Nutrition 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- 230000004151 fermentation Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 229930029653 phosphoenolpyruvate Natural products 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 230000001523 saccharolytic effect Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 3
- 102100031126 6-phosphogluconolactonase Human genes 0.000 description 3
- 108010029731 6-phosphogluconolactonase Proteins 0.000 description 3
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 3
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 3
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 3
- 108010018962 Glucosephosphate Dehydrogenase Proteins 0.000 description 3
- 206010021033 Hypomenorrhoea Diseases 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 3
- 108091000080 Phosphotransferase Proteins 0.000 description 3
- 108010043943 Starch Phosphorylase Proteins 0.000 description 3
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 3
- INAPMGSXUVUWAF-GCVPSNMTSA-N [(2r,3s,5r,6r)-2,3,4,5,6-pentahydroxycyclohexyl] dihydrogen phosphate Chemical compound OC1[C@H](O)[C@@H](O)C(OP(O)(O)=O)[C@H](O)[C@@H]1O INAPMGSXUVUWAF-GCVPSNMTSA-N 0.000 description 3
- 230000036579 abiotic stress Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 3
- 230000001651 autotrophic effect Effects 0.000 description 3
- 230000000721 bacterilogical effect Effects 0.000 description 3
- BGWGXPAPYGQALX-ARQDHWQXSA-N beta-D-fructofuranose 6-phosphate Chemical compound OC[C@@]1(O)O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O BGWGXPAPYGQALX-ARQDHWQXSA-N 0.000 description 3
- 230000031018 biological processes and functions Effects 0.000 description 3
- 150000001720 carbohydrates Chemical class 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000002074 deregulated effect Effects 0.000 description 3
- 235000011180 diphosphates Nutrition 0.000 description 3
- 230000002121 endocytic effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000035784 germination Effects 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 230000034659 glycolysis Effects 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 238000009629 microbiological culture Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 150000003905 phosphatidylinositols Chemical class 0.000 description 3
- 150000003906 phosphoinositides Chemical class 0.000 description 3
- 102000020233 phosphotransferase Human genes 0.000 description 3
- 230000000243 photosynthetic effect Effects 0.000 description 3
- 244000000003 plant pathogen Species 0.000 description 3
- 235000010958 polyglycerol polyricinoleate Nutrition 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 230000001323 posttranslational effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 244000000000 soil microbiome Species 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000009469 supplementation Effects 0.000 description 3
- 229940094937 thioredoxin Drugs 0.000 description 3
- 108010020589 trehalose-6-phosphate synthase Proteins 0.000 description 3
- 230000004102 tricarboxylic acid cycle Effects 0.000 description 3
- JLIDBLDQVAYHNE-YKALOCIXSA-N (+)-Abscisic acid Chemical compound OC(=O)/C=C(/C)\C=C\[C@@]1(O)C(C)=CC(=O)CC1(C)C JLIDBLDQVAYHNE-YKALOCIXSA-N 0.000 description 2
- 102100040605 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase Human genes 0.000 description 2
- 108091092568 Alarmone Proteins 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 101000835846 Arabidopsis thaliana Sucrose nonfermenting 4-like protein Proteins 0.000 description 2
- GSXOAOHZAIYLCY-UHFFFAOYSA-N D-F6P Natural products OCC(=O)C(O)C(O)C(O)COP(O)(O)=O GSXOAOHZAIYLCY-UHFFFAOYSA-N 0.000 description 2
- 241000588697 Enterobacter cloacae Species 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 241001646716 Escherichia coli K-12 Species 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 108010068561 Fructose-Bisphosphate Aldolase Proteins 0.000 description 2
- 102000001390 Fructose-Bisphosphate Aldolase Human genes 0.000 description 2
- QGWNDRXFNXRZMB-UUOKFMHZSA-K GDP(3-) Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O QGWNDRXFNXRZMB-UUOKFMHZSA-K 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 108700023224 Glucose-1-phosphate adenylyltransferases Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000005548 Hexokinase Human genes 0.000 description 2
- 108700040460 Hexokinases Proteins 0.000 description 2
- 101000966793 Homo sapiens 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase Proteins 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 101100175610 Oryza sativa subsp. japonica AGPL3 gene Proteins 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- 108700006291 Sucrose-phosphate synthases Proteins 0.000 description 2
- 102000004523 Sulfate Adenylyltransferase Human genes 0.000 description 2
- 108010022348 Sulfate adenylyltransferase Proteins 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 241001489212 Tuber Species 0.000 description 2
- 235000007244 Zea mays Nutrition 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- HXXFSFRBOHSIMQ-VFUOTHLCSA-N alpha-D-glucose 1-phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(O)=O)[C@H](O)[C@@H](O)[C@@H]1O HXXFSFRBOHSIMQ-VFUOTHLCSA-N 0.000 description 2
- 101150071362 apl3 gene Proteins 0.000 description 2
- 210000003050 axon Anatomy 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- RNBGYGVWRKECFJ-ARQDHWQXSA-N beta-D-fructofuranose 1,6-bisphosphate Chemical compound O[C@H]1[C@H](O)[C@@](O)(COP(O)(O)=O)O[C@@H]1COP(O)(O)=O RNBGYGVWRKECFJ-ARQDHWQXSA-N 0.000 description 2
- 230000001851 biosynthetic effect Effects 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 230000000459 effect on growth Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000007824 enzymatic assay Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 230000002414 glycolytic effect Effects 0.000 description 2
- QGWNDRXFNXRZMB-UHFFFAOYSA-N guanidine diphosphate Natural products C1=2NC(N)=NC(=O)C=2N=CN1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O QGWNDRXFNXRZMB-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 230000037041 intracellular level Effects 0.000 description 2
- 239000001573 invertase Substances 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000008121 plant development Effects 0.000 description 2
- 230000037039 plant physiology Effects 0.000 description 2
- 230000004983 pleiotropic effect Effects 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000019525 primary metabolic process Effects 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000008672 reprogramming Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000008313 sensitization Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-L (R)-2-Hydroxy-3-(phosphonooxy)-propanal Natural products O=C[C@H](O)COP([O-])([O-])=O LXJXRIRHZLFYRP-VKHMYHEASA-L 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 108010070892 1,3-beta-glucan synthase Proteins 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- CLBXCDSXUXNOIM-UHFFFAOYSA-N 3-oxidanylbutan-2-one Chemical compound CC(O)C(C)=O.CC(O)C(C)=O CLBXCDSXUXNOIM-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- JSHPTIGHEWEXRW-UHFFFAOYSA-N 5-hydroxypentan-2-one Chemical compound CC(=O)CCCO JSHPTIGHEWEXRW-UHFFFAOYSA-N 0.000 description 1
- 101710166809 ADP-glucose phosphorylase Proteins 0.000 description 1
- WFPZSXYXPSUOPY-UHFFFAOYSA-N ADP-mannose Natural products C1=NC=2C(N)=NC=NC=2N1C(C(C1O)O)OC1COP(O)(=O)OP(O)(=O)OC1OC(CO)C(O)C(O)C1O WFPZSXYXPSUOPY-UHFFFAOYSA-N 0.000 description 1
- 101150014847 APL2 gene Proteins 0.000 description 1
- 240000004731 Acer pseudoplatanus Species 0.000 description 1
- 235000002754 Acer pseudoplatanus Nutrition 0.000 description 1
- 102000015693 Actin Depolymerizing Factors Human genes 0.000 description 1
- 108010038798 Actin Depolymerizing Factors Proteins 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 102100032534 Adenosine kinase Human genes 0.000 description 1
- 108020000543 Adenylate kinase Proteins 0.000 description 1
- 102000005369 Aldehyde Dehydrogenase Human genes 0.000 description 1
- 108020002663 Aldehyde Dehydrogenase Proteins 0.000 description 1
- 108050004944 Alpha-glucan phosphorylases Proteins 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 108700003863 Arabidopsis ENT1 Proteins 0.000 description 1
- 108700014620 Arabidopsis FUSED Proteins 0.000 description 1
- 101100325756 Arabidopsis thaliana BAM5 gene Proteins 0.000 description 1
- 101000798329 Arabidopsis thaliana Beta-amylase 3, chloroplastic Proteins 0.000 description 1
- 101000798333 Arabidopsis thaliana Beta-amylase 7 Proteins 0.000 description 1
- 101000870216 Arabidopsis thaliana Dicarboxylate transporter 2.1, chloroplastic Proteins 0.000 description 1
- 101000857374 Arabidopsis thaliana Glucose-1-phosphate adenylyltransferase large subunit 1, chloroplastic Proteins 0.000 description 1
- 101001036773 Arabidopsis thaliana Glucose-1-phosphate adenylyltransferase large subunit 2, chloroplastic Proteins 0.000 description 1
- 101001040606 Arabidopsis thaliana Glucose-1-phosphate adenylyltransferase large subunit 3, chloroplastic Proteins 0.000 description 1
- 101000997508 Arabidopsis thaliana Glucose-1-phosphate adenylyltransferase small subunit, chloroplastic Proteins 0.000 description 1
- 101001040610 Arabidopsis thaliana Probable glucose-1-phosphate adenylyltransferase large subunit, chloroplastic Proteins 0.000 description 1
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical compound [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 1
- 101150111510 BMY1 gene Proteins 0.000 description 1
- 241000194103 Bacillus pumilus Species 0.000 description 1
- 108020004513 Bacterial RNA Proteins 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 241000123650 Botrytis cinerea Species 0.000 description 1
- 241000589171 Bradyrhizobium sp. Species 0.000 description 1
- 235000011303 Brassica alboglabra Nutrition 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000011302 Brassica oleracea Nutrition 0.000 description 1
- 108010066050 CDP-diacylglycerol-inositol 3-phosphatidyltransferase Proteins 0.000 description 1
- 102100027194 CDP-diacylglycerol-inositol 3-phosphatidyltransferase Human genes 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000018 Callose Polymers 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 108090000489 Carboxy-Lyases Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 241001157813 Cercospora Species 0.000 description 1
- 241001478750 Chlorophytum comosum Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- XPYBSIWDXQFNMH-UHFFFAOYSA-N D-fructose 1,6-bisphosphate Natural products OP(=O)(O)OCC(O)C(O)C(O)C(=O)COP(O)(O)=O XPYBSIWDXQFNMH-UHFFFAOYSA-N 0.000 description 1
- LXJXRIRHZLFYRP-VKHMYHEASA-N D-glyceraldehyde 3-phosphate Chemical compound O=C[C@H](O)COP(O)(O)=O LXJXRIRHZLFYRP-VKHMYHEASA-N 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 102000015929 Fructose-2,6-bisphosphatases Human genes 0.000 description 1
- 230000005526 G1 to G0 transition Effects 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108010043428 Glycine hydroxymethyltransferase Proteins 0.000 description 1
- 108010001483 Glycogen Synthase Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 241000896246 Golovinomyces cichoracearum Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 229920000869 Homopolysaccharide Polymers 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 108010059247 Hydroxypyruvate reductase Proteins 0.000 description 1
- 101710144867 Inositol monophosphatase Proteins 0.000 description 1
- 108010044467 Isoenzymes Proteins 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101100175606 Oryza sativa subsp. japonica AGPL2 gene Proteins 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- 241000194105 Paenibacillus polymyxa Species 0.000 description 1
- 241000588701 Pectobacterium carotovorum Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 108010022678 Phosphofructokinase-2 Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 108010073135 Phosphorylases Proteins 0.000 description 1
- 102000009097 Phosphorylases Human genes 0.000 description 1
- 235000006485 Platanus occidentalis Nutrition 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 1
- 238000010818 SYBR green PCR Master Mix Methods 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 108050000406 Sedoheptulose-1,7-bisphosphatases Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 108091022908 Serine O-acetyltransferase Proteins 0.000 description 1
- 102000019394 Serine hydroxymethyltransferases Human genes 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 101100043635 Solanum tuberosum SS2 gene Proteins 0.000 description 1
- 101000870240 Spinacia oleracea Dicarboxylate transporter 2, chloroplastic Proteins 0.000 description 1
- 241000193395 Sporosarcina pasteurii Species 0.000 description 1
- 241000122971 Stenotrophomonas Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 101100478426 Streptomyces albogriseolus ssi gene Proteins 0.000 description 1
- 101100366698 Streptomyces violaceus vsi gene Proteins 0.000 description 1
- 241001136154 Stylidium graminifolium Species 0.000 description 1
- 102000019259 Succinate Dehydrogenase Human genes 0.000 description 1
- 108010012901 Succinate Dehydrogenase Proteins 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229930186949 TCA Natural products 0.000 description 1
- 102000014701 Transketolase Human genes 0.000 description 1
- 108010043652 Transketolase Proteins 0.000 description 1
- 229940123445 Tricyclic antidepressant Drugs 0.000 description 1
- 108700023183 UTP-glucose-1-phosphate uridylyltransferases Proteins 0.000 description 1
- 102000048175 UTP-glucose-1-phosphate uridylyltransferases Human genes 0.000 description 1
- HSCJRCZFDFQWRP-UHFFFAOYSA-N Uridindiphosphoglukose Natural products OC1C(O)C(O)C(CO)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 HSCJRCZFDFQWRP-UHFFFAOYSA-N 0.000 description 1
- UJVUMTUBMCYKBK-BNOPZSDTSA-N [(2r)-2-hexadecanoyloxy-3-[hydroxy-[(2r,3r,5s,6r)-2,3,5,6-tetrahydroxy-4-phosphonooxycyclohexyl]oxyphosphoryl]oxypropyl] hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)OC1[C@H](O)[C@H](O)C(OP(O)(O)=O)[C@H](O)[C@H]1O UJVUMTUBMCYKBK-BNOPZSDTSA-N 0.000 description 1
- DVKFVGVMPLXLKC-PUGXJXRHSA-N [(2s,3r,4s,5s,6r)-2-[(2s,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] dihydrogen phosphate Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(CO)[C@@]1(OP(O)(O)=O)[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DVKFVGVMPLXLKC-PUGXJXRHSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- IRLPACMLTUPBCL-FCIPNVEPSA-N adenosine-5'-phosphosulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@@H](CO[P@](O)(=O)OS(O)(=O)=O)[C@H](O)[C@H]1O IRLPACMLTUPBCL-FCIPNVEPSA-N 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000002787 antisense oligonuctleotide Substances 0.000 description 1
- 235000019568 aromas Nutrition 0.000 description 1
- 229940000489 arsenate Drugs 0.000 description 1
- AQLMHYSWFMLWBS-UHFFFAOYSA-N arsenite(1-) Chemical compound O[As](O)[O-] AQLMHYSWFMLWBS-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000001486 biosynthesis of amino acids Effects 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000006860 carbon metabolism Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000009134 cell regulation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 108010040093 cellulose synthase Proteins 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 239000002577 cryoprotective agent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 230000004665 defense response Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- FCRACOPGPMPSHN-UHFFFAOYSA-N desoxyabscisic acid Natural products OC(=O)C=C(C)C=CC1C(C)=CC(=O)CC1(C)C FCRACOPGPMPSHN-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000005014 ectopic expression Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- RNBGYGVWRKECFJ-UHFFFAOYSA-N fructose-1,6-phosphate Natural products OC1C(O)C(O)(COP(O)(O)=O)OC1COP(O)(O)=O RNBGYGVWRKECFJ-UHFFFAOYSA-N 0.000 description 1
- 238000010230 functional analysis Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 101150013858 glgC gene Proteins 0.000 description 1
- 229950010772 glucose-1-phosphate Drugs 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 229930195712 glutamate Natural products 0.000 description 1
- 230000003029 glycosylic effect Effects 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 230000009569 heterotrophic growth Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 102000006029 inositol monophosphatase Human genes 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000012737 microarray-based gene expression Methods 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 230000000422 nocturnal effect Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 125000001477 organic nitrogen group Chemical group 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000010627 oxidative phosphorylation Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 230000005097 photorespiration Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 230000008659 phytopathology Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000000419 plant extract Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940121649 protein inhibitor Drugs 0.000 description 1
- 239000012268 protein inhibitor Substances 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000022558 protein metabolic process Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000013720 root morphogenesis Effects 0.000 description 1
- 230000024053 secondary metabolic process Effects 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 230000007226 seed germination Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000000092 stir-bar solid-phase extraction Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000010399 three-hybrid screening Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- LABSPYBHMPDTEL-JGZVXCDNSA-N trehalose-6-phosphate Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@@H]1O[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@H](COP(O)(O)=O)O1 LABSPYBHMPDTEL-JGZVXCDNSA-N 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N63/00—Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
- A01N63/10—Animals; Substances produced thereby or obtained therefrom
-
- A01N63/02—
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Pest Control & Pesticides (AREA)
- Biotechnology (AREA)
- Virology (AREA)
- Agronomy & Crop Science (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Environmental Sciences (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Procedimiento para alterar el patrón de desarrollo y aumentar el crecimiento en plantas.#El procedimiento consiste en hacer crecer plantas en una atmósfera en la que estén presentes volátiles emitidos por un microorganismo, sin que exista contacto físico entre el microorganismos y la planta, sólo que la planta entre en contacto con los volátiles emitidos por el microorganismo. Se basa en el descubrimiento de que los volátiles emitidos por bacterias Gram positivas o negativas, levaduras y hongos microscópicos promueven un incremento del crecimiento de las plantas en general, con aumento de longitud, el número de hojas y/o el número de ramas de la planta, así como un incremento de la biomasa.Procedure to alter the pattern of development and increase growth in plants. # The procedure is to grow plants in an atmosphere where volatile emitted by a microorganism are present, without physical contact between the microorganisms and the plant, only that the plant comes into contact with the volatiles emitted by the microorganism. It is based on the discovery that volatiles emitted by Gram positive or negative bacteria, yeasts and microscopic fungi promote an increase in plant growth in general, with increased length, the number of leaves and / or the number of branches of the plant, as well as an increase in biomass.
Description
Procedimiento para alterarelpatrónde desarrolloyaumentarel crecimiento en plantas. Procedure to alter where development and increase plant growth.
Campo técnico Technical field
La invención se refiere a un procedimiento para incrementar el crecimiento de plantas, provocando un aumento de su biomasa,surobustezyel númerode floresyramificaciones respectoalas plantas crecidasen condiciones normales. Este procedimiento además permite inducir la floración. The invention refers to a process for increasing the growth of plants, causing an increase in their biomass, by busting the number of fl ores and branching with respect to plants grown under normal conditions. This procedure also allows to induce fl ow.
Antecedentes de la invención Background of the invention
Las plantas perciben estímulos bióticos reconociendo multitud de diferentes compuestos señalizadores que se originan en los organismos con los que interactúan. Algunas de estas sustancias representan patrones moleculares asociados a patógenos, que generalmente actúan como desencadenantes de reacciones de defensa. Se perciben a bajas concentracionesy comprendendiversas estructuras, incluidas las de hidratos de carbono, proteínas, glicoproteínas, péptidos, lípidosyesteroles(Hahlbrock et al. 2003: Nonself recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions, Proc Natl. Acad. Sci USA 100 (supl 2), 1456914576). Plants perceive biotic stimuli recognizing a multitude of different signaling compounds that originate in the organisms with which they interact. Some of these substances represent molecular patterns associated with pathogens, which generally act as triggers for defense reactions. They are perceived at low concentrations and comprise various structures, including those of carbohydrates, proteins, glycoproteins, peptides, lipid and sterols (Hahlbrock et al. 2003: Nonself recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant / pathogen interactions, Proc Natl. Acad. Sci USA 100 (supl 2), 1456914576).
Los microorganismos también sintetizanyemiten muchos compuestosvolátiles con masas moleculares menores que 300 Da, polaridad baja, y una elevada presión de vapor (Schöller et al. 2002: Volatile metabolites from actinomycetes,J.Agric.FoodChem.50,2615-2621;Schultzand Dickschat2007: Bacterialvolátiles:thesmellofsmall organisms, Nat. Prod. Rep. 24, 814-842; Splivallo et al. 2007a: Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction, Phytochemistry 68, 2584-2598). El contacto con microorganismos o agentes desencadenantes de reacciones de defensa de plantas no sólo afecta a dichas reacciones de defensa, sino que, muy a menudo, conducenauna disminuciónenlafotosíntesis,yauna transicióndel estadodefuente(enelqueseproducen compuestos orgánicos asimilables) al de sumidero (en el que se importan dichos compuestos asimilables de tejidos en los que están almacenados) (como revisión, véase Berger et al. 2007: Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions, J. Exp. Bot. 58, 4019-4026). Una indicación del estado de sumidero en hojas infectadas es la regulación al alza de la invertasa de la pared celular, que da como resultado la reducción de la exportación de sacarosa de la hoja infectada a otras partes de la planta. En algunos casos, la enzima sacarolítica sacarosa sintasa (SuSy) se regula al alza tras el contacto con microorganismos, lo que puede servir para repartir sacarosaala deposición callosaypromoverla biosíntesisde polisacáridosde pared celular en los sitiosdeinfección (Essmann et al. 2008: Leaf carbohydrate metabolism during defense, Plant Signaling&Behvior3, 885-887). El contacto con patógenos también puede dar como resultado la regulación a la baja de genes implicados en el metabolismo del almidón (Cartieaux et al. 2008: Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. Strain ORS278 and Pseudomonas syringae pv.Tomato DC3000 leads to complex transcriptome changes, Mol. Plant-Microbe Interact. 21, 244-259;Fabro et al. 2008: Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation,PlantPhysiol.146, 1421-1439),loquepuedefacilitarladisponibilidad parael patógenode azúcares simples en los sitiosdeinfección. Estos homopolisacáridos ramificadosson sintetizados por la almidón/glucógeno sintasa utilizando ADPglucosa (ADPG) como molécula donadora de azúcar. Microorganisms also synthesize many volatile compounds with molecular masses less than 300 Da, low polarity, and high vapor pressure (Schöller et al. 2002: Volatile metabolites from actinomycetes, J. Agric.FoodChem.50,2615-2621; Schultzand Dickschat2007: Bacterial volatiles: thesmellofsmall organisms, Nat. Prod. Rep. 24, 814-842; Splivallo et al. 2007a: Discrimination of truf fl e fruiting body versus mycelial aromas by stir bar sorptive extraction, Phytochemistry 68, 2584-2598). Contact with microorganisms or agents that trigger plant defense reactions not only affects these defense reactions, but, very often, leads to a decrease in photosynthesis, and a transition from the source state (in which assimilable organic compounds are produced) to the sump (in which they are imported such assimilable compounds of tissues in which they are stored) (for review, see Berger et al. 2007: Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions, J. Exp. Bot. 58, 4019-4026). An indication of the sump status in infected leaves is the upward regulation of cell wall invertase, which results in the reduction of sucrose export from the infected leaf to other parts of the plant. In some cases, the sacchaolytic enzyme sucrose synthase (SuSy) is regulated upwards after contact with microorganisms, which can be used to distribute sucrose to the callos deposition and promote biosynthesis of cell wall polysaccharides at the sites of infection (Essmann et al. 2008: Leaf carbohydrate metabolism during defense , Plant Signaling & Behvior3, 885-887). Contact with pathogens can also result in downregulation of genes involved in starch metabolism (Cartieaux et al. 2008: Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium sp. Strain ORS278 and Pseudomonas syringae pv. Tomato DC3000 leads to complex transcriptome changes, Mol. Plant-Microbe Interact. 21, 244-259; Fabro et al. 2008: Genome-wide expression pro fi ling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation, PlantPhysiol. 146, 1421-1439), which makes it possible to supply sugar pathogens simple at infection sites. These branched homopolysaccharides are synthesized by starch / glycogen synthase using ADPglucose (ADPG) as a sugar donor molecule.
El almidónyel glucógeno sonlos principales hidratosde carbonode almacenamientoen plantasybacterias, respectivamente, estando su metabolismo estrechamente conectado con el de los aminoácidos por mecanismos todavía poco comprendidos. En Escherichia coli,la privación de aminoácidos desencadena la respuesta a condiciones estrictas, un cambio fisiológico pleiotrópico que hace pasar la célula de un modo relacionado con el crecimiento a un modo de mantenimiento/supervivencia/biosíntesis. En condiciones de limitada provisión de nutrientes (aminoácidos) se para la división celular,ytienelugar una disminución en la demanda en proteínas dependientes deATPy en la síntesis y degradación de ácidos nucleicos. El exceso de ATP se desvía entonces desde el metabolismo de ácidos nucleicos/proteínas hacia la biosíntesis de glucógeno si está presente en el medio un exceso de fuentes de carbono (Eydallin et al., 2007b: Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12, FEBS Lett 581, 2947-2953; Montero et al. 2009: Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular proceses, Biochem. J. 424, 129-141). El signo característico de esta respuesta fisiológica pleiotrópica es la acumulación de la alarmona guanosina 5’-difosfato 3’-difosfato (ppGpp), un nucleótido que se une a la RNApolimerasa bacteriana para potenciar la expresión de genes (incluidos los implicados en el metabolismo delglucógeno) expresadosal comienzodelafase estacionaria.LosnivelesdeppGppestáncontroladosporRelA(unappGpp sintasa) ySpoT (una enzima bifuncionalque muestraactividadesdeppGpp sintasae hidrolasa) (Potrykusand Cashel 2008:(p) ppGpp: still magical?, Annu. Rev. Microbiol. 62, 35-51). Los mutantes de E. coli que tienendañada la función relA, ylas células que sobreexpresan spoT muestran un fenotipo deficiente en glucógeno (Monteroet al. 2009: Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, andis highly interconnected witha widevarietyof cellular processes, Biochem.J. 424, 129-141).Por el contrario, los mutantes de E. coli que tienen dañada la síntesis de aminoácidos tales como la cisteína muestran un fenotipo de glucógeno en exceso como resultado de la respuesta estricta (Eydallin et al., 2007b: Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12, FEBS Lett 581, 2947-2953). Estos mutantes muestranun fenotipode glucógeno normal cuandose cultivanen medio suplementado con cisteína,loque apuntaala existenciade conexiones estrechas entre los metabolismos del azufre,el nitrógenoyel carbono. Starch and glycogen are the main storage carbohydrates in plants and bacteria, respectively, their metabolism being closely connected with that of amino acids by still poorly understood mechanisms. In Escherichia coli, amino acid deprivation triggers the response to strict conditions, a pleiotropic physiological change that causes the cell to pass in a growth-related way to a maintenance / survival / biosynthesis mode. Under conditions of limited supply of nutrients (amino acids), cell division is stopped, and there is a decrease in demand for ATP-dependent proteins in the synthesis and degradation of nucleic acids. The excess of ATP is then diverted from the nucleic acid / protein metabolism to glycogen biosynthesis if an excess of carbon sources is present in the medium (Eydallin et al., 2007b: Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12, FEBS Lett 581, 2947-2953; Montero et al. 2009: Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2 + concentrations, and is highly interconnected with a wide variety of cellular processes , Biochem. J. 424, 129-141). The characteristic sign of this pleiotropic physiological response is the accumulation of alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a nucleotide that binds to bacterial RNA polymerase to enhance gene expression (including those involved in glycogen metabolism ) expressed at the beginning of the stationary phase. The levels of PPPpán are controlled by RELA (unappGpp synthase) and SPT (a bifunctional enzyme that shows activities of ppgpp synthase hydrolase) (Potrykusand Cashel 2008: (p) ppGpp: still magical ?, Annu. Rev. Microbiol. 62. E. coli mutants that have relA function damaged, and spoT overexpressing cells show a glycogen deficient phenotype (Monteroet al. 2009: Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2 + concentrations, andis highly interconnected witha widevarietyof cellular processes, Biochem.J. 424, 129-141) .On the contrary, E. coli mutants that have damaged the synthesis of amino acids such as cysteine show an excess glycogen phenotype as a result of the response strict (Eydallin et al., 2007b: Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12, FEBS Lett 581, 2947-2953). These mutants show a normal glycogen phenotype when cultured in medium supplemented with cysteine, which indicates the existence of close connections between the metabolisms of sulfur, nitrogen and carbon.
Estudios recientes han demostrado que las plantas poseen un sistema regulador mediado por ppGpp similar al que se da en las bacterias, lo cual se ha demostrado que juega un papel crucial en aspectos tales como la fertilidad de las plantas. El ppGpp se acumula en el cloroplasto de hojas estresadas a través de la regulación de la expresión de homólogos de RelA/SpoT (RSH) (Takahashi et al. 2004, Identification of the bacterial alarmone guanosine 5’diphosphate 3’-diphosphate (ppGpp) in plants, Proc. Natl. Acad. Sci. USA 101, 4320-4324). Recent studies have shown that plants have a regulatory system mediated by ppGpp similar to that found in bacteria, which has been shown to play a crucial role in aspects such as plant fertility. The ppGpp accumulates in the chloroplast of stressed leaves through the regulation of the expression of RelA / SpoT (RSH) counterparts (Takahashi et al. 2004, Identi fi cation of the bacterial alarmone guanosine 5'diphosphate 3'-diphosphate (ppGpp) in plants, Proc. Natl. Acad. Sci. USA 101, 4320-4324).
Al contrarioqueenlas bacterias,dondeladegradacióndelglucógenotienelugaratravésdelaruta fosforolítica,la degradación del almidón en las plantas es principalmente hidrolítica, jugando papeles importantes en la degradación del almidónde endospermosycerealesdehojaslas α-amilasasylas β-amilasas, respectivamente (Scheidig et al. 2002: Downregulationofa chloroplast-targeted β-amylase leadstoa starch-excess phenotypeinleaves, PlantJ.30, 581-591; Fulton et al. 2008: β-amylase4, a noncatalytic protein required for starch breakdown, acts usptream of three active βamylases in Arabidopsis chloroplasts, Plant Cell 20, 1040-1058). Desde la demostración inicial de que ADPG sirve como molécula precursora para la biosíntesis tanto del glucógeno de las bacterias como del almidón de las plantas, ha estado bastante extendida la consideración de que la ADPG pirofosforilasa (AGP) es la única enzima que cataliza la producción de ADPG. La evidencia genética de que la biosíntesis de glucógeno bacteriano ocurre solamente por la ruta deAGP (GlgC) se ha obtenido con mutantes glgC. Sin embargo, recientes estudios han demostrado que estos mutantes acumulan cantidades sustancialesde glucógenoy un contenido normalde ADPG. Además, se han aportado evidenciasque demuestranlaexistenciadediversas fuentes importantes, diferentesde GlgC,de ADPGligadasala biosíntesis del glucógeno endiferentes especies bacterianas. Contrary to the fact that bacteria, where the degradation of the glycogen has a second phosphorolytic pathway, the degradation of starch in plants is mainly hydrolytic, playing important roles in the degradation of the endosperm and cereal grains of α-amylases and β-amylases, respectively (Scheidig et al. starch-excess phenotypeinleaves, PlantJ.30, 581-591; Fulton et al. 2008: β-amylase4, a noncatalytic protein required for starch breakdown, acts usptream of three active βamylases in Arabidopsis chloroplasts, Plant Cell 20, 1040-1058). Since the initial demonstration that ADPG serves as a precursor molecule for the biosynthesis of both bacterial glycogen and plant starch, the consideration that ADPG pyrophosphorylase (AGP) is the only enzyme that catalyzes the production of ADPG Genetic evidence that bacterial glycogen biosynthesis occurs only by the path of AGP (GlgC) has been obtained with glgC mutants. However, recent studies have shown that these mutants accumulate substantial amounts of glycogen and a normal ADPG content. In addition, evidence has been provided that demonstrates the existence of various important sources, other than GlgC, of ADPG linked to glycogen biosynthesis in different bacterial species.
Generalmente, la biosíntesis de almidón en hojas se ha considerado que tiene lugar exclusivamente en el cloroplasto,yestá segregada delproceso biosintético de sacarosa que tiene lugar en el citosol (Fig. 1A). De acuerdo con esta visión clásica, se consideraal almidónel producto finalde una ruta unidireccional enla queAGP catalizaexclusivamente la síntesis de ADPG,yfunciona como la principal etapa reguladora del proceso biosintético del almidón (Neuhaus et al. 2005: No need to shift the paradigm on the metabolic pathway to transitory starch in leaves,Trends Plant Sci. 10, 154-156; Streb et al. 2009: The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localised pathway, Plant Physiol. 151, 17691772). Sin embargo, recientes evidencias han indicado la existencia de una ruta adicional en la que se produce de novo en el citosol, mediante SuSy, ADPG ligado a la biosíntesis del almidón. La enzima sacarolítica SuSy es el principal determinante de la fuerza de sumidero que controla intensamente la canalización de la sacarosa entrante hacia almidónypolisacáridosdela pared celular (Amor et al. 1995:Amembrane-associated formof sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92, 9353-9357). Cataliza la conversión reversible de sacarosay un nucleósido difosfato en las correspondientes glucosayfructosa nucleósido difosfato. Aunque UDP es el sustrato nucleósido difosfato preferido para que SuSy produzca UDPG, ADP también actúa como una molécula aceptora efectiva para producir ADPG. Generally, the biosynthesis of leaf starch has been considered to take place exclusively in the chloroplast, and is segregated from the sucrose biosynthetic process that takes place in the cytosol (Fig. 1A). In accordance with this classic view, starch is considered the end product of a unidirectional route in which AGP exclusively catalyzes the synthesis of ADPG, and functions as the main regulatory stage of the biosynthetic process of starch (Neuhaus et al. 2005: No need to shift the paradigm on the metabolic pathway to transitory starch in leaves, Trends Plant Sci. 10, 154-156; Streb et al. 2009: The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway, Plant Physiol. 151, 17691772). However, recent evidence has indicated the existence of an additional route in which de novo is produced in the cytosol, by means of SuSy, ADPG linked to the biosynthesis of starch. SuSolytic enzyme SuSy is the main determinant of the sump force that intensively controls the channeling of the incoming sucrose into starch and polysaccharides of the cell wall (Amor et al. 1995: Amembrane-associated formof sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc. Natl. Acad. Sci. USA 92, 9353-9357). It catalyzes the reversible conversion of sucrose and a nucleoside diphosphate into the corresponding glycosayfructose nucleoside diphosphate. Although UDP is the preferred nucleoside diphosphate substrate for SuSy to produce UDPG, ADP also acts as an effective acceptor molecule to produce ADPG.
Según esta visión alternativa,tantolas rutas biosintéticasdela sacarosa comoladel almidón están estrechamente interconectadas mediante la actividad productora de ADPG de SuSy (Muñoz et al., 2006: New enzymes, new pathways and an alternative view on starch biosynthesis in both photosynthetic and heterotrophic tissues of plants, Plant Cell Physiol. 46, 1366-1376; Baroja-Fernández et al., 2009: Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield, PlantCellPhysiol.50,1651-1662),ymediantela accióndeun translocadordeADPGtodavíasinidentificar localizado en las membranas de la envuelta de los cloroplastos. La visión “alternativa” de la biosíntesis de almidón en las hojas ilustrada en la Fig. IB asume también que tanto laAGP como la fosfoglucomutasa plastidial juegan un papel importante en la retirada de unidades de glucosa derivadas de la degradación del almidón. According to this alternative vision, both the sucrose and starch biosynthetic pathways are closely interconnected through SuSy's ADPG-producing activity (Muñoz et al., 2006: New enzymes, new pathways and an alternative view on starch biosynthesis in both photosynthetic and heterotrophic tissues of plants , Plant Cell Physiol. 46, 1366-1376; Baroja-Fernández et al., 2009: Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield, PlantCellPhysiol. 50,1651-1662), and through the action of an ADP translocator still identifies the membranes in the envelope of the chloroplasts. The "alternative" view of the starch biosynthesis in the leaves illustrated in Fig. IB also assumes that both laAGP and plastidial phosphoglucomutase play an important role in the removal of glucose units derived from starch degradation.
Lamayorpartedelos estudiossobrelas interaccionesplanta-microorganismosehanllevadoacaboen condiciones de contacto físico entrela planta hospedadoray elmicroorganismo. Sin embargo, se sabe poco sobre cómo pueden afectar las emisionesdevolátiles microbianosala fisiologíadelaplanta en ausenciade contacto físico.Sí se conoce, sin embargo, que microorganismos tales como Pseudomonas spp., Streptomyces spp., Botrytis cinerea ydistintas trufas producen etileno (Splivallo et al. 2007b:Trafilevolátiles inhibitgrowthand induceand oxidativeburstin Arabidopsis thaliana,NewPhytologist175,417-424),una hormonagaseosadeplantasquejuegaimportantespapelesen múltiples aspectosdel crecimientoydesarrollodelas plantas, incluidosla germinaciónde semillas, alargamientodel hipocótilo, iniciaciónde las pilosidades radiculares,la senescenciade hojasyflores,la maduraciónde los frutos,la acumulación de almidón, etc. Sólo recientemente Splivallo et al. (Splivallo et al. 2009:Trafiles regulate plant root morphogenesis via theproductionofauxinandethylene,PlantPhysiol.150,2018-2029) aportaronevidenciasdequeel etilenoproducido por las trufas induce alteraciones en el desarrollo de plantas de Arabidopsis, que presumiblemente van acompañadas por importantes cambios en el metabolismo. Most of the studies on plant-microorganism interactions have taken place under conditions of physical contact between the host plant and the organism. However, little is known about how microbial volatile emissions can affect plant physiology in the absence of physical contact.It is known, however, that microorganisms such as Pseudomonas spp., Streptomyces spp., Botrytis cinerea and various truffles produce ethylene (Splivallo et al. 2007b : Portable volatile inhibitgrowthand induceand oxidativeburstin Arabidopsis thaliana, NewPhytologist175,417-424), a plant-based hormone that plays important roles in multiple aspects of plant growth and development, including seed germination, elongation of the hypocotyl, initiation of the pilosities of the seeds, the accumulation of the seeds, the accumulation of the seeds, the accumulation of the seeds, the accumulation of the seeds, the accumulation of the seeds, the accumulation Only recently Splivallo et al. (Splivallo et al. 2009: Trafles regulate plant root morphogenesis via theproductionofauxinandethylene, PlantPhysiol.150,2018-2029) provide evidence of the ethylene produced by truffles induces alterations in the development of Arabidopsis plants, which are presumably accompanied by important changes in metabolism.
En lo que se refiere a las bacterias, los escasos trabajos en los que se describe el efecto de volátiles microbianos sobre elcrecimiento de plantas giran en torno a un número limitado de cepas especializadas de rizobacterias promotoras del crecimiento de plantas (PGPR: plant growth promoting rhizobacteria).Sedenomina rizobacteriasa ciertas bacterias simbiontesqueexistenenel sueloyque colonizanlas raícesdelas plantas.La mayor partedelas cepascuyo cultivo da lugar a un efecto positivo sobre el crecimiento de las plantas cultivadas en su presencia, sin necesidad de contacto físico, pertenecen al género Bacillus o un género estrechamente relacionado con éste, Paenibacillus, al cual pertenecen bacterias que en el pasado fueron clasificadas como pertenecientes al género Bacillus. Así, por ejemplo, se ha demostradoquevolátiles emitidospor rizobacteriasde cepas pertenecientesalas especies Bacillus subtilis, Bacillus amyloliquefaciens o Bacillus cepacia promueven el crecimiento de plantas de Arabidopsis,facilitando la toma de nutrientes,la fotosíntesisyla respuestade defensa,ydisminuyendola sensibilidadala glucosaylosnivelesde ácido abscísico (Ryu et al. 2003: Bacterial volátiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100, 49274932; Ryu et al. 2004: Bacterial volátiles induce systemic resistance in Arabidopsis, Plant Phylio 134, 1017-1026; Vespermannet al. 2007: Rhizobacterial volátiles affect the growth of fungi and Arabidopsis thaliana, Appl. Environ. Microbiol. 73, 5639-5641, Xie et al. 2009: Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03), Plant Signal. Behav. 10, 948-953). En concreto, Ryu et al.(Ryu et al. 2003: Bacterial volátiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100, 4927-4932) describen un incremento del crecimiento de plántulas de Arabidopsis thaliana desencadenadopor losvolátiles orgánicos liberados por cepas específicas de PGPR, concretamente Bacillus subtilis GB03y Bacillus amyloliquefaciens IN937a, comentando ademásque sus datos demuestranquela liberaciónde compuestosvolátilesorgánicosnoesel mecanismo común de estimulación del crecimiento de todas las rizobacterias. Al ser cultivadas en el medio rico en aminoácidos agar con tripticasa de soja, ambas bacterias liberan3-hidroxi-2-butanona (acetoína)y2,3-butanediol, compuestos no emitidos por las otras PGPR ensayadas cuyos volátiles no afectaban al crecimiento de Arabidopsis, pero que también son liberadospor otras cepas bacterianasparalasqueseha detectado capacidadde incrementarla germinacióny el crecimiento de plantas tales como Brassica oleracea sinexistir contacto físico entre plantaybacteria, comoesel caso de la cepa de Bacillus subtilis WG6-14 objeto de la solicitud de patente US 2008/0152684 Al. Sin embargo, existen muchas bacterias liberadorasde estas sustancias (algunas pertenecientesalgénero Bacillus)queno promuevenelcrecimiento de la planta. Además de las citadas cepas del género Bacillus GB03e IN937a,Ryu et al. sólo mencionan que el efecto de incremento del crecimiento por la liberación de volátiles se detectara para otra de las bacterias ensayadas, Enterobacter cloacae JM22, aunquenose muestra ningún datoque corrobore este últimoresultadonise hace ninguna mención sobreelperfildevolátiles emitidopor esta últimabacteria.Además,un artículo posteriordel mismogrupo investigador (Ryu et al. 2004: Bacterial volátiles induce systemic resistance in Arabidopsis, Plant Phylio 134, 10171026) muestra marcadas diferencias entre la elevada capacidad de los volátiles emitidos por las dos cepas de Bacillus para proteger las plantas de Arabidopisis thaliana del efecto del patógeno Erwinia carotovora yel escaso efecto protector de los volátiles emitidos por Enterobacter cloacae JM22. As far as bacteria are concerned, the scarce work in which the effect of microbial volatiles on plant growth is described revolves around a limited number of specialized strains of plant growth promoting rhizobacteria (PGPR: plant growth promoting rhizobacteria ) Sedenomina rhizobacteriase certain bacteria symbionts that exist in the soil and that colonize the roots of the plants. Most of the strains whose cultivation gives rise to a positive effect on the growth of the plants grown in their presence, without the need for physical contact, belong to the genus Bacillus or a genus closely related to this one, Paenibacillus, to which bacteria that in the past were classified as belonging to the genus Bacillus belong. Thus, for example, it has been shown that volatiles emitted by rhizobacteria from strains belonging to the species Bacillus subtilis, Bacillus amyloliquefaciens or Bacillus cepacia promote the growth of Arabidopsis plants, facilitating the taking of nutrients, photosynthesis and defense response, and decreasing the sensitization of the glycosylic acid levels. 2003: Volatile bacteria promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100, 49274932; Ryu et al. 2004: Volatile bacteria induces systemic resistance in Arabidopsis, Plant Phylio 134, 1017-1026; Vespermannet al. 2007: Rhizobacterial volatile affect the growth of fungi and Arabidopsis thaliana, Appl. Environ. Microbiol. 73, 5639-5641, Xie et al. 2009: Sustained growth promotion in Arabidopsis with long-term exposure to the bene fi cial soil bacterium Bacillus subtilis (GB03), Plant Signal. Behav. 10, 948-953). Specifically, Ryu et al. (Ryu et al. 2003: Volatile bacteria promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100, 4927-4932) describe an increase in the growth of Arabidopsis thaliana seedlings triggered by organic volatiles released by specific PGPR strains, specifically Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937a, commenting also that their data demonstrate that the release of volatile organic compounds is not the common mechanism of growth stimulation of all rhizobacteria. When grown in the medium rich in amino acids agar with soy tripticase, both bacteria release 3-hydroxy-2-butanone (acetoin) and 2,3-butanediol, compounds not emitted by the other PGPRs tested whose volatiles did not affect the growth of Arabidopsis, but which are also released by other bacterial strains for which it has been detected the ability to increase germination and growth of plants such as Brassica oleracea without physical contact between plant and bacterium, as in the case of the Bacillus subtilis WG6-14 strain object of patent application US 2008/0152684 Al. However, there are many bacteria that release these substances (some belonging to the genus Bacillus) that do not promote plant growth. In addition to the aforementioned strains of the genus Bacillus GB03e IN937a, Ryu et al. They only mention that the effect of increased growth due to the release of volatiles will be detected for another of the bacteria tested, Enterobacter cloacae JM22, although there is no evidence to corroborate the latter results in any mention of the volatile profiles emitted by the latter bacterium. In addition, a later article of the same research group ( Ryu et al. 2004: Volatile bacterium induces systemic resistance in Arabidopsis, Plant Phylio 134, 10171026) shows marked differences between the high capacity of the volatiles emitted by the two Bacillus strains to protect the Arabidopisis thaliana plants from the pathogen Erwinia carotovora effect and the low protective effect of volatiles emitted by Enterobacter cloacae JM22.
Sehan descrito también otrascepasdelosgéneros Bacillus o Paenibacillusque emitenvolátilescapacesde promover el crecimiento de distintas plantas pero, en estos casos, el efecto parece estar ligado principalmente a la capacidad de controlarel crecimientode patógenosque están afectandoala planta.Talesel caso,por ejemplo,del baciloKyuW63 descrito en la patente japonesa JP10033064, cuyos volátiles son capaces de controlar la patopoyesis debida a la presencia de hongos del género Cercospora en hojas de pepino,facilitando con ello el crecimiento de la planta. La descripción sugierequeel efecto podríasersimilar utilizando otras bacterias filamentosas, siempreycuandoel cultivo se produzca en un medio rico en azúcares tal como el agar PDA, medio que no se define con más detalle; tampoco se danpruebasque demuestrenla influenciadelmediosugeridoola aplicabilidaddelmétodoparacualquierotrabacteria filamentosa. Other strains of the genera Bacillus or Paenibacillus have also been described as emitting volatiles capable of promoting the growth of different plants but, in these cases, the effect seems to be mainly linked to the ability to control the growth of pathogens that are affecting the plant. Such is the case, for example, of the bacillus KyuW63 described in the Japanese patent. JP10033064, whose volatiles are capable of controlling pathopoiesis due to the presence of fungi of the Cercospora genus in cucumber leaves, thereby facilitating plant growth. The description suggests that the effect could be similar using other fibrous bacteria, provided that the culture is produced in a medium rich in sugars such as PDA agar, which is not defined in more detail; neither is it proven that they demonstrate the influence of the suggested medium or the applicability of the method for any lacteal bacteria.
Tambiénel método para incrementarel crecimientode plantas, basado en composicionesque comprenden un metabolitovolátil producidopor una bacteria,quesereivindicaenla solicitudde patente coreana KR20090066412,alude de forma combinadaala induccióndeprotección contra enfermedadesyel ataquede insectosy ala promocióndel crecimiento de distintas plantas, monocotiledóneasydicotiledóneas. Como ejemplos de posibles metabolitos útiles se citan3-acetil-1-propanol,3-metil-1-butanol, indol, acetato de isoamiloyacetato debutilo.El resumen menciona quelos posibles microorganismosquedanlugaraun metabolito volátilconel efectobuscado comprendenbacterias pertenecientes a los géneros Bacillus o Paenibacillus, siendo una cepa de la especie Paenibacillus polymyxa el microorganismo preferido. Also the method for increasing the growth of plants, based on compositions comprising a volatile metabolite produced by a bacterium, which is claimed in the application of the Korean patent KR20090066412, refers in combination to the induction of protection against diseases and the attack of insects and to the promotion of the growth of different plants, monocotyledonous and dichotyled. Examples of possible useful metabolites are 3-acetyl-1-propanol, 3-methyl-1-butanol, indole, isobutyl acetate acetate butyl. The summary mentions that the possible microorganisms that have a volatile metabolite with the desired effect comprise bacteria belonging to the Bacillus or Paenibacillus genera, being a strain of the species Paenibacillus polymyxa the preferred microorganism.
Tal como se ha mencionado previamente, se ha detectado también que los compuestos volátiles emitidos por algunas bacterias tienen otros efectos en lasplantas, ademásdela activación del sistemade defensaylapromocióndel crecimiento. Así, Zhang et al. (Zhang et al. 2008: Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensingand abscisicacidlevelsin planta,ThePlantJournal56,264-273), describencómolaexposiciónde plantas de Arabidopsis thaliana a los volátiles emitidos por Bacillus subtilis GB03, cultivado de nuevo en el medio de cultivoagarcon tripticasadesoja,reprimenlasensibilidadalaglucosadelasplantas,provocando simultáneamenteun ligero aumentodela acumulaciónde azúcary un incrementodela fotosíntesis, proceso este último que normalmente se ve inhibido cuando se incrementan los niveles de azúcares solubles acumulados en las plantas. Las plantas que entran en contacto con los volátiles emitidos por B. subtilis GB03 muestran incrementosde50-62% del contenidode azúcares solubles sobrelas plantas controlque, aproximadamente, acumulan2micromolesdehexosapor gramode peso fresco (cf. Fig. 2, Zhang et al. 2008: Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta, The Plant Journal 56, 264-273). El incremento del contenido de azúcares solubles generalmente está asociado con una disminución de los niveles intracelulares de almidón (Caspar et al. (1985): Alterations in growth, photosynthesis and respiration in a starchless mutant of Arabidopsis thaliana (L)deficient in chloroplast phosphoglucomutase, Plant Physiol. 79: 11-17; Jones et al. (1986): Reduced enzyme activity and starch level in an induced mutant of chloroplast phophoglucose isomerase, Plant Physiol.81: 367-371; Lin et al. (1988):A starch deficient mutant of Arabidopsis thaliana with low ADPglucose phosphorylase activity lack one of the subunits of the enzyme, Plant Physiol. 86: 1131-1135; Neuhaus and Stitt (1990): Controlanalysis of phosphosynthatepartioning. Impactofreduced activityofADP-glucosepyrophosphorylaseor plastid phosphoglucomutaseonthe fluxesto starch and sucrose in Arabidopsis thaliana, Planta 182: 445-454; Szydlowski et al. (2009): Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase, Plant Cell 21, 2443-2457). Por lo tanto, es esperable que, en las condiciones empleadas por Zhang et al., las plantas que entran en contacto con los volátiles emitidos por B. subtilis GB03 acumulen poco almidón. El método utilizado por elgrupo de Zhang et al. As previously mentioned, it has also been detected that volatile compounds emitted by some bacteria have other effects on plants, in addition to activating the defense system and promoting growth. Thus, Zhang et al. (Zhang et al. 2008: Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisicacidlevelsin plant, ThePlantJournal56,264-273), describe how the exposure of Arabidopsis thaliana plants to the volatiles emitted by Bacillus subtilis GB03, cultivated again in the cultivation medium with agar they repress the sensitization of the plant glucose, simultaneously causing a slight increase in the accumulation of sugar and an increase in photosynthesis, the latter process that is normally inhibited when the levels of soluble sugars accumulated in the plants are increased. Plants that come into contact with the volatile emitted by B. subtilis GB03 show increases of 50-62% of the content of soluble sugars over the control plants, which, approximately, accumulate 2 micromoles of hexanes by fresh gram weight (cf. Fig. 2, Zhang et al. 2008: Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in plant, The Plant Journal 56, 264-273). The increase in soluble sugar content is generally associated with a decrease in intracellular starch levels (Caspar et al. (1985): Alterations in growth, photosynthesis and respiration in a starchless mutant of Arabidopsis thaliana (L) de fi cient in chloroplast phosphoglucomutase, Plant Physiol. 79: 11-17; Jones et al. (1986): Reduced enzyme activity and starch level in an induced mutant of chloroplast phophoglucose isomerase, Plant Physiol. 81: 367-371; Lin et al. (1988): A starch de fi cient mutant of Arabidopsis thaliana with low ADPglucose phosphorylase activity lack one of the subunits of the enzyme, Plant Physiol. 86: 1131-1135; Neuhaus and Stitt (1990): Controlanalysis of phosphosynthatepartioning. in Arabidopsis thaliana, Plant 182: 445-454; Szydlowski et al. (2009): Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase, Plant Cell 21, 2443-2457). Therefore, it is expected that, under the conditions employed by Zhang et al., Plants that come into contact with the volatiles emitted by B. subtilis GB03 accumulate little starch. The method used by the group of Zhang et al.
sólo permitemedirel contenidode glucosa, fructosa, fructosa-6-fosfatoyglucosa-6-fosfato, aunque noel almidón acumulado, aunquela ausenciadevariacionesenlosnivelesdeexpresiónde genes implicadosenel metabolismode almidón tales comola almidón sintasao enzimasdegradadorasdel almidónreveladaporel análisis transcriptómicode proteínasde cloroplastoen plantasexpuestasalosvolátiles mostradoenlaTabla Suplementaria1 no parece indicar que fuera esperable una elevación de este polisacárido de reserva al ser sometida la planta a los efectos de los volátiles emitidos por B. subtilis GB03. Esta interpretación se ve apoyada por el hecho de que los ensayos referidos a la inhibicióndela longituddel hipocótiloyla germinaciónde semillas indicanquelosvolátilesde B. subtilis GB03 no provocan una respuesta metabólica al tratamiento, puesto no parecen afectar al metabolismo de los azúcares, sino a la sensibilidad a dichos compuestos. It only allows the content of glucose, fructose, fructose-6-phosphate and glucose-6-phosphate, although not accumulated starch, although the absence of variations in the levels of expression of genes involved in starch metabolism such as starch synthesized starch or enzymes of the starch developed by the plant shows that the non-volatile elevation of plants is indicated by the elevated elevation of the chloroplastic plant in the plant. This reserve polysaccharide when the plant is subjected to the effects of volatiles emitted by B. subtilis GB03. This interpretation is supported by the fact that trials referring to the inhibition of hypocotyl length and germination of seeds indicate that volatile B. subtilis GB03 do not cause a metabolic response to treatment, since they do not seem to affect the metabolism of sugars, but rather the sensitivity to said compounds .
De acuerdo con lo que se sabía hasta ahora, todos estos efectos sobre las plantas no son comunes a los volátiles emitidos por cualquier bacteria. Así, por ejemplo, tal como se comentaba más arriba, los ensayos realizados por Ryu et al (Ryu et al.2003: BacterialvolátilespromotegrowthinArabidopsis,Proc.Natl.Acad.Sci.USA100,4927-4932) demuestran que varias cepas de especies pertenecientes Bacillus, tales como Bacillus pumilus T4 o Bacillus pasteurii C-9, así como bacteriaspertenecientes a otros géneros tales como Pseudomonas fluorescens 89B-61 o Serratia marcescens 90-166,no fueron capacesde incrementarel crecimientode plantasde Arabidopsis thaliana sometidas al efecto de los volátiles emitidos por dichas bacterias, a pesar de haber sido cultivadas igualmente en el mismo medio decultivo,ricoen azúcaresyaminoácidos:elagarcon tripticasadesoja.Otradelasbacterias incluidasenelmismo ensayo, Escherichia coli DH5α, se utilizó en el mismo ensayo como control, por estar reconocida como una cepa que no incrementa el crecimiento de las plantas sometidas a la acción de los volátiles emitidos por ella. According to what was known so far, all these effects on plants are not common to volatiles emitted by any bacteria. Thus, for example, as discussed above, the tests carried out by Ryu et al (Ryu et al. 2003: Bacterial volatilespromotegrowthinArabidopsis, Proc.Natl.Acad.Sci.USA100,4927-4932) show that several strains of Bacillus species , such as Bacillus pumilus T4 or Bacillus pasteurii C-9, as well as bacteria belonging to other genera such as Pseudomonas fl uorescens 89B-61 or Serratia marcescens 90-166, were not able to increase the growth of plants of Arabidopsis thaliana subjected to the effect of the volatiles emitted by said Bacteria, despite having been cultured equally in the same culture medium, rich in sugars and amino acids: elagarcon tripticasadesoja.Otradelasbacterias includingthe same test, Escherichia coli DH5α, was used in the same test as a control, because it is recognized as a strain that does not increase the growth of the plants subject to the action of the volatiles emitted by it.
Además, se ha visto también que los volátiles de bacterias tales como Pseudomonas spp., Serratia spp.y Stenotrophomonas spp.,yde algunas especiesde hongos ejercenefectos inhibitorios sobreel crecimientode plantasde Arabidopsis (Splivallo et al. 2007b:Trafilevolátiles inhibitgrowthand induceand oxidativeburstin Arabidopsis thaliana,.NewPhytologist 175, 417-424,Tarkka and Piechulla, 2007: Aromatic weapons: truffles attack plantsby the productionofvolátiles,NewPhytologist 175,381-383). In addition, it has also been seen that the volatiles of bacteria such as Pseudomonas spp., Serratia spp. And Stenotrophomonas spp., And of some fungal species exert inhibitory effects on the growth of Arabidopsis plants (Splivallo et al. 2007b: Traflevolatile inhibitgrowthand induceand oxidativeburstna Arabidopsis Arabidopsis Arabidopsis Arabidopsis. NewPhytologist 175, 417-424, Tarkka and Piechulla, 2007: Aromatic weapons: truf fl es attack plantsby the productionof volatiles, NewPhytologist 175,381-383).
Debidoalafaltade conocimiento acercadecómolosvolátiles microbianospueden afectaralareprogramacióndel metabolismo celular, en particularal metabolismo primariodehidratosde carbono, enla actualidad no es posible actuarsobreel metabolismodelasplantasparapromoversu crecimientoconvolátiles microbianos,puesnoestánclaros los mecanismos implicados en promover o en inhibir el crecimiento activados por los microorganismos anteriormente citados, ni en las condiciones en las que se activan unos u otros o las posibles diferencias entre microorganismos que dan lugar a uno u otro efecto. Sin embargo, sería interesante conocer estos mecanismos para poder diseñar un procedimientoparaactivarel crecimientoy/ola floracióndelas plantas,e incrementarsu crecimiento, resistencia biológica ymecánica medianteel usodevolátiles microbianosy, preferiblemente, para incrementarla síntesisde almidónen las plantas,por ser éste enla actualidad un producto de gran interés en algunas industrias. La presente invención proporciona una solución a este problema. Due to the lack of knowledge about microbial volatile how they can affect the reprogramming of cellular metabolism, in particular the primary metabolism of carbohydrates, it is currently not possible to act on the metabolism of plants for the promotion of microbial volatile growths, since the mechanisms involved in promoting or inhibiting the growth previously activated by microorganisms are not clear. activate one or the other or the possible differences between microorganisms that give rise to one or the other effect. However, it would be interesting to know these mechanisms to be able to design a procedure to activate the growth and / or fl ow of plants, and increase their growth, biological and mechanical resistance through the use of microbial volatiles and, preferably, to increase the synthesis of starch in plants, as this is currently a product of great interest in Some industries The present invention provides a solution to this problem.
Descripción de la invención Description of the invention
La invención se basa en el sorprendente descubrimiento de que, al crecer plantas en presencia de cualquier tipo de microorganismo(bacterias Gram-positivaoGram-negativas,levadurasuhongos),sinqueexista contacto entrela plantayel microorganismo,losvolátilesemitidosporel microorganismodanlugaraquese produzca una alteración en el patrón de desarrolloy un aumento en el crecimiento, la fertilidad, el peso secoyla acumulación de almidón de las plantas. Además, la exposición a tales volátiles induce a la acumulación de un almidón con características estructurales diferentes a las del almidón acumulado por plantas no expuestas a volátiles, tanto en lo que se refiere a la propia estructura de la molécula del almidón como al tamaño de los gránulos de acumulación. Estos efectos se observan tanto con plantas monocotiledóneas como dicotiledóneas(Arabidopsis, maíz, cebada, tabaco, patata...),y son independientesdequeel microorganismoseaono patógenoparalaplantaydeque pertenezcaonoaunaespecie que no convive con la planta en condiciones naturales. Estos efectos se observan tanto si las plantas se cultivan in vitro como en tierra, siempre y cuando la planta se cultive en presencia de un cultivo de un microorganismo queemitavolátilesobienen presenciadelosvolátiles microbianos emitidosporel microorganismo.Éstos parecenserlos responsablesdelos efectos observados.Por tanto, aunquenoexista contacto físico entrelaplantayel microorganismo, este último debe estarlo suficientemente próximoala planta, como para que los compuestosvolátiles emitidosporel microorganismosí entren en contacto conla plantaypuedan ejercer su efecto sobreella. The invention is based on the surprising discovery that, when plants grow in the presence of any type of microorganism (Gram-positive or Gram-negative bacteria, fungal yeasts), without any contact between the plant and the microorganism, the volatile emitted by the microorganism will occur that there is an alteration in the pattern of development and an increase in growth, fertility, dry weight and starch accumulation of plants. In addition, exposure to such volatiles induces the accumulation of a starch with structural characteristics different from those of starch accumulated by non-volatile plants, both in terms of the structure of the starch molecule itself and the size of the starches. accumulation granules. These effects are observed with both monocotyledonous and dicotyledonous plants (Arabidopsis, corn, barley, tobacco, potatoes ...), and are independent of the microorganisms being pathogenic for the plant and belonging to a species that does not live with the plant in natural conditions. These effects are observed both if the plants are grown in vitro and on land, as long as the plant is grown in the presence of a microorganism that emits volatile microorganisms have presence of the microbial volatile emitted by the microorganism.These seem to be responsible for the observed effects.Therefore, although there is no physical contact between the plant and plant microorganism, the latter must be sufficiently close to the plant, so that the volatile compounds emitted by the microorganisms come into contact with the plant and can exert their effect on it.
La alteración del patrón de desarrollo de la planta se manifiesta aumentando el número de hojas, el número de ramas,el númerode floresy semillase induciendola floración. The alteration of the development pattern of the plant is manifested by increasing the number of leaves, the number of branches, the number of flowers and seed induced by fl owing.
Este efectoseha observado con todotipode microorganismosy, particularmenteenel casodelos estudios realizados en hojas, parece ser la consecuencia de una transición del estatus de fuente al de sumidero. Así, los resultados presentados en la presente solicitud muestran que las emisiones de volátiles de todas las especies microbianas analizadas promovieron un aumentodela biomasa en las plantasy condujeronala acumulaciónde un alto contenido de almidón, en comparación con las plantas control crecidas en las mismas condiciones, salvo por la ausenciadel cultivo del microorganismo. El efecto observado es independiente de la presencia de sacarosa en el medio de cultivo yes fuertemente reprimido por la suplementación con cisteína. El efecto sucede tanto en plantas monocotiledóneas como dicotiledóneas.Estoesasínosóloparavolátiles emitidospor rizobacterias promotorasdel crecimientodelas plantas tales como ciertos aislados de Bacillus subtilis, sino también, sorprendentemente, para los volátiles emitidos para diferentes patógenosvegetales fúngicosybacteriasde especies como E. coli o Pseudomonas spp.,ycontradicen resultados previos encontrados con dichas especiesyalgunas especies de hongos, en las que se había observado el efecto contrario, dando lugar sus volátiles a una inhibición del crecimiento de las plantas cultivadas en su presencia). De esta manera,la presenteinvención demuestraquela capacidadde emitirvolátilesque influyen positivamente sobre la biomasadelas plantasen generalysobresu crecimientoenparticularnose restringealas rizobacterias,siempre que el microorganismo se cultive en el medio adecuado. This effect has been observed with all types of microorganisms and, particularly in the case of leaf studies, seems to be the consequence of a transition from source to sink status. Thus, the results presented in the present application show that the volatile emissions of all the microbial species analyzed promoted an increase in biomass in the plants and led to the accumulation of a high starch content, compared to the control plants grown in the same conditions, except for the absence of the microorganism culture. The observed effect is independent of the presence of sucrose in the culture medium and is strongly repressed by cysteine supplementation. The effect occurs in both monocotyledonous and dicotyledonous plants. These are only para-volatile emitted by rhizobacteria that promote growth of plants such as certain isolates of Bacillus subtilis, but also, surprisingly, for the volatile emitted for different fungal and pathogenic plant pathogens of species such as E. coli or Pseudomonas. found with these species some species of fungi, in which the opposite effect had been observed, giving rise to volatile growth inhibition of plants grown in their presence). In this way, the present invention demonstrates that the ability to emit volatiles that positively influence the biomass of plants in general and that their growth in particular is restricted to rhizobacteria, provided that the microorganism is grown in the appropriate medium.
El efecto positivo sobre el crecimientoyla acumulación del almidón se observa muy especialmente cuando el microorganismo se cultiva en medio mínimo (entendiendocomo tal un medio que carecedeaminoácidos peroque contienediversas sales,que puedenvariarsegúnla especiede microorganismoylas condicionesde crecimiento,que sonlasque proporcionan elementos esenciales tales como magnesio, nitrógeno, fósforoyazufreparaqueel microorganismopuede sintetizar proteínasyácidos nucleicos) suplementadoconuna fuentede carbonoorgánico (generalmente, un azúcar,tal como glucosao sacarosa).Parecequelautilizaciónde estetipode medioevitaquelos microorganismos generen amonio volátil a partir de aminoácidos u otras fuentes de nitrógeno orgánico presentes en medios ricos en aminoácidos como los utilizadosenlos ensayos en los que otros autores habían observado inhibición del crecimiento porvolátiles microbianos (tales comoel medioLBoel mediodeKornberg),y esta diferencia parece serla causa quedalugaraqueel cultivode plantasen presenciademicroorganismos conlosqueno tienen contactodélugara un aumento del crecimiento, floración, ramificación, fertilidad, robustez, biomasa en generalyde la acumulación de almidón en particular. The positive effect on the growth and accumulation of starch is observed especially when the microorganism is grown in minimal medium (understanding as such a medium that lacks amino acids but that contains several salts, which can vary according to the species of microorganism and growth conditions, which are those that provide essential elements such as magnesium, nitrogen, phosphorus and sulfur for the microorganism can synthesize proteins and nucleic acids) supplemented with a source of organic carbon (generally, a sugar, such as glucose or sucrose). It seems that the use of this type of medium avoids that microorganisms generate volatile ammonium from amino acids or other sources of organic nitrogen present in amino acid-rich media such as those used in the assays in amino acids that other authors had observed inhibition of growth by microbial volatiles (such as the Middle Bulb medium of Kornberg), and this difference seems to be the cause of the The plant cultivation in the presence of microorganisms with which they do not have an increase in growth, fl orage, branching, fertility, robustness, biomass in general, and the accumulation of starch in particular.
Es ésta la primera ocasión en la que se informa de que los volátiles microbianos sean capaces de inducir tanto el crecimiento como la floración, la ramificaciónyla acumulación de almidón, así como la alteración estructural de este polímero en las plantas que crecen bajo su efecto. Así, los autores de la invención parecen haber encontrado las condiciones de cultivo que permiten que cualquier tipo de microorganismo (patógeno o no para la planta) libere una mezcla de volátiles capaz de ejercer un efecto positivo tanto sobre el crecimiento como sobre la floración, la ramificaciónysobrela acumulaciónde almidón. This is the first time that microbial volatiles are reported to be capable of inducing both growth and fl owing, branching and starch accumulation, as well as the structural alteration of this polymer in plants that grow under its effect. Thus, the authors of the invention seem to have found the culture conditions that allow any type of microorganism (pathogenic or not for the plant) to release a volatile mixture capable of exerting a positive effect on both growth and flowering, ramification and accumulation of starch.
Los resultados obtenidos por los autores de la invención contradicen, además, algunas ideas previas respecto al medio de cultivo a utilizar para que una bacteria produzca los volátiles adecuados para promover el crecimiento de plantas cultivadas en presencia de dichos volátiles, tal como la idea que parece sugerirse en la patente japonesa JP10033064 de que el cultivo en un medio rico en azúcar pudiera ser suficiente para que algunas bacterias emitieran una mezcladevolátiles capazde inducirel crecimientode plantasyprotegerlas frentea patógenos.Así,los ensayos descritosmás adelanteenlos Ejemplosdela presente solicitud muestranquevolátiles emitidospor bacteriasyotros microorganismos, crecidos en LB con glucosa 50 mM, ejercen un efecto negativo no sólo sobre el crecimiento, sino también sobre la acumulación de almidón en las plantas que entran en contacto con dichos volátiles. The results obtained by the authors of the invention also contradict some previous ideas regarding the culture medium to be used for a bacterium to produce suitable volatiles to promote the growth of cultivated plants in the presence of said volatiles, such as the idea that seems It is suggested in Japanese patent JP10033064 that the culture in a medium rich in sugar could be sufficient for some bacteria to emit a volatile mixture capable of inducing plant growth and protecting them against pathogens. Thus, the tests described below in the Examples of the present application show volatile emitted by bacteria and other microorganisms, grown in LB With 50 mM glucose, they exert a negative effect not only on growth, but also on the accumulation of starch in plants that come into contact with such volatiles.
En cuanto al incremento de la cantidad de almidón acumulada, se observa en distintos órganos de la planta: hojas (no sólo cuando están unidas a la planta completa, sino también en hojas desprendidas de la planta, colocadas en presenciadevolátiles emitidospor microorganismosde distintas especies); raíces;tallos; tubérculos(enlosquela cantidad de almidón acumulada, por ejemplo en plantas de patata, es superior a la acumulada en plantas control ...). As for the increase in the amount of accumulated starch, it is observed in different organs of the plant: leaves (not only when they are attached to the whole plant, but also in detached leaves of the plant, placed in the presence of volatiles emitted by microorganisms of different species); roots; stems; tubers (tighten the amount of starch accumulated, for example in potato plants, is greater than that accumulated in control plants ...).
El descubrimiento de que los volátiles microbianos inducen la sobreacumulación de almidón en hojas y otros órganos de la planta constituye un mecanismo del que no se había informado previamente, que establece una función adicional para los volátiles como moléculas señalizadoras que median en las interacciones planta-microorganismo y que ayuda en la dilucidación del proceso de inducción del metabolismo de hidratos de carbono en las plantas mediante microorganismos. El incremento en la cantidad de almidón acumulado parece ir acompañado, además, por cambios estructurales en el almidón, tanto en lo que se refiere a la estructura del biopolímero, como a la de los gránulos. Así, se observa, por una parte, que los gránulos de almidón son de tamaño superior al de las plantas control cultivadas en ausencia de volátiles. Es esta una características bastante importante, pues el tamaño del gránulo de almidóntieneunagran importanciaanivelindustrial,porserun determinante importantedelaspropiedadesfísicoquímicas de las suspensión de los gránulos de almidón, de manera la diferencia del tamañoyforma de los gránulos de almidón de especies tales como patata, trigo, maíz, etc., es lo que, en gran medida, determina que estos almidones tengan aplicaciones industriales diferentes. Además, se observa que el almidón acumulado por las plantas que crecen en atmósferas que contienen volátiles microbianos presentan una importante reducción en el contenido relativo de amilosa, con lo que la relación amilosa/amilopectina es inferior a la de las plantas control. Esta modificación en la estructura de la molécula del almidón se ve acompañada por cambios en el grado de polimerización de las cadenas de amilopectina, que es menor en las plantas tratadas con volátiles microbianas. Así, el cultivo de plantas en atmósferas que contienen volátiles emitidos por microorganismos permite obtener plantas que no sólo tienen una producción superior de almidón sino que, además, dan lugar a un almidón cuyas características permiten aplicaciones industriales diferentes a las del almidón sintetizado por las plantas cultivadas en ausencia de volátiles. The discovery that microbial volatiles induce starch over-accumulation in leaves and other plant organs constitutes a mechanism that had not been previously reported, which establishes an additional function for volatiles as signaling molecules that mediate plant-microorganism interactions and that helps in the elucidation of the process of induction of carbohydrate metabolism in plants by microorganisms. The increase in the amount of accumulated starch seems to be accompanied, in addition, by structural changes in the starch, both as regards the structure of the biopolymer, as well as that of the granules. Thus, it is observed, on the one hand, that the starch granules are larger than the control plants grown in the absence of volatiles. This is a fairly important characteristic, since the size of the starch granule is of great importance on an industrial level, because it is an important determinant of the physical and chemical properties of the starch granule suspensions, so that the size and shape of the starch granules of species such as potato, wheat, corn, etc. ., is what, to a large extent, determines that these starches have different industrial applications. In addition, it is observed that the starch accumulated by plants that grow in atmospheres that contain microbial volatiles have a significant reduction in the relative amylose content, so that the amylose / amylopectin ratio is lower than that of the control plants. This modification in the structure of the starch molecule is accompanied by changes in the degree of polymerization of the amylopectin chains, which is lower in plants treated with microbial volatiles. Thus, the cultivation of plants in volatile-containing atmospheres emitted by microorganisms makes it possible to obtain plants that not only have superior starch production but also give rise to a starch whose characteristics allow different industrial applications to those of starch synthesized by plants. grown in the absence of volatiles.
Los análisis de transcriptomas de, entre otros, hojas de plantas de patata expuestas a volátiles de origen fúngico (concretamente, producidos por hongos del género Alternaria)han revelado que los cambios en el metabolismo del almidón están acompañadospor cambiosen múltiples procesos biológicosy enlaactividadoexpresiónde distintas enzimas, tales como: Transcriptome analyzes of, among others, leaves of potato plants exposed to volatile fungal origin (specifically, produced by fungi of the Alternaria genus) have revealed that changes in starch metabolism are accompanied by changes in multiple biological processes and in activated expression of different enzymes, such as:
- --
- regulaciónalalzade: sacarosasintasa, inhibidoresdeinvertasas,sintasadealmidóndeclaseIV,enzimaraalzazade regulation: sucroseintase, inhibitors of inverters, synthase of the room where class IV, enzyme
mificantedel almidón, proteínas implicasen endocitosisytráficodevesículas,el transportadorde glucosa-My fi cante of starch, proteins involve endocytes and tetraphyllicles, the glucose transporter-
6-fosfato del estromaalcitosol,yenzimas implicadas en rutas glucolíticas, respiratoriasyfermentativas; Stromaalcytosol 6-phosphate, and enzymes involved in glycolytic, respiratory and fermentation pathways;
- --
- regulación a la baja de: invertasa ácida, tiorredoxinas plastidiales, enzimas de degradación del almidón, proteínas implicadas en la conversión de triosas-fosfato plastidiales en glucosa-6-fosfato citosólicas, proteínas implicas en la provisión interna de aminoácidos tales como la nitrito reductasa, la gliceraldehído-3-fosfato deshidrogenasa plastidial, la cisteína sintasa, la glucosa-6-fosfato deshidrogenasa plastidial, etc .... down-regulation of: acid invertase, plastidial thioredoxins, starch degradation enzymes, proteins involved in the conversion of plastidial triosaphosphate into cytosolic glucose-6-phosphate, proteins involved in the internal provision of amino acids such as nitrite reductase, Plastidial glyceraldehyde-3-phosphate dehydrogenase, Cysteine synthase, Plastidial glucose-6-phosphate dehydrogenase, etc ...
La Fig. 21 ilustra un modelo metabólico sugerido para el proceso desencadenado por los volátiles microbianos, deducidoapartirdelosestudiosrealizadosenhojasdeplantasdepatataquese describenmás adelanteenlosEjemplos dela presente solicitud,que comprendenestudiosdevariación tantoenactividades enzimáticas comoenel transcriptoma, así como análisis medianteRT-PCRde losnivelesdediversos transcritos específicos especialmente relacionados conel metabolismodeN,CyS. Fig. 21 illustrates a suggested metabolic model for the process triggered by the microbial volatiles, deduced from the studies carried out in potato leaflets that are described later in Examples of the present application, which includes variation studies both enzymatic activities and the transcriptome, as well as analysis by means of RT-related transducts of the metabolites.
Tal comose discuteenlosEjemplosque aparecenmás adelanteenla presentememoria,laregulaciónalalzade la sacarosa sintasa(SuSy)pareceserunodelosfactores determinantesdelaacumulaciónde almidónenlasplantas sometidas al efecto de los volátiles microbianos. Pero los efectos observados sobre otras enzimas, particularmente la reducción de la cisteína sintasa, la reducción de la nitrito reductasa, la reducción de la gliceraldehído-3-fosfato deshidrogenasa plastidial, la reducción de la glucosa-6-fosfato deshidrogenasa plastidial, la sobre-expresión del translocadorde glucosa-6-fosfatoyla sobreexpresióndel inhibidorde proteasa, soloso combinados entresí, parecen ser capacesdedarlugaral incrementoenel contenidodel almidón,sin necesidaddequese produzcaun incrementoenla actividad sacarosa sintasa. As discussed, Examples that appear later in the present memory, the regulation of sucrose synthase (SuSy) seem to be one of the determinants of starch accumulation in plants subjected to the effect of volatile microbials. But the effects observed on other enzymes, particularly the reduction of cysteine synthase, the reduction of nitrite reductase, the reduction of plastidial glyceraldehyde-3-phosphate dehydrogenase, the reduction of plastidial glucose-6-phosphate dehydrogenase, the over- Expression of the glucose-6-phosphate translocator and the overexpression of the protease inhibitor, alone combined in between, appear to be able to give place to the increase in starch content, without the need for an increase in sucrose synthase activity.
Todos estos hallazgos abrenla puerta para plantearse procedimientos para incrementar el crecimiento de plantas y/o su producción de almidón mediante su cultivo en presencia de microorganismos que producen volátiles, sin existir contacto entre ellos,o medianteel cultivodelas plantas en presenciadelamezcladevolátiles producida porel microorganismo previamente cultivado en un espacio diferente al de crecimiento de la planta. Por tanto, deja abierta la posibilidadde incrementarla productividadde plantas cultivadas,porejemplo,eninvernaderos, cocultivandocon ellas microorganismos emisores de compuestos volátiles; alternativamente, las plantas podrían entrar en contacto con los volátiles porque los mismos se aplicaran directamente a los invernaderos, tras haber sido cultivados los microorganismos en grandes fermentadores, en los medios adecuados (en general, medios mínimos tales como M9, MOPS, Murashige&Skoog (MS) etc.). El hecho de que las hojas acumulen más almidón en presencia de microorganismos queproducenvolátiles, incluso cuando dichas hojas están separadasdela planta, permiteel diseñode un mecanismo alternativo para la obtención de almidón en el que se utilizan hojas desprendidas de plantas, que pueden ser productos de desecho del procesamiento de las mismas. La dilucidación de las enzimas en cuya actividad/expresión se producen cambios que promueven la acumulación del almidón permiten conseguir el incremento en la producción de almidón mediante métodos alternativos, basados en el mismo principio inventivo, en elque los cambios en determinadas enzimas se producen en la planta por el hecho de utilizarse plantas transgénicas que sobreexpresan el gen o genes de interésoenlasqueseexpresaun inhibidordelas mismascuyaactividadsevereducidaporla presenciadelosvolátiles microbianos. All these findings open the door to consider procedures to increase the growth of plants and / or their production of starch through their cultivation in the presence of microorganisms that produce volatile, without contact between them, or through the cultivation of plants in the presence of the volatile mixture produced by the microorganism previously cultivated in a different space from the plant's growth. Therefore, it leaves open the possibility of increasing the productivity of cultivated plants, for example, in greenhouses, co-cultivating with them microorganisms emitting volatile compounds; alternatively, the plants could come into contact with the volatiles because they were applied directly to the greenhouses, after the microorganisms were grown in large fermenters, in the appropriate media (in general, minimum media such as M9, MOPS, Murashige & Skoog (MS ) etc.). The fact that the leaves accumulate more starch in the presence of volatile microorganisms, even when these leaves are separated from the plant, allows the design of an alternative mechanism for obtaining starch in which leaves detached from plants are used, which can be waste products of the processing of them. The elucidation of the enzymes in whose activity / expression changes occur that promote the accumulation of starch allow to achieve the increase in starch production by alternative methods, based on the same inventive principle, in which changes in certain enzymes occur in the plant by the use of transgenic plants that overexpress the gene or genes of interest in which an inhibitor of the same whose activity is expressed by the presence of microbial volatiles is expressed.
Además, el hecho de que las hojas separadas de la planta completa sean capaces también de producir almidón, cuandose mantienenen presenciade cultivosde microorganismosque producenvolátiles,esmuy importantedesde el puntodevista industrial.En cuestiónde 2-3 días,las hojas son capacesde producir enormes cantidadesde almidón con tan sólo4ingredientes, que podrían considerarse “baratos”: un pocode agua,CO2 natural, luz naturaly volátiles microbianos. Se puede considerar que la hoja actuaría como una biofactoría productora de almidón alimentada por luz solar. Además del interés que el almidón producido podría tener para la industria del almidón, hay que tener en cuenta la ventaja que supone poder utilizar hojas separadas de las plantas completas, pues los restos de podas que normalmente son destruidos (por ejemplo, hojas de patata), podrían ser destinados a la producción de un tipo de almidón de interés industrial. In addition, the fact that the leaves separated from the whole plant are also capable of producing starch, when they maintain the presence of cultures of microorganisms that produce volatile, is very important from the point of industrial view. In a matter of 2-3 days, the leaves are capable of producing huge amounts of starch with such only 4 ingredients, which could be considered "cheap": a little water, natural CO2, natural light, volatile microbial. It can be considered that the leaf would act as a starch-producing biofactor powered by sunlight. In addition to the interest that the starch produced could have for the starch industry, the advantage of using separate leaves from the whole plants must be taken into account, as the remains of pruning that are normally destroyed (for example, potato leaves) , could be destined to the production of a type of starch of industrial interest.
Por todo ello, la invención se refiere a un método para aumentar el tamaño de una planta, su patrón de desarrollo (incluidas características relacionadas con su fertilidad, la biomasa en generalyel almidón en particular creciendo la misma en presencia de los volátiles emitidos por un microorganismo, microorganismo que puede cultivarse en el mismo espacio que la planta, para que la planta entre en contacto con ellos debido a que el microorganismo libera dichosvolátilesala atmósferaenlaqueestá creciendolaplanta,oquepuedenhabersidorecogidospreviamentey añadirse artificialmenteala atmósferade crecimientodela planta. Therefore, the invention refers to a method for increasing the size of a plant, its development pattern (including characteristics related to its fertility, the biomass in general and the starch in particular growing the same in the presence of volatile emitted by a microorganism , a microorganism that can be grown in the same space as the plant, so that the plant comes into contact with them because the microorganism releases these volatiles into the atmosphere in which the plant is growing, or that may have been previously collected and added artificially to the plant's growth atmosphere.
Así,unobjetodela presenteinvenciónesun método paraincrementarel crecimientode una plantay/o alterar su patrón de desarrollo, caracterizado por que la planta se cultiva en presencia de un microorganismo que produce compuestosvolátiles, sin queexista contacto entrela plantayel microorganismo,o en presenciade losvolátiles emitidos por el microorganismo, en el que el microorganismo es distinto de los aislados Bacillus subtilis GB03y Bacillus amyloliquefaciens IN937. El aumento del crecimiento de la planta puede manifestarse en un aumento de tamaño (en longitud)dela plantay aumento del tamañode las hojas.En cuantoala alteración del patrónde desarrollo, puede manifestarse como un incremento del número de hojas, incremento del número de ramas, o en efectos más estrechamente relacionados conla fertilidad, comoel incrementodel númerode floresysemillasde plantas angiospermas,y/o la inducción de la floración, o en combinaciones de los efectos anteriores. Thus, one object of the present invention is a method to increase the growth of a plant and / or alter its development pattern, characterized in that the plant is grown in the presence of a microorganism that produces volatile compounds, without any contact between the plant and the microorganism, or in the presence of volatile emitted by the microorganism, in that the microorganism is different from the isolated Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937. The increase in plant growth can be manifested in an increase in size (in length) of the plant and increase in the size of the leaves. As for the alteration of the development pattern, it can manifest itself as an increase in the number of leaves, increase in the number of branches, or in effects more closely related to fertility, such as the increase in the number of flowers and seeds of angiosperm plants, and / or the induction of flowering, or in combinations of the above effects.
Elmicroorganismopuedeseruna bacteria,unalevaduraounhongo pluricelularmicroscópico. Cuandoelmicroorganismoseelige entre bacterias,puedeelegirsedeungénero distintoaBacillus o Paenibacillus, que son los génerosa los que pertenecen las cepas específicas de rizobacterias en las que previamente se había detectado un efecto positivo de sus emisiones de volátiles sobre el crecimiento de la planta al crecer en medios muy ricos. The microorganism can be a bacterium, a yeast or a multicellular microscopic neuron. When the microorganisms are chosen among bacteria, a different genus can be chosen from Bacillus or Paenibacillus, which are the genus that belong to the specific strains of rhizobacteria in which a positive effect of their volatile emissions on the growth of the plant had previously been detected by growing in very rich media.
Debido al efecto observado, concretamente, sobre el incremento dela acumulación de almidón, otro objeto de la invención es un método para incrementar la producción de almidón de una planta, caracterizado por que la planta se cultiva en presencia de un microorganismo que produce compuestos volátiles, sin que exista contacto entre la planta yel microorganismo, o en presencia de los volátiles emitidos por el microorganismo. Se prefiere especialmente que, además, el almidón producido presente modificaciones con respecto a la estructura normal de la planta, que pueden referirse tanto al aumento del tamaño de los gránulos de almidón, como a la estructura de la molécula del almidón ensí, concretamente,en una reduccióndela relación amilosa/amilopectina(que, comosehaexplicadopreviamente, disminuye respectoala halladaenlas plantas control,por producirse una importante reducciónenel contenido relativo de amilosa),yenla disminuciónelgradode polimerizacióndelas cadenasde amilopectina,quees menorenlasplantas tratadas con volátiles microbianos con respecto al observado en las plantas control, tal como se muestra más adelante en los Ejemplos referidos al análisis estructural del almidón obtenido al crecer las plantas en presencia de volátiles microbianos. Due to the observed effect, specifically, on the increase of starch accumulation, another object of the invention is a method for increasing the production of starch in a plant, characterized in that the plant is grown in the presence of a microorganism that produces volatile compounds, without contact between the plant and the microorganism, or in the presence of volatiles emitted by the microorganism. It is especially preferred that, in addition, the starch produced has modifications with respect to the normal structure of the plant, which may refer both to the increase in the size of the starch granules, and to the structure of the starch molecule itself, specifically, in a reduction in the amylose / amylopectin ratio (which, as explained above, decreases with respect to that found in the control plants, because there is a significant reduction in the relative amylose content), and in the decrease in the polymerization of amylopectin chains, which is less than the plants treated with volatile microbials with respect to that observed in the control plants, such as shown below in the Examples referring to the structural analysis of the starch obtained by growing the plants in the presence of microbial volatiles.
Dado que el aumento de almidón, según se demuestra en los Ejemplos de la presente solicitud, se ha observado en distintosórganosdela planta (hojas, tallos, raícesytubérculos), son realizaciones posibles del métodode incremento de la acumulación de almidón, preferiblemente con estructura modificada, aquéllas en las que el incremento de la producción de almidón se produce al menos en un órgano de la planta, preferiblemente seleccionado entre hoja, tallo, raíz, semillaso,enlas plantasquelo presenten,el tubérculo. Como sucede cuandosebuscaun incrementodel crecimiento y/o la alteración del patrón de desarrollo, cuando el objetivo específico es la acumulación de almidón la planta puede una angiosperma, monocotiledónea o dicotiledónea. Se prefieren particularmente las plantas de patata o de maíz. Entre los microorganismos, una posibleopción son los hongosde losgéneros Alternaria o Penicillium, cuya utilidad se demuestra más adelante en los Ejemplos de la presente solicitud. Since the increase in starch, as demonstrated in the Examples of the present application, has been observed in different organs of the plant (leaves, stems, roots and tubers), are possible embodiments of the method of increasing the accumulation of starch, preferably with modified structure, those in which the increase in starch production occurs at least in one organ of the plant, preferably selected from leaf, stem, root, seed, in plants that present it, the tuber. As happens when looking for an increase in growth and / or alteration of the development pattern, when the specific objective is the accumulation of starch, the plant can be an angiosperm, monocotyledonous or dicotyledonous. Potato or corn plants are particularly preferred. Among the microorganisms, a possible option is the fungi of the genera Alternaria or Penicillium, whose utility is demonstrated later in the Examples of the present application.
Aprovechandoel conocimiento adquiridoporlos autores sobrelas modificacionesenel metabolismodelas plantas mediante los cuales los volátiles microbianos provocan el incremento de la acumulación de almidón, una alternativa al método de incremento de acumulación de almidón consiste enprovocar la acumulación directamente mediante el uso de plantas transgénicas, basadas en el mismo principio inventivo, en las que el transgén o transgenes expresado(s) da(n) lugar a la sobreexpresión de alguna de las enzimas reguladas al alza por la exposición a los volátiles o consiste en un inhibidor de la actividad o de la expresión (mediante RNAs de interferencia, por ejemplo) de alguna de las enzimasreguladasalabaja.Así,un aspecto alternativodelainvenciónesun métodopara incrementarla producción de almidón de una planta, caracterizado porque la planta es una planta transgénica en la que está presente al menos un transgén cuya expresión da lugar a un producto seleccionado del grupo de: un inhibidor de proteasas de plantas (tal como,por ejemplo,elque presentael númerode accesoenGenBank DQ16832),la enzima ramificantedelalmidón, un inhibidor de la invertasa ácida (tal como por ejemplo, el que presenta el número de acceso en GenBank FN691928), un RNAantisentido dirigido contra la cisteína sintasa (que puede deducirse, por ejemplo, a partir de la secuencia correspondiente a la cisteína sintasa de la planta de patata, con número de acceso en GenBank AB029512), un RNA antisentido dirigido contra la gliceraldehído-3-fosfato deshidrogenasa plastidial (tal como por ejemplo, el que presenta el número de acceso en GenBank FN691929), un RNAantisentido dirigido contra la glucosa-6-fosfato deshidrogenasa plastidial (que puede deducirse, por ejemplo, a partir de la secuencia correspondiente a la glucosa-6fosfato deshidrogenasa de patata, con número de acceso en GenBank X83923) o un RNAantisentido dirigido contra la nitrito reductasa (tal como por ejemplo, el que presenta el número de acceso en GenBank FN691930). Son realizaciones preferidas aquéllas en las que la planta expresa al menos un transgén cuya expresión da lugar a un producto seleccionado de grupo de: inhibidor de proteasas de plantas, un RNAantisentido dirigido contra la cisteína sintasa o un RNAantisentido dirigido contra la nitrito reductasa. En este último caso, las secuencias codificantes del transgén puedenderivarse,porejemplo,delas correspondientealgenomadelapatata,esdecir,eltransgénpuedeserunoque expreseel inhibidorde proteasascuya secuencia codificanteestá representadaporSEQIDNO:67oenelqueelRNA antisentido expresado por el transgén está dirigido contra la cisteína sintasa cuya secuencia codificante está representadaporSEQIDNO:69o contrala nitritoreductasacuya secuencia codificanteestá representadaporSEQIDNO:71. Se prefiere especialmente que la planta exprese más de un transgén de cualquiera de los citados anteriormente y/o aquéllas realizaciones en las que la planta, adicionalmente a uno o más transgenes de uno de los grupos anteriores, posee tambiénal menosun transgénquedalugaralaexpresión ectópicadelaenzima sacarosa sintasa (SuSy)(tal como puede ser un transgén que expresa la enzima de patata, cuyo mRNA tiene el número de acceso en GenBank AJ537575)olaexpresióndel transportadorde glucosa-6-fosfato(tal comoun transgénqueexpreseel transportador de patata, cuya secuencia codificanteypromotor tienenel númerode acceso en GenBankAY163867). Taking advantage of the knowledge acquired by the authors about the modifications in the metabolism of plants through which microbial volatiles cause an increase in starch accumulation, an alternative to the method of increasing starch accumulation is to cause accumulation directly through the use of transgenic plants, based on the same principle inventive, in which the expressed transgene or transgenes (s) gives rise to overexpression of some of the enzymes regulated upwards by exposure to volatiles or consists of an inhibitor of activity or expression (by means of RNAs of interference, for example) of some of the enzymes regulated on the low. Thus, an alternative aspect of the invention is a method to increase the production of starch in a plant, characterized in that the plant is a transgenic plant in which at least one transgene is present whose expression gives rise to a product selected from the group of : a plant protease inhibitor (such as, for example, the one that has the accession number in GenBank DQ16832), the rami fi cant enzyme of the starch, an acid invertase inhibitor (such as, for example, the one that shows the access number in GenBank FN691928), a Antisense RNA directed against cysteine synthase (which can be deduced, for example, from the sequence corresponding to the cysteine synthase of the potato plant, with GenBank accession number AB029512), an antisense RNA directed against glyceraldehyde-3-phosphate plastidial dehydrogenase (such as the one with the accession number in GenBank FN691929), an antisense RNA directed against glucose-6-phosphate plastidial dehydrogenase (which can be deduced, for example, from the sequence corresponding to glucose- 6 Potato dehydrogenase phosphate, with access number in GenBank X83923) or an antisense RNA directed against nitrite reductase (such as the one presented to the access number in GenBank FN691930). Preferred embodiments are those in which the plant expresses at least one transgene whose expression results in a product selected from the group of: plant protease inhibitor, an antisense RNA directed against cysteine synthase or an antisense RNA directed against nitrite reductase. In the latter case, the codi fi ed sequences of the transgene can be derived, for example, from the corresponding potato gene, that is, the transgene can be expressed which expresses the protease inhibitor whose codi fi ed sequence is represented by SEQIDNO: 67 or in which the antisense sequence is represented by the codiid sequence against which the codin is represented by the codi represents by SEQIDNO: 71. It is especially preferred that the plant expresses more than one transgene of any of the aforementioned and / or those embodiments in which the plant, in addition to one or more transgenes of one of the above groups, also possesses at least one transgenequedalugarla ectopic expression of sucrose synthase enzyme (SuSy ) (such as a transgene that expresses the potato enzyme, whose mRNA has the accession number in GenBank AJ537575) or the expression of the glucose-6-phosphate transporter (such as a transgene that expresses the potato transporter, whose codi fi cant sequence has the accession number in GenBankAY163867) .
Finalmente, el hecho de que el incremento en el almidón acumulado se observe también en hojas que no forman parte de plantas completas, sino separadas de ellas, cuando la hoja se mantiene junto a un cultivo de un microorganismo, permite contemplar un aspecto más de la invención. El mismo sería un método para la obtención de almidón a partirdehojasdeplantas separadasdelasmismas,que comprendeunaetapaenlaquelashojasse mantieneenpresencia(perosin contactofísico)deuncultivodeun microorganismoodelosvolátiles emitidospor este.Denuevo,se prefierequeel microorganismoseauna bacteria,levadurauhongo microscópicoqueno entreen contactoconlaplanta en condiciones naturales de cultivo. Una posible preferencia son los hongos de los géneros Alternaria o Penicillium, especialmente cuando las hojas son hojas de patata. Finally, the fact that the increase in accumulated starch is also observed in leaves that are not part of whole plants, but separated from them, when the leaf is maintained next to a culture of a microorganism, allows us to contemplate one more aspect of the invention. The same would be a method for obtaining starch from separate plant leaves of the same, which includes a plate in which the leaves are maintained in the presence (but without physical contact) of a culture of a volatile microorganism emitted by it. A possible preference is the fungi of the Alternaria or Penicillium genera, especially when the leaves are potato leaves.
Tal como se ha comentado, el método de la invención, en cualquiera de sus aspectos (excepto el que se refiere al uso de plantas transgénicas) requiere que el cultivo de la planta o la colocación de las hojas desprendidas en las que se quiere inducir la acumulación de almidón, se haga de manera que los volátiles emitidos por el microorganismo estén presentes en la atmósfera en la que se cultiva la planta. Cumpliéndose esta condición, el procedimiento dela invenciónpuedellevarseacabodedistintas maneras.Una posibilidadesquelaplantayel microorganismosecultiven simultáneamenteenunmismo recipiente,oquelashojasse introduzcanenun recipienteenelqueseesté produciendo elcultivode microorganismos;enesecaso,parafavorecerquelaplanta entreen contactoconlosvolátiles emitidos por el microorganismo, es preferible que el recipiente sea un recipiente cerrado que, a su vez, contenga el recipiente específico, tal como una Placa Petri, en el que se cultiva el microorganismo, preferiblemente en un medio sólido.El recipiente comúnde cultivodela plantayel microorganismo puede ser uninvernadero enel que, preferiblemente,las condiciones de humedad, temperatura e, incluso, velocidad de circulación del aire, están controladas artificialmente. As it has been mentioned, the method of the invention, in any of its aspects (except that which refers to the use of transgenic plants) requires that the cultivation of the plant or the placement of the detached leaves on which it is desired to induce the Starch accumulation is done so that the volatiles emitted by the microorganism are present in the atmosphere in which the plant is grown. If this condition is fulfilled, the process of the invention can be carried out in different ways.A possibility that the plant and microorganisms simultaneously grow in a same container, or that leaves are introduced into a container in which the culture of microorganisms is produced; in this case, to favor that the plant comes into contact with the volatile ones, it is preferred that the container be closed, the container is preferred, a specific container, such as a Petri Dish, in which the microorganism is grown, preferably in a solid medium.The common culture vessel of the plant and the microorganism can be a greenhouse in which, preferably, the conditions of humidity, temperature and even circulation speed of the air, they are controlled artificially.
Dado que el procedimiento de la invención no requiere contacto entre el microorganismoy la planta, sino que son losvolátiles emitidos porelmicroorganismo, no es necesario queel microorganismoyla planta se cultivenen proximidad,sinoquelaplantaasuvezpuedesercultivadaen presenciadelosvolátilesemitidosporel microorganismo sin necesidad de que éste esté localizado cerca de la planta. Así, es posible cultivar los microorganismos previamente, enellugarycondicionesde cultivoquese elijan, recogiendolosvolátiles emitidos para, posteriormente, hacerque la planta crezcaen presenciade dichosvolátiles,haciendoque estén presentesenlaatmósferaenlaquese cultivala planta. Since the process of the invention does not require contact between the microorganism and the plant, but rather they are the volatile emitted by the microorganism, it is not necessary that the microorganism and the plant be cultivated in proximity, but that the plant can only be cultured in the presence of the volatile emitted by the microorganism without the need for it to be located near the plant. Thus, it is possible to cultivate the microorganisms beforehand, in which culture conditions are chosen, picking up the volatile emitted to, subsequently, make the plant grow in the presence of such volatile, making them present in the atmosphere in which the plant is grown.
Tal como se utiliza en la presente solicitud, el término “microorganismo”incluye bacterias, levaduras, algasy protozoos, todos ellos generalmente unicelulares, así como hongos microscópicos pluricelulares como los mohos, que pueden ser propagadosymanipulados en un laboratorio. As used in the present application, the term "microorganism" includes bacteria, yeast, algae and protozoa, all of them generally unicellular, as well as multicellular microscopic fungi such as molds, which can be propagated and manipulated in a laboratory.
El microorganismo utilizado puede pertenecer a una especie patógena o no patógena para la planta, que convive The microorganism used can belong to a pathogenic or non-pathogenic species for the plant, which coexists
o no con la planta en condiciones naturales. Dicho microorganismo puede ser una bacteria, una levadura o un hongo microscópico. Dentro de ellos, se tiene particular preferencia por los hongos pertenecientes al género Penicillium (por ejemplo Penicilliumchartesii,Penicillium aurantiogriseium)oAlternaria (por ejemplo Alternaria alternata),por las levaduras de la especie Saccharomyces cerevisiae ypor las bacterias pertenecientes a los génerosBacillus (especialmente, Bacillus subtilis y, por ejemplo,Bacillus subtilis 168), Salmonella (por ejemplo, Salmonella enterica LT2), Escherichia (especialmente, Escherichia coli y,muy particularmente,Escherichia coli BW25113), Agrobacterium (especialmente, Agrobacterium tumefaciens y, muy particularmente,Agrobacterium tumefaciens EHA105óGV2260)o Pseudomonas (especialmente, Pseudomonas syringae y,muy particularmente,Pseudomonas syringae 1448A9, 49a/90 óPK2). or not with the plant in natural conditions. Said microorganism can be a bacterium, a yeast or a microscopic fungus. Among them, there is particular preference for fungi belonging to the genus Penicillium (for example Penicilliumchartesii, Penicillium aurantiogriseium) or Alternaria (for example Alternaria alternata), for yeasts of the species Saccharomyces cerevisiae and for bacteria belonging to the genera Bacillus (especially Bacillus subtilis and, for example, Bacillus subtilis 168), Salmonella (for example, Salmonella enterica LT2), Escherichia (especially, Escherichia coli and, very particularly, Escherichia coli BW25113), Agrobacterium (especially, Agrobacterium tumefaciens and, particularly, Agrobacterium tumefaciens EHA105óGV2260) or Pseudomonas (especially, Pseudomonas syringae and, very particularly, Pseudomonas syringae 1448A9, 49a / 90 or PK2).
Tal como se ha comentado previamente, cuando el microorganismo se elige entre bacterias, puede elegirse de un género distinto a Bacillus o Paenibacillus, que son los géneros a los que pertenecen las cepas específicas de rizobacterias en las que previamente se había detectado un efecto positivo de sus emisiones de volátiles sobre el crecimiento de la planta al crecer en medios muy ricos: ambos géneros pueden excluirse del grupo de bacterias elegibles. En cualquier caso, se ha observado que los volátiles emitidos por bacterias pertenecientes a estos géneros, de cepas distintas de Bacillus subtilis GB03y Bacillus amyloliquefaciens IN937, son capaces de producir el efecto de aumento del crecimientodelas plantascuandolas bacteriasse cultivanenun medioque carecede compuestosorgánicosque poseen grupos amino, particularmente aminoácidos y/o proteínas, tales como medios mínimos suplementados con una fuente de carbono orgánico, produciendo también un incremento en la acumulación de almidón: ninguno de estos efectos eran esperables de los resultados previos obtenidos con volátiles de rizobacterias, que parecían indicar que el efecto sobre el crecimiento era exclusivo de los volátiles emitidos por ciertas cepas. La inducción de la acumulación de almidón,además,nohabíasido descritapreviamentepara mezclasdevolátilesemitidaspor microorganismosy, como se demuestra más adelante en los Ejemplos de la invención, se observa para todos los microorganismos con los que se realizaron experimentos: así, tal como se ha mencionado previamente, se considera que cualquier bacteria, hongo microscópico o levadura puede elegirse para llevar a efecto el aspecto del método de la invención referido específicamente a la acumulación de almidón, ya sea en plantas completas en crecimiento o en hojas desprendidas. As previously mentioned, when the microorganism is chosen among bacteria, it can be chosen from a genus other than Bacillus or Paenibacillus, which are the genera to which the specific strains of rhizobacteria belong in which a positive effect of its volatile emissions on plant growth by growing in very rich media: both genera can be excluded from the group of eligible bacteria. In any case, it has been observed that the volatile emitted by bacteria belonging to these genera, from strains other than Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937, are capable of producing the growth effect of plants when bacteria are grown in a medium that lacks organic compounds that have amino groups, particularly amino acids and / or proteins, such as minimum media supplemented with an organic carbon source, also producing an increase in starch accumulation: none of these effects were expected from previous results obtained with rhizobacterial volatiles, which seemed to indicate that the effect on growth was exclusive of volatiles emitted by certain strains. The induction of starch accumulation, moreover, had not previously been described for volatile mixtures emitted by microorganisms and, as demonstrated below in the Examples of the invention, is observed for all microorganisms with which experiments were performed: thus, as previously mentioned, considers that any bacterium, microscopic fungus or yeast can be chosen to carry out the aspect of the method of the invention specifically referred to starch accumulation, either in whole growing plants or in detached leaves.
En cualquiera de los aspectos del método de la invención que no se refieren a la utilización específica de plantas transgénicas, se prefiere particularmente que el crecimiento del microorganismo se produzca en un medio que carezca de compuestos orgánicos que incluyan nitrógeno en su fórmula o, al menos, que carezca de compuestos orgánicos que presente grupos amino, tales como aminoácidos y/o proteínas. Se tiene muy especial preferencia por el cultivo en medio mínimo que contenga un compuesto orgánico como fuente de carbono, que puede ser, por ejemplo, sacarosa o glucosa u otros compuestos orgánicos tales como el succinato. In any of the aspects of the method of the invention that do not refer to the specific use of transgenic plants, it is particularly preferred that the growth of the microorganism occurs in a medium that lacks organic compounds that include nitrogen in its formula or, at least , lacking organic compounds that present amino groups, such as amino acids and / or proteins. Very special preference is given to the culture in minimal medium containing an organic compound as a carbon source, which may be, for example, sucrose or glucose or other organic compounds such as succinate.
Entre las plantas, se prefieren las angiospermas (tanto monocotiledóneas como dicotiledóneas), en las que se ha observado aumento del número de ramificaciones y del número de flores con respecto a las plantas control. Este efecto permite también que un aspecto más de la invención sea un método para inducir la floraciónypara aumentar el número de ramificaciones y/o de flores producidas por una planta, en el que el objetivo se consigue cultivandola planta en presenciade un microorganismo que produce compuestosvolátiles, sin queexista contactoentrelaplantay el microorganismo.Cuandoelefectobuscadoesel aumentodelnúmerodeflores,laplantatendráqueser,lógicamente, una planta capaz de producirlas: una angiosperma, tanto monocotiledónea como dicotiledónea. Among the plants, angiosperms (both monocotyledonous and dicotyledonous) are preferred, in which there has been an increase in the number of branches and the number of flowers with respect to the control plants. This effect also allows a further aspect of the invention to be a method for inducing fl owing and for increasing the number of branches and / or fl owers produced by a plant, in which the objective is achieved by growing the plant in the presence of a microorganism that produces volatile compounds, Without any contact between the plant and the microorganism, when the effect sought is to increase the number of flowers, the plant will logically have a plant capable of producing them: an angiosperm, both monocotyledonous and dicotyledonous.
Lainvención seexplicará ahora con más detalle mediante los EjemplosyFiguras queaparecena continuación. The invention will now be explained in more detail using the Examples and Figures below.
Breve descripción de las figuras Brief description of the fi gures
Fig. 1: Rutas sugeridas de síntesis de almidón en hojas de origen. Fig. 1: Suggested routes of starch synthesis in leaves of origin.
- --
- Elpanel(A)ilustrael “modelo clásico”,segúnelcualel procesode biosíntesisdelalmidón tienelugarexclusivamente en el cloroplasto, separado del proceso de biosíntesis de sacarosa que tiene lugar en el citosol. Panel (A) illustrates the "classical model," according to which the starch biosynthesis process occurs exclusively in the chloroplast, separated from the sucrose biosynthesis process that takes place in the cytosol.
- --
- Elpanel (B) ilustra el “modelo alternativo” en el que tanto la ruta biosintética de la sacarosa como la del almidón están interconectadas por medio de actividad productora de ADPG de SuSy (sacarosa sintasa). Elpanel (B) illustrates the "alternative model" in which both the biosynthetic route of sucrose and that of starch are interconnected by means of SuSy ADPG-producing activity (sucrose synthase).
Compuestosimplicados: FBP: fructosa-1,6-bifosfato; F6P: fructosa-6-bifosfato; G6P: glucosa-6-fosfato; G1P: glucosa-1-fosfato; ADPG; ADP-glucosa; UDPG: UDP-glucosa. Actividades enzimáticas: 1, 1’: fructosa-1,6-bifosfato aldolasa; 2, 2’: fructosa-1,6-bifosfatasa; 3: PPi:fructosa-6-fosfato fosfotransferasa; 4, 4’: fosfoglucosa isomerasa; 5, 5’: fosfoglucomutasa;6: UDPG pirofosforilasa;7: sacarosa fosfato sintasa;8: sacarosa-fosfato-fosfatasa;9:AGP; 10:SS (almidón sintasa); 11: almidón fosforilasa; 12, SuSy (sacarosa sintasa). Compounds involved: FBP: fructose-1,6-bisphosphate; F6P: fructose-6-bisphosphate; G6P: glucose-6-phosphate; G1P: glucose-1-phosphate; ADPG; ADP-glucose; UDPG: UDP-glucose. Enzymatic activities: 1, 1 ’: fructose-1,6-bisphosphate aldolase; 2, 2 ’: fructose-1,6-bisphosphatase; 3: PPi: fructose-6-phosphate phosphotransferase; 4, 4 ’: phosphoglucose isomerase; 5, 5 ′: phosphoglucomutase; 6: UDPG pyrophosphorylase; 7: sucrose phosphate synthase; 8: sucrose phosphate phosphatase; 9: AGP; 10: SS (starch synthase); 11: starch phosphorylase; 12, SuSy (sucrose synthase).
Fig.2: Condicionesde cultivode plantasde Arabidopsisyefectode losvolátiles microbianos sobre las mismas. Fig. 2: Cultivation conditions of Arabido plants and the effect of microbial volatiles on them.
- --
- Paneles (A), (B), (C)y (D):Fotografías que ilustran las condiciones de cultivo de plantas de Arabidopsis en ausencia(AyC)y presencia(ByD)devolátiles microbianos.Paraverel efectode losvolátiles, placas Petrique contenían plantas completamente desarrolladas se introdujeron en cajas de plástico en las que previamente se habían incluido cultivos de E. coli BW25113 crecidos enmedio sólidoM9 suplementado con50mM glucosa (panelB)y Alternaria alternata crecida en medio sólido MS suplementado con 90 mM sacarosa (panel D). Las cajas se sellaron y,a los tiempos de incubación indicados, se recogieron las plantas para realizar los análisis. Panels (A), (B), (C) and (D): Photographs illustrating the growing conditions of Arabidopsis plants in the absence (AyC) and presence (ByD) of microbial returnable. For the volatile effect, Petrique plates contained plants completely developed were introduced in plastic boxes that previously included cultures of E. coli BW25113 grown in solid medium M9 supplemented with 50mM glucose (panel B) and Alternaria alternata grown in solid medium MS supplemented with 90 mM sucrose (panel D). The boxes were sealed and, at the indicated incubation times, the plants were collected for analysis.
Fig.3: Efectodelosvolátilesproducidospor Alternatira alternata sobre el peso fresco (panel A), peso seco (panel B),númerodeflores(panelC),númerodevainas(panelD),longituddelbrote(panelE)ynúmerode ramas(panel F)de Arabidopsis.Las fotografíasdelospanelesGyHilustranel efecto positivodelosvolátiles fúngicos (FVs)en el númerode flores,vainas, longitud del broteynúmerode ramas en plantasexpuestas durante6díasa los FVs. A. alternata fue cultivada en medio MS sólido suplementado con 90 mM sacarosa. Fig. 3: Effect of volatile products produced by Alternatira alternata on fresh weight (panel A), dry weight (panel B), number of flowers (panel C), number of pods (panel D), length of the shoot (panel E) and number of branches (panel F) of Arabidopsis. The photographs of the panels of G and Hilustranel the positive effect of the volatile (FVs) in the number of flowers, sheaths, bud length and number of branches on the plant exposed during the day to the PV. A. alternata was grown in solid MS medium supplemented with 90 mM sucrose.
Fig.4: Condicionesde cultivode plantasde tabacoyefectode losvolátiles microbianos sobreel desarrolloy crecimiento de las plantas: Fig. 4: Conditions of cultivation of tobacco plants and the effect of microbial volatiles on the development and growth of plants:
- --
- PanelA:Fotografíasque ilustranlas condicionesde cultivodeplantasde tabacoen ausencia(-FV)oen presencia (+FV) de volátiles fúngicos (FV) emitidos por un cultivo de Alternaria alternata. Las plantas se cultivaron durante6 días,y se procedióa su comparación. PanelA: Photographs that illustrate the conditions of cultivation of tobacco plants in the absence (-FV) or in the presence (+ FV) of fungal volatiles (FV) emitted by a culture of Alternaria alternata. The plants were grown for 6 days, and their comparison was carried out.
- --
- PanelesByC: Comparaciónde plantasde tabaco cultivadas en las mismas condiciones, salvola ausencia (-FV) PanelsByC: Comparison of tobacco plants grown under the same conditions, except for absence (-FV)
opresencia (+FV) del cultivo de Alternaria alternata. Se observa que las plantas crecidas en presencia de volátiles fúngicos emitidos por A. alternata son de mayor tamaño, hecho que se aprecia particularmente en las hojas e, incluso, presentan un número mayor de hojas (panel C). Además, se observa que las plantas tratadas con FVs florecen antes. opresence (+ FV) of the culture of Alternaria alternata. It is observed that plants grown in the presence of fungal volatiles emitted by A. alternata are larger, a fact that can be seen particularly in the leaves and even have a greater number of leaves (panel C). In addition, it is observed that plants treated with VF flourish earlier.
- --
- PanelD:Fotografíasenlasquese muestran plantasde tabaco completas, incluidaslas raíces, crecidasen ausencia (-FV) o presencia (+FV) del cultivo de Alternaria alternata. Se aprecia que el tamaño de la raíz es mayor en el caso de las plantas crecidas en condiciones +FV. A. alternata fue cultivada en medio MS sólido suplementado con 90 mM sacarosa. Panel D: Photographs showing whole tobacco plants, including roots, grown in the absence (-FV) or presence (+ FV) of the Alternaria alternata crop. It can be seen that the size of the root is larger in the case of plants grown under + PV conditions. A. alternata was grown in solid MS medium supplemented with 90 mM sucrose.
Fig. 5. Efecto de los volátiles producidos por Salmonella enterica LT2 (panel A), las cepas de Agrobacterium tumefaciens indicadas junto a las fotografías (EHA105 o GV2260) (panel B), o las cepas de Pseudomonas syringae 49a/90yPK2(panelC) sobreel crecimientode Arabidopisis, segúnel mediodecultivodela bacteria: medio mínimo (M9) o LB suplementados con 50 mM glucosa. Fig. 5. Effect of volatiles produced by Salmonella enterica LT2 (panel A), the strains of Agrobacterium tumefaciens indicated next to the photographs (EHA105 or GV2260) (panel B), or the strains of Pseudomonas syringae 49a / 90yPK2 (panelC) on the growth of Arabidopisis, according to the bacterial culture medium: minimum medium (M9) or LB supplemented with 50 mM glucose.
Se observa que las plantas de Arabidopsis crecidas en presencia de bacterias crecidas sobre medio LB presentan zonas amarillas (puntosmás claros sobrelas hojas)y menor tamañoy/o aspectode estar enfermas. It is observed that Arabidopsis plants grown in the presence of bacteria grown on LB medium have yellow areas (lighter spots on the leaves) and smaller size and / or appearance of being sick.
Fig. 6: Efecto de los volátiles de especies microbianas en la acumulación de almidón en hojas de Arabidopsis. Fig. 6: Effect of volatile microbial species on starch accumulation in Arabidopsis leaves.
- --
- Panel A: contenido de almidón en hojas de plantas de Arabidopsis cultivadas2 días en medio MS sólido suplementado con sacarosa 90 mM, en presencia o ausencia de: Alternaria alternata,Penicilliumcharlessi,Penicillium aurantiogriseum, Pseudomonas syringae PK2, Pseudomonas syringae 49a/90, Pseudomonas syringae 1448A9, A. tumefaciens GV2260, A. tumefaciens EHA105, E. coli (BW25113), Salmonella enterica (LT2), B. subtilis 168, Saccharomyces cerevisiae NA33.Todoslos microorganismos,exceptoS. cerivisiae,Penicillium aurantiogriseum,y Penicillium charlessi se crecieron en medio sólido M9 suplementado con 50 mM glucosa. P. aurantiogriseum,P.charlessi yA. alternata se crecieron en MS sólido suplementado con 90 mM sacarosa. Panel A: starch content in leaves of Arabidopsis plants grown 2 days in solid MS medium supplemented with 90 mM sucrose, in the presence or absence of: Alternaria alternata, Penicilliumcharlessi, Penicillium aurantiogriseum, Pseudomonas syringae PK2, Pseudomonas syringae 49a / 90, Pseudomonas syringae 1448A9, A. tumefaciens GV2260, A. tumefaciens EHA105, E. coli (BW25113), Salmonella enterica (LT2), B. subtilis 168, Saccharomyces cerevisiae NA33. All microorganisms, except S. cerivisiae, Penicillium aurantiogriseum, and Penicillium charlessi were grown in M9 solid medium supplemented with 50 mM glucose. P. aurantiogriseum, P.charlessi and A. alternata were grown in solid MS supplemented with 90 mM sucrose.
- --
- Panel B: cuantificación del contenido de almidón en hojas de plantas de Arabidopsis, cultivadas en presencia de distintas bacteriasy hongos según se indica bajo las barras correspondientes, barras que están agrupadas según el medio de cultivo del microorganismo: medio mínimo (M9) sólido suplementado con 90 mM glucosa (barras sin relleno) o LB sólido suplementado con 90 mM glucosa (barras con relleno oscuro). Se observa que el efecto positivo sobre el incremento de almidón sólo tiene lugar cuando los microorganismos crecen en medio mínimo. Panel B: quantification of starch content in leaves of Arabidopsis plants, grown in the presence of different bacteria and fungi as indicated under the corresponding bars, bars that are grouped according to the microorganism culture medium: minimum medium (M9) solid supplemented with 90 mM glucose (unfilled bars) or solid LB supplemented with 90 mM glucose (dark filled bars). It is observed that the positive effect on the increase in starch only takes place when microorganisms grow in minimal medium.
- --
- PanelC: contenidode almidónenhojasdeplantasde Arabidopsiscultivadasenlas mismas condicionesdecultivo que en el panel A, en presencia de carbón, un cultivo de A. alternata. A. alternata en presenciade carbón,o un cultivo inicial de Alternaria retirado durantelos3días siguientes,segúnse indicabajolas barras.Seobservala disminución del efecto inductoren presenciade carbónyla desaparicióndel efecto tras3días fueradecontacto conlosvolátiles fúngicos. A. alternata fue cultivada en medio MS sólido suplementado con 90 mM sacarosa. Panel C: starch content in Arabido plant leaves grown in the same culture conditions as in panel A, in the presence of coal, a crop of A. alternata. A. alternata in the presence of coal, or an initial culture of Alternaria removed during the following 3 days, as indicated under the bars. The decrease in the inductive effect is observed in the presence of coal and the disappearance of the effect after 3 days outside of contact with fungal volatiles. A. alternata was grown in solid MS medium supplemented with 90 mM sucrose.
- --
- Panel D: cuantificación del contenido de almidón en tallos de Arabidopsis crecidas en ausencia (-FV) o en presencia (+FV) de volátiles fúngicos producidos por A. alternata. Se observa un aumento muy fuerte del almidón en los tallos en condiciones +FV. A. alternata fue cultivada en medio MS sólido suplementado con 90 mM sacarosa. Panel D: quantification of starch content in stems of Arabidopsis grown in the absence (-FV) or in the presence (+ FV) of fungal volatiles produced by A. alternata. A very strong increase in starch is observed in the stalks under + PV conditions. A. alternata was grown in solid MS medium supplemented with 90 mM sucrose.
- --
- Panel E: contenidode almidón en raíces de Arabidopsis crecidas en ausencia(∅)oen presencia(+FV)devolátiles fúngicos producidos por A. alternata. Se observa también un fuerte aumento del almidón en las raíces en condiciones +FV. A. alternata fue cultivada en medio MS sólido suplementado con 90 mM sacarosa. Panel E: starch content in Arabidopsis roots grown in the absence (∅) or in the presence (+ FV) of fungal devoltants produced by A. alternata. There is also a strong increase in starch in the roots in conditions + FV. A. alternata was grown in solid MS medium supplemented with 90 mM sucrose.
- --
- PanelesFyG: comparación de la biomasa observada en hojas (primera barra de cada pareja, relleno punteado) y en raíces (segunda barra de cada pareja, relleno más oscuro continuo) de Arabidopsis, en ausencia (-FV) o en presencia (+FV) de volátiles fúngicos producidos por A. alternata. El efecto se observa tanto si se determina el peso fresco (panelF)comoel peso seco(panelG). A. alternata fue cultivada en medio MS sólido suplementado con 90 mM sacarosa. Panels FyG: comparison of the biomass observed in leaves (first bar of each couple, dotted filling) and in roots (second bar of each couple, continuous darker filling) of Arabidopsis, in absence (-FV) or in presence (+ FV) of fungal volatiles produced by A. alternata. The effect is observed whether the fresh weight (panelF) or the dry weight (panelG) is determined. A. alternata was grown in solid MS medium supplemented with 90 mM sucrose.
Fig.7: Efectode losvolátiles fúngicos sobre plantasde maízyArabidopsis cultivadas en tierra. Fig. 7: Effect of fungal volatiles on corn plants and Arabidopsis grown on land.
- --
- PanelA:Fotografíasde plantasdemaíz crecidasen tierra,en ausencia(-FV)o presencia durante6días(+FV) de volátiles fúngicos producidos por hongos Alternaria alternata cultivada en medio MS sólido suplementado con 90 mM sacarosa. Se observa que las plantas crecidas en presencia de volátiles son más robustas. Como se demuestran en elPanelB, acumulan másalmidón. PanelA: Photographs of spider plants grown on land, in the absence (-FV) or presence for 6 days (+ FV) of fungal volatiles produced by fungi Alternaria alternata grown in solid MS medium supplemented with 90 mM sucrose. It is observed that plants grown in the presence of volatiles are more robust. As demonstrated in Panel B, they accumulate more starch.
- --
- Panel B: Contenido de almidón, expresado en micromoles de glucosa por gramo de peso húmedo (FW), de las hojas de plantas de maíz del panel A. Control: plantas crecidas en ausencia de volátiles fúngicos; +Hongo: plantas crecidas en presencia durante6díasde un cultivode A. alternata que emite volátiles fúngicos. Panel B: Starch content, expressed in glucose micromoles per gram of wet weight (FW), of the leaves of corn plants in panel A. Control: plants grown in the absence of fungal volatiles; + Fungus: plants grown in the presence for 6 days of a crop of A. alternata that emits fungal volatiles.
- --
- PanelC:Fotografíasde plantasde Arabidopsis crecidasen tierra,en ausencia(-FV)o presencia(+FV)devolátiles fúngicos producidos por hongos Alternaria alternata cultivada en medio MS sólido suplementado con 90 mM sacarosa. Como se demuestran enelPanelD, acumulan más almidón. PanelC: Photographs of Arabidopsis plants grown on land, in the absence (-FV) or presence (+ FV) fungal return produced by fungi Alternaria alternata grown in solid MS medium supplemented with 90 mM sucrose. As demonstrated in PanelPanel, they accumulate more starch.
- --
- Panel D: Contenido de almidón, expresado en micromoles de glucosa por gramo de peso húmedo (FW), de las hojas de plantas de Arabidopsis del panel C. -FV: plantas crecidas en ausencia de volátiles fúngicos; +FV: plantas crecidas durante6días en presenciade un cultivode A. alternata que emite volátiles fúngicos. Panel D: Starch content, expressed in glucose micromoles per gram of wet weight (FW), of the leaves of Arabidopsis plants of panel C. -VF: plants grown in the absence of fungal volatiles; + FV: plants grown for 6 days in the presence of a crop of A. alternata that emits fungal volatiles.
Fig.8: Examen visualymicroscópicode tejidosde plantas crecidasen ausenciao presenciadevolátiles emitidos por Alternaria alternata cultivada en medio MS sólido suplementado con 90 mM sacarosa: Fig. 8: Visual and microscopic examination of tissues of plants grown in the absence or presence of volatiles emitted by Alternaria alternata grown in solid MS medium supplemented with 90 mM sucrose:
- --
- PanelesAyB: tinción de yodo de plantas deArabidopsis completas cultivadas en ausencia o en presencia de FVs, respectivamente. Panels A and B: iodine staining of complete Arabidopsis plants grown in the absence or in the presence of PV, respectively.
- --
- PanelesCyD: análisis de tinciones de yodo mediante microscopía óptica de cortes transversales de hojas de plantas cultivadas en ausencia o en presenciade FVs, respectivamente. Insertos:Patrónde intensidadde tincióny distribución de material positivo para yodo en células de mesófilo individuales. PanelsCyD: analysis of iodine stains by optical microscopy of cross sections of leaves of plants grown in the absence or in the presence of PV, respectively. Inserts: Where staining intensity and distribution of positive material for iodine in individual mesophilic cells.
- --
- PanelesE,F,G: microscopíade barridoconláser confocaldehojasdeplantasqueexpresan GBSS-GFP,cultivadas en ausencia(E)o presencia(FyG)de FVs. Panels E, F, G: confocal laser scanning microscopy of plant leaves expressing GBSS-GFP, grown in the absence (E) or presence (FyG) of PVs.
Barra =5µm enE,F,G; Barra =100 µm enCyD. Bar = 5µm in E, F, G; Bar = 100 µm in CyD.
Fig. 9: Ubicuidad del efecto de los volátiles microbianos entre las plantas. Gráficos en los que se representa la cantidad de almidón (expresado como micromoles de glucosa por gramo de peso fresco del correspondiente extracto foliar) detectado en plantas de Arabidopsis (A), patata (B), maíz(C), cebada (D)y(E) tabaco cultivadas durante3 días en medio MS sólido, con o sin sacarosa 90 mM, tal como se indica debajo de las barras, en presencia (barras con la leyenda “+FV”) o en ausencia (barras con la leyenda “-FV”) de volátiles emitidos por un cultivo de A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Fig. 9: Ubiquity of the effect of microbial volatiles between plants. Graphs representing the amount of starch (expressed as micromoles of glucose per gram of fresh weight of the corresponding leaf extract) detected in Arabidopsis (A), potato (B), corn (C), barley (D) and (E) tobacco grown for 3 days in solid MS medium, with or without 90 mM sucrose, as indicated below the bars, in the presence (bars with the legend "+ FV") or in the absence (bars with the legend "- FV ”) of volatiles emitted by a culture of A. alternata grown in solid MS medium supplemented with 90 mM sucrose.
Fig. 10: Gráficos en los que se representa la cantidad de almidón (expresado como micromoles de glucosa por gramodepeso frescodel correspondienteextractovegetal) acumuladoen tubérculos(panelA)ytallos(panelB)de plantas de patata cultivadas en medio MS sólido sin sacarosa en presencia o en ausencia de FVs emitidos por A. alternata cultivada en medio MS sólido suplementado con 90 mM sacarosa. Fig. 10: Graphs depicting the amount of starch (expressed as micromoles of glucose per fresh gram of the corresponding plant extract) accumulated in tubers (panel A) and tails (panel B) of potato plants grown in solid MS medium without sucrose in the presence or absence of VF emitted by A. alternata grown in solid MS medium supplemented with 90 mM sucrose.
Fig. 11: Acumulación de almidón en hojas desprendidas de la planta promovida por volátiles fúngicos emitidos por un cultivo de A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Fig. 11: Accumulation of starch in leaves detached from the plant promoted by fungal volatiles emitted by a culture of A. alternata grown in solid MS medium supplemented with 90 mM sucrose.
- --
- PanelesA,B,C,D: Gráficosenlosquese representalacantidadde almidón(expresado como micromolesde glucosa por gramo de peso fresco del correspondiente extracto foliar) detectado en hojas de Arabidopsis (A), patata (B), maíz(C), cebada(D)mantenidasdurante2 díasen medioMS sólido(conosin sacarosa 90mM,tal comose indica debajo de las barras), en presencia (barras con la leyenda “+FV”) o en ausencia (barras con la leyenda “-FV”) de volátiles emitidos por un cultivo de A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Panels A, B, C, D: Graph them that represent the amount of starch (expressed as micromoles of glucose per gram of fresh weight of the corresponding leaf extract) detected in Arabidopsis leaves (A), potato (B), corn (C), barley (D) maintained for 2 days in solid MS medium (conosin sucrose 90mM, as indicated below the bars), in the presence (bars with the legend “+ FV”) or in the absence (bars with the legend “-FV”) of volatiles emitted by a culture of A alternata grown in solid MS medium supplemented with 90 mM sucrose.
- --
- Panel E:Fotografías que ilustran las condiciones en las que se mantuvieron las hojas de plantas de patata en ausencia (columna con la etiqueta “-FV”) o en presencia (columna con la etiqueta “+FV”) de volátiles microbianos. Panel E: Photographs illustrating the conditions under which the leaves of potato plants were maintained in the absence (column labeled "-FV") or in the presence (column labeled "+ FV") of microbial volatiles.
Fig. 12: Acumulación de almidón en hojas desprendidas de la planta cultivadas en superficie de papel mojada en MS líquidoo en aguapromovidaporvolátiles fúngicos emitidos por un cultivode A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Fig. 12: Accumulation of starch in detached leaves of the plant grown on wet paper surface in liquid MS or in fungal volatile water emitted by a culture of A. alternata grown in solid MS medium supplemented with 90 mM sucrose.
- --
- Panel A: Gráfico en el que se representa la cantidad de almidón (expresado como micromoles de glucosa por gramo de peso fresco del correspondiente extracto foliar) detectado en hojas de tabaco mantenidas durante 2 días enpapelmojadoenaguaoenMS líquido(conosin sacarosa 90mM,tal comose indicadebajodelas barras),en presencia (barras con la leyenda “+FV”) o en ausencia (barras con la leyenda “-FV”) de volátiles emitidos por un cultivo de A. alternata. Panel A: Graph depicting the amount of starch (expressed as micromoles of glucose per gram of fresh weight of the corresponding leaf extract) detected in tobacco leaves held for 2 days in paper in water or in liquid MS (90 mM sucrose, as indicated under bars) , in the presence (bars with the legend "+ FV") or in the absence (bars with the legend "-FV") of volatiles emitted by a culture of A. alternata.
- --
- PanelB:Fotografíasque ilustranlas condicionesenlasquese mantuvieronlashojasdeplantasde tabaco cultivadasensuperficiedepapelmojadaenMSlíquidooenaguaen ausencia(columnaconlaetiqueta“-FV”)oenpresencia (columna con la etiqueta “+FV”) de volátiles microbianos emitidos por A. alternata. PanelB: Photographs that illustrate the conditions in which the leaves of cultivated tobacco plants were maintained on their wetted surface in liquid or in water in the absence (column with the “-VF” label) or presence (column with the “+ FV” label) of microbial volatiles emitted by A. alternata.
Fig. 13:Abundancia relativa,expresada comofactordevariación,de losnivelesde transcritosde losgenes indicados en abscisas, medidos mediante real time (RT)-PCR cuantitativa, en hojas de plantas de patata cultivadas en presenciadevolátiles fúngicos emitidospor A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa.Losfactoresdevariación representadosson relativosalashojas controlde plantas cultivadasen ausenciadeFVs. Las plantas se cultivaron durante3días en presenciade FVsen medioMS sólido suplementado con sacarosa90mM, yse recogieronal finaldel períododeluz.LosnivelesdetranscritosdeSuSy(sacarosa sintasa)ydel translocadorde glucosa-6-P se midieron tanto en presencia (+sac) como en ausencia (-sac) de sacarosa. Fig. 13: Relative abundance, expressed as a factor of variation, of the levels of transcripts of the indicated genes in abscissa, measured by quantitative real time (RT) -PCR, in leaves of potato plants grown in the presence of fungal volatiles emitted by A. alternata grown in solid MS medium supplemented with 90 mM sucrose.The variation factors represented are relative to the control leaves of cultivated plants in the absence of PVs. The plants were grown for 3 days in the presence of solid FMS medium medium supplemented with 90 mM sucrose, and collected at the end of the light period. The levels of their Sysy (sucrose synthase) and glucose-6-P translocator were measured both in the presence (+ sac) and in the absence (-sac) of sucrose.
Fig. 14: Categorización funcional de los transcritos diferencialmente expresados en hojas de patata cultivadas en MS suplementado (panel A) o no (panel B) con sacarosa 90 mM en presencia de volátiles fúngicos emitidos por A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Los transcritos se identificaron usando el array de oligos 60-méros POCI 44K(http://pgrc.ipk-gatersleben.de/poci). Los transcritos regulados significativamente al alzay alabaja (diferenciade2,5vecesen plantas cultivadas con sacarosa y diferenciade1,9vecesenplantas cultivadas sin sacarosa) comparados con los controles, se clasificaron según su categoría funcional teórica según el software MapMan. Dicha categoríaseindicabajoelejede abscisas.En ordenadasse indicael númerode genesdesregulados en cada grupo categórico. Los genes reguladosal alza aparecen enbarras con relleno más claroylos genes regulados a la baja aparecen en barras con relleno más oscura. Los genes de la categoría “ningún efecto encontrado” no se incluyeron en el gráfico. Fig. 14: Functional categorization of differentially expressed transcripts in potato leaves grown in supplemented MS (panel A) or not (panel B) with 90 mM sucrose in the presence of fungal volatiles emitted by A. alternata grown in solid MS medium supplemented with 90 mM sucrose. The transcripts were identified using the 60-meter oligo array POCI 44K (http://pgrc.ipk-gatersleben.de/poci). Regulated transcripts significantly alzay and alabaja (difference of 2.5 times in plants grown with sucrose and difference of 1.9 times in plants grown without sucrose) compared to controls, were classified according to their theoretical functional category according to MapMan software. This category is indicated under the abscissa axis. The number of genes deregulated in each categorical group is indicated in ordinates. The upregulated genes appear in bars with lighter fill and the downward regulated genes appear in bars with darker fill. The genes of the category "no effect found" were not included in the graph.
Fig.15: AnálisisdeAGPen transferenciastipoWesterndehojasdeplantasde patata,en condicionesno reductoras (sin ditiotreitol10 mM: -DTT)y reductoras (con ditiotreitol10 mM:+ DTT). Las plantas completas se cultivaron durante3díasenmedioMS sólido suplementadocon sacarosa90mMen presencia(“+FV”)oen ausencia(“-FV”) de volátiles emitidos por A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Fig. 15: Analysis of AGP in Western blot transfer of potato plant leaves, under non-reducing conditions (without 10 mM dithiothreitol) and reducing (with 10 mM dithiothreitol: + DTT). Whole plants were grown for 3 days in solid MS supplemented with sucrose90mM in the presence ("+ FV") or in the absence ("- FV") of volatiles emitted by A. alternata grown in solid MS medium supplemented with 90 mM sucrose.
Fig. 16: Gráficos en los que se demuestra que los cambios en la actividad AGP juegan un papel menor en la acumulaciónde almidón inducidaporvolátilesenhojasde patata:(A)actividadAGP,(B) contenidode almidón,y(C) contenidode ADPG en hojasde plantas tipo silvestre (WT)yAGP62 (plantas antisentidodela subunidad pequeñade la ADPG pirofosforilasa) cultivadasen presencia (“+FV”)yen ausencia (“-FV”)devolátiles emitidospor A. alternata crecido en medioMS sólido suplementado con90mM sacarosa Las plantas completas se cultivaron durante3díasen medio MS sólido suplementado con sacarosa 90 mM. Fig. 16: Graphs showing that changes in AGP activity play a minor role in the accumulation of volatile induced starch in potato blades: (A) AGP activity, (B) starch content, and (C) ADPG content in wild-type plant leaves (WT) and AGP62 (antisense plants of the small subunit of the ADPG pyrophosphorylase) grown in the presence (“+ FV”) and in the absence (“-FV”) returned by A. alternata grown in solid MS medium supplemented with 90mM sucrose The whole plants were grown for 3 days in solid MS medium supplemented with 90 mM sucrose.
Fig. 17: Gráficos en los que se representa, en hojas de patata cultivadas en presencia (+FV) o en ausencia (-FV) de volátiles fúngicos emitidos por Alternaria alternata crecido en medio MS sólido suplementado con 90 mM sacarosa: la actividad de SuSy productora de ADPG (panel A),ylos contenidos intracelulares de almidón (panel B), ADPG (panelC)yUDPG(panelD),todoelloexpresadocon referenciaalosgramosdepesofresco.Seobserva correlación entrela actividadde SuSy(sacarosa sintasa)ylos contenidosde los otros compuestos. Fig. 17: Graphs depicting, in potato leaves grown in the presence (+ FV) or in the absence (-FV) of fungal volatiles emitted by Alternaria alternata grown in solid MS medium supplemented with 90 mM sucrose: the activity of Its producer of ADPG (panel A), and the intracellular contents of starch (panel B), ADPG (panel C) andUDPG (panel D), all expressed with reference to the grams of fat, observe correlation between the activity of SuSy (sucrose synthase) and the contents of the other compounds.
Fig. 18: Análisis de SuSy en transferencias tipo Western en hojas de plantas de patata cultivadas en presencia Fig. 18: Analysis of SuSy in Western blots on leaves of potato plants grown in the presence
(A)yausencia(B) de sacarosa tratadasy no tratadas con FVs emitidos por A. alternata crecido en medioMSsólido suplementado con 90 mM sacarosa. (A) and absence (B) of sucrose treated and not treated with VF emitted by A. alternata grown in solid medium supplemented with 90 mM sucrose.
Fig. 19: Gráfico donde se representa el contenido de almidón (expresado como µmoles de glucosa por gramo de peso fresco) medido en plantasde patata cultivadas durante2días en enMS suplementado con sacarosa90mMylas concentraciones indicadasde cisteína, glicina, serinaymetionina en ausencia (-FV)o en presencia (+FV)devolátiles emitidos por A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa. Fig. 19: Graph showing the starch content (expressed as µmoles of glucose per gram of fresh weight) measured in potato plants grown for 2 days in MS supplemented with sucrose90mM and the indicated concentrations of cysteine, glycine, serine and methionine in the absence (-FV) or in presence (+ FV) returned by A. alternata grown in solid MS medium supplemented with 90 mM sucrose.
Fig.20:Losvolátilesfúngicos promueven tantola reduccióndel contenidode amilosa como cambiosenla composición de la amilopectina. Fig. 20: Fungal volatiles promote both the reduction of amylose content and changes in the composition of amylopectin.
- --
- Panel (A): Porcentaje de amilosa respecto a la amilopectina en hojas de plantas de patata cultivadas en presencia (+FV)yausencia(-FV)devolátiles fúngicos emitidospor A. alternata crecido en medioMSsólido suplementado con 90 mM sacarosa. Panel (A): Percentage of amylose with respect to amylopectin in leaves of potato plants grown in the presence (+ FV) and in the absence (-FV) fungal return emitted by A. alternata grown in solid medium supplemented with 90 mM sucrose.
- --
- Panel (B): Perfiles de distribución de longitudes de cadena (grado de polimerización: GP) en amilopectina desramificadapurificadaapartirdehojasdeplantasdepatatacultivadasen presenciayausenciadeFVs(barrasnegrasy blancas, respectivamente). Panel (B): Chain length distribution profiles (degree of polymerization: GP) in branched amylopectin purported to distribute cultivated potato plant leaves in the presence and absence of PVs (black and white bars, respectively).
- --
- Panel (C): Diferencia entre las distribuciones de longitudes de cadena de amilopectina desramificada purificada dehojas cultivadasen presenciay en ausenciadevolátiles fúngicos emitidospor A. alternata crecido en medio MS sólido suplementado con 90 mM sacarosa, calculado como la diferencia entre el perfil en presencia de FVs menos el perfil en ausencia de FVs. Panel (C): Difference between distributions of purified branched amylopectin chain lengths in the presence and absence of fungal volatile emitted by A. alternata grown in solid MS medium supplemented with 90 mM sucrose, calculated as the difference between the profile in the presence of less FVs the profile in the absence of PV.
Fig. 21: Representación esquemática de las principales rutas de metabolismo de hidratos de carbono que se producen duranteel MIVOISAP segúnla visiónalternativadela biosíntesis del almidón.El panelArepresenta las situaciones que es probable que se den cuando las plantas se cultivan en condiciones heterotróficas, mientras que el panel Brepresenta situaciones que es probable que se den cuando las plantas se cultivan en condiciones autotróficas.Los cambiosenlaexpresiónde genesquecodifican enzimas principalesdel metabolismode hidratosde carbonose indican mediantevariacionesenla escalade grisesy enla continuidaddelas líneas (líneas grises discontinuas, incremento; líneas grises continuas, disminución; líneas negras, sin diferencias significativas). Fig. 21: Schematic representation of the main carbohydrate metabolism pathways that occur during MIVOISAP according to the alternative vision of starch biosynthesis.The panel represents the situations that are likely to occur when plants are grown in heterotrophic conditions, while the panel It represents situations that are likely to occur when plants are grown under autotrophic conditions.The changes in the expression of genes that encode major enzymes of carbohydrate metabolism indicate by variations in the gray scale and in the continuity of the lines (dashed gray lines, increase; continuous gray lines, decrease; black lines, no differences signi fi cant).
Ejemplos Examples
Los Ejemplos de la presente solicitud incluyen ensayos realizados con los siguientes materialesytécnicas metodológicas: Examples of the present application include tests performed with the following methodological materials and techniques:
- --
- Plantas, cultivos microbianos, condicionesde crecimientoyobtenciónde muestras Plants, microbial cultures, growth conditions and sample collection
Este trabajo se llevóa cabo utilizando plantasde Arabidopsis thaliana (cv. Columbia),patata(Solanum tuberosum This work was carried out using Arabidopsis thaliana plants (cv. Columbia), potato (Solanum tuberosum
L. cv Desirée), tabaco(Nicotiana tabacum), maíz(Zea mays, cv. Hill), cebada(Hordeum vulgare cv. Golden promise) cultivadasenplacasPetrique conteníanmedioMSsólidoconosin sacarosa90mMyla suplementaciónconaminoácidos indicada. Las plantas se hicieron crecer en cámarasde crecimiento con un fotoperíodode16hde luz (300 µmol fotones s−1m−2)ya una temperatura constantede 24ºC. L. cv Desirée), tobacco (Nicotiana tabacum), maize (Zea mays, cv. Hill), barley (Hordeum vulgare cv. Golden promise) grown in PlaquesPetrique contained mediumSmidoconosin without sucrose90mMyla supplementation with indicated amino acids. The plants were grown in growth chambers with a photoperiod of 16h of light (300 µmol photons s − 1m − 2) and at a constant temperature of 24 ° C.
E. coli BW25113, A. tumefaciens EHA105yGV2260, Salmonella enterica LT2,Bacillus subtilis 168(Bacillus Genetic Stock Center,OhioState University,Columbus)y Pseudomonas syringae 1448A9, 49a/90yPK2 se cultivaron en placas Petri que contenían medio mínimo M9 sólido (95 mM Na2HPO4/44 mM KH2PO4/17 mM NaCl/37 mM NH4Cl/0,1 mM CaCl2/2 mM MgSO4, agar bacteriológico al 1,5%) suplementado con glucosa 50 mM. S. cerevisiae NA33 se cultivaron en placas que contenían medio sólido LB (triptona al 1%, NaCl al 1%, extracto de levaduras al 0,5%y agar bacteriológico al 1,5%) suplementado con glucosa 50 mM. Las colonias de Penicillium chartesii y Penicillium aurantiogriseiumo de Alternaria alternata se cultivaron en placas Petri que contenían medio MS sólido suplementado con sacarosa90mM. E. coli BW25113, A. tumefaciens EHA105 and GV2260, Salmonella enterica LT2, Bacillus subtilis 168 (Bacillus Genetic Stock Center, Ohio State University, Columbus) and Pseudomonas syringae 1448A9, 49a / 90yPK2 were grown in Petri dishes containing medium M9 solid (95 m solid) Na2HPO4 / 44 mM KH2PO4 / 17 mM NaCl / 37 mM NH4Cl / 0.1 mM CaCl2 / 2 mM MgSO4, 1.5% bacteriological agar) supplemented with 50 mM glucose. S. cerevisiae NA33 were grown on plates containing LB solid medium (1% tryptone, 1% NaCl, 0.5% yeast extract and 1.5% bacteriological agar) supplemented with 50 mM glucose. The colonies of Penicillium chartesii and Penicillium aurantiogriseiumo of Alternaria alternata were grown in Petri dishes containing solid MS medium supplemented with sucrose90mM.
Los cultivos microbianos se colocaron en cajas de plástico estérilesy se sellaron. Después de dos días, las placas Petri que contenían plantas completamente desarrolladas se colocaron en cajas que contenían cultivos microbianos, talcomose ilustraenlaFig.2.Lascajassesellaronylashojasserecogierontraslostiemposdeincubación indicados para realizar los análisis bioquímicos y de transcriptomas. A menos que se indique de otra manera, las hojas se recogieron al final de período de luz. Como control negativo, las placas Petri que contenían plantas completamente desarrolladassecultivaronencajasdeplástico selladasjuntoconplacasPetriqueposeíanmedio estérilparaelcultivo de microorganismos. Microbial cultures were placed in sterile plastic boxes and sealed. After two days, the Petri dishes containing fully developed plants were placed in boxes containing microbial cultures, as illustrated in Fig. 2. The boxes were dried and the leaves were collected after incubation times indicated for biochemical and transcriptome analyzes. Unless stated otherwise, the leaves were collected at the end of the light period. As a negative control, the Petri dishes containing fully developed plants were grown in sealed plastic boxes together with plates. Petrique possessed sterile medium for microorganism culture.
- --
- Análisisde transferenciastipoWestern Western Type Transfer Analysis
Para producir antisueros policlonales contra Sus4, un cDNAcodificante de Sus4 de longitud completa se clonó en el vector de expresión pET-28b(+) (Novagen) para crear pET-SuSy. Las células BL21(DE3) transformadas con pET-SuSyse hicieron creceren100mlde medioLB líquido hasta una absorbancia a600nmde0,5yluegose añadió isopropil-β-D-tiogalactopiranósido1mM.Pasadas5h, las células se centrifugarona 6.000xgdurante10 min.Las bacterias sedimentadasse resuspendieronen6mlde tampónde uniónHis-bind(Novagen), tratado con ultrasonidos y centrifugadoa 10.000xgdurante10 min.El sobrenadante así obtenido sesometióa cromatografía en His-bind (Novagen). La Sus4 etiquetada con His eluída se desaló rápidamente mediante ultracentrifugación en una Centricon YM-10 (Aicon, Bedford, MA).La proteína purificada se separó electroforéticamente mediantePAGE preparativacon SDS al 12%y se tiñó con Azul de Coomassie. Una banda de proteínas de aproximadamente. 90 kDa se eluyóy se utilizó para producir antisueros policlonales inmunizando conejos. To produce polyclonal antisera against Sus4, a full-length Sus4 coding cDNA was cloned into the expression vector pET-28b (+) (Novagen) to create pET-SuSy. BL21 (DE3) cells transformed with pET-SuSy were grown in 100ml of liquid medium to an absorbance at 600nm of 0.5 and then added isopropyl-β-D-thiogalactopyranoside 1m. After 5h, the cells were centrifuged 6,000xg for 10 min. ), treated with ultrasound and centrifuged at 10,000xg for 10 min.The supernatant thus obtained sesometióa chromatography in His-bind (Novagen). The Sus4 labeled with eluted His was rapidly desalted by ultracentrifugation in a YM-10 Centricon (Aicon, Bedford, MA). The purified protein was electrophoretically separated by preparative PAGE with 12% SDS and stained with Coomassie Blue. A band of proteins of approximately. 90 kDa was eluted and used to produce polyclonal antisera by immunizing rabbits.
Para los análisisde inmunotransferencias, lasmuestrasde proteínas se separaron enPAGE con SDSal 10%, se transfirierona filtrosde nitrocelulosa,y se inmunodecoraron utilizando antisueros obtenidos frenteaAGPde maízo SuSyde patata comoanticuerpo primario,y unaIgGde cabra anti-conejo conjugada confosfatasa alcalina (Sigma) como anticuerpo secundario.Enel casode las transferencias tipoWesterndeAGP, las muestras seextrajerony se separaron en SDS-PAGE en condiciones reductoras/no reductoras esencialmente como ha sido descrito porKolbe et al.(Kolbe et al.,2005:Trehalose 6-phosphateregulatesstarchsynthesisvia posttranslationalredoxactivationofADPglucosepyrophosphorylaseProc. Natl. Acad. Sci. USA 102: 11118-11123). For immunoblotting analyzes, the protein samples were separated on PAGE with 10% SDSal, nitrocellulose fi lters were transferred, and immunodecorated using antisera obtained against AGP of SuSy maize potato as primary antibody, and a IgG of goat anti-rabbit conjugated confosphatase as secondary antibody. In the case of Western-type AGP transfers, seextrajerony samples were separated on SDS-PAGE under reducing / non-reducing conditions essentially as described by Kolbe et al. (Kolbe et al., 2005: Trehalose 6-phosphateregulatesstarchsynthesisvia posttranslationalredoxactivationofADPglucosepyrophosphci.lst. 102: 11118-11123).
- --
- Ensayos enzimáticos Enzymatic assays
1gdepolvo congeladodehojase resuspendióa4ºCen5mlde HEPES100mM(pH7,5)yEDTA2mM. Cuando se indicó así, se añadió DTT 5 mM al tampón de extracción. La suspensión se desaló y se ensayaron en ella las actividades enzimáticas.El ensayode las actividadesAGP, SuSy,invertasa ácida,PPasaySS total se realizó tal como ha sido descrito porBaroja-Fernández et al. (Baroja Fernández et al.,2009: Enhancing sucrose synthase activity in transgenic potato(Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield, Plant Cell Physiol. 50: 1651-1662). El ensayo de la β-amilasa se realizó comoha sido descritopor Liu et al. (Liu et al., 2005:Toxicity of arsenate and arsenite on germination, seedling growth and amylolitic activity of wheat, Chemosphere 61: 293-301). La actividad SBE se medió como la disminución en la absorbancia del complejo amilosa-yodo tal comoha sido descrito porVos-Scheperkeuter et al. (Vos-Scheperkeuter et al., 1989: Immunological comparison of the Starch Branching Enzymes for potato tubers and Maize leaves, Plant Phylio. 90: 75-84). La nitrito reductasa se midió siguiendo el método descrito por Rao et al. (Rao et al., 1981: Phytochrome regulation of nitrite reductase-a chloroplast enzyme-in etiolated maize leaves, Plant Cell Physiol, 22: 577-582). La pG6PDH se medió según Hauschild et al. (Hauschild et al., 2003: Differential regulation of glucose-6-phosphate dehydrogenase isozyme activities in potato, Plant Physiol. 133: 47-62). El ensayo de la fructosa-1,6-bifosfatasa citosólica se realizó tal como ha sidodescrito por Lee and Hahn (Lee and Hahn, 2003: Light-regulated differentialexpressionof pea chloroplast and cytosolic fructose-1,6-bisphosphatase, Plant Cell Rep. 21:611-618). Una unidad (U) se define como la cantidad de enzima que catalizalaproducciónde1 µmol de producto por min. 1g of frozen powder should be resuspended at 4 ° C in 5ml of HEPES100mM (pH7.5) and EDTA2mM. When indicated, 5 mM DTT was added to the extraction buffer. The suspension was desalted and enzymatic activities were tested in it. The assay of the activities AGP, SuSy, acid invertase, total PPas and SSS was performed as described by Baroja-Fernández et al. (Baroja Fernández et al., 2009: Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield, Plant Cell Physiol. 50: 1651-1662). The β-amylase assay was performed as described by Liu et al. (Liu et al., 2005: Toxicity of arsenate and arsenite on germination, seedling growth and amylolitic activity of wheat, Chemosphere 61: 293-301). SBE activity was measured as the decrease in absorbance of the amylose-iodine complex as described by Vos-Scheperkeuter et al. (Vos-Scheperkeuter et al., 1989: Immunological comparison of the Starch Branching Enzymes for potato tubers and Maize leaves, Plant Phylio. 90: 75-84). Nitrite reductase was measured following the method described by Rao et al. (Rao et al., 1981: Phytochrome regulation of nitrite reductase-a chloroplast enzyme-in etiolated maize leaves, Plant Cell Physiol, 22: 577-582). PG6PDH was measured according to Hauschild et al. (Hauschild et al., 2003: Differential regulation of glucose-6-phosphate dehydrogenase isozyme activities in potato, Plant Physiol. 133: 47-62). The cytosolic fructose-1,6-bisphosphatase assay was performed as described by Lee and Hahn (Lee and Hahn, 2003: Light-regulated differentialexpressionof pea chloroplast and cytosolic fructose-1,6-bisphosphatase, Plant Cell Rep. 21 : 611-618). One unit (U) is defined as the amount of enzyme that catalyzes the production of 1 µmol of product per min.
- --
- Determinaciónde ADPG, UDPGy3-fosfoglicerato Determination of ADPG, UDPG and 3-phosphoglycerate
Una alícuotade0,5gdel tejidovegetalpulverizado congeladoen nitrógeno líquidose resuspendió en4mlde HClO41,0M,sedejóa4ºC durante2hy secentrifugóa 10.000gdurante5min.El sobrenadantese neutralizó con K2CO35M,se centrifugóa 10.000gyse sometióa análisisde medidadelos nucleótido-azúcarestal comoha sido descrito por Muñoz et al. (Muñoz et al., 2005:Sucrose synthase controlsthe intracellularlevelsofADPglucose linked to transitory starch biosynthesis in source leaves, Plant Cell Physiol. 46: 1366-1376) por HPLC en un sistema obtenido deP.E.Watersand Associates acopladoa una columnaPartisil-10-SAX.El3-fosfogliceratose midió comohasido descrito por Muñoz et al. (Muñoz et al., 2005:Sucrose synthase controlsthe intracellularlevelsofADPglucose linked to transitory starch biosynthesis in source leaves, Plant Cell Physiol. 46: 1366-1376). An aliquot of 0.5g of the frozen powdered vegetable green tissue in liquid nitrogen was resuspended in 4ml of HClO41.0M, was set at 4 ° C for 2h and was centrifuged at 10,000g for 5min. The supernatant was neutralized with K2CO35M, 10,000g was centrifuged and subjected to a measurement of nucleotide measurement as it had been carried out by the nucleotide. (Muñoz et al., 2005: Sucrose synthase controlsthe intracellularlevelsofADPglucose linked to transitory starch biosynthesis in source leaves, Plant Cell Physiol. 46: 1366-1376) by HPLC in a system obtained from P.E.Watersand Associates coupled to a columnPartisil-10-SAX .3-phosphoglycerate measured as has been described by Muñoz et al. (Muñoz et al., 2005: Sucrose synthase controlsthe intracellularlevelsofADPglucose linked to transitory starch biosynthesis in source leaves, Plant Cell Physiol. 46: 1366-1376).
- --
- Procedimientos analíticos Analytical procedures
El almidón se midió utilizando un kit de ensayo basado en la amiloglucosidasa (BoehringerMannheim, Alemania). El contenido de amilosa del almidón se midió yodométricamente según Hovenkamp-Hermelink et al. (Hovenkamp-Hermelink et al., 1988: Rapid estimation of the amylose/amylopectin ratio in small amounts of tuber and leaf tissue of the potato Potato Res. 31: 241-246). El análisis de la distribución de cadenas laterales del almidón aislado se llevó a cabo mediante HPAEC-PAD esencialmente como ha sido descrito por Abel et al. (Abel et al., 1996: Cloning and functional analysisofacDNAencodinganovel139kDa starch synthasefrom potato(Solanum tuberosum L.), Plant Starch was measured using a test kit based on amyloglucosidase (BoehringerMannheim, Germany). The amylose content of starch was measured household and according to Hovenkamp-Hermelink et al. (Hovenkamp-Hermelink et al., 1988: Rapid estimation of the amylose / amylopectin ratio in small amounts of tuber and leaf tissue of the potato Potato Res. 31: 241-246). The side chain distribution analysis of isolated starch was carried out by HPAEC-PAD essentially as described by Abel et al. (Abel et al., 1996: Cloning and functional analysisofacDNAencodinganovel139kDa starch synthasefrom potato (Solanum tuberosum L.), Plant
J. 10: 981-991) utilizando unsistema DX-500 (Dionex) acopladoa una columna CarboPacPA10. J. 10: 981-991) using a DX-500 (Dionex) system coupled to a CarboPacPA10 column.
- --
- Microarrays Microarray
ElRNAtotalseextrajodehojasde patatacongeladas utilizandoel métododelTrizol siguiendoel procedimiento del fabricante (Invitrogen), seguido por la purificación con el kit RNeasy (Qiagen). La amplificación, marcado yanálisis de datos estadísticos relativos al RNA se llevaron a cabo básicamente como ha sido descrito por Adié et al. (Adié et al., 2007: ABAis an essential signal for plant resistance to pathogens affectingJAbiosynthesis and the activation of defenses in Arabidopsis,PlantCell19: 1665-1681).Parala hibridaciónse utilizaron portaobjetosconmicroarrays Agilent POCI4 x44 (015425)que contienen246.000etiquetasde secuenciaexpresadasque corresponden a 46.345 unigenes (http://pgrc.ipk-gatersleben.de/poci) (Kloosterman et al. 2008: Genes driving potato tuber initiation and growth: identification based on transcriptomal changes using the POCI array, Funct Integr. Genomcs 8: 329340). Las condiciones de mareaje e hibridación fueron las descritas en “The manual two color microarray based gene expression Analysis” (“El manual del análisisdelaexpresiónde genes basado en microarraysde dos colores”)de AgilentTechnologies.Paralashojasdelasplantas tratadasconmicroorganismosydelasplantas controlse hibridaron tres réplicasbiológicas independientes.Las imágenesdelos canalesCy3e Hyper5seequilibraron con respectoalas diferencias enla intensidady se capturaron con un escáner GenePix 4000B (Axon). Los puntos se cuantificaron utilizandoel software GenPix (Axon)y se normalizaron utilizandoel métododeLowess.Se calcularon las mediasde los logaritmosde las relacionesde intensidades para las tres réplicasy sus desviaciones estándarylos datosdeexpresión se analizaron estadísticamente utilizando el paquete informático LIMMA (Smyth and Speed, 2003: Normalization of cDNAmicroarray data, Methods31: 265-273).La caracterización funcionaldelos genes diferencialmenteexpresados se hizo utilizandola herramienta Mapman(http://gabi.rzpd.de/projects/MapMan/). The total RNA was extracted from frozen potato leaves using the Trizol method following the manufacturer's procedure (Invitrogen), followed by purification with the RNeasy kit (Qiagen). The ampli fi cation, marking and analysis of statistical data related to RNA were carried out basically as described by Adié et al. (Adié et al., 2007: ABAis an essential signal for plant resistance to pathogens affecting JAbiosynthesis and the activation of defenses in Arabidopsis, PlantCell19: 1665-1681) .For hybridization, Agilent POCI4 x44 (015425) slides were used containing 246,000 sequence labels corresponding to the sequence 46,345 unigenes (http://pgrc.ipk-gatersleben.de/poci) (Kloosterman et al. 2008: Genes driving potato tuber initiation and growth: identification based on transcriptomal changes using the POCI array, Funct Integr. Genomcs 8: 329340) . The tide and hybridization conditions were those described in "The manual two color microarray based gene expression Analysis" of AgilentTechnologies. For the leaflets treated with microorganisms and plants control three hybrid replicas were hybridized. with respect to the differences in intensity and were captured with a GenePix 4000B scanner (Axon). The points were quantified using GenPix software (Axon) and normalized using the Light method. The means of the logarithms of the intensities ratios for the three replicas were calculated and their deviations are in the expression data analyzed statistically using the LIMMA software package (Smyth and Speed, 2003: Normalization of cDNAmicroarray data, Methods31: 265-273). Functional characterization of differentially expressed genes was done using the Mapman tool (http://gabi.rzpd.de/projects/MapMan/).
- --
- PCR cuantitativa enTiempo Real Quantitative PCR in Real Time
El RNAtotal se extrajo de las hojas de patata como se hizo para los experimentos de microarrays. El RNAse trató con DNAasa libre de RNAasas (Takara). Se realizó la transcripción inversa de 1,5 µgde RNAutilizando cebadores depoliTyelkitExpandReverseTranscriptase(Roche) siguiendolas instruccionesdelfabricante.La reaccióndeRT-PCR se llevó a cabo utilizando un sistema detector de secuencias 7900HT (Applied Biosystems) con el SYBR Green PCR MasterMix (Applied Biosystems)segúnelprotocolodelfabricante.Cada reacciónsellevóacabopor triplicado con 0,4 µL de la primera cadena de cDNA en un volumen total de 20 µL. La especificidad de la amplificación por PCR se comprobó con una curva de calor de disociación (de 60ºC a 95ºC). Los valores comparativos del umbral se normalizaron con respectoaun control internodeRNA18Sy se compararon para obtenerniveles relativosde expresión. La especificidad de los productos de RT-PCR obtenidos se controló en geles de agarosa al 1,8%. Los cebadores utilizados para lasRT-PCRs se enumerana continuación enlaTabla1: Total RNA was extracted from potato leaves as was done for microarray experiments. RNA was treated with RNAase-free DNAase (Takara). Reverse transcription of 1.5 µg of RNA was performed using depoliTyelkitExpandReverseTranscriptase (Roche) primers following the manufacturer's instructions.RT-PCR reaction was carried out using a 7900HT (Applied Biosystems) sequence detection system with the SYBR Green PCR MasterMix (Applied Biosystems) according to the main protocol. Each reaction was carried in triplicate with 0.4 µL of the first cDNA chain in a total volume of 20 µL. The specificity of the PCR ampli fi cation was checked with a dissociation heat curve (from 60 ° C to 95 ° C). The comparative threshold values were normalized with respect to an internal control of RNA18S and were compared to obtain relative levels of expression. The specificity of the RT-PCR products obtained was monitored in 1.8% agarose gels. The primers used for the RT-PCRs are listed below in Table 1:
TABLA1 TABLE 1
Cebadoresde PCR cuantitativa enTiempo Real Real Time Quantitative PCR Primers
- --
- Tinciónde yodoylocalización microscópicade gránulosde almidón Iodine staining and microscopic location of starch granules
Lashojasrecogidasalfinaldelperíododeluzsefijaronpor inmersiónen formaldehídoal3,7%entampónfosfato. Luego se retiraron los pigmentos foliares con etanol al 96%. Las muestras rehidratadas se tiñeron con soluciónde yodo(KI2% (w/v)121% (w/v)) durante30 min, se sumergieron rápidamente en agua desionizadayse fotografiaron. Las hojas parala observación microscópicade almidón se montaron en portaobjetosde microscopioy seexaminaron mediante microscopía confocal utilizando láser de excitación de Ar 488. Las muestras de las que se iban a obtener secciones se sumergieron en medio crioprotector OCT(Tissue-Tec, USA)y se congelarona -50ºC.Se obtuvieron criosecciones de 10 µm de espesor en un criotomo AS620 (Shandon, Inglaterra). Después de descongelarlas, las secciones se tiñeron con soluciónde yodo durante2 mina temperatura ambiente, se montaron en portaobjetosde microscopioy se observaron utilizando un estereomicroscopio Olympus MVX10 (Japón). Las microfotografías se capturaron con una vídeo-cámara DP72 (Olympus, Japón)yel software CellD(Olympus, Japón). The leaves collected at the end of the light period were fixed by immersion in formaldehyde at 3.7% of the phosphate. Then the foliar pigments with 96% ethanol were removed. The rehydrated samples were stained with iodine solution (KI2% (w / v) 121% (w / v)) for 30 min, quickly immersed in deionized water and photographed. The sheets for microscopic starch observation were mounted on microscope slides and seexaminated by confocal microscopy using excitation laser of Ar 488. Samples from which sections were to be obtained were immersed in OCT cryoprotectant medium (Tissue-Tec, USA) and frozen - 50 ° C. 10 µm thick cryosections were obtained on an AS620 cryotome (Shandon, England). After defrosting, the sections were stained with iodine solution for 2 min at room temperature, mounted on microscope slides and observed using an Olympus MVX10 stereo microscope (Japan). The photomicrographs were captured with a DP72 video camera (Olympus, Japan) and CellD software (Olympus, Japan).
- --
- Microscopía confocal Confocal microscopy
La localización subcelularde GBSS-GFPse efectuó utilizandoun microscopioconfocalD-EclipseC1(NIKON, Japón) equipado con un láserdeexcitacióndeAr 488 estándar, un filtroBA515/30 parala emisión enverde, un filtro BA650LP parala emisión enrojoyun detectorde luz transmitida para las imágenesde campo brillante. The GBSS-GFP subcellular location was performed using a D-EclipseC1 (NIKON, Japan) microscope equipped with a standard 488 excitation laser, a BA515 / 30 filter for green emission, a BA650LP filter for red emission and a transmitted light detector for bright field images.
- --
- Ejemplo1 Example 1
Los volátiles emitidos por diferentes especies microbianas promueven cambios en el desarrollo de la planta, aumento del crecimientoyla acumulaciónde almidón en hojasde diferentes especiesde plantas Volatiles emitted by different microbial species promote changes in plant development, growth growth and accumulation of starch in leaves of different plant species
Para comprobar losposibles efectos que los compuestos químicosvolátiles liberados por microorganismos pudieran tener sobre el metabolismo de las plantas, se realizaron en primer lugar ensayos con plantas de Arabidopsis cultivadas en medio MS en presencia o ausencia de cultivos de Escherichia coli BW25113, Agrobacterium tumefaciens EHA105yGV2260, Saccharomyces cerevisiae NA33,Bacillus subtilis 168, Penicillium charlesiio Penicillium aurantiogriseum, Salmonella enterica LT2,Alternaria alternata, Pseudomonas syringae 1448A9, 49a/90óPK2y en ausenciade contactofísico entrela plantayel mediode cultivo.La disposición,en todoslos casos,fue análogaala delas fotografíasdelos panelesByDdelaFig.2, incluyendo controles con placas con mediode cultivoenlasque no se habían sembrado microorganismosde forma análogaala que se presentan en lospanelesAyCdela Fig.2. To check the possible effects that volatile chemical compounds released by microorganisms could have on plant metabolism, trials were first conducted with Arabidopsis plants grown in MS medium in the presence or absence of Escherichia coli BW25113, Agrobacterium tumefaciens EHA105 and GV2260, Saccharomyces cultures. cerevisiae NA33, Bacillus subtilis 168, Penicillium charlesiio Penicillium aurantiogriseum, Salmonella enterica LT2, Alternaria alternata, Pseudomonas syringae 1448A9, 49a / 90oPK2 and in the absence of physical contact between the plant and the culture medium. controls with plates with culture medium in which microorganisms had not been seeded analogously to that presented in panels A and Cdela Fig. 2.
Los análisis visuales preliminares revelaron que los volátiles emitidos por estos microorganismos promueven el crecimientodela planta, tal comopuede observarse comparando los cuatro primeros panelesdela Fig.2. Este efecto se confirmó comprobandoelpeso frescoy secodelas plantasde Arabidopsis crecidasen ausenciaoenpresenciade volátiles emitidos por hongos Alternaria alternata, así como otros parámetros relacionados con el desarrollode las plantas tales comoel númerode flores, ramasovainasola alturadel brote.Tal como puede observarseenlaFig.3, todos estosparámetros se vieron incrementados porel efectode losvolátiles, efecto que también se observó sobreel contenido de almidón. Preliminary visual analyzes revealed that volatiles emitted by these microorganisms promote plant growth, as can be observed by comparing the first four panels of Fig. 2. This effect was confirmed by checking the fresh and dry weight of the Arabidopsis plants grown in the absence or presence of volatile emitted by Alternaria alternata fungi, as well as other parameters related to the development of the plants such as the number of flowers, branch, or the height of the bud. As can be seen in Fig. 3, all these parameters were increased volatile effect, an effect that was also observed on the starch content.
Este efecto no es exclusivo de plantas de Arabidopsis, sino que se observa en otras especies, como en las plantas del tabaco, como puede observarse enla Fig.4, enla que las plantas sometidasal efectodevolátiles emitidospor hongos Alternaria alternata muestran mayor tamañoymayor número dehojas.También las raíces de las plantas de tabaco crecieron más en presencia de volátiles de Alternaria alternata. This effect is not exclusive to Arabidopsis plants, but is observed in other species, such as in tobacco plants, as can be seen in Fig. 4, in which the plants subjected to the effect of volatile emitted by Alternaria alternata fungi show greater size and greater number of leaves. the roots of the tobacco plants grew more in the presence of volatile Alternaria alternata.
En el caso concreto de algunos microorganismos, como E. coli, que esta bacteria promueva el crecimiento de plantas parece contradecir las observaciones hechas por Ryu et al. (Ryu et al. 2003: Bacterialvolátiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100, 4927-4932), quienes mostraron que E. coli DH5α no promueve el crecimiento de plantas de Arabidopsis. Además, estos autores mostraron que los volátiles emitidos por Pseudomonas syringae ejercen un efecto negativo sobre el crecimiento y desarrollo de Arabidopsis. Por ello, se pensó que las variaciones en las condiciones de crecimientoy sistemas de ensayo podrían justificar los diferentes resultados.En concreto, se planteó si los resultados obtenidos en Arabidopsis por otros autores podrían deberse al uso de medios que contenían extractosdelevadura, ricos en aminoácidos, tales como los mediosLBoKornberg, mientras queel crecimiento de microorganismos en medio mínimo podría dar lugar a que no se produjera algún metabolito volátil nocivo para la planta. In the specific case of some microorganisms, such as E. coli, that this bacterium promotes plant growth seems to contradict the observations made by Ryu et al. (Ryu et al. 2003: Bacterial volatiles promote growth in Arabidopsis, Proc. Natl. Acad. Sci. USA 100, 4927-4932), who showed that E. coli DH5α does not promote the growth of Arabidopsis plants. In addition, these authors showed that volatiles emitted by Pseudomonas syringae have a negative effect on the growth and development of Arabidopsis. Therefore, it was thought that variations in growth conditions and test systems could justify the different results. Specifically, it was raised whether the results obtained in Arabidopsis by other authors could be due to the use of media containing yeast extracts, rich in amino acids, such as the BobKornberg media, while the growth of microorganisms in minimal medium could result in no volatile metabolite harmful to the plant.
Para comprobar esta hipótesis, se repitió el ensayo, utilizandoSalmonella enterica como microorganismo, cultivándolo o en medio mínimo M9 o en medio LB. Los resultados, mostrados en la Fig 5A, muestran que los volátiles producidos por Salmonella enterica crecida en LB hacen que las plantas sepongan amarillasyenfermen, mientras que, si se comparan las plantas de Arabidopsis crecidas en medio mínimo M9 con las plantas control mantenidas en idénticas condiciones, pero sin que se haya sembrado microorganismo alguna en la correspondiente placa Petri, se observa que las plantas crecidas en presencia del microorganismo son mayores y presentan mayor número de hojas. To test this hypothesis, the test was repeated, using Salmonella enterica as a microorganism, culturing it or in minimal medium M9 or in LB medium. The results, shown in Fig 5A, show that the volatile produced by Salmonella enterica grown in LB causes the plants to turn yellow and yellow, while, when comparing the Arabidopsis plants grown in minimal medium M9 compared with the control plants maintained in identical conditions , but without having planted any microorganism in the corresponding Petri dish, it is observed that plants grown in the presence of the microorganism are larger and have a greater number of leaves.
Similares resultados se obtuvieron con otros patógenos de plantas, tales como Agrobacterium tumefaciens, tanto conla cepa EHA105 como GV2260 (véaselaFig.5B)o Pseudomonas syringae (véase la Fig. 5C): el efecto positivo sobreel crecimiento tienelugar siempreycuandoel patógeno crezcaenun medio mínimo,tal comoM9o MOPS,que presentanensu composición salesinorgánicas como fuentesdeNa,K,Ca,Mg,P,NySyque,salvoel azúcar utilizado como suplemento fuentede carbono (sacarosaoglucosa en los Ejemplosdela presente solicitud)yel propioagar bacteriológico, carecendeotros compuestosorgánicos,enparticularde compuestosque contengan nitrógenoorgánico. Losvolátiles emitidospor microorganismos crecidosen medios tales comoLB,Kornberg o cualquier otro medioque contengaun hidrolizadodelevaduras, proteínas,oque sea ricoen aminoácidos, ejercenun efectonegativo(onotan positivo comoel observado cuandose crecenen medios mínimos) sobreel crecimientoyproducciónde almidónenla planta,de maneraquelas plantasexpuestasa talesvolátiles desarrollanhojasblancasy, finalmente, mueren.Todoello es debido, probablemente,al efecto tóxicodel amonio producidoporla deaminacióndelosaminoácidosexistentesen el medio. Similar results were obtained with other plant pathogens, such as Agrobacterium tumefaciens, with either strain EHA105 or GV2260 (see Fig. 5B) or Pseudomonas syringae (see Fig. 5C): the positive effect on growth has always occurred and when the pathogen grows in a minimal medium, such Like MO9, which has its inorganic salts composition as sources of Na, K, Ca, Mg, P, Ny and Syque, except for the sugar used as a carbon source supplement (sucrose-glucose in the Examples of the present application) and the bacteriological agar itself, lacking other organic compounds, in particular compounds containing nitrogen-organic. Volatiles emitted by microorganisms grown in media such as LB, Kornberg or any other medium that contains a hydrolyzate of yeasts, proteins, or that are rich in amino acids, exert a negative effect (onotan positive as observed when minimum media are grown) on the growth and production of starch in the plant, so that plant plants are exposed such as only volatile, develop. All of this is probably due to the toxic effect of ammonium produced by the deamination of amino acids present in the environment.
A continuación, se midió el contenido de almidón de las hojas de las plantas de Arabidopsis, que habían sido cultivadas en medio MS en presencia o ausencia de cultivos de S. cerevisiae NA33,B. subtilis 168, Salmonella enterica (LT2), E. coli (BW25113), A. tumefaciens EHA105, A. tumefaciens GV2260, Pseudomonas syringae 1448A9, Pseudomonas syringae 49a/90, Pseudomonas syringae PK2, Penicillium aurantiogriseum,PenicilliumcharlessiyAlternaria alternata.Todos los microorganismos, excepto S. cerivisiae, se crecieron en medio sólido M9 suplementado con glucosa.Todos,a suvez, crecieron en ausenciade contacto físico entrela plantayelmediode cultivo. Next, the starch content of the leaves of the Arabidopsis plants, which had been grown in MS medium in the presence or absence of cultures of S. cerevisiae NA33, B, was measured. subtilis 168, Salmonella enterica (LT2), E. coli (BW25113), A. tumefaciens EHA105, A. tumefaciens GV2260, Pseudomonas syringae 1448A9, Pseudomonas syringae 49a / 90, Pseudomonas syringae PK2, Penicillium aurantiogriumum. except S. cerivisiae, they were grown in M9 solid medium supplemented with glucose. All, in turn, grew in the absence of physical contact between the plant and the culture medium.
Los resultados obtenidos muestran que todas las especies microbianas ensayadas emitían compuestosvolátiles que afectabanfavorablementeala acumulaciónde almidón,tal comoseconfirmómedianteanálisisde medida cuantitativa del almidón utilizando un kit de ensayo basado en amiloglucosidasa/hexoquinasa/glucosa-6P deshidrogenasa (Fig. 6A).Talcomosepueden observarenlaFig.6C,este efectosedebealosvolátilesyaque(a)el efecto inductores inferior en presenciade carbón activadoy(b)el efecto desaparece tras3días fuerade contacto conelvolátil. The results obtained show that all the microbial species tested emit volatile compounds that favorably affected starch accumulation, such as was measured by quantitative measurement of starch using a test kit based on amyloglucosidase / hexokinase / glucose-6P dehydrogenase (Fig. 6A). The volatile effect is effected because (a) the lower inductive effect in the presence of activated carbon and (b) the effect disappears after 3 days out of contact with the volatile.
También se comprobó la diferencia en la acumulación de almidón cuando los microorganismos Agrobacterium tumefaciens, Pseudomonas syringae,Penicilliumcharlesii,E. coli ySalmonella enterica se cultivaron bien en medio mínimoM9,bien medioLB.Tal comopuede comprobarseenlaFig.6B,el efecto “positivo”delos microorganismos sobrela acumulaciónde almidónsólotienelugarcuandoéstosson crecidosenunmediomínimo(M9,MOPSoincuso MS), mientras que el efecto es inferior o nulo cuando los microorganismos crecen en un medio rico con aminoácidos. The difference in starch accumulation was also verified when the microorganisms Agrobacterium tumefaciens, Pseudomonas syringae, Penicilliumcharlesii, E. coli and Salmonella enterica were grown well in minimal medium M9, well medium LB. As can be seen in Fig. 6B, the “positive” effect of microorganisms on solid starch accumulation has only grown when they are medium-sized (M9, MO or even MS), while the effect is less or less when A medium rich with amino acids.
Adicionalmente, se comprobó que la acumulación de almidón también se producía en otros órganos de las plantas de Arabidopsis, tales como el tallo o las raíces, cuando las mismas se hacían crecer en presencia de volátiles fúngicos emitidos por hongos Alternaria alternata. Las muestras de la acumulación en estos tejidos pueden observarse en los panelesDyEdelaFig.6.Los panelesFyGmuestranel incrementoenla acumulaciónde biomasa producidaporlos volátiles fúngicos tanto en hojas como en raíces. Additionally, it was found that starch accumulation also occurred in other organs of Arabidopsis plants, such as the stem or roots, when they were grown in the presence of fungal volatiles emitted by fungi Alternaria alternata. Samples of the accumulation in these tissues can be observed in the DyEdelaFig panels.6 The FyG panels show the increase in the accumulation of biomass produced by fungal volatile leaves and roots.
El efecto de acumulación de almidón no es exclusivo de plantas de Arabidopsis. Además, el efecto positivo se confirma si las plantas se crecen sobre tierra en lugar de en placas de cultivo in vitro: los ensayos realizados con plantasde maízyArabidopsis crecidasen tierra muestran un aumento del tamañoyvigorde las hojas cuando crecen en presencia de volátiles fúngicos emitidos por hongos Alternaria alternata (Fig. 7Ay 7C), efecto positivo que se refleja también en un aumento enla acumulaciónde almidón (Fig.7By7D). The starch accumulation effect is not exclusive to Arabidopsis plants. In addition, the positive effect is confirmed if the plants are grown on land instead of in vitro culture plates: tests carried out with corn plants and Arabidopsis grown on land show an increase in size and vigor of the leaves when they grow in the presence of fungal volatiles emitted by Alternaria fungi alternata (Fig. 7A and 7C), a positive effect that is also reflected in an increase in starch accumulation (Fig. 7B and 7D).
Para confirmar que lo se estaba midiendo era realmente almidón, los autores de la invención caracterizaron hojas que habíansido teñidaspreviamentecon solucionesdeyodo. Además,sellevóacabo análisisde microscopíadefluorescencia confocaldeplantasqueexpresabanla sintasade almidónunidaal gránulo (GBSS)de Arabidopsis fusionada con la proteína de fluorescencia verde (GFP) (Szydlowski et al., 2009: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase, Plant Cell 21, 2443-2457) cultivadas en presenciay en ausenciadeFVs(volátiles fúngicos) emitidospor Alternaria alternata.Tal comose muestraenlasFig.8Ay8B, estos análisis revelaron que la tinción con yodo de hojas de plantas cultivas en presencia de FVs fue mucho más oscura que ladelasplantas control.Losanálisisde microscopíaóptica(Fig.8Cy8D)de seccionesdehojas demostraronquela tinción de yodo se localizaba dentro de cloroplastos de células del mesófilo. Además, los análisisde microscopía de barrido con láser confocalde hojas transgénicas queexpresabanel marcadorde gránulosde almidón GBSS-GFPdemostraronquelos gránulosde almidón eran mucho mayores cuandolas plantasse cultivabanen presenciadeFVsque enlas condiciones control(Fig.8E,8Fy8G). Estos análisisdemuestranqueel incrementodel contenidode almidón no es debido al incremento del número de gránulos por plastidio, sino al espectacular incremento de tamaño de los gránulos de almidón. To confirm that it was being measured was really starch, the authors of the invention characterized leaves that had been previously dyed with iodine solutions. In addition, a single analysis of confocal fluorescence fluorescence microscopy was carried out, expressing the granido starch synthesized starch (GBSS) of Arabidopsis fused with the green fluorescence protein (GFP) (Szydlowski et al., 2009: Starch granule initiation in Arabidopsis class III or the presence of either class III either of the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III or the presence of either class III required Plant Cell 21, 2443-2457) cultured in the presence and absence of PV (fungal volatile) emitted by Alternaria alternata. As shown in Fig. 8A and 8B, these analyzes revealed that the iodine staining of leaves of crop plants in the presence of PVs was much darker than the plants control. Microscopic analysis (Fig. 8C and 8D) of leaf sections showed that iodine staining was located within the chloroplasts of mesophilic cells. In addition, scanning laser microscopy analysis of transgenic sheets expressing the GBSS-GFP starch granule marker showed that the starch granules were much higher when the plants were grown in the presence of PVs that were in the control conditions (Fig. 8E, 8Fy8G). These analyzes show that the increase in starch content is not due to the increase in the number of granules per plastide, but to the dramatic increase in size of the starch granules.
Se confirmó si la existencia del proceso de acumulación de almidón inducido por volátiles microbianos(microbial volátiles induced starch accumulation process: MIVOISAP) estaba extendida en las plantas midiendo el contenido de almidón en hojas de plantas de Arabidopsis, patata(Solanum tuberosum L.), maíz(Zea mays), tabaco(Nicotiana tabacum)ycebada(Hordeum vulgare)cultivadasen presenciaoen ausenciadeFVsemitidosporAlternaria alternata. Estosexperimentossellevaronacabo utilizandoplantascultivadasenmedioMS sólidoconosin suplementacióncon sacarosa90mM.Tal comose muestraenlaFig.9, estos análisisrevelaron que, independientementedela presencia de sacarosa en el medio de cultivo, el contenido de almidón en las hojas de las cinco especies fue mayor en exceso cuando lasplantas se crecieron en presenciade FVs con respectoala ausenciade FVs. Merece destacarse quelos niveles de almidón en las plantas de patata cultivadas en presencia de FVs (aproximadamente 500-600 µmol glucosa/g de peso fresco) eran comparables a los que se conocen para los tubérculos de patata (Baroja-Fernández et al., 2009: Enhancing sucrose synthase activity in transgenic potato(Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 50, 1651-1662). Además, tal como se muestraenlaFig.10,la presenciadeFVsestimulael acumulode almidónen tubérculosytallosde patata.Así,los datos globales demostraronqueel MIVOISAP ocurrede forma ubicua entre las plantasy en diferentesórganos. It was confirmed if the existence of the starch accumulation process induced by microbial volatiles (induced starch accumulation process: MIVOISAP) was extended in the plants by measuring the starch content in leaves of Arabidopsis plants, potato (Solanum tuberosum L.), maize (Zea mays), tobacco (Nicotiana tabacum) and barley (Hordeum vulgare) grown in the presence or absence of FVs transmitted by Alternaria alternata. These experiments were carried out using only cultivated plants in the middle of solid MS with no supplementation with sucrose90mM. As shown in Fig. 9, these analyzes revealed that, regardless of the presence of sucrose in the culture medium, the starch content in the leaves of the five species was excessively higher when the plants were grown in the presence of PV with respect to PV. absence of PV. It is worth noting that the levels of starch in potato plants grown in the presence of VF (approximately 500-600 µmol glucose / g fresh weight) were comparable to those known for potato tubers (Baroja-Fernández et al., 2009 : Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 50, 1651-1662). In addition, as shown in Fig. 10, the presence of PVs stimulates starch accumulation in tubers and potato potatoes. Thus, the global data showed that MIVOISAP occurs ubiquitously between plants and in different organs.
- --
- Ejemplo2 Example 2
Los FVs promueven la acumulación de almidón en hojas desprendidas FVs promote the accumulation of starch in detached leaves
Para investigar si los volátiles microbianos que promueven la acumulación de almidón en las hojas se perciben en las hojas o en otras partes de la planta, se midió el contenido de almidón en hojas desprendidas de plantas de patata, maíz, tabaco Arabidopsis ycebada cultivadas en medio MS sólido (con o sin sacarosa) en presencia o en ausencia de FVs emitidos por la especie fúngica Alternaria alternata. To investigate whether the volatile microbials that promote the accumulation of starch in the leaves are perceived in the leaves or in other parts of the plant, the starch content in leaves detached from potato, corn, Arabidopsis and barley tobacco grown in medium was measured Solid MS (with or without sucrose) in the presence or absence of VFs emitted by the fungal species Alternaria alternata.
Independientemente de la presencia de sacarosa en el medio de cultivo, las hojas tratadas con FV acumularon niveles mucho más altos de almidón que las plantas control (Fig. 11), mostrando así los datos globales que los FVs que promueven la acumulación de almidón se perciben en las hojas. Este efecto se observó no solamente cuando las hojas se cultivaban en medio sólido MS, sino también cuando se mantenían sobre medio MS líquido o sobre agua (Fig. 12). Merece destacarse que las hojas desprendidas de las cinco especies analizadas acumularon más almidón que las hojas unidasala planta completa,loque indicaque(a)el estrés abiótico puede promover, hasta cierto punto,la acumulaciónde almidónenhojasy(b) ejerceun efecto positivoenelMIVOISAP. Regardless of the presence of sucrose in the culture medium, the leaves treated with VF accumulated much higher levels of starch than the control plants (Fig. 11), thus showing the global data that the VFs that promote the accumulation of starch are perceived on the sheets. This effect was observed not only when the leaves were grown in solid MS medium, but also when kept on liquid MS medium or water (Fig. 12). It should be noted that the detached leaves of the five species analyzed accumulated more starch than the unidasa leaves in the whole plant, which indicates that (a) abiotic stress can promote, to some extent, the accumulation of starch in leaves and (b) exert a positive effect on MIVOISAP.
- --
- Ejemplo3 Example 3
Perfil de los transcriptomas de hojas de patata cultivadas en presencia de FVs Profile of transcriptomes of potato leaves grown in the presence of VF
Para comprender mejor el fenómeno de acumulación de almidón en hojas promovido por volátiles microbianos, se llevó a cabo el análisis de transcriptomas de alto rendimiento de hojas de plantas de patata cultivadas en medio MS(conosin sacarosa)en presenciay en ausenciadeFVs emitidospor Alternaria alternata utilizando el array de oligos 60-meros POCI 44K (http://pgrc.ipk-gatersleben.de/poci) (Kloosterman et al. 2008: Genes driving potato tuber initiation and growth: identification based on transcriptomal changes using the POCI array, Funct. Integr. Genomcs 8, 329-340). To better understand the phenomenon of starch accumulation in leaves promoted by microbial volatiles, high-performance transcriptome analysis of potato plant leaves grown in MS medium (conosin sucrose) was carried out in the presence and absence of PVs emitted by Alternaria alternata using the array of oligos 60-mer POCI 44K (http://pgrc.ipk-gatersleben.de/poci) (Kloosterman et al. 2008: Genes driving potato tuber initiation and growth: identification based on transcriptomal changes using the POCI array, Funct. Integr. Genomcs 8, 329-340).
Cuando las plantas se cultivaron en MS suplementado con sacarosa, se encontró que 3019 genes estaban desreguladosen presenciadeFVs(másde2,5vecesde diferencia con respectoal control;valorP < 0,05), 1203 de los cuales eran genes clasificados como “sin función asignada”. Entre esta población, 1192 genes estaban regulados al alzay 1827 genes estaban regulados a la baja. When the plants were grown in MS supplemented with sucrose, 3019 genes were found to be deregulated in the presence of PVs (more than 2.5 times of difference with respect to the control; P value <0.05), 1203 of which were genes classified as “no assigned function”. Among this population, 1192 genes were regulated up to 1827 genes were down regulated.
CuandolasplantassecultivaronenMSsin sacarosa,se encontróque2856genes estabandesreguladosenpresencia de FVs, 1109 de los cuales eran genes clasificados como “sin función asignada”. Entre esta población, 1671 genes estaban reguladosal alzay1185 genes estaban reguladosala baja. Los análisisde PCR con transcripción cuantitativa en tiempo real, (RT)-PCR, de algunos de los genes identificados (Fig. 13) validaron los resultados de los análisis del array. When the plants were cultured in MS without sucrose, it was found that 2856 genes were deregulated in the presence of PVs, 1109 of which were genes classified as "no function assigned." Among this population, 1671 genes were regulated alzay and 1185 genes were reguladosala low. Real-time quantitative transcription PCR (RT) -PCR analyzes of some of the genes identified (Fig. 13) validated the results of the array analyzes.
Para determinar los procesos biológicos afectados por los volátiles microbianos, se llevó a cabo un análisis de los genes utilizando la herramienta MapMan (Thimm et al. 2004: MAPMAN:a user-driven toolto displaygenomics data sets onto diagrams of metabolic pathway and other biological processes, Plant J. 37, 914-939) (http://gabi.rzpd.de/ projects/MapMan/).Tal como se refleja enlos gráficos de la Fig. 14, este estudio reveló que los FVs promovieron cambios drásticos en la expresión de genes implicados en múltiples procesos tales como el metabolismo de hidratos de carbono, aminoácidos, azufreylípidos,el estatus redoxdela célula,el desarrollo,la biosíntesisdela pared celular, la fotosíntesis, el metabolismo secundario, la traducción y estabilidad de las proteínas, el tráfico de vesículas, la señalización, la producción de energíay las respuestas al estrés. La Fig. 14 da una visión general de los procesos metabólicos implicados en los cambios, tanto en presencia (panel A), como en ausencia (panel B) de sacarosa. To determine the biological processes affected by the microbial volatiles, an analysis of the genes was carried out using the MapMan tool (Thimm et al. 2004: MAPMAN: a user-driven toolto displaygenomics data sets onto diagrams of metabolic pathway and other biological processes , Plant J. 37, 914-939) (http://gabi.rzpd.de/ projects / MapMan /). As reflected in the graphs in Fig. 14, this study revealed that VFs promoted drastic changes in expression of genes involved in multiple processes such as carbohydrate metabolism, amino acids, sulfurylipids, cell redox status, development, cell wall biosynthesis, photosynthesis, secondary metabolism, translation and protein stability, traffic of vesicles, signaling, energy production and stress responses. Fig. 14 gives an overview of the metabolic processes involved in the changes, both in the presence (panel A), and in the absence (panel B) of sucrose.
Debe destacarse que no se observaron cambios en la expresión de numerosos genes que codifican proteínas que se piensa que están implicadas en el metabolismo del almidónyla sacarosa tales como β-glucano/agua diquinasas, adenilato quinasa plastidial, hexoquinasa plastidial, fosfoglucosa isomerasa plastidial, fosfoglucomutasa plastidial, la subunidad catalítica pequeña de laAGP, ADPG pirofosfatasa, almidón sintasa (SS) clasesIyII, transportadores de sacarosa, UDPglucosa (UDPG) pirofosforilasa, fosfoglucosa isomerasa citosólica, fosfoglucomutasa citosólica, sacarosa-fosfato sintasa e invertasa alcalina. It should be noted that there were no changes in the expression of numerous genes encoding proteins that are thought to be involved in the metabolism of sucrose starch such as β-glucan / water dikinase, plastidial adenylate kinase, plastidial hexokinase, plastidial phosphoglucose isomerase, plastid phosphoglucomutase , the small catalytic subunit of laAGP, ADPG pyrophosphatase, starch synthase (SS) classes I and II, sucrose transporters, UDPglucose (UDPG) pyrophosphorylase, cytosolic phosphoglucose isomerase, cytosolic phosphoglucomutase, sucrose phosphate synthase and alkaline invertase.
- --
- Ejemplo4 Example 4
Análisis detallado de funciones ligadas al metabolismo del almidón Detailed analysis of functions linked to starch metabolism
Los estudiosde análisisde transcriptomasse complementaronconestudiosde análisisdevariaciónenlaactividad enzimática de distintas enzimas, realizados tal como se ha descrito previamente en el apartado de “Ensayos enzimáticos”.Las enzimas estudiadasylos resultados obtenidos(expresadosen miliunidadespor gramosdepeso fresco)se resumena continuación enlaTabla2: The transcriptome analysis studies were complemented with variation analysis studies on the enzymatic activity of different enzymes, performed as previously described in the section “Enzymatic assays.” The enzymes studied and the results obtained (expressed in milliunities per grams of fresh weight) are summarized below in Table 2:
TABLA2 TABLE 2
Actividad enzimática de enzimas del metabolismo del almidón Enzymatic activity of starch metabolism enzymes
Estos datos se consideraron en combinación con los datos obtenidos del análisis de transcriptomas, para estudiar con detalle algunas funciones que se vieron afectadas por el tratamiento con FVs, que directa o indirectamente están ligadasal metabolismodel almidón.Enlos siguientesapartadosseexponeel análisis realizadoparacadaunadedichas funciones. These data were considered in combination with the data obtained from the transcriptome analysis, to study in detail some functions that were affected by the treatment with VF, which are directly or indirectly linked to the metabolism of starch. In the following sections the analysis performed for each of these functions is exposed.
Está ampliamente asumidoquelaAGPesel principalpaso limitanteenla biosíntesisdelalmidón,yla única enzima que cataliza la producción de ADPG ligada a la producción de almidón (Neuhaus et al. 2005:No need to shift the paradigmonthe metabolicpathwaytotransitorystarchinleaves,TrendsPlantSci.10,154-156;Streb et al. 2009: The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supportsthe chloroplast-localisedpathway,PlantPhysiol.151, 1769-1772).Enlashojas,estaenzima heterotetramérica se activa alostéricamente mediante3-fosfogliceratoy se inhibe mediante Pi. Comprende dos tiposde subunidades, homologas pero distintas, la pequeña (APS)yla grande (APL), que está codificada por tres genes diferentes (APL1, APL2yAPL3) (Crevillén et al. 2005: Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADPglucosepyrophosphorylase-encoding genes,J. Biol. Chem. 280, 8143-8140). It is widely assumed that AGP is the main limiting step in the biosynthesis of starch, and the only enzyme that catalyzes the production of ADPG linked to starch production (Neuhaus et al. 2005: No need to shift the paradigm the metabolic pathwayotransitorystarchinleaves, TrendsPlantSci.10,154-156; Streb et al. 2009: Thet et al. 2009: Thet debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supportsthe chloroplast-localizedpathway, PlantPhysiol. 151, 1769-1772). In these leaves, heterotetrameric enzyme is activated allosterically by 3-phosphoglycerate and is inhibited by Pi. It comprises two types of subunits, homologous but distinct, the small one (APS) and the large one (APL), which is coded by three different genes (APL1, APL2 and APL3) (Crevillén et al. 2005: Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADPglucosepyrophosphorylase -encoding genes, J. Biol. Chem. 280, 8143-8140).
Por ello,se estudióla posible influenciadelaactividadAGP(ADP-glucosa pirofosforilasa),ydelos cambiosen sus dos subunidades, sobre el MIVOISAP. Los estudios se realizaron sobre plantas depatata cultivadas en presencia de cultivos de Alternaria alternata de manera análoga a como se ha descrito en Ejemplos anteriores. Therefore, the possible influence of the GAP activity (ADP-glucose pyrophosphorylase) was studied, and changes in its two subunits, on the MIVOISAP. The studies were conducted on potato plants grown in the presence of Alternaria alternata crops in a manner similar to that described in previous Examples.
Los análisis de transcriptomas revelaron que, de las dos subunidades de laAGP, los niveles de transcritos de la subunidad menor (APS) permanecían inalterados tras el tratamiento con FV. Por el contrario, la expresión de uno de los genes que codifica la subunidad mayor (APL1) estaba regulada al alza (incremento de 14,98 veces), mientras que otrodelos genesquetambién codificalasubunidad mayor,APL3, estabareguladoalabaja (disminuciónde8,8veces) tal como se confirmó además mediante análisisdeRT-PCR cuantitativa (Fig. 13). Transcriptome analyzes revealed that, of the two subunits of the AGP, the levels of minor subunit transcripts (APS) remained unchanged after treatment with VF. On the contrary, the expression of one of the genes that encodes the major subunit (APL1) was regulated upwards (14.98 times increase), while another of the genes also coded the larger subunit, APL3, was regulated under the low (decrease of 8.8 times) as It was also confirmed by quantitative RT-PCR analysis (Fig. 13).
Tal comose reflejaenlaTabla2anteriormenteexpuesta,la actividad totaldelaAGPsevio ligeramente alterada porel tratamientoconFVs (incrementode1,5vecesydisminuciónde1,5veces cuandolaactividadAGPsemidió en presenciaoen ausenciade5mM ditiotreitol (DTT), respectivamente). Además,los análisisde transferenciastipo Westernnorevelaronninguna diferenciaaparenteenla cantidaddeAGPentrelashojas tratadasyno tratadasconFVs (Fig. 15). As reflected in Table 2 above, the total activity of the AGP was slightly altered by the PV treatment (increase of 1.5 times and decrease of 1.5 times when the AG activity was measured in the presence or absence of 5 mM dithiothreitol (DTT), respectively). In addition, Western type transfer analyzes reveal no apparent difference in the amount of AG between the treated and untreated leaves with PVs (Fig. 15).
El tratamiento conFVsdio como resultadoun aumentode aproximadamente35%enlosnivelesde 3-fosfoglicerato intracelular (494,0 ± 36,0 µmol/g FW en ausencia de FVs frente a 674,1 ± 127,5 µmol/g FW en presencia de FVs), lo que indicaríaquelaAGPestá ligeramenteactivada duranteelMIVOISAP. The treatment with PVsdio resulted in an increase of approximately 35% in the levels of intracellular 3-phosphoglycerate (494.0 ± 36.0 µmol / g FW in the absence of VF vs. 674.1 ± 127.5 µmol / g FW in the presence of VF), which It would indicate that the AG is slightly activated during the MIVOISAP.
Como laAGP cataliza la conversión reversible deATPyglucosa-1-P enADPGypirofosfato (PPi), se considera que la pirofosfatasa alcalina (PPasa) juegaun papel crucial en la biosíntesis de almidón, puesto que desplaza la reacción delaAGPdel equilibrio mediantelarápidaretiradadePPi.Sinembargo,los análisisdeRT-PCR cuantitativa(Fig.13) ylos análisis de transcriptomas revelaron que el tratamiento con volátiles fúngicos dio como resultado la regulación a la baja de la PPasa (reducción de 3,72 veces), que fue acompañada de una reducción en la actividad PPasa (véase laTabla 2). Es así concebible que, con el tratamiento con FV, se acumulará PPi en el cloroplasto, impidiendo asíla producciónde ADPG mediada porAGP. Since AGP catalyzes the reversible conversion of ATP and glucose-1-P into ADP and G-pyrophosphate (PPi), it is considered that alkaline pyrophosphatase (PPase) plays a crucial role in starch biosynthesis, since it displaces the reaction of the AGP from equilibrium by means of rapid and delayed PCR-analysis. (Fig. 13) and transcriptome analyzes revealed that treatment with fungal volatiles resulted in down-regulation of the PPase (reduction of 3.72 times), which was accompanied by a reduction in PPase activity (see Table 2 ). It is thus conceivable that, with the PV treatment, PPi will accumulate in the chloroplast, thus preventing the production of ADPG mediated by AGP.
La síntesisdealmidónestáreguladaporlaactivación redox postraduccionaldeAGPmediadapor tiorredoxinas (Ballicora et al. 2000:Activationofthe potato tuberADP-glucosepyrophosphorylaseby thioredoxin,J. Biol. Chem. 275, 1315-1320), que está promovida por la trehalosa-6-fosfato formada en el citosol(Kolbe et al. 2005:Trehalose 6phosphateregulates starch synthesisvia posttranslational redox activationofADP-glucosepyrophosphoryíase, Proc. Natl. Acad. Sci. USA 102, 11118-11123). Merece destacarse que los análisis de RT-PCR cuantitativa (Fig. 13) y los análisis de transcriptomas revelaron que la trehalosa-6-fosfato sintasa y las tiorredoxinas plastidiales se veían fuertementereguladasalabajacuandolasplantassecultivabanen presenciadeFVs(reducciónde7,57y8,31para la tiorredoxina myf, respectivamente,y reducciónde 4,57vecesdela trehalosa-6-fosfato sintasa en presenciade sacarosa; reducciónde 3,71y2,74veces parala tiorredoxina myf, respectivamente,yreducciónde 4,89vecesde trehalosa-6-fosfato sintasa en ausencia de sacarosa).Para ensayar si esta situación afecta al estatus redox de laAGP, se separaronextractosde hojasde patata controlytratadas con FVs mediante SDS-PAGE reductoray no reductora yposteriormentese sometieron a análisis por transferencia tipoWesterndelaAGP.Es importante hacer notarque, cuando losextractosde hoja se separaron en geles no reductores con SDS,laAGP está presente como una mezcla de monómeros activosde50kDydímeros inactivosde100kD formadospor enlaces intermolecularesque implican puentes de cisteína. Estos dímeros se pueden reactivar in vitro incubando extractos con DTT (Hendriks et al. 2003: ADPglucosepyrophosphorylaseisactivatedby posttranslational redox-modificationin responsetolightandtosugars in leaves of Arabidopsis andotherplantspecies,PlantPhysiol.133, 838-849;Kolbe et al. 2005:Trehalose 6-phosphate regulatesstarchsynthesisvia posttranslationalredoxactivationof ADP-glucosepyrophosphorylase,Proc.Natl.Acad. Sci. USA 102, 11118-11123). Tal como se muestra en la Fig. 15, las hojas de patata tratadas con FVs acumulan cantidades mucho mayores de dímeros inactivos de 100 kD que las hojas control en condiciones no reductoras. Estos dímerosde100kDsepudieron convertiren monómerosde50kD cuandolosextractosse obtuvieronysepararonen condiciones no reductoras (incluyendo DTT) (Fig. 15), indicando así los datos globales quelaAGP está en su mayor parte oxidada (inactiva) enlas hojas tratadas con FVs. The synthesis of the starch is regulated by the post-translational redox activation of AGP by thioredoxins (Ballicora et al. 2000: Activationofthe potato tuberADP-glucosepyrophosphorylaseby thioredoxin, J. Biol. Chem. 275, 1315-1320), which is promoted by the trehalose formed in the Kololite-6-al-Kolosetum (6-Kol-et-Kol) . 2005: Trehalose 6phosphateregulates starch synthesisvia posttranslational redox activationofADP-glucosepyrophosphoryíase, Proc. Natl. Acad. Sci. USA 102, 11118-11123). It should be noted that quantitative RT-PCR analyzes (Fig. 13) and transcriptome analyzes revealed that trehalose-6-phosphate synthase and plastidial thioredoxins were strongly regulated at low levels when plants were cultured in the presence of PVs (reduction of 7.57 and 8.31 for thioredoxin and myf, myf respectively, myf reduction of 4.57 times of trehalose-6-phosphate synthase in the presence of sucrose; reduction of 3.71 and 2.74 times for thioredoxin myf, respectively, and reduction of 4.89 times of trehalose-6-phosphate synthase in the absence of sucrose) .To test whether this situation affects the status redox of the PGP, extracts of control potato leaves and treated with VFs were separated by means of reductive and non-reducing SDS-PAGE and subsequently underwent analysis by Western-type transfer of the AGP.It is important to note that, when the leaf extracts were separated into non-reducing gels with SDS, the AGP is present as a mixture of active monomers of 50k inactive dimers of 100kD f formed by intermolecular bonds that involve cysteine bridges. These dimers can be reactivated in vitro by incubating extracts with DTT (Hendriks et al 2003: ADPglucosepyrophosphorylaseisactivatedby posttranslational redox-modified cationin responsetolightandtosugars in leaves of Arabidopsis andotherplantspecies, PlantPhysiol.133, 838-849; Kolbe et al. 2005: Trehalose 6-phosphate regulatesstarchsynthesisvia posttranslationalredoxactivationof. ADP-glucosepyrophosphorylase, Proc.Natl.Acad. Sci. USA 102, 11118-11123). As shown in Fig. 15, potato leaves treated with PVs accumulate much larger amounts of inactive 100 kD dimers than control leaves under non-reducing conditions. These 100kD dimers were able to convert 50kD monomers when the extracts were obtained and separated under non-reducing conditions (including DTT) (Fig. 15), thus indicating the overall data that the AGG is mostly oxidized (inactive) in the PV treated sheets.
Paraevaluar másampliamentela relevanciadelaAGP enel MIVOISAP, se midióla actividadAGP,el contenido de almidónyla ADPG en hojas de plantas de patataAGP62(que tienen la subunidad APS inactivada por elementos antisentido (Müller-Rober et al. 1992: Inhibitionofthe ADPglucosepyrophosphorylasein transgenic potato leadsto sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes, EMBO J. 11, 12291238)) cultivadas en presenciay en ausencia de FVs.Tal como se ilustra en la Fig. 16A, la actividadAGP en hojas AGP62 fue un 30% de la de las hojas tipo silvestre (WT). Al contrario que en las hojas WT, la actividadAGP en plantasAGP62noseincrementóconel tratamientoconFVs. Merecedestacarsequeel tratamientoconFVsdiocomo resultado una potenciación drástica de la acumulación de almidón (Fig. 16B),y un incremento de aprox. 70% en el contenidodeADPG(Fig.16C) enhojasAGP62.Los contenidosde almidónyADPGenhojasAGP62 tratadascon FVs fueron comparables a los observados en hojas WT tratadas con FVs. To further assess the relevance of the PGP in the MIVOISAP, the PGP activity, the starch content and the ADPG in potato plant leaves were measured AGP62 (which have the APS subunit inactivated by antisense elements (Müller-Rober et al. 1992: Inhibitionofthe ADPglucoselaphyrostrophosprospinal-sugarphystophosprosepticophosprosepticophosprosepticophosprosepticophosphorestrophosprospicents) in fl uences tuber formation and expression of tuber storage protein genes, EMBO J. 11, 12291238)) cultured in the presence and absence of VF. As illustrated in Fig. 16A, the AGG activity on AGP62 sheets was 30% of that of the wild type leaves (WT). In contrast to WT sheets, AGP activity in AGP plants did not increase with PV treatment. It is worth noting that the treatment with PVs resulted in a drastic enhancement of starch accumulation (Fig. 16B), and an increase of approx. 70% in the content of ADPG (Fig. 16C) in sheets AGP62. The starch and ADP content in sheets AGP62 treated with PV were comparable to those observed in WT sheets treated with PV.
Los datos globales indicarían, así, que los cambios en la actividadAGP juegan un papel menor, si es que juegan alguno, en el MIVOISAP en hojas de patata. The global data would indicate, thus, that changes in AGP activity play a minor role, if any, in the MIVOISAP in potato leaves.
Tal como se comentó en el apartado de “Antecedentes de la invención”, generalmente se ha considerado que la biosíntesisde almidón en hojas tienelugarexclusivamente enel cloroplasto,yestá segregada del proceso biosintético de sacarosa que tiene lugar en el citosol, mientras que recientes evidencias prevén la existencia de (una) ruta(s) adicional(es) en la(s) que se produce de novo en el citosol, mediante SuSy, ADPG ligado a la biosíntesis del almidón. As mentioned in the "Background of the invention" section, it has generally been considered that the biosynthesis of starch in leaves is exclusively in the chloroplast, and is segregated from the biosynthetic sucrose process that takes place in the cytosol, while recent evidence foresees the existence of (one) additional route (s) in the one that is de novo produced in the cytosol, by means of SuSy, ADPG linked to the biosynthesis of starch.
En conexión con estas teorías, merece destacarse que los análisis de transcriptomas de hojas de plantas cultivadas en presenciaoen ausenciadeFVsrevelaronqueeltratamiento conFVsdio como resultado una drástica potenciación delaexpresióndeSus4 (incrementode29,4y31,62veces cuandolasplantassecultivaronen presenciaoen ausencia de sacarosa, respectivamente), una isoformadeSuSyque controlala acumulacióndeADPG,UDPGyalmidóntanto en hojas como en tubérculos de patata (Muñoz et al. 2005: Sucrose synthase controls the intracellular levels of ADPglucose linked to transitory starch biosynthesis in source leaves, Plant Cell Physiol. 46, 1366-1376; Baroja-Fernández et al. 2009: Enhancing sucrose synthase activityin transgenic potato(Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant CellPhysiol. 50, 1651-1662). De hecho,los análisisdelosniveles intracelularesde almidónyazúcares-nucleótidosenhojasde plantasde patata cultivadasenpresenciay en ausencia de FVs reveló una correlación positiva entre los patrones de actividad de SuSyylos contenidos de almidón,UDPGyADPG(Fig.17).Esta potenciación drásticadelaexpresióndeSuSy medianteeltratamientocon FVsse confirmó adicionalmente mediante análisisde transferenciastipoWestern(Fig.18),RT-PCR cuantitativa(Fig. 13),ymediante análisisdemedidadela actividad enzimática (incrementode10veces: véaselaTabla2). In connection with these theories, it is worth noting that the transcriptome analyzes of leaves of plants grown in the presence or absence of PVs revealed that the treatment with PVSdio resulted in a drastic potentiation of the expression of Its4 (increase of 29.4 and 31.62 times when the plants were grown in the presence or absence of sucrose, respectively), a controlled accumulation of the plant. leaves as in potato tubers (Muñoz et al. 2005: Sucrose synthase controls the intracellular levels of ADPglucose linked to transitory starch biosynthesis in source leaves, Plant Cell Physiol. 46, 1366-1376; Baroja-Fernández et al. 2009: Enhancing sucrose synthase activityin transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant CellPhysiol. 50, 1651-1662). In fact, analyzes of the intracellular levels of starch and sugar-nucleotides in leaves of potato plants grown in the presence and absence of VF revealed a positive correlation between the activity patterns of SuSy and the starch content, UDPG and ADPG (Fig. 17). This drastic potentiation of the expression of Fys and by means of transfer through Fig. .18), quantitative RT-PCR (Fig. 13), and through measurement of enzymatic activity (10 times increase: see Table 2).
La invertasa ácida en una enzima sacarolítica cuya actividad está regulada de forma postraduccional por un inhibidor proteínico (Bracho and Whitaker, 1990: Purification and partial characterization of potato(Solanum tuberosum) invertase and its endogenous proteinaceous inhibitor, Plant Physiol. 92, 386-394) en los tubérculos. Estas dos enzimas sacarolíticas compitenporel mismo suministrode sacarosa,actuando como unodelos principales determinantesde la acumulación de almidón el equilibrio entre SuSyy la invertasa ácida (Baroja-Fernández et al. 2009: Enhancing sucrose synthase activity in transgenic potato(Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield, Plant Cell Physiol. 50, 1651-1662). Merece destacarse que los análisis del perfil de RNA revelaron que el tratamiento con FVs dio como resultado una regulación a la baja de la expresión delainvertasa ácida (disminuciónde2,61y2,04vecesen presenciayausenciade sacarosa, respectivamente),y una dramática potenciación de los transcritos que codifican el inhibidor de esta enzima sacarolítica (incremento de 17,78 y18,1veces en presenciayausenciade sacarosa, respectivamente),lo que se confirmó adicionalmente medianteRT-PCR cuantitativa (Fig.13)ymediante análisisde actividad enzimática (véaselaTabla2). Acid invertase in a saccharolytic enzyme whose activity is regulated post-translationally by a protein inhibitor (Bracho and Whitaker, 1990: Puri fi cation and partial characterization of potato (Solanum tuberosum) invertase and its endogenous proteinaceous inhibitor, Plant Physiol. 92, 386-394 ) in the tubers. These two saccharolytic enzymes compete for the same supply of sucrose, acting as one of the main determinants of starch accumulation the balance between SuSy and acid invertase (Baroja-Fernández et al. 2009: Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield, Plant Cell Physiol. 50, 1651-1662). It is worth noting that the analysis of the RNA profile revealed that treatment with VFs resulted in a down-regulation of the expression of acid invertase (decrease of 2.61 and 2.24 times the presence and absence of sucrose, respectively), and a dramatic potentiation of the transcripts encoding the inhibitor of this saccharolytic enzyme (17.78 and 18.1 fold increase in the presence and absence of sucrose, respectively), which was further confirmed by quantitative RT-PCR (Fig. 13) and by enzymatic activity analysis (see Table 2).
Los datos globales indican que (a) las rutas sacarolíticas mediadas por SuSy e invertasa ácida se regulan coordinadamente en respuestaa señales idénticas,y(b)el equilibrio entre estas rutases un determinante principaldela acumulación de almidón en hojas de patata expuestas a volátiles microbianos. Por la clara correlación existente entre los patronesde actividadde SuSyy los contenidosde almidón, ADPGyUDPG en hojasde plantas tratadasy no tratadas con FVs (Fig. 17), los datos globales indicaban también que los altos niveles de ADPG, UDPGyalmidón producidosenhojasdepatata tratadasconFVsse adscriben,al menosenparte,alapotenciacióndelaactividadde SuSy durante el MIVOISAP en patata. The global data indicate that (a) SuSy and acid invertase-mediated saccharolytic pathways are coordinated in response to identical signals, and (b) the balance between these routes is a major determinant of starch accumulation in potato leaves exposed to microbial volatiles. Due to the clear correlation between the patterns of SuSy activity and the starch, ADPG andUDPG contents in leaves of plants treated and not treated with FVs (Fig. 17), the global data also indicated that the high levels of ADPG, UDP, and starch produced in potato leaves treated with PVS are ascribed, at least in part, of the activity of the plant. SuSy during the MIVOISAP in potato.
Tal comose mencionópreviamenteenla secciónde“Antecedentesdelainvención”, estudios recienteshan demostrado que las plantas poseen un sistema regulador mediado por ppGpp similar al que se da en las bacterias, lo cual se ha demostradoquejuegaunpapel crucialen aspectostales comola fertilizacióndelas plantas.ElppGppse acumula en el cloroplasto de hojas estresadas a través de la regulación de la expresión de homólogos de RelA/SpoT (RSH). As mentioned earlier in the "Background of the invention" section, recent studies have shown that plants have a regulatory system mediated by ppGpp similar to that found in bacteria, which has been shown to play a crucial role in aspects such as plant fertilization. The PPGpp accumulates in the chloroplast of stressed leaves at through the regulation of the expression of RelA / SpoT (RSH) homologs.
Merece destacarse que los análisis de RT-PCR cuantitativa (Fig. 13) y los análisis de transcriptomas descritos previamente en los Ejemplos de la presente solicitud revelaron que,independientemente de la presencia de sacarosa, el tratamiento con FVs dio como resultado una regulación a la baja de RSH (disminución de 2,6y 2,42 veces en presenciayausenciade sacarosa, respectivamente). It is worth noting that the quantitative RT-PCR analyzes (Fig. 13) and the transcriptome analyzes described previously in the Examples of the present application revealed that, regardless of the presence of sucrose, treatment with VFs resulted in a regulation of the low RSH (decrease of 2.6 and 2.42 times in the presence and absence of sucrose, respectively).
Es posiblequelas plantas desarrollen respuestas similaresalasexistentesen bacteriasqueregulanlabiosíntesisde glucógeno como consecuencia de la privación y/o provisión de aminoácidos. Consistentemente con esta presunción, los análisisdeRT-PCR cuantitativa(Fig.13),ylos análisisde transcriptomasrevelaronqueeltratamiento conFVs da como resultado una drástica reduccióndelaexpresiónde GAPDHypPGK(disminuciónde 32,68y5,32veces, respectivamente). Además, estos análisis revelaron que el tratamiento con FVs daba como resultado una marcada regulación a la baja de la G6P deshidrogenasa (pG6PDH) plastidial (reducción de 6,17 veces)(véanse también la Fig. 13ylaTabla2), una enzimadela ruta oxidativadelas pentosas fosfato (OPPP)que está implicadaenla producción depoder reductor requeridoparala biosíntesisde aminoácidosenórganos heterotróficosoenhojas duranteelperíodo nocturno. It is possible for plants to develop similar responses to bacteria in bacteria that regulate glycogen synthesis as a consequence of the deprivation and / or provision of amino acids. Consistent with this presumption, quantitative RT-PCR analyzes (Fig. 13), and transcript analyzes reveal that treatment with PVs results in a drastic reduction in GAPDHypPGK expression (decrease of 32.68 and 5.32 times, respectively). In addition, these analyzes revealed that treatment with VFs resulted in a marked downward regulation of G6P dehydrogenase (pG6PDH) plastidial (reduction of 6.17 times) (see also Fig. 13 and Table 2), an enzyme of the phosphate pentose oxidative pathway (OPPP) that is involved in the production of reducing power required for the biosynthesis of amino acids in heterotrophic organs in leaves during the night period.
Además,el tratamiento conFVsdiocomo resultado una marcada reduccióndelaexpresiónde genesque codifican un juego de proteínas plastidiales implicadas en la asimilación de nitrógeno tales como las que codifican el transportadordenitrito,la nitrito reductasa,la glutamato sintasayel translocadorde glutamato/malato (disminuciónde3,88, 9,85,3,86y3,22veces, respectivamente) (véanse tambiénlaFig.13ylaTabla2). In addition, treatment with PVdio resulted in a marked reduction in the expression of genes that encode a set of plastidial proteins involved in the assimilation of nitrogen such as those that encode the transporter denitrite, nitrite reductase, glutamate syntheses and the glutamate / malate translocator (decrease of 3.88, 9.85, 3.86 and 3.22 times, respectively) (see also Fig. 13 and Table 2).
Elprimerpasoenlaconversióndesulfatoenlossulfoaminoácidos cisteínaymetioninaestá catalizadoporlaATP sulfurilasa. Esta enzima plastidial cataliza la conversión reversible deATPysulfato en adenosina-5’-fosfosulfatoy PPi, que es desplazada del equilibrio por la PPasa mediante la rápida retirada de PPi.Tal como se ha discutido más arriba, el tratamiento con FVs da como resultado a la regulación a la baja de la PPasa. Así, es concebible que con el tratamiento con FVs se acumule PPi en el cloroplasto, impidiendo asíla biosíntesis de sulfoaminoácidos inhibiendo laATP sulfurilasa. Merece destacarsequeel tratamiento conFVsda como resultado unaregulaciónalabajadela serina acetiltransferasa plastidial, cisteínasintasaycistationina-gamma-sintasa (reducciónde 3,43, 2,85y2,53veces, respectivamente), todas ellas enzimas que son necesarias parala síntesisde cisteínaymetionina enel cloroplasto. The first step in the conversion of sulfate into the phosphoamino acids cysteine and methionine is catalyzed by ATP sulfurylase. This plastidial enzyme catalyzes the reversible conversion of ATPysulfate into adenosine-5'-phosphosulfate and PPi, which is displaced from equilibrium by PPase by rapid withdrawal of PPi. As discussed above, treatment with VF results in regulation down from the PPase. Thus, it is conceivable that with the PV treatment, PPi accumulates in the chloroplast, thus preventing sulfoamino acid biosynthesis by inhibiting ATP sulfurylase. It is worth noting that the treatment with PVSda results in a low regulation of the serine acetyltransferase plastidial cysteines, cysteinesintasycistationine-gamma synthase (reduction of 3.43, 2.85 and 2.53 times, respectively), all of them enzymes that are necessary for the synthesis of cysteine and methionine in the chloroplast.
Por todo ello, se investigó si los defectos en la provisión de cisteína plastidial están directamente implicados enel MIVOISAP, midiendoel contenidode almidón en hojasde patata desprendidas cultivadas en presenciay en ausencia de FVs emitidos por Alternaria alternata,y en presencia de diferentes concentraciones de cisteína. Lo más importante es que estos análisis revelaron que, al contrario de lo que ocurre con otros aminoácidos, el MIVOISAP se veía fuertemente reprimido por la cisteína añadida exógenamente (Fig. 19). Otros aminoácidos, en cambio, no inhibieron el MIVOISAP. Therefore, it was investigated whether defects in the provision of plastidial cysteine are directly implicated in MIVOISAP, measuring the starch content in detached potato leaves grown in the presence and absence of VF emitted by Alternaria alternata, and in the presence of different concentrations of cysteine. Most importantly, these analyzes revealed that, contrary to what happens with other amino acids, MIVOISAP was strongly repressed by exogenously added cysteine (Fig. 19). Other amino acids, on the other hand, did not inhibit MIVOISAP.
Así, los datos globales indicaban con fuerza que el MIVOISAP es la consecuencia de una respuesta desencadenada por la inadecuada provisión interna de cisteína. Como los sulfoaminoácidos constituyen la principal entrada metabólica de azufre reducido en el metabolismo celular,los autores de la invención barajaron la hipótesis de que el alto contenido de almidón de las hojas tratadas con FVs sea el resultado, al menos en parte, de una respuesta desencadenada porla privación tanto de nitrógeno como de azufre. Thus, the global data strongly indicated that MIVOISAP is the consequence of a response triggered by the inadequate internal provision of cysteine. Since sulfoamino acids constitute the main metabolic input of reduced sulfur in cellular metabolism, the inventors considered the hypothesis that the high starch content of the leaves treated with VFs is the result, at least in part, of a triggered response. by deprivation of both nitrogen and sulfur.
Las proteasas juegan un papel principal en el control de la calidad de las proteínas, siendo responsables de la degradaciónde polipéptidos dañadosyaberrantes así como del reciclajede aminoácidos parabiosíntesisde proteínas de novo. La proteolisis también proporciona los aminoácidos necesarios para mantener la homeostasis celular, siendo un proceso que implica una importante porción de los requerimientos de energía para el mantenimiento de la célula. En esa línea, merece destacarse que los análisis de transcritos de la presente invención revelaron que el tratamiento con FVs potenciaba drásticamentelaexpresióndemuchos inhibidoresde proteasas.Así es altamente concebibleque Proteases play a leading role in the control of protein quality, being responsible for the degradation of damaged and damaging polypeptides as well as the recycling of amino acids for biosynthesis of de novo proteins. Proteolysis also provides the necessary amino acids to maintain cell homeostasis, being a process that involves a significant portion of the energy requirements for cell maintenance. Along these lines, it is worth noting that the transcript analyzes of the present invention revealed that treatment with VFs drastically enhanced the expression of many protease inhibitors. Thus it is highly conceivable that
(a)lafaltadeactividad proteolítica resultantetenga como consecuenciaun defectoenel aporteinternode aminoácidos que desencadene una respuestaque conduzcaala sobreacumulaciónde almidón,y(b)la disminucióndela demanda deATPparaladegradaciónde proteínastenga como consecuenciala disponibilidaddeunexcesode energíaparala biosíntesis de almidón. (a) the resulting proteolytic activity failure results in a defect in the internal supply of amino acids that triggers a response that leads to starch accumulation, and (b) the decrease in the demand for ATP for protein degradation results in the availability of an excess of energy for starch biosynthesis.
Se conocen cinco clases distintas de almidón sintasas (SS) en las plantas: la GBSS, que es responsable de la síntesisde amilosa,ylasSSdeclasesI,II,III,yIV(SSI,SSII, SSIII,ySSIV,respectivamente).Abel et al. (Abel et al., 1996: Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.), Plant J. 10, 981-991) han demostrado que la reducción de SSIII conduce a la síntesis de almidón con modificaciones estructurales en plantas transgénicas de patata. Por otra parte, Roldan et al. (Roldan et al. 2007: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel functionofelongation enzymesinthe controlofstarch granule formation, PlantJ.49,492-504)han demostradoque la eliminación de SSIV determina que los cloroplastos acumulen sólo un gránulo grande de almidón en Arabidopsis. Además, utilizando diferentes combinaciones de mutaciones de la SS en un fondo mutante para la SSIV, Szydlowski et al (Szydlowski et al 2009: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase, Plant Cell 21, 2443-2457) han demostrado recientemente que los mutantes dobles de Arabidopsis que carecende las funciones SSIIIySSIV muestras un fenotipo carentede almidón. Five different kinds of starch synthases (SS) are known in plants: the GBSS, which is responsible for the synthesis of amylose, and the SSSclassesI, II, III, and IV (SSI, SSII, SSIII, and SSIV, respectively) .Abel et al. (Abel et al., 1996: Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.), Plant J. 10, 981-991) have shown that the reduction of SSIII leads to starch synthesis with structural modifications in transgenic potato plants. On the other hand, Roldan et al. (Roldan et al. 2007: The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel functionofelongation enzymesinthe controlofstarch granule formation, PlantJ.49,492-504) have shown that the removal of SSIV determines that chloroplasts accumulate only a large granule of Starch in Arabidopsis. In addition, using different combinations of SS mutations in a mutant fund for SSIV, Szydlowski et al (Szydlowski et al 2009: Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthase, Plant Cell 21, 2443 -2457) have recently shown that Arabidopsis double mutants that lack SSIII and SSIV functions show a starch-free phenotype.
Los datos globales (a) indicaron que tanto la SSIII como la SSIV juegan un papel clave en la acumulación de almidón, aunque la SSIV es obligatoria para dar lugar al número regular de gránulos de almidón que se encuentran en plantasdetiposilvestre,y(b)sugeríanquelaSSIVjuegaunpapelimportanteenel procesodeiniciacióndelgránulo de almidón. Global data (a) indicated that both SSIII and SSIV play a key role in starch accumulation, although SSIV is mandatory to give rise to the regular number of starch granules found in wild-type plants, and (b) suggested that SSIV play a significant role in starch granule initiation process.
Consistentemente con la idea de que SSIIIySSIV son determinantes principales de la acumulación de almidón en hojas de patata, los análisis de transcriptomas revelaron que, independientemente de la presencia de sacarosa en el medio de cultivo, el tratamiento con FVs dio como resultado un gran incremento de la expresión de SSIV (incremento de 7,00 y 4,68 veces en presencia y en ausencia de sacarosa, respectivamente) y un incremento moderado en la expresión de SSIII (incremento de 2,53 veces en presencia de sacarosa), resultados que se confirmaron mediante análisisdeRT-PCR cuantitativa (Fig. 13).No se observaron cambios en losnivelesdeexpresióndelaSSde claseIy Consistent with the idea that SSIIIySSIV are major determinants of starch accumulation in potato leaves, transcriptome analyzes revealed that, regardless of the presence of sucrose in the culture medium, treatment with VFs resulted in a large increase in the expression of SSIV (increase of 7.00 and 4.68 times in the presence and absence of sucrose, respectively) and a moderate increase in the expression of SSIII (increase of 2.53 times in the presence of sucrose), results that they were confirmed by quantitative RT-PCR analysis (Fig. 13). No changes were observed in the levels of expression of SSI class I and
II.Los análisisdeactividad enzimáticarevelaronqueel tratamientoconFVsdaba como resultadoen incrementode3 vecesenlaactividadSStotal(véaselaTabla2).Losdatosglobales indicanasíqueelMIVOISAPsepuede adscribir, al menos en parte,ala potenciacióndela actividadde SSIIIySSIV. II. Enzymatic activity analysis revealed that treatment with FV was as a result of a 3-fold increase in Total S activity (see Table 2) .Global data indicates that the MIVOISAP can be assigned, at least in part, to the potentiation of the activity of SSIII and SIV.
El gránulo de almidón está compuesto de dos homopolímeros estructuralmente diferentes: la amilosa, que es esencialmentelineal,yla amilopectina,queesuna macromolécula moderadamente ramificada.El almidóndelashojasde patata contiene un 10-15% de amilosa. Mientras que la amilosa es producida por la GBSS, la amilopectina es sintetizada por las acciones combinadas de la SS solubleyla enzima ramificante del almidón (SBE), de las que la última cataliza la formación de los enlaces α-1,6 en la molécula de almidón. Según el “modelo de recortes” de la formación del gránulo de almidón, la biosíntesis de la amilopectina es también el resultado de “recortes” por parte de las enzimas desramificantes(isoamilasasypululanasasquehidrolizan enlaces α-1,6 dentro de la molécula de almidón) de glucanos altamente ramificados queson sintetizados porlaSS solubleyla SBE. The starch granule is composed of two structurally different homopolymers: amylose, which is essentially linear, and amylopectin, which is a moderately branched macromolecule. Potato leaf starch contains 10-15% amylose. While amylose is produced by GBSS, amylopectin is synthesized by the combined actions of soluble SS and starch branching enzyme (SBE), of which the latter catalyzes the formation of α-1,6 bonds in the molecule. starch. According to the "cut-out model" of the formation of the starch granule, the biosynthesis of amylopectin is also the result of "cuts" by the de-branching enzymes (isoamylasasypululanases which hydrolyse α-1,6 bonds within the starch molecule) of Highly branched glucans are synthesized by the soluble SSS and the SBE.
Enestalínea, merece destacarsequelos análisisdeRT-PCR cuantitativa(Fig.13)ylos análisisde transcriptomas revelaron que el tratamiento con FVs dio como resultado un drástico aumento en la expresión de SBE (incremento de 32,66y2,5vecesen presenciayen ausenciade sacarosa, respectivamente)yun incremento moderadoenlaexpresión tantode pululanasa comode GBSS cuando las plantas se cultivaron en condiciones heterotróficas (incrementode3,4 y2,98veces, respectivamente). Consistentemente,laactividaddelaSBEenhojas tratadasconFVsera marcadamente más elevada que en hojas no tratadas (Tabla 2). Merece destacarse que los cambios en la expresión de estos genes fueron acompañados por unaimportante reducción enel contenido relativode amilosa(Fig. 20A). In this line, it is worth noting that quantitative RT-PCR analyzes (Fig. 13) and transcriptome analyzes revealed that treatment with VFs resulted in a drastic increase in SBE expression (increase of 32.66 and 2.5 times in the presence of sucrose absence, respectively) and a moderate increase in expression. both pululanase and GBSS when the plants were grown under heterotrophic conditions (increase of 3.4 and 2.98 times, respectively). Consistently, the activity of the BSS in sheets treated with PV will be markedly higher than in untreated sheets (Table 2). It is worth noting that changes in the expression of these genes were accompanied by an important reduction in the relative amylose content (Fig. 20A).
ParainvestigarsiloscambiospromovidosporlosFVsenlasactividadesSSySBEdaban como resultado cambios estructuralesenla amilopectina,se sometióa desramificación enzimática amilopectina purificadadehojas tratadasy no tratadas con FVsy se determinó la distribución de longitudes de cadena mediante cromatografía de intercambio aniónico de alta eficacia con detección amperométrica pulsada (HPAEC-PAD). Estos análisis revelaron que el tratamiento con FVs ejerce un efecto importante sobre la estructura de la amilopectina, puesto que la amilopectinade hojas tratadas con FVs contenía más cadenas con un grado de polimerización (GP) menor que 20 monómeros, que la amilopectina de hojas no tratadas (Fig. 20B, Fig. 20C). Los datos globales indicaron así que los cambios estructurales que ocurren en las moléculas de almidón de plantas tratadas con FVs se pueden adscribir, al menos en parte, a la potenciaciónde las actividadesSSySBE. To investigate the changes promoted by the Fs and the SS and S activities, as a result of structural changes in the amylopectin, enzymatic demystification was subjected to purified amylopectin blades treated and not treated with FVs, and the distribution of chain lengths was determined by high-density, high-density C-type A-metric chromatography. These analyzes revealed that treatment with FVs exerts an important effect on the structure of amylopectin, since the amylopectin of leaves treated with VFs contained more chains with a degree of polymerization (GP) less than 20 monomers, than amylopectin of untreated leaves (Fig. 20B, Fig. 20C). The global data thus indicated that the structural changes that occur in the starch molecules of plants treated with PVs can be ascribed, at least in part, to the potentiation of the SSS and SSE activities.
Utilizando la técnica de los antisentido, Scheidig et al. (Scheidig et al., 2002: Downregulation of a chloroplasttargeted β-amylase leads to a starch-excess phenotype in leaves, Plant J. 30, 581-591) demostraron que la β-amilasa BMY1 de los cloroplastos utilizada como diana ejerce un fuerte control sobre la degradación del almidón en hojas de patata. Consistentemente con ello,los análisis de transcriptomas descritos en la presente solicitud revelaron que el tratamiento con FVs daba como resultado una drástica regulación a la baja de PCT-BMY1 (disminución de 5,89 y3,66vecesenpresenciayen ausenciade sacarosa, respectivamente,quese confirmó adicionalmente medianteRT-PCR cuantitativa (Fig.13)y mediante análisisde actividad enzimática(Tabla2). Using the antisense technique, Scheidig et al. (Scheidig et al., 2002: Downregulation of a chloroplasttargeted β-amylase leads to a starch-excess phenotype in leaves, Plant J. 30, 581-591) demonstrated that the chloroplast β-amylase BMY1 used as a target exerts a strong control over starch degradation in potato leaves. Consistently with this, the transcriptome analyzes described in the present application revealed that treatment with VFs resulted in a drastic downward regulation of PCT-BMY1 (decrease of 5.89 and 3.66 times in the presence of sucrose absence, respectively, which was further confirmed by RT -PCR quantitative (Fig. 13) and by enzymatic activity analysis (Table2).
Las plantas superiores contienen fosforilasas de almidón tanto citosólicas como plastidiales. Al contrario de lo que ocurre con las β-amilasas plastidiales implicadas en la degradación del almidón, la función precisa in vivo de la isoforma plastidial no es todavía evidente, aunque se ha aceptado en general que puede estar implicada en la degradación del almidón. Zeeman et al. (Zeeman et al. 2004: Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress, Plant Physiol. 135, 849858) argumentaronque esta enzima está implicada enla toleranciaal estrés abiótico en Arabidopsis, proporcionando sustratosdel almidónala OPPP paraaliviarelestrés. Merece destacarsequelos análisisdeRT-PCR (Fig.13)ylos análisisde transcriptomasrevelaronqueel tratamiento conFVs daba como resultado una marcadaregulaciónalabaja de la expresión de la fosforilasa del almidón plastidial cuando las plantas se cultivaban en condiciones heterotróficas (disminución de 5,14 veces). The upper plants contain both cytosolic and plastidial starch phosphorylases. Contrary to what happens with plastidial β-amylases involved in starch degradation, the precise in vivo function of the plastidial isoform is not yet evident, although it has been generally accepted that it may be involved in starch degradation. Zeeman et al. (Zeeman et al. 2004: Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress, Plant Physiol. 135, 849858) argued that this enzyme is involved in the abiotic stress tolerance in Arabidopsis , providing OPPP starch substrates for stress relief. It is worth noting that the RT-PCR analyzes (Fig. 13) and the transcriptomas analysis revealed that the treatment with PVs resulted in a marked regulation of the low expression of the phosphorylase of the plastid starch when the plants were grown under heterotrophic conditions (decrease of 5.14 times).
Los datos globales indicaron así que el MIVOISAP se puede adscribir, al menos en parte, a la regulación a la baja de isoformas plastidialesdela β-amilasayla fosforilasa del almidón. The global data thus indicated that MIVOISAP can be ascribed, at least in part, to the downregulation of plastidial isoforms of β-amylasayla and starch phosphorylase.
Sintetizadosapartirdelfosfatidilinositol(PI) mediantelaPI-3-fosfato(POP)quinasa(PI3K)ymediantelaPI-4fosfato (PI4P) quinasa (PI4K), PI3PyPI4Phan sido implicados endiversas funciones fisiológicas, incluidasla endocitosisenla membrana plasmática,el tráficodevesículas,yla biogénesisy organizacióndevacuolas.La endocitosis es un proceso implicado en la internalización de moléculas desdela membrana plasmáticay el entorno extracelular,yel reciclajede membrana plasmática.El incremento del metabolismodel fosfoinosítidoda como resultadoun incremento en la utilización de azúcares de medio (Im et al., 2007: Increasing plasma membrane phosphatidylinositol(4,5)biphosphate biosíntesis increases phosphoinositide metabolism in Nicotiana tabacum, Plant Cell 19, 16031616), lo que es un fuerte indicio de que la señalización mediada por el fosfoinosítido juega un papel importante en la potenciacióndela absorción, internalizaciónyalmacenamiento envacuolasde los azúcaresextracelulares. Merece destacarse que recientes estudios han proporcionado fuertes evidencias de que una parte importante de la sacarosa incorporada en las células heterotróficas se absorbe mediante los procesos de endocitosis mediada por PI3K y/o PI4K yel tráfico de vesículas previamente a su conversión en almidón (Baroja-Fernándezet al. 2006: An Important Pool of Sucrose Linked to Starch Biosynthesis is taken up by endocitosis in Heterotrophic Cells, Plant Cell Physiol. 47, 447-456). Consistentemente con estas observaciones,los análisisdeRT-PCR(Fig.13)ylos análisisde transcriptomas revelaronquelos genesque codifican PI4KyPI3Ksevenreguladosalalzaporel tratamiento conFVs (incremento de 3,55y3,12veces, respectivamente).ElPI se sintetiza enel citosola partirde G6P en un procesode tres etapas, que implicanala inositol-fosfatosintasa, inositol monofosfatasayPI sintasa.Merece destacarsequelos análisisde RT-PCR (Fig. 13)y los análisis de transcriptomas revelaron que los genes que codifican la inositol-fosfato sintasa yla inositol monofosfatasa seven reguladosal alza porel tratamiento con FVs (incrementode 3,78y 4,62veces, respectivamente). Synthesized to distribute phosphatidylinositol (PI) by means of IP-3-phosphate (POP) kinase (PI3K) and by means of IP-4 phosphate (PI4P) kinase (PI4K), PI3PyPI4P have been implicated in various physiological functions, including endocytosis, plasma membrane, endocytosis, endocytosis, and endocytosis. The process involved in the internalization of molecules from the plasma membrane and the extracellular environment, and the plasma membrane recycling.The increase in phosphoinositide metabolism resulted in an increase in the use of medium sugars (Im et al., 2007: Increasing plasma membrane phosphatidylinositol (4,5 ) biphosphate biosynthesis increases phosphoinositide metabolism in Nicotiana tabacum, Plant Cell 19, 16031616), which is a strong indication that phosphoinositide-mediated signaling plays an important role in potentiation of absorption, internalization, and storage of extracellular sugars. It should be noted that recent studies have provided strong evidence that a significant part of sucrose incorporated in heterotrophic cells is absorbed by the processes of endocytosis mediated by PI3K and / or PI4K and vesicle traffic prior to conversion into starch (Baroja-Fernándezet al. 2006: An Important Pool of Sucrose Linked to Starch Biosynthesis is taken up by endocytosis in Heterotrophic Cells, Plant Cell Physiol. 47, 447-456). Consistent with these observations, the RT-PCR analyzes (Fig. 13) and the transcriptome analyzes revealed that the genes encoding PI4K and PI3K are regulated by the treatment with PVs (increase of 3.55 and 3.12 times, respectively). The IPI is synthesized in the cytosol from G6P in a three-stage process. inositol phosphate synthase, inositol monophosphate and PI synthase. It is worth noting that RT-PCR analysis (Fig. 13) and transcriptome analysis revealed that genes encoding inositol phosphate synthase and inositol monophosphatase seven regulated by PV treatment (increase of 3.78 and 4.62 times, respectively).
El citoesqueleto de actina de las plantas es una estructura de soporte dinámica que juega un papel crucial en el movimiento de los orgánulos, el tráfico de vesículas, las corrientes citoplasmáticas, las defensas de la planta frente a patógenos, etc. en respuestaa señales internasy externas. Recientemente se han proporcionadoevidenciasdeque el citoesqueleto de actina también está implicado en la absorción endocítica y el tráfico de sacarosa ligados a la biosíntesis de almidón en células en cultivo de sicomoro (Baroja-Fernández et al. 2006: An Important Pool of Sucrose Linked to Starch Biosynthesis is taken up by endocitosis in Heterotrophic Cells, Plant Cell Physiol. 47, 447-456). Merece destacarse que se ha demostrado que SuSy, una enzima clave en el proceso de biosíntesis del almidón(ver más arriba), se asocia con el citoesqueleto de actina (Dunkan and Huber, 2007: Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation, Plant Cell Physiol. 48, 1612-1623), lo cual es un apoyo más a la visión de que el citoesqueleto de actina determina hasta cierto punto el metabolismo del almidón. Losfactores despolimerizantes de la actina son moduladoresde la organización dinámica del citoesqueleto de actina, que modulan la tasa de recambio de los filamentos y la interconexión de las señales celulares con los procesos dependientesde citoesqueleto. Consistentemente conla visióndequela endocitosisy/oeltráficodevesículas mediadosporel citoesqueletopuedenjugarunpapel importanteenelMIVOISAP,los análisisdeRT-PCR(Fig.13)y los análisisde transcriptomasrevelaronquelaexpresióndelfactor despolimerizantedela actinasevereguladaalalza porel tratamiento con FVs(incrementode 3,26veces). The actin cytoskeleton of plants is a dynamic support structure that plays a crucial role in the movement of organelles, vesicle traffic, cytoplasmic currents, plant defenses against pathogens, etc. in response to internal and external signals. Evidence has recently been provided that the actin cytoskeleton is also involved in endocytic absorption and sucrose trafficking linked to starch biosynthesis in sycamore culture cells (Baroja-Fernández et al. 2006: An Important Pool of Sucrose Linked to Starch Biosynthesis is taken up by endocytosis in Heterotrophic Cells, Plant Cell Physiol. 47, 447-456). It is worth noting that SuSy, a key enzyme in the starch biosynthesis process (see above), has been shown to be associated with the actin cytoskeleton (Dunkan and Huber, 2007: Sucrose synthase oligomerization and F-actin association are regulated by sucrose concentration and phosphorylation, Plant Cell Physiol. 48, 1612-1623), which is further support for the view that the actin cytoskeleton determines to some extent the metabolism of starch. Actin depolymerizing factors are modulators of the dynamic organization of the actin cytoskeleton, which modulate the turnover rate of the filaments and the interconnection of cellular signals with cytoskeleton-dependent processes. Consistent with the vision of endocytosis and / or tetraphyllofilms in the middle of the cytosphere that can play an important role in MIVOISAP, the analyzes of RT-PCR (Fig. 13) and transcriptome analyzes revealed that the expression of the depolymerizing factor of the actinaseveregulated at the increase of 3.2 times of the treatment.
Los datos globales muestranasíque,tal comoseilustra esquemáticamenteenlaFig.21,la absorción endocítica de sacarosayel tráficodevesículas pueden estar implicados enel MIVOISAP, especialmente cuando las plantasse cultivan en presencia de sacarosa. The global data shows that, as illustrated schematically in Fig. 21, endocytic absorption of sucrose and trachevesicles may be involved in MIVOISAP, especially when plants are grown in the presence of sucrose.
Una de las alteraciones más llamativas del transcriptoma de las plantas tratadas con FVs cultivadas en presencia de sacarosa implica la represión de genes que codifican proteínas que funcionan en reacciones luminosas de lafotosíntesis. Además, cuando las plantas se cultivan en presencia de sacarosa, también se ven fuertemente reprimidos porel tratamientoconFVs genesque codifican enzimasclavedel ciclode Calvinyla fotorrespiración. Estosincluyen pPGK, pGAPDH, triosa-P-isomerasa, transcetolasa, pentosa-P-epimerasa, ribosa-P-isomerasa, fructosa-bifosfato aldolasa, fructosa-1,6-bifosfatasa, sedoheptulosa-1,7-bifosfatasa, Rubisco, glicolato oxidasa, catalasa, serina hidroximetiltransferasa,e hidroxipiruvato reductasa (reducciónde5,32, 32,68, 3,69, 3,65, 4,79, 6,43, 14,97, 17,99, 11,09, 46,62,9,24,4,01,6,6y7,79veces, respectivamente)(véase tambiénlaFig.13).Además,el tratamientoconFVsde plantas cultivadas con sacarosa dio como resultado la represión del gen que codifica la fotoclorofílido óxido reductasa (reducción de 7,73), que es necesaria para la biosíntesis de clorofila. En estas condiciones es altamente concebible que, tal como se ilustra esquemáticamente en la Fig. 21, gran parte del almidón acumulado por las plantas cultivadas en condiciones heterotróficas se produzca a partir de la degradación metabólica de sacarosa tomada del medio de cultivo (véase más adelante). One of the most striking alterations of the transcriptome of plants treated with VF grown in the presence of sucrose involves the repression of genes that encode proteins that function in luminous reactions of photosynthesis. In addition, when plants are grown in the presence of sucrose, they are also strongly repressed by treatment with PV genes that encode key enzymes of the Calvin cycle and photorespiration. These include pPGK, pGAPDH, triosa-P-isomerase, transketolase, pentose-P-epimerase, ribose-P-isomerase, fructose bisphosphate aldolase, fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, Rubisco, oxidase , catalase, serine hydroxymethyltransferase, and hydroxypyruvate reductase (reduction of 5.32, 32.68, 3.69, 3.65, 4.79, 6.43, 14.97, 17.99, 11.09, 46.62, 9.24,4,01,6,6 and 7,79 times, respectively) (see also Fig. 13) .In addition, the PV treatment of plants grown with sucrose resulted in repression of the gene encoding the photochlophilide oxide reductase (reduction of 7.73 ), which is necessary for the biosynthesis of chlorophil. Under these conditions it is highly conceivable that, as schematically illustrated in Fig. 21, much of the starch accumulated by plants grown under heterotrophic conditions is produced from the metabolic degradation of sucrose taken from the culture medium (see below). ).
Simultáneamente con la represión de genes que codificanproteínas que funcionan en reacciones luminosas de la fotosíntesis (véase más arriba),el tratamiento con FVs dio como resultadola regulaciónala bajadelaATP sintasa plastidial cuando las plantas se cultivaron en condiciones heterotróficas (reducción de 9,09 veces). En estas condiciones los FVs promovieron la transcripción de genes que codifican enzimas glicolíticas tales como enolasa, piruvato quinasa, fosfoenolpiruvato(PEP) carboxiquinasayPEP carboxilasa (incrementode4,94,5,48,19,64y6,03veces,respectivamente). Este efecto fue mucho menos pronunciado cuando las plantas se cultivaron en condiciones autotróficas. Comola PEP carboxiquinasayla PEP carboxilasa están implicadas enla conversiónde PEP en oxalacetato, los datos globales indicanquelosFVs promuevenla glicolisisyelflujode carbono haciael ciclodelos ácidos tricarboxílicos (TCA),tal comose esquematizaenlaFig.21, especialmente cuandolas plantasse cultivanen condiciones heterotróficas.Aeste respecto, merece destacarse queel tratamiento con FVs dio como resultado un incremento enlaexpresión de los genes que codifican enzimas del ciclo de los TCA tales como succinato deshidrogenasa e isocitrato deshidrogenasa (incrementode2,8y2,57veces, respectivamente).Algunosgenesimplicados en fermentación,incluidoslos quecodificanlaalcohol deshidrogenasa(ADH),lapiruvato descarboxilasay una aldehído deshidrogenasa,sevieron fuertemente regulados al alza por el tratamiento con FVs, tanto en condiciones heterotrópicas (incremento de 51,43 y9,92vecesparalaADHyla aldehído deshidrogenasa, respectivamente),ycondiciones autotróficas (incrementode 9,92y3,77veces para ADHypiruvato descarboxilasa, respectivamente) (véase tambiénlaTabla2).El incremento en actividaddela rutade fermentación del etanola partir del piruvato permitela reoxidación delNADH producido en glucolisis, permitiendo asíquela planta genereATP independientementedela fosforilación oxidativa. Por ello,la promoción por parte de los FVs de la potenciación de la expresión de genes que codifican enzimas implicadas en la glucolisis, el ciclo de los TCAyla fermentación es consistente con la noción de que tanto los metabolismos aerobio como anaerobio están regulados al alza durante MIVOISAP para generar energía en condiciones de producción de ATP fotosintético reducido. Simultaneously with the repression of genes that encode proteins that function in luminous reactions of photosynthesis (see above), treatment with VFs resulted in the regulation of the loss of ATP synthase plastidial when the plants were grown under heterotrophic conditions (9.09 fold reduction). Under these conditions, the FVs promoted the transcription of genes that encode glycolytic enzymes such as enolase, pyruvate kinase, phosphoenolpyruvate (PEP) carboxyquinine and PEP carboxylase (increase of 4.94.5,48.19.64 and 6.03 times, respectively). This effect was much less pronounced when the plants were grown under autotrophic conditions. As PEP carboxyquines and PEP carboxylase are involved in the conversion of PEP into oxaloacetate, the global data indicate that PVs promote glycolysis and carbon flux towards the tricarboxylic acid (TCA) cycle, such as how schematized in Fig. 21, especially when plants deserve to be treated with respect to each other. resulted in an increase in the expression of the genes encoding TCA cycle enzymes such as succinate dehydrogenase and isocytrate dehydrogenase (increase of 2.8 and 2.57 times, respectively). Some genes involved in fermentation, including co-hydrochloride alcohol dehydrogenase (ADH), dehydrogenase decarbohydrate decarboxyase dehydrogenase dehydrogenase , were strongly regulated upwards by treatment with VF, both under heterotropic conditions (increase of 51.43 and 9.92 times for ADH and aldehyde dehydrogenase, respectively), and autotrophic conditions (increase of 9.9 2 and 3.77 times for ADHypyruvate decarboxylase, respectively) (see also Table 2). The increase in activity of the ethane fermentation path from pyruvate allows the reoxidation of NADH produced in glycolysis, thus allowing the plant to generate ATP independently of oxidative phosphorylation. Therefore, the promotion by the VFs of the potentiation of the expression of genes that encode enzymes involved in glycolysis, the TCA cycle and fermentation is consistent with the notion that both aerobic and anaerobic metabolisms are upregulated during MIVOISAP to generate energy in production conditions of reduced photosynthetic ATP.
Las plantas superiores poseentransportadoresdeATP/ADP tantoenlos plastidios heterotróficos comoenlos autotróficosparatomarATP citosólico intercambiándoloconADP plastidial.Comolos plastidios heterotróficos carecende la maquinaria que produceATP mediante la fotosíntesis, el transportador deATP/ADP es necesario para suministrar energía a procesos anabólicos localizados en el estroma tales como los implicados en la producción de aminoácidos, almidónyácidos grasos.En los cloroplastos seha demostrados que los transportadoresdeATP/ADP son importantes para la importación nocturna deATPypara prevenir daños causados por la fotooxidación (Reinhold et al. 2007: Limitation of nocturnal import ofATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J. 50, 293304). Merece destacarse que los FVs regulanal alzalaexpresión del transportador plastidialdeATP/ADP cuandolas plantas se cultivan en condiciones heterotróficas (incremento de 3,16 veces), lo que es consistente con la noción de queelATPextraplastidial sostieneengran medida rutas anabólicasque sucedenenel cloroplastode plantas tratadas con FVs cultivadas en condicionesde crecimiento heterotróficas. The upper floors have ATP / ADP transporters, both in heterotrophic plastids and in autotrophospar- cytosolic cytolic ATP by exchanging it with plastidial ADP. As heterotrophic plastidiums lack the machinery that produces ATP through photosynthesis, the ATP / ADP transporter is necessary to supply energy in such processes to the localized energy in such processes. production of amino acids, starch and fatty acids. In chloroplasts, ATP / ADP transporters have been shown to be important for nightly importation of ATP and to prevent damage caused by photooxidation (Reinhold et al. 2007: Limitation of nocturnal import of ATP into Arabidopsis chloroplasts leads to photooxidative damage. Plant J. 50, 293304). It is worth noting that the regulatory VF increases the expression of the plastidial transporter of ATP / ADP when the plants are cultivated under heterotrophic conditions (3.16 times increase), which is consistent with the notion that the extra-plastid ATP supports in large measure anabolic pathways that happen in the chloroplast plants of conditions treated with VF heterotrophic growth.
La principal proteína de la membrana de la envuelta de los cloroplastos, el translocador de triosa-P/3-fosfoglicerato/P (TPT), es fundamental parala comunicación entre cloroplastoy citosol, puesto queexporta los productos primarios del ciclo de Calvin (es decir, triosa fosfatosy3-fosfoglicerato) fuera del cloroplasto en un intercambio estricto de unidades con respecto al Pi. Las plantas de patata con el TPT inhibido por moléculas antisentido acumulan en sushojas2-3vecesmás almidónymás3-fosfogliceratoquelashojasdetiposilvestre,ytienen reducidoelvigordela planta. Merece destacarse que los análisis deRT-PCR (Fig. 13)ytranscriptomas revelaron que, independientemente dela presenciade sacarosaenel mediode cultivo,el tratamiento conFVsdio como resultadola reduccióndelaexpresióndelTPT (reducciónde3,17y2,25vecesenpresenciay en ausenciade sacarosa, respectivamente).Lashojasde las plantas tratadas conFVs acumularonniveles moderadamente elevadosde 3-fosfoglicerato (véase más arriba), que probablemente se pueden adscribir a la reducción del transporte mediado por TPTde 3-fosfoglicerato del cloroplasto al citosol. The main membrane protein of the chloroplast shell, the triosa-P / 3-phosphoglycerate / P (TPT) translocator, is essential for communication between chloroplastoy cytosol, since it exports the primary products of the Calvin cycle (i.e., triosa phosphates and 3-phosphoglycerate) outside the chloroplast in a strict exchange of units with respect to Pi. Potato plants with the TPT inhibited by antisense molecules accumulate in their leaves 2-3 times more starch and more 3-phosphoglycerate than the leaves of the type, and have reduced plant vigor. It is worth noting that the analyzes of RT-PCR (Fig. 13) and transcripts described that, regardless of the presence of sucrose in the culture medium, the treatment with PVs resulted in the reduction of the expression of the TPT (reduction of 3.17 and 2.25 times in the presence and in the absence of sucrose, respectively). 3-phosphoglycerate levels (see above), which can probably be ascribed to the reduction of TPT-mediated transport of 3-phosphoglycerate from chloroplast to cytosol.
Los plastidiosnoverdesdetejidos heterotróficos dependendelaprovisióndeG6Pdel citosolatravésde sistemade antiportador G6P/Pi.La G6P importada se puede usar parala síntesisde almidónyácidos grados.La G6P también se puede usar para activar la OPPP que, tal como se discutió más arriba, es la fuente principal de poder reductor requerido parala reducciónde nitritoyparala biosíntesisde ácidos grasosydeaminoácidos. Merece destacarse que, aunque la expresión del translocador de G6P/Pi está restringida principalmente a los tejidos heterotróficos, el tratamiento con FVs potenció con fuerza la expresión del translocador G6P/Pi en hojas cuando las plantas se cultivaron en presencia y en ausenciade sacarosa, tal como se confirmó tanto mediante los análisis deRT-PCR (Fig. 13) como mediante los análisisde transcriptomas (incrementode 30,23y22,08veces cuandolas plantasde cultivaronen presenciay en ausencia de sacarosa, respectivamente). Plastids of heterotrophic tissues depend on the G6P provision of the cytosol through the G6P / Pi anti-carrier system. The imported G6P can be used for starch synthesis and acid grades. The G6P can also be used to activate OPPP which, as discussed above, is the main source of reducing power nitrite reduction and for biosynthesis of fatty acids and amino acids. It is worth noting that, although the expression of the G6P / Pi translocator is mainly restricted to heterotrophic tissues, treatment with PVs strongly enhanced the expression of the G6P / Pi translocator in leaves when the plants were grown in the presence and absence of sucrose, such as confirmed both by RT-PCR analysis (Fig. 13) and by transcriptome analysis (increase of 30.23 and 22.08 times when plants were grown in the presence and absence of sucrose, respectively).
La implicación del translocador G6P/Pi en la importación de G6P citosólica al cloroplasto cuando las plantas se trataronconFVses cuestionable,puestoque,talcomosemostrómásarriba,las enzimas implicadasenel metabolismo plastidial de la G6P están drásticamente reguladas a la baja. Esto y la reducción de la expresión de las proteínas implicadas enla síntesisde G6P enelcitosola partirde productos del ciclode Calvin tales como TPT (véase más arriba), fructosa-1,6-bifosfatasa citosólica (véanselaTabla2ylaFig.13)(reducciónde9,87y3,61vecesen presencia yen ausenciade sacarosa, respectivamente),yfructosa-6-fosfato2quinasa/fructosa-2,6-bifosfatasa (reducciónde3,39 y2,2vecesenpresenciayen ausenciade sacarosa,respectivamente)(véasetambiénlaFig.13)sugierenque,talcomo se esquematiza en la Fig. 21, en condiciones de tratamiento con FVs, el transportador de G6P/Pi jugaría un papel principalexportando moléculasde G6P del cloroplastoal citosol para posteriormente ser canalizadas haciael ciclode losTCAy/orutasfermentativas,y/oserconvertidasen compuestostalescomo sacarosayPIquees necesarioparalos procesosde endocitosisytráficodevesículas. The involvement of the G6P / Pi translocator in the importation of cytosolic G6P into chloroplast when plants were treated with questionable FVses, since, as we show above, the enzymes involved in G6P plastid metabolism are drastically regulated downwards. This and the reduction of the expression of the proteins involved in the synthesis of G6P in the cytosol from products of the Calvin cycle such as TPT (see above), cytosolic fructose-1,6-bisphosphatase (see Table 2 and Fig. 13) (reduction of 9,87 and 3,61 times in the presence of yen absence of sucrose, respectively), and fructose-6-phosphate2kinase / fructose-2,6-bisphosphatase (reduction of 3.39 and 2.2 times present in the absence of sucrose, respectively) (see also Fig. 13) suggest that, as outlined in Fig. 21, under conditions of FV treatment, the G6P / Pi transporter would play a major role in transporting G6P molecules from the chloroplast to the cytosol to later be channeled into the cycle of the TCAs and / or fermentative orifices, and / or converted into compounds such as sacros and pykes that are necessary for endocytic processes and tetraphyllicles.
Todas las especies microbianas analizadas en este trabajo emitían volátiles que promovían el crecimiento de la planta, lo que indicaría que la maquinaria implicada en la biosíntesis se ve regulada al alza durante MIVOISAP. Consistentemente con estapresunción,el análisisde transcritosdehojasde plantasde patatarevelóqueel tratamiento con FVs daba como resultadola regulaciónal alzadela celulosa sintasayla callosa sintasa (incrementode 9,78y2,1 veces, respectivamente). All the microbial species analyzed in this work emitted volatiles that promoted plant growth, which would indicate that the machinery involved in biosynthesis is regulated upwards during MIVOISAP. Consistently with this presumption, the analysis of transcripts of potato plant leaves revealed that treatment with VFs resulted in the regulation of cellulose synthase and callose synthase (increase of 9.78 and 2.1 times, respectively).
MIVOISAP implica cambios en la expresión de multitud de genes que codifican enzimas fundamentales en el metabolismo de hidratos de carbonoy en producción/consumo de energía, lo que sugiere que el MIVOISAP es un proceso altamente coordinadoy regulado. Merece destacarse que los análisis de trascritos descritos en la presente solicitud revelaron que el tratamiento con FVs promovía con fuerza la expresión de SNF4 (incremento de 6,64 veces) (véase también laFig. 13), un activador de la proteína quinasa SnRK1, que es un regulador global del metabolismo del carbono en las plantas. Es así probable que (a) SNF4 ejerza un efecto positivo sobre la acumulación de almidón a travésdelaactivacióndeSnRK1,y(b)SnRK1juegueunpapelregulador duranteelMIVOISAP. MIVOISAP implies changes in the expression of a multitude of genes that encode fundamental enzymes in carbohydrate metabolism and energy production / consumption, suggesting that MIVOISAP is a highly coordinated and regulated process. It is worth noting that the transcript analyzes described in the present application revealed that treatment with VF strongly promoted the expression of SNF4 (6.64 fold increase) (see also Fig. 13), an activator of the protein kinase SnRK1, which It is a global regulator of carbon metabolism in plants. It is thus likely that (a) SNF4 exerts a positive effect on starch accumulation through the activation of SNRK1, and (b) SnRK1 plays a regulating role during the MIVOISAP.
Claims (14)
- 3. 3.
- Métodosegúnlareivindicación2,enelqueel microorganismoes una bacteria pertenecienteaun género distinto de Bacillus o Paenibacillus. Methods according to claim 2, in which the microorganism is a bacterium belonging to a genus other than Bacillus or Paenibacillus.
- 4. Four.
- Método según una cualquiera de las reivindicaciones anteriores, en el que el crecimiento del microorganismo se produce en un medio que carece de compuestos orgánicos que presenten grupos amino. Method according to any one of the preceding claims, wherein the growth of the microorganism occurs in a medium that lacks organic compounds that have amino groups.
- 5. 5.
- Método según la reivindicación 4, en el que el crecimiento del microorganismo se produce en un medio que carecede aminoácidosy/oproteínas. Method according to claim 4, wherein the growth of the microorganism occurs in a medium that lacks amino acids and / or proteins.
- 6. 6.
- Método según la reivindicación4ó5, en el que el crecimiento del microorganismo se produce en un medio mínimo suplementado con un compuesto orgánico como fuente de carbono. Method according to claim 4 or 5, wherein the growth of the microorganism occurs in a minimal medium supplemented with an organic compound as a carbon source.
- 7. 7.
- Método según la reivindicación 6, en el que el microorganismo es una bacteria perteneciente a un género del grupo de Bacillus, Escherichia, Salmonella, Agrobacterium o Pseudomonas. Method according to claim 6, wherein the microorganism is a bacterium belonging to a genus of the Bacillus, Escherichia, Salmonella, Agrobacterium or Pseudomonas group.
- 9. 9.
- Método según una cualquiera de las reivindicaciones anteriores, en el que la planta es una angiosperma, monocotiledónea o dicotiledónea. Method according to any one of the preceding claims, wherein the plant is an angiosperm, monocot or dicot.
- 10. 10.
- Método según la reivindicación 9, en el que la planta se selecciona del grupo de plantas de patata, plantas de maíz, plantas de tabaco, o plantas de la especie Arabidopsis thaliana. Method according to claim 9, wherein the plant is selected from the group of potato plants, corn plants, tobacco plants, or plants of the Arabidopsis thaliana species.
- 11. eleven.
- Método según la reivindicación 10, en el que la planta es una planta de maíz, una planta de tabaco o una planta de la especie Arabidopsis thaliana que se cultiva en presencia de un hongo perteneciente al género Alternaria Method according to claim 10, wherein the plant is a corn plant, a tobacco plant or a plant of the Arabidopsis thaliana species that is grown in the presence of a fungus belonging to the Alternaria genus
- 12. 12.
- Método según una cualquiera de las reivindicaciones anteriores, en el que el incremento del crecimiento se manifiestanen aumentodela longituddela plantay/oen aumentodel tamañodelas hojas. Method according to any one of the preceding claims, wherein the increase in growth is manifested in increasing the length of the plant and / or in increasing the size of the leaves.
- 13. 13.
- Métodosegúnuna cualquieradelasreivindicaciones anteriores,enelquela alteracióndelpatrónde crecimiento semanifiestaen incrementodel númerodehojas, incrementodel númeroderamasy/odel númerode flores, frutosy semillas de plantas angiospermas, en la inducción de la floración, o en combinaciones de los anteriores. Methods according to any one of the preceding claims, in which the alteration of where weekly growth is increased in the number of leaves, increase in the number of leaves and / or in the number of flowers, fruits and seeds of angiosperm plants, in the induction of fl ow, or in combinations of the above.
- 14. 14.
- Método según una cualquiera de las reivindicaciones anteriores, en el que la planta se cultiva en una atmósfera enla que están presentes los compuestosvolátiles emitidos por un microorganismo queha sido cultivado en unlugar diferente al lugar de cultivo de la planta. Method according to any one of the preceding claims, wherein the plant is grown in an atmosphere in which volatile compounds emitted by a microorganism that has been grown in a place other than the plant's cultivation site are present.
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201000499A ES2372071B1 (en) | 2010-04-19 | 2010-04-19 | Procedure to alter the pattern of development and increase the growth of plants. |
ES11774436.7T ES2651097T3 (en) | 2010-04-19 | 2011-04-15 | Method to increase resistance to water stress in plants |
ES16160784T ES2883898T3 (en) | 2010-04-19 | 2011-04-15 | Procedure to alter the development pattern, increase growth and accumulation of starch, alter the structure of starch and increase resistance to water stress in plants |
EP11774436.7A EP2561760B1 (en) | 2010-04-19 | 2011-04-15 | Method for increasing the resistance to hydric stress in plants |
PCT/ES2011/000125 WO2011135121A2 (en) | 2010-04-19 | 2011-04-15 | Method for changing the development pattern, increasing the growth and accumulation of starch, changing the structure of starch and increasing the resistance to hydric stress in plants |
EP16160784.1A EP3064066B1 (en) | 2010-04-19 | 2011-04-15 | Method for changing the development pattern, increasing the growth and the accumulation of starch, changing the structure of starch and increasing the resistance to water stress in plants |
US13/642,310 US9642361B2 (en) | 2010-04-19 | 2011-04-15 | Method for changing the development pattern, increasing the growth and the accumulation of starch, changing the structure of starch and increasing the resistance to water stress in plants |
ARP110101336A AR080929A1 (en) | 2010-04-19 | 2011-04-19 | PROCEDURE TO ALTER THE DEVELOPMENT PATTERN, INCREASE THE GROWTH AND ACCUMULATION OF ALMIDON, ALTER THE ALMIDON STRUCTURE AND INCREASE THE RESISTANCE TO HYDRAIC STRESS IN PLANTS |
ZA2012/08648A ZA201208648B (en) | 2010-04-19 | 2012-11-16 | Method for changing the development pattern,increasing the growth and accumulation of starch,changing the structure of starch and increasing the resistance to hydric stress in plants |
US15/470,675 US20180055047A1 (en) | 2010-04-19 | 2017-03-27 | Method for changing the development pattern, increasing the growth and the accumulation of starch, changing the structure of starch and increasing the resistance to water stress in plants |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201000499A ES2372071B1 (en) | 2010-04-19 | 2010-04-19 | Procedure to alter the pattern of development and increase the growth of plants. |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2372071A1 ES2372071A1 (en) | 2012-01-13 |
ES2372071B1 true ES2372071B1 (en) | 2012-09-19 |
Family
ID=45418865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES201000499A Active ES2372071B1 (en) | 2010-04-19 | 2010-04-19 | Procedure to alter the pattern of development and increase the growth of plants. |
Country Status (2)
Country | Link |
---|---|
AR (1) | AR080929A1 (en) |
ES (1) | ES2372071B1 (en) |
-
2010
- 2010-04-19 ES ES201000499A patent/ES2372071B1/en active Active
-
2011
- 2011-04-19 AR ARP110101336A patent/AR080929A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
AR080929A1 (en) | 2012-05-16 |
ES2372071A1 (en) | 2012-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9642361B2 (en) | Method for changing the development pattern, increasing the growth and the accumulation of starch, changing the structure of starch and increasing the resistance to water stress in plants | |
Ezquer et al. | Microbial volatile emissions promote accumulation of exceptionally high levels of starch in leaves in mono-and dicotyledonous plants | |
Hare et al. | Metabolic implications of stress-induced proline accumulation in plants | |
Wang et al. | Cucumis sativus L. WAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and plant biotic and abiotic stress responses | |
Ruan | Sucrose metabolism: gateway to diverse carbon use and sugar signaling | |
Gámez‐Arjona et al. | Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long‐term storage starch | |
Pierce et al. | From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies | |
Foster et al. | An oxalyl-CoA dependent pathway of oxalate catabolism plays a role in regulating calcium oxalate crystal accumulation and defending against oxalate-secreting phytopathogens in Medicago truncatula | |
Li et al. | Microbial volatile-induced accumulation of exceptionally high levels of starch in Arabidopsis leaves is a process involving NTRC and starch synthase classes III and IV | |
Almeida et al. | Trehalose and its applications in plant biotechnology | |
Zhang et al. | Identification and characterization of a novel monoterpene synthase from soybean restricted to neryl diphosphate precursor | |
Noronha et al. | Identification and functional characterization of grapevine transporters that mediate glucose-6-phosphate uptake into plastids | |
Morgutti et al. | Role of trehalose and regulation of its levels as a signal molecule to abiotic stresses in plants | |
Liang et al. | VaAPL1 promotes starch synthesis to constantly contribute to soluble sugar accumulation, improving low temperature tolerance in arabidopsis and tomato | |
Jing et al. | The Arabidopsis thaliana nucleotide sugar transporter GONST2 is a functional homolog of GONST1 | |
Pociecha et al. | Trichoderma interferes with cold acclimation by lowering soluble sugars accumulation resulting in reduced pink snow mould (Microdochium nivale) resistance of winter rye | |
Menu et al. | High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size | |
ES2372071B1 (en) | Procedure to alter the pattern of development and increase the growth of plants. | |
ES2370864B1 (en) | Procedure to increase the accumulation of starch and alter the structure of starch in plants. | |
Seng et al. | ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus | |
Phan et al. | Biosynthesis and degradation of trehalose and its potential to control plant growth, development, and (A) biotic stress tolerance | |
CN105646683B (en) | The application of complete salt tolerant protein matter and relevant biological material in regulation plant salt endurance | |
Scharte et al. | Metabolic priming in G6PDH isoenzyme‐replaced tobacco lines improves stress tolerance and seed yields via altering assimilate partitioning | |
ES2389931B1 (en) | PROCEDURE TO ALTER THE DEVELOPMENT PATTERN, INCREASE STARCH GROWTH AND ACCUMULATION AND ALTER THE STORM STRUCTURE IN IMPROVED PLANTS | |
Das Bhowmik et al. | Sugarcane biotechnology: tapping unlimited potential |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FG2A | Definitive protection |
Ref document number: 2372071 Country of ref document: ES Kind code of ref document: B1 Effective date: 20120919 |
|
PC2A | Transfer of patent |
Owner name: TIMAC AGRO ESPANA, S.A. Effective date: 20210326 |