ES2346614B1 - USE OF MODIFIED MATERIAL IN YOUR SURFACE TOPOGRAPHY IN DEVICES THAT GENERATE AN ELECTRIC CURRENT FROM INCIDENT LIGHT. - Google Patents
USE OF MODIFIED MATERIAL IN YOUR SURFACE TOPOGRAPHY IN DEVICES THAT GENERATE AN ELECTRIC CURRENT FROM INCIDENT LIGHT. Download PDFInfo
- Publication number
- ES2346614B1 ES2346614B1 ES200801231A ES200801231A ES2346614B1 ES 2346614 B1 ES2346614 B1 ES 2346614B1 ES 200801231 A ES200801231 A ES 200801231A ES 200801231 A ES200801231 A ES 200801231A ES 2346614 B1 ES2346614 B1 ES 2346614B1
- Authority
- ES
- Spain
- Prior art keywords
- cavities
- light
- solar cell
- sheet
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 109
- 238000012876 topography Methods 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 14
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 17
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 19
- 238000005259 measurement Methods 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000010894 electron beam technology Methods 0.000 description 7
- 239000004038 photonic crystal Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 239000003292 glue Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000010884 ion-beam technique Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000628 photoluminescence spectroscopy Methods 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000603 solid-source molecular beam epitaxy Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0232—Optical elements or arrangements associated with the device
- H01L31/02327—Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0236—Special surface textures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
Uso de material modificado en su topografía superficial en dispositivos que generen una corriente eléctrica a partir de luz incidente.Use of modified material in its topography surface in devices that generate an electric current at from incident light.
La presente invención se basa en el hecho observado por los inventores, de que la modificación de la topografía superficial de materiales, mediante la fabricación de una red ordenada de cavidades rellenas de otro material, con diferente índice de refracción, genera bandas fotónicas en la superficie del material, que alteran el índice de refracción del material sobre el que están fabricadas. Esa variación del índice de refracción permite, en función del ángulo de incidencia y la longitud de onda de la luz, favorecer o inhibir la transmisión y reflexión de la luz. En base a esta nueva propiedad observada, se ha modificado la topografía de una célula solar mediante la fabricación de una red ordenada de cavidades rellenas de aire, y se ha comprobado una mayor generación de corriente eléctrica a partir de luz incidente que en una célula solar de igualescaracterísticas pero sin modificación de la topografía superficial.The present invention is based on the fact observed by the inventors, that the modification of the surface topography of materials, by manufacturing a neat network of cavities filled with other material, with different refractive index, generates photonic bands on the surface of the material, which alter the refractive index of the material on the They are manufactured. That variation of the index of refraction allows, depending on the angle of incidence and wavelength of light, favor or inhibit the transmission and reflection of light. Based on this new property observed, the topography of a solar cell by manufacturing a network tidy of air-filled cavities, and a greater electric current generation from incident light that in a solar cell with the same characteristics but without modification of surface topography
Description
Uso de material modificado en su topografía superficial en dispositivos que generen una corriente eléctrica a partir de luz incidente.Use of modified material in its topography surface in devices that generate an electric current at from incident light.
La presente invención se enmarca dentro del sector de la tecnología física y la microelectrónica. Más concretamente, la presente invención se refiere tanto a la fabricación de nuevos materiales con una mayor transmisión de la luz, como a su aplicación en dispositivos que generan una corriente eléctrica a partir de la luz incidente, como foto-detectores, células solares y dispositivos termo-fotovoltaicos.The present invention is framed within the Physical technology and microelectronics sector. Plus specifically, the present invention relates both to the manufacture of new materials with greater transmission of the light, as to its application in devices that generate a current electrical from the incident light, such as photo detectors, solar cells and devices thermo-photovoltaic
Existen numerosos dispositivos que transforman la energía procedente de la luz que incide sobre ellos, en energía eléctrica. En estos dispositivos un incremento de la cantidad de luz que llega al interior del material semiconductor produce un aumento en la corriente eléctrica generada. Por ello se han utilizado numerosos procedimientos para fomentar la transmisión de luz en estos materiales y reducir la pérdida de luz por reflexión sobre su superficie, como la fabricación de capas antirreflectantes o la estructuración de la superficie.There are numerous devices that transform the energy coming from the light that falls on them, in energy electric In these devices an increase in the amount of light that reaches inside the semiconductor material produces an increase in the generated electric current. Therefore they have been used numerous procedures to encourage light transmission in these materials and reduce the loss of light by reflection on your surface, such as the manufacture of anti-reflective layers or the surface structuring.
La utilización de capas antirreflectantes permite que una mayor cantidad de luz penetre en el material sobre el cual están depositadas. Estas capas deben de tener el espesor y el índice de refracción adecuado para que se produzca una interferencia constructiva y se evite la perdida de luz por reflexión. Estas condiciones de interferencia constructiva sólo se verifican en un rango pequeño de ángulos, con lo que esta tecnología sólo funciona cuando los rayos de luz inciden dentro de un ángulo pequeño, que suele estar por debajo de 30º respecto a la normal.The use of anti-reflective layers allows a greater amount of light to penetrate the material over which are deposited. These layers must be thick and the appropriate refractive index for a constructive interference and avoid loss of light by reflection. These constructive interference conditions only verify in a small range of angles, with which this technology It only works when the light rays hit within an angle small, which is usually below 30º compared to normal.
En el caso de la estructuración, se crea una rugosidad en la superficie del material favoreciendo la reflexión múltiple de la luz en la superficie, de forma que una mayor cantidad de luz acaba penetrando en el material. La rugosidad creada tiene dos efectos complementarios: el primero es reducir la cantidad de luz reflejada por la superficie, mientras que el segundo consiste en incrementar el camino óptico total que recorre la luz dentro del material. Es una técnica habitualmente usada en células solares, en las que un camino óptico más largo da lugar a un incremento en la eficiencia en que la luz se transforma en electricidad.In the case of structuring, a surface roughness of the material favoring reflection multiple of the light on the surface, so that more of light ends up penetrating the material. The roughness created has two complementary effects: the first is to reduce the amount of light reflected from the surface, while the second consists of increase the total optical path that the light travels within the material. It is a technique commonly used in solar cells, in which a longer optical path results in an increase in the efficiency in which light is transformed into electricity.
En general, la luz incidente sobre un material, semiconductor o no, puede transmitirse al interior del mismo, reflejarse o absorberse. El grado de transmisión, absorción o reflexión depende de las propiedades intrínsecas del material, en concreto de su índice de refracción \eta y de su coeficiente de absorción k, y, en general, estos valores no son fácilmente manipulables. La frecuencia \omega de la luz que viaja en el interior del material obedece una relación denominada relación de dispersión:In general, the incident light on a material, semiconductor or not, can be transmitted inside it, reflected or absorbed. The degree of transmission, absorption or reflection depends on the intrinsic properties of the material, in particular its refractive index η and its absorption coefficient k , and, in general, these values are not easily manipulated. The frequency [omega] of the light traveling inside the material obeys a relation called dispersion ratio:
\omega = c / \eta k\ omega = c / \ eta k
donde \kappa = 2 \pi/\lambda es el denominado vector de onda de la luz incidente y \lambda es la longitud de onda y \eta es el índice de refracción. Esta relación se verifica para materiales homogéneos en composición. Cuando una onda plana incide sobre un material homogéneo, su reflexión, refracción y transmisión vienen dadas por la ley de Snell y por los coeficientes de Fresnel (Couny, F., F. Benabid, et al. (2007). "Reduction of fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber". Photonics Technology Letters 19(13-16): 1020-1022). Cuando el material deja de ser homogéneo y se convierte en periódico se originan bandas para fotones o bandas fotónicas (Ohtaka, K. (1979). "Energy-band of photons and low energy photon diffraction" Physical Review B 19(10): 5057-5067 1979). En este caso la luz que se transmite al interior del material viaja dentro del mismo con un índice de refracción que viene dado por las bandas fotónicas, donde \omega = \omega (k) y se verifica que:where? = 2? /? is the so-called incident vector wave vector and? is the wavelength and? is the refractive index. This relationship is verified for homogeneous materials in composition. When a flat wave strikes a homogeneous material, its reflection, refraction and transmission are given by Snell's law and Fresnel coefficients (Couny, F., F. Benabid, et al . (2007). "Reduction of fresnel back-reflection at splice interface between hollow core PCF and single-mode fiber ". Photonics Technology Letters 19 (13-16): 1020-1022). When the material ceases to be homogeneous and becomes a newspaper, bands for photons or photonic bands originate (Ohtaka, K. (1979). "Energy-band of photons and low energy photon diffraction" Physical Review B 19 (10): 5057 -5067 1979). In this case, the light that is transmitted inside the material travels within it with an index of refraction that is given by the photonic bands, where \ omega = \ omega ( k ) and it is verified that:
\frac{\partial \omega}{\partial k} = \frac{c}{n}\ frac {\ partial \ omega} {\ partial k} = \ frac {c} {n}
Como ahora el índice de refracción es una función complicada de la frecuencia y de la dirección de incidencia (k), su valor va a variar de acuerdo a estas dos magnitudes. Esto puede permitir la introducción de luz en el material con ángulos superiores al de reflexión total, para ciertas frecuencias, o inhibir otras longitudes de onda, que no se propagarán dentro del material.Since the refractive index is now a complicated function of the frequency and direction of incidence ( k ), its value will vary according to these two magnitudes. This may allow the introduction of light into the material with angles greater than the total reflection, for certain frequencies, or inhibit other wavelengths, which will not propagate within the material.
El método aquí descrito difiere de los anteriores mencionados y de cualquier otro conocido, ya que se basa en razones físicas completamente diferentes, supone una nueva aplicación de las bandas fotónicas como método, para incrementar la transmisión de luz hacia el interior de materiales, especialmente materiales semiconductores.The method described here differs from those mentioned above and of any other acquaintance, as it is based in completely different physical reasons, it implies a new application of photonic bands as a method, to increase the light transmission into materials, especially semiconductor materials.
Un aspecto de la presente invención es el uso del material cuya topografía superficial se ha modificado mediante la fabricación de una red ordenada de cavidades rellenas de otro material con diferente índice de refracción, en adelante material modificado de la invención, en dispositivos que generan una corriente eléctrica a partir de luz incidente.An aspect of the present invention is the use of the material whose surface topography has been modified by the manufacture of an ordered network of cavities filled with another material with different index of refraction, hereinafter material modified of the invention, in devices that generate a electric current from incident light.
Un aspecto preferente de la presente invención es el uso del material modificado de la invención, en el que la red de cavidades está rellena de aire con índice de refracción igual a 1, en dispositivos que generan una corriente eléctrica a partir de luz incidente.A preferred aspect of the present invention is the use of the modified material of the invention, in which the network of cavities is filled with air with refractive index equal to 1, in devices that generate an electric current from incident light
Otro aspecto de la presente invención es el uso del material modificado de la invención en células solares, fotodetectores y aparatos termofotovoltáicos.Another aspect of the present invention is the use of the modified material of the invention in solar cells, photodetectors and thermo-photovoltaic devices.
Otro aspecto de la presente invención es un dispositivo caracterizado porque comprende el material modificado de la invención y una célula solar, de forma que el material modificado de la invención se deposita sobre la superficie del panel fotovoltaico de la célula solar.Another aspect of the present invention is a device characterized in that it comprises the modified material of the invention and a solar cell, so that the modified material of the invention is deposited on the surface of the panel Photovoltaic solar cell.
Otro aspecto de la presente invención es un dispositivo caracterizado porque comprende el material modificado de la invención y un fotodetector, de forma que el material modificado de la invención se deposita sobre la superficie del fotodetector.Another aspect of the present invention is a device characterized in that it comprises the modified material of the invention and a photodetector, so that the modified material of the invention is deposited on the surface of the photodetector
Otro aspecto de la presente invención es un dispositivo caracterizado porque comprende el material modificado de la invención y un aparato termofotovoltaico, de forma que el material modificado de la invención se deposita sobre la superficie del aparato termofotovoltaico.Another aspect of the present invention is a device characterized in that it comprises the modified material of the invention and a thermo-photovoltaic apparatus, so that the modified material of the invention is deposited on the surface of the thermo-photovoltaic apparatus.
Otro aspecto de la invención es una célula solar, fotodetector o aparato termofotovoltaico en los que se ha modificado la topografía superficial del mismo según las características del material de la invención.Another aspect of the invention is a cell. solar, photodetector or thermo-photovoltaic device in which it has been modified the surface topography of the same according to characteristics of the material of the invention.
\vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
La presente invención se basa en el hecho, observado por los inventores, de que la modificación de la topografía superficial de materiales, mediante la fabricación de una red ordenada de cavidades rellenas de otro material, con diferente índice de refracción, produce una alteración de la reflexión, transmisión y refracción de la luz, para diferentes longitudes de onda y ángulos de incidencia, en el material. Esta red ordenada de cavidades genera bandas fotónicas en el plano de la superficie del material, las cuales alteran el valor del índice de refracción del material sobre el que están fabricadas. La variación del valor del índice de refracción superficial permite, en función del ángulo de incidencia y de la longitud de onda de la luz, favorecer o inhibir la transmisión y reflexión de la luz.The present invention is based on the fact, observed by the inventors, that the modification of the surface topography of materials, by manufacturing a neat network of cavities filled with other material, with different refractive index, produces an alteration of the reflection, light transmission and refraction, for different lengths of wave and angles of incidence, in the material. This ordered network of cavities generates photonic bands in the plane of the surface of the material, which alter the refractive index value of the material on which they are manufactured. The variation of the value of surface refractive index allows, depending on the angle of incidence and wavelength of light, favor or inhibit the transmission and reflection of light.
Esta propiedad que presentan los materiales modificados, mediante la red ordenada de cavidades en su topografía superficial, es totalmente novedosa, siendo los inventores de la presente invención los primeros en observarla y en medir la alteración de la transmisión en dichos materiales (tal y como muestra la figura 4), y plantea nuevos usos de este tipo de materiales modificados.This property presented by the materials modified, through the ordered network of cavities in its topography superficial, it is totally new, being the inventors of the present invention the first to observe and measure the alteration of the transmission in said materials (as shows figure 4), and proposes new uses of this type of modified materials.
En base a esta nueva propiedad observada, un aspecto de la presente invención es el uso del material cuya topografía superficial se ha modificado mediante la fabricación de una red ordenada de cavidades rellenas de otro material con diferente índice de refracción, en adelante material modificado de la invención, en dispositivos que generan una corriente eléctrica a partir de luz incidente.Based on this new property observed, a aspect of the present invention is the use of the material whose surface topography has been modified by manufacturing an ordered network of cavities filled with other material with different index of refraction, hereinafter modified material of the invention, in devices that generate an electric current at from incident light.
La fabricación de este tipo de materiales modificados está descrita en artículos publicados con anterioridad (Alija, A. R., L. J. Martínez, et al. (2005). "Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness". Applied Physics Letters 86(14)) y se basa en la eliminación del material del interior de las cavidades mediante el ataque anisotrópico por haces de iones reactivos. Estos materiales han sido caracterizados previamente (A. R. Alija, L. J. Martínez, J. Sánchez-Dehesa, P. A. Postigo, M. Galli, A. Politi, M. Patrini. L. C. Andreani, C. Seassal, and P. Viktorovitch, "Theoretical and experimental study of te Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy", Optics Express 15 (2) 704-713 (2007)), pero nunca antes se había planteado su uso en dispositivos que generen corriente eléctrica a partir de la irradiación luminosa.The manufacture of such modified materials is described in previously published articles (Alija, AR, LJ Martínez, et al . (2005). "Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness". Applied Physics Letters 86 (14)) and is based on the removal of the material inside the cavities by anisotropic attack by reactive ion beams. These materials have been previously characterized (AR Alija, LJ Martínez, J. Sánchez-Dehesa, PA Postigo, M. Galli, A. Politi, M. Patrini. LC Andreani, C. Seassal, and P. Viktorovitch, "Theoretical and experimental study of te Suzuki-phase photonic crystal lattice by angle-resolved photoluminescence spectroscopy ", Optics Express 15 (2) 704-713 (2007)), but never before had its use been considered in devices that generate electrical current from irradiation bright.
Un aspecto preferente de la presente invención es el uso del material modificado de la invención, en el que la red de cavidades está rellena de aire con índice de refracción igual a 1, en dispositivos que generan una corriente eléctrica a partir de luz incidente.A preferred aspect of the present invention is the use of the modified material of the invention, in which the network of cavities is filled with air with refractive index equal to 1, in devices that generate an electric current from incident light
Otro aspecto preferente de la presente invención es el uso de un material semiconductor como material modificado de la invención, en dispositivos que generen una corriente eléctrica a partir de luz incidente.Another preferred aspect of the present invention is the use of a semiconductor material as a modified material of the invention, in devices that generate an electric current at from incident light.
Un aspecto más preferente de la presente invención es el uso de un material semiconductor III-V como material modificado de la invención en dispositivos que generen una corriente eléctrica a partir de luz incidente.A more preferred aspect of the present invention is the use of a semiconductor material III-V as modified material of the invention in devices that generate an electric current from light incident.
Una realización particular de la presente invención es el uso InP o bien InGaP como material semiconductor modificado de la invención en dispositivos que generen una corriente eléctrica a partir de luz incidente.A particular embodiment of the present invention is the use InP or InGaP as a semiconductor material modified of the invention in devices that generate a current electric from incident light.
Un aspecto preferente de la invención es el uso del material modificado de la invención en el que las cavidades están espaciadas regularmente en forma de red bidimensional.A preferred aspect of the invention is the use of the modified material of the invention in which the cavities They are regularly spaced in the form of a two-dimensional network.
Un aspecto preferente de la invención es el uso del material modificado de la invención en el que la separación entre los centros de las cavidades es superior a 50 nm.A preferred aspect of the invention is the use of the modified material of the invention in which the separation between the centers of the cavities it is greater than 50 nm.
En el ejemplo 1, las cavidades son circulares, con simetría triangular, tienen un radio de 144 nm. y una separación de 450 nm entre sus centros.In example 1, the cavities are circular, with triangular symmetry, they have a radius of 144 nm. and a separation 450 nm between its centers.
El hecho de que estos materiales alteren la reflexión, refracción y transmisión de la luz los hace particularmente interesantes en aplicaciones que utilizan la luz solar, para la generación de electrones, especialmente células solares, fotodetectores y aparatos termofotovoltáicos, en los que una mayor transición de la luz optimiza la eficiencia eléctrica de los mismos.The fact that these materials alter the reflection, refraction and transmission of light makes them particularly interesting in applications that use light solar, for the generation of electrons, especially cells solar, photodetectors and thermo-photovoltaic devices, in which greater light transition optimizes the electrical efficiency of the same.
Por tanto, otro aspecto de la presente invención es el uso del material modificado de la invención en células solares, fotodetectores y aparatos termofotovoltáicos.Therefore, another aspect of the present invention is the use of the modified material of the invention in cells solar, photodetectors and thermo-photovoltaic devices.
Por debajo del material modificado de la invención o contenido en el mismo, se puede situar otro aparato que utilice la luz para la generación de electrones, como una célula solar o un fotodetector. Estos se verán influenciados por el dispositivo situado inmediatamente encima, favoreciendo o disminuyendo la entrada de luz en el mismo. La integración de ambos dispositivos puede hacerse bien de forma directa, usando un mismo material para toda la estructura (integración monolítica como la usada en : "Solid-source molecular beam epitaxy for monolithic integration of láser emitters and photodetectors on GaAs chips", P.A. Postigo, S. S. Choi, W. D. Goodhue, and C. G. Fonstad, Applied Physics Letters 77 (24) 3842-3844 (2000), o bien usando una técnica indirecta de unión o pegado entre ambos, como la unión de obleas por unión anódica. (Kovacs, G.T.A.; Maluf, N.I.; Petersen, K.E., "Bulk micromachining of silicon", Proceedings of the IEEE Volume 86, Issue 8, Aug. 1998 Page(s):1536 - 1551) u otras.Below the modified material of the invention or content therein, another apparatus can be placed that use light for the generation of electrons, like a cell solar or a photodetector. These will be influenced by the device located immediately above, favoring or decreasing the entry of light in it. The integration of both devices can be done well directly, using the same material for the entire structure (monolithic integration such as used in: "Solid-source molecular beam epitaxy for monolithic integration of laser emitters and photodetectors on GaAs chips ", P.A. Postigo, S. S. Choi, W. D. Goodhue, and C. G. Fonstad, Applied Physics Letters 77 (24) 3842-3844 (2000), or using an indirect bonding or bonding technique between both, as the union of wafers by anodic union. (Kovacs, G.T.A .; Maluf, N.I .; Petersen, K.E., "Bulk micromachining of silicon", Proceedings of the IEEE Volume 86, Issue 8, Aug. 1998 Page (s): 1536 - 1551) or others.
Por tanto, otro aspecto de la presente invención es un dispositivo caracterizado porque comprende el material modificado de la invención y una célula solar, de forma que el material modificado de la invención se deposita sobre la superficie del panel fotovoltaico de una célula solar.Therefore, another aspect of the present invention it is a device characterized in that it comprises the material modified of the invention and a solar cell, so that the modified material of the invention is deposited on the surface of the photovoltaic panel of a solar cell.
Un aspecto preferente de la presente invención es un dispositivo que comprende una lámina de material de fosfuro de Galio e Indio (InGaP) modificado mediante una red periódica de cavidades, y una célula solar de Germanio, de forma que el material de InGaP se deposita sobre la célula solar de Germanio (Ge) tal y como se indica en el ejemplo 2.A preferred aspect of the present invention it is a device comprising a sheet of phosphide material of Gallium and Indium (InGaP) modified through a periodic network of cavities, and a Germanium solar cell, so that the material of InGaP is deposited on the Germanium (Ge) solar cell as as indicated in example 2.
El espesor de la lámina de Ge del ejemplo 2 es de 150 um con una orientación cristalina (111) y la red de cavidades de la lámina de InGaP tiene simetría triangular con cavidades de forma circular de 200 nm de radio, una separación de 600 nm entre centros y una profundidad de 200 nm.The thickness of the Ge sheet of example 2 is of 150 um with a crystalline orientation (111) and the cavity network InGaP sheet has triangular symmetry with cavities of circular shape of 200 nm radius, a separation of 600 nm between centers and a depth of 200 nm.
Otro aspecto de la presente invención es un dispositivo caracterizado porque comprende el material modificado de la invención y un fotodetector, de forma que el material modificado de la invención se deposita sobre la superficie del fotodetector.Another aspect of the present invention is a device characterized in that it comprises the modified material of the invention and a photodetector, so that the modified material of the invention is deposited on the surface of the photodetector
Otro aspecto de la presente invención es un dispositivo caracterizado porque comprende el material modificado de la invención y un aparato termofotovoltaico, de forma que el material modificado de la invención se deposita sobre la superficie del aparato termofotovoltaico.Another aspect of the present invention is a device characterized in that it comprises the modified material of the invention and a thermo-photovoltaic apparatus, so that the modified material of the invention is deposited on the surface of the thermo-photovoltaic apparatus.
También puede darse el caso en el que la topografía superficial del propio material de la célula solar, fotodetector o aparato termofotovoltaico se modifique con la red de cavidades detallada.It may also be the case in which the surface topography of the solar cell material itself, photodetector or thermo-photovoltaic device is modified with the network of Detailed cavities
Por tanto, otro aspecto de la invención es una célula solar, fotodetector o aparato termofotovoltaico en los que se ha modificado la topografía superficial del mismo según las características del material de la invención.Therefore, another aspect of the invention is a solar cell, photodetector or thermo-photovoltaic apparatus in which has modified its surface topography according to characteristics of the material of the invention.
Figura 1.- Esquema del dispositivo para modificar la reflexión y la transmisión de la luz en un material mediante la generación de bandas para fotones. Consiste en una lámina de material (1) semiconductor, con una serie de cavidades con forma circular, espaciadas regularmente en forma de red bidimensional con simetría triangular. Esta estructura se deposita sobre la superficie de un aparato que puede ser una célula solar, un fotodetector, o un aparato termofotovoltaico (2).Figure 1.- Scheme of the device for modify the reflection and transmission of light in a material by generating bands for photons. It consists of one sheet of material (1) semiconductor, with a series of cavities with circular shape, regularly spaced in grid form two-dimensional with triangular symmetry. This structure is deposited on the surface of an apparatus that can be a solar cell, a photodetector, or a thermo-photovoltaic device (2).
Figura 2.- Esquema de la estructura de bandas fotónicas para el dispositivo de la Figura 1, calculado mediante el método de modos guiados (Gerace, D. and L. C. Andreani (2005). "Low-loss guided modes in photonic crystal waveguides". Optics Express 13(13): 4939-4951). En el eje vertical se representan frecuencias normalizadas \omegaa/2\pic, donde a es el parámetro de la red ordenada de cavidades, y en el eje horizontal se representa la componente del vector de onda k paralela al plano x-y del dispositivo para cada dirección de la red recíproca del plano. En función de las dimensiones y forma de las cavidades del dispositivo (1) de la Figura 1 la luz con frecuencia normalizada \omegaa/2\pic que se introduce en el material (2) de la Figura 1 pasa a tener un vector de onda con una componente paralela al plano del dispositivo dada por estas bandas y que permite definir unívocamente el ángulo de incidencia sobre el dispositivo para una frecuencia normalizada determinada.Figure 2.- Schematic of the structure of photonic bands for the device of Figure 1, calculated using the guided mode method (Gerace, D. and LC Andreani (2005). "Low-loss guided modes in photonic crystal waveguides". Optics Express 13 (13): 4939-4951). On the vertical axis normalized frequencies \ omegaa / 2 \ pic are represented, where a is the parameter of the ordered network of cavities, and on the horizontal axis the component of the wave vector k is represented parallel to the xy plane of the device for each direction of the reciprocal network of the plane. Depending on the dimensions and shape of the cavities of the device (1) of Figure 1, the light with normalized frequency \ omegaa / 2 \ pic that is introduced into the material (2) of Figure 1 becomes a wave vector with a component parallel to the plane of the device given by these bands and that allows to uniquely define the angle of incidence on the device for a given normalized frequency.
Figura 3.- A) medida experimental de la Reflexión para luz polarizada TE y TM con energía entre 0.5 y 2.0 eV incidente sobre un dispositivo como el material (2) de la Figura 1. Está formado por una lámina de material semiconductor (InP) de 270 nm de espesor sin perforaciones de ningún tipo. La medida se realiza para diferentes ángulos de incidencia de la luz sobre la lámina, entre 0o (incidencia normal) y 60º.Figure 3.- A) experimental measurement of the Reflection for polarized light TE and TM with energy between 0.5 and 2.0 eV incident on a device such as the material (2) of Figure 1. It is formed by a sheet of semiconductor material (InP) of 270 nm thick without perforations of any kind. The measurement is made for different angles of incidence of light on the sheet, between 0o (normal incidence) and 60º.
B) medida experimental de la Reflexión para luz con energía entre 0.5 y 2.0 eV incidente sobre una lámina de semiconductor (InP) de 270 nm de espesor con cavidades circulares dispuestas en una red ordenada de simetría triangular como la indicada en la Figura 1, con separaciones entre centros de 450 nm y cavidades de radio 144 nm. La medida se realiza para diferentes ángulos de incidencia de la luz sobre la lámina, entre 0o (incidencia normal) y 60º.B) experimental measurement of the Reflection for light with energy between 0.5 and 2.0 eV incident on a sheet of 270 nm thick semiconductor (InP) with circular cavities arranged in an ordered network of triangular symmetry such as the indicated in Figure 1, with separations between centers of 450 nm and 144 nm radius cavities. The measurement is made for different angles of incidence of light on the sheet, between 0o (normal incidence) and 60º.
Figura 4.- A) medida experimental de la Transmisión para luz polarizada TE y TM con energía entre 0.5 y 2.0 eV incidente sobre un dispositivo como el (1) de la Figura 1. Está formado por una lámina de semiconductor (InP) de 270 nm de espesor sin cavidades de ningún tipo. La medida se realiza para diferentes ángulos de incidencia de la luz sobre la lámina, entre 0o (incidencia normal) y 60º.Figure 4.- A) experimental measurement of Transmission for polarized light TE and TM with energy between 0.5 and 2.0 eV incident on a device such as (1) of Figure 1. It is formed by a semiconductor sheet (InP) 270 nm thick No cavities of any kind. The measurement is made for different angles of incidence of light on the sheet, between 0o (normal incidence) and 60º.
B) medida experimental de la Transmisión para luz polarizada TE y TM con energía entre 0.5 y 2.0 eV incidente sobre una lámina de semiconductor (InP) de 270 nm de espesor con cavidades circulares dispuestas en una red ordenada de simetría triangular como la indicada en la Figura 1, con separaciones entre centros de círculos de 450 nm y radios de 144 nm. La medida se realiza para diferentes ángulos de incidencia de la luz sobre la lámina, entre 0o (incidencia normal) y 60º.B) experimental measurement of Transmission for polarized light TE and TM with energy between 0.5 and 2.0 eV incident on a semiconductor sheet (InP) 270 nm thick with circular cavities arranged in an ordered symmetry network triangular as indicated in Figure 1, with separations between 450 nm circle centers and 144 nm radii. The measure is performs for different angles of incidence of light on the lamina, between 0o (normal incidence) and 60º.
Figura 5.- Fotografía de una célula solar como la descrita. La célula de forma circular está inscrita en un cuadrado que actúa como contacto eléctrico. El diámetro de la superficie expuesta es de unos 6 mm.Figure 5.- Photograph of a solar cell as the one described The circular shaped cell is inscribed in a square that acts as electrical contact. The diameter of the exposed surface is about 6 mm.
Figura 6.- Fotografía del dispositivo formado por la célula solar y una lámina de material InGaP modificado con una red de cavidades.Figure 6.- Photograph of the device formed by the solar cell and a sheet of InGaP material modified with A network of cavities.
Figura 7.- Fotografía mediante microscopía de haz de electrones de la superficie del dispositivo formado por la célula solar y la lámina del material InGaP modificado con una red de cavidades.Figure 7.- Photography by microscopy of electron beam of the surface of the device formed by the solar cell and sheet of the modified InGaP material with a network of cavities
Figura 8.- Curva EQE medida sobre una célula solar sin lámina de material InGaP modificado (línea continua) y una célula con material InGaP modificado con una red de cavidades (línea punteada) a temperatura ambiente. Como se observa, en el segundo caso la curva EQE es entre un 10% y un 20% mayor, dependiendo del rango espectral.Figure 8.- EQE curve measured on a cell solar without sheet of modified InGaP material (continuous line) and a cell with modified InGaP material with a cavity network (line dotted) at room temperature. As you can see, in the second case the EQE curve is between 10% and 20% higher, depending on the spectral range
\vskip1.000000\baselineskip\ vskip1.000000 \ baselineskip
Se detalla un dispositivo como el que aparece en la Fig. 1. Está formado por una lámina de material semiconductor Fosfuro de Indio (InP) con un espesor de 270 nm. Esta lámina de InP se ha depositado en un reactor de epitaxia por haces moleculares sobre un sustrato comercial (fabricado por AXT Corp.) del mismo compuesto (InP). Entre el sustrato y la lámina de InP de 270 nm se ha depositado mediante el mismo procedimiento una fina capa de 50 nm de espesor de la aleación ternaria In_{0 . 48}Ga_{0 . 52}As que actuará como capa de sacrificio en el proceso de transferencia a sustrato de vidrio. Sobre la superficie del material epitaxial fabricado se deposita a 300ºC una capa de 200 nm de óxido de silicio no estequimométrico (SiO_{x}) mediante un aparato de deposición en fase vapor asistido por plasma. Sobre esta capa se deposita una resina tipo polimetilmetacrilato (PMMA A-4, fabricado por Microchem Corp.) por centrifugación a 5000 rpm durante 30 segundos. Sobre esta resina se realiza un proceso de litografía de alta resolución por haz de electrones. En este proceso se ilumina la resina con un haz de electrones con una energía de 30 keV y una dosis de 100 \muC/cm^{2}. El haz de electrones expone la resina en las zonas que corresponden a la red de cavidades con forma circular que se desea perforar en la lámina de InP. La resina es inmersa en un revelador (metil-isobutil ketona: H_{2}O en proporción 5:1) que disuelve el PMMA en las zonas donde el haz de electrones ha incidido, correspondientes a las futuras cavidades de la lámina de InP. A continuación, el material semiconductor es eliminado del interior de las cavidades mediante ataque anisotrópico por haces de iones reactivos utilizando como máscara la capa de óxido de silicio. Este método proporciona la posibilidad de aumentar la profundidad de ataque hasta alcanzar los 270 nm o profundidades mayores, el ataque del óxido de silicio se realiza en un aparato de haces de iones reactivos asistido por resonancia electrónica ciclotrón. Los gases usados son nitrógeno (N_{2}) y freón (CHF_{3}) en un caudal de 2 ml/min y 5.6 ml/min, 450 eV de energía de aceleración y 250 eV de energía de extracción. La energía usada para la activación del plasma es de 300 W y su frecuencia de 2,41 GHz Mhz. La intensidad del campo magnético es de 980 G. La presión es de P=6 x 10^{-6} mTorr. Una vez realizado la transferencia del patrón de cavidades a la capa de oxido de silicio, se utiliza dicha capa para transferir el patrón a la lámina de InP mediante un aparato de ataque por iones reactivos. Los gases involucrados son metano (CH_{4}) con un caudal de 5 sccm e hidrógeno (H_{2}) con un caudal de 30 sccm. La presión del proceso es P=20 mT y la potencia de 300 W en un plasma generado por radiofrecuencia a 13,56 MHz, y su duración es de 1 minuto. El sustrato no se refrigera en ningún momento. Este proceso genera un polímetro hidrocarbonado que se deposita dentro de las cavidades y reduce la verticalidad de los laterales de los mismos. Para conseguir una perfecta verticalidad de los laterales en estas cavidades es necesario un proceso de ciclado de oxígeno que hemos desarrollado específicamente. Este proceso consiste en la eliminación por combustión del polímetro residual mediante ataque por plasma de oxígeno (O_{2}). Tras cada minuto del ataque anterior metano-hidrógeno y después de vaciar y purgar las líneas de gases, se introduce O_{2} (50 sccm) a una presión total de P=20 mTorr y se genera plasma con 200 W de potencia durante un tiempo de 15 segundos. A continuación se vuelven a limpiar y purgar las líneas de gases y se repite el primer ataque con CH_{4} y H_{2}. El ciclado de ambos procesos (metano-hidrógeno y oxígeno) se repite hasta alcanzar la profundidad de 270 nm.A device like the one listed in Fig. 1. It is formed by a sheet of semiconductor material Indian phosphide (InP) with a thickness of 270 nm. This sheet of InP it has been deposited in a molecular beam epitaxy reactor on a commercial substrate (manufactured by AXT Corp.) thereof compound (InP). Between the substrate and the 270 nm InP sheet, has deposited a thin 50 nm layer by the same procedure thickness of the ternary alloy In_ {0. 48} Ga_ {0. 52} So will act as a sacrificial layer in the transfer process to glass substrate On the surface of the epitaxial material A 200 nm layer of silicon oxide is deposited at 300 ° C non-stoichiometric (SiO_ {x}) by means of a deposition apparatus in plasma assisted vapor phase. A layer is deposited on this layer. polymethylmethacrylate resin (PMMA A-4, manufactured by Microchem Corp.) by centrifugation at 5000 rpm during 30 seconds. A lithography process is performed on this resin High resolution electron beam. In this process it lights up the resin with an electron beam with an energy of 30 keV and a dose of 100 µC / cm2. The electron beam exposes the resin in the areas that correspond to the network of shaped cavities circular to be drilled in the sheet of InP. The resin is immersed in a developer (methyl isobutyl ketone: H2O in 5: 1 ratio) that dissolves PMMA in areas where the electron beam has affected, corresponding to future InP sheet cavities. Then the material semiconductor is removed from inside the cavities by anisotropic attack by reactive ion beams using as Mask the silicon oxide layer. This method provides the possibility of increasing the depth of attack until reaching 270 nm or greater depths, the attack of silicon oxide is performs in a reactive ion beam apparatus assisted by cyclotron electronic resonance. The gases used are nitrogen (N2) and Freon (CHF3) at a flow rate of 2 ml / min and 5.6 ml / min, 450 eV of acceleration energy and 250 eV of extraction energy. The energy used for plasma activation is 300 W and its 2.41 GHz Mhz frequency. The intensity of the magnetic field is 980 G. The pressure is P = 6 x 10-6 mTorr. Once the transfer of the cavity pattern to the silicon oxide layer, said layer is used to transfer the pattern to the InP sheet by means of a reactive ion attack apparatus. The gases involved are methane (CH4) with a flow rate of 5 sccm e hydrogen (H2) with a flow rate of 30 sccm. Process pressure is P = 20 mT and the power of 300 W in a plasma generated by radio frequency at 13.56 MHz, and its duration is 1 minute. He Substrate is not refrigerated at any time. This process generates a hydrocarbon multimeter that is deposited inside the cavities and reduces the verticality of the sides of them. For get a perfect verticality of the sides in these cavities an oxygen cycling process is necessary that we have specifically developed. This process consists of the combustion elimination of the residual multimeter by attack by oxygen plasma (O2). After every minute of the attack previous methane-hydrogen and after emptying and purge the gas lines, O2 (50 sccm) is introduced at a total pressure of P = 20 mTorr and plasma is generated with 200 W of power for a time of 15 seconds. Then they come back to clean and purge the gas lines and the first attack is repeated with CH4 and H2. The cycling of both processes (methane-hydrogen and oxygen) is repeated until reach the depth of 270 nm.
Por debajo de este dispositivo o contenido en el mismo, se puede situar otro aparato que utilice la luz para la generación de electrones, como una célula solar o un foto-detector.Below this device or content in the same, you can place another device that uses the light for generation of electrons, such as a solar cell or a photo-detector
En el ejemplo aquí detallado la lámina de semiconductor está depositada, en lugar de sobre una célula solar o un foto-detector, sobre un sustrato transparente, que es un vidrio de alta calidad en este caso, con el objetivo de poder realizar la medida no sólo de su reflectancia sino también de su transmisión, para lo cual es necesario utilizar un sustrato transparente en la región espectral de medida sobre el que la lámina perforada tiene que ser depositada. Para ello se pega la lámina a un sustrato de vidrio (porta para microscopio óptico ThermoShandon, UK) mediante un pegamento óptico (Norland 77, Norland Inc), cuyo curado se realiza mediante el uso de una lámpara de luz ultravioleta. El pegado se realiza dispensando una gota de pegamento sobre la lámina de vidrio, se extiende y se coloca la muestra encima sin realizar presión alguna, simplemente con el propio peso de la muestra, y prestando especial cuidado a que la parte del substrato de la muestra (substrato de InP de unas 300 \mum de espesor) no quede cubierta por el pegamento. El proceso de curado del pegamento se realiza en dos etapas. En la primera realizamos un precurado de 1 minuto. Una vez terminado, se comprueba que la lámina de vidrio no se ha pegado a la superficie del porta sobre el que se sitúa dentro de la lámpara de ultravioleta. Posteriormente se realiza el curado por un tiempo de 45 minutos. Una vez curado el pegamento se elimina el InP del substrato de la muestra. Para ello se usa una mezcla de HCl y H_{2}O (4:1) con HCl al 37%. Para que el ataque químico resulte más selectivo entre el InP y la aleación ternaria In_{0 . 48}Ga_{0 . 52}As (el ataque se frena en esta capa), la mezcla se enfría a 1ºC. Para reducir al máximo las tensiones entre las capas de distintos materiales al enfriar de forma repentina, la muestra se enfría a la misma temperatura previamente a introducirla en la mezcla. Se considera finalizado el ataque (tiempo de duración entorno a una hora y media) cuando se observa que ya no hay reacción, es decir, no salen burbujas del proceso y la muestra presenta una superficie sin rugosidad, espejada y con un color anaranjado. Para parar el ataque la muestra se sumerge durante 1 minuto en agua destilada. El secado de la misma se realiza con extremo cuidado mediante nitrógeno seco a baja presión.In the example detailed here the sheet of semiconductor is deposited, instead of on a solar cell or a photo-detector, on a transparent substrate, which is a high quality glass in this case, with the aim of to be able to measure not only its reflectance but also of its transmission, for which it is necessary to use a substrate transparent in the spectral region of measurement on which the sheet Perforated has to be deposited. For this, the sheet is glued to a glass substrate (optical microscope holder ThermoShandon, UK) by means of an optical glue (Norland 77, Norland Inc), whose curing It is done by using an ultraviolet light lamp. He glueing is done by dispensing a drop of glue on the sheet of glass, it extends and the sample is placed on top without realizing any pressure, simply with the weight of the sample itself, and taking special care that the substrate part of the sample (InP substrate about 300 µm thick) does not remain covered by glue. The glue curing process is Performs in two stages. In the first one we made a pre-cure of 1 minute. Once finished, it is checked that the glass sheet does not it has stuck to the surface of the portal on which it is placed inside of the ultraviolet lamp. Subsequently cure for a time of 45 minutes. Once cured the glue is removed the InP of the sample substrate. For this a mixture of HCl and H2O (4: 1) with 37% HCl. For the chemical attack be more selective between the InP and the ternary alloy In_ {0. 48} Ga_ {0. 52} As (the attack is stopped in this layer), the mixture is cooled to 1 ° C. To minimize tensions between layers of different materials when cooling suddenly, the sample is cools to the same temperature before entering it in the mixture. The attack is considered finished (duration time around an hour and a half) when it is observed that there is no longer reaction, that is, no bubbles come out of the process and the sample It has a surface without roughness, mirrored and with a color orange. To stop the attack the sample is submerged for 1 minute in distilled water. The drying of the same is done with Extreme care by dry nitrogen at low pressure.
La lámina de semiconductor perforada de la manera indicada presenta bandas para fotones. La Figura 2 muestra el diagrama de bandas para fotones (puntos rojos) calculado para este ejemplo mediante el método de expansión de modos guiados descrito en (LC. Andreani and M. Agio, "Intrinsic diffraction losses in photonic crystal waveguides with line defects", Appl. Phys. Lett. 82, 2011 (2003)). Este diagrama proporciona la relación de dispersión de la luz, es decir, la frecuencia de la luz que puede viajar dentro de la lámina. Para cada dirección del plano contenido en la lámina, se vera reflejada una onda incidente sobre la misma en un determinado ángulo, de acuerdo a como varía la componente de su vector de onda paralela al plano de la lámina. Como esta componente viene dada por las bandas para fotones, la reflexión se verá alterada de acuerdo a estas bandas como esta descrito en (M. Galli, M. Agio, L. C. Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M. Patrini, P. Bettotti, I. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, "spectroscopy of photonic bands in macroporous silicon photonic crystals", Phys. Rev. B 65, 113111 (2002)) y otros.The perforated semiconductor sheet in the indicated manner has bands for photons. Figure 2 shows the photon band diagram (red dots) calculated for this example using the guided mode expansion method described in (LC. Andreani and M. Agio, " Intrinsic diffraction losses in photonic crystal waveguides with line defects ", Appl. Phys. Lett. 82, 2011 (2003)). This diagram provides the ratio of light scattering, that is, the frequency of light that can travel within the sheet. For each direction of the plane contained in the sheet, an incident wave will be reflected on it at a certain angle, according to how the component of its wave vector parallel to the plane of the sheet varies. As this component is given by photon bands, the reflection will be altered according to these bands as described in (M. Galli, M. Agio, LC Andreani, M. Belotti, G. Guizzetti, F. Marabelli, M Patrini, P. Bettotti, I. Dal Negro, Z. Gaburro, L. Pavesi, A. Lui, P. Bellutti, " spectroscopy of photonic bands in macroporous silicon photonic crystals ", Phys. Rev. B 65, 113111 (2002 )) and others.
La Figura 3 muestra los espectros de reflectancia, con valores entre 0 y 1, de esta lámina para diferentes longitudes de onda y diferentes ángulos de incidencia. Para ello se ha utilizado un equipo de medida de la reflectancia en ángulo variable como el descrito en ("Measurement of photonic mode dispersión and linewidths in silicon-on-insulator photonic crystal slabs", Galli, M.; Bajoni, D.; Belotti, M.; Paleari, F.; Patrini, M.; Guizzetti, G.; Gerace, D.; Agio, M.; Andreani, IC.; Peyrade, D.; Chen, y. selected areas in communications, ieee Journal on volume 23, issue 7, july 2005 page(s): 1402 - 1410).Figure 3 shows the spectra of reflectance, with values between 0 and 1, of this sheet for Different wavelengths and different angles of incidence. For this purpose, a reflectance measurement device has been used in variable angle as described in ("Measurement of photonic mode dispersion and linewidths in silicon-on-insulator photonic crystal slabs ", Galli, M .; Bajoni, D .; Belotti, M .; Paleari, F .; Patrini, M .; Guizzetti, G .; Gerace, D .; Agio, M .; Andreani, IC .; Peyrade, D .; Chen, and. selected areas in communications, ieee Journal on volume 23, issue 7, july 2005 page (s): 1402-1410).
En este aparato de medida el dispositivo es iluminado mediante una lámpara de amplio espectro que se focaliza a través de un objetivo 10x (apertura numérica NA = 0.26) formando un ángulo variable con la normal a la muestra. El sistema experimental está compuesto por dos discos acoplados. Dichos discos se deslizan de forma independiente sobre distintos sistemas de rodamientos, controlando la muestra y el detector. Las medidas de reflectancia y transmisión se realizan en una configuración \theta-2\theta variando la posición angular \theta de la muestra y la del detector (2\theta) en pasos de 10º. El control angular de ambos brazos se realiza de forma automatizada.In this measuring device the device is illuminated by a broad-spectrum lamp that focuses on through a 10x objective (numerical aperture NA = 0.26) forming a variable angle with the normal one to the sample. The experimental system It is composed of two coupled disks. These discs slide independently on different bearing systems, controlling the sample and the detector. The reflectance measures and transmission are done in a configuration \ theta-2 \ theta varying the angular position the of the sample and that of the detector (2 the) in steps of 10th. Angular control of both arms is performed automated
Se representan en la Figura 3 este tipo de medidas para las polarizaciones TE y TM (modos transversal eléctrico y transversal magnético respectivamente) en los paneles a y c. Además se representan el mismo tipo de medidas realizadas en la misma lámina pero en una zona sin cavidades (paneles b y d). Se puede observar cómo los espectros de reflectancia para ambos tipos de lámina (con y sin cavidades) son claramente diferentes, para cada longitud de onda y para cada ángulo de incidencia.This type of measures for polarization TE and TM (electric transverse modes and magnetic transverse respectively) in panels a and c. In addition, the same type of measures performed in the same sheet but in an area without cavities (panels b and d). Be you can see how reflectance spectra for both types of sheet (with and without cavities) are clearly different, for each wavelength and for each angle of incidence.
En la Figura. 4 se representa la medida de la transmisión en la misma lámina para las polarizaciones TE y TM. Para poder realizar estas medidas ha sido necesaria la preparación de la lámina perforada como se ha indicado. Se observa cómo los espectros de transmisión para los dos tipos de lámina (con y sin cavidades) son claramente diferentes, para cada longitud de onda y para cada ángulo de incidencia. Esto significa que la lámina con cavidades transmite la luz de una forma diferente a la lámina sin cavidades, para cada longitud de onda y para cada ángulo de incidencia. De esta forma un dispositivo situado inmediatamente por debajo de esta lámina podría funcionar de forma más eficiente, si el diseño de la red de cavidades es óptimo, ya que se puede introducir luz para ángulos o longitudes de onda diferentes a los de un material homogéneo e isótropo, que viene dados por la ley de Snell.In the figure. 4 the measure of the transmission on the same sheet for polarization TE and TM. For to be able to carry out these measures, the preparation of the perforated sheet as indicated. It shows how the spectra of transmission for the two types of sheet (with and without cavities) they are clearly different, for each wavelength and for each angle of incidence. This means that the sheet with cavities transmits the light in a different way to the sheet without cavities, for each wavelength and for each angle of incidence. This form a device located immediately below this sheet could work more efficiently, if the design of the cavity network is optimal, since light can be introduced to angles or wavelengths different from those of a material homogeneous and isotropic, which is given by Snell's law.
Se detalla un segundo ejemplo de dispositivo que consiste en una célula solar con una lámina de material InGaP modificado con una red ordenada de cavidades. La célula solar es un sustrato de germanio (Ge) de espesor 150 \mum, con orientación cristalina (111) y desorientación de 6º. Sobre este sustrato se ha depositado una lámina de fosfuro de galio e indio (InGaP) depositada mediante deposición química en fase vapor a partir de fuentes metal-orgánicas (MOCVD). La lámina de InGaP tiene un espesor de 900 nm y está dopada tipo-p mediante Zn con una concentración de portadores de p = 1 x 10^{18} cm^{-3}. Sobre este material se han realizado unos contactos eléctricos mediante una tecnología de contactos óhmicos basados en Au. La célula consta de una superficie expuesta a la luz sin Au rodeada de una zona cubierta por Au que actúa como contacto eléctrico. La Fig. 5 muestra una fotografía de una célula solar como la descrita. El diámetro de la superficie expuesta es de unos 1,6 mm.A second example of a device consisting of a solar cell with a sheet of modified InGaP material with an ordered network of cavities is detailed. The solar cell is a substrate of germanium (Ge) of thickness 150 µm, with crystalline orientation (111) and disorientation of 6 °. A sheet of gallium and indium phosphide (InGaP) deposited by chemical vapor deposition from metal-organic sources (MOCVD) has been deposited on this substrate. InGaP sheet having a thickness of 900 nm and is doped by Zn p type- with a carrier concentration p = 1 x 10 ^ {18} {cm - 3}. Electrical contacts have been made on this material through an Ohmic contact technology based on Au. The cell consists of a surface exposed to light without Au surrounded by an area covered by Au that acts as an electrical contact. Fig. 5 shows a photograph of a solar cell as described. The diameter of the exposed surface is about 1.6 mm.
La red de cavidades se realiza como se indica a continuación. Sobre la capa de InGaP se deposita una resina sensible a los electrones (PMMA A-4 950K, Microchem) y se realiza una litografía por haz de electrones para definir una red periódica de simetría triangular con círculos de radio 200 nm y separación 600 nm. Para cubrir un área extensa se utilizan campos de litografía de forma cuadrada de unas 200 x 200 \mum^{2} separados entre sí unas 20 \mum. Una vez revelada de la misma forma que lo detallado anteriormente, se realiza la indentación de las cavidades mediante haces de iones reactivos (RIBE) utilizando Ar acelerado a 500 eV. La profundidad alcanzada es de 200 nm. La Fig. 6 muestra una fotografía del dispositivo fabricado. La Fig. 7 muestra otra fotografía mediante microscopía de haz de electrones del mismo dispositivo realizado, a una ampliación mayor.The cavity network is performed as indicated by continuation. A sensitive resin is deposited on the InGaP layer to electrons (PMMA A-4 950K, Microchem) and it perform lithography by electron beam to define a network periodic triangular symmetry with circles of radius 200 nm and 600 nm separation. To cover a large area, fields of square-shaped lithography of about 200 x 200 µm2 about 20 µm apart. Once revealed of it form that detailed above, the indentation of the cavities using reactive ion beams (RIBE) using Ar accelerated to 500 eV. The depth reached is 200 nm. Fig. 6 shows a photograph of the manufactured device. Fig. 7 shows another photograph by electron beam microscopy of it realized device, to a greater extension.
Se han obtenido medidas de la curva intensidad-voltaje (I-V) y de la eficiencia cuántica externa (EQE) del dispositivo fabricado.Curve measurements have been obtained current-voltage (I-V) and of the External quantum efficiency (EQE) of the manufactured device.
La curva I-V medida sobre el dispositivo célula solar-lámina InGaP modificada con red de cavidades no cambia respecto a la curva I-V célula solar. Esto indica que la célula solar no sufre ningún daño en sus propiedades eléctricas debido al proceso de fabricación de las cavidades de la lámina InGaP depositada en su superficie.The I-V curve measured on the InGaP solar-sheet cell device modified with cavity network does not change with respect to the I-V curve solar cell. This indicates that the solar cell is not damaged. in its electrical properties due to the manufacturing process of the cavities of the InGaP sheet deposited on its surface.
La eficiencia cuántica (EQ) es una medida muy importante en células solares ya que proporciona información sobre la cantidad de corriente que da una célula solar cuando se ilumina con luz de una determinada longitud de onda. La eficiencia cuántica externa (EQE) se define como el número de electrones por segundo que produce el dispositivo dividido entre el número de fotones por segundo que incide en el mismo. La Fig. 8 muestra una imagen de la curva EQE medida sobre una célula solar con lámina de InGaP modificada con la red de cavidades y una célula solar sin lámina de InGaP a temperatura ambiente. Como se observa, para el primer caso, la curva EQE es entre un 10% y un 20% mayor, en un amplio rango espectral. Esto indica que el dispositivo que consiste en una célula solar con una lámina de InGaP modificada con una red ordenada de cavidades convierte la luz a electrones con mayor eficiencia que sin ella, que es el objetivo que se pretende demostrar en esta patente.Quantum efficiency (EQ) is a very measure important in solar cells as it provides information on the amount of current that a solar cell gives when it illuminates with light of a certain wavelength. Quantum efficiency external (EQE) is defined as the number of electrons per second that produces the device divided by the number of photons by second that affects it. Fig. 8 shows an image of the EQE curve measured on a solar cell with InGaP sheet modified with the cavity network and a solar cell without foil InGaP at room temperature. As noted, for the first case, the EQE curve is between 10% and 20% greater, over a wide range spectral. This indicates that the device consisting of a cell solar with a modified InGaP sheet with an ordered network of cavities converts light to electrons more efficiently than without she, which is the objective that is intended to be demonstrated in this patent.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200801231A ES2346614B1 (en) | 2008-04-29 | 2008-04-29 | USE OF MODIFIED MATERIAL IN YOUR SURFACE TOPOGRAPHY IN DEVICES THAT GENERATE AN ELECTRIC CURRENT FROM INCIDENT LIGHT. |
PCT/ES2009/070041 WO2009133225A1 (en) | 2008-04-29 | 2009-02-24 | Use of material with a modified surface topography in devices for generating an electric current from incident light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES200801231A ES2346614B1 (en) | 2008-04-29 | 2008-04-29 | USE OF MODIFIED MATERIAL IN YOUR SURFACE TOPOGRAPHY IN DEVICES THAT GENERATE AN ELECTRIC CURRENT FROM INCIDENT LIGHT. |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2346614A1 ES2346614A1 (en) | 2010-10-18 |
ES2346614B1 true ES2346614B1 (en) | 2011-10-03 |
Family
ID=41254796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES200801231A Expired - Fee Related ES2346614B1 (en) | 2008-04-29 | 2008-04-29 | USE OF MODIFIED MATERIAL IN YOUR SURFACE TOPOGRAPHY IN DEVICES THAT GENERATE AN ELECTRIC CURRENT FROM INCIDENT LIGHT. |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2346614B1 (en) |
WO (1) | WO2009133225A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2466515B1 (en) | 2013-11-06 | 2015-03-23 | Sgenia Soluciones | Thin layer photovoltaic device with photonic crystal structure and behavior as a quantum confinement system, and its manufacturing procedure |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3325825B2 (en) * | 1997-03-29 | 2002-09-17 | 彰二郎 川上 | Three-dimensional periodic structure, method for producing the same, and method for producing film |
US7339109B2 (en) * | 2000-06-20 | 2008-03-04 | Emcore Corporation | Apparatus and method for optimizing the efficiency of germanium junctions in multi-junction solar cells |
US7482532B2 (en) * | 2005-01-19 | 2009-01-27 | Massachusetts Institute Of Technology | Light trapping in thin film solar cells using textured photonic crystal |
US20070235072A1 (en) * | 2006-04-10 | 2007-10-11 | Peter Bermel | Solar cell efficiencies through periodicity |
-
2008
- 2008-04-29 ES ES200801231A patent/ES2346614B1/en not_active Expired - Fee Related
-
2009
- 2009-02-24 WO PCT/ES2009/070041 patent/WO2009133225A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
HONSBERG, C. & BARNETT, A.: "{}Light trapping in thin film GaAs solar cells"{}. PROCEEDINGS OF THE PHOTOVOLTAIC SPECIALISTS CONFERENCE, NUEVA YORK, IEEE, US. 07.10.1991, Vol. CONF. 22, páginas 262-267. ISBN 978-0-87942-636-1; ISBN 0-87942-636-5. * |
Also Published As
Publication number | Publication date |
---|---|
ES2346614A1 (en) | 2010-10-18 |
WO2009133225A1 (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bettotti et al. | Silicon nanostructures for photonics | |
Huang et al. | Formation of lead halide perovskite based plasmonic nanolasers and nanolaser arrays by tailoring the substrate | |
Mizeikis et al. | Tailoring and characterization of photonic crystals | |
Ates et al. | Bright single-photon emission from a quantum dot in a circular Bragg grating microcavity | |
US8461568B2 (en) | Re-emitting semiconductor construction with enhanced extraction efficiency | |
Xu et al. | Silicon-based light-emitting devices based on Ge self-assembled quantum dots embedded in optical cavities | |
Tian et al. | Triangular Micro‐Grating via Femtosecond Laser Direct Writing toward High‐Performance Polarization‐Sensitive Perovskite Photodetectors | |
Zhou et al. | Lighting up Si nanoparticle arrays by exploiting the bound states in the continuum formed in a Si/Au hybrid nanostructure | |
ES2346614B1 (en) | USE OF MODIFIED MATERIAL IN YOUR SURFACE TOPOGRAPHY IN DEVICES THAT GENERATE AN ELECTRIC CURRENT FROM INCIDENT LIGHT. | |
Vinegoni et al. | Porous silicon microcavities | |
Malekmohammad et al. | Combining micro-and nano-texture to fabricate an antireflective layer | |
Haurylau et al. | Dynamically tunable 1D and 2D photonic bandgap structures for optical interconnect applications | |
van Dam | Nanowire photonics for photovoltaics | |
Behera et al. | Fabrication of sub-micrometer periodic nanostructures using pulsed laser interference for efficient light trapping in optoelectronic devices | |
Liu et al. | Microring lasers based on Si3N4 optical waveguides cladded with perovskite quantum-dot film | |
Oliveto | A Theoretical and Experimental Study on Broadband Asymmetric Light Interfaces to Reduce Top Surface Losses in Luminescent Solar Concentrators | |
Liu et al. | Compact two-dimensional photonic crystal bandedge resonance for perovskite laser | |
Tan | Engineering Plasmonic Metasurface Lasers with High Gain Nanocrystals | |
Boroditsky | Modification of spontaneous emission in photonic crystals | |
Fromherz et al. | Single SiGe Quantum Dot Emission Deterministically Enhanced in a High-Q Photonic Crystal Resonator | |
Barth | Controlling the Phase of Light by Nanostructuring of Materials | |
Zheng | Efficient spin-photon interface for solid-state-based spin systems for quantum information processing and enhanced metrology | |
Yang | Resonant All-Dielectric Optical Metamaterials | |
Mellor Null | Photon Management Structures For Absorption Enhancement in Intermediate Band Solar Cells and Crystalline Silicon Solar Cells | |
Cho | Simulation and Experimental Study of a 2D Photonic Crystal Structure that Reflects a Quantum Dots Emission in the Normal Direction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EC2A | Search report published |
Date of ref document: 20101018 Kind code of ref document: A1 |
|
FG2A | Definitive protection |
Ref document number: 2346614 Country of ref document: ES Kind code of ref document: B1 Effective date: 20111003 |
|
FD2A | Announcement of lapse in spain |
Effective date: 20180924 |