[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4417314A1 - Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse - Google Patents

Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse Download PDF

Info

Publication number
EP4417314A1
EP4417314A1 EP23305204.2A EP23305204A EP4417314A1 EP 4417314 A1 EP4417314 A1 EP 4417314A1 EP 23305204 A EP23305204 A EP 23305204A EP 4417314 A1 EP4417314 A1 EP 4417314A1
Authority
EP
European Patent Office
Prior art keywords
phosphate
carbon atoms
alkyl group
saturated
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23305204.2A
Other languages
German (de)
English (en)
Inventor
Rachid BENHIDA
Zakaria MOUTAOUKIL
Moulay Brahim Jouti
Cyril Ronco
Zouhair HAFID
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCP SA
Universite Mohammed VI Polytechnique
Original Assignee
OCP SA
Universite Mohammed VI Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCP SA, Universite Mohammed VI Polytechnique filed Critical OCP SA
Priority to EP23305204.2A priority Critical patent/EP4417314A1/fr
Priority to PCT/MA2024/050004 priority patent/WO2024172639A1/fr
Publication of EP4417314A1 publication Critical patent/EP4417314A1/fr
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/008Organic compounds containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/014Organic compounds containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • B03D1/021Froth-flotation processes for treatment of phosphate ores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/0043Organic compounds modified so as to contain a polyether group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/012Organic compounds containing sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores
    • B03D2203/06Phosphate ores

Definitions

  • the present invention relates to a method for treating phosphate ores containing heavy metals by reverse flotation in which a monophosphoric ester is used as a collector for the flotation of carbonates.
  • the method according to the invention makes it possible to reduce the heavy metal content of phosphate ores.
  • phosphates Global consumption of phosphates, mainly for the production of phosphoric acid and fertilizers (95%), exceeded 47 million tonnes in 2019 and is expected to reach more than 50 million tonnes in 2023 (USGS).
  • Phosphates are produced by mining phosphoric rocks collected from marine sediment deposits (75%), igneous and metamorphic deposits (15 to 20%) or biogenetic deposits (2 to 3%).
  • the main source of phosphates comes from calcium phosphate from apatite ores (Ca5(PO4)3)(F, CI, OH), whose global reserves are mainly present in North Africa (Morocco), the United States (Florida), Russia and China. These ores represent approximately 80% of the total global production of phosphate rocks and generally contain between 18% and 35% P2O5.
  • apatites in these ores are Francolite or Collophane, which contain in addition to calcium phosphate variable amounts of carbonates (such as calcite, dolomite or magnesite), silicates, clays (illite, kaolinite, smectite, etc.) or even organic residues.
  • carbonates such as calcite, dolomite or magnesite
  • silicates such as silicates
  • clays illite, kaolinite, smectite, etc.
  • Phosphate ore processing techniques depend mainly on the type of associated gangue minerals present in the mined rock.
  • the historical beneficiation method for half a century has been the froth flotation technique.
  • Sedimentary phosphate ore may contain either carbonate gangue or siliceous and/or silico-carbonate gangue.
  • Silica and phosphates have significantly different physicochemical properties and can be easily separated by flotation.
  • carbonates and phosphates have similar physicochemical properties and behave in the same way during flotation operations, they are both found either as floated products or as depressed products.
  • the ore is first crushed and suspended in water. Then, the collector is added, often in combination with other additives, such as frothers, pH regulators, dispersants, depressants and/or stimulants (activators), to separate the valuable minerals from the gangue minerals of the ore. After a certain conditioning time, the flotation process then begins and consists of blowing air into the suspension to disintegrate the fine ore particles and produce froth on the surface.
  • additives such as frothers, pH regulators, dispersants, depressants and/or stimulants (activators)
  • the flotation process then begins and consists of blowing air into the suspension to disintegrate the fine ore particles and produce froth on the surface.
  • Three types of phosphate flotation processes have been developed in the industry to valorize the ores: direct flotation, reverse flotation and the Crago process. In a direct flotation process, the collector makes the surface of the minerals more hydrophobic, while the hydrophilic gangue minerals do not adhere to the gas bubbles and remain
  • the froth from the mineral collector is then removed and treated.
  • a reverse flotation process the valuable minerals in the ore remain in solution and the gangues are carried away in the froth, which is then removed.
  • the Crago process uses coarse flotation with fatty acids followed by flotation by deoiling and cleaning with amines.
  • Fatty acid-based collector systems are generally used to increase the hydrophobicity differences between the material to be retained and the material to be removed.
  • the main primary collectors are based on partially unsaturated fatty acids (C12-C18), which are used at pH 4-5, with phosphoric acid as a depressant. Since fatty acids are poorly soluble in water at this pH, secondary collectors, usually anionic or nonionic surfactants, are used to improve selectivity and recovery.
  • the request WO2018197476 describes a mixture of unsaturated fatty acids, pegylated alcohol and a sulphide-based surfactant used at a dose of 500g/t and in a pH range of 4.9 to 5.2.
  • a mixture of a fatty acid and an aromatic sulfonic acid used at a dose of 806g/t and in a pH range of 5.0 to 5.2 is described in the application WO210162344 .
  • US 8 657 118B2 describes a reverse flotation process using mixtures of phosphoric monoester and phosphoric diester at contents of 340g/t and 500g/tonne in order to enrich ores in P 2 O 5 .
  • Prior art reverse flotation processes have many drawbacks. They may involve the use of frothing agents, pH regulating agents or activating agents. In particular, these processes require high quantities of collectors, and involve working in an acidic pH range.
  • the ores to be processed may contain elements that can pollute the soil or water tables, such as cadmium (Cd), copper (Cu), arsenic (As), lead (Pb), nickel (Ni) or even chromium (Cr).
  • elements that can pollute the soil or water tables such as cadmium (Cd), copper (Cu), arsenic (As), lead (Pb), nickel (Ni) or even chromium (Cr).
  • Cadmium levels in fertilizers are closely monitored by the European Parliament and other institutions, which require limits on cadmium in phosphate fertilizers. Hence the interest in reducing the concentration of Cd but also of other heavy metals, such as arsenic.
  • Calcite increases sulfuric acid consumption in the manufacture of phosphoric acid and fertilizers, and significant levels of toxic impurities have been identified in dolomite ores. Therefore, despite several advances in recent years to address these issues, improvements are still needed in the phosphoric rock flotation process.
  • the present invention also relates to the use of such a monophosphoric ester A, alone or in combination with compound B as described herein, for the treatment of phosphate ores containing heavy metals.
  • Figure 1 Example of a laboratory scale flotation column
  • the inventors have developed a process that meets the expressed needs.
  • the proposed process does not have the drawbacks of the prior art. It makes it possible to increase the P 2 O 5 content of the ore by using a smaller amount of collector. It also helps to reduce the heavy metal content of the ore, particularly cadmium and arsenic.
  • the treatment method according to the invention makes it possible to reduce the content of heavy metals present in phosphate ores such as Cadmium, Arsenic, Lead, Nickel, Chromium, Copper and Zinc, in particular Cadmium and Arsenic.
  • heavy metals present in phosphate ores such as Cadmium, Arsenic, Lead, Nickel, Chromium, Copper and Zinc, in particular Cadmium and Arsenic.
  • the method according to the invention can make it possible to eliminate at least 60% by weight of the heavy metals present in the phosphate ore.
  • at least 70% by weight of the heavy metals are eliminated, particularly advantageously at least 80% of the heavy metals are eliminated.
  • the method according to the invention makes it possible to eliminate at least 60% by weight of the cadmium and arsenic present in the phosphate ore, advantageously at least 70% by weight of the cadmium and arsenic are eliminated, particularly advantageously, at least 80% of the cadmium and arsenic are eliminated.
  • Phosphate ore also called “phosphate rocks”, refers to an exogenous rock containing phosphate.
  • the phosphate ore useful in the present invention can be taken from the Khouribga site (Bni-Amir), Morocco.
  • phosphate ore has a P2O5 content ranging from 18 to 35%, by weight, relative to the total weight of the phosphate ore.
  • the aqueous suspension is typically prepared by mixing phosphate ore with water.
  • the phosphate ore is in the form of particles.
  • the ore particles have a size ranging from 40 ⁇ m to 125 ⁇ m, or from 40 ⁇ m to 160 ⁇ m.
  • the particle size is determined by sieving.
  • the phosphate ore is typically previously crushed and sized.
  • the mass percentage of phosphate ore in the aqueous suspension, also called pulp, typically varies from 10% to 30%, preferably from 10% to 20%, the percentage being expressed as % by weight relative to the total weight of the phosphate ore suspension.
  • the "collector” has the ability to adsorb on the surface of the carbonate particles present in the phosphate ore, then allowing their separation and elimination during the subsequent stages of the process.
  • the “collector” will also form a complex with the heavy metals present in the ore, said complex then being at least partly eliminated during the subsequent stages of the process.
  • alkyl group particularly the length of the alkyl chain and the presence of branching, can influence the ability of the monophosphoric ester to interact with carbonates and heavy metals present in the phosphate ore.
  • the R 1 group of the monophosphoric ester A of formula (I) is an alkyl group, linear or branched, saturated or not, comprising 6 to 10 carbon atoms.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 6 to 10 carbon atoms, preferably 7 to 10 carbon atoms, preferably 8 to 9 carbon atoms, particularly preferably comprising 8 carbon atoms.
  • the R 1 group of the monophosphoric ester A of formula (I) is a branched, saturated alkyl group comprising 6 to 10 carbon atoms, preferably 8 to 9 carbon atoms.
  • Preferred branched R 1 groups include 2-ethylhexyl, 2-4-4 trimethylpentyl and 3-5-5 trimethylhexyl.
  • the R 1 group of the monophosphoric ester A of formula (I) is a saturated linear alkyl group comprising 8 or 9 carbon atoms or a saturated branched alkyl group comprising 8 or 9 carbon atoms.
  • the collector is comprised of the monophosphoric ester A of formula (I) as described above.
  • the presence of branches on the alkyl chain of the R1 group of the monophosphoric ester A can then make it possible to minimize the quantity of foam (also called float) which is eliminated during step (iv) of the process while making it possible to enrich the ore in P2O5 and eliminate heavy metals.
  • the combination of monophosphoric ester A and compound B can also have an influence on the amount of foam formed and the enrichment of the ore in P 2 O 5 .
  • the combination of monophosphoric ester A and compound B can minimize the amount of froth (float) that is removed in step (iv) of the process while allowing the ore to be enriched in P 2 O 5 and heavy metals to be removed, compared to the use of monophosphoric ester A alone.
  • the cost price of the composition comprising monophosphoric ester A and compound B can also be reduced.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 6 to 10 carbon atoms and the R 2 group of the monophosphoric ester B of formula (II), different from R 1 , is a linear or branched, saturated or unsaturated alkyl group comprising 6 to 10 carbon atoms, preferably a linear, saturated alkyl group comprising 6 to 10 carbon atoms.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 6 to 10 carbon atoms and the R 2 group of the monophosphoric ester B of formula (II), different from R 1 , is a branched, saturated alkyl group comprising 6 to 10 carbon atoms.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 7 to 10 carbon atoms, preferably 8 to 9 carbon atoms, particularly preferably comprising 8 carbon atoms and the R 2 group of the monophosphoric ester B of formula (II), different from R1, is a branched, saturated alkyl group comprising 8 or 9 carbon atoms.
  • a synergistic effect linked to the combination of the two monophosphoric esters can be observed, in particular concerning the enrichment of the ore in P 2 O 5 .
  • compound B is an alcohol of formula R 3 -OH (III), R 3 being an alkyl group, linear or branched, saturated or not comprising 2 to 20 carbon atoms, preferably 6 to 10 carbon atoms.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 7 to 10 carbon atoms, preferably 8 to 9. carbon atoms, particularly preferably comprising 8 carbon atoms and the R 3 group of the alcohol of formula (III) is a linear, saturated alkyl group comprising from 6 to 10 carbon atoms.
  • the mass percentage of alcohol is less than 70%, preferably less than 50%, preferably less than 30% relative to the mass of the monophosphoric ester A and the alcohol.
  • compound B is a salt of an alkylated sulfonic acid or a salt of an alkylated aromatic sulfonic acid, the alkyl group being linear or branched, saturated or unsaturated, comprising 2 to 20 carbon atoms.
  • compound B is a salt of an alkylated aromatic sulfonic acid, the alkyl group being linear, saturated and comprising 10 to 14 carbon atoms, the sodium salt of dodecyl benzene sulfonic acid being particularly preferred. or is an alkyl sulfate, the alkyl group being linear or branched, saturated or not comprising 2 to 20 carbon atoms,
  • the alkyl group is linear, saturated and comprises 10 to 14 carbon atoms, sodium dodecyl sulfate being particularly preferred.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 7 to 10 carbon atoms, preferably 8 to 9 carbon atoms, particularly preferably comprising 8 carbon atoms and the compound B is a salt of an alkylated aromatic sulfonic acid, the alkyl group being linear, saturated and comprising 10 to 14 carbon atoms.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 7 to 10 carbon atoms, preferably 8 to 9 carbon atoms, particularly preferably comprising 8 carbon atoms and the compound B is an alkyl sulfate, the alkyl group being linear, saturated and comprising 10 to 14 carbon atoms.
  • the mass percentage of the alkylated sulfonic acid salt or the alkylated aromatic sulfonic acid salt is less than 40% relative to the mass of the monophosphoric ester A and the alkylated sulfonic acid salt or the alkylated aromatic sulfonic acid salt.
  • the mass percentage of the alkyl sulfate is less than 50%, preferably 30%, preferably 20% relative to the mass of the monophosphoric ester A and the alkyl sulfate.
  • compound B is an ether, pegylated or not, of formula R 5 -(OC 2 H 4 ) n OR 6 (IV) with R 5 being an alkyl or aromatic or alkylated aromatic group and R 6 being an alkyl group or a hydrogen atom and n represents an integer ranging from 0 to 10.
  • R 5 is an alkylated aromatic group
  • R 6 is a hydrogen atom
  • n is other than zero.
  • the R 1 group of the monophosphoric ester A of formula (I) is a linear, saturated alkyl group comprising 7 to 10 carbon atoms, preferably 8 to 9 carbon atoms, particularly preferably comprising 8 carbon atoms and the compound B is a compound of formula (IV) with R 5 being an alkylated aromatic group, R6 being a hydrogen atom and not being zero.
  • the mass percentage of the ether is less than 40% relative to the mass of the monophosphoric ester A and the ether.
  • compound B is a fatty acid or a fixed oil.
  • component B is a saturated or unsaturated fatty acid having at least 12 carbon atoms.
  • the fatty acid comprises from 12 to 22 carbon atoms, more preferably from 14 to 20 carbon atoms and most preferably from 16 to 18 carbon atoms.
  • the mass percentage of fatty acid is less than 40%, preferably less than 20% relative to the mass of the monophosphoric ester A and the fatty acid.
  • compound B When compound B is a fixed oil, it can be rapeseed oil or sunflower oil.
  • the mass percentage of the fixed oil is less than 30%, preferably less than 10% relative to the mass of the monophosphoric ester A and the fixed oil.
  • the collector consists of the monophosphoric ester A of formula (I) and the compound B as described above.
  • the collector according to the invention is more efficient than the collectors of the prior art and can be used in smaller quantities.
  • the quantity of monophosphoric ester A and compound B added during step (i) varies from 100 g to 500 g per tonne of phosphate ores, preferably from 100 g to 300 g.
  • the collectors according to the invention make it possible to develop their own foam without it being necessary to add an additional foaming agent, such as methyl isobutyl carbinol (MIBC) or pine oil.
  • an additional foaming agent such as methyl isobutyl carbinol (MIBC) or pine oil.
  • the process of the present invention does not require the use of an additional frothing agent, pH regulating agent or activating agent during the flotation process.
  • the suspensions of ores and collectors according to the invention are pH neutral and do not require the addition of a pH regulator.
  • a pH regulating agent is used when collectors based on fatty acids are used.
  • the treatment method according to the invention further comprises a step i') before step i) of adding a depressant such as phosphoric acid and/or a step i") between step i) and step ii) of adding an amine compound for the flotation of silicates.
  • Depressant agents such as phosphoric acid and its derivatives, diphosphonic acid [DPA] and orthophosphoric acid [OPA] may be used.
  • an amine collector such as the products of the FLOTINOR TM and FLOTIGAM TM ranges can be added to the aqueous suspension resulting from step i).
  • the gas injection step (ii) allows the foams comprising the carbonates and heavy metals to float to the surface of the suspension. To do this, the gas is injected so as to form homogeneous gas bubbles which, after adsorption with the foams, will transport the foams by flotation to the surface of the suspension.
  • the gas bubbles can be formed by any means known to those skilled in the art, for example by a porous bottom, sintered glass or by one or more injection nozzles.
  • the gas injected in step (ii) may be air, nitrogen, or any other gas inert with respect to the species present.
  • step (ii) can be carried out at a constant flow rate.
  • a person skilled in the art will know how to adapt the flow rate of the gas injection.
  • Step (ii) is carried out with stirring in order to have a homogeneous distribution of the gas bubbles in the aqueous suspension.
  • Stirring can be ensured by any means known to those skilled in the art, such as for example mechanical stirring such as a rotor or magnetic stirring.
  • step (ii) can be performed for 5 seconds to 30 minutes, typically 5 seconds to 5 minutes.
  • the treatment process comprises a step (iii) of separating the foams containing carbonates and heavy metals from the ore suspension.
  • the recovered foams can possibly be reprocessed in order to separate and recover the extracted heavy metals.
  • the treated ore suspension obtained at the end of step (iii) is recovered after removal of the foams.
  • the foams are recovered in step (iii) from the upper part of the treated phosphoric acid solution by any means known to those skilled in the art.
  • the flotation foams may be discharged into a recovery tank.
  • the process according to the invention makes it possible to obtain a mass percentage of floated product (rejected) expressed in relation to the total mass of floated product and dried concentrate recovered of less than 25%.
  • the percentage of tricalcium phosphate (BPL or bone phosphate of lime) or P2O5 expressed in relation to the total mass of dried concentrate, as well as the cadmium and arsenic content in the concentrate are respectively increased and decreased compared to the untreated ore.
  • the percentage of tricalcium phosphate (BPL or bone phosphate of lime) is greater than or equal to 70% after implementing the method according to the invention.
  • the percentage of P 2 O 5 is greater than or equal to 70% after implementing the method according to the invention.
  • FIG. 1 illustrates in a non-limiting manner devices capable of implementing the flotation treatment method according to the invention.
  • the method according to the invention is implemented in a flotation device, such as a flotation column combined with a froth recovery tank in the upper part of the column, as shown schematically in FIG. figure 1 .
  • Part I the so-called treatment part, comprises the flotation column which consists of a glass column 1 filled with the phosphate ore pulp conditioned with the flotation collector according to the invention.
  • the gas is introduced into the bottom of the column, the gas bubbles are formed by the passage of the gas through the sintered glass 2.
  • the gas is generated by a gas generator 3 and its flow rate is controlled by a flow meter 4.
  • the medium is stirred by a magnetic bar 5 with a magnetic stirrer 6 which allows a good distribution of the gas bubbles 7 to be obtained.
  • the foams 8 are formed on contact with the gas bubbles.
  • the foams are then drawn at the top of the column into a foam discharge zone 9 corresponding to part II called the separation part.
  • the foams 8 then flow into a foam recovery tank 10.
  • the residence time in the flotation device is generally less than 30 minutes, preferably between 5 seconds and 5 minutes.
  • the ion flotation treatment process can be carried out at a temperature ranging from 15 to 90°C or from 20 to 80°C.
  • Another subject of the invention relates to the use of monophosphoric ester A, alone or in combination with compound B as described above for the treatment of phosphate ores containing heavy metals.
  • monophosphoric ester A and compound B as described above as a collector according to the invention makes it possible to have new processes for treating phosphate ores, which are simpler and less expensive, making it possible to enrich their P 2 O 5 content but also to reduce their content of heavy metals, such as cadmium and arsenic.
  • the collector according to the invention is more efficient than the compositions of the prior art and can be used in smaller quantities.
  • Phosphate ore samples were collected from the Khouribga mining site (Bni-Amir). They were crushed, mixed, homogenized and divided into quarters using a riffle sampler. They were then processed and analyzed.
  • Phosphate ore contains heavy metals, especially cadmium at 27 ppm and arsenic at 13 ppm.
  • a Denver D-12 flotation cell is used. 200 g of dry sedimentary phosphate ore, crushed and sized between 40 ⁇ m and 160 ⁇ m, are suspended in 1.5 L of water. The pulp is conditioned with 500 g per tonne (g/t) of phosphoric acid ( H3PO4 ) as a depressant for 3 min at 1200 rpm, then the collector for carbonate flotation is added at 250 g/t. After 2 min of conditioning, the amine collector “ FLOTINOR ” for silicate flotation is added at 200 g/t, followed by 30 seconds of conditioning. The flotation process is started just after the air injection. The frothing product (floated product) and the concentrate are filtered, dried, weighed and analyzed.
  • H3PO4 phosphoric acid
  • Table 2 shows the results obtained for each collector in terms of: - mass percentage of floated product (rejected) expressed in relation to the total mass of floated product and dried concentrate recovered - mass percentages of magnesium oxide (MgO), tricalcium phosphate (BPL or bone phosphate of lime) or P 2 O 5 expressed in relation to the total mass of dried concentrate, as well as the cadmium and arsenic content in the concentrate.
  • the BPL content is obtained by multiplying the P 2 O 5 content by a correction factor of 2.185.
  • the Mono-Octylphosphoric ester collector at a concentration of 250 g/t allows to obtain a BPL content of 71.24 (32.59% of P 2 O 5 ) with a loss of 24.74% by weight.
  • the Mono-Nonylphosphoric ester collector allows to obtain a BPL content of 69.56 (31.83% of P 2 O 5 ) with a loss of 17.27% by weight for a concentration of only 125g/t.
  • the Cadmium content is reduced by 75% and the Arsenic content is reduced by 70%.
  • Tables 3 to 6 illustrate the effect of combining the ester with a linear C8 chain and an ester with a branched chain.
  • Example 3 Evaluation of the combination of a monophosphoric ester and an alcohol
  • Table 7 illustrates the effect of combining a monophosphoric ester and an alcohol.
  • compositions comprising less than 30% by mass of octanol, a BPL content greater than or equal to 32% is obtained for the treated ore.
  • Example 4 Evaluation of the combination of a monophosphoric ester and a sulfate
  • Table 8 illustrates the effect of combining a monophosphoric ester and a sulfate.
  • compositions comprising less than 20% by mass of sulfate, a BPL content greater than or equal to 32% is obtained for the treated ore.
  • Example 5 Evaluation of the combination of a monophosphoric ester and a fatty acid
  • Table 9 illustrates the effect of combining a monophosphoric ester and a fatty acid. ⁇ i>Table 9 ⁇ /i> Flotation process Collector Flotation Recovery (%) MgO (%) BPL (%) P 2 O 5 (%) Cd (ppm) As (ppm) Reference Composition Floated (Rejected) Content (%) in concentrate 1 Octyl Phosphate (100%) --- 23.29 0.33 71.32 32.64 8 4 2 Octyl Phosphate (80%) Linoleic Acid (20%) 12.13 0.29 66.55 30.45 --- --- 3 Octyl Phosphate (60%) Linoleic Acid (40%) 8.93 0.30 64.79 29.64 --- --- 4 Octyl Phosphate (50%) Linoleic Acid (50%) 5.97 0.30 64.77 29.63 --- --- 5 Octyl Phosphate (40%) Linoleic Acid (60%) 4.64 0.31 64.03 29.30 --- 6 Octyl Phos
  • Example 6 Evaluation of the combination of a monophosphoric ester and an oil
  • Table 10 illustrates the effect of combining a monophosphoric ester and an oil. ⁇ i>Table 10 ⁇ /i> Flotation process Collector Flotation Recovery (%) MgO (%) BPL (%) P 2 O 5 (%) Cd (ppm) As (ppm) Reference Composition Floated (Rejected) Content (%) in concentrate 1 Octyl Phosphate (100%) --- 23.29 0.33 71.32 32.64 8 4 2 Octyl Phosphate (90%) Sunflower Oil (10%) 13.30 0.3 68.98 31.56 3 Octyl Phosphate (80%) Sunflower Oil (20%) 11.34 0.29 69.30 31.71 --- --- 4 Octyl Phosphate (70%) Sunflower Oil (30%) 10.20 0.29 67.50 30.88 --- --- 5 Octyl Phosphate (60%) Sunflower Oil (40%) 6.59 0.29 65.12 29.79 --- --- 6 Octyl Phosphate (50%) Sunflower Oil (50%) 5.
  • Example 7 Evaluation of the combination of a monophosphoric ester and a sulfonate
  • Table 11 illustrates the effect of combining a monophosphoric ester and a sulfonate. ⁇ i>Table 11 ⁇ /i> Flotation process Collector Flotation Recovery (%) MgO (%) BPL (%) P 2 O 5 (%) Cd (ppm) As (ppm) Reference Composition Floated (Rejected) Content (%) in concentrate 1 Octyl Phosphate (100%) --- 23.29 0.33 71.32 32.64 8 4 3 Octyl Phosphate (80%) Dodecylbenzene sulfonic acid (20%) 16.01 0.30 71.07 32.52 8 4 5 Octyl Phosphate (60%) Dodecylbenzene sulfonic acid (40%) 12.56 0.30 70.03 32.04 8 4
  • Example 8 Evaluation of the combination of a monophosphoric ester and a pegylated ether
  • Table 12 illustrates the effect of combining a monophosphoric ester and a pegylated ether. ⁇ i>Table 12 ⁇ /i> Flotation process Collector Flotation Recovery (%) MgO (%) BPL (%) P 2 O 5 (%) Cd (ppm) As (ppm) Reference Composition Floated (Rejected) Content (%) in concentrate 1 Octyl Phosphate (100%) --- 23.29 0.33 71.32 32.64 8 4 2 Octyl Phosphate (90%) IGEPAL CA-630 (10%) 22.83 0.32 71.38 32.66 7 4 3 Octyl Phosphate (80%) IGEPAL CA-630 (20%) 20.69 0.32 70.72 32.36 8 4 4 Octyl Phosphate (70%) IGEPAL CA-630 (30%) 18.00 0.31 70.99 32.48 8 4 5 Octyl Phosphate (60%) IGEPAL CA-630 (40%) 18.16 0.32 68.98 31.56 - - Flo

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

La présente divulgation concerne un procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse. Le procédé comprend l'addition à une suspension aqueuse de minerai de phosphate d'un ester monophosphorique A de formule (I), R<sub>1</sub> - O - P(=O) - (OH)<sub>2</sub> (I) dans laquelle R<sub>1</sub> est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 10 atomes de carbones, seul ou en mélange avec un composé B sélectionné dans le groupe constitué d'un ester monophosphorique de formule (II), R<sub>2</sub> - O - P(=O) - (OH)<sub>2</sub> (II), dans laquelle R<sub>2</sub> est un groupement alkyle, linéaire ou ramifié, saturé ou non , comprenant 6 à 18 atomes de carbones, différent du groupement R<sub>1</sub> de l'ester monophosphorique A de formule (I), un alcool, un acide gras, une huile fixe, un sulfate, un sulfonate, un éther, et leurs mélanges.

Description

    DOMAINE TECHNIQUE DE L'INVENTION
  • La présente invention a pour objet un procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse dans lequel un ester monophosphorique est utilisé comme collecteur pour la flottation des carbonates. Le procédé selon l'invention permet de diminuer la teneur en métaux lourds des minerais de phosphates.
  • ETAT DE LA TECHNIQUE
  • La consommation mondiale des phosphates, principalement pour la production d'acide phosphorique et d'engrais (95 %), a dépassé 47 millions de tonnes en 2019 et devrait atteindre plus de 50 millions de tonnes en 2023 (USGS). Les phosphates sont produits par l'extraction de roches phosphoriques recueillies dans des gisements de sédiments marins (75 %), des gisements ignés et métamorphiques (15 à 20 %) ou des gisements biogénétiques (2 à 3 %). La principale source de phosphates provient du phosphate de calcium des minerais d'apatite (Ca5(PO4)3)(F, CI, OH), dont les réserves mondiales sont principalement présentes en Afrique du Nord (Maroc), aux Etats-Unis (Florida), en Russie et en Chine. Ces minerais représentent environ 80 % de la production mondiale totale de roches phosphatées et contiennent généralement entre 18 % et 35 % en P2O5. Les types d'apatites prédominantes dans ces minerais sont la Francolite ou la Collophane, qui contiennent en plus du phosphate de calcium des quantités variables de carbonates (comme la calcite, la dolomite ou la magnésite), des silicates, des argiles (illite, kaolinite, smectite, etc.) ou même de résidus organiques.
  • Les techniques de traitement des minerais de phosphate dépendent principalement du type des minéraux de gangue associés, présents dans la roche exploitée. La méthode de valorisation historique depuis un demi-siècle est la technique de flottation par mousse. Le minerai de phosphate sédimentaire peut contenir soit de la gangue carbonatée soit de la gangue siliceuse et/ou silico-carbonatée. La silice et les phosphates présentent des propriétés physico-chimiques sensiblement différentes et peuvent être séparés facilement par flottation. En revanche, les carbonates et les phosphates présentent des propriétés physico-chimiques similaires et se comportent, lors des opérations de flottation de la même manière, ils se retrouvent tous les deux soient comme produits flottés soit comme produits déprimés.
  • Habituellement, le minerai est d'abord concassé et mis en suspension dans l'eau. Ensuite, le collecteur est ajouté, souvent en association avec d'autres additifs, tels que des agents moussants, des régulateurs de pH, des dispersants, des dépresseurs et/ou des stimulants (activateurs), afin de séparer les minéraux précieux des minéraux de la gangue du minerai. Après un certain temps de conditionnement, le processus de flottation commence alors et consiste à insuffler de l'air dans la suspension afin de désagréger les fines particules de minerai et de produire de la mousse à la surface. Trois types de procédés de flottation des phosphates ont été développés dans l'industrie pour valoriser les minerais : la flottation directe, la flottation inverse et le procédé Crago. Dans un procédé de flottation directe, le collecteur rend la surface des minéraux plus hydrophobe, tandis que les minéraux hydrophiles de la gangue n'adhèrent pas aux bulles de gaz et restent en solution. La mousse du collecteur de minéraux est ensuite retirée et traitée. Dans un procédé de flottation inverse, les minéraux précieux du minerai restent en solution et les gangues sont entraînées dans la mousse, qui est ensuite éliminée. Le procédé Crago utilise pour sa part une flottation grossière aux acides gras suivie d'une flottation par déshuilage et nettoyage aux amines.
  • L'objectif de ces procédés de flottation est d'enrichir le mélange en minéraux précieux avec le meilleur rendement possible. Afin de satisfaire la demande croissante de roches phosphatées et l'épuisement progressif des réserves mondiales de phosphate à haute teneur, les industries sont donc incitées à améliorer les technologies d'enrichissement pour valoriser les minerais de phosphate à plus faible teneur en P2O5.
  • L'élimination des carbonates du minerai de phosphate s'est avérée particulièrement difficile, et divers agents de surface non ioniques, anioniques et cationiques ont été proposés comme collecteurs
  • Des systèmes collecteurs à base d'acides gras sont généralement utilisés pour augmenter les différences d'hydrophobie entre le matériau à conserver et le matériau à éliminer. Les principaux collecteurs primaires sont basés sur des acides gras partiellement insaturés (C12-C18), qui sont employés à pH 4-5, avec de l'acide phosphorique comme dépresseur. Comme les acides gras sont peu solubles dans l'eau à ce pH, on utilise des collecteurs secondaires, généralement des agents de surface anioniques ou non ioniques, pour améliorer la sélectivité et la récupération.
  • La demande WO2018197476 décrit ainsi un mélange d'acides gras insaturés, d'alcool pégylé et d'un tensioactif à base de sulfure utilisé à une dose de 500g/t et dans une gamme de pH de 4,9 à 5,2.
  • Un mélange d'un acide gras et d'un acide sulfonique aromatique utilisé à une dose de 806g/t et dans une gamme de pH de 5,0 à 5,2 est décrit dans la demande WO210162344 .
  • US 8 657 118B2 décrit un procédé de flottation inverse utilisant des mélanges de monoester phoshorique et de diester phosphorique à des teneurs de 340g/t et 500g/tonnes afin d'enrichir les minerais en P2O5.
  • Les procédés de flottation inverse de l'art antérieur présentent de nombreux inconvénients. Ils peuvent impliquer d'utiliser des agents moussants, des agents régulateurs de pH ou encore des agents activateurs. En particulier, ces procédés nécessitent des quantités élevées de collecteurs, et impliquent de travailler dans une gamme de pH acides.
  • Par ailleurs, les minerais à traiter peuvent contenir des éléments pouvant polluer les sols ou les nappes phréatiques, tels que le cadmium (Cd), le cuivre (Cu), l'arsenic (As), le plomb (Pb), le nickel (Ni) ou encore le chrome (Cr).
  • Les teneurs en cadmium dans les engrais sont particulièrement surveillées par le parlement européen et d'autres institutions qui exigent des limites en cadmium dans les engrais phosphatés. D'où l'intérêt de réduire la concentration de Cd mais également d'autres métaux lourds, comme l'arsenic.
  • Dans l'ensemble, la flottation inverse des phosphates sédimentaires siliceux et calcaires représente toujours un défi industriel permanent. De ce fait, la découverte d'un collecteur et/ou une formulation appropriée combinant une élimination efficace des silico-carbonates, de bons rendements de flottation et des propriétés de mousse gérables est toujours une priorité importante dans ce domaine.
  • La calcite augmente la consommation d'acide sulfurique lors de la fabrication d'acide phosphorique et d'engrais, et des teneurs significatives en impuretés toxiques ont été identifiées dans les minerais de dolomite. Par conséquent, malgré plusieurs avancées réalisées ces dernières années pour résoudre ces problèmes, des améliorations sont encore nécessaires dans le processus de flottation de la roche phosphorique.
  • Il existe, donc, un besoin de disposer de nouveaux procédés de traitement des minerais de phosphates, plus simples et moins onéreux, permettant d'enrichir leur teneur en P2O5 mais également de réduire leur teneur en métaux lourds, tels que le cadmium et l'arsenic.
  • RESUME DE L'INVENTION
  • La présente invention porte sur un procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse, le procédé comprenant les étapes suivantes :
    • (i) addition à une suspension aqueuse de minerai de phosphate d'un ester monophosphorique A de formule (I) :

               R1- O-P(=O)-(OH)2     (I)

      • dans laquelle R1 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 10 atomes de carbones,
      • seul ou en mélange avec un composé B sélectionné dans le groupe constitué de :
        • un ester monophosphorique de formule (II)

                   R2-O-P(=O)-(OH)2     (II)

        • dans laquelle R2 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 18 atomes de carbones, différent du groupement R1 de l'ester monophosphorique A de formule (I),
        • un alcool, un acide gras, une huile fixe, un sulfate, un sulfonate, un éther, et leurs mélanges ;
      • - (ii) injection de gaz dans la suspension aqueuse pour former des mousses ; et
      • - (iii) élimination des mousses et récupération de la suspension aqueuse de minerai traitée.
  • La présente invention porte également sur l'utilisation d'un tel ester monophosphorique A, seul ou en combinaison avec le composé B tel que décrit ici, pour le traitement de minerais de phosphates contenant des métaux lourds.
  • D'autres aspects de l'invention sont tels que décrits ci-dessous et dans les revendications.
  • FIGURES
  • Figure 1 : Exemple de colonne de flottation à l'échelle du laboratoire
  • DESCRIPTION DETAILLEE DE L'INVENTION
  • Les inventeurs ont mis au point un procédé répondant aux besoins exprimés. Le procédé proposé ne présente pas les inconvénients de l'art antérieur. Il permet d'augmenter la teneur en P2O5 du minerai en utilisant une quantité moindre de collecteur. Il permet en outre de réduire la teneur du minerai en métaux lourds, en particulier en cadmium et arsenic.
  • Les différents modes de réalisation présentés dans l'ensemble de la description peuvent être utilisés seuls ou en combinaison les uns avec les autres, sans limitation de combinaison.
  • Ainsi, l'invention concerne un procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse, le procédé comprenant les étapes suivantes :
    • (i) addition à une suspension aqueuse de minerai de phosphate d'un ester monophosphorique A de formule (I) :

               R1-O-P(=O)-(OH)2     (I)

      • dans laquelle R1 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 10 atomes de carbones,
      • seul ou en mélange avec un composé B sélectionné dans le groupe constitué de :
        • un ester monophosphorique de formule (II) :

                   R2-O-P(=O)-(OH)2     (II)

        • dans laquelle R2 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 18 atomes de carbones, différent du groupement R1 de l'ester monophosphorique A de formule (I),
        • un alcool, un acide gras, une huile fixe, un sulfate, un sulfonate, un éther, et eurs mélanges ;
      • - (ii) injection de gaz dans la suspension aqueuse pour former des mousses ; et
      • - (iii) élimination des mousses et récupération de la suspension aqueuse de minerai traitée.
  • Avantageusement, le procédé de traitement selon l'invention permet de diminuer la teneur en métaux lourds présents dans les minerais de phosphate tels que le Cadmium, l'Arsenic, le Plomb, le Nickel, le Chrome, le Cuivre et le Zinc, en particulier le Cadmium et l'Arsenic.
  • En particulier, le procédé selon l'invention peut permettre d'éliminer au moins 60% en poids des métaux lourds présents dans le minerai de phosphates. Avantageusement au moins 70% en poids des métaux lourds sont éliminés, de manière particulièrement avantageuse au moins 80% des métaux lourds sont éliminés.
  • En particulier, le procédé selon l'invention permet d'éliminer au moins 60% en poids du cadmium et de l'arsenic présents dans le minerai de phosphates, avantageusement au moins 70% en poids du cadmium et de l'arsenic sont éliminés, de manière particulièrement avantageuse, au moins 80% du cadmium et de l'arsenic sont éliminés.
  • Les avantages du procédé selon l'invention le rendent particulièrement applicable au traitement de minerais de phosphates à l'échelle industrielle.
  • Etape (i)
  • L'étape (i) comprend l'addition à une suspension aqueuse de minerai de phosphate d'un ester monophosphorique A de formule (I) :

             R1 - O - P(=O) - (OH)2     (I)

    • dans laquelle R1 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 10 atomes de carbones,
    • seul ou en mélange avec un composé B sélectionné dans le groupe constitué de :
      • un ester monophosphorique de formule (II) :

                 R2-O-P(=O)-(OH)2     (II)

      • dans laquelle R2 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 18 atomes de carbones, de préférence de 6 à 10 atomes de carbone, différent du groupement R1 de l'ester monophosphorique A de formule (I),
      • un alcool, un acide gras, une huile fixe, un sulfate, un sulfonate, un éther et leurs mélanges.
    Suspension aqueuse de minerai de phosphate
  • Le minerai de phosphates, encore appelé « roches phosphatées », désigne une roche exogène contenant du phosphate. Le minerai de phosphate utile dans la présente invention peut être prélevé sur le site de Khouribga (Bni-Amir), Maroc.
  • Généralement, le minerai de phosphates a une teneur en P2O5 allant de 18 à 35%, en poids, par rapport au poids total du minerai de phosphate.
  • La suspension aqueuse est typiquement préparée par mélange de minerai de phosphate avec de l'eau. Le minerai de phosphate se présente sous forme de particules. Avantageusement, les particules de minerai présentent une taille allant de 40 µm à 125 µm, ou de 40 µm à 160µm. La taille des particules est déterminée par tamisage. Ainsi, avant mélange à l'eau, le minerai de phosphate est typiquement préalablement broyé et calibré.
  • Le pourcentage massique de minerai de phosphate dans la suspension aqueuse, aussi appelé pulpe, varie typiquement de 10% à 30%, préférentiellement de 10% à 20%, le pourcentage étant exprimé en % en poids par rapport au poids total de la suspension de minerai de phosphate.
  • L'ester monophosphorique A de formule (I), seul ou en mélange avec le composé B, joue le rôle de « collecteur » pour la flottation des carbonates.
  • Le « collecteur » a la capacité de s'adsorber à la surface des particules de carbonates présentes dans le minerai de phosphates, permettant ensuite leur séparation et leur élimination au cours des étapes ultérieures du procédé.
  • Le « collecteur » va également former un complexe avec les métaux lourds présent dans le minerai, ledit complexe étant ensuite au moins en partie éliminé au cours des étapes ultérieures du procédé.
  • Ester monophosphorique A
  • La nature du groupement alkyle, en particulier la longueur de la chaîne alkyle et la présence de ramifications, peuvent influer sur l'aptitude de l'ester monophosphorique à interagir avec les carbonates et les métaux lourds présents dans le minerai de phosphates.
  • Le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire ou ramifié, saturé ou non comprenant 6 à 10 atomes de carbone.
  • Avantageusement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 6 à 10 atomes de carbone, préférentiellement 7 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone, de manière particulièrement préférée comprenant 8 atomes de carbones.
  • Avantageusement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, ramifié, saturé comprenant 6 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone.
  • Parmi les groupements R1 ramifiés préférés, citons les groupements 2-ethylhexyl, 2-4-4 trimethylpentyl et 3-5-5 trimethylhexyl.
  • Avantageusement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle linéaire saturé comprenant 8 ou 9 atomes de carbone ou un groupement alkyle ramifié saturé comprenant 8 ou 9 atomes de carbone.
  • Selon certains modes de réalisation, le collecteur est constitué de l'ester monophosphorique A de formule (I) tel que décrit ci-dessus.
  • A nombre de carbones équivalents, la présence de ramifications sur la chaîne alkyle du groupement R1 de l'ester monophosphorique A peut alors permettre de minimiser la quantité de mousse (aussi appelé flotté) qui est éliminée lors de l'étape (iv) du procédé tout en permettant d'enrichir le minerai en P2O5 et d'éliminer les métaux lourds.
  • Combinaison ester monophosphorique A et composé B
  • La combinaison d'un ester monophosphorique A et du composé B peut également avoir une influence sur la quantité de mousse formée et l'enrichissement du minerai en P2O5.
  • Lorsque le composé B est présent, il est sélectionné dans le groupe constitué de :
    • un ester monophosphorique de formule (II) :

               R2-O-P(=O)-(OH)2     (II)

    • dans laquelle R2 est un groupement alkyle, linéaire ou ramifié, saturé ou non, ayant de 6 à 18 atomes de carbones, de préférence de 6 à 10 atome de carbone, différent du groupement R1 de l'ester monophosphorique A de formule (I) tel que décrit ci-dessus,
    • un alcool, un acide gras, une huile fixe, un sulfate, un sulfonate, un éther et leurs mélanges.
  • La combinaison de l'ester monophosphorique A et du composé B peut permettre de minimiser la quantité de mousse (du flotté) qui est éliminée lors de l'étape (iv) du procédé tout en permettant d'enrichir le minerai en P2O5 et d'éliminer les métaux lourds, par rapport à l'utilisation de l'ester monophosphorique A seul. En outre, le coût de revient de la composition comprenant l'ester monophosphorique A et le composé B peut également être diminué.
  • Combinaison ester monophosphorique A et ester monophosphorique de formule (II)
  • Selon des modes de réalisation, le composé B est un ester monophosphorique de formule (II) :

             R2-O-P(=O)-(OH)2     (II)

    dans lequel le groupement R2, différent de R1, est un groupement alkyle, linéaire ou ramifié, saturé ou non comprenant 6 à 18 atomes de carbone, préférentiellement de 6 à 14 atomes de carbone, de manière particulièrement préférée de 6 à 10 atomes de carbone.
  • Dans certains modes de réalisation, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 6 à 10 atomes de carbone et le groupement R2 de l'ester monophosphorique B de formule (II), différent de R1, est un groupement alkyle, linéaire ou ramifié, saturé ou non comprenant 6 à 10 atomes de carbone, de préférence un groupement alkyle, linéaire, saturé comprenant 6 à 10 atomes de carbone.
  • Dans certains modes de réalisation, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 6 à 10 atomes de carbone et le groupement R2 de l'ester monophosphorique B de formule (II), différent de R1, est un groupement alkyle, ramifié, saturé comprenant 6 à 10 atomes de carbone.
  • Préférentiellement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 7 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone, de manière particulièrement préférée comprenant 8 atomes de carbones et le groupement R2 de l'ester monophosphorique B de formule (II), différent de R1, est un groupement alkyle, ramifié, saturé comprenant 8 ou 9 atomes de carbone.
  • Un effet de synergie liée à la combinaison des deux esters monophosphoriques peut être observé, en particulier concernant l'enrichissement du minerai en P2O5.
  • Combinaison ester monophosphorique A et alcool
  • Selon certains modes de réalisation, le composé B est un alcool de formule R3-OH (III), R3 étant un groupement alkyle, linéaire ou ramifié, saturé ou non comprenant 2 à 20 atomes de carbones, préférentiellement, de 6 à 10 atomes de carbone.
  • Préférentiellement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 7 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone, de manière particulièrement préférée comprenant 8 atomes de carbones et le groupement R3 de l'alcool de formule (III) est un groupement alkyle, linéaire, saturé comprenant de 6 à 10 atomes de carbone.
  • Avantageusement, le pourcentage massique d'alcool est inférieur à 70%, préférentiellement inférieur à 50%, préférentiellement inférieur à 30% par rapport à la masse de l'ester monophosphorique A et de l'alcool.
  • Combinaison ester monophosphorique A et sulfate ou sulfonate
  • Selon certains modes de réalisation, le composé B est un sel d'un acide sulfonique alkylé ou un sel d'un acide sulfonique aromatique alkylé, le groupement alkyle étant linéaire ou ramifié, saturé ou non comprenant 2 à 20 atomes de carbone.
  • Préférentiellement, le composé B est un sel d'un acide sulfonique aromatique alkylé, le groupement alkyle étant linéaire, saturé et comprenant 10 à 14 atomes de carbone, le sel de sodium de l'acide dodecyl benzène sulfonique étant particulièrement préféré.
    ou est un sulfate d'alkyle, le groupement alkyle étant linéaire ou ramifié, saturé ou non comprenant 2 à 20 atomes de carbone,
  • Préférentiellement, le groupement alkyle est linéaire, saturé et comprend 10 à 14 atomes de carbone, le dodécylsulfate de sodium étant particulièrement préféré.
  • Préférentiellement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 7 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone, de manière particulièrement préférée comprenant 8 atomes de carbones et le composé B est un sel d'un acide sulfonique aromatique alkylé, le groupement alkyle étant linéaire, saturé et comprenant 10 à 14 atomes de carbone.
  • Préférentiellement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 7 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone, de manière particulièrement préférée comprenant 8 atomes de carbones et le composé B est un sulfate d'alkyle, le groupement alkyle étant linéaire, saturé et comprenant 10 à 14 atomes de carbone.
  • Avantageusement, le pourcentage massique du sel d'acide sulfonique alkylé ou du sel d'acide sulfonique aromatique alkylé est inférieur à 40% par rapport à la masse de l'ester monophosphorique A et du sel d'acide sulfonique alkylé ou du sel d'acide sulfonique aromatique alkylé.
  • Avantageusement, le pourcentage massique du sulfate d'alkyle est inférieur à 50%, préférentiellement à 30%, préférentiellement à 20% par rapport à la masse de l'ester monophosphorique A et du sulfate d'alkyle.
  • Combinaison ester monophosphorique A et éther
  • Selon certains modes de réalisation, le composé B est un ether, pégylé ou non, de formule R5-(OC2H4)nO-R6 (IV) avec R5 étant un groupement alkyle ou aromatique ou aromatique alkylé et R6 étant un groupement alkyle ou un atome d'hydrogène et n représente un entier allant de 0 à 10 .
  • Préférentiellement, R5 est un groupement aromatique alkylé, R6 est un atome d'hydrogène et n est différent de zéro.
  • Préférentiellement, le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle, linéaire, saturé comprenant 7 à 10 atomes de carbone, préférentiellement 8 à 9 atomes de carbone, de manière particulièrement préférée comprenant 8 atomes de carbones et le composé B est un composé de formule (IV) avec R5 étant un groupement aromatique alkylé, R6 étant un atome d'hydrogène et n'étant différent de zéro.
  • Avantageusement, le pourcentage massique de l'éther est inférieur à 40% par rapport à la masse de l'ester monophosphorique A et de l'éther.
  • Combinaison ester monophosphorique A et acide gras ou huile fixe
  • Selon certains modes de réalisation, le composé B est un acide gras ou une huile fixe.
  • De préférence, le composant B est un acide gras saturé ou non ayant au moins 12 atomes de carbone. De préférence, l'acide gras comprend de 12 à 22 atomes de carbone, plus préférablement de 14 à 20 atomes de carbone et plus préférablement de 16 à 18 atomes de carbone.
  • Avantageusement, le pourcentage massique d'acide gras est inférieur à 40%, préférentiellement inférieur à 20% par rapport à la masse de l'ester monophosphorique A et de l'acide gras.
  • Lorsque le composé B est une huile fixe, elle peut être l'huile de colza ou l'huile de tournesol.
  • Avantageusement, le pourcentage massique de l'huile fixe est inférieure à 30%, préférentiellement inférieur à 10% par rapport à la masse de l'ester monophosphorique A et de l'huile fixe.
  • Selon des modes de réalisation, le collecteur est constitué de l'ester monophosphorique A de formule (I) et du composé B tels que décrits ci-dessus.
  • Le collecteur selon l'invention est plus efficace que les collecteurs de l'art antérieur et peut être utilisé en quantité moins importante.
  • Avantageusement, la quantité de l'ester monophosphorique A et du composé B ajoutés lors de l'étape (i) varie de 100 g à 500 g par tonne de minerais de phosphates, préférentiellement de 100g à 300g.
  • Avantageusement, les collecteurs selon l'invention permettent de développer leur propre mousse sans qu'il ne soit nécessaire d'ajouter un agent moussant additionnel, tel que le méthyl isobutyl carbinol (MIBC) ou l'huile de pin.
  • De préférence, le procédé de la présente invention ne requiert pas l'usage d'un agent moussant additionnel, ni d'un agent régulateur de pH ou d'un agent activant au cours du procédé de flottation.
  • Les suspensions de minerais et de collecteurs selon l'invention sont à pH neutre et ne nécessitent pas l'ajout de régulateur de pH. Par exemple, un agent régulateur de pH est utilisé lorsque des collecteurs à base d'acides gras sont utilisés.
  • En outre, la mise en oeuvre d'activateurs de flottation, pouvant également jouer le rôle de régulateur de pH, comme l'hydroxyde de sodium ou l'acide sulfurique, n'est pas nécessaire.
    Selon des modes de réalisation, le procédé de traitement selon l'invention comprend en outre une étape i') avant l'étape i) d'ajout d'un déprimant tel que l'acide phosphorique et/ou une étape i") entre l'étape i) et l'étape ii) d'ajout d'un composé aminé pour la flottation des silicates
  • Etape (i') d'ajout d'un déprimant
  • Des agents déprimants comme l'acide phosphorique et ses dérivés, l'acide diphosphonique [DPA] et l'acide orthophosphorique [OPA] peuvent être utilisés.
  • Etape (i") d'ajout d'un composé aminé pour la flottation des silicates
  • Afin d'éliminer les silicates du minerai de phosphates à traiter, un collecteur aminé tel que les produits des gammes FLOTINOR et FLOTIGAM peut être ajouté à la suspension aqueuse issue de l'étape i).
  • Etape (ii) d'injection de gaz
  • L'étape (ii) d'injection de gaz permet de faire flotter vers la surface de la suspension les mousses comprenant les carbonates et les métaux lourd. Pour se faire, le gaz est injecté de manière à former des bulles de gaz homogènes qui après adsorption avec les mousses vont transporter les mousses par flottation à la surface de la suspension.
  • Les bulles de gaz peuvent être formées par tous moyens connus de l'homme du métier, par exemple par un fond poreux, un verre fritté ou encore par une ou plusieurs buses d'injection.
  • Le gaz injecté à l'étape (ii) peut être de l'air, de l'azote, ou tout autre gaz inerte vis-à-vis des espèces présentes.
  • L'injection de gaz à l'étape (ii) peut être réalisée à un débit constant. L'homme du métier saura adapter le débit de l'injection de gaz.
  • L'étape (ii) est réalisée sous agitation afin d'avoir une distribution homogène des bulles de gaz dans la suspension aqueuse. L'agitation peut être assurée par tout moyen connu de l'homme du métier, tel que par exemple une agitation mécanique tel qu'un rotor ou une agitation magnétique.
  • Généralement l'étape (ii) peut être réalisée durant de 5 secondes à 30 minutes, typiquement de 5 secondes à 5 minutes.
  • Etape (iii) de séparation
  • Le procédé de traitement comprend une étape (iii) de séparation des mousses contenant les carbonates et les métaux lourds de la suspension de minerai.
  • Les mousses récupérées peuvent éventuellement être retraitées afin de séparer et valoriser les métaux lourds extraits.
  • La suspension de minerai traitée obtenue à l'issu de l'étape (iii) est récupérée après élimination des mousses.
  • Couramment, les mousses sont récupérées à l'étape (iii) dans la partie supérieure de la solution d'acide phosphorique traitée par tout moyen connu de l'homme du métier. Par exemple, les mousses par flottation peuvent se déverser dans un bac de récupération.
  • L'efficacité du procédé selon l'invention est exprimée en terme :
    • de pourcentage massique de produit flotté (rejeté) exprimé par rapport à la masse totale de produit flotté et de concentré séchés récupérés
    • de pourcentages massiques en oxyde magnésium (MgO), en phosphate tricalcique (BPL ou bone phosphate of lime) ou P2O5 exprimés par rapport à la masse totale de concentré séché, ainsi que la teneur en cadmium et arsenic dans le concentré. La teneur en BPL est obtenue en multipliant la teneur en P2O5 par un facteur correctif de 2,185.
  • Typiquement, le procédé selon l'invention permet d'obtenir un pourcentage massique de produit flotté (rejeté) exprimé par rapport à la masse totale de produit flotté et de concentré séchés récupérés inférieur à 25%.
  • Après traitement, le pourcentage en phosphate tricalcique (BPL ou bone phosphate of lime) ou P2O5 exprimés par rapport à la masse totale de concentré séché, ainsi que la teneur en cadmium et arsenic dans le concentré sont respectivement augmentés et diminués par rapport au minerai non traité.
  • Avantageusement, le pourcentage en phosphate tricalcique (BPL ou bone phosphate of lime) est supérieur ou égal à 70% après mise en oeuvre du procédé selon l'invention. Avantageusement, le pourcentage en P2O5 est supérieur ou égal à 70% après mise en oeuvre du procédé selon l'invention
  • La figure 1 illustre de manière non limitative des dispositifs pouvant mettre en oeuvre le procédé de traitement par flottation selon l'invention.
  • Dans certains modes de réalisation, le procédé selon l'invention est mis oeuvre dans un dispositif de flottation, tel qu'une colonne de flottation combinée à un bac de récupération des mousses dans la partie supérieure de la colonne, tel que schématisé à la figure 1.
  • La partie I dite partie de traitement comprend la colonne de flottation qui se compose d'une colonne en verre 1 remplie de la pulpe de minerai de phosphate conditionnée avec le collecteur de flottation selon l'invention. Le gaz est introduit dans le fond de la colonne, les bulles de gaz se forment par le passage du gaz au travers du verre fritté 2. Le gaz est généré par un générateur de gaz 3 et son débit est contrôlé par un débit mètre 4. Le milieu est agité par un barreau aimanté 5 avec un agitateur magnétique 6 ce qui permet d'obtenir une bonne distribution des bulles de gaz 7. Les mousses 8 se forment au contact avec les bulles de gaz. Les mousses sont ensuite entraînées en tête de colonne dans une zone d'évacuation des mousses 9 correspondant à la partie Il dite partie de séparation. Les mousses 8 se déversent alors dans un bac de récupération des mousses 10.
  • Le temps de séjour dans le dispositif de flottation est généralement inférieur à 30 minutes, de préférence entre 5 secondes et 5 minutes.
  • Le procédé de traitement par flottation ionique peut être mis en oeuvre à une température allant de 15 à 90°C ou encore de 20 à 80°C.
  • Utilisation de l'ester monophosphorique A, seul ou en combinaison avec le composé B
  • Un autre objet de l'invention concerne l'utilisation de l'ester monophosphorique A, seul ou en combinaison avec le composé B tels que décrits ci-dessus pour le traitement de minerais de phosphates contenant des métaux lourds.
  • L'utilisation de l'ester monophosphorique A et du composé B tels que décrits ci-dessus en tant que collecteur selon l'invention permet de disposer de nouveaux procédés de traitement des minerais de phosphates, plus simples et moins onéreux, permettant d'enrichir leur teneur en P2O5 mais également de réduire leur teneur en métaux lourds, tels que le cadmium et l'arsenic.
  • Le collecteur selon l'invention est plus efficace que les compositions de l'art antérieur et peut être utilisée en quantité moins importante.
  • EXEMPLES
  • Les exemples suivants, non-restrictifs, illustrent des exemples de réalisation de l'invention.
  • Les échantillons de minerai de phosphate ont été collectés sur le site de l'extraction de Khouribga (Bni-Amir). Ils ont été broyés, mélangés, homogénéisés et divisés en quartiers à l'aide d'un échantillonneur à riffle. Ils ont ensuite été traités et analysés.
  • 1. Caractérisation minéralogique du minerai de phosphate
  • La caractérisation et la quantification de ces échantillons ont été réalisées à l'aide de différentes techniques analytiques, dont l'absorption atomique et l'ICP-MS. Les résultats figurent dans le Tableau 1. Tableau 1 : caractérisation d'un échantillon de minérai de phosphate de Khouribga
    P2O5 CO2 (%) MgO (%) SiO2 (%) Cd (ppm) As (ppm)
    28,57 8,66 0,3 6,42 27 13
  • Le minerai de phosphate comprend des métaux lourds, en particulier du cadmium à hauteur de 27ppm et de l'arsenic à hauteur de 13 ppm.
  • 2. Synthèse des esters monophosphoriques
  • Tous les solvants organiques ont été achetés et utilisés en l'état, sans purification. Les produits chimiques ont été achetés chez Aldrich, Merck et utilisés sans aucune purification. Les spectres RMN ont été enregistrés dans un solvant deutéré sur un spectromètre Bruker AC 400 à 400 MHz pour la RMN 1H et à 50 MHz ou 101 MHz pour la RMN 13C; δ est exprimé en ppm par rapport au TMS (0 ppm) comme étalon interne pour 1H et 13C, H3PO4 pour la RMN du Phosphore. Les schémas de fractionnement sont désignés comme suit : s (singulet), d (doublet), t (triplet), m (multiplet), br (large). Les constantes de couplage (valeurs J) sont indiquées en Hertz (Hz).
  • L'alcool (1 eq) est ajouté goutte à goutte à l'oxychlorure de phosphore (V) (1,5 eq) sous agitation vigoureuse à 0°C pendant une heure sous atmosphère inerte, le mélange réactionnel est agité en continu pendant une période d'environ 4 à 5h à température ambiante. Le dichlorure de monoalkylephosphoryle obtenu est versé goutte à goutte dans l'eau glacée et l'agitation est maintenue pendant quelques heures (4-16h). Ensuite, le mélange est extrait à l'éther diéthylique, et les phases organiques combinées ont été séchées avec du sulfate de magnésium (MgSO4) et concentrées sous pression réduite, pour avoir le produit approprié.
  • Le schéma réactionnel de la synthèse de l'ester monophophorique est illustré sur le schéma 1.
    Figure imgb0001
  • 3. Procédé de traitement du minerai 3.1. Mode opératoire
  • Une cellule de flottation de marque Denver D-12 est utilisée. 200 g de minerai de phosphate sédimentaire sec, broyé et calibré entre 40 µm et 160 µm, sont mis en suspension dans 1,5 L d'eau. La pulpe est conditionnée avec 500 g par tonne (g/t) de l'acide phosphorique (H3PO4) comme dépriment pendant 3 min à 1200 tours/min, puis le collecteur pour la flottation des carbonates est ajouté à 250 g/t. Après 2 min de conditionnement, le collecteur aminé « FLOTINOR » pour la flottation des silicates est ajouté à hauteur de 200 g/t, suivie de 30 secondes de conditionnement. Le processus de flottation est lancé juste après l'injection de l'air. Le produit moussant (produit flotté) et le concentré sont filtrés, séchés, pesés et analysés.
  • Sauf indication contraire, le procédé de traitement est tel que décrit ci-dessus.
  • 3.2. Evaluation des différents collecteurs
  • Les procédés précédés d'un « C » correspondent à des exemples comparatifs.
  • Exemple 1 : évaluation des esters monophoshoriques
  • Le tableau 2 ci-dessous montre les résultats obtenus pour chaque collecteur en terme :
    - de pourcentage massique de produit flotté (rejeté) exprimé par rapport à la masse totale de produit flotté et de concentré séchés récupérés
    - de pourcentages massiques en oxyde magnésium (MgO), en phosphate tricalcique (BPL ou bone phosphate of lime) ou P2O5 exprimés par rapport à la masse totale de concentré séché, ainsi que la teneur en cadmium et arsenic dans le concentré. La teneur en BPL est obtenue en multipliant la teneur en P2O5 par un facteur correctif de 2,185. Tableau 2
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Alkyle Chaine teneur (g/t) Flotté (Rejeté) Teneur (%) dans le concentré
    1 C6 250 7,43 0,29 64,92 29,70 --- ---
    3 C8 250 24,74 0,30 71,24 32,59 8 4
    4 C9 125 17,27 0,28 69,56 31,83 --- ---
    5 C10 250 6,68 0,29 66,59 30,47 --- ---
    C-6 C12 250 0,00 0,30 62,43 28,57 27 13
    C-7 C14 250 0,00 0,30 62,43 28,57 27 13
    C-8 C18 (Oleyl) 250 0,00 0,30 62,43 28,57 27 13
  • Le collecteur Mono-Octylphosphorique ester à une concentration de 250 g/t permet d'obtenir une teneur en BPL de 71,24 (32,59 % de P2O5) avec une perte de 24,74 % en poids. Le collecteur Mono-Nonylphosphorique ester permet d'obtenir une teneur en BPL de 69,56 (31,83 % de P2O5) avec une perte de 17,27 % en poids pour une concentration de seulement 125g/t.
  • Les collecteurs à longue chaîne alkyle sont sans effet pour la flottation (procédé hors invention).
  • Après traitement, la teneur en Cadmium est réduite de 75% et la teneur en arsenic est réduite de 70%.
  • Exemple 2 : Evaluation de la combinaison d'esters monophosphoriques
  • Comme illustré dans les tableaux 3 à 6 ci-dessous, la combinaison de deux esters monophosphoriques permet d'optimiser la quantité de flotté rejeté tout en obtenant un concentré enrichi en P2O5.
  • Les tableaux 3 à 6 illustrent l'effet de la combinaison de l'ester avec chaîne en C8 linéaire et d'un ester avec une chaîne ramifiée. Tableau 3
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 24,74 0,30 71,24 32,59 8 4
    2 Octyl Phosphate (80%) 2-Ethylhexyl phosphate (20%) 18,20 0,36 70,12 32,08 7 4
    3 Octyl Phosphate (60%) 2-Ethylhexyl phosphate (40%) 16,78 0,33 68,02 31,12 --- ---
    4 Octyl Phosphate (50%) 2-Ethylhexyl phosphate (50%) 14,56 0,33 67,68 30,97 --- ---
    5 Octyl Phosphate (40%) 2-Ethylhexyl phosphate (60%) 14,78 0,34 69,36 31,74 --- ---
    6 Octyl Phosphate (20%) 2-Ethylhexyl phosphate (80%) 14,38 0,36 69,05 31,59 --- ---
    7 - 2-Ethylhexyl phosphate (100%) 11,93 0,34 68,97 31,56 --- ---
    Tableau 4
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 24,74 0,30 71,24 32,59 8 4
    2 Octyl Phosphate (80%) 2,4,4-trimethylpentyl phosphate (20%) 16,30 0,34 70,22 32,13 7 4
    3 Octyl Phosphate (60%) 2,4,4-trimethylpentyl phosphate (40%) 14,66 --- 70,36 32,19 7 4
    4 Octyl Phosphate (50%) 2,4,4-trimethylpentyl phosphate (50%) 12,93 0,46 69,03 31,58 --- ---
    5 Octyl Phosphate (40%) 2,4,4-trimethylpentyl phosphate (60%) 11,66 0,31 67,18 30,74 --- ---
    6 Octyl Phosphate (20%) 2,4,4-trimethylpentyl phosphate (80%) 11,33 0,31 69,08 31,61 --- ---
    7 --- 2,4,4-trimethylpentyl phosphate (100%) 9,67 0,31 66,55 30,45 --- ---
    Tableau 5
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 24,74 0,30 71,24 32,59 8 4
    2 Octyl Phosphate (80%) 3,5,5-trimethylhexyl phosphate (20%) 21,32 0,32 70,35 32,19 7 4
    3 Octyl Phosphate (60%) 3,5,5-trimethylhexyl phosphate (40%) 19,99 0,32 69,07 31,60 --- ---
    4 Octyl Phosphate (50%) 3,5,5-trimethylhexyl phosphate (50%) 20,81 0,32 70,02 32,04 8 4
    5 Octyl Phosphate (40%) 3,5,5-trimethylhexyl phosphate (60%) 23,89 0,31 70,29 32,16 8 4
    6 Octyl Phosphate (20%) 3,5,5-trimethylhexyl phosphate (80%) 23,48 0,41 70,05 32,05 8 4
    7 --- 3,5,5-trimethylhexyl phosphate (100%) 21,10 0,32 68,59 31,38 --- ---
    Tableau 6
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Decyl Phosphate (100%) --- 6,68 0,29 66,59 30,47 --- ---
    2 Decyl Phosphate (90%) Hexyl Phosphate (10%) 8,88 0,32 66,86 30,59 --- ---
    3 Decyl Phosphate (80%) Hexyl Phosphate (20%) 8,88 0,31 67,25 30,77 --- ---
    4 Decyl Phosphate (70%) Hexyl Phosphate (30%) 8,39 0,30 67,60 30,93 --- ---
    5 Decyl Phosphate (60%) Hexyl Phosphate (40%) 16,46 0,28 68,41 31,30 --- ---
    6 Decyl Phosphate (50%) Hexyl Phosphate (50%) 12,50 0,29 67,88 31,06 --- ---
    7 Decyl Phosphate (40%) Hexyl Phosphate (60%) 12,87 0,30 68,10 31,16 --- ---
    8 Decyl Phosphate (30%) Hexyl Phosphate (70%) --- --- --- --- --- ---
    9 Decyl Phosphate (20%) Hexyl Phosphate (80%) 8,91 0,29 67,89 31,06 --- ---
    10 Decyl Phosphate (10%) Hexyl Phosphate (90%) 7,12 0,28 65,43 29,94 --- ---
    11 --- Hexyl Phosphate (100%) 7,43 0,29 64,92 29,70 --- ---
  • Exemple 3 : Evaluation de la combinaison d'un ester monophosphorique et d'un alcool
  • Le tableau 7 illustre l'effet de la combinaison d'un ester monophosphorique et d'un alcool. Tableau 7
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 23,29 0,33 71,32 32,64 8 4
    2 Octyl Phosphate (90%) 1-Octanol (10%) 19,56 0,34 70,61 32,31 8 4
    3 Octyl Phosphate (80%) 1-Octanol (20%) 15,59 0,34 69,85 31,96 --- ---
    4 Octyl Phosphate (70%) 1-Octanol (30%) 15,04 0,34 69,82 31,94 --- ---
    5 Octyl Phosphate (60%) 1-Octanol (40%) 11,20 0,36 68,25 31,23 --- ---
    6 Octyl Phosphate (50%) 1-Octanol (50%) 10,20 0,35 64,49 29,51 --- ---
    7 Octyl Phosphate (40%) 1-Octanol (60%) 5,73 0,33 65,25 29,86 --- ---
    8 Octyl Phosphate (30%) 1-Octanol (70%) 4,69 0,35 64,45 29,49 --- ---
    9 Octyl Phosphate (20%) 1-Octanol (80%) 1,39 0,37 63,28 28,95 --- ---
    10 Octyl Phosphate (10%) 1-Octanol (90%) 4,19 0,36 64,13 29,34 --- ---
    11 --- 1-Octanol (100%) 0,84 0,36 62,95 28,80 --- ---
  • Pour les compositions comprenant moins de 30% en masse d'octanol, une teneur en BPL supérieure ou égale à 32% est obtenue pour le minerai traité.
  • Exemple 4 : Evaluation de la combinaison d'un ester monophosphorique et d'un sulfate
  • Le tableau 8 illustre l'effet de la combinaison d'un ester monophosphorique et d'un sulfate. Tableau 8
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 23,29 0,33 71,32 32,64 8 4
    2 Octyl Phosphate (90%) Sodium dodecyl sulfate (10%) 17,88 0,30 70,59 32,30 8 4
    3 Octyl Phosphate (80%) Sodium dodecyl sulfate (20%) 16,63 0,31 70,39 32,21 9 4
    4 Octyl Phosphate (70%) Sodium dodecyl sulfate (30%) 11,20 0,28 69,29 31,70 --- ---
    5 Octyl Phosphate (60%) Sodium dodecyl sulfate (40%) 8,91 0,3 67,84 31,04 --- ---
    6 Octyl Phosphate (50%) Sodium dodecyl sulfate (50%) 5,29 0,29 67,02 30,66 --- ---
    7 Octyl Phosphate (40%) Sodium dodecyl sulfate (60%) 3,59 0,28 65,3 29,88 --- ---
    C-8 Octyl Phosphate (30%) Sodium dodecyl sulfate (70%) 0,00 0,30 62,43 28,57 27 13
    C-9 Octyl Phosphate (20%) Sodium dodecyl sulfate (80%) 0,00 0,30 62,43 28,57 27 13
    C-10 Octyl Phosphate (10%) Sodium dodecyl sulfate (90%) 0,00 0,30 62,43 28,57 27 13
    C-11 --- Sodium dodecyl sulfate (100%) 0,00 0,30 62,43 28,57 27 13
  • Pour les compositions comprenant moins de 20% en masse de sulfate, une teneur en BPL supérieure ou égale à 32% est obtenue pour le minerai traité.
  • Exemple 5 : Evaluation de la combinaison d'un ester monophosphorique et d'un acide gras
  • Le tableau 9 illustre l'effet de la combinaison d'un ester monophosphorique et d'un acide gras. Tableau 9
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 23,29 0,33 71,32 32,64 8 4
    2 Octyl Phosphate (80%) Linoleic Acid (20%) 12,13 0,29 66,55 30,45 --- ---
    3 Octyl Phosphate (60%) Linoleic Acid (40%) 8,93 0,30 64,79 29,64 --- ---
    4 Octyl Phosphate (50%) Linoleic Acid (50%) 5,97 0,30 64,77 29,63 --- ---
    5 Octyl Phosphate (40%) Linoleic Acid (60%) 4,64 0,31 64,03 29,30 --- ---
    6 Octyl Phosphate (20%) Linoleic Acid (80%) 3,10 0,32 62,67 28,67 --- ---
    C-7 --- Linoleic Acid (100%) 0,00 0,30 62,43 28,57 27 13
  • Exemple 6 : Evaluation de la combinaison d'un ester monophosphorique et d'une huile
  • Le tableau 10 illustre l'effet de la combinaison d'un ester monophosphorique et d'une huile. Tableau 10
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 23,29 0,33 71,32 32,64 8 4
    2 Octyl Phosphate (90%) Huile de Tournesol (10%) 13,30 0,3 68,98 31,56
    3 Octyl Phosphate (80%) Huile de Tournesol (20%) 11,34 0,29 69,30 31,71 --- ---
    4 Octyl Phosphate (70%) Huile de Tournesol (30%) 10,20 0,29 67,50 30,88 --- ---
    5 Octyl Phosphate (60%) Huile de Tournesol (40%) 6,59 0,29 65,12 29,79 --- ---
    6 Octyl Phosphate (50%) Huile de Tournesol (50%) 5,73 0,29 64,34 29,44 --- ---
    7 Octyl Phosphate (40%) Huile de Tournesol (60%) 4,58 0,30 63,05 28,85 --- ---
    C-8 Octyl Phosphate (30%) Huile de Tournesol (70%) 0,00 0,30 62,43 28,57 27 13
    C-9 Octyl Phosphate (20%) Huile de Tournesol (80%) 0,00 0,30 62,43 28,57 27 13
    C-10 Octyl Phosphate (10%) Huile de Tournesol (90%) 0,00 0,30 62,43 28,57 27 13
    C-11 --- Huile de Tournesol (100%) 0,00 0,30 62,43 28,57 27 13
  • Exemple 7 : Evaluation de la combinaison d'un ester monophosphorique et d'un sulfonate
  • Le tableau 11 illustre l'effet de la combinaison d'un ester monophosphorique et d'un sulfonate. Tableau 11
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 23,29 0,33 71,32 32,64 8 4
    3 Octyl Phosphate (80%) Dodecylbenzene sulfonic acid (20%) 16,01 0,30 71,07 32,52 8 4
    5 Octyl Phosphate (60%) Dodecylbenzene sulfonic acid (40%) 12,56 0,30 70,03 32,04 8 4
  • Exemple 8 : Evaluation de la combinaison d'un ester monophosphorique et d'un ether pegylé
  • Le tableau 12 illustre l'effet de la combinaison d'un ester monophosphorique et d'un éther pegylé. Tableau 12
    Procédé de flottation Collecteur Flottation
    Récupération (%) MgO (%) BPL (%) P2O5 (%) Cd (ppm) As (ppm)
    Référence Composition Flotté (Rejeté) Teneur (%) dans le concentré
    1 Octyl Phosphate (100%) --- 23,29 0,33 71,32 32,64 8 4
    2 Octyl Phosphate (90%) IGEPAL CA-630 (10%) 22,83 0,32 71,38 32,66 7 4
    3 Octyl Phosphate (80%) IGEPAL CA-630 (20%) 20,69 0,32 70,72 32,36 8 4
    4 Octyl Phosphate (70%) IGEPAL CA-630 (30%) 18,00 0,31 70,99 32,48 8 4
    5 Octyl Phosphate (60%) IGEPAL CA-630 (40%) 18,16 0,32 68,98 31,56 - -

Claims (8)

  1. Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse, le procédé comprenant les étapes suivantes :
    - (i) addition à une suspension aqueuse de minerai de phosphate d'un ester monophosphorique A de formule (I) :

             R1-O-P(=O)-(OH)2     (I)

    dans laquelle R1 est un groupement alkyle, linéaire ou ramifié, saturé ou non, comprenant 6 à 10 atomes de carbones,
    seul ou en mélange avec un composé B sélectionné dans le groupe constitué de :
    un ester monophosphorique de formule (II)

             R2 - O - P(=O) - (OH)2     (II)

    dans laquelle R2 est un groupement alkyle, linéaire ou ramifié, saturé ou non , comprenant 6 à 18 atomes de carbones, différent du groupement R1 de l'ester monophosphorique A de formule (I),
    un alcool,
    un acide gras,
    une huile fixe,
    un sulfate,
    un sulfonate,
    un éther, et
    leurs mélanges ;
    - (ii) injection de gaz dans la suspension aqueuse pour former des mousses ; et
    - (iii) élimination des mousses et récupération de la suspension aqueuse de minerai traitée.
  2. Procédé de traitement selon la revendication 1, caractérisé en ce que le groupement R1 de l'ester monophosphorique A de formule (I) est un groupement alkyle linéaire saturé comprenant 8 ou 9 atomes de carbone ou un groupement alkyle ramifié saturé comprenant 8 ou 9 atomes de carbone.
  3. Procédé de traitement selon la revendication 1 ou la revendication 2, caractérisé en ce que le composé B, lorsqu'il est présent, est un alcool de formule R3-OH (III), R3 étant un groupement alkyle, linéaire ou ramifié, saturé ou non comprenant 2 à 20 atomes de carbones, préférentiellement 6 à 10 atomes de carbone.
  4. Procédé de traitement selon la revendication 1 ou la revendication 2, caractérisé en ce que le composé B, lorsqu'il est présent, est :
    un sel d'un acide sulfonique alkylé ou un sel d'un acide sulfonique aromatique alkylé, le groupement alkyle étant linéaire ou ramifié, saturé ou non comprenant 10 à 14 atomes de carbone , préférentiellement le sel de sodium de l'acide dodecyl benzène sulfonique ;
    ou est un sulfate d'alkyle, le groupement alkyle étant linéaire ou ramifié, saturé ou non comprenant 10 à 14 atomes de carbone, préférentiellement le dodecylsulfate de sodium.
  5. Procédé de traitement selon la revendication 1 ou la revendication 2, caractérisé en ce que le composé B, lorsqu'il est présent, est un ether, pégylé ou non, de formule R5-(OC2H4)nO-R6 (IV) avec R5 étant un groupement alkyle ou aromatique ou aromatique alkylé et R6 étant un groupement alkyle ou un atome d'hydrogène et n représente un entier allant de 0 à 10.
  6. Procédé de traitement selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité de l'ester monophosphorique A et du composé B ajoutés lors de l'étape (i) va de 100 g à 500 g par tonne de minerais de phosphates, préférentiellement de 100g à 300g.
  7. Procédé de traitement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en outre une étape i') avant l'étape i) d'ajout d'un déprimant tel que l'acide phosphorique et/ou une étape i") entre l'étape i) et l'étape ii) d'ajout d'un composé aminé pour la flottation des silicates.
  8. Utilisation de l'ester monophosphorique A seul ou en combinaison avec le composé B tels que décrits dans l'une quelconque des revendications 1 à 6 pour le traitement de minerais de phosphates contenant des métaux lourds.
EP23305204.2A 2023-02-15 2023-02-15 Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse Pending EP4417314A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP23305204.2A EP4417314A1 (fr) 2023-02-15 2023-02-15 Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse
PCT/MA2024/050004 WO2024172639A1 (fr) 2023-02-15 2024-02-15 Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP23305204.2A EP4417314A1 (fr) 2023-02-15 2023-02-15 Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse

Publications (1)

Publication Number Publication Date
EP4417314A1 true EP4417314A1 (fr) 2024-08-21

Family

ID=85328667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23305204.2A Pending EP4417314A1 (fr) 2023-02-15 2023-02-15 Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse

Country Status (2)

Country Link
EP (1) EP4417314A1 (fr)
WO (1) WO2024172639A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2471217A1 (fr) * 1979-12-17 1981-06-19 Rech Geolog Miniere Procede de traitement de minerais de phosphates a gangue silico-carbonatee
FR2489715A1 (fr) * 1980-09-08 1982-03-12 Rech Geolog Miniere Procede de traitement de minerais de phosphates a gangue carbonatee ou silico-carbonatee
US4790931A (en) * 1986-12-04 1988-12-13 Henkel Kommanditgesellschaft Auf Aktien Surfactant mixtures as collectors for the flotation of non-sulfidic ores
WO2001062344A1 (fr) 2000-02-26 2001-08-30 Tomorrows Design Company Limited Procede et dispositif de suppression des incendies
US8657118B2 (en) 2006-11-29 2014-02-25 Kao Corporation, S.A. Collector for the flotation of carbonates
WO2018197476A1 (fr) 2017-04-25 2018-11-01 Basf Se Collecteurs pour l'enrichissement de phosphate provenant de minerais contenant du phosphate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2471217A1 (fr) * 1979-12-17 1981-06-19 Rech Geolog Miniere Procede de traitement de minerais de phosphates a gangue silico-carbonatee
FR2489715A1 (fr) * 1980-09-08 1982-03-12 Rech Geolog Miniere Procede de traitement de minerais de phosphates a gangue carbonatee ou silico-carbonatee
US4790931A (en) * 1986-12-04 1988-12-13 Henkel Kommanditgesellschaft Auf Aktien Surfactant mixtures as collectors for the flotation of non-sulfidic ores
WO2001062344A1 (fr) 2000-02-26 2001-08-30 Tomorrows Design Company Limited Procede et dispositif de suppression des incendies
US8657118B2 (en) 2006-11-29 2014-02-25 Kao Corporation, S.A. Collector for the flotation of carbonates
WO2018197476A1 (fr) 2017-04-25 2018-11-01 Basf Se Collecteurs pour l'enrichissement de phosphate provenant de minerais contenant du phosphate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Bailey's Industrial Oil and Fat Products", 15 July 2005, JOHN WILEY & SONS, INC., article GREGORIO C GERVAJIO: "Fatty Acids and Derivatives from Coconut", pages: 1 - 55, XP055035497, DOI: 10.1002/047167849X.bio039 *

Also Published As

Publication number Publication date
WO2024172639A1 (fr) 2024-08-22

Similar Documents

Publication Publication Date Title
AU2013293041B2 (en) Monothiophosphate containing collectors and methods
RU2454282C2 (ru) Коллектор для осуществления флотации карбонатов
CA1096059A (fr) Procede de flottation de minerais oxydes
EP1504820B1 (fr) Composition de mercaptans utilisable dans un procédé de flottation de minerais
RU2722484C1 (ru) Способ обработки фосфатных руд
EA030500B1 (ru) Подавитель флотации рудных минералов, композиция и способ обогащения минерала
RU2312712C2 (ru) Флотореагент для сульфидных руд
CN111683755B (zh) 在泡沫浮选中作为矿物富集化学助剂的纤维素基衍生物
MX2013011814A (es) Compuestos de amina y diamina y su uso para flotacion de espuma invertida de silicato a partir de mineral de hierro.
AU2013314744A1 (en) Composition for dressing phosphate ore
FR2471217A1 (fr) Procede de traitement de minerais de phosphates a gangue silico-carbonatee
WO2024172639A1 (fr) Procédé de traitement de minerais de phosphates contenant des métaux lourds par flottation inverse
CN113518667A (zh) 用作捕收剂的辛烯加氢甲酰化副产物和柴油、煤油或c8-c20烯烃的混合物
FR2621499A1 (fr) Flottation par ecumage
FR2497467A1 (fr) Procede d&#39;enrichissement par flottation de minerais a gangues carbonatees et/ou silicatees par des collecteurs amphoteres
CA1207092A (fr) Aides a la flottation, et methode pour minerais non sulfures
CA1320769C (fr) Acide n-alkyl- et n-alkenyl- aspartiques, utilises, comme adjuvants de collecte pour la flottation de minerais non sulfures
CN112638540B (zh) 从含磷酸盐的矿石中富集磷酸盐
US5407080A (en) Apatite flotation reagent
EP1578710B1 (fr) Composes et compositions pouvant etre utilises en tant qu&#39;agents gonflants ou moussants dans la flottation de minerai et de charbon
RU2237521C1 (ru) Способ флотационного обогащения калийных руд
FR2489714A1 (fr) Procede de flottation par moussage pour separer la silice d&#39;un minerai de fer
WO2020083793A1 (fr) Composition de collecteur et procédé de flottation pour l&#39;enrichissement de phosphate
FR3146604A1 (fr) Procédé de traitement de l’acide phosphorique par flottation ionique
JPS63236554A (ja) 石炭および鉱石の浮選用起泡剤

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR