[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4413300A1 - Dispositif d'injection de dihydrogène et d'air - Google Patents

Dispositif d'injection de dihydrogène et d'air

Info

Publication number
EP4413300A1
EP4413300A1 EP22826594.8A EP22826594A EP4413300A1 EP 4413300 A1 EP4413300 A1 EP 4413300A1 EP 22826594 A EP22826594 A EP 22826594A EP 4413300 A1 EP4413300 A1 EP 4413300A1
Authority
EP
European Patent Office
Prior art keywords
channel
internal
dihydrogen
internal channel
downstream end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22826594.8A
Other languages
German (de)
English (en)
Inventor
Stéphane Raphaël Yves RICHARD
Christophe Nicolas Henri VIGUIER
Sylvain MARRAGOU
Thierry Schuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Safran Helicopter Engines SAS
Universite Toulouse III Paul Sabatier
Original Assignee
Centre National de la Recherche Scientifique CNRS
Safran Helicopter Engines SAS
Universite Toulouse III Paul Sabatier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2110692A external-priority patent/FR3127987A1/fr
Application filed by Centre National de la Recherche Scientifique CNRS, Safran Helicopter Engines SAS, Universite Toulouse III Paul Sabatier filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP4413300A1 publication Critical patent/EP4413300A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2206/00Burners for specific applications
    • F23D2206/10Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]

Definitions

  • This document concerns turbomachines whose combustion chamber is fed by separate injections of dihydrogen and air.
  • a principle of micro-mixture burners of air and dihydrogen is known.
  • such burners do not guarantee the thermal resistance of a pierced wall or the absence of flashback in the dihydrogen injection device.
  • These burners also have a complex geometry system.
  • Such burners have a high production cost, a high pressure drop and these burners are specific to a given combustion chamber architecture.
  • This document relates to a longitudinal axis dihydrogen injection device intended to be mounted on an annular bottom of an annular combustion chamber of a turbomachine comprising an internal channel for the circulation of dihydrogen and an external annular channel circulation of a mixture comprising at least air, the internal channel and the external annular channel being coaxial, an internal swirl being housed in the internal channel and an external swirling being housed in the external annular channel, and wherein a downstream end of the inner channel is arranged upstream, at a distance r, from a downstream end of the outer annular channel.
  • This device makes it possible to produce a dihydrogen/air flame which can be used in turbomachines which makes it possible both to produce low levels of nitrogen oxide emissions, a reduced thermal load on the combustion chamber and the injector as well as eliminating the risk of flashback.
  • this injector has the particularity of being both simple to produce and easily adaptable to existing turbomachines running on kerosene.
  • a spin makes it possible to put a flow into rotation.
  • the integration of an internal spin in the internal channel makes it possible to create a recirculation zone for a flow of dihydrogen crossing said internal channel and preventing the combustion of the air and dihydrogen mixture from coming to stabilize on the downstream end of the internal channel .
  • recirculation zone is meant a zone generating a centrifugation effect with a depression inside capable of producing an axial velocity component of the flow on average negative with respect to a main direction of the flow. This recirculation zone is similar to that generated inside a whirlpool in which air is sucked.
  • the internal recirculation zone blocks part of the flow of dihydrogen along the longitudinal axis of said internal channel generating in an outlet section of this internal channel significant overspeeds near the walls of the internal channel with respect to a flow with uniform axial flow rate.
  • the rotation of the dihydrogen of the internal channel makes it possible to avoid hanging the flame on the downstream ends of the internal channel by stabilizing it aerodynamically above the internal channel.
  • the downstream end of the internal channel being arranged upstream at a distance r, this further prevents the flame from catching on the lips of the internal channel.
  • This rotation of the dihydrogen in the internal channel avoids the installation of a complex cooling device for the dihydrogen injection device.
  • This dihydrogen injection device produces limited pressure drops compared to other liquid injection devices using kerosene as in the prior art.
  • This dihydrogen injection device has a simple geometry, a low production cost and adapts to existing combustion chamber architectures.
  • This remote flame stabilization facilitates partial mixing between the mixture containing at least air with the dihydrogen exiting the internal channel, upstream of the flame, and avoiding any risk of flame rising in said channel internal and the external channel, also called "flashback" in English.
  • flashback This makes it possible to achieve a combustion depleted of dihydrogen in the combustion chamber.
  • the internal channel may be a tubular central channel.
  • At least the internal twist of the internal channel may have a helical shape.
  • This helical shape makes it possible to improve the aerodynamics of the flow of dihydrogen passing through the internal spin.
  • the inner swirler can be arranged along the longitudinal axis downstream of the outer swirler.
  • a rate of rotation S generated by the internal spin of the internal channel defined as a ratio between a tangential speed and a delivery speed along the longitudinal axis of a hydrogen flow at the outlet of the internal spin, can be equal or greater than 0.6.
  • the internal spin of the internal channel can be arranged upstream, at a distance l, from the downstream end of the internal channel.
  • the internal channel may have an internal diameter d and the external annular channel may have an internal diameter D such that a D/d ratio is between 3 and 10.
  • a thickness of a wall of the internal channel e is such that an e/d ratio can be between 0.05 and 0.7.
  • An l/d ratio can be between 1 and 3.
  • the minimum distance l min is equal to 1 d so that a central recirculation zone enters the internal channel.
  • the range chosen for l/d makes it possible to obtain a good compromise and a rotation rate S sufficient to correctly rotate the flame.
  • the distance r can be between 0.05D and 0.5D. [0023] There is an optimum value for the distance r which depends on the diameter D of the outer channel. If this distance r is too high, the recirculation zone becomes unstable. The range of values chosen for r is optimized so as to obtain a stable recirculation zone.
  • This distance r relative to the downstream end of the outer annular channel makes it possible to increase the operating range where the flame is detached by moving back a dihydrogen introduction zone relative to the aerodynamic stabilization zone of the flame. .
  • the external spin of the external annular channel can be arranged at an upstream end of said external annular channel, at a distance L from the downstream end of the external annular channel.
  • the distance L can be between 1D and 5D.
  • the rate of rotation S can be greater than 0.6, a flow rate Ui of the dihydrogen in the internal channel being greater than a critical value Ui, c and verifying the following relationship:
  • - P is a pressure in the annular combustion chamber
  • T - T a is an air temperature in Kelvin in the external channel
  • This critical value Ui, c ensures that the flame formed at the outlet of the injection device is detached from the downstream ends of the internal channel for a wide range of engine operation.
  • the mixture may be air.
  • This document relates to an assembly comprising the device of the aforementioned type, in which the internal channel, fluidly connected to means for supplying dihydrogen, comprises the internal swirler configured to rotate said dihydrogen, and the external annular channel , fluidly connected to air supply means, comprises the external swirler configured to rotate said air.
  • FIG. 1 shows a turbomachine comprising a dihydrogen injection device arranged in an annular bottom of an annular combustion chamber according to three configurations.
  • FIG. 2 shows the hydrogen injection device according to the invention.
  • FIG. 3 schematically shows the formation of a recirculation zone which penetrates the dihydrogen injection device and a flame at the outlet of the dihydrogen injection device.
  • FIG. 4 shows a plurality of possible configurations (FIGS. A, B, C, D, E, F, G, H) of internal channel, according to the invention.
  • FIG. 5 shows a plurality of possible configurations (figures. A, B, C, D, E) of the downstream end of the outer annular channel, according to the invention.
  • This document relates to a dihydrogen injection device 2 intended to be mounted on an annular bottom of an annular combustion chamber 4 of a turbomachine.
  • This dihydrogen injection device 2 is used in a lean dihydrogen combustion configuration such that the flame temperatures and the formation of nitrogen oxide are reduced. It is said that the injection device is lean when there is excess oxygen in relation to combustion taking place at stoichiometry between dihydrogen and air and that the injection system is rich when there is dihydrogen in excess with respect to this combustion at stoichiometry. Combustion at stoichiometry is defined as that for which there is the right number of hydrogen and oxygen atoms necessary to consume all the fuel and only water remains in the combustion products. It is in the context of lean combustion in dihydrogen that the present invention is placed.
  • the dihydrogen injection device 2 is located between the compressor and the high-pressure turbine, on the annular bottom of the annular combustion chamber 4 or on an outer shroud.
  • said dihydrogen injection device comprises an internal channel 6 and an external annular channel 8.
  • the internal channel 6 and the external annular channel 8 are coaxial.
  • a first gas is injected from an inlet 10 located at an upstream end of the internal channel 6.
  • This first gas is dihydrogen 12.
  • the internal channel 6 has an internal diameter d.
  • the choice of the internal diameter d of the channel depends on a desired thermal power.
  • a thickness of an inner channel wall e is half the difference of an outer diameter of the inner channel and an inner diameter of the inner channel d.
  • An e/d ratio is between 0.05 and 0.7.
  • This internal channel 6 comprises an internal twist 14 configured to rotate a flow of dihydrogen 12 around a longitudinal axis X.
  • Said internal twist 14 of the internal channel 6 is arranged at a distance l from a downstream end 16 of the internal channel.
  • the distance l between the downstream end 16 of the internal channel 6 and a downstream end 18 of the internal spinner 14 is between 1d and 5d.
  • a space is thus left between the internal swirler 14 and the downstream end 18 of the internal channel 6 so that a central recirculation zone 20 can be installed.
  • the recirculation zone is a region around the longitudinal axis X of the injection device where an axial component of the flow is on average negative with respect to a main direction of the flow.
  • This recirculation zone 20 is generated by a depression created inside the rotational movement of the flow. This depression is due to the centrifugation effect induced by this rotation of the flow.
  • the recirculation zone 20 is similar to that generated inside a vortex in which air is sucked.
  • the recirculation zone 20 is configured to penetrate inside the internal channel blocking part of the section of the downstream end 16 of the internal channel 6 and producing an acceleration of the flow at the periphery. This repels a flame 22 formed at the outlet of the injection device and sets it in rotation.
  • the internal swirl 14 may, for example, comprise a helical part with a suitable helix pitch.
  • This helix pitch is configured to define a positioning of the flame 22 at the outlet of the injection device 2, to minimize polluting emissions and define a thermal injection device.
  • This helical part rotates the flow of dihydrogen with a rate of rotation characterized by a dimensionless number S.
  • This rate of rotation S is defined as a ratio of an angular momentum to the product of a radius of the channel multiplied by an impulse of the flow of dihydrogen 12 set in rotation, according to the following formula: where G e is the angular momentum of the flow in an axial direction, G z is the momentum of the flow in the axial direction and d is the diameter of the channel.
  • a rate of blockage of the flow of dihydrogen 12 in the internal channel 6 is established so as to be high enough to repel the flame 22 forming at a downstream end 24 of the outer annular channel 8.
  • the blockage rate represents a ratio between a section occupied by the recirculation zone 20 rising inside the dihydrogen injection device 12 at the level of the downstream end 16 of the internal channel 6 with respect to a passage section of the internal channel 6.
  • This blocking rate depends on the shape of the recirculation zone 20. More specifically, it is an aerodynamic element which depends on the dimensional parameters of the dihydrogen injection device 2.
  • downstream end 16 of the internal channel 6 has a straight and longitudinal wall.
  • downstream end 16 of the internal channel 6 has a flare shape. This downstream end 16 is configured to modify the flow of the internal channel 6 near the wall of the end 16.
  • the downstream end 16 of the internal channel 6 has an outward cap effect. This downstream end 16 is configured to modify the flow of the external channel 8 near the wall of the end 16.
  • the downstream end 16 of the internal channel 6 has a section which increases downstream. This fourth type of downstream end is configured to promote the increase in the rate of rotation S in the internal channel 6 containing the dihydrogen 12. Due to this configuration, the axial speed is reduced and the tangential speed is increased, hence the increase in the rate of rotation S.
  • This downstream end 16 is configured to modify the flow of the internal channel 6 near the wall of the end 16 as well as the flow of the external channel 8 near the wall of the end 16.
  • a thickness corresponding to a transverse dimension of a wall of the internal channel 6 is lower or greater than that in the first embodiment.
  • downstream end 16 of the internal channel 6 has a bevel effect. This downstream end 16 is configured to modify the flow of the external channel 8 near the wall of the end 16.
  • downstream end 16 of the internal channel 6 has an inward cap effect. This downstream end 16 is configured to modify the flow of the internal channel 6 near the wall of the end 16.
  • the downstream end 16 comprises a section which is reduced downstream. This downstream end 16 is configured to modify the flow of the internal channel 6 near the wall of the end 16 as well as the flow of the external channel 8 near the wall of the end 16.
  • the downstream end 16 of the internal channel 6 is arranged upstream with respect to the downstream end 24 of the external annular channel 8.
  • the downstream end 24 of the external annular channel 8 is arranged at a distance r from the downstream end 16 of the internal channel 6.
  • This external annular channel 8 has an internal diameter D, such that a ratio D/d with the diameter d of the internal channel 6 is between 3 and 10.
  • the outer annular channel 8 is configured to receive a second gas comprising air or an air and dihydrogen mixture. This gas enters the outer annular channel through an inlet 26 arranged upstream of said outer annular channel.
  • a section ratio between the internal diameter d of the internal channel 6 and the internal diameter D of the external annular channel 8 depends: i/ on the mixing ratio between the air and the desired hydrogen, and ii/ on the flow rate Ui dihydrogen in the internal channel. In this document, operation in a dihydrogen-lean regime requires that this D/d ratio be between 3 and 10.
  • An outer spinner 28 is housed at an upstream end 30 of the outer annular channel 8.
  • This outer spinner 28 is annular.
  • This external spin 28 can be radial.
  • This annular external spin 28 is arranged at a distance L from the downstream end 36 of the external annular channel 8. This distance L is between 1D and 5D.
  • the fuel is then rotated in the center by the internal spinner 14 while the air or the mixture containing at least air is rotated around by the outer spinner 28. This generates a vortex assembly.
  • the outer annular channel 8 can have different shapes.
  • the outer annular channel 8 comprises a first annular channel 8 and a second annular channel 32.
  • the first annular channel 8 corresponds to the outer annular channel 8.
  • This first annular channel 8 begins at a downstream end 36 of the outer swirler 28 and opens upstream from the downstream end 30 of the outer swirler 28.
  • the second annular channel 32 has an internal diameter greater than the internal diameter of the first annular channel 8. This second annular channel 32 begins at the downstream end 36 of the outer swirler 28 and emerges upstream from the downstream end 16 of the inner channel 6.
  • downstream end 24 of the outer annular channel 8 has a section which increases downstream. This downstream end 24 is configured to modify the flow of the outer annular channel 8 near the wall of the end 24.
  • downstream end 24 of the outer annular channel 8 has a section which is reduced downstream. This downstream end 24 is configured to modify the flow of the outer annular channel 8 near the wall of the end 24.
  • the distance L can be modified.
  • the external annular channel 8 comprises a single annular channel, the flow of which from the external channel 8 is rotated by the external swirler 28 axially.
  • the rate of rotation S must be high in the internal channel 6. This rate of rotation S is greater than 0.6. Indeed, below 0.6, there is no formation of a recirculation zone with a sufficient depression in the center because the tangential velocity of the hydrogen flow is not sufficient.
  • the outer swirl 28 also participates in the maintenance of the recirculation zone.
  • Sext the dimensionless number associated with the rate of rotation generated by the external spin 28. Sext is greater than 0.6.
  • S ex t is defined analogously to S, that is to say it is a ratio of a tangential velocity to an axial flow velocity of the air flow.
  • a stabilization of the flame, unhooked or hooked to the downstream end 16 of the internal channel 6, depends on a stretching of a shear layer upstream of the downstream end of the internal channel on which the flame can 'hang.
  • the main parameters controlling a local stretching value are the rate of rotation of the dihydrogen flow characterized by the dimensionless number S, the distance r and a discharge velocity Ui of the dihydrogen in the internal channel.
  • a flow velocity Ui of the dihydrogen in the internal channel must be greater than a critical value Ui, c satisfying the following relationship:
  • - P is a pressure in the annular combustion chamber
  • - S is the rate of rotation generated by the internal spin 14 of the internal channel 6;
  • T - T a is an air temperature in Kelvin in the external channel
  • the relationship is based on three observations.
  • the first observation is that a stretching of the flame causing the extinction of this flame increases as the pressure P and as the temperature T 08 .
  • the second observation makes it possible to specify that the stretching of the flame increases when the rate of rotation in the internal channel increases. More precisely, the more the flow is blocked at the downstream end of the internal channel, the more the radial velocities are important, the more the flames are stretched at the level of the lips.
  • the third observation specifies that for a given rate of rotation S, the blocking rate will also depend on the spin technology used, hence the power /? in the formula. The value range of /? which is between 1 and 1.5 is a good framework.
  • the distance r which depends on the internal diameter D of the external annular channel. If the distance r is too high, the recirculation zone 20 becomes unstable. Under such conditions, the distance r must be between 0.05D and 0.5D.
  • the mixture will take place more or less early inside the dihydrogen 2 and air injection device and if this occurs too early, the flame 22 can rise to the interior of the external annular channel 8 between the downstream end 16 of the internal channel and the downstream end 24 of the external annular channel, which is very damaging to the device and to the bottom of the combustion chamber 4.
  • the rotation of the flame 22 is therefore configured to prevent the flame 22 from rising in the dihydrogen injection device 2.
  • the parameters to be controlled are both the rate of rotation S of the flow in the internal channel, the rate of rotation Sext, and the distance r.
  • the spins 14.28 allow to rotate a first flow relative to a second flow.
  • the integration of the internal swirl 14 to the internal channel 6 makes it possible to create the recirculation zone 20 of a flow of dihydrogen passing through said internal channel 6 and preventing the flame from coming to stabilize on the downstream end of the internal channel.
  • the internal twist 14 of the internal channel 6 rotates the flow of dihydrogen 2 sufficiently to create a recirculation zone penetrating inside the internal channel 6 which blocks part of the flow of dihydrogen along the axis longitudinal x of said internal channel 6 generating significant overspeeds relative to the axial flow rate near the walls of the internal channel 6.
  • the rotation of the dihydrogen of the internal channel 6 makes it possible to avoid hanging the flame 22 on the downstream ends of the external annular channel 8 by stabilizing it aerodynamically above the internal channel 6.
  • This rotation of the dihydrogen of the internal channel 6 avoids the installation of a complex cooling device for the dihydrogen injection device 2.
  • This stabilization of the flame 22 at a distance facilitates the partial mixing of the air with the dihydrogen inside the outer channel 8 above the downstream end 16 of the inner channel, upstream of the flame 22, and avoiding any risk of flashback 22, also called "flash back" in English, in said internal channel 6 and in the annular channel external 8 upstream of the downstream end 16 of the internal channel 6.
  • flashback 22 also called "flash back" in English
  • the positioning of the downstream end 16 of the internal channel 6 upstream of the downstream end 24 of the external annular channel 8 makes it possible to optimize the mixture between the dihydrogen and the air. This increases the operating range where the flame 22 is detached by moving back the dihydrogen introduction zone with respect to the aerodynamic stabilization zone of the flame.
  • the injection device is advantageously implemented within an assembly comprising said injection device, in which the internal channel is fluidically connected to means for supplying dihydrogen and the external annular channel is fluidically connected. to air supply means.
  • the dihydrogen supply means are in particular suitable for delivering a gaseous dihydrogen stream without diluent gas, that is to say a stream comprising at least 90% of dihydrogen by mass, and in particular at least 95% of dihydrogen by mass, and advantageously at least 99% dihydrogen by mass.
  • the dihydrogen supply means comprise for example at least one pressurized tank equipped with at least one valve, and/or at least one chemical generation device for gaseous dihydrogen.
  • the air supply means are in particular suitable for delivering a flow of air without adding diluent gas.
  • the air supply means comprise for example an atmospheric air inlet upstream of the turbine engine. This air is compressed before entering the annular combustion chamber.
  • the air supply means may also include a source of oxygen for airflow enrichment in oxygen.
  • the oxygen source can comprise a pressurized oxygen tank provided with a valve and/or means for the chemical generation of gaseous oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles (AREA)

Abstract

Le présent document concerne un dispositif d'injection de dihydrogène (2) d'axe longitudinal (X) destiné à être monté sur un fond annulaire d'une chambre annulaire (4) de combustion d'une turbomachine comprenant un canal interne (6) de circulation de dihydrogène et un canal annulaire externe (8) de circulation d'un mélange comprenant au moins de l'air, le canal interne (6) et le canal annulaire externe (8) étant coaxiaux, une vrille interne (14) étant logée dans le canal interne (6) et une vrille externe (28) étant logée dans le canal annulaire externe (8), et dans lequel une extrémité aval (16) du canal interne (6) est agencée en amont, à une distance r, d'une extrémité aval (24) du canal annulaire externe (8). Cette combustion de dihydrogène permet d'éliminer les émissions polluantes carbonées tel que du monoxyde de carbone, des hydrocarbures imbrûlés ou encore des particules fines et fumées.

Description

Description
Titre : Dispositif d’injection de dihydrogène et d’air
Domaine technique
[0001] Le présent document concerne les turbomachines dont la chambre de combustion est alimentée par des injections séparées de dihydrogène et d’air.
Technique antérieure
[0002] Le secteur aéronautique fait face à de grands enjeux environnementaux. L’intérêt d’avoir recours à une combustion utilisant du dihydrogène plutôt qu’à l’emploi de kérosène est de plus en plus fort car cette combustion de dihydrogène permettrait d’éviter les émissions de gaz carbonique (CO2) et les polluants carbonés tels que du monoxyde de carbone, des hydrocarbures imbrûlés ou encore des particules fines et fumées.
[0003] Il est connu un principe de brûleurs à micro-mélange d’air et de dihydrogène. Cependant, de tels brûleurs ne garantissent pas la tenue thermique d’une paroi percée ou l’absence de retour de flamme dans le dispositif d’injection de dihydrogène. Ces brûleurs possèdent également un système de géométrie complexe. De tels brûleurs présentent un coût de réalisation important, une perte de charge élevée et ces brûleurs sont spécifiques à une architecture de chambre de combustion donnée.
[0004] En effet, la combustion de dihydrogène engendre différentes problématiques. Ainsi, des risques de remontée de flamme dans le dispositif d’injection peuvent arriver pour des systèmes opérant avec des mélanges de dihydrogène et d’air. Cela peut endommager la chambre de combustion et poser de sérieux problèmes de sécurité. Enfin, la combustion de dihydrogène génère des charges thermiques élevées vers des parois de cette chambre de combustion, ce qui tend à en réduire la durée de vie. De fortes températures de gaz et d’émissions d’oxydes d’azote sont produites. Ces températures de gaz et d’émissions d’oxydes d’azote sont supérieures à celles produites par des flammes de kérosène, à richesse équivalente. Cela est, d’ailleurs, difficilement compatible avec les normes actuelles.
Résumé
[0005] Le présent document concerne un dispositif d’injection de dihydrogène d’axe longitudinal destiné à être monté sur un fond annulaire d’une chambre annulaire de combustion d’une turbomachine comprenant un canal interne de circulation de dihydrogène et un canal annulaire externe de circulation d’un mélange comprenant au moins de l’air, le canal interne et le canal annulaire externe étant coaxiaux, une vrille interne étant logée dans le canal interne et une vrille externe étant logée dans le canal annulaire externe, et dans lequel une extrémité aval du canal interne est agencée en amont, à une distance r, d’une extrémité aval du canal annulaire externe.
[0006] Ce dispositif permet de produire une flamme dihydrogène/air utilisable dans des turbomachines qui permet à la fois de produire de bas niveaux d’émissions d’oxydes d’azote, une charge thermique réduite sur la chambre de combustion et l’injecteur ainsi que de supprimer les risques de remontée de flamme. Par ailleurs cet injecteur a la particularité d’être à la fois simple à produire et facilement adaptable aux turbomachines existantes fonctionnant au kérosène.
[0007] De manière générale, une vrille permet de mettre en rotation un flux. L’intégration d’une vrille interne au canal interne permet de créer une zone de recirculation d’un écoulement de dihydrogène traversant ledit canal interne et évitant que la combustion du mélange air et dihydrogène ne vienne se stabiliser sur l’extrémité aval du canal interne. Par zone de recirculation, on entend une zone générant un effet de centrifugation avec une dépression à l'intérieur capable de produire une composante de vitesse axiale de l’écoulement en moyenne négative par rapport à une direction principale de l’écoulement. Cette zone de recirculation est similaire à celle générée à l’intérieur d’un tourbillon dans lequel de l’air est aspiré. La zone de recirculation interne bloque une partie de l’écoulement de dihydrogène le long de l’axe longitudinal dudit canal interne générant dans une section de sortie de ce canal interne des survitesses importantes à proximité des parois du canal interne par rapport à un écoulement avec une vitesse débitante axiale uniforme. La mise en rotation du dihydrogène du canal interne permet d’éviter d’accrocher la flamme sur les extrémités aval du canal interne en la stabilisant aérodynamiquement au-dessus du canal interne. L’extrémité aval du canal interne étant agencée en amont à une distance r, cela évite d’autant plus que la flamme ne s’accroche sur les lèvres du canal interne. Cette mise en rotation du dihydrogène du canal interne évite la mise en place d’un dispositif de refroidissement complexe du dispositif d’injection de dihydrogène. Ainsi, le coût et la masse du dispositif d’injection de dihydrogène sont améliorés. Ce dispositif d’injection de dihydrogène produit des pertes de charges limitées par rapport à d’autres dispositifs d’injection liquide utilisant du kérosène comme dans l’art antérieur. Ce dispositif d’injection de dihydrogène présente une géométrie simple, un faible coût de réalisation et s’adapte sur les architectures de chambre de combustion existantes.
[0008] Cette stabilisation de la flamme à distance facilite un mélange partiel entre le mélange contenant au moins de l’air avec le dihydrogène sortant du canal interne, en amont de la flamme, et en évitant tout risque de remontée de flamme dans ledit canal interne et le canal externe, aussi appelé « flash back » en anglais. Cela permet d’aboutir à une combustion appauvrie en dihydrogène dans la chambre de combustion. Ce dispositif tend ainsi à réduire très fortement les températures de combustion et des oxydes d’azote émis. Cela garantit une intégrité d’un foyer de combustion.
[0009] Le positionnement de l’extrémité aval du canal interne en amont de l’extrémité aval du canal annulaire, distance notée r sur la figure 2, externe remplit deux fonctions. Il permet d’optimiser le mélange entre le dihydrogène et l’air. Il permet aussi d’élargir le domaine de fonctionnement où la flamme est détachée en reculant la zone d’introduction centrale de dihydrogène par rapport à la zone de stabilisation aérodynamique de la flamme.
[0010] Le canal interne peut être un canal central tubulaire.
[0011] Au moins la vrille interne du canal interne peut présenter une forme hélicoïdale.
[0012] Cette forme hélicoïdale permet d’améliorer l’aérodynamisme de l’écoulement de dihydrogène traversant la vrille interne.
[0013] La vrille interne peut être agencée selon l’axe longitudinal en aval de la vrille externe.
[0014] Un taux de rotation S généré par la vrille interne du canal interne, défini comme un rapport entre une vitesse tangentielle et une vitesse débitante selon l’axe longitudinal d’un écoulement de dihydrogène en sortie de la vrille interne, peut être égal ou supérieur à 0,6.
[0015] Ces valeurs du taux de rotation S qui est un nombre sans dimensions permettent d’obtenir des flammes ayant un mouvement de rotation par rapport à l’axe longitudinal qui sont décrochées du canal interne.
[0016] La vrille interne du canal interne peut être agencée en amont, à une distance l, de l’extrémité aval du canal interne.
[0017] Le canal interne peut avoir un diamètre interne d et le canal annulaire externe peut avoir un diamètre interne D tels qu’un rapport D/d soit compris entre 3 et 10.
[0018] Ce rapport D/d optimisé permet de fonctionner dans un régime pauvre en dihydrogène.
[0019] Une épaisseur d’une paroi du canal interne e est tel qu’un rapport e/d peut être compris entre 0,05 et 0,7.
[0020] Un rapport l/d peut être compris entre 1 et 3.
[0021] La distance minimale lmin est égale à 1 d de sorte qu’une zone de recirculation centrale pénètre dans le canal interne. La plage choisie pour l/d permet d’obtenir un bon compromis et un taux de rotation S suffisant pour mettre en rotation correctement la flamme.
[0022] La distance r peut être comprise entre 0,05D et 0,5D. [0023] Il existe une valeur optimale pour la distance r qui dépend du diamètre D du canal externe. Si cette distance r est trop élevée, la zone de recirculation devient instable. La plage de valeur choisie pour r est optimisée de façon à obtenir une zone de recirculation stable.
[0024] Cette distance r par rapport à l’extrémité aval du canal annulaire externe permet d’augmenter le domaine de fonctionnement où la flamme est détachée en reculant une zone d’introduction de dihydrogène par rapport à la zone de stabilisation aérodynamique de la flamme.
[0025] La vrille externe du canal annulaire externe peut être agencée au niveau d’une extrémité amont dudit canal annulaire externe, à une distance L de l’extrémité aval du canal annulaire externe.
[0026] La distance L peut être comprise entre 1 D et 5D.
[0027] Le taux de rotation S peut être supérieur à 0,6, une vitesse débitante Ui du dihydrogène dans le canal interne étant supérieure à une valeur critique Ui,c et vérifiant la relation suivante :
Où :
- P est une pression dans la chambre annulaire de combustion ;
- Ta est une température de l’air en Kelvin dans le canal externe;
- p compris entre 1 et 1 ,5 est un facteur dépendant d’un type de vrille utilisée ;
- So=O.6, Po=1 bar, Tao=3OO K et Ui,co=18 m/s.
[0028] Cette valeur critique Ui,c permet d’assurer que la flamme formée en sortie du dispositif d’injection soit détachée des extrémités avals du canal interne pour une large plage de fonctionnement moteur.
[0029] Le mélange peut être de l’air.
[0030] Le présent document concerne un ensemble comprenant le dispositif du type précité, dans lequel le canal interne, relié fluidiquement à des moyens d’alimentation en dihydrogène, comporte la vrille interne configurée pour mettre en rotation ledit dihydrogène, et le canal annulaire externe, relié fluidiquement à des moyens d’alimentation en air, comporte la vrille externe configurée pour mettre en rotation ledit air.
Brève description des dessins [0031] D’autres caractéristiques, détails et avantages apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels :
Fig. 1
[0032] [Fig. 1] montre une turbomachine comprenant un dispositif d’injection de dihydrogène agencé dans un fond annulaire d’une chambre annulaire de combustion selon trois configurations.
Fig. 2
[0033] [Fig. 2] montre le dispositif d’injection de dihydrogène, selon l’invention.
Fig. 3
[0034] [Fig. 3] montre schématiquement une formation d’une zone de recirculation qui pénètre le dispositif d’injection de dihydrogène et une flamme en sortie du dispositif d’injection de dihydrogène.
Fig. 4
[0035] [Fig. 4] montre une pluralité de configurations possibles (figures. A, B, C, D, E, F, G, H) de canal interne, selon l’invention.
Fig. 5
[0036] [Fig. 5] montre une pluralité de configurations possibles (figures. A, B, C, D, E) d’extrémité aval de canal annulaire externe, selon l’invention.
Description détaillée
[0037] Le présent document concerne un dispositif d’injection de dihydrogène 2 destiné à être monté sur un fond annulaire d’une chambre annulaire de combustion 4 d’une turbomachine. Ce dispositif d’injection de dihydrogène 2 est employé dans une configuration de combustion pauvre en dihydrogène telle que les températures de flammes et la formation d’oxyde d’azote sont réduites. On dit que le dispositif d’injection est pauvre, quand il y a du dioxygène en excès par rapport à une combustion se déroulant à la stœchiométrie entre du dihydrogène et de l’air et que le système d’injection est riche quand on a du dihydrogène en excès par rapport à cette combustion à la stœchiométrie. La combustion à la stœchiométrie étant définie comme celle pour laquelle on a le bon nombre d’atomes d’hydrogène et d'oxygène nécessaires pour consommer tout le combustible et qu’il ne reste plus que de l'eau dans les produits de combustion. C’est dans le contexte de combustion pauvre en dihydrogène que se place la présente invention.
[0038] Comme illustré en figure 1 , trois implantations dudit dispositif d’injection de dihydrogène 2 sont possibles en fonction de l’orientation du fond annulaire de la chambre annulaire de combustion 4 : soit la chambre de combustion est orientée sensiblement selon un axe longitudinal, avec le fond de chambre situé vers l’avant du moteur appelé chambre directe ou avec le fond de chambre situé vers l’arrière du moteur appelé chambre à flux inversé comme illustré sur la figure 1 , soit la chambre de combustion est transverse audit axe longitudinal X. Dans tous les cas, le dispositif d’injection de dihydrogène 2 est implanté entre le compresseur et la turbine haute pression, sur le fond annulaire de la chambre annulaire de combustion 4 ou sur une virole externe.
[0039] Comme illustré en figure 2, ledit dispositif d’injection de dihydrogène comprend un canal interne 6 et un canal annulaire externe 8. Le canal interne 6 et le canal annulaire externe 8 sont coaxiaux.
[0040] Un premier gaz est injecté depuis une entrée 10 située à une extrémité amont du canal interne 6. Ce premier gaz est du dihydrogène 12. Le canal interne 6 comporte un diamètre interne d. Le choix du diamètre interne d du canal dépend d’une puissance thermique souhaitée. Une épaisseur d’une paroi du canal interne e correspond à la moitié de la différence d’un diamètre externe du canal interne et d’un diamètre interne du canal interne d. Un rapport e/d est compris entre 0,05 et 0,7.
[0041] Ce canal interne 6 comporte une vrille interne 14 configurée pour mettre en rotation un écoulement de dihydrogène 12 autour d’un axe longitudinal X. Ladite vrille interne 14 du canal interne 6 est agencée à une distance l d’une extrémité aval 16 du canal interne. La distance l entre l’extrémité aval 16 du canal interne 6 et une extrémité aval 18 de la vrille interne 14 est comprise entre 1 d et 5d. Comme illustré en figure 3, un espace est ainsi laissé entre la vrille interne 14 et l’extrémité aval 18 du canal interne 6 pour qu’une zone de recirculation 20 centrale puisse s’installer. La zone de recirculation est une région autour de l’axe longitudinal X du dispositif d’injection où une composante axiale de l’écoulement est en moyenne négative par rapport à une direction principale de l’écoulement. Cette zone de recirculation 20 est générée par une dépression créée à l’intérieur du mouvement de rotation de l’écoulement. Cette dépression est due à l’effet de centrifugation induit par cette rotation de l’écoulement. La zone de recirculation 20 est similaire à celle générée à l’intérieur d’un tourbillon dans lequel de l’air est aspiré. Dans le présent document, la zone de recirculation 20 est configurée pour pénétrer à l’intérieur du canal interne venant bloquer une partie de la section de l’extrémité aval 16 du canal interne 6 et produisant une accélération de l'écoulement en périphérie. Cela repousse une flamme 22 formée à la sortie du dispositif d’injection et la met en rotation.
[0042] La vrille interne 14 peut, par exemple, comporter une pièce hélicoïdale avec un pas d'hélice adapté. Ce pas d'hélice est configuré pour définir un positionnement de la flamme 22 à la sortie du dispositif d'injection 2, pour minimiser les émissions polluantes et définir une thermique du dispositif d'injection. Cette pièce hélicoïdale met en rotation l’écoulement de dihydrogène avec un taux de rotation caractérisé par un nombre sans dimension S. Ce taux de rotation S est défini comme un rapport d’un moment cinétique rapporté au produit d’un rayon du canal multiplié par une impulsion de l’écoulement de dihydrogène 12 mis en rotation, selon la formule suivante : où Ge est le moment cinétique de l’écoulement selon une direction axiale, Gz est l’impulsion de l’écoulement selon la direction axiale et d le diamètre du canal. On utilise en général des expressions approchées pour estimer Ge et Gz basées sur les vitesses tangentielle et axiale de l’écoulement mis en rotation dans le canal. Dans ce cas S correspond au rapport d’une vitesse tangentielle divisé par une vitesse axiale. La vitesse tangentielle correspond à une composante de rotation de la vitesse par rapport à l’axe d’injection.
[0043] Un taux de blocage de l’écoulement de dihydrogène 12 dans le canal interne 6 est établi de sorte à être suffisamment élevé pour repousser la flamme 22 se formant à une extrémité aval 24 du canal annulaire externe 8. Le taux de blocage représente un ratio entre une section occupée par la zone de recirculation 20 remontant à l'intérieur du dispositif d’injection de dihydrogène 12 au niveau de l’extrémité aval 16 du canal interne 6 par rapport à une section de passage du canal interne 6. Ce taux de blocage dépend de la forme de la zone de recirculation 20. Plus précisément, c’est un élément aérodynamique qui dépend des paramètres dimensionnels du dispositif d’injection de dihydrogène 2. Plus un rapport l/d est élevé, plus la distance d'enfoncement de la vrille interne 14 par rapport au diamètre est élevée et plus on peut choisir une valeur élevée pour le taux de rotation S en modifiant la géométrie de la vrille interne 14. Le taux de rotation S est au moins être égal à 0.6 et un rapport l/d est compris entre 1 et 3. Comme illustré en figure 4, l’extrémité aval 16 du canal interne 6 peut comporter des épaisseurs variables ainsi que différentes formes.
[0044] Dans un premier mode de réalisation illustré en figure 4A, l’extrémité aval 16 du canal interne 6 comporte une paroi rectiligne et longitudinale.
[0045] Dans un deuxième mode de réalisation illustré en figure 4B, l’extrémité aval 16 du canal interne 6 comporte une forme d’évasement. Cette extrémité aval 16 est configurée pour modifier l’écoulement du canal interne 6 en proche paroi de l’extrémité 16.
[0046] Dans un troisième mode de réalisation illustré en figure 4C, l’extrémité aval 16 du canal interne 6 comporte un effet de culot vers l’extérieur. Cette extrémité aval 16 est configurée pour modifier l’écoulement du canal externe 8 en proche paroi de l’extrémité 16. [0047] Dans un quatrième mode de réalisation illustré en figure 4D, l’extrémité aval 16 du canal interne 6 comporte une section qui augmente vers l’aval. Ce quatrième type d’extrémité aval est configuré pour favoriser l’augmentation du taux de rotation S dans le canal interne 6 contenant le dihydrogène 12. De par cette configuration, la vitesse axiale est réduite et la vitesse tangentielle est augmentée, d’où l’augmentation du taux de rotation S. Cette extrémité aval 16 est configurée pour modifier l’écoulement du canal interne 6 en proche paroi de l’extrémité 16 ainsi que l’écoulement du canal externe 8 en proche paroi de l’extrémité 16.
[0048] Dans un cinquième mode de réalisation illustré en figure 4E, une épaisseur correspondant à une dimension transverse d’une paroi du canal interne 6 est plus faible ou plus importante que celle dans le premier mode de réalisation.
[0049] Dans un sixième mode de réalisation illustré en figure 4F, l’extrémité aval 16 du canal interne 6 comporte un effet biseau. Cette extrémité aval 16 est configurée pour modifier l’écoulement du canal externe 8 en proche paroi de l’extrémité 16.
[0050] Dans un septième mode de réalisation illustré en figure 4G, l’extrémité aval 16 du canal interne 6 comporte un effet de culot vers l’intérieur. Cette extrémité aval 16 est configurée pour modifier l’écoulement du canal interne 6 en proche paroi de l’extrémité 16.
[0051] Dans un huitième mode de réalisation illustré en figure 4H, l’extrémité aval 16 comporte une section qui se réduit vers l’aval. Cette extrémité aval 16 est configurée pour modifier l’écoulement du canal interne 6 en proche paroi de l’extrémité 16 ainsi que l’écoulement du canal externe 8 en proche paroi de l’extrémité 16.
[0052] Comme illustré en figure 1 , l’extrémité aval 16 du canal interne 6 est agencée en amont par rapport à l’extrémité aval 24 du canal annulaire externe 8. L’extrémité aval 24 du canal annulaire externe 8 est agencée à une distance r de l’extrémité aval 16 du canal interne 6. Ce canal annulaire externe 8 comporte un diamètre interne D, tel qu’un rapport D/d avec le diamètre d du canal interne 6 est compris entre 3 et 10.
[0053] Le canal annulaire externe 8 est configuré pour recevoir un second gaz comprenant de l’air ou un mélange air et dihydrogène. Ce gaz pénètre dans le canal annulaire externe par une entrée 26 agencée en amont dudit canal annulaire externe.
[0054] Un rapport de section entre le diamètre interne d du canal interne 6 et le diamètre interne D du canal annulaire externe 8 dépend : i/ du rapport de mélange entre l’air et le dihydrogène souhaité, et ii/ de la vitesse débitante Ui du dihydrogène dans le canal interne. Dans le présent document, un fonctionnement en régime pauvre en dihydrogène impose que ce rapport D/d soit compris entre 3 et 10.
[0055] Une vrille externe 28 est logée à une extrémité amont 30 du canal annulaire externe 8. Cette vrille externe 28 est annulaire. Cette vrille externe 28 peut être radiale. Cette vrille externe 28 annulaire est agencée à une distance L de l’extrémité aval 36 du canal annulaire externe 8. Cette distance L est comprise entre 1 D et 5D. Le combustible est alors mis en rotation au centre par la vrille interne 14 alors que l’air ou le mélange contenant au moins de l’air est mis en rotation autour par la vrille externe 28. Cela génère un ensemble tourbillonnaire.
[0056] Comme illustré en figure 5, le canal annulaire externe 8 peut comporter différentes formes.
[0057] Dans un mode de réalisation particulier illustré en figure 5A, le canal annulaire externe 8 comporte un premier canal annulaire 8 et un second canal annulaire 32. Le premier canal annulaire 8 correspond au canal annulaire externe 8. Ce premier canal annulaire 8 débute à une extrémité aval 36 de la vrille externe 28 et débouche en amont de l’extrémité aval 30 de la vrille externe 28. Le second canal annulaire 32 comporte un diamètre interne supérieur au diamètre interne du premier canal annulaire 8. Ce second canal annulaire 32 débute à l’extrémité aval 36 de la vrille externe 28 et débouche en amont de l’extrémité aval 16 du canal interne 6.
[0058] Dans un mode de réalisation particulier illustré en figure 5B, l’extrémité aval 24 du canal annulaire externe 8 comporte une section qui augmente vers l’aval. Cette extrémité aval 24 est configurée pour modifier l’écoulement du canal annulaire externe 8 en proche paroi de l’extrémité 24.
[0059] Dans un mode de réalisation particulier illustré en figure 5C, l’extrémité aval 24 du canal annulaire externe 8 comporte une section qui se réduit vers l’aval. Cette extrémité aval 24 est configurée pour modifier l’écoulement du canal annulaire externe 8 en proche paroi de l’extrémité 24.
[0060] Dans un mode de réalisation particulier illustré en figure 5D, la distance L peut être modifiée.
[0061] Dans un mode de réalisation particulier illustré en figure 5E, le canal annulaire externe 8 comporte un seul canal annulaire dont l’écoulement du canal externe 8 est mis en rotation par la vrille externe 28 axiale.
[0062] Afin de générer un mouvement de rotation des flammes, plusieurs conditions sont réunies. [0063] Le taux de rotation S doit être élevé dans le canal interne 6. Ce taux de rotation S est supérieur à 0,6. En effet, en dessous de 0,6, il n’y a pas de formation de zone de recirculation avec une dépression suffisante au centre car la vitesse tangentielle de l’écoulement de dihydrogène n’est pas suffisante.
[0064] La vrille externe 28 participe également à l’entretien de la zone de recirculation. On note Sext le nombre sans dimensions associé au taux de rotation généré par la vrille externe 28. Sext est supérieur à 0,6. Sext est défini de façon analogue à S, c’est-à-dire qu’il s’agit d’un rapport d’une vitesse tangentielle par une vitesse débitante axiale de l’écoulement d’air.
[0065] Une stabilisation de la flamme, décrochée ou accrochée à l’extrémité aval 16 du canal interne 6, dépend d’un étirement d’une couche de cisaillement en amont de l’extrémité aval du canal interne sur lequel la flamme peut s’accrocher. Pour stabiliser aérodynamiquement une flamme à distance de l’extrémité aval du canal interne, il est nécessaire d’étirer suffisamment une base de la flamme dans le but de l’éteindre localement et la faire se stabiliser à distance de l’extrémité aval du canal interne. Les principaux paramètres contrôlant une valeur locale d’étirement sont le taux de rotation de l’écoulement de dihydrogène caractérisé par le nombre sans dimension S, la distance r et une vitesse débitante Ui du dihydrogène dans le canal interne.
[0066] Pour une vrille caractérisée par un taux de rotation S supérieur à 0,6, une vitesse débitante Ui du dihydrogène dans le canal interne doit être supérieur à une valeur critique Ui,c vérifiant la relation suivante :
Où :
- P est une pression dans la chambre annulaire de combustion ;
- S est le taux de rotation généré par la vrille interne 14 du canal interne 6 ;
- Ta est une température de l’air en Kelvin dans le canal externe;
- p compris entre 1 et 1 ,5 est un facteur dépendant d’un type de vrille utilisée ;
- So=O,6, Po=1 bar, Tao=3OO K et Ui,co=18 m/s
Cette relation se base sur trois observations. La première observation est qu’un étirement de la flamme provocant l’extinction de cette flamme augmente comme la pression P et comme la température T08. La deuxième observation permet de préciser que l’étirement de la flamme augmente lorsque le taux de rotation dans le canal interne augmente. Plus précisément, plus l’écoulement est bloqué à l’extrémité aval du canal interne, plus les vitesses radiales sont importantes, plus les flammes sont étirées au niveau des lèvres. La troisième observation précise que pour un taux de rotation S donné, le taux de blocage va dépendre également d’une technologie de vrille utilisée, d’où la puissance /? dans la formule. La plage de valeur de /? qui est comprise entre 1 et 1 ,5 est un bon encadrement.
Selon la richesse souhaitée et pour limiter les vitesses dans le canal annulaire et donc les pertes de charges, cela revient à choisir D/d entre 3 et 10.
[0067] Il existe une valeur optimale pour la distance r qui dépend du diamètre interne D du canal annulaire externe. Si la distance r est trop élevée, la zone de recirculation 20 devient instable. Dans de telles conditions, la distance r doit être comprise entre 0,05D et 0,5D.
[0068] En fonction de la distance r, le mélange va se faire plus ou moins précocement à l'intérieur du dispositif d'injection de dihydrogène 2 et d’air et si cela intervient trop précocement, la flamme 22 peut remonter à l'intérieur du canal annulaire externe 8 entre l’extrémité aval 16 du canal interne et l’extrémité aval 24 du canal annulaire externe, ce qui est très dommageable au dispositif et au fond de la chambre de combustion 4. La mise en rotation de la flamme 22 est donc configurée pour éviter que la flamme 22 ne remonte dans le dispositif d’injection de dihydrogène 2. Les paramètres à contrôler sont à la fois le taux de rotation S de l’écoulement dans le canal interne, le taux de rotation Sext, et la distance r.
[0069] Dans le contexte du présent document, les vrilles 14,28 permettent de mettre en rotation un premier flux par rapport à un second flux. L’intégration de la vrille interne 14 au canal interne 6 permet de créer la zone de recirculation 20 d’un écoulement de dihydrogène traversant ledit canal interne 6 et évitant que la flamme ne vienne se stabiliser sur l’extrémité aval du canal interne. La vrille interne 14 du canal interne 6 met suffisamment en rotation l’écoulement de dihydrogène 2 pour créer une zone de recirculation pénétrant à l’intérieur du canal interne 6 ce qui bloque une partie de l’écoulement de dihydrogène le long de l’axe longitudinal x dudit canal interne 6 générant des survitesses importantes par rapport à la vitesse débitante axiale à proximité des parois du canal interne 6. La mise en rotation du dihydrogène du canal interne 6 permet d’éviter d’accrocher la flamme 22 sur les extrémités aval du canal annulaire externe 8 en la stabilisant aérodynamiquement au-dessus du canal interne 6. Cette mise en rotation du dihydrogène du canal interne 6 évite la mise en place d’un dispositif de refroidissement complexe du dispositif d’injection de dihydrogène 2.
[0070] Cette stabilisation de la flamme 22 à distance facilite le mélange partiel de l’air avec le dihydrogène à l’intérieur du canal externe 8 au-dessus de l’extrémité aval 16 du canal interne, en amont de la flamme 22, et en évitant tout risque de remontée de flamme 22, aussi appelé « flash back » en anglais, dans ledit canal interne 6 et dans le canal annulaire externe 8 en amont de l’extrémité aval 16 du canal interne 6. Cela permet d’aboutir à une combustion appauvrie en dihydrogène dans la chambre de combustion. Ce dispositif tend ainsi à réduire très fortement les températures de combustion et des oxydes d’azote émis. Cela garantit également une intégrité d’un foyer de combustion.
[0071] Le positionnement de l’extrémité aval 16 du canal interne 6 en amont de l’extrémité aval 24 du canal annulaire externe 8 permet d’optimiser le mélange entre le dihydrogène et l’air. Cela augmente le domaine de fonctionnement où la flamme 22 est détachée en reculant la zone d’introduction de dihydrogène par rapport à la zone de stabilisation aérodynamique de la flamme.
[0072] L'optimisation faite de cet injecteur et de son architecture est spécifiquement orientée vers la combustion de dihydrogène. Le dihydrogène brûlant beaucoup plus vite que n'importe quel autre combustible et notamment le kérosène, les vitesses de rotation entre le dispositif d’injection 2 amenant le combustible et celui amenant l’air ne sont pas dans les mêmes ordres de grandeur que ceux employés pour le kérosène. Le kérosène étant liquide, des sections de passage de tels dispositifs d’injection de kérosène sont très petites. A la sortie d’un dispositif d’injection de kérosène, un canal de sortie est de l'ordre du millimètre ou inférieur au millimètre. Là où dans le présent document, l’ordre de grandeur est de plusieurs millimètres. Le fonctionnement est donc très différent pour un combustible gazeux tel que le dihydrogène.
[0073] Le dispositif d'injection est avantageusement mis en œuvre au sein d’un ensemble comprenant ledit dispositif d’injection, dans lequel le canal interne est relié fluidiquement à des moyens d’alimentation en dihydrogène et le canal annulaire externe est relié fluidiquement à des moyens d’alimentation en air.
[0074] Les moyens d’alimentation en dihydrogène sont notamment adaptés pour délivrer un flux de dihydrogène gazeux sans gaz diluant, c’est-à-dire un flux comprenant au moins 90% de dihydrogène en masse, et notamment au moins 95 % de dihydrogène en masse, et avantageusement au moins 99% de dihydrogène en masse. Les moyens d’alimentation en dihydrogène comprennent par exemple au moins un réservoir pressurisé muni d’au moins une vanne, et/ou au moins un dispositif de génération chimique de dihydrogène gazeux.
[0075] Les moyens d’alimentation en air sont notamment adaptés pour délivrer un flux d’air sans ajout de gaz diluant. Les moyens d’alimentation en air comprennent par exemple une entrée d’air atmosphérique en amont de la turbomachine. Cet air est comprimé avant d’entrer dans la chambre annulaire de combustion. Les moyens d’alimentation en air peuvent également comprendre une source de dioxygène pour l’enrichissement du flux d’air en dioxygène. La source de dioxygène peut comprendre un réservoir de dioxygène pressurisé muni d’une vanne et/ou des moyens de génération chimique de dioxygène gazeux.

Claims

Revendications
[Revendication 1] Dispositif d’injection de dihydrogène (2) d’axe longitudinal (X) destiné à être monté sur un fond annulaire d’une chambre annulaire (4) de combustion d’une turbomachine (1 ) comprenant un canal interne (6) de circulation de dihydrogène et un canal annulaire externe (8) de circulation d’un mélange comprenant au moins de l’air, le canal interne (6) et le canal annulaire externe (8) étant coaxiaux, une vrille interne (14) étant logée dans le canal interne (6) et une vrille externe (28) étant logée dans le canal annulaire externe (8), et dans lequel une extrémité aval (16) du canal interne (6) est agencée en amont, à une distance r, d’une extrémité aval (24) du canal annulaire externe (8).
[Revendication 2] Dispositif selon la revendication 1 , dans lequel le canal interne (6) est un canal central tubulaire.
[Revendication 3] Dispositif selon l’une des revendications précédentes, dans lequel au moins la vrille interne (14) du canal interne (6) présente une forme hélicoïdale.
[Revendication 4] Dispositif selon l’une des revendications précédentes, dans lequel la vrille interne (14) est agencée selon l’axe longitudinal en aval de la vrille externe (28).
[Revendication 5] Dispositif selon l’une des revendications précédentes, dans lequel un taux de rotation S généré par la vrille interne (14) du canal interne (6), défini comme un rapport entre une vitesse tangentielle et une vitesse débitante selon l’axe longitudinal d’un écoulement de dihydrogène en sortie de la vrille interne (14), est égal ou supérieur à 0,6.
[Revendication 6] Dispositif selon l’une des revendications précédentes, dans lequel la vrille interne (14) du canal interne (6) est agencée en amont, à une distance l, de l’extrémité aval (16) du canal interne (6).
[Revendication 7] Dispositif selon l’une des revendications précédentes, dans lequel une épaisseur e d’une paroi du canal interne (6) et un diamètre interne d du canal interne (6) sont tel qu’un rapport e/d est compris entre 0,05 et 0,7.
[Revendication 8] Dispositif selon l’une des revendications précédentes, dans lequel le canal interne (6) a un diamètre interne d et le canal annulaire externe (8) a un diamètre interne D tels qu’un rapport D/d soit compris entre 3 et 10.
[Revendication 9] Dispositif selon les revendications 6 et 7, dans lequel un rapport l/d est compris entre 1 et 3.
[Revendication 10] Dispositif selon la revendication 8, dans lequel la distance r est comprise entre 0,05D et 0,5D.
[Revendication 11] Dispositif selon l’une des revendications précédentes, dans lequel la vrille externe (28) du canal annulaire externe (8) est agencée au niveau d’une extrémité amont (30) dudit canal annulaire externe (8), à une distance L de l’extrémité aval (24) du canal annulaire externe (8).
[Revendication 12] Dispositif selon les revendications 8 et 11 , dans lequel la distance L est comprise entre 1 D et 5D.
[Revendication 13] Dispositif selon l’une des revendications précédentes, dans lequel le taux de rotation S est supérieur à 0,6, une vitesse débitante Ui du dihydrogène dans le canal interne étant supérieure à une valeur critique Ui,c qui vérifie la relation suivante :
Où :
- P est une pression dans la chambre annulaire de combustion ;
- S est un taux de rotation généré par la vrille interne (14) du canal interne (6) ;
- Ta est une température de l’air en Kelvin dans le canal externe;
- p compris entre 1 et 1 ,5 est un facteur dépendant d’un type de vrille utilisée ;
- So=O.6, Po=1 bar, Tao=3OO K et Ui,co=18 m/s.
[Revendication 14] Dispositif selon l’une des revendications précédentes, dans lequel le mélange est de l’air.
[Revendication 15] Ensemble comprenant le dispositif selon l’une des revendications précédentes, dans lequel le canal interne (6), relié fluidiquement à des moyens d’alimentation en dihydrogène, comporte la vrille interne (14) configurée pour mettre en rotation ledit dihydrogène, et le canal annulaire externe (8), relié fluidiquement à des moyens d’alimentation en air, comporte la vrille externe (28) configurée pour mettre en rotation ledit air.
EP22826594.8A 2021-10-08 2022-10-05 Dispositif d'injection de dihydrogène et d'air Pending EP4413300A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2110692A FR3127987A1 (fr) 2021-10-08 2021-10-08 Dispositif d’injection de dihydrogène et d’air
FR2111267A FR3127988A1 (fr) 2021-10-08 2021-10-22 Dispositif d’injection de dihydrogène et d’air
PCT/FR2022/051883 WO2023057722A1 (fr) 2021-10-08 2022-10-05 Dispositif d'injection de dihydrogène et d'air

Publications (1)

Publication Number Publication Date
EP4413300A1 true EP4413300A1 (fr) 2024-08-14

Family

ID=84537958

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22826594.8A Pending EP4413300A1 (fr) 2021-10-08 2022-10-05 Dispositif d'injection de dihydrogène et d'air

Country Status (4)

Country Link
US (1) US20240328617A1 (fr)
EP (1) EP4413300A1 (fr)
CA (1) CA3233988A1 (fr)
WO (1) WO2023057722A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080163627A1 (en) * 2007-01-10 2008-07-10 Ahmed Mostafa Elkady Fuel-flexible triple-counter-rotating swirler and method of use
US11041619B2 (en) * 2016-03-15 2021-06-22 Jay Keller Non-premixed swirl burner tip and combustion strategy
IT201600127713A1 (it) * 2016-12-16 2018-06-16 Ansaldo Energia Spa Gruppo bruciatore per un impianto a turbina a gas, impianto a turbina a gas comprendente detto gruppo bruciatore e metodo per operare detto impianto

Also Published As

Publication number Publication date
WO2023057722A1 (fr) 2023-04-13
US20240328617A1 (en) 2024-10-03
CA3233988A1 (fr) 2023-04-13

Similar Documents

Publication Publication Date Title
EP1640662B1 (fr) Injecteur à effervescence pour système aéromécanique d'injection air/carburant dans une chambre de combustion de turbomachine
CA2478876C (fr) Systeme d'injection air/carburant ayant des moyens de generation de plasmas froids
EP0933594B1 (fr) Procédé de fonctionnement d'une chambre de combustion de turbine à gaz fonctionnant au carburant liquide
FR2488942A1 (fr) Procede et appareil de combustion pour turbine a gaz
FR2968064A1 (fr) Premelangeur pour systeme de combustion
EP1923636B1 (fr) Dispositif d'injection d'un mélange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
WO1998013650A1 (fr) Systeme d'injection aerodynamique d'un melange air carburant
CA2907533C (fr) Systeme d'injection pour chambre de combustion de turbomachine comportant une paroi annulaire a profil interne convergent
EP0984223B1 (fr) Procédé de combustion pour brûler un combustible
EP1640661B1 (fr) Système aérodynamique à effervescence d'injection air/carburant dans une chambre de combustion de turbomachine
FR3116592A1 (fr) Vrille pour dispositif d’injection étagé de turbomachine
FR2706020A1 (fr) Ensemble de chambre de combustion, notamment pour turbine à gaz; comprenant des zones de combustion et de vaporisation séparées.
EP4413300A1 (fr) Dispositif d'injection de dihydrogène et d'air
EP4004443B1 (fr) Chambre de combustion comportant des systèmes d'injection secondaires et procédé d'alimentation en carburant
EP2981761B1 (fr) Procédé de combustion d'un bruleur à gaz a premelange bas nox
FR3033030A1 (fr) Systeme d'injection d'un melange air-carburant dans une chambre de combustion de turbomachine d'aeronef, comprenant un venturi perfore de trous d'injection d'air
FR3080672A1 (fr) Prechambre pour chambre de combustion annulaire a ecoulement giratoire pour moteur a turbine a gaz
FR3127988A1 (fr) Dispositif d’injection de dihydrogène et d’air
FR3135114A1 (fr) Procede d’injection de melange hydrogene-air pour bruleur de turbomachine
FR3139378A1 (fr) Dispositif et procede d’injection de melange hydrogene-air pour bruleur de turbomachine
FR3105985A1 (fr) Circuit multipoint d’injecteur amélioré
FR3057648A1 (fr) Systeme d'injection pauvre de chambre de combustion de turbomachine
CN118302638A (zh) 用于注入二氢和空气的装置
CA3115143A1 (fr) Bruleur et procede de combustion pour bruleur
BE523512A (fr)

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20240430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR