EP4325536A2 - Magnetic core with protective casing - Google Patents
Magnetic core with protective casing Download PDFInfo
- Publication number
- EP4325536A2 EP4325536A2 EP23188066.7A EP23188066A EP4325536A2 EP 4325536 A2 EP4325536 A2 EP 4325536A2 EP 23188066 A EP23188066 A EP 23188066A EP 4325536 A2 EP4325536 A2 EP 4325536A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- carrier
- core
- band
- toroidal
- soft magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001681 protective effect Effects 0.000 title 1
- 238000004804 winding Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 230000035699 permeability Effects 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 239000002390 adhesive tape Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 2
- 238000004026 adhesive bonding Methods 0.000 claims description 2
- 230000001070 adhesive effect Effects 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052749 magnesium Inorganic materials 0.000 claims 1
- 239000011777 magnesium Substances 0.000 claims 1
- 239000012811 non-conductive material Substances 0.000 claims 1
- 229910052725 zinc Inorganic materials 0.000 claims 1
- 239000011701 zinc Substances 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
- H01F41/022—Manufacturing of magnetic circuits made from strip(s) or ribbon(s) by winding the strips or ribbons around a coil
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/26—Fastening parts of the core together; Fastening or mounting the core on casing or support
- H01F27/266—Fastening or mounting the core on casing or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F3/00—Cores, Yokes, or armatures
- H01F3/04—Cores, Yokes, or armatures made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15308—Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15391—Elongated structures, e.g. wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/02—Casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/25—Magnetic cores made from strips or ribbons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
- H01F27/324—Insulation between coil and core, between different winding sections, around the coil; Other insulation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0206—Manufacturing of magnetic cores by mechanical means
- H01F41/0213—Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
Definitions
- This description concerns the area of magnetic cores, inductive components and current transformers.
- cores made of crystalline iron-based alloys such as silicon-iron, often also amorphous and nanocrystalline alloys are used. Selection criteria for the material of the magnetic core are high permeability, low coercivity (Hc), low losses and high linearity of the hysteresis loop.
- Methods for producing magnetic cores are known, according to which an amorphous strip is heat-treated under tension and continuously through an oven in order to produce a nanocrystalline strip material, from which a magnetic core (ring strip core) is then wound.
- the magnetic properties of the nanocrystalline Bands can be adjusted, among other things, by controlling the tension.
- Such magnetic strip material already has the desired magnetic properties, so that heat treatment is no longer necessary after being wound into a magnetic core, but the strip loses its ductility during the heat treatment and becomes relatively brittle. Brittle strip material can cause problems in the production of magnetic cores because it breaks easily.
- the inventors have set themselves the task of improving existing concepts for producing wound magnetic cores arranged in a housing, so that comparatively brittle materials in particular can be processed.
- a device which, according to an exemplary embodiment, has a carrier which has a continuous opening along a longitudinal axis, and at least one soft magnetic tape wound around the carrier to form an annular tape core.
- the band is wound directly onto the carrier so that there is no play between the ring band core and the carrier.
- the carrier can therefore serve as part of the housing of the toroidal core.
- the method comprises attaching a carrier (or a part thereof), which has a through opening along a longitudinal axis, onto a shaft; winding at least one soft magnetic tape around the carrier to form at least one toroidal tape core by rotating the shaft; and removing the carrier including the toroidal core from the shaft.
- the method comprises attaching a first part of a carrier, which has a through opening along a longitudinal axis, onto a shaft; winding a first soft magnetic tape around the first part of the carrier to form a first toroidal tape core by rotating the shaft; removing the first part of the carrier including the first toroidal core from the shaft; attaching a second part of a carrier; winding a second soft magnetic tape around the second part of the carrier to form a second toroidal tape core by rotating the shaft; removing the second part of the carrier including the second toroidal core from the shaft; and assembling the first and second parts of the carrier together with the toroidal cores wound thereon, the first and second parts of the carrier being coaxial with one another.
- the exemplary embodiments described here make it possible to produce a wound core from a soft magnetic tape after the tape has been heat treated and thus has final magnetic properties.
- the tape is then wound directly onto a carrier.
- the core remains on the carrier, which also forms part of the housing of the magnetic core.
- the housing is completed by at least a second housing part (outer shell), which is pushed over the magnetic core.
- the carrier and the outer shell are designed in such a way that they form a closed housing for the magnetic core located on the carrier.
- the housing can take up a smaller volume than a housing into which a core that has been heat-treated after winding is inserted, since the necessary assembly gaps are eliminated.
- the assembly of the core is simplified and, as a result, an economical manufacturing process is made possible at lower costs.
- Assembly is particularly economical if the outer casing (housing part) is so small that no fastening of the end of the wound tape is necessary.
- the cracking of the outer layer of the wound core is so small that it does not result in a significant change in its magnetic properties.
- the concept described here for producing a magnetic core is particularly suitable for strips made of comparatively brittle magnetic material (eg nanocrystalline strips heat-treated under tensile stress in a continuous furnace). Since the carrier on which the tape is wound also forms part of the core housing, there is no need to remove the wound core from a winding shaft, which can easily break the brittle band could lead.
- the concepts described here also make handling the wound core during the further production steps (including before closing the housing) safer and easier.
- the arrangement of the magnetic core in a closed housing can be an essential prerequisite for further processing, such as winding the core with a conductor (to produce a coil). Electrical insulation can also play a role here, since the metal magnetic core shortens the clearance and creepage distance between two windings arranged on the core. If, according to the exemplary embodiments described here, the magnetic core is wound directly onto a carrier, which then forms part of the housing of the core, as mentioned, the otherwise necessary assembly gaps are eliminated (i.e. there is no play between the toroidal band core and the carrier), which is why there is more magnet volume is possible with the same installation space as with conventional concepts. If insulation is not required in an application, the outer shell of the housing can be omitted and the carrier on which the magnetic core is wound forms an open housing.
- the soft magnetic band can be made of an iron alloy or a cobalt alloy.
- the strip is made of an iron alloy described by the formula Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z .
- M denotes one or more elements from the group of elements molybdenum (Mo), tantalum (Ta) or zirconium (Zr)
- T denotes one or more elements from the group of elements vanadium (V), manganese (Mn), chromium ( Cr), cobalt (Co) or nickel (Ni) and Z one or more elements from the group of elements carbon (C), phosphorus (P) or germanium (Ge).
- indices a, b, c, d, x, y, and z are given in atomic % and satisfy the following conditions: 0 ⁇ a ⁇ 1.5 , 0 ⁇ b ⁇ 2 , 0 ⁇ b + c ⁇ 2 , 0 ⁇ d ⁇ 5 , 10 ⁇ x ⁇ 18 , 5 ⁇ y ⁇ 11 and 0 ⁇ e.g ⁇ 2 .
- the alloy can contain up to 1 atomic percent of impurities.
- the ribbon is made of a cobalt alloy described by the formula Co 100-abcdxyz Fe a Cu b M c T d Si x B y Z z .
- M denotes one or more elements from the group of elements niobium (Nb), molybdenum (Mo), and tantalum (Ta)
- T denotes one or more elements from the group of elements manganese (Mn), vanadium (V), chromium (Cr), and nickel (Ni) and Z one or more elements from the group of elements carbon (C), phosphorus (P) and germanium (Ge).
- indices a, b, c, d, x, y, and z are given in atomic % and satisfy the following conditions: 1.5 ⁇ a ⁇ 15 , 0.1 ⁇ b ⁇ 1.5 , 1 ⁇ c ⁇ 5 , 0 ⁇ d ⁇ 5 , 12 ⁇ x ⁇ 18 5 ⁇ y ⁇ 8th , 0 ⁇ e.g ⁇ 2
- the alloy may contain up to 1 atomic percent, preferably up to 0.5 atomic percent, of impurities.
- the tape can be heat treated, with the heat treatment being carried out under tension to achieve desired magnetic properties (Zina material).
- the soft magnetic band has a nanocrystalline structure, in particular a nanocrystalline structure in which at least 50% by volume of the grains have an average size of less than 100 nm.
- the soft magnetic tape can have a hysteresis loop with a central linear region, a remanence ratio, Jr /Js of remanence (Jr) to saturation induction (Js) of less than 0.1, and a ratio Hc/Ha of coercivity (Hc) to anisotropy field (Ha ) of less than 0.1.
- the permeability of the toroidal core can be in the range from 40 to 10,000.
- Fig. 1 illustrates an exemplary embodiment of a suitable carrier for producing a magnetic core with a housing.
- Diagram (a) of Fig. 1 shows the carrier 10, which essentially has the shape of a hollow prism (generally a cylinder with any base area), at the ends of which side walls 11 and 12 are arranged. The inner hole runs through the prism along its longitudinal axis.
- the prism is a cuboid with an approximately square base.
- differently shaped base areas are also possible.
- the carrier 10 has the shape of a circular cylinder.
- the side walls 11 and 12 and the middle part (the hollow prism) are an integral component and can, for example, be made of plastic (eg by injection molding).
- Diagram (b) of Fig. 1 illustrates an outer shell 20 that matches the carrier 10 from diagram (a).
- this also has a cuboid shape and its inner dimensions are chosen so that they exactly match the outer dimensions of the side walls 11 and 12 of the carrier 10, so that the outer shell 20 can be pushed over the carrier 20.
- parts 10 (with side walls 11 and 12) and 20 form a closed housing.
- a soft magnetic tape is wound around the carrier 10 to produce a wound magnetic core 30.
- the length of the carrier 10 is dimensioned so that the soft magnetic band fits exactly between the two side walls 11 and 12.
- the outer cover 20 can be pushed over the wound carrier, whereby the wound core is enclosed on all sides by the housing.
- the carrier 10 forms part of the housing.
- Diagram (c) of the Fig. 1 shows a cross section through the magnetic core 30 including the housing (parts 10, 20), the cutting plane being perpendicular to the longitudinal axis of the carrier 10.
- Diagram (d) of Fig. 1 shows a side view of the magnetic core arranged in the housing, with a conductor 40 being passed through the inner hole of the carrier 10.
- Fig. 2 illustrates another example of a hollow prism or a hollow cylinder 10, however, consisting of two parts 10a 10b and with a division along the longitudinal axis.
- the side wall 11 and the part 10a are an integral component. The same applies to the side wall 12 and the part 10b.
- the parts 10a and 10b may be identical and symmetrical with respect to the longitudinal axis of the carrier 10.
- parts 10a and 10b When assembled coaxially, parts 10a and 10b form a carrier that looks essentially the same as the carrier in Fig. 1 , diagram (a).
- the outer shell 20 off Fig. 2 is essentially the same as that in Fig. 1 , diagram (b).
- a core is only wound around part 10a and part 10b completes the carrier 10 in the axial direction.
- part 10b may be shorter along the longitudinal axis than part 10a.
- a toroidal strip core is wound around both the part 10a and the part 10b.
- the wound parts 10a, 10b are then processed as in the left part of the Fig. 2 shown joined together and then connected to the part 20 to form a housing.
- the carrier 10 has the shape of a hollow cylinder with an oval base. Unlike the previous examples, the side walls 11 (in Fig. 3 cannot be seen because it is covered) and 12 is not part of the carrier 10, but of the outer shell 20, which is divided into parts 20a and 20b along the longitudinal axis.
- the parts 20a and 20b can be the same, each have the shape of a half-shell, and together they form the outer shell 20.
- the parts 20a and 20b can be placed over the core 30 arranged on the carrier 10 are pushed, the parts 20a and 20b together with the carrier 10 completely enclosing the wound core 30.
- Fig. 3 Diagram (b), shows a cross section through the core 30 including the housing.
- the carrier 10 may be divided into two or more parts, and a separate core may be wrapped around each part. The supports are then joined together along the longitudinal axis, and after the housing has been completed, the cores are arranged next to one another (coaxially).
- the carrier 10 has the shape of a hollow cylinder with a circular base, with a side wall 11 being connected to the hollow cylinder.
- the opposite side wall 12 is connected to the outer shell 20 (see Fig. 4 , diagram (b)).
- Fig. 4 , Diagram (c) shows the assembly of the housing using a longitudinal section view.
- the outer shell 20 (with side wall 12) is pushed from right to left over the core 30 wrapped around the carrier 10.
- the right end of the carrier 10 is pushed into the corresponding opening in the side wall 12, the end of the carrier 10 and the contour of the opening in the side wall 12 being shaped so that the carrier 10 is in the opening in the side wall 12 can snap into place.
- the two parts are attached to each other using a snap-in connection.
- the outer shell and the carrier can be held together in a form-fitting manner using the side walls 11 and 12.
- the housing is closed around the core 30.
- the housing parts can also be glued or welded (eg using ultrasonic welding).
- the outer shell 20 is formed from two parts 20a, 20b, with the side wall 11 being connected to the part 20a and the side wall 12 being connected to the part 20b.
- the side wall and outer shell can each form an integral component.
- the side walls 11 and 12 each have an opening that can be pushed over one end of the cylindrical support 10.
- the carrier 10 shows Fig. 5 in the middle there is a circumferential web 15, the outer contour of which can be designed such that the inner contour of the outer casing parts 20a, 20b can snap into the web 15 (snap-in connection).
- two coaxially arranged cores 30a, 30b can be wound on the carrier 10, a core to the left of the web 15 and another core to the right of the web 15.
- the two cores 30a and 30b can be made of the same material or of different materials with different magnetic properties exist.
- the contour of the cross-sectional area of the carrier 10 is in Fig. 5 not visible. It is understood that the cross-sectional area of the carrier 10 may have any shape, such as a circular shape as in the example Fig. 4 , or a square shape, like in the example Fig. 1 .
- Fig. 6 illustrates an example of an inductive component with a magnetic core 30 including housing according to Fig. 4 and a coil wound around the core 30, for example a choke.
- the coil can be made of insulated copper wire.
- two or more coils can be wound around the core, for example to make a transformer or a power converter.
- Fig. 7 is a cross-sectional representation (section plane normal to the longitudinal axis A), for example a cross-section through the in Fig. 4 shown core.
- the tape wound into the magnetic core is only shown schematically.
- the innermost layer (turn) is labeled 3.1
- the penultimate layer (turn) is labeled 3.N-1
- the outermost, last layer is labeled 3.N.
- the core band layers are in Fig. 7 not completely shown. It is desirable that the distance d (the clearance) between the outermost layer 3.N and the inside of the outer shell 20 is as small as possible.
- the outermost layer 3.N of the tape is not attached to the underlying layer 3.N-1 (e.g. using an adhesive tape or spot welding), the last layer will protrude in an angular range ⁇ (due to the spring effect of the tape). , whereby the smaller the distance d, the smaller the angular range ⁇ .
- FIG. 7 A cross-section shows the design of a core in which the outer strip layers have not been fixed, meaning that the spiral winding of the core opens slightly.
- the distance d between the outermost band layer of the core and the inner wall of the housing must be chosen to be as small as possible so that the area in which there is an air gap between the band layers of the core (angle ⁇ ) does not become too large. In practice, it is possible to make the play d so small that the last band layer 3.N does not have to be attached and the protrusion of the band end in the angular range ⁇ does not significantly influence the magnetic properties of the core.
- Fig. 8 shows a side view of a circular cylindrical carrier 10 (with side wall 12).
- the carrier 10 can be designed essentially like the carrier Fig. 1 , Diagram (a), with the difference that the central part of the beam 10 (without the side walls 11, 12) has a circular cross section (instead of a square one cross section).
- the carrier 10 is placed on a shaft 1.
- the shaft 1 can have a projection 2 which is inserted into a corresponding groove in the inner hole of the carrier when the carrier 10 is plugged onto the shaft 1.
- Other positive connections e.g. a feather key
- One exemplary embodiment relates to a method for producing a toroidal strip core.
- the process involves attaching a carrier to a shaft (cf. Fig. 8 ), wherein the carrier has a through opening along a longitudinal axis into which the shaft can be inserted.
- the method further comprises winding (at least) a soft magnetic tape around the carrier to form (at least) a toroidal tape core by rotating the shaft.
- the carrier is removed from the shaft.
- the method further comprises enclosing the toroidal core in a housing by at least one housing part (see e.g Fig. 1, 2 and 4 , outer shell 20, as well Fig. 3 and 5 , housing parts 20a, 20b) are pushed over the toroidal band core and connected to the carrier, the carrier itself forming part of the housing.
- That part of the carrier around which the soft magnetic tape is wound has the shape of a hollow cylinder.
- the hollow cylinder can be circular (cf. Fig. 4 ), oval (cf. Fig. 3 ) or rectangular (cf. Fig. 1 ) have a cross section. Cylinders with a rectangular or square cross section are also called prisms.
- the carrier can consist of an insulator (e.g. a plastic) or a non-magnetic metal.
- the carrier on which the toroidal band core is located and/or the at least one housing part (e.g. the outer shell 20, cf. Fig 4 ), which is pushed over the annular band core, has at least one side wall, which lies essentially at right angles to a longitudinal axis of the carrier.
- the side walls allow for a closed housing for the toroidal core.
- both side walls are arranged on the carrier, in which in Fig. 4 In the example shown, one side wall is part of the carrier and the other side wall is part of the outer shell.
- both side walls are parts of the (two-part) outer shell.
- the individual housing parts can be mounted together in a form-fitting manner, for example using snap-in connections (latching connections), to form a closed housing.
- snap-in connections latching connections
- gluing or ultrasonic welding can be used to connect the housing parts.
- the beginning of the soft magnetic tape is fixed on the carrier before winding, for example using adhesive or adhesive tape. It is not absolutely necessary to fix the end of the band to the underlying band layer.
- the end of the band which can protrude due to the spring effect of the band, is held by the inside of the housing and secures the ring band core from unwinding.
- the clearance between the housing and the ring band must be dimensioned accordingly small.
- a further exemplary embodiment relates to a device with a carrier which has a continuous opening along a longitudinal axis, and at least one soft magnetic tape wound around the carrier to form an annular tape core.
- the soft magnetic tape is wound directly onto the carrier so that there is no play between the toroidal tape core and the carrier.
- the device can have at least one housing part which surrounds the toroidal band core and is connected to the carrier in such a way that the at least one housing part together with the carrier forms a closed housing around the toroidal band core.
- the soft magnetic strip was heat treated before winding, with the desired magnetic properties being set during the heat treatment by applying a tensile stress.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Coils Or Transformers For Communication (AREA)
Abstract
Es wird im Folgenden eine Vorrichtung beschrieben, die gemäß einem Ausführungsbeispiel einen Träger, der entlang einer Längsachse eine durchgehende Öffnung aufweist, sowie mindestens ein um den Träger zu einem Ringbandkern gewickeltes weichmagnetisches Band aufweist. Das Band ist dabei direkt auf den Träger gewickelt, sodass zwischen dem Ringbandkern und dem Träger kein Spiel vorhanden ist. Der Träger kann folglich als Teil des Gehäuses des Ringbandkerns dienen.A device is described below which, according to an exemplary embodiment, has a carrier which has a continuous opening along a longitudinal axis, and at least one soft magnetic tape wound around the carrier to form an annular tape core. The band is wound directly onto the carrier so that there is no play between the ring band core and the carrier. The carrier can therefore serve as part of the housing of the toroidal core.
Description
Die vorliegende Beschreibung betrifft das Gebiet der Magnetkerne, induktive Bauelemente und Stromwandler.This description concerns the area of magnetic cores, inductive components and current transformers.
Für die Herstellung von induktiven Bauelementen wie z.B. Transformatoren, Drosseln, Stromwandlern, usw. werden Kerne aus kristallinen eisenbasierten Legierungen wie z.B. Silizium-Eisen, häufig auch amorphe und nanokristalline Legierungen eingesetzt. Auswahlkriterien für das Material des Magnetkerns sind eine hohe Permeabilität, eine geringe Koerzitivfeldstärke (Hc), geringe Verluste sowie eine hohe Linearität der Hystereseschleife.For the production of inductive components such as transformers, chokes, current transformers, etc., cores made of crystalline iron-based alloys such as silicon-iron, often also amorphous and nanocrystalline alloys, are used. Selection criteria for the material of the magnetic core are high permeability, low coercivity (Hc), low losses and high linearity of the hysteresis loop.
Bei der Entwicklung von Magnetkernen aus amorphen und nanokristallinen Legierungen hat sich gezeigt, dass häufig eine Wärmebehandlung im Bereich von 300 bis 600°C nach der Kernherstellung (mittels Aufwickeln des magnetischen Bandmaterials) erfolgen muss, um die gewünschten Magneteigenschaften zu erreichen. Dafür hat sich eine Wärmebehandlung der gewickelten Kerne in einem Ofen etabliert. Nach der Wärmebehandlung ist ein Schutz der mechanisch empfindlichen Kerne z.B. durch eine Beschichtung oder ein Gehäuse notwendig. Diese Reihenfolge (erst Wickeln des Kerns, dann Wärmebehandeln) verhindert die Möglichkeit, das Bandmaterial direkt auf einen Kunststoffkörper zu wickeln, da der Kunststoff die Wärmebehandlung nicht überstehen würde. Die üblichen technischen Kunststoffe haben eine Temperaturbeständigkeit von etwa 120 bis 200 °C, die Wärmebehandlung erfolgt üblicherweise über 400°C.During the development of magnetic cores made of amorphous and nanocrystalline alloys, it has been shown that heat treatment in the range of 300 to 600 ° C often has to take place after core production (by winding the magnetic strip material) in order to achieve the desired magnetic properties. Heat treatment of the wound cores in an oven has been established for this purpose. After heat treatment, the mechanically sensitive cores must be protected, for example by a coating or a housing. This sequence (first winding the core, then heat treating) prevents the possibility of winding the strip material directly onto a plastic body, as the plastic would not survive the heat treatment. The usual technical plastics have a temperature resistance of around 120 to 200 °C; the heat treatment usually takes place above 400 °C.
Es sind Verfahren zur Herstellung von Magnetkernen bekannt, gemäß denen ein amorphes Band unter Zugspannung und durch einen Ofen durchlaufend wärmebehandelt wird, um so ein nanokristallines Bandmaterial zu erzeugen, aus denen anschließend ein Magnetkern (Ringbandkern) gewickelt wird. Die magnetischen Eigenschaften des nanokristallinen Bandes können unter anderem durch eine Steuerung der Zugspannung eingestellt werden. Ein solches Bandmaterial wird manchmal als Zina-Material bezeichnet (Zina = zugspannungsinduzierte Anisotropie).Methods for producing magnetic cores are known, according to which an amorphous strip is heat-treated under tension and continuously through an oven in order to produce a nanocrystalline strip material, from which a magnetic core (ring strip core) is then wound. The magnetic properties of the nanocrystalline Bands can be adjusted, among other things, by controlling the tension. Such a strip material is sometimes referred to as a Zina material (Zina = tensile stress-induced anisotropy).
Derartiges magnetisches Bandmaterial hat bereits die gewünschten magnetischen Eigenschaften, sodass nach dem Aufwickeln zu einem Magnetkern keine Wärmebehandlung mehr nötig ist, jedoch verliert das Band bei der Wärmebehandlung seine Duktilität und wird relativ spröde. Sprödes Bandmaterial kann bei der Herstellung von Magnetkernen Probleme bereiten, weil es leicht bricht.Such magnetic strip material already has the desired magnetic properties, so that heat treatment is no longer necessary after being wound into a magnetic core, but the strip loses its ductility during the heat treatment and becomes relatively brittle. Brittle strip material can cause problems in the production of magnetic cores because it breaks easily.
Die Erfinder haben es sich zur Aufgabe gemacht, bestehende Konzepte zur Herstellung von gewickelten und in einem Gehäuse angeordneten Magnetkernen zu verbessern, sodass insbesondere auch vergleichsweise spröde Materialien verarbeitet werden können.The inventors have set themselves the task of improving existing concepts for producing wound magnetic cores arranged in a housing, so that comparatively brittle materials in particular can be processed.
Gelöst wird diese Aufgabe durch das Verfahren gemäß den Ansprüchen 1 und 12 sowie die Vorrichtung gemäß Anspruch 14. Verschiedene Ausführungsbeispiele und Weiterentwicklungen sind Gegenstand der abhängigen Ansprüche.This task is solved by the method according to
Es wird im Folgenden eine Vorrichtung beschrieben, die gemäß einem Ausführungsbeispiel einen Träger, der entlang einer Längsachse eine durchgehende Öffnung aufweist, sowie mindestens ein um den Träger zu einem Ringbandkern gewickeltes weichmagnetisches Band aufweist. Das Band ist dabei direkt auf den Träger gewickelt, sodass zwischen dem Ringbandkern und dem Träger kein Spiel vorhanden ist. Der Träger kann folglich als Teil des Gehäuses des Ringbandkerns dienen.A device is described below which, according to an exemplary embodiment, has a carrier which has a continuous opening along a longitudinal axis, and at least one soft magnetic tape wound around the carrier to form an annular tape core. The band is wound directly onto the carrier so that there is no play between the ring band core and the carrier. The carrier can therefore serve as part of the housing of the toroidal core.
Des Weiteren wird ein Verfahren zur Herstellung eines Ringbandkerns beschrieben. Gemäß einem Ausführungsbeispiel umfasst das Verfahren das Aufstecken eines Trägers (oder eines Teils davon), der entlang einer Längsachse eine durchgehende Öffnung aufweist, auf eine Welle; das Wickeln mindestens eines weichmagnetischen Bandes um den Träger zu mindestens einem Ringbandkern, indem die Welle gedreht wird; und das Abnehmen des Trägers samt Ringbandkern von der Welle.Furthermore, a method for producing a toroidal strip core is described. According to an exemplary embodiment, the method comprises attaching a carrier (or a part thereof), which has a through opening along a longitudinal axis, onto a shaft; winding at least one soft magnetic tape around the carrier to form at least one toroidal tape core by rotating the shaft; and removing the carrier including the toroidal core from the shaft.
Gemäß einem weiteren Ausführungsbeispiel umfasst das Verfahren das Aufstecken eines ersten Teils eines Trägers, der entlang einer Längsachse eine durchgehende Öffnung aufweist, auf eine Welle; das Wickeln eines ersten weichmagnetischen Bandes um den ersten Teil des Trägers zu einem ersten Ringbandkern, indem die Welle gedreht wird; das Abnehmen des ersten Teils des Trägers samt dem ersten Ringbandkern von der Welle; das Aufstecken eines zweiten Teils eines Trägers; das Wickeln eines zweiten weichmagnetischen Bandes um den zweiten Teil des Trägers zu einem zweiten Ringbandkern, indem die Welle gedreht wird; das Abnehmen des zweiten Teils des Trägers samt dem zweiten Ringbandkern von der Welle; und das Zusammenfügen des ersten und zweiten Teils des Trägers samt der der darauf gewickelten Ringbandkerne, wobei der erste und der zweite Teil des Trägers koaxial zueinander liegen.According to a further exemplary embodiment, the method comprises attaching a first part of a carrier, which has a through opening along a longitudinal axis, onto a shaft; winding a first soft magnetic tape around the first part of the carrier to form a first toroidal tape core by rotating the shaft; removing the first part of the carrier including the first toroidal core from the shaft; attaching a second part of a carrier; winding a second soft magnetic tape around the second part of the carrier to form a second toroidal tape core by rotating the shaft; removing the second part of the carrier including the second toroidal core from the shaft; and assembling the first and second parts of the carrier together with the toroidal cores wound thereon, the first and second parts of the carrier being coaxial with one another.
Nachfolgend werden Ausführungsbeispiele anhand von Abbildungen näher erläutert. Die Darstellungen sind nicht zwangsläufig maßstabsgetreu und die Ausführungsbeispiele sind nicht nur auf die dargestellten Aspekte beschränkt. Vielmehr wird Wert darauf gelegt, die den Ausführungsbeispielen zugrunde liegenden Prinzipien darzustellen. In den Abbildungen zeigt:
-
illustriert ein erstes Ausführungsbeispiel eines gewickelten Kerns mit GehäuseFigur 1 -
Figur 2 zeigt als zweites Ausführungsbeispiel eine Modifikation des Beispiels ausFig. 1 -
Figur 3 illustriert ein drittes Ausführungsbeispiel eines gewickelten Kerns mit Gehäuse. -
Figur 4 illustriert ein viertes Ausführungsbeispiel eines gewickelten Kerns mit Gehäuse, wobei zwei Gehäuseteile mittels Snap-in-Verbindung aneinander gehalten werden. -
Figur 5 zeigt als fünftes Ausführungsbeispiel eine Modifikation des Beispiels ausFig. 3 . -
Figur 6 zeigt ein induktives Bauelement mit einem Kern gemäßFig. 4 und einer darum gewickelten Spule. -
Figur 7 ist eine Querschnittsdarstellung durch einen gewickelten Magnetkern, dessen Ende aufgrund der Federwirkung des Bandes absteht und ein Abwickeln des Bandes durch das Gehäuse verhindert wird. -
Figur 8 zeigt einen Träger auf einer Wickelwelle in einer Ansicht in axialer Richtung.
-
Figure 1 illustrates a first embodiment of a wound core with housing -
Figure 2 shows a modification of the example as a second exemplary embodimentFig. 1 -
Figure 3 illustrates a third embodiment of a wound core with housing. -
Figure 4 illustrates a fourth exemplary embodiment of a wound core with a housing, with two housing parts being held together by means of a snap-in connection. -
Figure 5 shows a modification of the example as a fifth exemplary embodimentFig. 3 . -
Figure 6 shows an inductive component with a core according toFig. 4 and a coil wound around it. -
Figure 7 is a cross-sectional view through a wound magnetic core, the end of which protrudes due to the spring action of the band and the band is prevented from unwinding by the housing. -
Figure 8 shows a carrier on a winding shaft in a view in the axial direction.
Die hier beschriebenen Ausführungsbeispiele ermöglichen es, einen gewickelten Kern aus einem weichmagnetischen Band herzustellen, nachdem das Band wärmebehandelt wurde, und damit finale magnetischen Eigenschaften besitzt. Das Band wird dann direkt auf einen Träger gewickelt. Nach der Herstellung des Kerns durch Aufwickeln des Bandes bleibt der Kern auf dem Träger, der gleichzeitig ein Teil des Gehäuses des Magnetkerns bildet. Der Gehäuse wird komplettiert durch mindestens ein zweites Gehäuseteil (Außenhülle), das über den Magnetkern geschoben wird. Der Träger und die Außenhülle sind dabei so ausgestaltet, dass sie ein geschlossenes Gehäuse für den auf dem Träger befindlichen Magnetkern bilden. Das Gehäuse kann in diesem Fall ein kleineres Volumen beanspruchen als ein Gehäuse, in das ein nach dem Wickeln wärmebehandelter Kern eingesetzt wird, da die notwendigen Montagespalte entfallen. Des Weiteren wird die Montage des Kerns vereinfacht und als Folge ein wirtschaftliches Fertigungsverfahren zu geringeren Kosten ermöglicht.The exemplary embodiments described here make it possible to produce a wound core from a soft magnetic tape after the tape has been heat treated and thus has final magnetic properties. The tape is then wound directly onto a carrier. After the core has been manufactured by winding the tape, the core remains on the carrier, which also forms part of the housing of the magnetic core. The housing is completed by at least a second housing part (outer shell), which is pushed over the magnetic core. The carrier and the outer shell are designed in such a way that they form a closed housing for the magnetic core located on the carrier. In this case, the housing can take up a smaller volume than a housing into which a core that has been heat-treated after winding is inserted, since the necessary assembly gaps are eliminated. Furthermore, the assembly of the core is simplified and, as a result, an economical manufacturing process is made possible at lower costs.
Besonders wirtschaftlich ist die Montage, wenn die Außenhülle (Gehäuseteil) so klein dimensioniert ist, dass keine Befestigung des Endes des gewickelten Bandes erforderlich ist. Dabei ist das Aufspringen der äußerten Lage des gewickelten Kerns so gering, dass das keine signifikante Veränderung seiner magnetischen Eigenschaften zur Folge hat. Das hier beschriebene Konzept zur Herstellung eines Magnetkerns ist insbesondere für Bänder aus vergleichsweise sprödem magnetischem Material (z.B. unter Zugspannung im Durchlaufofen wärmebehandelte nanokristalline Bänder) geeignet. Da der Träger, auf den das Band gewickelt wird, gleichzeitig ein Teil des Kerngehäuses bildet, ist kein Abziehen des gewickelten Kerns von einer Wickelwelle notwendig, was leicht zum Brechen des spröden Bandes führen könnte. Auch das Handhaben des gewickelten Kerns bei den weiteren Fertigungsschritten (auch vor dem Verschließen des Gehäuses) wird durch die hier beschriebenen Konzepte sicherer und einfacher.Assembly is particularly economical if the outer casing (housing part) is so small that no fastening of the end of the wound tape is necessary. The cracking of the outer layer of the wound core is so small that it does not result in a significant change in its magnetic properties. The concept described here for producing a magnetic core is particularly suitable for strips made of comparatively brittle magnetic material (eg nanocrystalline strips heat-treated under tensile stress in a continuous furnace). Since the carrier on which the tape is wound also forms part of the core housing, there is no need to remove the wound core from a winding shaft, which can easily break the brittle band could lead. The concepts described here also make handling the wound core during the further production steps (including before closing the housing) safer and easier.
Je nach Anwendung kann die Anordnung des Magnetkerns in einem geschlossenen Gehäuse eine wesentliche Voraussetzung zur Weiterverarbeitung sein wie z.B. für die Bewicklung des Kerns mit einem Leiter (um eine Spule herzustellen). Dabei kann auch die elektrische Isolation eine Rolle spielen, da der Magnetkern aus Metall eine Verkürzung der Luft- und Kriechstrecke zwischen zwei auf dem Kern angeordneten Wicklungen darstellt. Wenn gemäß den hier beschriebenen Ausführungsbeispielen, der Magnetkern direkt auf einen Träger gewickelt ist, der anschließend ein Teil des Gehäuses des Kerns bildet, entfallen wie erwähnt die andernfalls notwendigen Montagespalte (d.h. zwischen dem Ringbandkern und dem Träger ist kein Spiel vorhanden), weshalb mehr Magnetvolumen bei gleichem Bauraum möglich ist als bei herkömmlichen Konzepten. Ist in einer Anwendung die Isolation nicht erforderlich, kann die Außenhülle des Gehäuses weggelassen werden und der Träger, auf den der Magnetkern gewickelt ist, bildet ein offenes Gehäuse.Depending on the application, the arrangement of the magnetic core in a closed housing can be an essential prerequisite for further processing, such as winding the core with a conductor (to produce a coil). Electrical insulation can also play a role here, since the metal magnetic core shortens the clearance and creepage distance between two windings arranged on the core. If, according to the exemplary embodiments described here, the magnetic core is wound directly onto a carrier, which then forms part of the housing of the core, as mentioned, the otherwise necessary assembly gaps are eliminated (i.e. there is no play between the toroidal band core and the carrier), which is why there is more magnet volume is possible with the same installation space as with conventional concepts. If insulation is not required in an application, the outer shell of the housing can be omitted and the carrier on which the magnetic core is wound forms an open housing.
Das weichmagnetische Band kann aus einer Eisenlegierung oder einer Kobaltlegierung bestehen. In manchen Ausführungsbeispielen besteht das Band aus einer Eisenlegierung, die durch die Formel Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz beschrieben wird. Dabei bezeichnet M ein oder mehrere Elemente aus der Gruppe der Elemente Molybdän (Mo), Tantal (Ta) oder Zirkon (Zr), T bezeichnet ein oder mehrere Elemente aus der Gruppe der Elemente Vanadium (V), Mangan (Mn), Chrom (Cr), Kobalt (Co) oder Nickel (Ni) und Z ein oder mehrere Elemente aus der Gruppe der Elemente Kohlenstoff (C), Phosphor (P) oder Germanium (Ge). Die Indizes a, b, c, d, x, y, und z sind in Atom-% angegeben und erfüllen die folgenden Bedingungen:
Die Legierung kann bis zu 1 Atom-% an Verunreinigungen aufweisen.The alloy can contain up to 1 atomic percent of impurities.
In manchen Ausführungsbeispielen besteht das Band aus einer Kobaltlegierung, die durch die Formel Co100-a-b-c-d-x-y-zFeaCubMcTdSixByZz beschrieben wird. Dabei bezeichnet M ein oder mehrere Elemente aus der Gruppe der Elemente Niob (Nb), Molybdän (Mo), und Tantal (Ta), T bezeichnet ein oder mehrere Elemente aus der Gruppe der Elemente Mangan (Mn), Vanadium (V), Chrom (Cr), und Nickel (Ni) und Z ein oder mehrere Elemente aus der Gruppe der Elemente Kohlenstoff (C), Phosphor (P) und Germanium (Ge). Die Indizes a, b, c, d, x, y, und z sind in Atom-% angegeben und erfüllen die folgenden Bedingungen:
Die Legierung kann bis zu 1 Atom-%, vorzugsweise bis zu 0,5 Atom-% an Verunreinigungen aufweisen.The alloy may contain up to 1 atomic percent, preferably up to 0.5 atomic percent, of impurities.
Wie erwähnt kann das Band wärmebehandelt sein, wobei die Wärmebehandlung unter Zugspannung erfolgt, um gewünschte magnetische Eigenschaften zu erzielen (Zina-Material). In manchen Ausführungsbeispielen weist das weichmagnetische Band ein nanokristallines Gefüge auf, insbesondere ein nanokristallines Gefüge, bei dem zumindest 50 Volumen-% der Körner eine mittlere Größe von weniger als 100 nm aufweisen.As mentioned, the tape can be heat treated, with the heat treatment being carried out under tension to achieve desired magnetic properties (Zina material). In some exemplary embodiments, the soft magnetic band has a nanocrystalline structure, in particular a nanocrystalline structure in which at least 50% by volume of the grains have an average size of less than 100 nm.
Das weichmagnetische Band kann eine Hystereseschleife mit einem zentralen linearen Bereich, ein Remanenzverhältnis, Jr /Js von Remanenz (Jr) zu Sättigungsinduktion (Js) von weniger als 0,1, und ein Verhältnis Hc/Ha von Koerzitivfeldstärke (Hc) zu Anisotropiefeldstärke (Ha) von weniger als 0,1 aufweisen. Die Permeabilität des Ringbandkerns kann im Bereich von 40 bis 10000 liegen.The soft magnetic tape can have a hysteresis loop with a central linear region, a remanence ratio, Jr /Js of remanence (Jr) to saturation induction (Js) of less than 0.1, and a ratio Hc/Ha of coercivity (Hc) to anisotropy field (Ha ) of less than 0.1. The permeability of the toroidal core can be in the range from 40 to 10,000.
In
Diagramm (b) der
Bevor der Gehäuseteil 20 über den Träger 10 geschoben wird, wird ein weichmagnetisches Band um den Träger 10 gewickelt, um einen gewickelten Magnetkern 30 herzustellen. Die Länge des Trägers 10 ist so dimensioniert, dass das weichmagnetische Band genau zwischen die beiden Seitenwände 11 und 12 passt. Nachdem das Band zu dem Kern aufgewickelt wurde, kann die Außenhülle 20 über den bewickelten Träger geschoben werden, wodurch der gewickelte Kern allseitig von dem Gehäuse umschlossen wird. Der Träger 10 bildet wie eingangs erwähnt ein Teil des Gehäuses. Diagramm (c) der
In dem in
In dem in
Das Beispiel aus
Anders als in dem Beispiel aus
In
Im Folgenden werden einige der hier beschriebenen Ausführungsbeispiele zusammengefasst. Es handelt sich dabei nicht um eine abschließende Aufzählung technischer Merkmale, sondern lediglich um eine exemplarische Zusammenfassung.Some of the exemplary embodiments described here are summarized below. This is not an exhaustive list of technical features, but merely an exemplary summary.
Ein Ausführungsbeispiel betrifft ein Verfahren zur Herstellung eines Ringbandkerns. Das Verfahren umfasst das Aufstecken eines Trägers auf eine Welle (vgl.
In den hier beschriebenen Beispielen weist jener Teil des Trägers, um den das weichmagnetische Band gewickelt ist, die Form eines Hohlzylinders auf. Der Hohlzylinder kann einen kreisförmigen (vgl.
Der Träger, auf dem sich der Ringbandkern befindet und/oder des mindestens eine Gehäuseteil (z.B. die Außenhülle 20, vgl.
In einem Ausführungsbeispiel wird vor dem Wickeln der Anfang des weichmagnetischen Bandes auf dem Träger fixiert wird, beispielsweise mittels Klebstoff oder Klebeband. Ein Fixieren des Bandendes an der darunterliegenden Bandlage ist nicht unbedingt nötig. Das Bandende welches aufgrund der Federwirkung des Bandes abstehen kann, wird von der Innenseite des Gehäuses gehalten und sichert den Ringbandkern vor dem Abwickeln. Das Spiel zwischen Gehäuse und Ringbandklein muss entsprechend klein dimensioniert werden.In one embodiment, the beginning of the soft magnetic tape is fixed on the carrier before winding, for example using adhesive or adhesive tape. It is not absolutely necessary to fix the end of the band to the underlying band layer. The end of the band, which can protrude due to the spring effect of the band, is held by the inside of the housing and secures the ring band core from unwinding. The clearance between the housing and the ring band must be dimensioned accordingly small.
Ein weiteres Ausführungsbeispiel betrifft eine Vorrichtung mit einen Träger, der entlang einer Längsachse eine durchgehende Öffnung aufweist, und mindestens einen um den Träger zu einem Ringbandkern gewickeltes weichmagnetisches Band. Das weichmagnetische Band ist direkt auf den Träger gewickelt, sodass zwischen dem Ringbandkern und dem Träger kein Spiel vorhanden ist. Die Vorrichtung kann mindestens ein Gehäuseteil aufweisen, das den Ringbandkern umgibt und mit dem Träger so verbunden ist, dass das mindestens ein Gehäuseteil zusammen mit dem Träger ein geschlossenes Gehäuse um den Ringbandkern bildet. In einem Ausführungsbeispiel wurde das weichmagnetische Band vor dem Wickeln wärmebehandelt, wobei während der Wärmebehandlung durch Aufbringen einer Zugspannung die gewünschten magnetischen Eigenschaften eingestellt wurden.A further exemplary embodiment relates to a device with a carrier which has a continuous opening along a longitudinal axis, and at least one soft magnetic tape wound around the carrier to form an annular tape core. The soft magnetic tape is wound directly onto the carrier so that there is no play between the toroidal tape core and the carrier. The device can have at least one housing part which surrounds the toroidal band core and is connected to the carrier in such a way that the at least one housing part together with the carrier forms a closed housing around the toroidal band core. In one embodiment, the soft magnetic strip was heat treated before winding, with the desired magnetic properties being set during the heat treatment by applying a tensile stress.
Die hier beschriebenen technischen Merkmale der einzelnen Ausführungsbeispiele lassen sich - sofern es sich nicht um sich gegenseitig ausschließende Alternativen handelt - zu weiteren Ausführungsbeispielen kombinieren.The technical features of the individual exemplary embodiments described here can be combined to form further exemplary embodiments - provided they are not mutually exclusive alternatives.
Claims (15)
Einschließen des Ringbandkerns (30) in einem Gehäuse, indem mindestens ein Gehäuseteil (20, 20a, 20b) über den Ringbandkern (30) geschoben und mit dem Träger (10) verbunden wird, wobei der Träger (10) selbst ein weiteres Gehäuseteil bildet.The method of claim 1, further comprising:
Enclosing the toroidal band core (30) in a housing by pushing at least one housing part (20, 20a, 20b) over the toroidal band core (30) and connecting it to the carrier (10), the carrier (10) itself forming a further housing part.
wobei jener Teil des Trägers (10), um den das weichmagnetische Band gewickelt ist, die Form eines Hohlzylinders aufweist, beispielsweise mit einem kreisförmigen, ovalen oder rechteckigen Querschnitt.The method according to claim 1 or 2,
wherein that part of the carrier (10) around which the soft magnetic band is wound has the shape of a hollow cylinder, for example with a circular, oval or rectangular cross section.
wobei vor dem Wickeln der Anfang des weichmagnetischen Bandes auf dem Träger fixiert wird, beispielsweise mittels Klebstoff oder Klebeband.The method according to one of claims 1 to 6,
before winding, the beginning of the soft magnetic tape is fixed on the carrier, for example using adhesive or adhesive tape.
wobei die durchgehende Öffnung des Trägers (10) und die Welle (1) so gestaltet sind, dass der Träger (10) formschlüssig an der Welle (1) gehalten wird.The method according to one of claims 1 to 7,
wherein the continuous opening of the carrier (10) and the shaft (1) are designed such that the carrier (10) is held in a form-fitting manner on the shaft (1).
Fe100-a-b-c-d-x-y-zCuaNbbMcTdSixByZz
Co100-a-b-c-d-x-y-zFeaCubMcTdSixByZz
Fe 100-abcdxyz Cu a Nb b M c T d Si x B y Z z
Co 100-abcdxyz Fe a Cu b M c T d Si x B y Z z
wobei das weichmagnetische Band unter Zugspannung wärmebehandelt wurde.The method according to one of claims 1 to 10,
wherein the soft magnetic tape was heat treated under tensile stress.
Einschließen der Ringbandkerne in einem Gehäuse, indem mindestens ein Gehäuseteil (20, 20a, 20b) über die Ringbandkerne geschoben und mit den beiden Teilen (10a, 10b) des Trägers (10) verbunden wird, wobei der Träger (10) selbst ein weiteres Gehäuseteil bildet.The method of claim 12, further comprising:
Enclosing the toroidal cores in a housing by pushing at least one housing part (20, 20a, 20b) over the toroidal cores and connecting it to the two parts (10a, 10b) of the carrier (10), the carrier (10) itself being a further housing part forms.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022119155.9A DE102022119155A1 (en) | 2022-07-29 | 2022-07-29 | MAGNETIC CORE WITH PROTECTIVE HOUSING |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4325536A2 true EP4325536A2 (en) | 2024-02-21 |
EP4325536A3 EP4325536A3 (en) | 2024-05-01 |
Family
ID=87517406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23188066.7A Pending EP4325536A3 (en) | 2022-07-29 | 2023-07-27 | Magnetic core with protective casing |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240038434A1 (en) |
EP (1) | EP4325536A3 (en) |
CN (1) | CN117476349A (en) |
DE (1) | DE102022119155A1 (en) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3060353A (en) * | 1958-05-01 | 1962-10-23 | Honeywell Regulator Co | Protected magnetic core element |
US2988674A (en) * | 1958-05-01 | 1961-06-13 | Honeywell Regulator Co | Protected magnetic core element |
GB937320A (en) * | 1960-09-14 | 1963-09-18 | Telegraph Condenser Co Ltd | Improvements in or relating to encased magnetic cores |
DE1864685U (en) * | 1962-07-04 | 1962-12-27 | Vacuumschmelze Ag | PROTECTIVE TROUGH FOR RING TAPE CORES. |
JPS58215011A (en) * | 1982-06-08 | 1983-12-14 | Toshiba Corp | Manufacture of rolled core |
JPS61156713A (en) * | 1984-12-28 | 1986-07-16 | Toshiba Corp | Magnetic core and manufacture thereof |
US5016832A (en) * | 1989-08-21 | 1991-05-21 | Kuhlman Corporation | Method and apparatus for winding an amorphous magnetic toroidal transformer core |
FR2835646B1 (en) * | 2002-02-06 | 2004-05-07 | Tct Tores Composants Technolog | NANOCRYSTALLINE MAGNETIC TORE |
-
2022
- 2022-07-29 DE DE102022119155.9A patent/DE102022119155A1/en active Pending
-
2023
- 2023-07-27 EP EP23188066.7A patent/EP4325536A3/en active Pending
- 2023-07-27 US US18/227,164 patent/US20240038434A1/en active Pending
- 2023-07-28 CN CN202310938752.1A patent/CN117476349A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN117476349A (en) | 2024-01-30 |
EP4325536A3 (en) | 2024-05-01 |
DE102022119155A1 (en) | 2024-02-01 |
US20240038434A1 (en) | 2024-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60033238T2 (en) | CORE COIL ASSEMBLY FOR INDUCTIVITY AND METHOD FOR THE PRODUCTION THEREOF | |
DE10260246B4 (en) | Coil arrangement with variable inductance | |
DE69223162T2 (en) | Distribution transformers | |
EP0005836B1 (en) | Inductive constructional component and process for manufacturing it | |
EP1849169B1 (en) | Transformer core comprising magnetic shielding | |
DE3201569C2 (en) | ||
EP2614510B1 (en) | Current-compensated inductor with increased leakage inductance | |
DE10157590A1 (en) | Winding for a transformer or a coil | |
EP2200052B1 (en) | Electricity-compensated throttle and method for producing an electricity-compensated throttle | |
DE3853111T2 (en) | Interference protection arrangement. | |
DE3435519C2 (en) | ||
EP4325536A2 (en) | Magnetic core with protective casing | |
DE3744122C2 (en) | ||
DE4208706C2 (en) | Ignition coil for an ignition system of an internal combustion engine | |
DE1054597B (en) | Shielding for cathode ray tubes and method for making the shield | |
DE3426348A1 (en) | DEFLECTING COIL ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF | |
DE1109268B (en) | Small and miniature coils on a cylindrical body made of magnetizable sheet metal | |
DE1933952C3 (en) | High voltage transformer | |
DE361873C (en) | Iron core for induction coils | |
EP3977493B1 (en) | Inductive component and method for adjusting an inductance | |
DE19948897A1 (en) | Interface modules for local data networks | |
CH378949A (en) | Magnetic core device, in particular for storage purposes | |
DE706709C (en) | High voltage transformer, especially dry voltage converter | |
DE912365C (en) | Toroidal core for choke coil or transformer | |
WO2021053068A1 (en) | Inductive component and method for setting an inductivity value |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01F 27/32 20060101ALI20240322BHEP Ipc: H01F 27/26 20060101ALI20240322BHEP Ipc: H01F 27/25 20060101ALI20240322BHEP Ipc: H01F 27/02 20060101ALI20240322BHEP Ipc: H01F 1/153 20060101ALI20240322BHEP Ipc: H01F 1/147 20060101ALI20240322BHEP Ipc: H01F 3/04 20060101ALI20240322BHEP Ipc: H01F 41/02 20060101AFI20240322BHEP |