[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4311981A1 - Thermoöl-biomassekessel - Google Patents

Thermoöl-biomassekessel Download PDF

Info

Publication number
EP4311981A1
EP4311981A1 EP22187802.8A EP22187802A EP4311981A1 EP 4311981 A1 EP4311981 A1 EP 4311981A1 EP 22187802 A EP22187802 A EP 22187802A EP 4311981 A1 EP4311981 A1 EP 4311981A1
Authority
EP
European Patent Office
Prior art keywords
coiled tubing
thermal oil
train
biomass boiler
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22187802.8A
Other languages
English (en)
French (fr)
Inventor
Christoph FÜLBIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heuft Besitzgesellschaft & Co Kg GmbH
Original Assignee
Heuft Besitzgesellschaft & Co Kg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heuft Besitzgesellschaft & Co Kg GmbH filed Critical Heuft Besitzgesellschaft & Co Kg GmbH
Priority to EP22187802.8A priority Critical patent/EP4311981A1/de
Publication of EP4311981A1 publication Critical patent/EP4311981A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B60/00Combustion apparatus in which the fuel burns essentially without moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • F23C3/002Combustion apparatus characterised by the shape of the combustion chamber the chamber having an elongated tubular form, e.g. for a radiant tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/10Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J1/00Removing ash, clinker, or slag from combustion chambers
    • F23J1/02Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2103/00Adaptation of combustion apparatus for placement in or against an opening of a boiler, e.g. for replacing an oil burner
    • F23B2103/02Adaptation of combustion apparatus for placement in or against an opening of a boiler, e.g. for replacing an oil burner for producing an essentially horizontal flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2203/00Flame cooling methods otherwise than by staging or recirculation
    • F23C2203/10Flame cooling methods otherwise than by staging or recirculation using heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/26Biowaste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2700/00Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
    • F23J2700/003Ash removal means for incinerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0024Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for combustion apparatus, e.g. for boilers

Definitions

  • the present invention relates to a thermal oil biomass boiler for heating thermal oil by burning biomass, such as wood pellets, wood chips or other solid fuels, especially for oven systems.
  • biomass such as wood pellets, wood chips or other solid fuels
  • the present invention relates to a thermal oil biomass boiler, which is designed to be particularly safe due to its design.
  • thermal oil can be used as a heat transfer medium.
  • Thermal oil has the advantage that it can be heated without pressure to temperatures of 300°C and above, which are required in oven systems.
  • the thermal oil is heated in a fired boiler by burning oil, gas or biomass, such as wood pellets or wood chips, and then fed to the thermal oil ovens using a ring line made up of flow and return lines and an electric pump.
  • the heated thermal oil leaves the boiler through a flow line, flows through the ovens, heats them to the desired temperature and cools them down in the process.
  • the cooled thermal oil is fed via a return line to the fired boiler, which heats the thermal oil again.
  • Oil- or gas-fired thermal oil boilers are known from the prior art.
  • Fig. 1 Such an oil- or gas-fired three-pass thermal oil boiler 100 is shown according to the prior art, which is designed in a so-called "lying" design.
  • an oil or gas burner 130 produces a horizontal flame 132, which extends into a first flue 110 in order to heat thermal oil, which flows through a first coiled pipe 120, by radiation and convection.
  • the oil or gas burner 130 is attached to an end wall 172 of the thermal oil boiler 100.
  • the flue gases are diverted through 180° into a second train 150, which passes through an annular gap between the first coiled pipe 120 and a second coiled tubing 140 located further out.
  • the flue gases are again diverted by 180° into a third train 160, which is formed by an annular gap between the second coiled pipe 140 and an outer wall 170 of the thermal oil boiler 100.
  • the flue gases flow to a flue gas outlet 174 of the thermal oil boiler 100.
  • the thermal oil to be heated by the thermal oil boiler 100 flows through an inlet 123 into the second, outer, colder tube coil 140.
  • the heated thermal oil flows out of the thermal oil boiler 100 from the outlet 122 at the end of the first coiled tubing 120 and into the flow of a thermal oil circuit (not shown).
  • a horizontal oil- or gas-fired thermal oil boiler 100 cannot in principle be fired with biomass, for example using a biomass burner, since automatic ash removal is not possible due to the design.
  • thermal oil biomass boilers therefore usually have a so-called grate combustion system, in which a certain amount of biomass, for example wood pellets, wood chips or other solid, preferably renewable fuels, is placed on a grate in the lower area of a vertically aligned, so-called "standing" Boiler burns under controlled air supply.
  • a standing thermal oil biomass boiler with grate firing is, for example, from the publication DE 2020 10005458 U1 known.
  • the thermal oil to be heated is guided in coiled pipes, which are usually aligned vertically around the combustion chamber in the boiler and thereby form a vertical channel for the flue gases.
  • thermal oil biomass boilers Due to the grate firing, such thermal oil biomass boilers have a large mass and require a large bed of currently burning biomass, which is why such a thermal oil biomass boiler can only be regulated comparatively slowly.
  • thermal oil biomass boilers usually have a mass with a sufficiently large heat storage capacity, which continues to radiate onto the coiled tubing after the firing is switched off and could lead to an increase in the film temperature of the thermal oil when the thermal oil is standing.
  • the film temperature of the thermal oil in the biomass boiler must not be exceeded, for example to prevent thermal decomposition of the thermal oil or cracking in the heat exchanger tubes.
  • a further complicating factor is that the ember bed of the burning biomass ensures additional heat input even after the thermal oil biomass boiler has been switched off.
  • Such a standing thermal oil biomass boiler with grate firing requires an active emergency cooling system for safety reasons.
  • This active emergency cooling system prevents the biomass boiler from overheating in the event of a malfunction in the system, e.g. if the pump for circulating the thermal oil fails, which could have fatal consequences.
  • an emergency cooling system is technically complex, cost-intensive and maintenance-intensive. It usually includes a redundant pump station, a thermal oil/water heat exchanger, a water tank for the heat exchanger to evaporate water and dissipate heat, appropriate piping systems for steam, water and thermal oil, an emergency power supply, a controller and other components. In the event of a malfunction, the emergency cooling system stops the biomass supply and cools the thermal oil and thus actively the combustion chamber using the water-cooled heat exchanger.
  • thermal oil biomass boiler that can be regulated more quickly than thermal oil biomass boilers according to the prior art and in particular offers greater security against overheating of the biomass boiler in the event of a malfunction of the thermal oil system.
  • a thermal oil biomass boiler having a horizontally extending first train; at least one horizontally extending first coiled tubing for conducting thermal oil, the first coiled tubing being arranged within the first train and forming a horizontally extending interior space; a biomass burner that produces a horizontal flame that extends into the interior of the first coiled tubing; wherein the first coiled tubing has lower coiled tubing sections and there are gaps between two adjacent lower coiled tubing sections which are dimensioned such that ash from the biomass burner can fall through.
  • a biomass burner with a horizontal flame can be used.
  • Such a biomass burner with a horizontal flame does not have a large burning ember bed of biomass and does not produce large heated masses during operation, as is the case with grate firing.
  • a biomass burner with a horizontal flame can therefore be regulated very quickly.
  • the heat input into the biomass boiler is very low compared to conventional grate furnaces. Therefore, an emergency cooling system can be dispensed with in a horizontal thermal oil biomass boiler with a biomass burner with a horizontal flame. Accordingly, a thermal oil biomass boiler according to the invention is particularly safe overall, technically less complex, more cost-effective and particularly low-maintenance.
  • thermal oil biomass boiler according to the invention can also be at an angle of inclination of up to 45° to the horizontal in order to still be considered “horizontal”.
  • the thermal oil biomass boiler according to the invention can therefore be operated in continuous burning mode.
  • the efficiency of the heat transfer of the first train decreases due to the gaps between two adjacent lower coiled pipe sections, this thermal disadvantage can be compensated for again by making the first train larger overall or by using additional downstream trains.
  • the first train preferably has a mechanical ash discharge in the lower region, which is arranged below the first coiled pipe.
  • the ash discharge preferably has an ash screw.
  • An ash screw conveys the ash out of the biomass boiler along the first pass through a rotary movement.
  • the ash auger is very robust and mechanically simple compared to other solutions, which increases its reliability.
  • the first train preferably tapers towards the lower area for ash discharge. Accordingly, a single ash screw can be used to discharge all of the ash from the first pass. By tapering the first train, the ash screw can be made comparatively small.
  • the thermal oil biomass boiler preferably also has a horizontally extending second train, which is downstream of the first train with regard to the flue gases and has a second coiled pipe for conducting thermal oil, the second coiled pipe being arranged within the second train.
  • the second puff uses the heat present in the flue gases after the first puff to further heat the thermal oil.
  • the second train is preferably connected upstream of the first train in order to preheat colder thermal oil with the colder flue gases before it enters the first coiled pipe of the first train.
  • the second coiled tubing preferably has lower coiled tubing sections and there are gaps between two adjacent lower coiled tubing sections through which ash from the biomass burner can fall through. Through the gaps between adjacent lower coiled tubing sections, the ash from the biomass burner can fall through the second coiled tubing, as in the first pass, and be automatically removed below the coiled tubing.
  • the second, and possibly additional trains can be provided without automatic ash discharge.
  • most of the ash is separated in the first pass and the subsequent passes only need to be cleaned by hand from time to time. Due to the higher flue gas velocity in the second pass or subsequent passes, the ash can also preferably be conveyed out of the boiler and separated in subsequent systems, for example in a cyclone and/or a fine dust filter.
  • the thermal oil biomass boiler preferably also has one or more further trains which are fluidically connected downstream of the second train with regard to the flue gases and which are constructed in accordance with the second train. With a third or even further puffs, the residual heat of the flue gases can be used further to heat up the thermal oil. This is preferably done using the countercurrent principle, whereby the coldest thermal oil of the return is introduced into the coiled pipe of the last, coldest train and then flows through the other trains until it reaches the first, hottest train and is heated to the desired flow temperature.
  • the second train and further trains preferably each have an ash discharge. This means that the second train and the further trains can also be automatically cleaned of the resulting ash.
  • the ash discharge of the second or further trains is preferably arranged below or within the respective coiled pipe.
  • the ash discharge is preferably designed as an ash screw which is arranged within the respective coiled pipe.
  • the ash screw could thus take over the function of the inner mandrel mentioned later and further increase the flue gas velocity.
  • Wear-resistant supports would preferably have to be provided within the coiled tubing for the ash screw so that it can rotate within the coiled tubing without grinding through the coiled tubing.
  • the coil diameters of the second coiled tubing and/or the further coiled tubing are smaller than the coil diameter of the first coiled tubing, preferably smaller than 50% of the coiled diameter of the first coiled tubing, more preferably smaller than 30% of the coiled diameter of the first coiled tubing.
  • the smaller helix diameter increases the flow speed in the second and subsequent trains. This improves the heat transfer from the flue gas to the thermal oil.
  • the first, second and/or further coiled tubing each consist of two or more separate coiled tubings with different diameters within a train, which are screwed into one another and whose upper coiled tubing sections are aligned horizontally to one another, the lower coiled tubing sections of which each have gaps between adjacent coiled tubing sections the ash from the biomass burner can fall through.
  • This design of the coiled tubing improves in particular the radiation-related heat transfer from the flame of the biomass burner to the thermal oil. The radiation from the flame always hits a section of coiled tubing in the radial direction and can be absorbed by this as heat.
  • the upper coiled tubing sections of the two or more separate coiled tubing lie horizontally against one another. In the upper area of the coiled tubing there are no gaps between the coiled tubing sections, which also improves heat transfer.
  • the coiled tubing of the second train or the coiled tubing of further trains each form a second or further interior space and the thermal oil biomass boiler also has a first or further inner mandrel which is arranged in the second or further interior space.
  • the first and/or the further inner mandrels narrow the flow cross section of the flue gas in the second or further passes in order to increase the flow velocity there and improve the heat transfer.
  • the first inner mandrel and/or the further inner mandrel are designed to be removable from the biomass thermal oil boiler. This allows the inner mandrels to be removed from the corresponding cable for easier cleaning.
  • the inner mandrels are preferably cylindrical and are formed at their ends in a flow-efficient manner.
  • the inner mandrels could have conical or ellipsoidal head ends.
  • the thermal oil biomass boiler preferably also has one or more compressed air lances, which are arranged in the flues in order to convey the ash from the biomass burner through the gaps.
  • the ash produced in the trains can be blown from time to time through the gaps in the coiled pipes using the compressed air lances, in order to then be removed from the trains by the ash discharge from the train.
  • the thermal oil biomass boiler preferably also has a thermal oil flue gas heat exchanger, which is downstream of the first train in terms of flow with regard to the flue gases and which has straight smooth or finned tubes.
  • a thermal oil flue gas heat exchanger can replace the second or further cables or be arranged in addition to these cables. Compared to a coiled pipe, it has a significantly larger heat transfer surface. could be detrimental more rapid contamination with ash and higher manufacturing costs.
  • the thermal oil-flue gas heat exchanger has smooth tubes or finned tubes, with the finned tubes having an enlarged heat exchanger surface compared to smooth tubes. Smooth tubes, on the other hand, are easier to clean than finned tubes.
  • the flue gas is passed through a chamber of the thermal oil flue gas heat exchanger, in which there is a bundle of essentially straight, smooth or finned tubes. Maintenance or cleaning openings and means for automatic cleaning can also be provided in the chamber.
  • the first train preferably has a length of 800 mm to 4000 mm.
  • the thermal oil biomass boiler preferably has a thermal output of more than 100 kW, preferably from 100 kW to 500 kW.
  • the thermal oil biomass boiler is therefore suitable for commercial oven systems.
  • the first and/or the second coiled tubing and/or further coiled tubing is designed for thermal oil temperatures of 300°C to 400°C.
  • the Figures 2 and 3 show a first embodiment of a thermal oil biomass boiler 1 with three trains 10, 50, 60.
  • the trains 10, 50, 60 extend essentially horizontally, so that the thermal oil biomass boiler 1 is designed in a horizontal design.
  • a first train 10 extends from the front side 3 of the thermal oil biomass boiler 1 to the back 4 of the same.
  • the first train 10 can have a length of 800 mm to 4000 mm.
  • the thermal oil biomass boiler 1 preferably has a thermal output of more than 100 kW, preferably from 100 kW to 500 kW.
  • the first train 10 has at least one horizontally extending first coiled tubing 20, which passes thermal oil 2 through the first train 10 in order to heat it up.
  • the first coiled tubing 20 is essentially exposed in order to form the largest possible heat-transferring surface.
  • the first coiled tubing 20 is arranged within the first train 10, preferably in the area of the wall of the first train 10, and forms a horizontally extending interior space 22.
  • a biomass burner 30 is flanged to the front side 3 in order to burn biomass, preferably wood pellets or wood chips, with a controlled supply of air. This creates a substantially horizontal flame 32, which extends into the interior 22 of the first coiled tubing 20.
  • the first coiled tubing 20 therefore preferably surrounds the flame essentially over its entire length in order to absorb the radiant heat generated by it and supply it to the thermal oil.
  • the first coiled pipe 20 is also heated by convection by the flue gases flowing past.
  • the flue gases are deflected by 180° and flow into a second train 50, as shown by arrow 42.
  • the second train 50 serves to further transfer heat from the flue gases to the thermal oil 2.
  • the second train 50 has a second coiled pipe 52, which is arranged within the second train 50, preferably in the area of the wall of the second train 50.
  • the second Coiled tubing 52 is essentially exposed in order to form as large a heat-transferring surface as possible. It can be advantageous here if the wall of the second flue 50, i.e. a casing pipe, is at a distance from the second coiled pipe 52, so that flue gas can also flow through this annular gap at the same time.
  • the flue gases flow through the second train 50 from back to front, i.e. from the rear wall 4 to the front wall 3 of the biomass boiler 1.
  • the second train 50 has a smaller cross-section compared to the first train 10, so that in the second train 50 the flow speed of the flue gas is significant is higher than in the first train 10. This increases the heat transfer to the thermal oil 2.
  • the coil diameter D2 of the second coil tube 52 is therefore preferably significantly smaller than the diameter D1 of the first raw coil 20 and is preferably smaller than 50% or smaller than 30% of the coil diameter D1 of the first coiled tubing 20.
  • the third train 60 has a third raw coil 62, which has a smaller diameter than the first coiled tubing 20.
  • the third coiled tubing 62 can be dimensioned corresponding to the second coiled tubing 52.
  • the coil diameter of the third coiled tubing 52 is significantly smaller than the diameter D1 of the first raw coil 20 and is preferably smaller than 50% or smaller than 30% of the coil diameter D1 of the first coiled tubing 20.
  • the coldest thermal oil 2 of the return line of a thermal oil system flows into the coiled pipe 62 of the third, coldest train 60, then through the coiled pipe 52 of the second, warmer train 50 and then through the coiled pipe 20 of the first train 10, which is the hottest is.
  • the thermal oil 2 is heated to the desired flow temperature of the thermal oil system using the countercurrent principle.
  • the flue gases can be passed into further trains (not shown) for further cooling, or the flue gases leave the thermal oil biomass boiler 1 through a flue gas outlet 46 which opens into a chimney (not shown).
  • the thermal oil biomass boiler 1 has an automatic ash discharge 40, 51, 61, which is preferably arranged in the form of an electrically driven ash screw, each in an area 12 below the raw coil 20, 52, 62.
  • the ash screw conveys the ash to a rotary valve. From there the ash is transported to a collecting container or falls directly into one.
  • the rotary valve serves to seal the firebox from the atmosphere or the boiler house.
  • the trains 20, 50, 60 are tapered towards their lower area 12 towards the ash discharge 40 in order to form an ash box or funnel and to concentrate the ash there.
  • Ash that settles out of the flue gases in each train can fall down due to gravity through the respective coiled pipes 20, 52, 62 or by means of pneumatic compressed air lances 27, 57, 67 (in the Figures 3 and 7 not shown) can be blown down by compressed air introduced from time to time. Cleaning the coiled tubing 20, 52, 62 using sound is also possible.
  • the coiled tubing 20, 52, 62 has lower coiled tubing sections 24, 26, 54, 56, which are spaced apart from one another so that they have gaps 28, 58 through which ash can fall, as indicated by arrow 34.
  • the distance A 1 of the lower coiled tubing sections 24, 26 of the first coiled tubing 20 is preferably 10 mm to 100 mm and can, for example, correspond to the tube diameter d of the heat exchanger tube of the first coiled tubing 20.
  • the distance A2 of the lower coiled tubing sections of the second 52 and third coiled tubing 62 can also preferably be 10 mm to 100 mm and can, for example, correspond to the tube diameter of the heat exchanger tube of the second or third coiled tubing 52, 62.
  • Separating plates (not shown) arranged at certain intervals around the ash screw can prevent the flue gases from finding a more streamlined path via the ash pan/funnel.
  • the ash should be able to settle in the lower area of the coiled tubing 20, 52, 62, which is why the separating plates should be guided at least to the lower edge of the coiled tubing.
  • the coiled pipes 52, 62 of the second 50 or the further trains 60 can also be built without gaps and without automatic ash discharge.
  • most of the ash is already separated in the first train 20, so that the subsequent trains 50, 60 only have to be cleaned by hand from time to time. It is also possible that due to a higher flue gas velocity in the subsequent trains 50, 60, the ash remaining in the flue gas is conveyed out of the thermal oil biomass boiler 1 and is separated in subsequent systems, for example in a cyclone and/or a fine dust filter (not shown). .
  • the ash discharge of the subsequent trains 50, 60 is arranged within the respective coiled tubing 52, 62 and is preferably designed as a rotatable ash screw.
  • the thermal oil biomass boiler 1 is equipped with cleaning hatches 5, 6, 8 on each train 10, 50, 60, which are easy to open. This means that the trains 10, 50, 60 can also be easily cleaned or inspected manually.
  • the first 20 and/or second 52 and third coiled tubing 62 are preferably made of corrosion-resistant steel and are designed for thermal oil temperatures of 300 ° C to 400 ° C.
  • the coiled tubing 20, 52, 62 of the first embodiment are preferably designed to be single-start. They therefore each consist of a single coiled heat exchanger tube, which is bent at a distance A1, A2 so that the gaps 28, 58 are created for the automatic ash discharge.
  • the coiled tubing 20, 52, 62 could be designed with two or more threads in order to reduce the pressure loss of the thermal oil flowing through.
  • the coiled tubing could be provided with two or more threads, since due to the smaller coil diameter, small pipe diameters have to be used, which enable smaller bending radii but have a higher pressure loss.
  • Double-start coiled tubing can also be manufactured in such a way that gaps are created between adjacent coiled tubing sections or not.
  • the coiled tubing 52 of the second train 50 or the coiled tubing 62 of the third or further trains 60 also each form a second 53, third 63 or further interior space.
  • removable inner mandrels 55, 65 in the Figures 3 and 7 not shown
  • the Figures 4 and 5 show a second embodiment of the thermal oil biomass boiler 1 in which the coiled tubing 70, 80 in the first train 10 - and possibly in the further trains 50, 60 - is designed with two flights, with one course having a smaller coil diameter than the other. Otherwise, the second embodiment corresponds to the first embodiment of the thermal oil biomass boiler 1 described above.
  • the coiled tubes 70, 80 now consist of two coiled tubes 70, 80 twisted into one another, which have different coil diameters D3, D4. In the upper area of the coiled tubing 70, 80, i.e.
  • the coiled tubing 70, 80 are aligned horizontally to one another, so that gaps 76, 86 for ash removal are created in the lower area between two adjacent coiled tubing sections 72, 74, 82, 84 , as indicated by the arrows 34.
  • the adjacent lower coiled tubing sections 72, 74, 82, 84 are preferably spaced apart from one another by a distance A3, which corresponds to the respective tube diameter d of the heat exchanger tubes of the coiled tubing 70, 80. In this way, the gaps 76, 86 are not created at the expense of the transfer area for the heat radiation of the flame 32, since the transfer area is maximized in this respect.
  • the heat radiation from the flame 32 always hits a coiled tubing 70, 80 in the radial direction, although there are gaps 76, 86 for automatic ash removal available.
  • the upper coiled tubing sections 75, 85 of the two separate coiled tubings 70, 80 preferably lie horizontally against one another in order to also not provide any gaps for the heat radiation of the flame 32.
  • the coiled tubing 70, 80 are wound independently of one another and then twisted into one another so that they are aligned horizontally to one another in the upper region.
  • the principle of this second embodiment can also be transferred to three-, four-, five- or generally multi-start coiled tubing, with the coiled tubing having at least two different coil diameters, so that gaps for ash removal are formed in the lower region of the coiled tubing.
  • the Figures 6 and 7 show a further embodiment of a thermal oil biomass boiler 1.
  • This embodiment essentially corresponds to the embodiment of the thermal oil biomass boiler 1 of Figures 2 and 3 , however, the second and third trains 50, 60 were replaced by a thermal oil flue gas heat exchanger 90.
  • the thermal oil flue gas heat exchanger 90 essentially consists of a bundle of smooth or finned tubes 92, which are arranged in a chamber through which the flue gases flow.
  • the smooth or finned tubes 92 are flowed around by the flue gases.
  • the smooth or finned tubes 92 are essentially straight and arranged horizontally in the chamber. They are preferably flowed perpendicular to their longitudinal direction with the flue gases and thermal oil 2 flows through them.
  • the smooth or finned tubes 92 can be fluidically connected to one another in series or parallel to one another or in mixed forms in order to ensure optimal heat transfer from the flue gases to the thermal oil 2.
  • the thermal oil flue gas heat exchanger 90 is preferably arranged parallel to the first train 50 and above it. This results in a short, compact design of the thermal oil biomass boiler 1 and a reduction in heat loss.
  • thermal oil-flue gas heat exchangers 90 can be arranged one behind the other or one above the other, which are then flowed through one after the other.
  • the flue gases that have flowed through the first train 10 are introduced into the thermal oil flue gas heat exchanger 90, as indicated by the arrow 42.
  • the thermal oil flue gas heat exchanger 90 the flue gases are further cooled and give off their heat to the smooth or finned tubes 92.
  • the heavily cooled flue gases are introduced and discharged from the thermal oil-biomass boiler 1 via the flue gas outlet 46 into a suitable chimney (not shown).
  • the thermal oil flue gas heat exchanger 90 can have manual or automatic cleaning if necessary.
  • the thermal oil-flue gas heat exchanger 90 has cleaning openings at suitable locations in order to be able to manually clean the interior of the thermal oil-flue gas heat exchanger 90 from ash.
  • the thermal oil flue gas heat exchanger 90 can have an automatic ash discharge 94, which has, for example, rotating ash screws, pneumatic lances for compressed air introduced from time to time and/or cleaning using sound.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Thermoöl-Biomassekessel 1 aufweisend einen sich horizontal erstreckenden ersten Zug 10, mindestens eine sich horizontal erstreckende erste Rohrwendel 20 zum Leiten von Thermoöl 2, wobei die erste Rohrwendel 20 innerhalb des ersten Zugs 10 angeordnet ist und einen sich horizontal ersteckenden Innenraum 22 bildet, einen Biomassebrenner 30 der eine horizontale Flamme 32 erzeugt, die sich in den Innenraum 22 der ersten Rohrwendel 20 hinein erstreckt, wobei die erste Rohrwendel 20 untere Rohrwendelabschnitte 24, 26 aufweist und zwischen zwei benachbarten unteren Rohrwendelabschnitten 24, 26 Lücken 28 vorhanden sind, die so bemessen sind, dass Asche 34 des Biomassebrenners 30 hindurchfallen kann.

Description

    1. Technisches Gebiet
  • Die vorliegende Erfindung betrifft einen Thermoöl-Biomassekessel, zum Erhitzen von Thermoöl durch Verbrennung von Biomasse, wie Holzpellets, Holzhackschnitzel oder andere feste Brennstoffe, insbesondere für Backofenanlagen. Insbesondere betrifft die vorliegende Erfindung einen Thermoöl-Biomassekessel, der konstruktionsbedingt besonders sicher ausgebildet ist.
  • 2. Stand der Technik
  • In größeren handwerklichen und industriellen Backofenanlagen kann Thermoöl als Wärmeträgermedium verwendet werden. Thermoöl hat den Vorteil, dass es drucklos bis auf Temperaturen von 300°C und darüber erhitzbar ist, die in Backofenanlagen benötigt werden.
  • Im Regelfall wird das Thermoöl hierzu in einem befeuerten Heizkessel durch Verbrennung von Öl, Gas oder Biomasse, wie Holzpellets oder Holz-Hackschnitzel, erhitzt und dann mittels einer Ringleitung aus Vorlauf- und Rücklaufleitung und einer elektrischen Pumpe den Thermoöl-Backöfen zugeführt. Das erhitzte Thermoöl verlässt den Heizkessel durch eine Vorlaufleitung, durchströmt die Backöfen, heizt diese auf die gewünschte Temperatur auf und kühlt dabei ab. Das abgekühlte Thermoöl, wird über eine Rücklaufleitung dem befeuerten Heizkessel zugeführt, der das Thermoöl wieder aufheizt.
  • Öl- oder gasbefeuerte Thermoölkessel sind aus dem Stand der Technik bekannt. In Fig. 1 ist ein solcher öl- oder gasbefeuerter dreizügiger Thermoölkessel 100 nach dem Stand der Technik dargestellt, der in einer sog. "liegenden" Bauweise ausgeführt ist. Bei dieser liegenden Bauweise erzeugt ein Öl- bzw. Gasbrenner 130 eine horizontale Flamme 132, die sich in einen ersten Zug 110 hinein erstreckt, um dort Thermoöl, das durch eine erste Rohrwendel 120 fließt, durch Strahlung und Konvektion zu erwärmen. Hierbei ist der Öl- bzw. Gasbrenner 130 an einer Stirnwand 172 des Thermoölkessels 100 angebracht. Am Ende des ersten Zugs 110, werden die Rauchgase um 180° in einen zweiten Zug 150 umgeleitet, der durch einen Ringspalt zwischen der ersten Rohrwendel 120 und einer weiter außen liegenden zweiten Rohrwendel 140 gebildet wird. Am Ende des zweiten Zugs 150 werden die Rauchgase wiederum um 180° in einen dritten Zug 160 umgeleitet, der durch einen Ringspalt zwischen der zweiten Rohrwendel 140 und einer Außenwand 170 des Thermoölkessels 100 gebildet wird. Am Ende des dritten Zugs 160 strömen die Rauchgase zu einem Rauchgasauslass 174 des Thermoölkessels 100. Das durch den Thermoölkessel 100 zu erhitzende Thermoöl strömt durch einen Einlass 123 in die zweite, äußere, kältere Rohrwendel 140 ein. Danach strömt es von der zweiten Rohrwendel 140 in die erste, innere, heißere Rohrwendel 120. Schließlich strömt das erhitzte Thermoöl am Ende der ersten Rohrwendel 120 aus dem Auslass 122 aus dem Thermoölkessel 100 heraus und in den Vorlauf eines Thermoölkreislaufs (nicht dargestellt) hinein. Damit erwärmen die Rohrwendel 120, 140 zusammen mit den drei Zügen 110, 150, 160 das Thermoöl nach dem Gegenstromprinzip, um einen optimierten Wärmeübergang der Flamme 132 und der Rauchgase auf das Thermoöl zu erreichen. Ein derartiger liegender öl- oder gasbeheizter Thermoölkessel 100 kann jedoch grundsätzlich nicht mit Biomasse befeuert werden, etwa mittels eines Biomassebrenners, da bauartbedingt keine automatische Entaschung möglich ist. Eine solche Entaschung ist bei einem Thermoöl-Biomassekessel jedoch zwingend notwendig, um seine Betriebsfähigkeit im Dauerbrandbetrieb unterbrechungsfrei zu gewährleisten. Bei der Verbrennung von Biomasse entsteht unweigerlich Asche, die sich in einem Thermoölkessel ohne automatische Entaschung schnell anreichern würde. Nach kurzer Zeit wäre ein klassischer 3-Zug-Kessel, wie er für Gas- oder Ölbrennerbetrieb optimal ist, mit Asche zugesetzt und hätte wegen mit Asche belegter Heizflächen schnell ein Leistungsdefizit auf Kosten der Effizienz.
  • Herkömmliche Thermoöl-Biomassekessel weisen daher meist eine sog. Rostfeuerung auf, bei der eine gewisse Menge an Biomasse, beispielsweise Holzpellets, Holz-Hackschnitzel oder andere feste, bevorzugt nachwachsende Brennstoffe, auf einem Rost im unteren Bereich eines vertikal ausgerichteten, sog. "stehenden" Heizkessels unter kontrollierter Luftzufuhr verbrennt. Ein solcher stehender Thermoöl-Biomassekessel mit Rostfeuerung ist beispielsweise aus der Druckschrift DE 2020 10005458 U1 bekannt. Bei einem derartigen stehenden Thermoöl-Biomassekessel wird das zu erhitzende Thermoöl in Rohrwendeln geführt, die in der Regel vertikal um den Brennraum im Heizkessel ausgerichtet sind und dabei einen vertikalen Kanal für die Rauchgase bilden. Durch die Rostfeuerung weisen solche Thermoöl-Biomassekessel eine große Masse auf und benötigen ein großes Bett an aktuell brennender Biomasse, weshalb ein solcher Thermoöl-Biomassekessel nur vergleichsweise langsam regelbar ist. Üblicherweise weisen solche Thermoöl-Biomassekessel eine Masse mit einer ausreichend großen Wärmespeicherkapazität auf, die nach Abschalten der Feuerung weiterhin auf die Rohrwendel strahlt und bei stehendem Thermoöl zu einer Überhöhung der Filmtemperatur des Thermoöls führen könnte. Die Filmtemperatur des Thermoöls im Biomassekessel darf jedoch nicht überschritten werden, um beispielsweise eine thermische Zersetzung des Thermoöls oder eine Rissbildung an den Wärmetauscherrohren zu verhindern.
  • Weiterhin kommt noch erschwerend hinzu, dass das Glutbett der brennenden Biomasse auch nach dem Abschalten des Thermoöl-Biomassekessels für einen zusätzlichen Wärmeeintrag sorgt.
  • Daher erfordert ein solcher stehender Thermoöl-Biomassekessel mit Rostfeuerung, insbesondere bei den thermischen Leistungen, die für gewerbliche oder industrielle Backofenanlagen benötigt werden, aus Sicherheitsgründen ein aktives Notkühlsystem. Dieses aktive Notkühlsystemverhindert bei einer Betriebsstörung der Anlage, z.B. bei einem Ausfall der Pumpe für die Zirkulation des Thermoöls, ein Überhitzen des Biomassekessels, was fatale Folgen haben könnte. Ein solches Notkühlsystem ist jedoch technisch aufwendig, kosten- und wartungsintensiv. Es umfasst in der Regel eine redundante Pumpenstation, einen Thermoöl/Wasser-Wärmetauscher, einen Wasserbehälter für den Wärmetauscher, um Wasser zu verdampfen und die Wärme abzuführen, entsprechende Leitungssysteme für Dampf, Wasser und Thermoöl, eine Notstromversorgung, eine Steuerung und weitere Komponenten. Das Notkühlsytem stoppt bei einer Betriebsstörung die Biomassezufuhr und kühlt mittels des wassergekühlten Wärmetauschers das Thermoöl und damit aktiv den Brennraum.
  • Es ist daher die Aufgabe der vorliegenden Erfindung einen Thermoöl-Biomassekessel bereitzustellen, der schneller regelbar ist, als Thermoöl-Biomassekessel nach dem Stand der Technik und insbesondere eine höhere Sicherheit gegen eine Überhitzung des Biomassekessels im Falle einer Betriebsstörung der Thermoölanlage bietet.
  • 3. Zusammenfassung der Erfindung
  • Die oben genannte Aufgabe wird gelöst durch einen Thermoöl-Biomassekessel gemäß Patentanspruch 1.
  • Insbesondere wird die o.g. Aufgabe gelöst durch einen Thermoöl-Biomassekessel aufweisend einen sich horizontal erstreckenden ersten Zug; mindestens eine sich horizontal erstreckende erste Rohrwendel zum Leiten von Thermoöl, wobei die erste Rohrwendel innerhalb des ersten Zugs angeordnet ist und einen sich horizontal ersteckenden Innenraum bildet; einen Biomassebrenner der eine horizontale Flamme erzeugt, die sich in den Innenraum der ersten Rohrwendel hinein erstreckt; wobei die erste Rohrwendel untere Rohrwendelabschnitte aufweist und zwischen zwei benachbarten unteren Rohrwendelabschnitten Lücken vorhanden sind, die so bemessen sind, dass Asche des Biomassebrenners hindurchfallen kann.
  • Aufgrund der liegenden Bauweise des Thermoöl-Biomassekessels und den und zwischen zwei benachbarten unteren Rohrwendelabschnitten vorhandenen Lücken zur Entaschung kann ein Biomassebrenner mit horizontaler Flamme verwendet werden. Ein solcher Biomassebrenner mit horizontaler Flamme besitzt kein großes brennendes Glutbett an Biomasse und im Betrieb auch keine großen erhitzten Massen, wie es etwa bei der Rostfeuerung der Fall ist. Daher ist ein Biomassebrenner mit horizontaler Flamme sehr schnell regelbar. Bei einem Stopp der Zufuhr an Biomasse ist der Wärmeeintrag in den Biomassekessel, verglichen mit übliche Rostfeuerungen, nur noch sehr gering. Daher kann bei einem liegenden Thermoöl-Biomassekessel mit Biomassebrenner mit horizontaler Flamme auf ein Notkühlsystem verzichtet werden. Entsprechend ist ein erfindungsgemäßer Thermoöl-Biomassekessel insgesamt besonders sicher, technisch weniger aufwendig, kostengünstiger und besonders wartungsarm.
  • Der Fachmann versteht, dass die Ausdrücke "horizontal" und "liegend" zur Abgrenzung zu vertikalen oder stehenden Heizkesseln und entsprechenden Flammen verwendet werden und keine mathematisch exakte Ausrichtung erforderlich ist. Entsprechend können sich die Elemente eines erfindungsgemäßen Thermoöl-Biomassekessels sich auch in einem Neigungswinkel von bis zu 45° zur Horizontalen befinden, um noch als "horizontal" zu gelten.
  • Durch die zwischen zwei benachbarten unteren Rohrwendelabschnitten vorhandenen Lücken, kann die bei der Verbrennung von Biomasse entstehende Asche nach unten durch die Rohrwendel hindurch fallen und unterhalb der Rohrwendel automatisch abgeführt werden. Der erfindungsgemäße Thermoöl-Biomassekessel kann daher im Dauerbrandbetrieb betrieben werden. Durch die Lücken zwischen zwei benachbarten unteren Rohrwendelabschnitten sinkt zwar die Effizienz der Wärmeübertragung des ersten Zugs, durch eine insgesamt größere Dimensionierung des ersten Zugs oder durch weitere nachgeschaltete Züge kann dieser thermische Nachteil jedoch wieder ausgeglichen werden.
  • Bevorzugt weist der erste Zug im unteren Bereich eine mechanische Ascheaustragung auf, die unterhalb der ersten Rohrwendel angeordnet ist. Durch die Anordnung der Ascheaustragung unterhalb der ersten Rohrwendel, wird die Befeuerung nicht beeinträchtig und eine mechanische Ascheaustragung sichergestellt. Diese ermöglicht einen kontinuierlichen Betrieb des Thermoöl-Biomassekessels.
  • Bevorzugt weist die Ascheaustragung eine Ascheschnecke auf. Eine Ascheschnecke fördert durch eine Drehbewegung die Asche entlang des ersten Zuges aus dem Biomassekessel heraus. Die Ascheschnecke ist verglichen mit anderen Lösungen sehr robust und mechanisch einfach, was ihre Zuverlässigkeit erhöht.
  • Bevorzugt verjüngt sich der erste Zug in Richtung des unteren Bereichs zur Ascheaustragung hin. Entsprechend kann eine einzige Ascheschnecke zum Austragen der gesamten Asche des ersten Zuges verwendet werden. Hierbei kann durch die Verjüngung des ersten Zuges die Ascheschnecke vergleichsweise klein dimensioniert werden.
  • Bevorzugt weist der Thermoöl-Biomassekessel weiterhin einen sich horizontal erstreckenden zweiten Zug auf, der hinsichtlich der Rauchgase strömungstechnisch dem ersten Zug nachgeschaltet ist und eine zweite Rohrwendel zum Leiten von Thermoöl aufweist, wobei die zweite Rohrwendel innerhalb des zweiten Zuges angeordnet ist.
  • Der zweite Zug nutzt die nach dem ersten Zug in den Rauchgasen vorhandene Wärme zur weiteren Beheizung des Thermoöls. Bevorzugt ist der zweite Zug hinsichtlich des Thermoöls vor den ersten Zug vorgeschaltet, um mit den kälteren Rauchgasen kälteres Thermoöl vorzuheizen, bevor es in erste Rohrwendel des ersten Zugs eintritt.
  • Bevorzugt weist die zweite Rohrwendel untere Rohrwendelabschnitte auf und zwischen zwei benachbarten unteren Rohrwendelabschnitten sind Lücken vorhanden, durch die Asche des Biomassebrenners hindurchfallen kann. Durch die Lücken zwischen benachbarten unteren Rohrwendelabschnitten kann, wie im ersten Zug, die Asche des Biomassebrenners durch die zweite Rohrwendel hindurchfallen und unterhalb der Rohrwendel automatisch abgeführt werden.
  • In einer alternativen Ausführungsform sind zwischen zwei benachbarten unteren Rohrwendelabschnitten der Rohrwendel des zweiten oder ggf. weiterer Züge, keine Lücken vorhanden. In dieser Ausführungsform kann der zweite, und ggf. vorhandene weitere Züge, ohne automatische Ascheaustragung bereitgestellt werden. Bei dieser Ausführungsform wird im ersten Zug bereits die meiste Asche abgeschieden und die nachfolgen Züge müssen nur von Zeit zu Zeit von Hand gereinigt werden. Aufgrund der höheren Rauchgasgeschwindigkeit im zweiten Zug oder den nachfolgenden Zügen kann die Asche auch bevorzugt aus dem Kessel herausgefördert werden und in nachfolgenden Systemen abgeschiedenen werden, beispielsweise in einem Zyklon und/oder einem Feinstaubfilter.
  • Bevorzugt weist der Thermoöl-Biomassekessel weiterhin einen oder mehrere weitere Züge auf, die dem zweiten Zug hinsichtlich der Rauchgase strömungstechnisch nachgeschaltet sind, und die entsprechend dem zweiten Zug aufgebaut sind. Durch einen dritten oder noch weitere Züge kann die Restwärme der Rauchgase noch weiter genutzt werden, um das Thermoöl aufzuheizen. Dies erfolgt bevorzugt im Gegenstromprinzip, wobei das kälteste Thermoöl des Rücklaufs in die Rohrwendel des letzten, also kältesten Zugs eingeleitet wird und dann durch die anderen Züge strömt, bis es beim ersten, heißesten Zug angelangt und in diesem auf die gewünschte Vorlauftemperatur erhitzt wird.
  • Bevorzugt weist der zweite Zug und weitere Züge jeweils eine Ascheaustragung auf, Damit können der zweite Zug und die weiteren Züge ebenfalls automatisch von der anfallenden Asche gereinigt werden.
  • Bevorzugt ist die Ascheaustragung des zweiten oder der weiteren Züge jeweils unterhalb oder innerhalb der jeweiligen Rohrwendel angeordnet.
  • Bevorzugt ist die Ascheaustragung jeweils als Ascheschnecke ausgebildet, die innerhalb der jeweiligen Rohrwendel angeordnet ist. Die Ascheschnecke könnte somit die Funktion des später erwähnten Innendorns mit übernehmen und die Rauchgasgeschwindigkeit weiter steigern. Bevorzugt müssten verschleißfeste Auflagen innerhalb der Rohrwendel für die Ascheschnecke vorgesehen werden, so dass diese sich innerhalb der Rohrwendel drehen kann, ohne die Rohrwendel durchzuschleifen.
  • Bevorzugt sind die Wendel-Durchmesser der zweiten Rohrwendel und/oder der weiteren Rohrwendel kleiner, als der Wendel-Durchmesser der ersten Rohrwendel, bevorzugt kleiner als 50% des Wendel-Durchmessers der ersten Rohrwendel, weiter bevorzugt kleiner als 30% des Wendel-Durchmessers der ersten Rohrwendel. Durch den kleineren Wendel-Durchmesser erhöht sich die Strömungsgeschwindigkeit in dem zweiten und den weiteren Zügen. Damit verbessert sich der Wärmeübergang vom Rauchgas auf das Thermoöl.
  • Bevorzugt bestehen die erste, zweite und/oder weitere Rohrwendel jeweils aus zwei oder mehr separaten Rohrwendeln mit unterschiedlichem Durchmesser innerhalb eines Zuges, die ineinander geschraubt sind und deren obere Rohrwendelabschnitte zueinander horizontal ausgerichtet sind, wobei deren untere Rohrwendelabschnitte jeweils Lücken zwischen benachbarten Rohrwendelabschnitten aufweisen, durch die Asche des Biomassebrenners hindurchfallen kann. Durch diese Bauweise der Rohrwendel verbessert sich insbesondere der strahlungsbedingte Wärmeübergang der Flamme des Biomassebrenners auf das Thermoöl. Die Strahlung der Flamme trifft in radialer Richtung stets auf einen Rohrwendelabschnitt und kann durch diesen als Wärme absorbiert werden. Dennoch kann im unteren Bereich der Rohrwendel Asche des Biomassebrenners durch die Rohrwendel hindurchfallen und darunter zur Reinigung des Zugs automatisch abtransportiert werden. Bei der Verwendung entsprechender Rohrwendel im zweiten und in weiteren Zügen verbessert sich der Wärmeübergang ebenfalls, da verglichen mit einer einfach gewendelten Rohrwendel dem Rauchgas eine größere Wärmetauscheroberfläche zur Verfügung steht. Durch die Verwendung von zwei oder mehr (drei, vier, fünf, etc.) weiteren Rohrwendel kann zudem bei einer Parallelschaltung der Rohrwendel der Druckverlust für das durchströmende Thermoöl reduziert werden.
  • Bevorzugt liegen die oberen Rohrwendelabschnitte der zwei oder mehr separaten Rohrwendel horizontal aneinander an. Im oberen Bereich der Rohrwendel ergeben sich daher keine Lücken zwischen den Rohrwendelabschnitten, was ebenfalls den Wärmeübergang verbessert.
  • Bevorzugt bilden die Rohrwendel des zweiten Zugs oder die Rohrwendel von weiteren Zügen jeweils einen zweiten oder weiteren Innenraum aus und der Thermoöl-Biomassekessel weist weiterhin einen ersten oder weiteren Innendorn auf, der in dem zweiten oder weiteren Innenraum angeordnet ist. Der erste und/oder die weiteren Innendorne verengen den Strömungsquerschnitt des Rauchgases im zweiten oder den weiteren Zügen, um dort die Strömungsgeschwindigkeit zu erhöhen und den Wärmeübergang zu verbessern.
  • Bevorzugt ist der erste Innendorn und/oder die weiteren Innendorn aus dem Biomasse-Thermoölkessel herausnehmbar gestaltet sind. Damit können die Innendorne zur leichteren Reinigung des entsprechenden Zugs aus diesem entnommen werden.
  • Bevorzugt sind die Innendorne zylinderförmig ausgestaltet und sind an ihren Enden strömungsgünstig angeformt. Beispielsweise könnten die Innendorne kegelförmige oder ellipsoide Kopfenden aufweisen.
  • Bevorzugt weist der Thermoöl-Biomassekessel weiterhin eine oder mehrere Druckluftlanzen auf, welche in den Zügen angeordnet sind, um die Asche des Biomassebrenners durch die Lücken zu fördern. Die in den Zügen anfallende Asche kann mit den Druckluftlanzen von Zeit zu Zeit durch die Lücken in den Rohrwendeln geblasen werden, um dann aus den Zügen durch die Ascheaustragung aus dem Zug abgeführt zu werden.
  • Bevorzugt weist der Thermoöl-Biomassekessel weiterhin einen Thermoöl-Rauchgas-Wärmetauscher auf, der hinsichtlich der Rauchgase strömungstechnisch dem ersten Zug nachgeschaltet ist und der gerade Glatt- oder Rippenrohre aufweist. Ein solcher Glattrohr- oder Rippenrohrwärmetauscher kann den zweiten oder die weiteren Züge ersetzen oder zusätzlich zu diesen Zügen angeordnet sein. Er weist gegenüber einer Rohrwendel eine deutlich größere Wärmeübertragungsfläche auf. Nachteilig könnte eine schnellere Verschmutzung mit Asche und höhere Herstellkosten sein. Der Thermoöl-Rauchgas-Wärmetauscher weist Glattrohre oder Rippenrohre auf, wobei die Rippenrohre gegenüber Glattrohren eine vergrößerte Wärmetauscheroberfläche aufweisen. Glattrohre lassen sich hingegen leichter reinigen als Rippenrohre. Das Rauchgas wird durch eine Kammer des Thermoöl-Rauchgas-Wärmetauschers geleitet, in der sich ein Bündel an im Wesentlichen geraden Glatt- oder Rippenrohren befindet. In der Kammer können weiterhin Wartungs- oder Reinigungsöffnungen und Mittel zu automatischer Abreinigung vorgesehen werden.
  • Bevorzugt weist der erste Zug eine Länge von 800 mm bis 4000 mm auf.
  • Bevorzugt weist der Thermoöl-Biomassekessel eine thermische Leistung von mehr als 100 kW, bevorzugt von 100 kW bis 500 kW auf. Der Thermoöl-Biomassekessel ist daher für gewerbliche Backofenanlagen geeignet.
  • Bevorzugt ist die erste und/oder die zweite Rohrwendel und/oder weitere Rohrwendel für Thermoöltemperaturen von 300 °C bis 400 °C ausgelegt.
  • 4. Kurze Beschreibung der Figuren
  • Im Folgenden werden bevorzugte Ausführungsformen der vorliegenden Erfindung anhand der beigefügten Figuren dargestellt. Dabei zeigen:
  • Fig. 1
    eine dreidimensionale Schnittansicht eines liegenden Thermoölkessels mit Öloder Gasfeuerung nach dem Stand der Technik;
    Fig. 2
    eine schematische Querschnittansicht einer ersten Ausführungsform eines Thermoöl-Biomassekessels;
    Fig. 3
    eine schematische Längsschnittansicht des Thermoöl-Biomassekessels der Fig. 2;
    Fig. 4
    eine schematische Teil-Längsschnittansicht einer zweiten Ausführungsform eines Thermoöl-Biomassekessels;
    Fig. 5
    eine schematische Querschnittansicht von Rohrwendeln der Thermoöl-Biomassekessels der Fig. 4;
    Fig. 6
    eine schematische Querschnittansicht einer dritten Ausführungsform eines Thermoöl-Biomassekessels; und
    Fig. 7
    eine schematische Längsschnittansicht des Thermoöl-Biomassekessels der Fig. 6.
    5. Detaillierte Beschreibung bevorzugter Ausführungsformen
  • Im Folgenden werden bevorzugte Ausführungsformen der vorliegenden Erfindung mit Bezug auf die beigefügten Figuren im Detail beschrieben.
  • Die Figuren 2 und 3 zeigen eine erste Ausführungsform eines Thermoöl-Biomassekessels 1 mit drei Zügen 10, 50, 60. Die Züge 10, 50, 60 erstrecken sich im Wesentlichen horizontal, so dass der Thermoöl-Biomassekessel 1 in einer liegenden Bauweise ausgeführt ist. Ein erster Zug 10 erstreckt sich von der Stirnseite 3 des Thermoöl-Biomassekessels 1 bis zur Rückseite 4 desselben. Der erste Zug 10 kann eine Länge von 800 mm bis 4000 mm aufweisen. Der Thermoöl-Biomassekessel 1 weist bevorzugt eine thermische Leistung von mehr als 100 kW, bevorzugt von 100 kW bis 500 kW auf.
  • Der erste Zug 10 weist mindestens eine sich horizontal erstreckende erste Rohrwendel 20 auf, die Thermoöl 2 durch den ersten Zug 10 leitet, um dieses aufzuheizen. Die erste Rohrwendel 20 ist im Wesentlichen freiliegend, um eine möglichst große wärmeübertragende Oberfläche auszubilden. Die erste Rohrwendel 20 ist innerhalb des ersten Zugs 10, bevorzugt im Bereich der Wandung des ersten Zugs 10 angeordnet und bildet einen sich horizontal ersteckenden Innenraum 22 aus. Ein Biomassebrenner 30 ist an der Stirnseite 3 angeflanscht, um Biomasse, bevorzugt Holzpellets oder Holz-Hackschnitzel, unter kontrollierter Luftzufuhr zu verbrennen. Hierbei entsteht eine im Wesentlichen horizontale Flamme 32, die sich in den Innenraum 22 der ersten Rohrwendel 20 hinein erstreckt. Bevorzugt umgibt die erste Rohrwendel 20 die Flamme daher im Wesentlichen auf ganzer Länge um die von ihr erzeugte Strahlungswärme zu absorbieren und dem Thermoöl zuzuführen. Zusätzlich wird die erste Rohrwendel 20 durch die vorbeiströmenden Rauchgase auch mittels Konvektion erhitzt.
  • Am Ende des ersten Zuges 10 werden die Rauchgase um 180° umgelenkt und strömen in einen zweiten Zug 50 hinein, wie mit Pfeil 42 dargestellt. Der zweite Zug 50 dient der weiteren Übertragung von Wärme der Rauchgase auf das Thermoöl 2. Entsprechend weist der zweite Zug 50 eine zweite Rohrwendel 52 auf, die innerhalb des zweiten Zugs 50 angeordnet ist, bevorzugt im Bereich der Wandung des zweiten Zugs 50. Die zweite Rohrwendel 52 ist im Wesentlichen freiliegend, um eine möglichst große wärmeübertragende Oberfläche auszubilden. Hierbei kann vorteilhaft sein, wenn die Wandung des zweiten Zugs 50, also ein Mantelrohr, einen Abstand zur zweiten Rohrwendel 52 hat, so dass auch gleichzeitig Rauchgas durch diesen Ringspalt strömen kann. Dadurch kann die Oberfläche der zweiten Rohrwendel 52 noch besser zur Wärmeübertragung ausgenutzt werden. Bei Bedarf könnte ein Innendorn 55, wie er unten beschrieben ist, die Geschwindigkeiten innerhalb und außerhalb der zweiten Rohrwendel 52 angleichen. Die Rauchgase durchströmen den zweiten Zug 50 von hinten nach vorne, also von der Rückwand 4 zur Stirnwand 3 des Biomassekessels 1. Der zweite Zug 50 weist im Vergleich zum ersten Zug 10 einen geringeren Querschnitt auf so dass im zweiten Zug 50 die Strömungsgeschwindigkeit des Rauchgases wesentlich höher ist, als im ersten Zug 10. Dies erhöht den Wärmeübergang auf das Thermoöl 2. Bevorzugt ist daher der Wendel-Durchmesser D2 der zweiten Rohrwendel 52 wesentlich kleiner als der Durchmesser D1 der ersten Rohwendel 20 und ist bevorzugt kleiner als 50% oder kleiner als 30% des Wendel-Durchmessers D1 der ersten Rohrwendel 20.
  • Am Ende des zweiten Zugs 50 werden die Rauchgase wiederum um 180° umgelenkt und strömen in einen dritten Zug 60 ein, der die Rauchgase wiederum weiter abkühlt und die Wärme dem Thermoöl 2 zuführt. Dies wird durch Pfeil 44 in Fig. 2 angedeutet. Der dritte Zug 60 weist eine dritte Rohwendel 62 auf, die einen geringeren Durchmesser aufweist, als die erste Rohrwendel 20. Die dritte Rohrwendel 62 kann entsprechend der zweiten Rohrwendel 52 dimensioniert sein. Bevorzugt ist der Wendel-Durchmesser der dritten Rohrwendel 52 wesentlich kleiner als der Durchmesser D1 der ersten Rohwendel 20 und ist bevorzugt kleiner als 50% oder kleiner als 30% des Wendel-Durchmessers D1 der ersten Rohrwendel 20.
  • Das kälteste Thermoöl 2 des Rücklaufs einer Thermoölanlage (nicht dargestellt) strömt in die Rohrwendel 62 des dritten, kältesten Zugs 60 ein, danach durch die Rohrwendel 52 des zweiten, wärmeren Zugs 50 und dann durch die Rohrwendel 20 des ersten Zuges 10, der am heißesten ist. Dadurch wird das Thermoöl 2 im Gegenstromprinzip auf die gewünschte Vorlauftemperatur der Thermoölanlage erhitzt.
  • Am Ende des dritten Zugs 60 können die Rauchgase zur weiteren Abkühlung in weitere Züge (nicht dargestellt) geleitet werden, oder die Rauchgase verlassen den Thermoöl-Biomassekessel 1 durch einen Rauchgasabgang 46 der in einen Kamin (nicht dargestellt) mündet.
  • Der Thermoöl-Biomassekessel 1 weist eine automatische Ascheaustragung 40, 51, 61 auf, die bevorzugt in Form einer elektrisch angetriebenen Ascheschnecke, jeweils in einem Bereich 12 unterhalb der Rohwendel 20, 52, 62 angeordnet ist. Die Ascheschnecke fördert die Asche zu einer Zellradschleuse. Von dort wird die Asche zu einem Auffangbehälter transportiert oder fällt direkt in einen solchen. Die Zellradschleuse dient der Abdichtung des Feuerraums gegen die Atmosphäre bzw. das Kesselhaus. Die Züge 20, 50, 60 sind in Richtung ihres unteren Bereichs 12 zur Ascheaustragung 40 hin verjüngt, um einen Aschekasten oder Trichter auszubilden und die Asche dort zu konzentrieren. Asche, die sich im jeweiligen Zug aus den Rauchgasen absetzt, kann durch die jeweilige Rohrwendel 20, 52, 62 gravitationsbedingt nach unten fallen oder mittels pneumatischer Druckluftlanzen 27, 57, 67 (in den Figuren 3 und 7 nicht dargestellt) durch von Zeit zu Zeit eingebrachte Druckluft nach unten geblasen werden. Eine Abreinigung der Rohrwendel 20, 52, 62 mittels Schall ist ebenfalls möglich. Hierzu weisen die Rohrwendel 20, 52, 62 untere Rohrwendelabschnitte 24, 26, 54, 56 auf, die voneinander beabstandet sind, so dass sie Lücken 28, 58 aufweisen, durch die Asche hindurchfallen kann, wie durch Pfeil 34 angedeutet. Der Abstand A1 der unteren Rohrwendelabschnitte 24, 26 der ersten Rohrwendel 20 beträgt bevorzugt 10 mm bis 100 mm und kann beispielsweise dem Rohrdurchmesser d des Wärmetauscherrohres der ersten Rohrwendel 20 entsprechen. Der Abstand A2 der unteren Rohrwendelabschnitte der zweiten 52 und dritten Rohrwendel 62 kann ebenfalls bevorzugt 10 mm bis 100 mm betragen und kann beispielsweise dem Rohrdurchmesser des Wärmetauscherrohres der zweiten oder dritten Rohrwendel 52, 62 entsprechen.
  • In gewissen Abständen um die Ascheschnecke herum angeordnete Trennbleche (nicht dargestellt) können verhindern, dass sich die Rauchgase über den Aschekasten/Trichter einen strömungsgünstigeren Weg suchen. Im unteren Bereich der Rohrwendel 20, 52, 62 soll sich jedoch die Asche absetzen können, weshalb die Trennbleche mindestens bis zur Unterkante der Rohrwendel geführt werden sollten.
  • In einer weiteren bevorzugten Ausführungsform können die Rohrwendel 52, 62 des zweiten 50 oder der weiteren Züge 60 auch ohne Lücken und ohne automatische Ascheaustragung gebaut werden. Bei dieser Ausführungsform wird im ersten Zug 20 bereits die meiste Asche abgeschieden, so dass die nachfolgen Züge 50, 60 nur von Zeit zu Zeit von Hand gereinigt werden müssen. Es ist ebenfalls möglich, dass aufgrund einer höheren Rauchgasgeschwindigkeit in den nachfolgenden Zügen 50, 60 die im Rauchgas verbliebene Asche aus dem Thermoöl-Biomassekessel 1 herausgefördert wird und in nachfolgenden Systemen abgeschiedenen wird, beispielsweise in einem Zyklon und/oder einem Feinstaubfilter (nicht dargestellt).
  • In einer anderen bevorzugten Ausführungsform (nicht dargestellt) ist die Ascheaustragung der nachfolgenden Züge 50, 60 innerhalb der jeweiligen Rohrwendel 52, 62 angeordnet und bevorzugt als drehbare Ascheschnecke ausgebildet.
  • Neben den automatischen Ascheaustragungen 40, 51, 61 ist der Thermoöl-Biomassekessel 1 mit Reinigungsluken 5, 6, 8 an jedem Zug 10, 50, 60 ausgestattet, die leicht zu öffnen sind. Damit können die Züge 10, 50, 60 auch manuell leicht gereinigt oder inspiziert werden.
  • Die erste 20 und/oder zweite 52 und dritte Rohrwendel 62 bestehen bevorzugt aus einem korrosionsbeständigen Stahl und sind für Thermoöltemperaturen von 300 °C bis 400 °C ausgelegt.
  • Die Rohrwendel 20, 52, 62 der ersten Ausführungsform sind bevorzugt eingängig ausgeführt. Sie bestehen daher jeweils aus einem einzigen gewendelten Wärmetauscherrohr, das so mit Abstand A1, A2 gebogen ist, dass die Lücken 28, 58 für die automatische Ascheaustragung entstehen.
  • In einer anderen Ausführungsform könnten die Rohrwendel 20, 52, 62 zwei- oder mehrgängig ausgeführt sein, um den Druckverlust des durchströmenden Thermoöls zu verringern. Insbesondere bei den zweiten oder dritten Zügen 50, 60 könnten die Rohrwendel zwei- oder mehrgängig bereitgestellt sein, da aufgrund des geringeren Wendeldurchmessers kleine Rohrdurchmesser genommen werden müssen, die kleinere Biegeradien ermöglichen aber einen höheren Druckverlust aufweisen. Dabei kann man zweigängige Rohrwendel auch so fertigen, dass zwischen benachbarten Rohrwendelabschnitten Lücken entstehen oder nicht.
  • Die Rohrwendel 52 des zweiten Zugs 50 oder die Rohrwendel 62 des dritten oder weiteren Zügen 60 bilden ebenfalls jeweils einen zweiten 53, dritten 63 oder weiteren Innenraum aus. In diesen Innenräumen 53, 63 können herausnehmbare Innendorne 55, 65 (in den Figuren 3 und 7 nicht dargestellt) angeordnet sein, um den Strömungsquerschnitt für die Rauchgase in den Zügen 50, 60 zu verringern, einen heißen Strömungskern zu vermeiden und die Rauchgase möglichst nahe an den Rohrwendeln 52, 62 entlangströmen zu lassen.
  • Die Figuren 4 und 5 zeigen eine zweite Ausführungsform des Thermoöl-Biomassekessels 1 bei der die Rohrwendel 70, 80 im ersten Zug 10 - und ggf. in den weiteren Zügen 50, 60 - zweigängig ausgeführt ist, wobei ein Gang einen geringeren Wendeldurchmesser aufweist als der andere. Ansonsten entspricht die zweite Ausführungsform der oben beschriebenen ersten Ausführungsform des Thermoöl-Biomassekessels 1. Die Rohrwendel 70, 80 bestehen nun aus zwei ineinander gedrehten Rohrwendeln 70, 80, die unterschiedliche Wendel-Durchmesser D3, D4 aufweisen. Im oberen Bereich der Rohrwendel 70, 80, also über der Flamme 32, werden die Rohrwendel 70, 80 horizontal zueinander ausgerichtet, so dass im unteren Bereich zwischen zwei benachbarten Rohrwendelabschnitten 72, 74, 82, 84 jeweils Lücken 76, 86 für die Entaschung entstehen, wie durch die Pfeile 34 angedeutet. Die benachbarten unteren Rohrwendelabschnitte 72, 74, 82, 84 sind bevorzugt um einen Abstand A3 voneinander beabstandet, der dem jeweiligen Rohrdurchmesser d der Wärmetauscherrohre der Rohrwendel 70, 80 entspricht. Auf diese Weise werden die Lücken 76, 86 nicht auf Kosten der Übertragungsfläche für die Wärmestrahlung der Flamme 32 erzeugt, denn Übertragungsfläche wird in dieser Hinsicht maximiert. Die Wärmestrahlung der Flamme 32 trifft hierbei in radialer Richtung stets auf eine Rohrwendel 70, 80, obwohl Lücken 76, 86 für die automatische Ascheabfuhr vorhanden sind. Die oberen Rohrwendelabschnitte 75, 85 der zwei separaten Rohrwendel 70, 80 liegen bevorzugt horizontal aneinander an, um ebenfalls für die Wärmestrahlung der Flamme 32 keine Lücken zu bieten. Fertigungstechnisch werden die Rohrwendel 70, 80 unabhängig voneinander gewickelt und anschließend ineinander gedreht, so dass sie im oberen Bereich horizontal zueinander ausgerichtet sind.
  • Das Prinzip dieser zweiten Ausführungsform lässt sich auch auf drei-, vier-, fünf- oder allgemein mehrgängige Rohrwendel übertragen, wobei die Rohrwendel mindestens zwei unterschiedliche Wendeldurchmesser aufweisen, so dass im unteren Bereich der Rohrwendel Lücken für eine Entaschung ausgebildet werden.
  • Die Figuren 6 und 7 zeigen eine weitere Ausführungsform eines Thermoöl-Biomassekessels 1. Diese Ausführungsform entspricht im Wesentlichen der Ausführungsform des Thermoöl-Biomassekessels 1 der Figuren 2 und 3, wobei jedoch der zweite und dritte Zug 50, 60 durch einen Thermoöl-Rauchgas-Wärmetauscher 90 ersetzt wurde. Der Thermoöl-Rauchgas-Wärmetauscher 90 besteht im Wesentlichen aus einem Bündel an Glatt- oder Rippenrohren 92, die in einer Kammer angeordnet sind, die von den Rauchgasen durchströmt wird. Hierbei werden die Glatt- oder Rippenrohre 92 von den Rauchgasen umströmt. Die Glatt- oder Rippenrohre 92 sind im Wesentlichen gerade und in der Kammer horizontal angeordnet. Sie werden bevorzugt senkrecht zu ihrer Längsrichtung mit den Rauchgasen angeströmt und von Thermoöl 2 durchströmt. Hierbei können die Glatt- oder Rippenrohre 92 untereinander strömungstechnisch in Reihe oder parallel zueinander oder in Mischformen verschaltet sein, um einen optimalen Wärmeübergang von den Rauchgasen auf das Thermoöl 2 zu gewährleisten. Wie in den Fig. 6 und 7 dargestellt, ist der Thermoöl-Rauchgas-Wärmetauscher 90 bevorzugt parallel zum ersten Zug 50 und oberhalb dessen angeordnet. Damit ergibt sich eine kurze kompakte Bauform des Thermoöl-Biomassekessels 1 und eine Verringerung des Wärmeverlusts.
  • Weiterhin können mehrere Thermoöl-Rauchgas-Wärmetauscher 90 hintereinander oder übereinander angeordnet werden, die dann nacheinander durchströmt werden.
  • Die Rauchgase, die den ersten Zug 10 durchströmt haben, werden in den Thermoöl-Rauchgas-Wärmetauscher 90 eingeleitet, wie durch den Pfeil 42 angedeutet. Im Thermoöl-Rauchgas-Wärmetauscher 90 werden die Rauchgase weiter abgekühlt und geben ihre Wärme an die Glatt- oder Rippenrohre 92 ab. Nach dem Durchströmen des Thermoöl-Rauchgas-Wärmetauschers 90 werden die stark abgekühlten Rauchgase über den Rauchgasabgang 46 aus dem Thermoöl-Biomassekessels 1 in einen geeigneten Kamin (nicht dargestellt) eingeleitet und abgeführt.
  • Der Thermoöl-Rauchgas-Wärmetauscher 90 kann bei Bedarf eine manuelle oder automatische Abreinigung aufweisen. Hierzu weist der Thermoöl-Rauchgas-Wärmetauscher 90 an geeigneten Stellen Reinigungsöffnungen auf, um das Innere des Thermoöl-Rauchgas-Wärmetauschers 90 von Asche manuell reinigen zu können. Weiterhin kann der Thermoöl-Rauchgas-Wärmetauscher 90 eine automatische Ascheaustragung 94 aufweisen, die beispielsweise rotierende Ascheschnecken, pneumatischer Lanzen für von Zeit zu Zeit eingebrachte Druckluft und/oder eine Abreinigung mittels Schall aufweist.
  • Bezugszeichenliste:
  • 1
    Thermoöl-Biomassekessel
    2
    Thermoöl
    5, 6, 8
    Reinigungsluken
    10
    erster Zug
    12
    unterer Bereich
    20
    erste Rohrwendel
    24, 26
    untere Rohrwendelabschnitte
    27
    Druckluftlanze
    28
    Lücken
    22
    Innenraum
    30
    Biomassebrenner
    32
    Flamme
    34
    Asche
    40
    Ascheaustragung
    42, 44
    Pfeil
    46
    Rauchgasabgang
    50
    zweiter Zug
    51
    Ascheaustragung
    52
    zweite Rohrwendel
    53
    zweiter Innenraum
    55
    erster Innendorn
    54, 65
    untere Rohrwendelabschnitte
    57
    Druckluftlanze
    58
    Lücken
    60
    dritter Zug
    61
    Ascheaustragung
    62
    dritte Rohrwendel
    63
    dritter Innenraum
    65
    zweiter Innendorn
    67
    Druckluftlanze
    70
    Rohrwendel
    72, 74
    untere Rohrwendelabschnitte
    75
    obere Rohrwendelabschnitte
    76
    Lücken
    80
    Rohrwendel
    82, 84
    unterer Rohrwendelabschnitte
    85
    obere Rohrwendelabschnitte
    86
    Lücken
    90
    Thermoöl-Rauchgas-Wärmetauscher
    92
    Glatt- oder Rippenrohre
    94
    Ascheaustragung
    100
    Thermoölkessel
    110
    erster Zug
    120
    erste Rohrwendel
    122
    Auslass
    123
    Einlass
    130
    Öl- oder Gasbrenner
    132
    Flamme
    140
    zweite Rohrwendel
    150
    zweiter Zug
    160
    dritter Zug
    170
    Außenwand
    172
    Stirnwand
    174
    Rauchgasauslass
    D1
    Wendel-Durchmesser der ersten Rohrwendel
    D2
    Wendel-Durchmesse der zweiten Rohrwendel oder weiterer Rohrwendel
    D3, D4
    unterschiedliche Wendeldurchmesser der separaten Rohrwendel der zweigängigen ersten Rohrwendel
    d
    Rohrdurchmesser

Claims (15)

  1. Thermoöl-Biomassekessel (1) aufweisend:
    a. einen sich horizontal erstreckenden ersten Zug (10);
    b. mindestens eine sich horizontal erstreckende erste Rohrwendel (20) zum Leiten von Thermoöl (2), wobei die erste Rohrwendel (20) innerhalb des ersten Zugs (10) angeordnet ist und einen sich horizontal ersteckenden Innenraum (22) bildet;
    c. einen Biomassebrenner (30), der eine horizontale Flamme (32) erzeugt, die sich in den Innenraum (22) der ersten Rohrwendel (20) hinein erstreckt;
    d. wobei die erste Rohrwendel (20) untere Rohrwendelabschnitte (24, 26) aufweist und zwischen zwei benachbarten unteren Rohrwendelabschnitten (24, 26) Lücken (28) vorhanden sind, die so bemessen sind, dass Asche (34) des Biomassebrenners (30) hindurchfallen kann.
  2. Thermoöl-Biomassekessel (1) gemäß Anspruch 1, wobei der erste Zug (10) im unteren Bereich (12) eine mechanische Ascheaustragung (40) aufweist, die unterhalb der ersten Rohrwendel (20) angeordnet ist.
  3. Thermoöl-Biomassekessel (1) gemäß Anspruch 2, wobei die Ascheaustragung (40) eine Ascheschnecke aufweist.
  4. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 1 bis 3, wobei sich der erste Zug (10) in Richtung des unteren Bereichs (12) zur Ascheaustragung (40) hin verjüngt.
  5. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 1 bis 4, weiterhin aufweisend einen sich horizontal erstreckenden zweiten Zug (50), der
    a. hinsichtlich der Rauchgase strömungstechnisch dem ersten Zug (10) nachgeschaltet ist; und
    b. eine zweite Rohrwendel (52) zum Leiten von Thermoöl (2) aufweist, wobei die zweite Rohrwendel (52) innerhalb des zweiten Zuges (50) angeordnet ist.
  6. Thermoöl-Biomassekessel (1) gemäß Anspruch 5, wobei die zweite Rohrwendel (52) untere Rohrwendelabschnitte (54, 56) aufweist und zwischen zwei benachbarten unteren Rohrwendelabschnitten (54, 56) Lücken (58) vorhanden sind, durch die Asche (34) des Biomassebrenners (30) hindurchfallen kann.
  7. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 5 oder 6, weiterhin aufweisend einen oder mehrere weitere Züge (60), die dem zweiten Zug (50) hinsichtlich der Rauchgase strömungstechnisch nachgeschaltet sind, und die entsprechend dem zweiten Zug (50) aufgebaut sind.
  8. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 5 bis 7, wobei der zweite Zug (50) und weitere Züge (60) jeweils eine Ascheaustragung (51, 61) aufweisen, die jeweils unterhalb oder innerhalb der jeweiligen Rohrwendel (52, 62) angeordnet ist.
  9. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 5 bis 8, wobei die Wendel-Durchmesser (D2) der zweiten Rohrwendel (52) und/oder der weiteren Rohrwendel (62) kleiner sind, als der Wendel-Durchmesser (D1) der ersten Rohrwendel (20), bevorzugt kleiner sind als 50% des Wendel-Durchmessers (D1) der ersten Rohrwendel (20), weiter bevorzugt kleiner sind als 30% des Wendel-Durchmessers (D1) der ersten Rohrwendel (20).
  10. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 1 bis 9, wobei die erste (20), zweite (52) und/oder weitere Rohrwendel (62) jeweils aus zwei oder mehr separaten Rohrwendeln (70, 80) mit unterschiedlichem Wendel-Durchmesser (D3, D4) innerhalb eines Zuges bestehen, die ineinander geschraubt sind, wobei deren obere Rohrwendelabschnitte (75, 85) zueinander horizontal ausgerichtet sind und deren untere Rohrwendelabschnitte (72, 74, 82, 84) jeweils Lücken (76, 86) zwischen benachbarten Rohrwendelabschnitten (72, 74, 82, 84) aufweisen, durch die Asche (34) des Biomassebrenners (30) hindurchfallen kann.
  11. Thermoöl-Biomassekessel (1) gemäß Anspruch 10, wobei die oberen Rohrwendelabschnitte (75, 85) der zwei oder mehr separaten Rohrwendel (70, 80) horizontal aneinander anliegen.
  12. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 5 bis 11, wobei die Rohrwendel (52) des zweiten Zugs (50) oder die Rohrwendel (62) von weiteren Zügen (60) jeweils einen zweiten oder weiteren Innenraum (53) ausbilden und der Thermoöl-Biomassekessel (1) weiterhin einen ersten (55) oder weiteren Innendorn (65) aufweist, der in dem zweiten (53) oder weiteren Innenraum (63) angeordnet ist.
  13. Thermoöl-Biomassekessel (1) gemäß Anspruch 12, wobei der erste (55) und/oder der zweite Innendorn (65) aus dem Thermoöl-Biomassekessel (1) herausnehmbar gestaltet sind.
  14. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 1 bis 13, weiterhin aufweisend eine oder mehrere Druckluftlanzen (27, 57, 67), welche in den Zügen (10, 50, 60) angeordnet sind, um die Asche des Biomassebrenners (30) durch die Lücken (28, 58) zu fördern.
  15. Thermoöl-Biomassekessel (1) gemäß einem der Ansprüche 1 bis 14, weiterhin aufweisend einen Thermoöl-Rauchgas-Wärmetauscher (90), der hinsichtlich der Rauchgase strömungstechnisch dem ersten Zug (10) nachgeschaltet ist und der gerade Glatt- oder Rippenrohren (92) aufweist.
EP22187802.8A 2022-07-29 2022-07-29 Thermoöl-biomassekessel Pending EP4311981A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22187802.8A EP4311981A1 (de) 2022-07-29 2022-07-29 Thermoöl-biomassekessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22187802.8A EP4311981A1 (de) 2022-07-29 2022-07-29 Thermoöl-biomassekessel

Publications (1)

Publication Number Publication Date
EP4311981A1 true EP4311981A1 (de) 2024-01-31

Family

ID=83081195

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22187802.8A Pending EP4311981A1 (de) 2022-07-29 2022-07-29 Thermoöl-biomassekessel

Country Status (1)

Country Link
EP (1) EP4311981A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006163A1 (de) * 1978-06-14 1980-01-09 PPT Pyrolyse- und Prozessanlagentechnik AG Verfahren und Vorrichtungen zur Rauchgasführung in einem Wärmekessel
DE202006003078U1 (de) * 2006-02-23 2006-05-04 Hochschule Bremen Feststoffverbrennungsvorrichtung mit Brennwertnutzung
CN204630040U (zh) * 2015-05-20 2015-09-09 杨东英 盘管吊胆式热水、蒸汽锅炉
CN210035473U (zh) * 2019-05-05 2020-02-07 浙江布莱蒙农业科技股份有限公司 一种生物质燃烧器及猪粪低成本处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0006163A1 (de) * 1978-06-14 1980-01-09 PPT Pyrolyse- und Prozessanlagentechnik AG Verfahren und Vorrichtungen zur Rauchgasführung in einem Wärmekessel
DE202006003078U1 (de) * 2006-02-23 2006-05-04 Hochschule Bremen Feststoffverbrennungsvorrichtung mit Brennwertnutzung
CN204630040U (zh) * 2015-05-20 2015-09-09 杨东英 盘管吊胆式热水、蒸汽锅炉
CN210035473U (zh) * 2019-05-05 2020-02-07 浙江布莱蒙农业科技股份有限公司 一种生物质燃烧器及猪粪低成本处理系统

Similar Documents

Publication Publication Date Title
DE976588C (de) Dampferzeuger mit Schmelzkammerfeuerung
DE2808213C2 (de) Rekuperativkoksofen sowie Verfahren zum Betreiben desselben
DE60209759T2 (de) Verbrennungsvorrichtung
EP3789671B1 (de) Biomasse-heizanlage mit einer rezirkulationseinrichtung mit optimierter rauchgasbehandlung
EP3789673B1 (de) Biomasse-heizanlage mit optimierter rauchgasbehandlung
EP3159646A1 (de) Wärmeübertrager
DE1802196A1 (de) Brennereinheit fuer Heizkoerper
WO2008122279A2 (de) Feststoffbrenner und verfahrensweise seiner kühlung
EP4311981A1 (de) Thermoöl-biomassekessel
EP0128463B1 (de) Raumheizgerät für Kleinräume
DE102010006892B4 (de) Vorrichtung zur Erhitzung von Erdgas
EP2011972B1 (de) Anlage, Verfahren und Vorrichtung zur Erzeugung eines überhitzten Mediums
AT12668U1 (de) Wärmetauscher für den rauchgaskanal einer feuerung
DE112018007168T5 (de) Heißwassererhitzer vom Speichertyp mit Wirbelführungsteil
DE2534092A1 (de) Liegender kessel fuer feste brennstoffe
DE2943590C2 (de)
EP0275401A2 (de) Heizkessel und Verfahren zum Betreiben des Heizkessels
AT520068B1 (de) Heizeinrichtung
DE202010005458U1 (de) Backofensystem mit einem Biomassebrenner
DE102019215002A1 (de) Dampferzeuger
DE10055053C1 (de) Wärmetauscher
DE3207433A1 (de) Wasserrohrkessel mit rostfeuerung
EP0079980B1 (de) Warmwasser-, Heisswasser- oder Dampfkessel mit Gas- oder Ölfeuerung
DE2053805A1 (de) Rekuperativ-Brenner
AT127482B (de) Dampferzeuger oder Wärmeaustauscher.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR