EP4376856A1 - Combination radioimmunotherapy and cd47 blockade in the treatment of cancer - Google Patents
Combination radioimmunotherapy and cd47 blockade in the treatment of cancerInfo
- Publication number
- EP4376856A1 EP4376856A1 EP22850033.6A EP22850033A EP4376856A1 EP 4376856 A1 EP4376856 A1 EP 4376856A1 EP 22850033 A EP22850033 A EP 22850033A EP 4376856 A1 EP4376856 A1 EP 4376856A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cancer
- antibody
- radiolabeled
- μci
- antigen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 300
- 201000011510 cancer Diseases 0.000 title claims description 176
- 238000011282 treatment Methods 0.000 title claims description 46
- 238000011363 radioimmunotherapy Methods 0.000 title description 8
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 260
- 230000008685 targeting Effects 0.000 claims abstract description 212
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 claims abstract description 137
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 claims abstract description 137
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 claims abstract description 120
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 claims abstract description 119
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 claims abstract description 76
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 75
- 101000801433 Homo sapiens Trophoblast glycoprotein Proteins 0.000 claims abstract description 67
- 102100033579 Trophoblast glycoprotein Human genes 0.000 claims abstract description 66
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims abstract description 50
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims abstract description 48
- 101000610604 Homo sapiens Tumor necrosis factor receptor superfamily member 10B Proteins 0.000 claims abstract description 45
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 45
- 102100040112 Tumor necrosis factor receptor superfamily member 10B Human genes 0.000 claims abstract description 43
- 102100027212 Tumor-associated calcium signal transducer 2 Human genes 0.000 claims abstract description 35
- 101150117918 Tacstd2 gene Proteins 0.000 claims abstract description 32
- 230000002062 proliferating effect Effects 0.000 claims abstract description 30
- 108091006020 Fc-tagged proteins Proteins 0.000 claims abstract description 5
- 210000004027 cell Anatomy 0.000 claims description 122
- 108091007433 antigens Proteins 0.000 claims description 76
- 102000036639 antigens Human genes 0.000 claims description 76
- 239000000427 antigen Substances 0.000 claims description 75
- -1 CCK2R Proteins 0.000 claims description 54
- 230000027455 binding Effects 0.000 claims description 50
- 230000005855 radiation Effects 0.000 claims description 40
- 208000031261 Acute myeloid leukaemia Diseases 0.000 claims description 35
- 108090000623 proteins and genes Proteins 0.000 claims description 35
- 206010006187 Breast cancer Diseases 0.000 claims description 33
- 208000026310 Breast neoplasm Diseases 0.000 claims description 33
- 102000004169 proteins and genes Human genes 0.000 claims description 30
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 claims description 27
- 239000012634 fragment Substances 0.000 claims description 25
- 206010033128 Ovarian cancer Diseases 0.000 claims description 24
- 230000037396 body weight Effects 0.000 claims description 24
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 23
- 206010009944 Colon cancer Diseases 0.000 claims description 20
- 108090000549 Calreticulin Proteins 0.000 claims description 19
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 19
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 18
- 208000002250 Hematologic Neoplasms Diseases 0.000 claims description 18
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 18
- 201000002528 pancreatic cancer Diseases 0.000 claims description 18
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 18
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 17
- 206010060862 Prostate cancer Diseases 0.000 claims description 17
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 17
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 claims description 17
- 208000022679 triple-negative breast carcinoma Diseases 0.000 claims description 17
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 15
- 102000010451 Folate receptor alpha Human genes 0.000 claims description 14
- 108050001931 Folate receptor alpha Proteins 0.000 claims description 14
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 14
- 206010017758 gastric cancer Diseases 0.000 claims description 14
- 208000020816 lung neoplasm Diseases 0.000 claims description 14
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 13
- 201000005202 lung cancer Diseases 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 13
- 201000011549 stomach cancer Diseases 0.000 claims description 13
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 claims description 12
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 claims description 12
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 claims description 12
- 108700012439 CA9 Proteins 0.000 claims description 11
- 102100024423 Carbonic anhydrase 9 Human genes 0.000 claims description 11
- 102000010956 Glypican Human genes 0.000 claims description 11
- 108050001154 Glypican Proteins 0.000 claims description 11
- 108050007237 Glypican-3 Proteins 0.000 claims description 11
- 101001038507 Homo sapiens Ly6/PLAUR domain-containing protein 3 Proteins 0.000 claims description 11
- 102100040281 Ly6/PLAUR domain-containing protein 3 Human genes 0.000 claims description 11
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 11
- 102100038078 CD276 antigen Human genes 0.000 claims description 10
- 101001133056 Homo sapiens Mucin-1 Proteins 0.000 claims description 10
- 102100034256 Mucin-1 Human genes 0.000 claims description 10
- 239000003446 ligand Substances 0.000 claims description 10
- 102100035350 CUB domain-containing protein 1 Human genes 0.000 claims description 9
- 101710082365 CUB domain-containing protein 1 Proteins 0.000 claims description 9
- 102000001301 EGF receptor Human genes 0.000 claims description 9
- 108060006698 EGF receptor Proteins 0.000 claims description 9
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 9
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 claims description 9
- 102100033986 Neurotensin receptor type 1 Human genes 0.000 claims description 9
- 101710098146 Neurotensin receptor type 1 Proteins 0.000 claims description 9
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 9
- 201000010536 head and neck cancer Diseases 0.000 claims description 9
- 102000006495 integrins Human genes 0.000 claims description 9
- 108010044426 integrins Proteins 0.000 claims description 9
- 102000004052 somatostatin receptor 2 Human genes 0.000 claims description 9
- 108090000586 somatostatin receptor 2 Proteins 0.000 claims description 9
- JODKFOVZURLVTG-UHFFFAOYSA-N 2-bromo-1-(3,3-dinitroazetidin-1-yl)ethanone Chemical compound [O-][N+](=O)C1([N+]([O-])=O)CN(C(=O)CBr)C1 JODKFOVZURLVTG-UHFFFAOYSA-N 0.000 claims description 8
- 108010073466 Bombesin Receptors Proteins 0.000 claims description 8
- 102100041003 Glutamate carboxypeptidase 2 Human genes 0.000 claims description 8
- 101000892862 Homo sapiens Glutamate carboxypeptidase 2 Proteins 0.000 claims description 8
- 101000607316 Homo sapiens UL-16 binding protein 5 Proteins 0.000 claims description 8
- 101000607318 Homo sapiens UL16-binding protein 3 Proteins 0.000 claims description 8
- 208000034578 Multiple myelomas Diseases 0.000 claims description 8
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 8
- 102100040010 UL-16 binding protein 5 Human genes 0.000 claims description 8
- 102100040011 UL16-binding protein 3 Human genes 0.000 claims description 8
- 102100040013 UL16-binding protein 6 Human genes 0.000 claims description 8
- 108010042352 Urokinase Plasminogen Activator Receptors Proteins 0.000 claims description 8
- 102000004504 Urokinase Plasminogen Activator Receptors Human genes 0.000 claims description 8
- 201000004101 esophageal cancer Diseases 0.000 claims description 8
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 claims description 7
- 206010066476 Haematological malignancy Diseases 0.000 claims description 7
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 claims description 7
- 101001132524 Homo sapiens Retinoic acid early transcript 1E Proteins 0.000 claims description 7
- 102100033964 Retinoic acid early transcript 1E Human genes 0.000 claims description 7
- 206010039491 Sarcoma Diseases 0.000 claims description 7
- 108010008125 Tenascin Proteins 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 7
- 102000004115 somatostatin receptor 5 Human genes 0.000 claims description 7
- 108090000680 somatostatin receptor 5 Proteins 0.000 claims description 7
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 claims description 6
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 claims description 6
- 102100038083 Endosialin Human genes 0.000 claims description 6
- 101000884279 Homo sapiens CD276 antigen Proteins 0.000 claims description 6
- 101000884275 Homo sapiens Endosialin Proteins 0.000 claims description 6
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 6
- 102000000440 Melanoma-associated antigen Human genes 0.000 claims description 6
- 108050008953 Melanoma-associated antigen Proteins 0.000 claims description 6
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 claims description 6
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 claims description 6
- 206010038389 Renal cancer Diseases 0.000 claims description 6
- 102000007000 Tenascin Human genes 0.000 claims description 6
- 238000012737 microarray-based gene expression Methods 0.000 claims description 6
- 238000012243 multiplex automated genomic engineering Methods 0.000 claims description 6
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 6
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 claims description 5
- 102100038080 B-cell receptor CD22 Human genes 0.000 claims description 5
- 102000000905 Cadherin Human genes 0.000 claims description 5
- 108050007957 Cadherin Proteins 0.000 claims description 5
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 claims description 5
- 101000884305 Homo sapiens B-cell receptor CD22 Proteins 0.000 claims description 5
- 101710043865 Nectin-4 Proteins 0.000 claims description 5
- 102100035486 Nectin-4 Human genes 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims description 5
- 201000010982 kidney cancer Diseases 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 claims description 4
- 101710185679 CD276 antigen Proteins 0.000 claims description 4
- 108010067306 Fibronectins Proteins 0.000 claims description 4
- 101000922348 Homo sapiens C-X-C chemokine receptor type 4 Proteins 0.000 claims description 4
- 101000777628 Homo sapiens Leukocyte antigen CD37 Proteins 0.000 claims description 4
- 101000991061 Homo sapiens MHC class I polypeptide-related sequence B Proteins 0.000 claims description 4
- 101100101727 Homo sapiens RAET1L gene Proteins 0.000 claims description 4
- 101000607320 Homo sapiens UL16-binding protein 2 Proteins 0.000 claims description 4
- 101000607314 Homo sapiens UL16-binding protein 6 Proteins 0.000 claims description 4
- 102100038356 Kallikrein-2 Human genes 0.000 claims description 4
- 101710176220 Kallikrein-2 Proteins 0.000 claims description 4
- 102100031586 Leukocyte antigen CD37 Human genes 0.000 claims description 4
- 102100030301 MHC class I polypeptide-related sequence A Human genes 0.000 claims description 4
- 102100030300 MHC class I polypeptide-related sequence B Human genes 0.000 claims description 4
- 108010049586 Norepinephrine Plasma Membrane Transport Proteins Proteins 0.000 claims description 4
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 claims description 4
- 101710164680 Platelet-derived growth factor receptor beta Proteins 0.000 claims description 4
- 101000605024 Rattus norvegicus Large neutral amino acids transporter small subunit 1 Proteins 0.000 claims description 4
- 102100033929 Sodium-dependent noradrenaline transporter Human genes 0.000 claims description 4
- 102100039989 UL16-binding protein 2 Human genes 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 4
- 229910052618 mica group Inorganic materials 0.000 claims description 4
- 208000017572 squamous cell neoplasm Diseases 0.000 claims description 4
- FFILOTSTFMXQJC-QCFYAKGBSA-N (2r,4r,5s,6s)-2-[3-[(2s,3s,4r,6s)-6-[(2s,3r,4r,5s,6r)-5-[(2s,3r,4r,5r,6r)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-2-[(2r,3s,4r,5r,6r)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(e)-3-hydroxy-2-(octadecanoylamino)octadec-4-enoxy]oxan-3-yl]oxy-3-hy Chemical compound O[C@@H]1[C@@H](O)[C@H](OCC(NC(=O)CCCCCCCCCCCCCCCCC)C(O)\C=C\CCCCCCCCCCCCC)O[C@H](CO)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO[C@]2(O[C@@H]([C@@H](N)[C@H](O)C2)C(O)C(O)CO)C(O)=O)C(O)=O)[C@@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](CO)O1 FFILOTSTFMXQJC-QCFYAKGBSA-N 0.000 claims description 3
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 claims description 3
- 102100040079 A-kinase anchor protein 4 Human genes 0.000 claims description 3
- 101710109924 A-kinase anchor protein 4 Proteins 0.000 claims description 3
- 102100031585 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Human genes 0.000 claims description 3
- 102000017918 ADRB3 Human genes 0.000 claims description 3
- 108060003355 ADRB3 Proteins 0.000 claims description 3
- 101150014742 AGE1 gene Proteins 0.000 claims description 3
- 102100026402 Adhesion G protein-coupled receptor E2 Human genes 0.000 claims description 3
- 102100026423 Adhesion G protein-coupled receptor E5 Human genes 0.000 claims description 3
- 102100032187 Androgen receptor Human genes 0.000 claims description 3
- 102100023003 Ankyrin repeat domain-containing protein 30A Human genes 0.000 claims description 3
- 102100024003 Arf-GAP with SH3 domain, ANK repeat and PH domain-containing protein 1 Human genes 0.000 claims description 3
- 102000030431 Asparaginyl endopeptidase Human genes 0.000 claims description 3
- 102100025218 B-cell differentiation antigen CD72 Human genes 0.000 claims description 3
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 3
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 3
- 102100021663 Baculoviral IAP repeat-containing protein 5 Human genes 0.000 claims description 3
- 102100037086 Bone marrow stromal antigen 2 Human genes 0.000 claims description 3
- 102100026094 C-type lectin domain family 12 member A Human genes 0.000 claims description 3
- 108010058905 CD44v6 antigen Proteins 0.000 claims description 3
- 102100029390 CMRF35-like molecule 1 Human genes 0.000 claims description 3
- 102100025570 Cancer/testis antigen 1 Human genes 0.000 claims description 3
- 108010051152 Carboxylesterase Proteins 0.000 claims description 3
- 102000013392 Carboxylesterase Human genes 0.000 claims description 3
- 101710178046 Chorismate synthase 1 Proteins 0.000 claims description 3
- 102100038449 Claudin-6 Human genes 0.000 claims description 3
- 102100035167 Coiled-coil domain-containing protein 54 Human genes 0.000 claims description 3
- 102000002427 Cyclin B Human genes 0.000 claims description 3
- 108010068150 Cyclin B Proteins 0.000 claims description 3
- 101710152695 Cysteine synthase 1 Proteins 0.000 claims description 3
- 101100481408 Danio rerio tie2 gene Proteins 0.000 claims description 3
- 102000012804 EPCAM Human genes 0.000 claims description 3
- 101150084967 EPCAM gene Proteins 0.000 claims description 3
- 101150029707 ERBB2 gene Proteins 0.000 claims description 3
- 108700041152 Endoplasmic Reticulum Chaperone BiP Proteins 0.000 claims description 3
- 102100021451 Endoplasmic reticulum chaperone BiP Human genes 0.000 claims description 3
- 108010055196 EphA2 Receptor Proteins 0.000 claims description 3
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 claims description 3
- 108010044090 Ephrin-B2 Proteins 0.000 claims description 3
- 102100023721 Ephrin-B2 Human genes 0.000 claims description 3
- 102100031507 Fc receptor-like protein 5 Human genes 0.000 claims description 3
- 101150032879 Fcrl5 gene Proteins 0.000 claims description 3
- 102000010449 Folate receptor beta Human genes 0.000 claims description 3
- 108050001930 Folate receptor beta Proteins 0.000 claims description 3
- 108090000123 Fos-related antigen 1 Proteins 0.000 claims description 3
- 102000003817 Fos-related antigen 1 Human genes 0.000 claims description 3
- 102100036939 G-protein coupled receptor 20 Human genes 0.000 claims description 3
- 102100021197 G-protein coupled receptor family C group 5 member D Human genes 0.000 claims description 3
- 108700011146 GPA 7 Proteins 0.000 claims description 3
- 102100030708 GTPase KRas Human genes 0.000 claims description 3
- 102000044445 Galectin-8 Human genes 0.000 claims description 3
- 101150112743 HSPA5 gene Proteins 0.000 claims description 3
- 108010007712 Hepatitis A Virus Cellular Receptor 1 Proteins 0.000 claims description 3
- 102100034459 Hepatitis A virus cellular receptor 1 Human genes 0.000 claims description 3
- 101000777636 Homo sapiens ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 Proteins 0.000 claims description 3
- 101000718211 Homo sapiens Adhesion G protein-coupled receptor E2 Proteins 0.000 claims description 3
- 101000718243 Homo sapiens Adhesion G protein-coupled receptor E5 Proteins 0.000 claims description 3
- 101000757191 Homo sapiens Ankyrin repeat domain-containing protein 30A Proteins 0.000 claims description 3
- 101000934359 Homo sapiens B-cell differentiation antigen CD72 Proteins 0.000 claims description 3
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 3
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 3
- 101000740785 Homo sapiens Bone marrow stromal antigen 2 Proteins 0.000 claims description 3
- 101000912622 Homo sapiens C-type lectin domain family 12 member A Proteins 0.000 claims description 3
- 101000990055 Homo sapiens CMRF35-like molecule 1 Proteins 0.000 claims description 3
- 101000856237 Homo sapiens Cancer/testis antigen 1 Proteins 0.000 claims description 3
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 claims description 3
- 101000882898 Homo sapiens Claudin-6 Proteins 0.000 claims description 3
- 101000737052 Homo sapiens Coiled-coil domain-containing protein 54 Proteins 0.000 claims description 3
- 101000954709 Homo sapiens Doublecortin domain-containing protein 2 Proteins 0.000 claims description 3
- 101001071355 Homo sapiens G-protein coupled receptor 20 Proteins 0.000 claims description 3
- 101001040713 Homo sapiens G-protein coupled receptor family C group 5 member D Proteins 0.000 claims description 3
- 101000584612 Homo sapiens GTPase KRas Proteins 0.000 claims description 3
- 101000608769 Homo sapiens Galectin-8 Proteins 0.000 claims description 3
- 101000985516 Homo sapiens Hermansky-Pudlak syndrome 5 protein Proteins 0.000 claims description 3
- 101000878602 Homo sapiens Immunoglobulin alpha Fc receptor Proteins 0.000 claims description 3
- 101000840267 Homo sapiens Immunoglobulin lambda-like polypeptide 1 Proteins 0.000 claims description 3
- 101001103039 Homo sapiens Inactive tyrosine-protein kinase transmembrane receptor ROR1 Proteins 0.000 claims description 3
- 101000998120 Homo sapiens Interleukin-3 receptor subunit alpha Proteins 0.000 claims description 3
- 101000614481 Homo sapiens Kidney-associated antigen 1 Proteins 0.000 claims description 3
- 101000984197 Homo sapiens Leukocyte immunoglobulin-like receptor subfamily A member 2 Proteins 0.000 claims description 3
- 101001065550 Homo sapiens Lymphocyte antigen 6K Proteins 0.000 claims description 3
- 101001018034 Homo sapiens Lymphocyte antigen 75 Proteins 0.000 claims description 3
- 101001014223 Homo sapiens MAPK/MAK/MRK overlapping kinase Proteins 0.000 claims description 3
- 101001005719 Homo sapiens Melanoma-associated antigen 3 Proteins 0.000 claims description 3
- 101001051490 Homo sapiens Neural cell adhesion molecule L1 Proteins 0.000 claims description 3
- 101001103036 Homo sapiens Nuclear receptor ROR-alpha Proteins 0.000 claims description 3
- 101000721757 Homo sapiens Olfactory receptor 51E2 Proteins 0.000 claims description 3
- 101000613490 Homo sapiens Paired box protein Pax-3 Proteins 0.000 claims description 3
- 101000601724 Homo sapiens Paired box protein Pax-5 Proteins 0.000 claims description 3
- 101000589399 Homo sapiens Pannexin-3 Proteins 0.000 claims description 3
- 101000691463 Homo sapiens Placenta-specific protein 1 Proteins 0.000 claims description 3
- 101001064779 Homo sapiens Plexin domain-containing protein 2 Proteins 0.000 claims description 3
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 claims description 3
- 101001136592 Homo sapiens Prostate stem cell antigen Proteins 0.000 claims description 3
- 101001136981 Homo sapiens Proteasome subunit beta type-9 Proteins 0.000 claims description 3
- 101000880770 Homo sapiens Protein SSX2 Proteins 0.000 claims description 3
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 claims description 3
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 claims description 3
- 101000665137 Homo sapiens Scm-like with four MBT domains protein 1 Proteins 0.000 claims description 3
- 101000884271 Homo sapiens Signal transducer CD24 Proteins 0.000 claims description 3
- 101000824971 Homo sapiens Sperm surface protein Sp17 Proteins 0.000 claims description 3
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 claims description 3
- 101000874179 Homo sapiens Syndecan-1 Proteins 0.000 claims description 3
- 101000655352 Homo sapiens Telomerase reverse transcriptase Proteins 0.000 claims description 3
- 101000714168 Homo sapiens Testisin Proteins 0.000 claims description 3
- 101000772267 Homo sapiens Thyrotropin receptor Proteins 0.000 claims description 3
- 101000894428 Homo sapiens Transcriptional repressor CTCFL Proteins 0.000 claims description 3
- 101000638154 Homo sapiens Transmembrane protease serine 2 Proteins 0.000 claims description 3
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 claims description 3
- 101001047681 Homo sapiens Tyrosine-protein kinase Lck Proteins 0.000 claims description 3
- 101000808105 Homo sapiens Uroplakin-2 Proteins 0.000 claims description 3
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 claims description 3
- 108010031794 IGF Type 1 Receptor Proteins 0.000 claims description 3
- 102100038005 Immunoglobulin alpha Fc receptor Human genes 0.000 claims description 3
- 102100029616 Immunoglobulin lambda-like polypeptide 1 Human genes 0.000 claims description 3
- 102100039615 Inactive tyrosine-protein kinase transmembrane receptor ROR1 Human genes 0.000 claims description 3
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 claims description 3
- 102000000589 Interleukin-1 Human genes 0.000 claims description 3
- 108010002352 Interleukin-1 Proteins 0.000 claims description 3
- 102000004553 Interleukin-11 Receptors Human genes 0.000 claims description 3
- 108010017521 Interleukin-11 Receptors Proteins 0.000 claims description 3
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 claims description 3
- 108020003285 Isocitrate lyase Proteins 0.000 claims description 3
- 102100034872 Kallikrein-4 Human genes 0.000 claims description 3
- 102000004856 Lectins Human genes 0.000 claims description 3
- 102100025586 Leukocyte immunoglobulin-like receptor subfamily A member 2 Human genes 0.000 claims description 3
- 102100032129 Lymphocyte antigen 6K Human genes 0.000 claims description 3
- 102100033486 Lymphocyte antigen 75 Human genes 0.000 claims description 3
- 102100031520 MAPK/MAK/MRK overlapping kinase Human genes 0.000 claims description 3
- 102000016200 MART-1 Antigen Human genes 0.000 claims description 3
- 108010010995 MART-1 Antigen Proteins 0.000 claims description 3
- 108700012912 MYCN Proteins 0.000 claims description 3
- 101150022024 MYCN gene Proteins 0.000 claims description 3
- 102100025082 Melanoma-associated antigen 3 Human genes 0.000 claims description 3
- 102000003735 Mesothelin Human genes 0.000 claims description 3
- 108090000015 Mesothelin Proteins 0.000 claims description 3
- 101100063504 Mus musculus Dlx2 gene Proteins 0.000 claims description 3
- 101100481410 Mus musculus Tek gene Proteins 0.000 claims description 3
- 108700026495 N-Myc Proto-Oncogene Proteins 0.000 claims description 3
- 102100030124 N-myc proto-oncogene protein Human genes 0.000 claims description 3
- 108010069196 Neural Cell Adhesion Molecules Proteins 0.000 claims description 3
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 claims description 3
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 claims description 3
- 102100025128 Olfactory receptor 51E2 Human genes 0.000 claims description 3
- 102100040891 Paired box protein Pax-3 Human genes 0.000 claims description 3
- 102100037504 Paired box protein Pax-5 Human genes 0.000 claims description 3
- 102100032364 Pannexin-3 Human genes 0.000 claims description 3
- 102100026181 Placenta-specific protein 1 Human genes 0.000 claims description 3
- 102100031889 Plexin domain-containing protein 2 Human genes 0.000 claims description 3
- 102100036735 Prostate stem cell antigen Human genes 0.000 claims description 3
- 102100035764 Proteasome subunit beta type-9 Human genes 0.000 claims description 3
- 102100032831 Protein ITPRID2 Human genes 0.000 claims description 3
- 102100037686 Protein SSX2 Human genes 0.000 claims description 3
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 claims description 3
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 claims description 3
- 101100111629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR2 gene Proteins 0.000 claims description 3
- 102100038081 Signal transducer CD24 Human genes 0.000 claims description 3
- 102100037253 Solute carrier family 45 member 3 Human genes 0.000 claims description 3
- 108050001286 Somatostatin Receptor Proteins 0.000 claims description 3
- 102000011096 Somatostatin receptor Human genes 0.000 claims description 3
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 claims description 3
- 108010002687 Survivin Proteins 0.000 claims description 3
- 102100035721 Syndecan-1 Human genes 0.000 claims description 3
- 101150057140 TACSTD1 gene Proteins 0.000 claims description 3
- 108010032166 TARP Proteins 0.000 claims description 3
- 108010017842 Telomerase Proteins 0.000 claims description 3
- 102100036494 Testisin Human genes 0.000 claims description 3
- 102100029337 Thyrotropin receptor Human genes 0.000 claims description 3
- 102100021393 Transcriptional repressor CTCFL Human genes 0.000 claims description 3
- 102100031989 Transmembrane protease serine 2 Human genes 0.000 claims description 3
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 claims description 3
- 102000003425 Tyrosinase Human genes 0.000 claims description 3
- 108060008724 Tyrosinase Proteins 0.000 claims description 3
- 102100024036 Tyrosine-protein kinase Lck Human genes 0.000 claims description 3
- 102100038851 Uroplakin-2 Human genes 0.000 claims description 3
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 claims description 3
- 108700020467 WT1 Proteins 0.000 claims description 3
- 101150084041 WT1 gene Proteins 0.000 claims description 3
- 108010080146 androgen receptors Proteins 0.000 claims description 3
- 108010055066 asparaginylendopeptidase Proteins 0.000 claims description 3
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 claims description 3
- 210000002950 fibroblast Anatomy 0.000 claims description 3
- 125000002446 fucosyl group Chemical group C1([C@@H](O)[C@H](O)[C@H](O)[C@@H](O1)C)* 0.000 claims description 3
- 101150028578 grp78 gene Proteins 0.000 claims description 3
- 230000000968 intestinal effect Effects 0.000 claims description 3
- 108010024383 kallikrein 4 Proteins 0.000 claims description 3
- 108040000983 polyphosphate:AMP phosphotransferase activity proteins Proteins 0.000 claims description 3
- 108010079891 prostein Proteins 0.000 claims description 3
- 101150047061 tag-72 gene Proteins 0.000 claims description 3
- 230000005945 translocation Effects 0.000 claims description 3
- 201000008968 osteosarcoma Diseases 0.000 claims description 2
- 102100030671 Gastrin-releasing peptide receptor Human genes 0.000 claims 2
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 claims 1
- 108091007065 BIRCs Proteins 0.000 claims 1
- 102100029968 Calreticulin Human genes 0.000 claims 1
- 102100037362 Fibronectin Human genes 0.000 claims 1
- 101000607306 Homo sapiens UL16-binding protein 1 Proteins 0.000 claims 1
- 101000814512 Homo sapiens X antigen family member 1 Proteins 0.000 claims 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 claims 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 claims 1
- 101150036449 SIRPA gene Proteins 0.000 claims 1
- 101710173694 Short transient receptor potential channel 2 Proteins 0.000 claims 1
- 102100038126 Tenascin Human genes 0.000 claims 1
- 102100040012 UL16-binding protein 1 Human genes 0.000 claims 1
- 102100039490 X antigen family member 1 Human genes 0.000 claims 1
- 230000000692 anti-sense effect Effects 0.000 claims 1
- 230000003439 radiotherapeutic effect Effects 0.000 abstract description 92
- 101000863873 Homo sapiens Tyrosine-protein phosphatase non-receptor type substrate 1 Proteins 0.000 abstract 1
- 229940076838 Immune checkpoint inhibitor Drugs 0.000 abstract 1
- 102100029948 Tyrosine-protein phosphatase non-receptor type substrate 1 Human genes 0.000 abstract 1
- 239000012274 immune-checkpoint protein inhibitor Substances 0.000 abstract 1
- 239000003814 drug Substances 0.000 description 64
- 229950002950 lintuzumab Drugs 0.000 description 35
- OHSVLFRHMCKCQY-NJFSPNSNSA-N lutetium-177 Chemical compound [177Lu] OHSVLFRHMCKCQY-NJFSPNSNSA-N 0.000 description 33
- 125000003275 alpha amino acid group Chemical group 0.000 description 29
- 206010057249 Phagocytosis Diseases 0.000 description 27
- 230000008782 phagocytosis Effects 0.000 description 27
- 108090000765 processed proteins & peptides Proteins 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 27
- 230000000694 effects Effects 0.000 description 24
- 229940125666 actinium-225 Drugs 0.000 description 21
- 208000035475 disorder Diseases 0.000 description 20
- 230000001225 therapeutic effect Effects 0.000 description 20
- 102000004082 Calreticulin Human genes 0.000 description 18
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 17
- QQINRWTZWGJFDB-YPZZEJLDSA-N actinium-225 Chemical compound [225Ac] QQINRWTZWGJFDB-YPZZEJLDSA-N 0.000 description 17
- 230000000903 blocking effect Effects 0.000 description 17
- 239000002738 chelating agent Substances 0.000 description 17
- 230000004044 response Effects 0.000 description 17
- 229940124597 therapeutic agent Drugs 0.000 description 17
- 239000002981 blocking agent Substances 0.000 description 16
- 230000002489 hematologic effect Effects 0.000 description 16
- 150000003384 small molecules Chemical class 0.000 description 16
- 101001008255 Homo sapiens Immunoglobulin kappa variable 1D-8 Proteins 0.000 description 15
- 101001047628 Homo sapiens Immunoglobulin kappa variable 2-29 Proteins 0.000 description 15
- 101001008321 Homo sapiens Immunoglobulin kappa variable 2D-26 Proteins 0.000 description 15
- 101001047619 Homo sapiens Immunoglobulin kappa variable 3-20 Proteins 0.000 description 15
- 101001008263 Homo sapiens Immunoglobulin kappa variable 3D-15 Proteins 0.000 description 15
- 102100022949 Immunoglobulin kappa variable 2-29 Human genes 0.000 description 15
- 229940121581 magrolimab Drugs 0.000 description 15
- 231100000682 maximum tolerated dose Toxicity 0.000 description 15
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 15
- 238000002560 therapeutic procedure Methods 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 229960000575 trastuzumab Drugs 0.000 description 15
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 description 14
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 description 14
- 210000004881 tumor cell Anatomy 0.000 description 14
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 12
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 12
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 12
- 235000001014 amino acid Nutrition 0.000 description 12
- 229940024606 amino acid Drugs 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 230000014509 gene expression Effects 0.000 description 12
- 210000002540 macrophage Anatomy 0.000 description 12
- 208000032839 leukemia Diseases 0.000 description 11
- 206010061289 metastatic neoplasm Diseases 0.000 description 11
- 229950008834 seribantumab Drugs 0.000 description 11
- 108060003951 Immunoglobulin Proteins 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- 239000002246 antineoplastic agent Substances 0.000 description 10
- 208000014951 hematologic disease Diseases 0.000 description 10
- 102000018358 immunoglobulin Human genes 0.000 description 10
- 229950010966 patritumab Drugs 0.000 description 10
- 102000004196 processed proteins & peptides Human genes 0.000 description 10
- UDOPJKHABYSVIX-UHFFFAOYSA-N 2-[4,7,10-tris(carboxymethyl)-6-[(4-isothiocyanatophenyl)methyl]-1,4,7,10-tetrazacyclododec-1-yl]acetic acid Chemical compound C1N(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CCN(CC(O)=O)C1CC1=CC=C(N=C=S)C=C1 UDOPJKHABYSVIX-UHFFFAOYSA-N 0.000 description 9
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 9
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 9
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 9
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 9
- 241000699670 Mus sp. Species 0.000 description 9
- 229930012538 Paclitaxel Natural products 0.000 description 9
- 230000021615 conjugation Effects 0.000 description 9
- 229940127089 cytotoxic agent Drugs 0.000 description 9
- 229950002519 elgemtumab Drugs 0.000 description 9
- 229960000578 gemtuzumab Drugs 0.000 description 9
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 9
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 9
- 229950010079 lumretuzumab Drugs 0.000 description 9
- 229960001592 paclitaxel Drugs 0.000 description 9
- 229950000302 vadastuximab Drugs 0.000 description 9
- 206010041067 Small cell lung cancer Diseases 0.000 description 8
- 239000000611 antibody drug conjugate Substances 0.000 description 8
- 229940049595 antibody-drug conjugate Drugs 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 238000002372 labelling Methods 0.000 description 8
- 229950002884 lexatumumab Drugs 0.000 description 8
- 230000003211 malignant effect Effects 0.000 description 8
- 208000000587 small cell lung carcinoma Diseases 0.000 description 8
- 229950004742 tigatuzumab Drugs 0.000 description 8
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 7
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 7
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 7
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 7
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 238000002659 cell therapy Methods 0.000 description 7
- 229950007276 conatumumab Drugs 0.000 description 7
- 229960004679 doxorubicin Drugs 0.000 description 7
- 229950009964 drozitumab Drugs 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 229950001869 mapatumumab Drugs 0.000 description 7
- 201000001441 melanoma Diseases 0.000 description 7
- 230000001394 metastastic effect Effects 0.000 description 7
- 230000000242 pagocytic effect Effects 0.000 description 7
- 210000001539 phagocyte Anatomy 0.000 description 7
- 229920001184 polypeptide Polymers 0.000 description 7
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 6
- 102000047481 Gastrin-releasing peptide receptors Human genes 0.000 description 6
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 6
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 6
- 229940126302 TTI-621 Drugs 0.000 description 6
- 238000003556 assay Methods 0.000 description 6
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 6
- 229960004316 cisplatin Drugs 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000000684 flow cytometry Methods 0.000 description 6
- 229960002949 fluorouracil Drugs 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 229940125052 lemzoparlimab Drugs 0.000 description 6
- 125000005647 linker group Chemical group 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- 201000000050 myeloid neoplasm Diseases 0.000 description 6
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 6
- 229960001756 oxaliplatin Drugs 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000000163 radioactive labelling Methods 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 229960001603 tamoxifen Drugs 0.000 description 6
- 230000003827 upregulation Effects 0.000 description 6
- 238000012447 xenograft mouse model Methods 0.000 description 6
- 108091023037 Aptamer Proteins 0.000 description 5
- ZKFQEACEUNWPMT-UHFFFAOYSA-N Azelnidipine Chemical compound CC(C)OC(=O)C1=C(C)NC(N)=C(C(=O)OC2CN(C2)C(C=2C=CC=CC=2)C=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZKFQEACEUNWPMT-UHFFFAOYSA-N 0.000 description 5
- 201000009030 Carcinoma Diseases 0.000 description 5
- 229940126656 GS-4224 Drugs 0.000 description 5
- 206010018338 Glioma Diseases 0.000 description 5
- 206010025323 Lymphomas Diseases 0.000 description 5
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 5
- 229940126301 TTI-622 Drugs 0.000 description 5
- 230000001588 bifunctional effect Effects 0.000 description 5
- 230000009920 chelation Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 108020001507 fusion proteins Proteins 0.000 description 5
- 102000037865 fusion proteins Human genes 0.000 description 5
- 208000005017 glioblastoma Diseases 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 229950009645 istiratumab Drugs 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 210000001167 myeloblast Anatomy 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 229960003330 pentetic acid Drugs 0.000 description 5
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 5
- 229960004618 prednisone Drugs 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 230000004614 tumor growth Effects 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 description 4
- 206010008342 Cervix carcinoma Diseases 0.000 description 4
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 4
- 108010049207 Death Domain Receptors Proteins 0.000 description 4
- 102000009058 Death Domain Receptors Human genes 0.000 description 4
- 206010014733 Endometrial cancer Diseases 0.000 description 4
- 206010014759 Endometrial neoplasm Diseases 0.000 description 4
- 101001010819 Homo sapiens Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 4
- 102000008100 Human Serum Albumin Human genes 0.000 description 4
- 108091006905 Human Serum Albumin Proteins 0.000 description 4
- 208000006265 Renal cell carcinoma Diseases 0.000 description 4
- 208000000453 Skin Neoplasms Diseases 0.000 description 4
- 208000024770 Thyroid neoplasm Diseases 0.000 description 4
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 4
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 4
- 230000003213 activating effect Effects 0.000 description 4
- 208000009956 adenocarcinoma Diseases 0.000 description 4
- 239000002260 anti-inflammatory agent Substances 0.000 description 4
- 229940121363 anti-inflammatory agent Drugs 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 4
- VSRXQHXAPYXROS-UHFFFAOYSA-N azanide;cyclobutane-1,1-dicarboxylic acid;platinum(2+) Chemical compound [NH2-].[NH2-].[Pt+2].OC(=O)C1(C(O)=O)CCC1 VSRXQHXAPYXROS-UHFFFAOYSA-N 0.000 description 4
- 229950004646 azelnidipine Drugs 0.000 description 4
- 229960004562 carboplatin Drugs 0.000 description 4
- 201000010881 cervical cancer Diseases 0.000 description 4
- 229960004397 cyclophosphamide Drugs 0.000 description 4
- 229940054586 datopotamab Drugs 0.000 description 4
- 229960003668 docetaxel Drugs 0.000 description 4
- 210000003743 erythrocyte Anatomy 0.000 description 4
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 4
- 229960005420 etoposide Drugs 0.000 description 4
- 201000003444 follicular lymphoma Diseases 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 description 4
- 208000010658 metastatic prostate carcinoma Diseases 0.000 description 4
- 201000011519 neuroendocrine tumor Diseases 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 150000003904 phospholipids Chemical class 0.000 description 4
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 229950001460 sacituzumab Drugs 0.000 description 4
- 238000009738 saturating Methods 0.000 description 4
- 201000000849 skin cancer Diseases 0.000 description 4
- 206010044412 transitional cell carcinoma Diseases 0.000 description 4
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 4
- 239000003981 vehicle Substances 0.000 description 4
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 3
- 229940125979 ALX148 Drugs 0.000 description 3
- 108700001691 ALX148 Proteins 0.000 description 3
- 108010012934 Albumin-Bound Paclitaxel Proteins 0.000 description 3
- 241000270728 Alligator Species 0.000 description 3
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 3
- 206010005003 Bladder cancer Diseases 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 3
- PTOAARAWEBMLNO-KVQBGUIXSA-N Cladribine Chemical compound C1=NC=2C(N)=NC(Cl)=NC=2N1[C@H]1C[C@H](O)[C@@H](CO)O1 PTOAARAWEBMLNO-KVQBGUIXSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102000016359 Fibronectins Human genes 0.000 description 3
- 102000006395 Globulins Human genes 0.000 description 3
- 108010044091 Globulins Proteins 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 3
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 241001436793 Meru Species 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- 206010029260 Neuroblastoma Diseases 0.000 description 3
- 208000033826 Promyelocytic Acute Leukemia Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 108700012411 TNFSF10 Proteins 0.000 description 3
- 229940123237 Taxane Drugs 0.000 description 3
- 208000002495 Uterine Neoplasms Diseases 0.000 description 3
- JXLYSJRDGCGARV-WWYNWVTFSA-N Vinblastine Natural products O=C(O[C@H]1[C@](O)(C(=O)OC)[C@@H]2N(C)c3c(cc(c(OC)c3)[C@]3(C(=O)OC)c4[nH]c5c(c4CCN4C[C@](O)(CC)C[C@H](C3)C4)cccc5)[C@@]32[C@H]2[C@@]1(CC)C=CCN2CC3)C JXLYSJRDGCGARV-WWYNWVTFSA-N 0.000 description 3
- 229940028652 abraxane Drugs 0.000 description 3
- 231100000987 absorbed dose Toxicity 0.000 description 3
- 230000033289 adaptive immune response Effects 0.000 description 3
- 230000001446 anti-myeloma Effects 0.000 description 3
- 230000003095 anti-phagocytic effect Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229940126587 biotherapeutics Drugs 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 210000000481 breast Anatomy 0.000 description 3
- 229960005243 carmustine Drugs 0.000 description 3
- 230000010001 cellular homeostasis Effects 0.000 description 3
- 239000013522 chelant Substances 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 229960003957 dexamethasone Drugs 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 238000006471 dimerization reaction Methods 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 239000012636 effector Substances 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 229960005277 gemcitabine Drugs 0.000 description 3
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 description 3
- 229960003297 gemtuzumab ozogamicin Drugs 0.000 description 3
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 3
- 201000005787 hematologic cancer Diseases 0.000 description 3
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 3
- 208000018706 hematopoietic system disease Diseases 0.000 description 3
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 102000057750 human ERBB3 Human genes 0.000 description 3
- 102000044042 human KLRK1 Human genes 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 3
- 210000004985 myeloid-derived suppressor cell Anatomy 0.000 description 3
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 3
- 230000002611 ovarian Effects 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 239000011886 peripheral blood Substances 0.000 description 3
- 229960002087 pertuzumab Drugs 0.000 description 3
- 230000026731 phosphorylation Effects 0.000 description 3
- 238000006366 phosphorylation reaction Methods 0.000 description 3
- 230000001389 radiobiologic effect Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 201000002510 thyroid cancer Diseases 0.000 description 3
- 206010046766 uterine cancer Diseases 0.000 description 3
- JXLYSJRDGCGARV-XQKSVPLYSA-N vincaleukoblastine Chemical compound C([C@@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-XQKSVPLYSA-N 0.000 description 3
- 229960004528 vincristine Drugs 0.000 description 3
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 3
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 3
- ZPUHVPYXSITYDI-HEUWMMRCSA-N xyotax Chemical compound OC(=O)[C@@H](N)CCC(O)=O.O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 ZPUHVPYXSITYDI-HEUWMMRCSA-N 0.000 description 3
- FDKXTQMXEQVLRF-ZHACJKMWSA-N (E)-dacarbazine Chemical compound CN(C)\N=N\c1[nH]cnc1C(N)=O FDKXTQMXEQVLRF-ZHACJKMWSA-N 0.000 description 2
- ZOAIEFWMQLYMTF-UHFFFAOYSA-N 18-(4-iodophenyl)octadecyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound C[N+](C)(C)CCOP([O-])(=O)OCCCCCCCCCCCCCCCCCCC1=CC=C(I)C=C1 ZOAIEFWMQLYMTF-UHFFFAOYSA-N 0.000 description 2
- UEJJHQNACJXSKW-UHFFFAOYSA-N 2-(2,6-dioxopiperidin-3-yl)-1H-isoindole-1,3(2H)-dione Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 2
- RAEOEMDZDMCHJA-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-[2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]ethyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CCN(CC(O)=O)CC(O)=O)CC(O)=O RAEOEMDZDMCHJA-UHFFFAOYSA-N 0.000 description 2
- MXDPZUIOZWKRAA-UZOALHFESA-K 2-[4-[2-[[(2r)-1-[[(4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-4-[[(1s,2r)-1-carboxy-2-hydroxypropyl]carbamoyl]-7-[(1r)-1-hydroxyethyl]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicos-19-y Chemical compound [Lu+3].C([C@H](C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC1=O)C(=O)N[C@@H]([C@H](O)C)C(O)=O)NC(=O)CN1CCN(CC([O-])=O)CCN(CC([O-])=O)CCN(CC([O-])=O)CC1)C1=CC=CC=C1 MXDPZUIOZWKRAA-UZOALHFESA-K 0.000 description 2
- STNZNCWQNMGRIM-UHFFFAOYSA-N 2-benzyl-1,4,7,10-tetrakis-(4-methylphenyl)sulfonyl-1,4,7,10-tetrazacyclododecane Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N1CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CC(CC=2C=CC=CC=2)N(S(=O)(=O)C=2C=CC(C)=CC=2)CCN(S(=O)(=O)C=2C=CC(C)=CC=2)CC1 STNZNCWQNMGRIM-UHFFFAOYSA-N 0.000 description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 2
- VVIAGPKUTFNRDU-UHFFFAOYSA-N 6S-folinic acid Natural products C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-UHFFFAOYSA-N 0.000 description 2
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 2
- 208000010507 Adenocarcinoma of Lung Diseases 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 102000009027 Albumins Human genes 0.000 description 2
- 241000272878 Apodiformes Species 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 229940127277 BI-765063 Drugs 0.000 description 2
- 102100027522 Baculoviral IAP repeat-containing protein 7 Human genes 0.000 description 2
- 206010005949 Bone cancer Diseases 0.000 description 2
- 208000018084 Bone neoplasm Diseases 0.000 description 2
- 206010055113 Breast cancer metastatic Diseases 0.000 description 2
- 229940124294 CD33 monoclonal antibody Drugs 0.000 description 2
- 241000288950 Callithrix jacchus Species 0.000 description 2
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 230000005778 DNA damage Effects 0.000 description 2
- 231100000277 DNA damage Toxicity 0.000 description 2
- 108010092160 Dactinomycin Proteins 0.000 description 2
- 208000032612 Glial tumor Diseases 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 208000017891 HER2 positive breast carcinoma Diseases 0.000 description 2
- 208000017604 Hodgkin disease Diseases 0.000 description 2
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 2
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000936083 Homo sapiens Baculoviral IAP repeat-containing protein 7 Proteins 0.000 description 2
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 description 2
- UETNIIAIRMUTSM-UHFFFAOYSA-N Jacareubin Natural products CC1(C)OC2=CC3Oc4c(O)c(O)ccc4C(=O)C3C(=C2C=C1)O UETNIIAIRMUTSM-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- 241000282577 Pan troglodytes Species 0.000 description 2
- 206010061332 Paraganglion neoplasm Diseases 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 2
- 208000024313 Testicular Neoplasms Diseases 0.000 description 2
- 206010057644 Testis cancer Diseases 0.000 description 2
- 208000008383 Wilms tumor Diseases 0.000 description 2
- 229910052767 actinium Inorganic materials 0.000 description 2
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229960000473 altretamine Drugs 0.000 description 2
- 229960003437 aminoglutethimide Drugs 0.000 description 2
- ROBVIMPUHSLWNV-UHFFFAOYSA-N aminoglutethimide Chemical compound C=1C=C(N)C=CC=1C1(CC)CCC(=O)NC1=O ROBVIMPUHSLWNV-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000002280 anti-androgenic effect Effects 0.000 description 2
- 239000000051 antiandrogen Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000003435 antirheumatic agent Substances 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 108010044540 auristatin Proteins 0.000 description 2
- 229960002170 azathioprine Drugs 0.000 description 2
- LMEKQMALGUDUQG-UHFFFAOYSA-N azathioprine Chemical compound CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1NC=N2 LMEKQMALGUDUQG-UHFFFAOYSA-N 0.000 description 2
- 229940062815 barecetamab Drugs 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 229960000106 biosimilars Drugs 0.000 description 2
- 210000002798 bone marrow cell Anatomy 0.000 description 2
- GXJABQQUPOEUTA-RDJZCZTQSA-N bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 2
- 229960001467 bortezomib Drugs 0.000 description 2
- 239000008366 buffered solution Substances 0.000 description 2
- 229930195731 calicheamicin Natural products 0.000 description 2
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 description 2
- 230000022534 cell killing Effects 0.000 description 2
- 208000025997 central nervous system neoplasm Diseases 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 208000006990 cholangiocarcinoma Diseases 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 201000010989 colorectal carcinoma Diseases 0.000 description 2
- 238000011284 combination treatment Methods 0.000 description 2
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000562 conjugate Substances 0.000 description 2
- 230000001268 conjugating effect Effects 0.000 description 2
- 208000030381 cutaneous melanoma Diseases 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000001086 cytosolic effect Effects 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 239000002988 disease modifying antirheumatic drug Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000004980 dosimetry Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 210000003236 esophagogastric junction Anatomy 0.000 description 2
- 201000001343 fallopian tube carcinoma Diseases 0.000 description 2
- 229960002074 flutamide Drugs 0.000 description 2
- MKXKFYHWDHIYRV-UHFFFAOYSA-N flutamide Chemical compound CC(C)C(=O)NC1=CC=C([N+]([O-])=O)C(C(F)(F)F)=C1 MKXKFYHWDHIYRV-UHFFFAOYSA-N 0.000 description 2
- 235000008191 folinic acid Nutrition 0.000 description 2
- 239000011672 folinic acid Substances 0.000 description 2
- VVIAGPKUTFNRDU-ABLWVSNPSA-N folinic acid Chemical compound C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 VVIAGPKUTFNRDU-ABLWVSNPSA-N 0.000 description 2
- 238000005734 heterodimerization reaction Methods 0.000 description 2
- 102000044459 human CD47 Human genes 0.000 description 2
- 102000045108 human EGFR Human genes 0.000 description 2
- 102000051957 human ERBB2 Human genes 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 229940125721 immunosuppressive agent Drugs 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000015788 innate immune response Effects 0.000 description 2
- 210000005007 innate immune system Anatomy 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- 229960000681 leflunomide Drugs 0.000 description 2
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 2
- GOTYRUGSSMKFNF-UHFFFAOYSA-N lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 2
- 229960004942 lenalidomide Drugs 0.000 description 2
- 229960001691 leucovorin Drugs 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 201000007270 liver cancer Diseases 0.000 description 2
- 208000014018 liver neoplasm Diseases 0.000 description 2
- 201000005249 lung adenocarcinoma Diseases 0.000 description 2
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 2
- 108700033205 lutetium Lu 177 dotatate Proteins 0.000 description 2
- 229940008393 lutetium lu 177 dotatate Drugs 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229960001924 melphalan Drugs 0.000 description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 2
- 229960001428 mercaptopurine Drugs 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 2
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 2
- 229960001156 mitoxantrone Drugs 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 229940124303 multikinase inhibitor Drugs 0.000 description 2
- LBWFXVZLPYTWQI-IPOVEDGCSA-N n-[2-(diethylamino)ethyl]-5-[(z)-(5-fluoro-2-oxo-1h-indol-3-ylidene)methyl]-2,4-dimethyl-1h-pyrrole-3-carboxamide;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C LBWFXVZLPYTWQI-IPOVEDGCSA-N 0.000 description 2
- 210000004897 n-terminal region Anatomy 0.000 description 2
- 201000008026 nephroblastoma Diseases 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 229940080607 nexavar Drugs 0.000 description 2
- 201000008129 pancreatic ductal adenocarcinoma Diseases 0.000 description 2
- 208000007312 paraganglioma Diseases 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229960002340 pentostatin Drugs 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229960003171 plicamycin Drugs 0.000 description 2
- 229920001481 poly(stearyl methacrylate) Polymers 0.000 description 2
- 238000010837 poor prognosis Methods 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000000693 radiobiological effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229940061622 rosopatamab Drugs 0.000 description 2
- 201000003708 skin melanoma Diseases 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229960001940 sulfasalazine Drugs 0.000 description 2
- NCEXYHBECQHGNR-QZQOTICOSA-N sulfasalazine Chemical compound C1=C(O)C(C(=O)O)=CC(\N=N\C=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-QZQOTICOSA-N 0.000 description 2
- NCEXYHBECQHGNR-UHFFFAOYSA-N sulfasalazine Natural products C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229940034785 sutent Drugs 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000002626 targeted therapy Methods 0.000 description 2
- 229940063683 taxotere Drugs 0.000 description 2
- 201000003120 testicular cancer Diseases 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229960003433 thalidomide Drugs 0.000 description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 201000005112 urinary bladder cancer Diseases 0.000 description 2
- 229960003048 vinblastine Drugs 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- RDJGLLICXDHJDY-NSHDSACASA-N (2s)-2-(3-phenoxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](C)C1=CC=CC(OC=2C=CC=CC=2)=C1 RDJGLLICXDHJDY-NSHDSACASA-N 0.000 description 1
- YXTKHLHCVFUPPT-YYFJYKOTSA-N (2s)-2-[[4-[(2-amino-5-formyl-4-oxo-1,6,7,8-tetrahydropteridin-6-yl)methylamino]benzoyl]amino]pentanedioic acid;(1r,2r)-1,2-dimethanidylcyclohexane;5-fluoro-1h-pyrimidine-2,4-dione;oxalic acid;platinum(2+) Chemical compound [Pt+2].OC(=O)C(O)=O.[CH2-][C@@H]1CCCC[C@H]1[CH2-].FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 YXTKHLHCVFUPPT-YYFJYKOTSA-N 0.000 description 1
- HMLGSIZOMSVISS-ONJSNURVSA-N (7r)-7-[[(2z)-2-(2-amino-1,3-thiazol-4-yl)-2-(2,2-dimethylpropanoyloxymethoxyimino)acetyl]amino]-3-ethenyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound N([C@@H]1C(N2C(=C(C=C)CSC21)C(O)=O)=O)C(=O)\C(=N/OCOC(=O)C(C)(C)C)C1=CSC(N)=N1 HMLGSIZOMSVISS-ONJSNURVSA-N 0.000 description 1
- FPVKHBSQESCIEP-UHFFFAOYSA-N (8S)-3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol Natural products C1C(O)C(CO)OC1N1C(NC=NCC2O)=C2N=C1 FPVKHBSQESCIEP-UHFFFAOYSA-N 0.000 description 1
- OXHOPZLBSSTTBU-UHFFFAOYSA-N 1,3-bis(bromomethyl)benzene Chemical compound BrCC1=CC=CC(CBr)=C1 OXHOPZLBSSTTBU-UHFFFAOYSA-N 0.000 description 1
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 description 1
- BYIRBDUHSVOFLU-UHFFFAOYSA-M 1-ethyl-2,6-bis[2-(4-pyrrolidin-1-ylphenyl)ethenyl]pyridin-1-ium;iodide Chemical compound [I-].C1=CC=C(C=CC=2C=CC(=CC=2)N2CCCC2)[N+](CC)=C1C=CC(C=C1)=CC=C1N1CCCC1 BYIRBDUHSVOFLU-UHFFFAOYSA-M 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- ZOAIEFWMQLYMTF-YRKXUXMHSA-N 18-(4-iodanylphenyl)octadecyl 2-(trimethylazaniumyl)ethyl phosphate Chemical compound C[N+](C)(C)CCOP([O-])(=O)OCCCCCCCCCCCCCCCCCCC1=CC=C([131I])C=C1 ZOAIEFWMQLYMTF-YRKXUXMHSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- LDGWQMRUWMSZIU-LQDDAWAPSA-M 2,3-bis[(z)-octadec-9-enoxy]propyl-trimethylazanium;chloride Chemical compound [Cl-].CCCCCCCC\C=C/CCCCCCCCOCC(C[N+](C)(C)C)OCCCCCCCC\C=C/CCCCCCCC LDGWQMRUWMSZIU-LQDDAWAPSA-M 0.000 description 1
- PDWUPXJEEYOOTR-UHFFFAOYSA-N 2-[(3-iodophenyl)methyl]guanidine Chemical compound NC(=N)NCC1=CC=CC(I)=C1 PDWUPXJEEYOOTR-UHFFFAOYSA-N 0.000 description 1
- JHALWMSZGCVVEM-UHFFFAOYSA-N 2-[4,7-bis(carboxymethyl)-1,4,7-triazonan-1-yl]acetic acid Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CC1 JHALWMSZGCVVEM-UHFFFAOYSA-N 0.000 description 1
- CTRPRMNBTVRDFH-UHFFFAOYSA-N 2-n-methyl-1,3,5-triazine-2,4,6-triamine Chemical compound CNC1=NC(N)=NC(N)=N1 CTRPRMNBTVRDFH-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 1
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 1
- 108010082126 Alanine transaminase Proteins 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000004382 Amylase Substances 0.000 description 1
- 102000013142 Amylases Human genes 0.000 description 1
- 108010065511 Amylases Proteins 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 108010024976 Asparaginase Proteins 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical class C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 1
- 108010074708 B7-H1 Antigen Proteins 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 208000031638 Body Weight Diseases 0.000 description 1
- 206010006143 Brain stem glioma Diseases 0.000 description 1
- 230000005724 C-terminal phosphorylation Effects 0.000 description 1
- IYSSKWHJCKNPBJ-UHFFFAOYSA-N CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CCCCCCCCCCCC Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CCCCCCCCCCCC IYSSKWHJCKNPBJ-UHFFFAOYSA-N 0.000 description 1
- FVLVBPDQNARYJU-XAHDHGMMSA-N C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O Chemical compound C[C@H]1CCC(CC1)NC(=O)N(CCCl)N=O FVLVBPDQNARYJU-XAHDHGMMSA-N 0.000 description 1
- 102100036360 Cadherin-3 Human genes 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 description 1
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000017897 Carcinoma of esophagus Diseases 0.000 description 1
- 108010078791 Carrier Proteins Proteins 0.000 description 1
- 101150015280 Cel gene Proteins 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 206010007953 Central nervous system lymphoma Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- JWBOIMRXGHLCPP-UHFFFAOYSA-N Chloditan Chemical compound C=1C=CC=C(Cl)C=1C(C(Cl)Cl)C1=CC=C(Cl)C=C1 JWBOIMRXGHLCPP-UHFFFAOYSA-N 0.000 description 1
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 1
- FCKYPQBAHLOOJQ-UHFFFAOYSA-N Cyclohexane-1,2-diaminetetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)C1CCCCC1N(CC(O)=O)CC(O)=O FCKYPQBAHLOOJQ-UHFFFAOYSA-N 0.000 description 1
- PMATZTZNYRCHOR-CGLBZJNRSA-N Cyclosporin A Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 1
- 108010036949 Cyclosporine Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- UQBOJOOOTLPNST-UHFFFAOYSA-N Dehydroalanine Chemical compound NC(=C)C(O)=O UQBOJOOOTLPNST-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 108700038672 Edotreotide Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000032027 Essential Thrombocythemia Diseases 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 229940125996 FPI-1434 Drugs 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 206010016935 Follicular thyroid cancer Diseases 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 101000762242 Homo sapiens Cadherin-15 Proteins 0.000 description 1
- 101000714553 Homo sapiens Cadherin-3 Proteins 0.000 description 1
- 206010062904 Hormone-refractory prostate cancer Diseases 0.000 description 1
- DOMWKUIIPQCAJU-LJHIYBGHSA-N Hydroxyprogesterone caproate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)CCCCC)[C@@]1(C)CC2 DOMWKUIIPQCAJU-LJHIYBGHSA-N 0.000 description 1
- 206010020631 Hypergammaglobulinaemia benign monoclonal Diseases 0.000 description 1
- 101150103227 IFN gene Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 description 1
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 description 1
- 206010051792 Infusion related reaction Diseases 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 1
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 1
- 102000051628 Interleukin-1 receptor antagonist Human genes 0.000 description 1
- 108700021006 Interleukin-1 receptor antagonist Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 1
- 101710098610 Leukocyte surface antigen CD47 Proteins 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 208000006552 Lewis Lung Carcinoma Diseases 0.000 description 1
- 206010061523 Lip and/or oral cavity cancer Diseases 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 1
- 206010052178 Lymphocytic lymphoma Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 208000030070 Malignant epithelial tumor of ovary Diseases 0.000 description 1
- 206010061269 Malignant peritoneal neoplasm Diseases 0.000 description 1
- 208000037196 Medullary thyroid carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 206010059282 Metastases to central nervous system Diseases 0.000 description 1
- 206010027458 Metastases to lung Diseases 0.000 description 1
- HZQDCMWJEBCWBR-UUOKFMHZSA-N Mizoribine Chemical compound OC1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HZQDCMWJEBCWBR-UUOKFMHZSA-N 0.000 description 1
- 101100425828 Mus musculus Tpbg gene Proteins 0.000 description 1
- 102220556134 Myeloid cell surface antigen CD33_R69G_mutation Human genes 0.000 description 1
- 102220556122 Myeloid cell surface antigen CD33_W22R_mutation Human genes 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 1
- BLXXJMDCKKHMKV-UHFFFAOYSA-N Nabumetone Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 1
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 101800000675 Neuregulin-2 Proteins 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 208000007571 Ovarian Epithelial Carcinoma Diseases 0.000 description 1
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 1
- 108010037516 PSMA-617 Proteins 0.000 description 1
- 102000015094 Paraproteins Human genes 0.000 description 1
- 108010064255 Paraproteins Proteins 0.000 description 1
- 208000000821 Parathyroid Neoplasms Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 208000002471 Penile Neoplasms Diseases 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 201000005746 Pituitary adenoma Diseases 0.000 description 1
- 206010061538 Pituitary tumour benign Diseases 0.000 description 1
- 208000021161 Plasma cell disease Diseases 0.000 description 1
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102100022668 Pro-neuregulin-2, membrane-bound isoform Human genes 0.000 description 1
- 102100023884 Probable ribonuclease ZC3H12D Human genes 0.000 description 1
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical class C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Substances CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 102300033259 Receptor tyrosine-protein kinase erbB-3 isoform 1 Human genes 0.000 description 1
- 208000015634 Rectal Neoplasms Diseases 0.000 description 1
- 208000007660 Residual Neoplasm Diseases 0.000 description 1
- 108010029180 Sialic Acid Binding Ig-like Lectin 3 Proteins 0.000 description 1
- 102000001555 Sialic Acid Binding Ig-like Lectin 3 Human genes 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 208000021712 Soft tissue sarcoma Diseases 0.000 description 1
- 208000037839 Solid Ehrlich Carcinoma Diseases 0.000 description 1
- 101710196623 Stimulator of interferon genes protein Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 206010042971 T-cell lymphoma Diseases 0.000 description 1
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 108040000066 TRAIL receptor activity proteins Proteins 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 description 1
- PDMMFKSKQVNJMI-BLQWBTBKSA-N Testosterone propionate Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](OC(=O)CC)[C@@]1(C)CC2 PDMMFKSKQVNJMI-BLQWBTBKSA-N 0.000 description 1
- WDLRUFUQRNWCPK-UHFFFAOYSA-N Tetraxetan Chemical compound OC(=O)CN1CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC1 WDLRUFUQRNWCPK-UHFFFAOYSA-N 0.000 description 1
- 238000012338 Therapeutic targeting Methods 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 102400000160 Thymopentin Human genes 0.000 description 1
- 101800001703 Thymopentin Proteins 0.000 description 1
- 238000008050 Total Bilirubin Reagent Methods 0.000 description 1
- 241000245032 Trillium Species 0.000 description 1
- 101710190034 Trophoblast glycoprotein Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102100040247 Tumor necrosis factor Human genes 0.000 description 1
- 208000023915 Ureteral Neoplasms Diseases 0.000 description 1
- 206010046458 Urethral neoplasms Diseases 0.000 description 1
- 201000003761 Vaginal carcinoma Diseases 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 208000012018 Yolk sac tumor Diseases 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 208000017733 acquired polycythemia vera Diseases 0.000 description 1
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 description 1
- 229930183665 actinomycin Natural products 0.000 description 1
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 239000003470 adrenal cortex hormone Substances 0.000 description 1
- 208000024447 adrenal gland neoplasm Diseases 0.000 description 1
- 230000001780 adrenocortical effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical compound OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 description 1
- 229960003459 allopurinol Drugs 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019418 amylase Nutrition 0.000 description 1
- 229960004238 anakinra Drugs 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 229940030486 androgens Drugs 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- RGHILYZRVFRRNK-UHFFFAOYSA-N anthracene-1,2-dione Chemical class C1=CC=C2C=C(C(C(=O)C=C3)=O)C3=CC2=C1 RGHILYZRVFRRNK-UHFFFAOYSA-N 0.000 description 1
- 229940046836 anti-estrogen Drugs 0.000 description 1
- 230000001833 anti-estrogenic effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001494 anti-thymocyte effect Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940125715 antihistaminic agent Drugs 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940033495 antimalarials Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940045687 antimetabolites folic acid analogs Drugs 0.000 description 1
- 239000003080 antimitotic agent Substances 0.000 description 1
- 229940034982 antineoplastic agent Drugs 0.000 description 1
- 229940045719 antineoplastic alkylating agent nitrosoureas Drugs 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 1
- 229950010559 besilesomab Drugs 0.000 description 1
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 1
- 229960000397 bevacizumab Drugs 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical class N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 238000002725 brachytherapy Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 229950010231 brequinar Drugs 0.000 description 1
- PHEZJEYUWHETKO-UHFFFAOYSA-N brequinar Chemical compound N1=C2C=CC(F)=CC2=C(C(O)=O)C(C)=C1C(C=C1)=CC=C1C1=CC=CC=C1F PHEZJEYUWHETKO-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000001314 canonical amino-acid group Chemical group 0.000 description 1
- 229960004117 capecitabine Drugs 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229960000590 celecoxib Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000007455 central nervous system cancer Diseases 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 208000012191 childhood neoplasm Diseases 0.000 description 1
- 229960004630 chlorambucil Drugs 0.000 description 1
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229960001265 ciclosporin Drugs 0.000 description 1
- 229960002436 cladribine Drugs 0.000 description 1
- 229950007906 codrituzumab Drugs 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- JLYVRXJEQTZZBE-UHFFFAOYSA-N ctk1c6083 Chemical compound NP(N)(N)=S JLYVRXJEQTZZBE-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 208000035250 cutaneous malignant susceptibility to 1 melanoma Diseases 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 229930182912 cyclosporin Natural products 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960003901 dacarbazine Drugs 0.000 description 1
- 229960000640 dactinomycin Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000012649 demethylating agent Substances 0.000 description 1
- CFCUWKMKBJTWLW-UHFFFAOYSA-N deoliosyl-3C-alpha-L-digitoxosyl-MTM Natural products CC=1C(O)=C2C(O)=C3C(=O)C(OC4OC(C)C(O)C(OC5OC(C)C(O)C(OC6OC(C)C(O)C(C)(O)C6)C5)C4)C(C(OC)C(=O)C(O)C(C)O)CC3=CC2=CC=1OC(OC(C)C1O)CC1OC1CC(O)C(O)C(C)O1 CFCUWKMKBJTWLW-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 1
- 229960000452 diethylstilbestrol Drugs 0.000 description 1
- RGLYKWWBQGJZGM-ISLYRVAYSA-N diethylstilbestrol Chemical compound C=1C=C(O)C=CC=1C(/CC)=C(\CC)C1=CC=C(O)C=C1 RGLYKWWBQGJZGM-ISLYRVAYSA-N 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000371 dose-limiting toxicity Toxicity 0.000 description 1
- 229940010982 dotatate Drugs 0.000 description 1
- 229940115080 doxil Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229950006595 edotreotide Drugs 0.000 description 1
- 229960000284 efalizumab Drugs 0.000 description 1
- 230000009982 effect on human Effects 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 238000009261 endocrine therapy Methods 0.000 description 1
- 229940034984 endocrine therapy antineoplastic and immunomodulating agent Drugs 0.000 description 1
- 208000001991 endodermal sinus tumor Diseases 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000007608 epigenetic mechanism Effects 0.000 description 1
- 229950009760 epratuzumab Drugs 0.000 description 1
- 229960001842 estramustine Drugs 0.000 description 1
- FRPJXPJMRWBBIH-RBRWEJTLSA-N estramustine Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 FRPJXPJMRWBBIH-RBRWEJTLSA-N 0.000 description 1
- ADFOJJHRTBFFOF-RBRWEJTLSA-N estramustine phosphate Chemical compound ClCCN(CCCl)C(=O)OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)OP(O)(O)=O)[C@@H]4[C@@H]3CCC2=C1 ADFOJJHRTBFFOF-RBRWEJTLSA-N 0.000 description 1
- 229960004750 estramustine phosphate Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 239000000328 estrogen antagonist Substances 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- 229960005293 etodolac Drugs 0.000 description 1
- XFBVBWWRPKNWHW-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=N[C]3C(CC)=CC=CC3=C21 XFBVBWWRPKNWHW-UHFFFAOYSA-N 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 238000002710 external beam radiation therapy Methods 0.000 description 1
- 238000011347 external beam therapy Methods 0.000 description 1
- 229950009929 farletuzumab Drugs 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229960001419 fenoprofen Drugs 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- ODKNJVUHOIMIIZ-RRKCRQDMSA-N floxuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(F)=C1 ODKNJVUHOIMIIZ-RRKCRQDMSA-N 0.000 description 1
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 1
- 229960005304 fludarabine phosphate Drugs 0.000 description 1
- 229960001751 fluoxymesterone Drugs 0.000 description 1
- YLRFCQOZQXIBAB-RBZZARIASA-N fluoxymesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)C[C@@H]2O YLRFCQOZQXIBAB-RBZZARIASA-N 0.000 description 1
- JYEFSHLLTQIXIO-SMNQTINBSA-N folfiri regimen Chemical compound FC1=CNC(=O)NC1=O.C1NC=2NC(N)=NC(=O)C=2N(C=O)C1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1.C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 JYEFSHLLTQIXIO-SMNQTINBSA-N 0.000 description 1
- 150000002224 folic acids Chemical class 0.000 description 1
- 201000006585 gastric adenocarcinoma Diseases 0.000 description 1
- 208000010749 gastric carcinoma Diseases 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical class C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 208000019691 hematopoietic and lymphoid cell neoplasm Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 208000006359 hepatoblastoma Diseases 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 1
- 229940121372 histone deacetylase inhibitor Drugs 0.000 description 1
- 239000003276 histone deacetylase inhibitor Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 238000001794 hormone therapy Methods 0.000 description 1
- 102000046001 human TACSTD2 Human genes 0.000 description 1
- 229940088013 hycamtin Drugs 0.000 description 1
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 description 1
- 229960004171 hydroxychloroquine Drugs 0.000 description 1
- 229950000801 hydroxyprogesterone caproate Drugs 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 229960000908 idarubicin Drugs 0.000 description 1
- 229960001101 ifosfamide Drugs 0.000 description 1
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 239000000367 immunologic factor Substances 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 229960003795 iobenguane (123i) Drugs 0.000 description 1
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 208000022013 kidney Wilms tumor Diseases 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 108020001756 ligand binding domains Proteins 0.000 description 1
- 229940126616 lilotomab satetraxetan Drugs 0.000 description 1
- 208000012987 lip and oral cavity carcinoma Diseases 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 229960002247 lomustine Drugs 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 229950003828 lupartumab Drugs 0.000 description 1
- 229950005005 lupartumab amadotin Drugs 0.000 description 1
- 230000001589 lymphoproliferative effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 208000014432 malignant adrenal gland pheochromocytoma Diseases 0.000 description 1
- 201000006782 malignant pheochromocytoma Diseases 0.000 description 1
- 208000026037 malignant tumor of neck Diseases 0.000 description 1
- 210000004216 mammary stem cell Anatomy 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 229960004961 mechlorethamine Drugs 0.000 description 1
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 description 1
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 1
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 229960004296 megestrol acetate Drugs 0.000 description 1
- RQZAXGRLVPAYTJ-GQFGMJRRSA-N megestrol acetate Chemical compound C1=C(C)C2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(C)=O)(OC(=O)C)[C@@]1(C)CC2 RQZAXGRLVPAYTJ-GQFGMJRRSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 229950007243 mirvetuximab Drugs 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 229960000350 mitotane Drugs 0.000 description 1
- 229950000844 mizoribine Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- ZDZOTLJHXYCWBA-BSEPLHNVSA-N molport-006-823-826 Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-BSEPLHNVSA-N 0.000 description 1
- 201000005328 monoclonal gammopathy of uncertain significance Diseases 0.000 description 1
- HDZGCSFEDULWCS-UHFFFAOYSA-N monomethylhydrazine Chemical compound CNN HDZGCSFEDULWCS-UHFFFAOYSA-N 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 125000004573 morpholin-4-yl group Chemical group N1(CCOCC1)* 0.000 description 1
- RAHBGWKEPAQNFF-UHFFFAOYSA-N motesanib Chemical compound C=1C=C2C(C)(C)CNC2=CC=1NC(=O)C1=CC=CN=C1NCC1=CC=NC=C1 RAHBGWKEPAQNFF-UHFFFAOYSA-N 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229960004866 mycophenolate mofetil Drugs 0.000 description 1
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 206010028537 myelofibrosis Diseases 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 1
- 229960005027 natalizumab Drugs 0.000 description 1
- 210000000822 natural killer cell Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 210000003739 neck Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000017066 negative regulation of growth Effects 0.000 description 1
- 230000015286 negative regulation of phagocytosis Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 239000003956 nonsteroidal anti androgen Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 229940121476 omburtamab Drugs 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 201000003707 ovarian clear cell carcinoma Diseases 0.000 description 1
- OFPXSFXSNFPTHF-UHFFFAOYSA-N oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 210000002990 parathyroid gland Anatomy 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 238000002727 particle therapy Methods 0.000 description 1
- FPVKHBSQESCIEP-JQCXWYLXSA-N pentostatin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(N=CNC[C@H]2O)=C2N=C1 FPVKHBSQESCIEP-JQCXWYLXSA-N 0.000 description 1
- 210000004976 peripheral blood cell Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 201000002524 peritoneal carcinoma Diseases 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- 208000028591 pheochromocytoma Diseases 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229960002702 piroxicam Drugs 0.000 description 1
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 1
- 208000021310 pituitary gland adenoma Diseases 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 208000037244 polycythemia vera Diseases 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 102000054765 polymorphisms of proteins Human genes 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 208000016800 primary central nervous system lymphoma Diseases 0.000 description 1
- 208000003476 primary myelofibrosis Diseases 0.000 description 1
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 description 1
- 229960000624 procarbazine Drugs 0.000 description 1
- 239000000583 progesterone congener Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000018883 protein targeting Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 230000006824 pyrimidine synthesis Effects 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 239000003087 receptor blocking agent Substances 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 201000010174 renal carcinoma Diseases 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 201000007444 renal pelvis carcinoma Diseases 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 229960000371 rofecoxib Drugs 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 102220178499 rs143612760 Human genes 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 229960003440 semustine Drugs 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 208000000649 small cell carcinoma Diseases 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010809 targeting technique Methods 0.000 description 1
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 description 1
- 229960004964 temozolomide Drugs 0.000 description 1
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 description 1
- 229960001278 teniposide Drugs 0.000 description 1
- 229960001712 testosterone propionate Drugs 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- PSWFFKRAVBDQEG-YGQNSOCVSA-N thymopentin Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 PSWFFKRAVBDQEG-YGQNSOCVSA-N 0.000 description 1
- 229960004517 thymopentin Drugs 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 208000030901 thyroid gland follicular carcinoma Diseases 0.000 description 1
- 208000013818 thyroid gland medullary carcinoma Diseases 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 102000035160 transmembrane proteins Human genes 0.000 description 1
- 108091005703 transmembrane proteins Proteins 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 229960001099 trimetrexate Drugs 0.000 description 1
- NOYPYLRCIDNJJB-UHFFFAOYSA-N trimetrexate Chemical compound COC1=C(OC)C(OC)=CC(NCC=2C(=C3C(N)=NC(N)=NC3=CC=2)C)=C1 NOYPYLRCIDNJJB-UHFFFAOYSA-N 0.000 description 1
- 230000005747 tumor angiogenesis Effects 0.000 description 1
- 238000007492 two-way ANOVA Methods 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 208000023747 urothelial carcinoma Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 229950001694 vadastuximab talirine Drugs 0.000 description 1
- BNJNAEJASPUJTO-DUOHOMBCSA-N vadastuximab talirine Chemical compound COc1ccc(cc1)C2=CN3[C@@H](C2)C=Nc4cc(OCCCOc5cc6N=C[C@@H]7CC(=CN7C(=O)c6cc5OC)c8ccc(NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)CCCCCN9C(=O)C[C@@H](SC[C@H](N)C(=O)O)C9=O)C(C)C)cc8)c(OC)cc4C3=O BNJNAEJASPUJTO-DUOHOMBCSA-N 0.000 description 1
- 229940065658 vidaza Drugs 0.000 description 1
- GBABOYUKABKIAF-GHYRFKGUSA-N vinorelbine Chemical compound C1N(CC=2C3=CC=CC=C3NC=22)CC(CC)=C[C@H]1C[C@]2(C(=O)OC)C1=CC([C@]23[C@H]([C@]([C@H](OC(C)=O)[C@]4(CC)C=CCN([C@H]34)CC2)(O)C(=O)OC)N2C)=C2C=C1OC GBABOYUKABKIAF-GHYRFKGUSA-N 0.000 description 1
- 229960002066 vinorelbine Drugs 0.000 description 1
- JBHPLHATEXGMQR-LFWIOBPJSA-N vipivotide tetraxetan Chemical compound OC(=O)CC[C@H](NC(=O)N[C@@H](CCCCNC(=O)[C@H](CC1=CC=C2C=CC=CC2=C1)NC(=O)[C@H]1CC[C@H](CNC(=O)CN2CCN(CC(O)=O)CCN(CC(O)=O)CCN(CC(O)=O)CC2)CC1)C(O)=O)C(O)=O JBHPLHATEXGMQR-LFWIOBPJSA-N 0.000 description 1
- 208000013013 vulvar carcinoma Diseases 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 230000036642 wellbeing Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 229950007155 zenocutuzumab Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/14—Blood; Artificial blood
- A61K35/17—Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1027—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against receptors, cell-surface antigens or cell-surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1045—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1045—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants
- A61K51/1051—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody against animal or human tumor cells or tumor cell determinants the tumor cell being from breast, e.g. the antibody being herceptin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1093—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/08—Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
- A61K51/10—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody
- A61K51/1093—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies
- A61K51/1096—Antibodies or immunoglobulins; Fragments thereof, the carrier being an antibody, an immunoglobulin or a fragment thereof, e.g. a camelised human single domain antibody or the Fc fragment of an antibody conjugates with carriers being antibodies radioimmunotoxins, i.e. conjugates being structurally as defined in A61K51/1093, and including a radioactive nucleus for use in radiotherapeutic applications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/32—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
Definitions
- the presently claimed invention relates to the field of radiotherapeutics.
- CD47 is an integrin-associated transmembrane protein that is ubiquitously expressed on the surface of both normal and malignant tissues.
- SIRPa signal receptor protein-alpha
- CD47 is expressed on virtually all normal cells, including red blood cells even though they do not express integrins. This pathway has evolved as a natural process by which the immune system can effectively and selectively clear aged, dead, or dying cells, but leave normal cells alone. To this end, CD47 is frequently overexpressed on the surface of many types of tumors as a means of immune evasion to avoid engulfment and clearance of tumor cells. Suppression of CD47 engagement of SIRPa by therapeutic blocking antibodies leads to the enablement of phagocytosis.
- blockade of the CD47 - SIRPa interaction to facilitate tumor cell engulfment is an emerging therapeutic strategy in the treatment of many types of cancer.
- clinical responses to single agent therapeutics such as treatment with an anti-CD47 blocking antibody therapy have been modest.
- the presently disclosed invention is based on the discovery that administration of a combination including at least one radiotherapeutic, such as a radiolabeled cancer-associated antigen-targeting agent, and a CD47 blockade tips the balance of the pro- and anti -phagocytic signals toward phagocytosis for cancer cells.
- a combination of radioimmunotherapies such as a radiolabeled targeting agent directed against a cancer-associated antigen such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of those disclosed herein and a CD47 blocking agent, such as a blocking monoclonal antibody against CD47 or SIRPa, may enhance clinical outcomes for cancer patients, including those with solid tumor cancers or hematological malignancies.
- the present invention provides compositions and methods for treating a subject having a proliferative disorder such as cancer or a precancerous proliferative order.
- the compositions generally include a radiotherapeutic agent and a CD47 blockade.
- exemplary radiotherapeutic agents include a radiolabeled targeting agent directed against CD33, DR5, 5T4, HER2, HER3, or TROP2 such as a radiolabeled antibody, peptide, or small molecule that binds specifically to CD33, DR5, 5T4, HER2, HER3, or TROP2.
- Exemplary CD33 targeting agents include any one or more of the monoclonal anti-CD33 antibodies lintuzumab, gemtuzumab, or vadastuximab, such as 225 Ac-lintuzumab.
- Exemplary DR5 targeting agents include any one or more of the monoclonal anti-DR5 antibodies mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135.
- Exemplary 5T4 targeting agents include any one or more of the monoclonal anti-5T4 antibodies MED 10641, ALG.APV-527, Tb535, H6-DM5, and ZV0508.
- Exemplary HER3 targeting agents may bind to an epitope of HER3 recognized by HER3 recognized by patritumab, seribantumab, lumretuzumab, elgemtumab, GSK2849330, or AV-203.
- Exemplary TROP2 targeting agents include the monoclonal antibodies Sacituzumab and Datopotamab, and antibodies recognizing the same epitope of TROP2 recognized by either of said antibodies.
- Exemplary CD47 blockades include agents capable of blocking CD47 binding to SIRPa, such as magrolimab, lemzoparlimab, AO-176, ALX148, TTI-621, or TTI-622, as well as nucleic acid based modulators such as MBT-001 and small molecule modulators such as RRx- 001
- the radiotherapeutic includes an actinium labeled monoclonal antibody against CD33, DR5, 5T4, HER2, HER3, or TROP2 administered in a radiation dose of 0.1 to 10 ⁇ Ci/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
- the CD47 blocking agent may, for example, include a monoclonal antibody that prevents CD47 binding to SIRPa.
- the CD47 blockade may, for example, include magrolimab, lemzoparlimab, AO-176, AK117, IMC-002, IBI-188, IBI-322, BI 766063, ZL-1201, AXL148, RRx-001, Azelnidipine, ES004, SRF231, SHR-1603, TJC4, TTI-621, or TTI- 622.
- Exemplary effective doses for the CD47 blockade include 0.05 to 50 mg/kg, such as 0.05 to 5 mg/kg patient weight, or the doses approved for drug use or clinical trials of the agents.
- Exemplary doses of RRx-001 include 5-80 mg/m 2 or any subrange between integer values therein, such as 10-50 mg/m 2 , 10-30 mg/m 2 , or 10-20 mg/m 2 , or any whole integer numerical value in said range ⁇ 5%.
- the cancer may be a solid tumor or a hematological cancer such as a myeloid malignancy.
- myeloid malignancies include multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
- the cancer may be associated with CD33 positive cells, such as myeloblast cells or malignant plasmacytes.
- FIG. 1 is a graph showing the comparative effects on tumor growth of vehicle (control), magrolimab alone, 225Ac-trastuzumab alone, and the combination of magrolimab and 225Ac-trastuzumab in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line.
- FIG. 2 is a graph showing the comparative effects on tumor growth of vehicle (control), magrolimab alone, 177 Lu-trastuzumab alone, and the combination of magrolimab and 177 Lu-trastuzumab in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line.
- FIG. 3 is a graph showing the comparative effects on phagocytosis by human macrophages of BxPC3 human pancreatic cancer cell line (adenocarcinoma) cells of: a non- radiolabeled anti -human HER3 IgG monoclonal antibody AT-02 alone (“HER3 mAh”), an anti human CD47 antibody alone (10 ⁇ g/mL; Clone B6.H12; BioXcell catalog no.
- CD47 mAh 225 Ac-labeled AT-02 anti-HER3 mAh alone (100 nCi/mL; 225 Ac-HER3 mAh), and the combination of the anti-CD47 mAh (10 pg/mL) and 225 Ac-labeled AT-02 anti-HER3 mAh (100 nCi/mL).
- the combination prominently enhanced phagocytosis of BxPC3 cells versus any of the individual agents.
- FIGS 4A and 4B are graphs showing that 225 Ac-labeled lintuzumab induces an increase in cell surface calreticulin in human leukemia cell lines.
- FIGS. 5A, 5B, and 5C are graphs showing that combination treatment with 225 Ac- labeled lintuzumab and an anti-CD47 antibody enhances phagocytosis of three human leukemia cell lines versus either agent alone.
- the presently disclosed invention provides methods for treating a proliferative disease or disorder, such as a hematological malignancy or solid cancer, by administering an effective amount of a radiotherapeutic and an effective amount of a CD47 blockade.
- the radiotherapeutic may be a radiolabeled targeting agent, such as but not limited to a radiolabeled monoclonal antibody, radiolabeled antigen-binding fragment of a monoclonal antibody, radiolabeled antibody mimetic, radiolabeled peptide or radiolabeled small molecule, that specifically binds to one or more cancer-associated antigens such as the mammalian, for example human, forms of CD33, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), Tn Ag, prostate specific membrane antigen (PSMA), ROR1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Recept
- SSTR2 Somatostat
- the CD47 blockade may include a CD47 blocking moiety, such as an antibody against CD47.
- a CD47 blocking moiety such as an antibody against CD47.
- administer with respect to a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, peptide, or small molecule means to deliver the agent to a subject’s body via any known method suitable for antibody delivery.
- Specific modes of administration include, without limitation, intravenous, transdermal, subcutaneous, intraperitoneal, intrathecal and intra-tumoral administration.
- Exemplary administration methods for antibodies may be as substantially described in International Publication No. WO 2016/187514, incorporated by reference herein.
- the targeting agent may be administered as a patient specific therapeutic composition which may be included in a single dose container, the total volume of which may be administered to a patient in a single treatment session.
- the composition may include a monoclonal antibody or antibody fragment and a pharmaceutically acceptable carrier, wherein a dose of an effector molecule (e.g., radionuclide) of the monoclonal antibody and a total protein amount of the monoclonal antibody may depend on at least one patient specific parameter.
- Patient specific parameters include, but are not limited to, a patient weight, a patient age, a patient height, a patient gender, a patient medical condition, and a patient medical history.
- compositions including a radiolabeled targeting agent may include one or more pharmaceutically acceptable carriers or pharmaceutically acceptable excipients.
- a radiolabeled targeting agent such as a radiolabeled antibody or radiolabeled antigen-binding antibody fragment
- pharmaceutically acceptable carriers such carriers are well known to those skilled in the art.
- injectable drug delivery systems include solutions, suspensions, gels, microspheres and polymeric injectables, and can include excipients such as solubility-altering agents (e.g., ethanol, propylene glycol and sucrose) and polymers (e.g., polycaprylactones and PLGA's).
- solubility-altering agents e.g., ethanol, propylene glycol and sucrose
- polymers e.g., polycaprylactones and PLGA's.
- An exemplary formulation may be as substantially described in International Pub. No. WO 2017/155937, incorporated by reference herein.
- the formulation may include 0.5% to 5.0% (w/v) of an excipient selected from the group consisting of ascorbic acid, polyvinylpyrrolidone (PVP), human serum albumin (HSA), a water-soluble salt of HSA, and mixtures thereof.
- an excipient selected from the group consisting of ascorbic acid, polyvinylpyrrolidone (PVP), human serum albumin (HSA), a water-soluble salt of HSA, and mixtures thereof.
- Certain formulations may include 0.5-5% ascorbic acid; 0.5-4% polyvinylpyrrolidone (PVP); and the monoclonal antibody in 50 mM PBS buffer, pH 7.
- antibody includes, without limitation, (a) an immunoglobulin molecule including two heavy chains and two light chains and which recognizes an antigen; (b) polyclonal and monoclonal immunoglobulin molecules; (c) monovalent and divalent fragments or versions thereof, such as Fab, di-Fab, scFvs, diabodies, minibodies, and nanobodies (sdAb); (d) naturally occurring and non-naturally occurring, such as wholly synthetic antibodies, IgG-Fc-silent, and chimeric; and (e) bi-specific forms thereof.
- Immunoglobulin molecules may derive from any of the commonly known classes, including but not limited to IgA, secretory IgA, IgG and IgM.
- IgG subclasses are also well known to those in the art and include, but are not limited to, human IgGl, IgG2, IgG3 and IgG4.
- the N-terminus of each chain defines a “variable region” of about 100 to 110 or more amino acids primarily responsible for antigen recognition.
- the terms variable light chain (VL) and variable heavy chain (VH) refer to these regions of light and heavy chains respectively.
- Antibodies may be human, humanized or nonhuman. When a specific aspect of the presently disclosed invention refers to or recites an “antibody,” it is envisioned as referring to any of the full-length antibodies or fragments thereof disclosed herein, unless explicitly denoted otherwise.
- a “humanized” antibody refers to an antibody in which some, most or all amino acids outside the CDR domains of a non-human antibody are replaced with corresponding amino acids derived from human immunoglobulins. In one embodiment of a humanized form of an antibody, some, most or all of the amino acids outside the CDR domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the antibody to bind to a particular antigen.
- a “humanized” antibody retains an antigenic specificity similar to that of the original antibody.
- a “chimeric antibody” refers to an antibody in which the variable regions are derived from one species and the constant regions are derived from another species, such as an antibody in which the variable regions are derived from a mouse antibody and the constant regions are derived from a human antibody.
- a “complementarity-determining region”, or “CDR”, refers to amino acid sequences that, together, define the binding affinity and specificity of the variable region of a native immunoglobulin binding site. There are three CDRs in each of the light and heavy chains of an antibody.
- a “framework region”, or “FR”, refers to amino acid sequences interposed between CDRs, typically conserved, that act as the scaffold between the CDRs.
- a “constant region” refers to the portion of an antibody molecule that is consistent for a class of antibodies and is defined by the type of light and heavy chains.
- a light chain constant region can be of the kappa or lambda chain type and a heavy chain constant region can be of one of the five chain isotypes: alpha, delta, epsilon, gamma or mu.
- This constant region in general, can confer effector functions exhibited by the antibodies.
- Heavy chains of various subclasses (such as the IgG subclass of heavy chains) are mainly responsible for different effector functions.
- Immunoreactivity refers to a measure of the ability of an immunoglobulin to recognize and bind to a specific antigen.
- Specific binding or “specifically binds” or “binds” refers to an antibody binding to an antigen or an epitope within the antigen with greater affinity than for other antigens.
- the antibody binds to the antigen or the epitope within the antigen with an equilibrium dissociation constant (KD) of about 1 ⁇ 10 ⁇ 8 M or less, for example about 1 ⁇ 10 ⁇ 9 M or less, about 1 ⁇ 10 ⁇ 10 M or less, about 1 ⁇ 10 ⁇ 11 M or less, or about 1 ⁇ 10 ⁇ 12 M or less, typically with the K D that is at least one hundred fold less than its K D for binding to a nonspecific antigen (e.g., BSA, casein).
- KD equilibrium dissociation constant
- the dissociation constant may be measured using standard procedures.
- Antibodies that specifically bind to the antigen or the epitope within the antigen may, however, have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno), Pan troglodytes (chimpanzee, chimp) or Callithrix jacchus (common marmoset, marmoset).
- CD33 targeting agent includes, for example, an antibody, antibody fragment, antibody mimetic, peptide, Fab fragment, aptamer, or small molecule that binds to any available epitope of CD33.
- the anti-CD33 targeting agent is a humanized antibody against CD33, such as lintuzumab (HuM195), gemtuzumab, or vadastuximab.
- the anti-CD33 targeting agent binds to the epitope recognized by the monoclonal antibody “lintuzumab” or “HuM195.”
- HuM195 is known, as are methods of making it.
- the term “DR5 targeting agent” includes, for example, an antibody, antibody fragment, antibody mimetic peptide, Fab fragment, aptamer, or small molecule that binds to any available epitope of DR5.
- the anti-DR5 antibody is a human or humanized antibody against DR5. According to certain aspects, the anti-DR5 antibody binds to an epitope of DR5 recognized by the any of mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. According to certain aspects, the anti-DR5 antibody is selected from mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and/or LBY-135. Table 1
- the term “5T4 targeting agent” includes, for example, an antibody, antibody fragment, antibody mimetic, peptide, Fab fragment, aptamer, or small molecule that binds to any available epitope of 5T4.
- the 5T4 targeting agent may be a monoclonal antibody.
- An antibody for use as an 5T4 targeting agent according to the presently disclosed invention, such as in preclinical studies, may be produced using the sequence provided by Hole & Stern.
- the 5T4 targeting agent is a humanized antibody against 5T4, such as described in U.S. Patent Nos. 7,074,909 and 8,044,178.
- Exemplary antibodies against 5T4 include at least MED10641, described in Harper (Harper, J. et a/.(2017) Mol. Cancer Ther. 16, 1576-1587) and developed by
- an “anti-HER2 antibody” is an antibody, such as but not limited to a monoclonal antibody (mAb), that binds to any available epitope of HER2 (ErbB2).
- mAb monoclonal antibody
- the anti-HER2 antibody employed may be Trastuzumab or a different antibody that binds to an epitope of HER2 recognized by Trastuzumab and/or the antibody employed may be Pertuzumab or a different antibody that binds to an epitope of HER2 recognized by Pertuzumab.
- the anti-HER2 antibody may also be a multispecific antibody, such as bispecific antibody, against any available epitope of HER3/HER2 such as MM-111 and MM- 141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- HER3/HER2 such as MM-111 and MM- 141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- Applicants have successfully conjugated Trastuzumab with p-SCN-DOTA and radiolabeled the composition with 225 Ac or 177 Lu.
- Still other radiolabeled HER2 -targeting agents that may be used or embodied in the various aspects of the invention include 212 Pb-TCMC-Trastuzumab (Orano Med) and 131 I-CAM- H2 ( 131 -Iodine conjugated anti-HER2 sdAb 2Rsl5d; Precirix NV) to treat HER2 expressing cancers, such as breast cancers, advanced/metastatic HER2-positive breast cancer, gastric cancer, gastro-esophageal junction (GEJ) cancer and any of those disclosed herein.
- cancers such as breast cancers, advanced/metastatic HER2-positive breast cancer, gastric cancer, gastro-esophageal junction (GEJ) cancer and any of those disclosed herein.
- an “anti-HER3 antibody” is an antibody, such as but not limited to a monoclonal antibody (mAb), that binds to any available epitope of HER3.
- the anti-HER3 antibody may be one of the following antibodies or bind to an epitope of HER3 recognized by one of the following antibodies: Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, AV-203 (a/k/a CAN017; Aveo Oncology), or GSK2849330.
- the anti-HER3 antibody is selected from one or more of Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX-3379, or GSK2849330.
- the anti-HER3 antibody may be a multispecific antibody, such as a bispecific antibody, against any available epitope of HER3/HER2 such as MM-111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
- the antibody may, for example, be one of the anti-HER3 antibodies disclosed in U.S. Pub No.
- 20210025006 such as CAN017 (heavy chain SEQ ID NO:119 and light chain SEQ ID NO: 120 ), 04D01 (heavy chain SEQ ID NO: 121 and light chain SEQ ID NO: 122 ), 09D03 (heavy chain SEQ ID NO: 123 and light chain SEQ ID NO: 124), 11G01 (heavy chain SEQ ID NO: 125 and light chain SEQ ID NO: 126), 12A07 (heavy chain SEQ ID NO: 127 and light chain SEQ ID NO: 128), 18H02 (heavy chain SEQ ID NO: 129 and light chain SEQ ID NO: 130) and 22A02 (heavy chain SEQ ID NO: 131 and light chain SEQ ID NO: 132), an IgG having the heavy chain of SEQ ID NO: 133 and the light chain of SEQ ID NO: 134, a HER3-binding antibody, such as an IgG, having a heavy chain including 1, 2 or 3 of the heavy chain CDRs of any of said antibodies and/or
- An “epitope” refers to the target molecule site (e.g., at least a portion of an antigen) that is capable of being recognized by, and bound by, a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, or small molecule.
- a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, or small molecule.
- this may refer to the region of the protein (i.e., amino acids, and particularly their side chains) that is bound by the targeting agent.
- Overlapping epitopes include at least one to five common amino acid residues. Methods of identifying epitopes of antibodies are known to those skilled in the art and include, for example, those described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988).
- the terms “proliferative disorder” and “cancer” may be used interchangeably and may include, without limitation, a solid cancer (e.g., a tumor).
- Solid cancers include, without limitation, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, prostate cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, pediatric tumors, cancer of the bladder, cancer of the kidney or ureter,
- the solid cancer may be breast cancer such as tamoxifen-sensitive breast cancer, tamoxifen-resistant breast cancer or triple negative breast cancer (TNBC), gastric cancer, bladder cancer, cervical cancer, endometrial cancer, skin cancer such as melanoma, stomach cancer, testicular cancer, esophageal cancer, bronchioloalveolar cancer, prostate cancer such as castration resistant prostate cancer (CRPC), colorectal cancer, ovarian cancer, cervical epidermoid cancer, liver cancer such as hepatocellular carcinoma (HCC) or cholangiocarcinoma, pancreatic cancer, lung cancer such as non-small cell lung carcinoma (NSCLC) or small cell lung cancer (SCLC), renal cancer, head and neck cancer such as head and neck squamous cell cancer, a carcinoma, a sarcoma, or any combination thereof.
- TNBC triple negative breast cancer
- gastric cancer bladder cancer
- cervical cancer endometrial cancer
- skin cancer such as melanoma
- stomach cancer testicular cancer
- cancer also includes, without limitation, a hematologic malignancy.
- a “hematologic disease” or “hematological disorder” may be taken to refer to at least a blood cancer. Such cancers originate in blood-forming tissue, such as the bone marrow or other cells of the immune system.
- a hematologic disease or disorder includes, without limitation, leukemias (such as acute myeloid leukemia (AML), acute promyelocytic leukemia, acute lymphoblastic leukemia (ALL), acute mixed lineage leukemia, chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), hairy cell leukemia and large granular lymphocytic leukemia), myelodysplastic syndrome (MDS), myeloproliferative disorders (polycythemia vera, essential thrombocytosis, primary myelofibrosis and chronic myeloid leukemia), lymphomas, multiple myeloma, MGUS and similar disorders, Hodgkin's lymphoma (HL), non-Hodgkin lymphoma (NHL), primary mediastinal large B-cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, transformed follicular lymphoma, splenic marginal zone
- the radiotherapeutic may include a targeting agent labeled with a radioisotope.
- a “radioisotope” and “radionuclide” may be used interchangeably, and can be an alpha-emitting isotope, a beta-emitting isotope, and/or a gamma- emitting isotope.
- radioisotopes examples include the following: 131 I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 137 Cs, 212 Pb and 103 Pd.
- Methods for affixing a protein such as an antibody or antibody fragment i.e., “labeling” an antibody with a radioisotope
- Specific methods for labeling are described, for example, in U.S. Patent No.9,603,954, International Publication No. WO 2017/155937 and U.S.
- the radiotherapeutic targeting agent may be labeled by (a) conjugating a targeting agent such as an antibody or peptide with a chelant, such as p-SCN-Bn-DOTA, in a buffered solution, (b) labeling the chelant-conjugated targeting agent with a radionuclide in a buffered solution, such as 225-Actinium or “ 225 Ac”, (c) quenching the reaction by the addition of a quenching chelate (e.g.
- chelators include compounds having the dual functionality of sequestering metal ions, such as the radionuclide, plus the ability to covalently bind a biological carrier/targeting agent such as an antibody.
- Exemplary chelators that may be used include, but are not limited to S-2-(4- Isothiocyanatobenzyl)-1,4,7,10 tetraazacyclododecanetetraacetic acid (p-SCN-Bn-DOTA), diethylene triamine pentaacetic acid (DTPA); ethylene diamine tetraacetic acid (EDTA); 1,4,7,10-tetra-azacyclododecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA); p- isothiocyanatobenzyl-1,4,7,10-tetra-azacyclododecane-1,4,7,10-te-traacetic acid (p-SCN-Bz- DOTA); 1,4,7,10-tetra-azacyclododecane-N,N′,N′′-triacetic acid (DO3A); 1,4,7,10-tetra- azacyclododecane-N
- the effective amount is below 50 ⁇ Ci/kg, 40 ⁇ Ci/kg, 30 ⁇ Ci/kg, 20 ⁇ Ci/kg, 10 ⁇ Ci/kg, 5 ⁇ Ci/kg, 4 ⁇ Ci/kg, 3 ⁇ Ci/kg, 2 ⁇ Ci/kg, 1 ⁇ Ci/kg, or even 0.5 ⁇ Ci/kg.
- the effective amount is at least 0.05 ⁇ Ci/kg, or 0.1 ⁇ Ci/kg, 0.2 ⁇ Ci/kg, 0.3 ⁇ Ci/kg, 0.4 ⁇ Ci/kg, 0.5 ⁇ Ci/kg, 1 ⁇ Ci/kg, 2 ⁇ Ci/kg, 3 ⁇ Ci/kg, 4 ⁇ Ci/kg, 5 ⁇ Ci/kg, 6 ⁇ Ci/kg, 7 ⁇ Ci/kg, 8 ⁇ Ci/kg, 9 ⁇ Ci/kg, 10 ⁇ Ci/kg, 12 ⁇ Ci/kg, 14 ⁇ Ci/kg, 15 ⁇ Ci/kg, 16 ⁇ Ci/kg, 18 ⁇ Ci/kg, 20 ⁇ Ci/kg, 30 ⁇ Ci/kg, or 40 ⁇ Ci/kg.
- the 225 Ac-labeled targeting agent may be administered at a dose that includes any combination of upper and lower limits as described herein, such as from at least 0.1 ⁇ Ci/kg to at or below 5 ⁇ Ci/kg, or from at least 5 ⁇ Ci/kg to at or below 20 ⁇ Ci/kg.
- the radiotherapeutic targeting agent is 225 Ac-labeled, and the effective amount may be below 2 mCi (i.e., wherein the 225 Ac is administered to the subject in a non-weight-based dosage).
- the effective amount may be below 1 mCi, such as 0.9 mCi, 0.8 mCi, 0.7 mCi, 0.6 mCi, 0.5 mCi, 0.4 mCi, 0.3 mCi, 0.2 mCi, 0.1 mCi, 90 ⁇ Ci, 80 ⁇ Ci, 70 ⁇ Ci, 60 ⁇ Ci, 50 ⁇ Ci, 40 ⁇ Ci, 30 ⁇ Ci, 20 ⁇ Ci, 10 ⁇ Ci, or 5 ⁇ Ci.
- the effective amount may be at least 2 ⁇ Ci, such as at least 5 ⁇ Ci, 10 ⁇ Ci, 20 ⁇ Ci, 30 ⁇ Ci, 40 ⁇ Ci, 50 ⁇ Ci, 60 ⁇ Ci, 70 ⁇ Ci, 80 ⁇ Ci, 90 ⁇ Ci, 100 ⁇ Ci, 200 ⁇ Ci, 300 ⁇ Ci, 400 ⁇ Ci, 500 ⁇ Ci, 600 ⁇ Ci, 700 ⁇ Ci, 800 ⁇ Ci, 900 ⁇ Ci, 1 mCi, 1.1 mCi, 1.2 mCi, 1.3 mCi, 1.4 mCi, or 1.5 mCi.
- the 225 Ac-labeled CD33 targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 2 ⁇ Ci to at or below lmCi, or from at least 2 ⁇ Ci to at or below 250 ⁇ Ci, or from 75 ⁇ Ci to at or below 400 ⁇ Ci.
- the 225 Ac-labeled radiotherapeutic targeting agent includes a single dose that delivers less than 12Gy, or less than 8 Gy, or less than 6 Gy, or less than 4 Gy, or less than 2 Gy, such as doses of 2 Gy to 8 Gy, to the subject, such as predominantly to the targeted solid tumor.
- the radiotherapeutic targeting agent is radiolabeled with 177 LU (“ 177 Lu4abeled”), and the effective amount may be, for example, below 1 mCi/kg (i.e., where the amount of 177 Lu-labeled targeting agent administered to the subject delivers a radiation dose of below 1000 mCi per kilogram of subject’s body weight).
- the effective amount is below 900 ⁇ Ci/kg, 800 ⁇ Ci/kg, 700 ⁇ Ci/kg, 600 ⁇ Ci/kg, 500 ⁇ Ci/kg, 400 ⁇ Ci/kg, 300 ⁇ Ci/kg, 200 ⁇ Ci/kg, 150 ⁇ Ci/kg, 100 ⁇ Ci/kg, 80 ⁇ Ci/kg, 60 ⁇ Ci/kg, 50 ⁇ Ci/kg, 40 ⁇ Ci/kg, 30 ⁇ Ci/kg, 20 ⁇ Ci/kg, 10 ⁇ Ci/kg, 5 ⁇ Ci/kg, or 1 ⁇ Ci/kg.
- the effective amount is at least 1 ⁇ Ci/kg, 2.5 ⁇ Ci/kg, 5 ⁇ Ci/kg, 10 ⁇ Ci/kg, 20 ⁇ Ci/kg, 30 ⁇ Ci/kg, 40 ⁇ Ci/kg, 50 ⁇ Ci/kg, 60 ⁇ Ci/kg, 70 ⁇ Ci/kg, 80 ⁇ Ci/kg, 90 ⁇ Ci/kg, 100 ⁇ Ci/kg, 150 ⁇ Ci/kg, 200 ⁇ Ci/kg, 250 ⁇ Ci/kg, 300 ⁇ Ci/kg, 350 ⁇ Ci/kg, 400 ⁇ Ci/kg or 450 ⁇ Ci/kg.
- an 177 Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 5 mCi/kg to at or below 50 ⁇ Ci/kg, or from at least 50 mCi/kg to at or below 500 ⁇ Ci/kg.
- the radiotherapeutic targeting agent is 177 Lu-labeled, and the effective amount may be below 45 mCi, such as below 40 mCi, 30 mCi, 20 mCi, 10 mCi, 5 mCi, 3.0 mCi, 2.0 mCi, 1.0 mCi, 800 ⁇ Ci, 600 ⁇ Ci, 400 ⁇ Ci, 200 ⁇ Ci, 100 ⁇ Ci, or 50 ⁇ Ci.
- the effective amount may be at least 10 ⁇ Ci, such as at least 25 ⁇ Ci, 50 ⁇ Ci, 100 ⁇ Ci, 200 ⁇ Ci, 300 ⁇ Ci, 400 ⁇ Ci, 500 ⁇ Ci, 600 ⁇ Ci, 700 ⁇ Ci, 800 ⁇ Ci, 900 ⁇ Ci, 1 mCi, 2 mCi, 3 mCi, 4 mCi, 5 mCi, 10 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi.
- an 177 Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 10 mCi to at or below 30 mCi, or from at least 100 ⁇ Ci to at or below 3 mCi, or from 3 mCi to at or below 30 mCi.
- the radiotherapeutic targeting agent is radiolabeled with 131 I (“ 131 I-labeled”)
- the effective amount may be below, for example, 1200 mCi (i.e., where the amount of 131 I administered to the subject delivers a total body radiation dose of below 1200 mCi in a non-weight-based dose).
- the effective amount may be below 1100 mCi, below 1000 mCi, below 900 mCi, below 800 mCi, below 700 mCi, below 600 mCi, below 500 mCi, below 400 mCi, below 300 mCi, below 200 mCi, below 150 mCi, or below 100 mCi.
- the effective amount may be below 200 mCi, such as below 190 mCi, 180 mCi, 170 mCi, 160 mCi, 150 mCi, 140 mCi, 130 mCi, 120 mCi, 110 mCi, 100 mCi, 90 mCi, 80 mCi, 70 mCi, 60 mCi, or 50 mCi.
- the effective amount may be at least 1 mCi, such as at least 2 mCi, 3 mCi, 4 mCi, 5 mCi, 6 mCi, 7 mCi, 8 mCi, 9 mCi, 10 mCi, 20 mCi, 30 mCi, 40 mCi, 50 mCi, 60 mCi, 70 mCi, 80 mCi, 90 mCi, 100 mCi, 110 mCi, 120 mCi, 130 mCi, 140 mCi, 150 mCi, 160 mCi, 170 mCi, 180 mCi, 190 mCi, 200 mCi, 250 mCi, 300 mCi, 350 mCi, 400 mCi, 450 mCi, 500 mCi.
- 1 mCi such as at least 2 mCi, 3 mCi, 4 mCi, 5
- an 131 I-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 1 mCi to at or below 100 mCi, or at least 10 mCi to at or below 200 mCi.
- radionuclides have been disclosed in detail herein, any of those disclosed herein are contemplated for labeling the targeting agents (i.e., radiotherapeutic or radioimmunotherapy) that are part of the presently disclosed invention.
- a majority of the radiotherapeutic targeting agent (antibody, antibody fragment, peptide, small molecule, etc.) administered to a subject typically consists of non-labeled targeting agent, with the minority being the labeled targeting agent.
- the ratio of labeled to non-labeled targeting agent can be adjusted using known methods.
- the radiotherapeutic e.g., radioimmunotherapy
- the radiotherapeutic may be provided as a single dose composition tailored to a specific patient, wherein the amount of labeled and unlabeled targeting agent in the composition may depend on at least a patient weight, age, gender, diagnosis, and/or disease state or health status, such as detailed in International Pub. No. WO 2016/187514.
- each of the radiation dose and the protein dose of the antibody may be personalized to that patient based on at least one patient specific parameter.
- each vial of the composition may be made for a specific patient, where the entire content of the vial is delivered to that patient in a single dose.
- each dose may be formulated as a patient specific dose in a vial to be administered to the patient as a “single dose” (i.e., full contents of the vial administered at one time).
- the subsequent dose may be formulated in a similar manner, such that each dose in the regime provides a patient specific dose in a single dose container.
- One of the advantages of the disclosed composition is that there will be no left-over radiation that would need to be discarded or handled by the medical personnel, e.g., no dilution, or other manipulation to obtain a dose for the patient.
- the container When provided in a single dose container, the container may simply be placed in-line in an infusion tubing set for infusion to the patient.
- the volume can be standardized so that there is a greatly reduced possibility of medical error (i.e., delivery of an incorrect dose, as the entire volume of the composition is to be administered in one infusion).
- the radiotherapeutic targeting agent when it is an antibody, it may be provided in a total protein amount of up to lOOmg, such as up to 60 mg, such as 5mg to 45mg, or a total protein amount of between 0.01 mg/kg patient weight to 16.0 mg/kg patient weight, such as between 0.01 mg/kg patient weight to 10.0 mg/kg, or between 0.05 mg/kg patient weight to 5.0 mg/kg, or between 0.01 mg/kg patient weight to 1.0 mg/kg, or between 0.01 mg/kg patient weight to 0.6 mg/kg patient weight, or 0.01 mg/kg patient weight, 0.015 mg/kg patient weight, 0.02 mg/kg patient weight, or 0.04 mg/kg patient weight, or 0.06 mg/kg patient weight.
- a total protein amount of up to lOOmg such as up to 60 mg, such as 5mg to 45mg
- a total protein amount of between 0.01 mg/kg patient weight to 16.0 mg/kg patient weight such as between 0.01 mg/kg patient weight to 10.0 mg/kg
- the effective amount of an antibody in the radioimmunotherapy may include a total protein amount of less than 10mg/m 2 , such as about 6mg/m 2 , or 3mg/m 2 , or even 2mg/m 2 .
- the term “subject” includes, without limitation, a mammal such as a human, a non-human primate, a dog, a cat, a horse, a sheep, a goat, a cow, a rabbit, a pig, a rat and a mouse.
- the subject can be of any age.
- the subject can be 60 years or older, 65 or older, 70 or older, 75 or older, 80 or older, 85 or older, or 90 or older.
- the subject can be 50 years or younger, 45 or younger, 40 or younger, 35 or younger, 30 or younger, 25 or younger, or 20 or younger.
- the subject may, for example, be newly diagnosed, or relapsed and/or refractory, or in remission.
- treating a subject afflicted with a cancer shall include, without limitation, (i) slowing, stopping or reversing the cancer's progression, (ii) slowing, stopping or reversing the progression of the cancer’s symptoms, (iii) reducing the likelihood of the cancer’s recurrence, and/or (iv) reducing the likelihood that the cancer’s symptoms will recur.
- treating a subject afflicted with a cancer means (i) reversing the cancer's progression, ideally to the point of eliminating the cancer, and/or (ii) reversing the progression of the cancer’s symptoms, ideally to the point of eliminating the symptoms, and/or (iii) reducing or eliminating the likelihood of relapse (i.e., consolidation, which ideally results in the destruction of any remaining cancer cells).
- the invention provides methods for treating a cancer, whether hematological or solid, that expresses or overexpresses said target antigen, which method includes administering a radiolabeled targeting agent that binds said target antigen to a mammalian subject such as a human patient, in need of treatment for the cancer in combination with or in conjunction administration of one or more CD47 blockades to the subject.
- “Therapeutically effective amount” or “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result.
- a therapeutically effective amount may vary according to factors such as the disease state, age, gender, and weight of the individual, and the ability of a therapeutic or a combination of therapeutics to elicit a desired response in the individual.
- Exemplary indicators of an effective therapeutic or combination of therapeutics include, for example, improved well-being of the patient, reduction in a tumor burden, arrested or slowed growth of a tumor, and/or absence of metastasis of cancer cells to other locations in the body.
- “therapeutically effective amount” or “effective amount” refers to an amount of the therapeutic agent, i.e., radiotherapeutic or CD47 blockade that may deplete or cause a reduction in the overall number of cancer cells, such as a reduction in certain hematological cells (e.g., CD33 expressing cells), or DR5 expressing cells, or 5T4 expressing cells, HER2, or HER3 expressing cells, or TROP2 expressing cells or may inhibit growth of a tumor, when used together or when used separately.
- certain hematological cells e.g., CD33 expressing cells
- DR5 expressing cells DR5 expressing cells
- 5T4 expressing cells HER2, or HER3 expressing cells
- TROP2 expressing cells may inhibit growth of a tumor, when used together or when used separately.
- “Inhibits growth” refers to a measurable decrease or delay in the growth of a malignant cell or tissue (e.g., tumor) in vitro or in vivo when contacted with a therapeutic or a combination of therapeutics or drugs, when compared to the decrease or delay in the growth of the same cells or tissue in the absence of the therapeutic or the combination of therapeutic drugs. Inhibition of growth of a malignant cell or tissue in vitro or in vivo may be at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%. [0066] Throughout this application, various patents, patent applications and other publications are cited. The disclosures of these patents, patent applications and other publications are hereby incorporated by reference in their entireties into this application.
- the present disclosure relates to methods for treating a mammalian subject, such as a human patient, with cancer by administration of a radiotherapeutic and a CD47 blockade.
- the radiotherapeutic may include a radiolabeled cancer targeting agent, such as a radiolabeled antibody that recognizes a cancer-associated antigen
- the CD47 blockade may include an agent that prevents CD47 binding to SIRPa, such as an anti-CD47 blocking antibody or affinity agent or an anti-SIRPa blocking antibody, or an agent that otherwise downregulates CD47-SIRPa axis activity.
- CD47 (originally named integrin-associated protein (LAP)) is a cell surface protein of the immunoglobulin (Ig) superfamily, which is heavily glycosylated and expressed by virtually all cells in the body. Typically associated with integrin avb3 on most cell types, except RBCs (which lack integrins), it is an indicator of self, providing a “don’t eat me signal” to macrophages/phagocytes. That is, cell-surface CD47 interacts with its receptor on macrophages, SIRPa, to inhibit phagocytosis of normal, healthy cells. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis.
- LAP integrin-associated protein
- CD47 is also highly expressed on several human cancers including myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), non-Hodgkin lymphoma, and bladder cancer as a means to evade phagocytosis by the innate immune system (Eladl, et al. (2020 ) Hematology & Oncology, 13:96).
- MDS myelodysplastic syndrome
- AML acute myeloid leukemia
- NHL non-Hodgkin lymphoma
- bladder cancer as a means to evade phagocytosis by the innate immune system
- CD47 blocking agents there are as many as thirty CD47 blocking agents being developed for the treatment of cancer in both solid tumors and hematological malignancies.
- Strategies to block the CD47- SIRPa axis include biologies that bind or otherwise affect either CD47 or SIRPa and many are currently in clinical testing. Examples include magrolimab, lemzoparlimab, and AO- 176.
- these molecules may be engineered to include or ablate Fc function, e.g., IgGl vs IgG2 or IgG4, so the mechanistic properties of these molecules may be different.
- certain CD47 blocking antibodies also bind to CD47 expressed on red blood cells, and as a result, in the clinic, a related adverse event is anemia.
- Anti-tumor responses have been observed in preclinical trials, such as for the anti- CD47 antibody AO- 176, and in clinical human trials, however the overall response to single agent anti-CD47 or anti-SIRPa has been modest. This is likely due to the necessity for up-regulation of pro-phagocytic responses, e.g., eat me signals, in addition to don’t eat me blockade to enable efficient tumor cell phagocytosis. Under normal physiologic conditions, cellular homeostasis is partly regulated by balancing pro- and anti-phagocytic signals.
- the cells For target cells to be phagocytosed upon CD47 blockade, the cells must also display a potent pro-phagocytic signal, the main “eat me” signals being elicited by surface expressed calreticulin and phosphatidylserine. It is therefore likely that drugs that target the CD47-SIRPa axis will require therapeutic combinations to enable significant clinical responses.
- the presently disclosed invention relates directly to compositions and methods that tip the balance of cellular homeostasis toward pro-phagocytic signals, such as for specific cell types involved in cancers and hematological malignancies.
- the presently disclosed invention relates to a blockade of the CD47 interaction with SIRPa (on phagocytic cells) that interrupts or otherwise downregulates the “don’t eat me” signal, in combination with a radiotherapeutic that enhances the “eat me” signal.
- the anti-CD47 antibody magrolimab recently demonstrated significant clinical responses in high risk previously untreated patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML).
- MDS myelodysplastic syndrome
- AML acute myeloid leukemia
- Radiation is an ideal combination therapy for agents that block the CD47 pathway due to its ability to induce both the innate and adaptive immune response (de la Cruz-Merino, et al. (2014) Frontiers in Immunology , vol 5, article 102; Vermeer, et al. (2012) International Journal of Cancer , 133 : 120).
- the radiobiological response causes the activation of different T-cell lines, generating the “switch-on” of the adaptive immune response.
- the radiobiological model considers that DNA damage after radiation induces different types of biological response as a result of direct damage of tumor cells or indirectly due to induction of free radicals. Most cells survive for a limited time after irradiation and, during this time, they generate molecular signals (damage- associated molecular patterns (DAMPs)) that induce the overexpression of specific genes that control the expression of growth factors, cytokines, chemokines, and cell surface receptors - activate both innate and adaptive immune system inflammatory response.
- DAMPs damage- associated molecular patterns
- Radiation has been delivered to cells via IR and to human patients via directed external beam radiation. This radiation has been found to enhance cancer-specific peptide release from damaged cancer cells, facilitate antigen uptake and presentation by dendritic cells, decrease CD47 and increases calreticulin, and upregulate MHC-I expression on tumor cells to increase cancer cell recognition by T cells. Moreover, the radiation-induced DNA damage triggers cGAS- STING pathway to activate IFN gene transcription.
- Exemplary radiotherapeutics of the presently disclosed invention include antibody radioconjugates (ARCs) against CD33, DR5, 5T4, HER2, HER3 and/or TROP2.
- Exemplary ARCs include any of an anti-CD33, DR5, 5T4, HER2, HER3 and/or TROP2 antibody labeled with the potent alpha particle emitting radioisotope actinium-225 ( 225 Ac).
- the radiotherapeutic includes an actinium-225 labeled monoclonal antibody against CD33, such as 225 Ac-lintuzumab
- the radiation is delivered directly to CD33 positive cells and finds use as a therapeutic against heme malignancies such as AML, MDS, and multiple myeloma.
- ARCs By delivering radiation directly to tumor cells, ARCs have the potential to affect the potent radiobiologic effects of external beam radiation in a manner safe for administration to patients, and especially those with a disseminated disease.
- exposure of tumor cells to the ARC’s of the present invention will up-regulate ‘eat me’ signals such as calreticulin and down-regulate CD47 on the surface of cancer cells.
- the combination use of an ARC with a CD47-SIRPa blocking agent is an object of the present invention and enhances the pro-phagocytic response to a CD47-SIRPa blockade as a result of the radioimmunobiologic effects of the targeted radionuclide warhead.
- targeted ARC radiation itself can impart a direct anti-tumor effect, as well as further stimulate the adaptive immune response
- the combination of these two types of agents provides a synergistic therapeutic, improving both the therapeutic outcomes and durability of the response.
- 225 Ac-lintuzumab has demonstrated evidence of clinical activity and tolerability in human trials in relap sed/refractory AML and has shown promising responses in early combination studies with standard of care therapies.
- Several anti-CD47 blocking agents are currently being tested as single agent and in combination with chemotherapy and targeted therapy in myeloid diseases such as AML and MDS.
- CD33 The overexpression of CD33 is commonly found in hematological malignancies, including AML, CML, and MDS.
- AML 85-90% of patients express CD33, which has led to the development of targeted therapies, such as gemtuzumab-ozogamicin (MylotargTM).
- MylotargTM gemtuzumab-ozogamicin
- MDS patients demonstrated approximately twice as many CD33 molecules per bone marrow cell as the control samples (Jilani, et al. (200) Am J Clin Pathol vol. 118:560-566).
- the CD33 antigen is expressed on virtually all cases of CML.
- the methods disclosed herein may include administration of a radioimmunotherapy against CD33 in combination with a CD47 blockade.
- Such methods may be used to treat a proliferative disorder such as a solid cancer and/or a hematological disease or disorder (e.g., a hematological cancer) and/or may be used to inhibit growth and/or proliferation of a cell expressing CD33, and/or may also be used to treat a disease or disorder involving cells expressing or overexpressing CD33.
- the methods may be used to treat a hematological disease or disorder which is multiple myeloma, acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasm, chronic myeloid leukemia (CML), or a relapsed/refractory (relapsed and/or refractory) form of any of the preceding.
- a hematological disease or disorder which is multiple myeloma, acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasm, chronic myeloid leukemia (CML), or a relapsed/refractory (relapsed and/or refractory) form of any of the preceding.
- Radiolabeled CD33 targeting agents may also be used to deplete CD33 -expressing myeloid-derived suppressor cells (MDSCs) found in solid tumors or which act as immune suppressors in hematological cancers, such as leukemias and lymphomas, in the treatment of such disorders.
- MDSCs myeloid-derived suppressor cells
- one or more radiolabeled CD33 targeting agents such as a radiolabeled anti-CD33 monoclonal antibody or a radiolabeled CD33 -binding antibody fragment, such as an 225 Ac labeled anti-CD33 antibody, such as 225 Ac lintuzumab
- a mammalian subject such as a human subject
- a solid tumor such as a solid tumor infiltrated by or subject to infiltration by MDSCs, in combination or conjunction with administering one or more CD47 blockades to the subject.
- Suitable CD33 targeting agents for radiolabeling and use include, for example, lintuzumab, gemtuzumab, vadastuximab, antibodies having the heavy chain and light chain CDRs of the preceding monoclonal antibodies, and CD33 -binding fragments of any of the preceding monoclonal antibodies.
- the solid tumor may, for example, be a sarcoma, osteosarcoma, fibrosarcoma, pancreatic cancer, breast cancer, tamoxifen-resistant breast cancer, TNBC, hepatocellular carcinoma, melanoma, lung cancer, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), Lewis lung carcinoma, Solid Ehrlich carcinoma, endometrial cancer, glioma, glioblastoma, mesothelioma, carcinomas, colon cancer, colorectal carcinoma, oral carcinoma, renal carcinoma, ovarian cancer, or any of the solid tumor cancers disclosed herein.
- SCLC small cell lung cancer
- NSCLC non-small cell lung cancer
- Lewis lung carcinoma Solid Ehrlich carcinoma, endometrial cancer, glioma, glioblastoma, mesothelioma, carcinomas, colon cancer, colorectal carcinoma, oral carcinoma, renal carcinoma, ovarian cancer, or any of the solid tumor cancers disclosed herein.
- CD33 is a 67 Kd type I transmembrane receptor glycoprotein that may function as a sialic acid-dependent cell adhesion molecule.
- CD33 has a long N-terminal extracellular domain, a helical transmembrane domain, and a short C-terminal cytoplasmic domain. Expressed on early myeloid progenitor and myeloid leukemic (e.g., acute myelogenous leukemia, AML) cells, CD33 is not expressed on stem cells.
- Amino acid residues 1-259 of the CD33 protein represent the extracellular domain
- amino acids 260-282 represent the helical transmembrane domain
- amino acids 283-364 represent the cytosolic domain (intracellular).
- SNPs single nucleotide polymorphisms
- W22R, R69G, S128N Antibodies against CD33, such as lintuzumab (HuM195), gemtuzumab, and vadastuximab have been, and are currently being evaluated in the clinic for their efficacy to treat hematological malignancies and plasma cell disorders, including acute myeloid leukemia (AML).
- AML acute myeloid leukemia
- Each antibody has been found to bind to a different portion of the extracellular region of CD33, and each demonstrates different clinical responses (e.g ., anti -tumor effects).
- Gemtuzumab is available from Pfizer as the ADC MylotargTM
- vadastuximab is available from Seattle Genetics as the ADC Vadastuximab talirine.
- HuM195 has very modest activity as a single agent in AML even at supra-saturating doses that fully blocked CD33 binding sites throughout a 4-week period, with the infrequent achievement of complete or partial remissions limited to patients with low tumor burden. Efficacy could perhaps be increased if supra-saturating doses are given repeatedly, as suggested by a small trial in which very high doses of lintuzumab were given weekly for 5 weeks and then every other week for patients with clinical benefit.
- anti-CD33 antibodies eliminate CD33-positive cells by antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and apoptosis in their unlabeled state
- ADCC antibody-dependent cellular cytotoxicity
- CDC complement-dependent cytotoxicity
- ARCs radiolabel
- the anti-CD33 antibodies are radiolabeled with an alpha-emitting radionuclide, such as actinium-225
- an alpha-emitting radionuclide such as actinium-225
- the 225 Ac payload delivers high energy alpha particles directly to the tumor site or CD33 expressing cells, generating lethal double strand DNA breaks without necessitating significant payload accumulation within the tumor cell, and providing therapeutic efficacy for even low target antigen expressing tumors. Due to its short path length, the range of its high energy alpha particle emission is only a few cell diameters thick, thereby limiting damage to nearby normal tissues. Manufacturing of Lintuzumab Satetraxetan Ac-225 is described, for example, in U.S. Patent No. 9,603,954.
- DR4 and DR5 are functional death receptors (DR4 and DR5), also known as tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2 (TRAIL-Rl and -R2), which become upregulated on cell surfaces as part of an immune surveillance mechanism to alert the immune system of the presence of virally infected or transformed cells.
- TRAIL tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2
- TRAIL the ligand that binds death receptors
- T-cells and NK cells upon engagement of DR4 or DR5
- TRAIL trimerizes the death receptor and induces an apoptotic cascade that is independent of p53 (Naoum, et el. (2017) Oncol. Rev. 11, 332).
- DR4 and DR5 can be found expressed at low levels in some normal tissues (Spierings, et al. (2004) J. Histochem. Cytochem ., 52, 821-31), they are upregulated on the surface of many tumor tissues including renal, lung, acute myeloid leukemia (AML), cervical, and breast cancers.
- AML acute myeloid leukemia
- DR4 and DR5-targeting antibodies and recombinant TRAIL (rTRAIL) proteins have been developed, including mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135.
- rTRAIL recombinant TRAIL
- Tigatuzumab has been evaluated in a Phase 2 clinical trial in triple negative breast cancer (TNBC) patients, wherein the expression of DR5 on both primary and metastatic tumor samples was confirmed, demonstrating that DR5 is a suitable target for directing therapeutic intervention in this cancer type and metastatic disease (Forero-Torres, et al. (2015) Clin. Cancer Res., 21, 2722-9).
- radiation is typically used only to treat the site of the primary tumor after surgical resection and is only used palliatively for metastases.
- An additional or alternative approach to achieve targeted delivery of radiation to both primary and metastatic tumors and to spare normal tissues from radiation toxicity is through use of a radiotherapeutic, as disclosed herein, directed to the tumor related antigen DR5.
- radiotherapeutic agents that may be used include at least antibodies, peptides, and/or small molecules that target DR5.
- exemplary radiotherapeutics include ARCs targeted to DR5, such as radiolabeled monoclonal antibodies against DR5 (e.g., 225 Ac-DR5).
- Exemplary antibodies against DR5 include at least tigatuzumab (CD- 1008) from Daiichi Sankyo, conatumumab (AMG 655) from Amgen, mapatumumab from AstraZeneca, lexatumumab (also known as ETR2-ST01) from Creative Biolabs (Shirley, NY, USA), LBY-135, and drozitumab from Genentech.
- Studies in mice may use the surrogate mouse antibody TRA-8 or MD5-1.
- Trophoblast glycoprotein also known as 5T4
- 5T4 is a glycoprotein that is categorized as an oncofetal antigen, meaning it is expressed on cells during fetal developmental stages but is not expressed in adult tissues except on tumors (Southall, P. J. et al. (1990) Br. ./. Cancer 61, 89-95).
- 5T4 is expressed widely across many different tumor types, including lung, breast, head and neck, colorectal, bladder, ovarian, pancreatic, and many others (Stem, P. L. & Harrop, R. (2017) Cancer Immunol. Immunother. 66, 415-426).
- Favorable characteristics for targeting 5T4 with a radiolabeled targeting agent include its high rate of internalization, expression on the tumor periphery, and expression on cancer stem cells.
- radiotherapeutic agents of the presently disclosed invention include at least antibodies, peptides, and/or small molecules that target 5T4.
- exemplary radiotherapeutics include ARCs targeted to 5T4, such as radiolabeled monoclonal antibodies against 5T4 (e.g., 225 AC-5T4).
- Exemplary antibodies against 5T4 include at least MED 10641 developed by Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics.
- the human epidermal growth factor receptor 3 (ErbB3, also known as HER3) is a receptor protein tyrosine kinase belonging to the epidermal growth factor receptor (EGFR) subfamily of receptor protein tyrosine kinases.
- the transmembrane receptor HER3 consists of an extracellular ligand-binding domain having a dimerization domain therein, a transmembrane domain, an intracellular protein tyrosine kinase-like domain and a C-terminal phosphorylation domain. Unlike the other HER family members, the kinase domain of HER3 displays very low intrinsic kinase activity.
- the ligands neuregulin 1 or neuregulin 2 bind to the extracellular domain of HER3 and activate receptor-mediated signaling pathway by promoting dimerization with other dimerization partners such as HER2. Heterodimerization results in activation and transphosphorylation of HER3's intracellular domain and is a means not only for signal diversification but also signal amplification. In addition, HER3 heterodimerization can occur in the absence of activating ligands and this is commonly termed ligand-independent HER3 activation. For example, when HER2 is expressed at high levels as a result of gene amplification (e.g. in breast, lung, ovarian or gastric cancer) spontaneous HER2/HER3 dimers can be formed. In this situation, the HER2/HER3 is considered the most active ErbB signaling dimer and is highly transforming.
- HER3 has been found in several types of cancer such as breast, lung, gastrointestinal and pancreatic cancers. Interestingly, a correlation between the expression of HER2/HER3 and the progression from a non-invasive to an invasive stage has been shown (Alimandi et al. (1995) Oncogene 10:1813-1821; DeFazio et al. (2000) Cancer 87:487-498).
- radiotherapeutic agents of the presently disclosed invention include at least antibodies, peptides, and/or small molecules that target HER3.
- exemplary radiotherapeutics include ARCs targeted to HER3, such as radiolabeled monoclonal antibodies against HER3 (e.g., 225 Ac-HER3).
- Exemplary antibodies against HER3 include the monoclonal antibodies Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX- 3379, and GSK2849330, the bispecific antibodies MM-111, MM-141/Istiratumab, MCLA-128, and MEHD7945A/Duligotumab, and the other anti-HER3 antibodies disclosed herein.
- Exemplary anti-HER3 antibodies such as anti-human HER3 antibodies, that that may be radiolabeled and embodied in and/or used in the various aspect of the presently disclosed invention include, without limitation, the following antibodies, and antibodies such as but not limited to immunoglobulins, such as but not limited to IgG, that (i) include the heavy chain variable region of the HER3 antibody or heavy chain, (ii) include 1, 2 or 3 of the heavy chain CDRs (e.g., by the Kabat definition) of the HER3 antibody or heavy chain or those recited, (iii) include the light chain variable region of the HER3 antibody or light chain, and/or (iv) include 1, 2 or 3 of the light chain CDRs (e.g., by the Kabat definition) of the HER3 antibody or light chain or those recited.
- immunoglobulins such as but not limited to IgG
- HER3 antibody heavy chain or HER3 antibody light chain that includes an N-terminal leader sequence
- corresponding heavy chains and corresponding light chains that lack the leader sequence
- An exemplary HER3 antibody that may be radiolabeled and embodied in and/or used in the presently disclosed invention may, for example, include a murine monoclonal antibody against HER3 including a heavy chain having the amino acid sequence as set forth in SEQ ID NO:9 or 11 and/or a light chain having the amino acid sequence as set forth in SEQ ID NO: 10 or 12, or an antibody such as a humanized antibody derived from one or more of said sequences.
- An exemplary HER3 antibody that may be radiolabeled and embodied in and/or used in the presently disclosed invention may include or a heavy chain with an N-terminal region having the sequence set forth in SEQ ID NO: 13 and/or a light chain with an N-terminal region having the sequence as set forth in SEQ ID NO: 14.
- a HER3 antibody that may be similarly embodied or used in various aspect of the invention may, for example, include the heavy chain variable region having the amino acid sequence as set forth in SEQ ID NO:7, and/or a light chain variable region having an amino acid sequence as set forth in SEQ ID NO:8; and/or a heavy chain including one or more of CDR1, CDR2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS: 1-3, and/or a light chain with one or more of the CDR1, CD2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS:4-6.
- a HER3 antibody embodied in and/or used in any of the aspects of the invention may, for example, include any combination of the aforementioned light chain sequences and/or heavy chain sequences.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO: 15, a CDR-H2 including SEQ ID NO: 16, and a CDR-H3 including SEQ ID NO: 17, and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 18, a CDR-L2 including SEQ ID NO: 19, and a CDR- L3 including SEQ ID NO:20.
- An exemplary An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:21 and/or an immunoglobulin light chain variable region including SEQ ID NO:22.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:23 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:24.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:25, a CDR-H2 including SEQ ID NO:26, and a CDR-H3 including SEQ ID NO:27; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:31 and/or an immunoglobulin light chain variable region including SEQ ID NO:32..
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:33 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:34
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:35, a CDR-H2 including SEQ ID NO:36, and a CDR-H3 including SEQ ID NO:37; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 38, a CDR-L2 including SEQ ID NO: 39, and a CDR- L3 including SEQ ID NO:40.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:41, and/or an immunoglobulin light chain variable region SEQ ID NO:42.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:43 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:44.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:45, a CDR-H2 including SEQ ID NO:46, and a CDR-H3 including SEQ ID NO:47; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:48, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:49.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:50 and/or an immunoglobulin light chain variable region including SEQ ID NO:51.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:52 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:53.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:54, a CDR-H2 including SEQ ID NO:55, and a CDR-H3 including SEQ ID NO:56; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:57 and/or an immunoglobulin light chain variable region including SEQ ID NO: 58.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:59 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO: 60.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:61, a CDR-H2 including SEQ ID NO:62, and a CDR-H3 including SEQ ID NO:63; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:64, a CDR-L2 including SEQ ID NO:65, and a CDR- L3 including SEQ ID NO:66.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:67, and/or an immunoglobulin light chain variable region including SEQ ID NO: 68.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO: 69 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:70.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:71, a CDR-H2 including SEQ ID NO:72, and a CDR-H3 including SEQ ID NO:66; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:73, and/or an immunoglobulin light chain variable region including SEQ ID NO:74.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:75 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:76.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:77 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:78. [0114] An exemplary HER3 antibody includes an immunoglobulin light chain variable region including SEQ ID NOS: 86, 87, 88, 89, 90 or 91 and/or a heavy chain variable region including SEQ ID NOS:79, 80, 81, 82, 83, 84 or 85.
- An exemplary HER3 antibody includes an immunoglobulin heavy chain sequence including SEQ ID NO:92, 94, 95, 98 or 99 and/or an immunoglobulin light chain sequence including SEQ ID NO: 93, 96, 97, 100 or 101.
- Exemplary HER3 antibodies also include Barecetamab (ISU104) from Isu Abxis Co and any of the HER3 antibodies disclosed in U.S. Patent No. 10,413,607.
- ISU104 Barecetamab from Isu Abxis Co
- Exemplary HER3 antibodies also include HMBD-001 (10D1F) from Hummingbird Bioscience Pte. and any of the HER3 antibodies disclosed in International Pub. Nos. WO 2019185164 and WO2019185878, U.S. Patent 10,662,241; and U.S. Pub. Nos. 20190300624, 20210024651, and 20200308275.
- Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MCLA-128 (i.e., Zenocutuzumab) from Merus N.V.; and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20210206875, 20210155698, 20200102393, 20170058035, and 20170037145.
- MCLA-128 i.e., Zenocutuzumab
- Exemplary HER3 antibodies also include the HER3 antibody Patritumab (U3- 1287), an antibody including heavy chain sequence SEQ ID NO: 106 and/or light chain sequence SEQ ID NO:7 which are reported chains of Patritumab, and any of the HER3 antibodies disclosed in U.S. Patent Nos. 9,249,230 and 7,705,130 and International Pub. No. W02007077028.
- Exemplary HER3 antibodies also include the HER3 antibody MM-121 and any of the HER3 antibodies disclosed in U.S. Patent No. 7,846,440 and International Pub. No. W02008100624.
- Exemplary HER3 antibodies also include the EGFR/HER3 bispecific antibody DL1 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Patent Nos. 9,327,035 and 8,597,652, U.S. Pub. No. 20140193414, and International Pub. No. W02010108127.
- Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MM-111 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20130183311 and 20090246206 and International Pub. Nos. W02006091209 and W02005117973.
- the HER3 targeting agent includes an anti-HER3 antibody that binds to an epitope of HER3 recognized by Patritumab from Daiichi Sankyo, Seribantumab (MM-121) from Merrimack Pharmaceuticals, Lumretuzumab from Roche, Elgemtumab from Novartis, GSK2849330 from GlaxoSmithKline, CDX-3379 of Celldex Therapeutics, EV20 and MP-RM-1 from MediPharma, Barecetamab (ISU 104) from Isu Abxis Co., HMBD-001 (10D1F) from Hummingbird Bioscience Pte., REGN1400 from Regeneron Pharmaceuticals, and/or AV-203 from AVEO Oncology.
- the anti- HER3 antibody is selected from one or more of Patritumab, Seribantumab or an antibody including heavy chain sequence SEQ ID NO: 108 and/or light chain sequence SEQ ID NO: 109 which are reported for Seribantumab, Lumretuzumab or an antibody including heavy chain sequence SEQ ID NO: 110 and/or light chain sequence SEQ ID NO: 111 which are reported for Lumretuzumab, Elgemtumab or an antibody including heavy chain sequence SEQ ID NO: 112 and/or light chain sequence SEQ ID NO: 113 which are reported for Elgemtumab, AV-203, CDX-3379, GSK2849330, EV20, MP-RM-1, ISU104, HMBD-001 (10D1F), and REGN1400.
- Exemplary antibodies along with exemplary treatment indications are also described in Table 2.
- HER3 precursor protein receptor tyrosine-protein kinase erbB-3 isoform 1 precursor NCBI Reference Sequence: NP 001973.2
- SEQ ID NO: 115 amino acid sequence of the human HER3 precursor protein (receptor tyrosine-protein kinase erbB-3 isoform 1 precursor NCBI Reference Sequence: NP 001973.2) is provided herein as SEQ ID NO: 115.
- SEQ ID NO: 115 amino acid sequence of the human HER3 precursor protein (receptor tyrosine-protein kinase erbB-3 isoform 1 precursor NCBI Reference Sequence: NP 001973.2) is provided herein as SEQ ID NO: 115.
- suitable antibodies and antibody mimetics specific for the extracellular domain of HER3, such as of human HER3, for use in the various aspects of the invention may be produced using immunization and/or panning and/or antibody engineering techniques that are well established in the art.
- a HER3 targeting agent that is radiolabeled for use in the various embodiments of the invention may, for example, include a HER3 binding peptide such as chelator-bearing HER3 binding peptide, such as a DOTA-bearing HER3 binding peptide, such as any of those disclosed in U.S. Pub. No. 20200121814.
- a HER3 binding peptide such as chelator-bearing HER3 binding peptide, such as a DOTA-bearing HER3 binding peptide, such as any of those disclosed in U.S. Pub. No. 20200121814.
- Tumor-associated calcium signal transducer 2 also known as Trop-2 and as epithelial glycoprotein- 1 antigen (EGP-1)
- Trop-2 also known as Trop-2 and as epithelial glycoprotein- 1 antigen (EGP-1)
- EPP-1 epithelial glycoprotein- 1 antigen
- Cancers that may be targeted with a TROP2 targeting agent and treated with a radiolabeled TROP2 targeting agent according to the invention include but are not limited to carcinomas, squamous cell carcinomas, adenocarcinomas, non-small cell lung cancer (NSCLC), Small-cell lung cancer (SCLC), colorectal cancer, gastric adenocarcinoma, esophageal cancer, hepatocellular carcinoma, ovarian epithelial cancer, breast cancer, metastatic breast cancer, triple negative breast cancer (TNBC), prostate cancer, hormone-refractory prostate cancer, pancreatic ductal adenocarcinoma, head and neck cancers, renal cell cancer, urinary bladder neoplasms, cervical cancer, endometrial cancer, uterine cancer, follicular thyroid cancer, glioblastoma multiforme.
- NSCLC non-small cell lung cancer
- SCLC Small-cell lung cancer
- TNBC triple negative breast cancer
- prostate cancer hormone-refractory prostate cancer, pan
- Exemplary TROP2 targeting agents that may be radiolabeled and used in conjunction with one or more CD47 blockades in the treatment of a proliferative disorder include the monoclonal antibodies Sacituzumab and Datopotamab, antibodies having one or both of the heavy chain and light chain of said antibodies, and antibodies having one or both of the heavy chain CDRs and the light chain CDRs of said antibodies, or TROP2-binding fragments of any of the aforementioned antibodies.
- Sacituzumab biosimilar is commercially available as Catalog No. A2175 from BioVision Incorporated (an Abeam company, Waltham, MA, USA).
- Datopotamab biosimilar is commercially available as Catalog No. PX-TA1653 from ProteoGenix (Schiltigheim, France).
- Exemplary TROP2 targeting agents that may be radiolabeled and used in conjunction with one or more CD47 blockade in the treatment of a proliferative disorder include a monoclonal antibody having a heavy chain SEQ ID NO: 135 and/or a light chain SEQ ID NO: 140 (reported as the heavy and light chains of Sacituzumab), or an antibody including one or both of the heavy chain variable region (SEQ ID NO: 136) or the light chain variable region (SEQ ID NO: 141) of said chains, or an antibody including 1, 2, or 3 of the heavy chain CDRs of said heavy chain (CDRHl-3: SEQ ID NOS: 137-139 respectively) and/or 1, 2 or 3 of the light chain CDRs of said light chain (CDRLl-3: SEQ ID NOS: 142-144 respectively), and any of the anti-human TROP antibodies disclosed in Pat.
- a monoclonal antibody having a heavy chain SEQ ID NO: 135 and/or a light chain SEQ ID NO: 140 (reported as the heavy
- a monoclonal antibody heavy chain SEQ ID NO: 145 and/or a light chain SEQ ID NO: 150 (reported as the heavy and
- Radiotherapeutic agents targeting MU Cl [0130] Radiotherapeutic agents targeting MU Cl
- Exemplary MUC1 targeting agents that may be radiolabeled and used in combination or conjunction with one or more CD47 blockades such as any of those disclosed herein for the treatment of a proliferative disorder such as a MUC1 expressing cancer, include hTAB004 (OncoTAb, Inc.) and any of the anti-MUCl antibodies disclosed in any of U.S. Pub. No. 20200061216 and U.S. Patent Nos.: 8,518,405; 9,090,698; 9,217,038; 9,546,217; 10,017,580; 10,507,251 10,517,966; 10,919,973; 11,136,410; and 11,161,911.
- Radiolabeled MUC1 targeting agent that may be used in combination or conjunction with one or more CD47 blockades according to the invention is 90 Y IMMU-107 (hPAM4-Cide; Immunomedics, Inc.; Gilead Sciences, Inc.), or 177 Lu or 225 Ac alternatively labeled versions thereof.
- Radiolabeled MUC1 targeting agents may be used in the treatment of MUC1 overexpressing cancers, such as MUC1 overexpressing solid tumors, such as pancreatic cancer, locally advanced or metastatic pancreatic cancer and breast cancer, such as metastatic breast cancer, tamoxifen-resistant breast cancer, HER2 -negative breast cancer, and triple negative breast cancer (TNBC).
- Radiotherapeutic agents targeting LYPD 3 (C4.4A)
- Exemplary LYPD3 (C4.4A) targeting agents that may be radiolabeled for use in combination or conjunction with one or more CD47 blockades according to the invention include, for example, BAY 1129980 (a/k/a Lupartumab amadotin; Bayer AG, Germany) an Auristatin- based anti-C4.4A (LYPD3) ADC or its antibody component Lupartumab, IgGi mAb GT-002 (Glycotope GmbH, Germany) and any of those disclosed in U.S. Pub. No. 20210309711, 20210238292, 20210164985, 20180031566, 20170158775, or 20150030618, 20120321619, Canadian Patent Application No.
- Such use may, for example, be for the treatment of a LYPD3 -expressing hematological or solid tumor cancer in a mammal, such as carcinomas, primary and metastatic transitional cell carcinomas (TCCs), adenocarcinomas, lung cancer, lung adenocarcinoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), breast cancer, endocrine therapy -resistant breast cancer (such as tamoxifen-resistant breast cancer), HER2-positive breast cancer, triple negative breast cancer (TNBC), esophageal cancer, renal cell carcinomas, colorectal cancer, cervical cancer, head and neck cancer, urothelial cancer, skin cancer, melanoma, and acute myelogenous leukemia (AML).
- TCCs primary and metastatic transitional cell carcinomas
- NSCLC non-small cell lung cancer
- HCC hepatocellular carcinoma
- breast cancer endocrine therapy -resistant breast cancer (such as tamoxifen
- antibodies such as but not limited to immunoglobulins, such as but not limited to IgG, that (i) include the heavy chain variable region of the disclosed antibody or heavy chain, (ii) include 1, 2 or 3 of the heavy chain CDRs (e.g., by Rabat definition) of the disclosed antibody or heavy chain, (iii) include the light chain variable region of the disclosed antibody or light chain, and/or (iv) include 1, 2 or 3 of the light chain CDRs (e.g., by Rabat definition) of the disclosed antibody or light chain.
- immunoglobulins such as but not limited to IgG
- an antibody heavy chain or an antibody light chain is disclosed that includes an N-terminal leader sequence, also intended to be disclosed for embodiment in and use in the various aspects of the invention are corresponding heavy chains and corresponding light chains that lack the leader sequence.
- the radiolabeled targeting agent used in combination or conjunction with a one or more CD47 blocked may be a radiolabeled PSMA-targeting agent such as a radiolabeled anti-PSMA monoclonal antibody such as J591 labeled for example with 177 LU or 225 Ac or Rosopatamab labeled for example with 177 Lu or 225 Ac, or a radiolabeled PSMA- binding small molecule such as PSMA-617 labeled for example with 177 Lu or 225 Ac, PSMA I&T labeled for example with 177 Lu or 225 Ac, FrhPSMA-7 labeled for example with 177 Lu, 64/67Cu- SAR-bisPSMA (Clarity Pharmaceuticals), CONY 01-a (Convergent Therapeutics, Inc.) labeled for example with 225 Ac, 177 Lu-PSMA I&T-b + 225 Ac-CONV01-a combination (Convergent Therapeutics, Inc.), 131 I-1095 (Lanthe
- Such agents may, for example, be used in the treatment of prostate cancer, such as metastatic prostate cancer, castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and/or hormone therapy resistant prostate cancer (anti-androgen therapy resistant prostate cancer) in combination with or in conjunction with one or more CD47 blockades according to the invention.
- prostate cancer such as metastatic prostate cancer, castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and/or hormone therapy resistant prostate cancer (anti-androgen therapy resistant prostate cancer) in combination with or in conjunction with one or more CD47 blockades according to the invention.
- CRPC castration-resistant prostate cancer
- mCRPC metastatic CRPC
- anti-androgen therapy resistant prostate cancer anti-androgen therapy resistant prostate cancer
- Any of the agents that include DOTA or a DOTA derivative as a chelator may alternatively be labeled with any therapeutically active radionuclide that can be chelated by DOTA, such as 225 Ac, 177 Lu and 90
- radiolabeled cancer targeting agent used in combination or conjunction with one or more CD47 blockades may for example also be any of the following radiolabeled targeting agents:
- a radiolabeled FAP targeting agent such as 177 Lu-FAP-2286 (Clovis Oncology, Inc.) to treat, for example, solid tumors or any of the cancers disclosed herein;
- a radiolabeled CCK2R targeting agents such as DEBIO 1124 / 177 Lu-DOTA-PP- F11N (Debiopharm International SA) to treat, for example, advanced, unresectable pulmonary extrapulmonary small cell carcinoma, and thyroid cancer such as metastatic thyroid cancer, or any of the cancers disclosed herein;
- a radiolabeled CDH3 (cadherin-3, P-cadherin) targeting agent such as 90 Y labeled FF-21101 (FujiFilm Holdings Corporation / FujiFilm Toyama Chemical) to treat, for example, solid tumors such as epithelial ovarian peritoneal or fallopian tube carcinoma, TNBC, head and neck squamous cell carcinoma (HNSCC), cholangiocarcinoma, pancreatic, colorectal cancer, or any of the cancers disclosed herein;
- a radiolabeled IGF-R1 targeting agent such as 225 Ac FPI-1434 (Fusion Pharmaceuticals, Inc.) to treat, for example, solid tumors expressing IGF-R1, or any of the cancers disclosed herein;
- a radiolabeled CEACAM5 targeting agent such as 90 Y-hMN14 and 90 Y TF2 (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, solid tumors such as colon cancer, colorectal cancer, pancreatic cancer, breast cancer such as HER-negative breast cancer, and thyroid cancer such medullary thyroid carcinoma, or any of the cancers disclosed herein;
- a radiolabeled CD22 targeting agent such as IMMU-102 ( 90 Y-epratuzumab) (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, hematological malignancies such as CD22-positive acute lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), stage IIEIV DLBCL, follicular lymphoma, or any of the cancers disclosed herein;
- a radiolabeled SSTR2 targeting agent such as LutatheraTM (lutetium Lu 177proxate; 177Lu-DOTAO-Tyr3-Octreotate; Novartis), LutatheraTM (lutetium Lu 177proxate) + 90 Y-DOTATATE combination (Novartis), 177 LU-OPS201 (Ipsen Pharmaceuticals) the combination 177 LU-OPS201 / 177 Lu-IPN01072 (Ipsen Pharmaceuticals), EBTATE ( 177 Lu-DOTA- EB-TATE; Molecular Targeting Technologies, Inc.), ORM2110 (AlphaMedixTM; Orano Med), and PNT2003 labeled for example with 177 Lu (Point Biopharma Global Inc.), for the treatment of SSTR2 expressing cancers such as solid tumors, for example, neuroendocrine tumors, small cell lung cancer, breast cancer, prostate cancer such as metastatic prostate cancer, such as metastatic castration-resistant prostate cancer, neuroendocrine tumor
- a radiolabeled SSTR2 and SSTR5 targeting agent such as SolucinTM ( 177 Lu- Edotreotide; Isotopen Technologien Miinchen AG (ITM)) to treat, for example, neuroendocrine tumors, or any of the cancers disclosed herein;
- a radiolabeled Neurotensin receptor type 1 (NTSR1) targeting agent such as 177 Lu- SRN01087 / 177 LU-3BP-227 or (Ipsen Pharmaceuticals) to treat, for example, solid tumors expressing NTSR1 such as pancreatic ductal adenocarcinoma, colorectal cancer, gastric cancer, squamous cell carcinoma of the head and neck, bone cancer, advanced cancer, recurrent disease, metastatic tumors, or any of the cancers disclosed herein;
- a radiolabeled human Kallikrein-2 (hK2) targeting agent such as JNJ-69086420 (Janssen / Janssen Pharmaceutica NV) labeled for example with 225 Ac, to treat, for example, prostate cancer such as locally advance or metastatic prostate cancer, or any of the cancers disclosed herein;
- a radiolabeled NET (via norepinephrine transporter) targeting agent such as 131 I- MIBG (Jubilant Radioharma) to treat, for example, neuroblastoma such as relapsed/refractory neuroblastoma, or any of the cancers disclosed herein;
- a radiolabeled neuroepinephrine transporter targeting agents such as Azedra TM (iobenguane 131 I; Lantheus Holdings/Progenics Pharmaceuticals, Inc.) to treat, for example, glioma, paraglioma, malignant pheochromocytoma/paraganglioma
- a radiolabeled CD66 targeting agent such as 90 Y-besilesomab ( 90 Y-anti-CD66- MTR; Telix Pharmaceuticals Ltd.) to treat, for example, leukemias, myelomas and lymphomas, such as any of those disclosed herein including pediatric and adult forms, or any of the cancers disclosed herein;
- a radiolabeled B7-H3 targeting agents such as radiolabeled omburtumab, such 131 I- 8H9 (1311-omburtumab; Y-mAbs Therapeutics, Inc.) and 177 Lu-omburtamab (Y-mAbs Therapeutics, Inc.) to treat, for example, gliomas such as non-progressive diffuse pontine gliomas, such as non-progressive diffuse pontine gliomas previously treated with external beam radiation therapy, brain tumors, central nervous system tumors, neuroblastomas, sarcomas, leptomeningeal metastasis from solid tumors, and medulloblastoma, including in pediatric and adult forms, or any of the cancers disclosed herein;
- gliomas such as non-progressive diffuse pontine gliomas, such as non-progressive diffuse pontine gliomas previously treated with external beam radiation therapy, brain tumors, central nervous system tumors, neuroblastomas, sarcoma
- a radiolabeled NKG2D ligand targeting agent such as a radiolabeled recombinant human NKG2D Fc chimeric protein, for example, Catalog No. 1299-NK from Biotechne (R&D Systems, Inc., Minneapolis, MN, USA) which includes Phe78-Val216 of Human NKG2D (Accession # P26718) or a radiolabeled recombinant human NKG2D Fc chimeric protein including SEQ ID NO: 155 plus/minus an amino-terminal histidine tag such as (His) 6 , or a radiolabeled antibody or antigen-binding fragment thereof against an NKG2D ligand such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET 1 H/ULBP2, RAETl/ULBPl, RAET1L/ULBP6, or RAET1N/ULBP3 - to treat, for example solid tumors or hematological mal
- a radiolabeled GD2 targeting agent such as GD2-SADA: 177 Lu-DOTA (Y-mAbs Therapeutics, Inc.) to treat, for example, SCLC, melanoma, sarcoma or any of the cancers disclosed herein;
- a radiolabeled Folate receptor alpha (FOLR1) targeting agent such as a radiolabeled anti-FOLRl antibody such as radiolabeled Mirvetuximab or Farletuzumab, to treat, for example, solid cancers such as ovarian cancer, lung cancer, NSCLC, breast cancer, TNBC, brain cancer, glioblastoma, colorectal cancer or any of the cancers disclosed herein;
- a radiolabeled Nectin-4 targeting agent such as a radiolabeled anti-Nectin-4 monoclonal antibody such as radiolabeled Enfortumab or radiolabeled forms of any of the anti- Nectin-4 antibodies or targeting agents disclosed in U.S. Pub.
- a radiolabeled CUB-domain containing protein 1 (CDCP1) targeting agent such as a radiolabeled monoclonal antibody such as radiolabeled forms of any of the CDCP1 targeting agents and antibodies disclosed in U.S. Pub. No. 20210179729, U.S. Pub. No. 20200181281, U.S. Pub. No. 20090196873, U.S. Patent. No. 8,883,159, U.S. Patent No. 9,346,886, or Int’l Pub No.
- WO2021087575 to treat, for example, solid cancers such as breast cancer, TNBC, lung cancer, colorectal cancer, ovarian cancer, kidney cancer, liver cancer, HCC, pancreatic cancer, skin cancer, melanoma, or a hematological malignancy such as acute myeloid leukemia, or any of the cancers disclosed herein;
- solid cancers such as breast cancer, TNBC, lung cancer, colorectal cancer, ovarian cancer, kidney cancer, liver cancer, HCC, pancreatic cancer, skin cancer, melanoma, or a hematological malignancy such as acute myeloid leukemia, or any of the cancers disclosed herein;
- a radiolabeled Glypican-3 (GPC3) targeting agent such as a radiolabeled anti-GPC3 mAb such as the radiolabeled humanized IgGi mAb GC33 (a/k/a Codrituzumab; commercially available as Catalog No. TAB-H14 from Creative Biolabs), such as 225 Ac-Macropa-GC33 (Bell et al ., Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules. 2020 Dec 22;26(1):4.) or a radiolabeled form of any of the anti-GPC3 antibodies or other targeting agents disclosed in U.S. Patent No. 10,118,959, U.S.
- GPC3- expressing cancers such as hepatocellular carcinoma, ovarian clear cell carcinoma, melanoma, NSCLC, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), yolk sac tumor, gastric carcinoma, colorectal carcinoma, head and neck cancer, and breast cancer.
- a radiolabeled urokinase plasminogen activator receptor (uPAR) targeting agent such as a radiolabeled monoclonal antibody such as radiolabeled MNPR-101 (huATN-658) such as MNPR-101 -PTC A- Ac225 (Monopar Therapeutics, Inc., Wilmette, IL, USA) or radiolabeled forms of any of the anti-uP AR antibodies or targeting agents disclosed in U.S. Patent No. 9,029,509, U.S. Pub. No. 20080199476, U.S. Pub. No. 20040204348 or Int’l Pub. No. WO2021257552, to treat, for example, solid cancers or hematological malignancies such as any of those disclosed herein; and/or
- a radiolabeled LewisY antigen (LeY) targeting agent such as a radiolabeled anti- LeY monoclonal antibody such as radiolabeled forms of 3S1931 and/or of a humanized version thereof such as Hu3S1933, or of any of monoclonal antibodies B34, BR55-2, BR55/BR96, and IGN 133, or antigen binding fragments of any of the preceding antibodies, to treat, for example, solid tumors such as squamous cell lung carcinoma, lung adenocarcinoma, ovarian carcinoma, or colorectal adenocarcinoma or any of the cancers disclosed herein.
- a radiolabeled LewisY antigen (LeY) targeting agent such as a radiolabeled anti- LeY monoclonal antibody such as radiolabeled forms of 3S1931 and/or of a humanized version thereof such as Hu3S1933, or of any of monoclonal antibodies B34, BR55-2, BR55/BR96,
- a radiolabeled targeting agent used in combination or conjunction with one or more CD47 blockades for the treatment of a cancer or proliferative disorder such as any of those disclosed herein in a mammal, such as a human includes a phospholipid-based cancer targeting agent.
- the phospholipid-based cancer targeting agent includes any of the radioactive phospholipid metal chelates disclosed in U.S. Pub. No. 20200291049, incorporated by reference herein, such as but not limited to
- a/k/a NM600 or a pharmaceutically acceptable salt thereof, chelated with a radionuclide, such as 225 Ac, 177 LU, or 90 Y.
- a radionuclide such as 225 Ac, 177 LU, or 90 Y.
- the lipid based radiolabeled targeting agent used in conjunction with one or more CD47 blockades includes any of the radiolabeled phospholipid compounds disclosed in U.S. Pub. No. 20140030187 or U.S. Patent No, 6,417,384, each incorporated by reference herein, such as but not limited to i.e., 18-(p-iodophenyl)octadecyl phosphocholine, wherein iodine is 131 I (a/k/a NM404 1-131, and CLR 131), or a pharmaceutically acceptable salt thereof.
- the phospholipid- based radiolabeled targeting agent used in conjunction with one or more CD47 blockades includes any of the phospholipid drug conjugate compounds disclosed in U.S. Patent No. 9,480,754, incorporated by reference herein.
- an exemplary radiotherapeutic disclosed herein may include an antibody radioconjugate (ARC) against a single antigen, such as CD33, DR5, 5T4, HER2, HER3, or TROP2 multi-specific antibodies are also within the scope of the present invention.
- ARC antibody radioconjugate
- the radiotherapeutic may include a multi-specific targeting agent, such as a multi specific antibody, that recognizes a first epitope of an antigen (such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of the cancer-associated antigen targets disclosed herein) and a second epitope of the same antigen, or recognizes an epitope of a first antigen and an epitope of one or more different antigens selected, for example, from any of the cancer-associated antigens disclosed herein.
- a multi-specific targeting agent such as a multi specific antibody, that recognizes a first epitope of an antigen (such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of the cancer-associated antigen targets disclosed herein) and a second epitope of the same antigen, or recognizes an epitope of a first antigen and an epitope of one or more different antigens selected, for example, from any of the cancer-associated antigens disclosed herein.
- an ARC may include a multi-specific antibody), such as a bispecific antibody, that includes at least a first target recognition component which specifically binds to an epitope of a first antigen (such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of the cancer- associated antigen targets disclosed herein) and a second target recognition component which specifically binds to an epitope of an antigen other than the first antigen, such as any of the cancer- associated antigens disclosed herein.
- a multi-specific antibody such as a bispecific antibody, that includes at least a first target recognition component which specifically binds to an epitope of a first antigen (such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of the cancer- associated antigen targets disclosed herein) and a second target recognition component which specifically binds to an epitope of an antigen other than the first antigen, such as any of the cancer- associated antigens disclosed herein.
- the invention also provides compositions and methods for treatment of a proliferative disorder such as any of those disclosed herein that include or utilize at least two discrete radiolabeled targeting agents wherein the two targeting agents have specificity against different cancer-associated antigens and/or different cancer/tumor targeting mechanisms, and which targeting agents may for example, be any of those disclosed herein and/or may be directed against any of the targets disclosed herein.
- a proliferative disorder such as any of those disclosed herein that include or utilize at least two discrete radiolabeled targeting agents wherein the two targeting agents have specificity against different cancer-associated antigens and/or different cancer/tumor targeting mechanisms, and which targeting agents may for example, be any of those disclosed herein and/or may be directed against any of the targets disclosed herein.
- the cancer-associated antigen or antigens for which a radiolabeled targeting agent may, for example, include one or more of the following: CD33, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), Tn Ag, prostate specific membrane antigen (PSMA), ROR1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Receptor 5 (SSTR5), gastrin-releasing peptide receptor (GRPR), NKG2D ligands (such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET 1
- the first target recognition component may, for example, include one of: a first full-length heavy chain and a first full-length light chain, a first Fab fragment, or a first single chain variable fragment (scFvs).
- the first target recognition component may, for example, be derived from any of the monoclonal antibodies listed herein that are directed against CD33, DR5, 5T4, HER2, or HER3.
- the second target recognition component may, for example, include one of: a second full-length heavy chain and a second full-length light chain, a second Fab fragment, or a second single-chain variable fragment (scFvs).
- the second target recognition component may be derived from any of the additional different antigens listed above.
- the presently disclosed invention contemplates methods which include administration of a first ARC against at least one first antigen (i.e., CD33, DR5, 5T4, HER2, or HER3), and administration of a second ARC, wherein the second ARC is against a different epitope of the first antigen, or is against an epitope of a different antigen, such as an antigen selected from the list presented above, or another of the antigens against CD33, DR5, 5T4, HER2, or HER3 not targeted by the first ARC.
- a first antigen i.e., CD33, DR5, 5T4, HER2, or HER3
- the effective amount of the radiotherapeutic includes a maximum tolerated dose (MTD).
- MTD maximum tolerated dose
- the agents when more than one ARC or other cancer-targeting radiotherapeutic is administered, the agents may be administered at the same time. As such, according to certain aspects of the present invention, the agents may, for example, be provided in a single composition. Alternatively, the two radiotherapeutics may be administered sequentially. As such, a first ARC or other cancer-targeting radiotherapeutic may be administered before a second ARC or other cancer-targeting radiotherapeutic, after the second ARC or other cancer targeting radiotherapeutic, or both before and after the second ARC or other cancer-targeting radiotherapeutic.
- the second ARC or other cancer-targeting radiotherapeutic may be administered before the first ARC or other cancer-targeting radiotherapeutic, after the first ARC or other cancer-targeting radiotherapeutic, or both before and after the first ARC or other cancer targeting radiotherapeutic.
- the ARC or other cancer-targeting radiotherapeutic may be administered according to a dosing schedule selected from the group consisting of one every 7, 10, 12, 14, 20, 24, 28, 35, and 42 days throughout a treatment period, wherein the treatment period includes at least two doses.
- the ARC or other cancer-targeting radiotherapeutic may be administered according to a dose schedule that includes 2 doses, such as on days 1 and 5, 6, 7, 8, 9, or 10 of a treatment period, or days 1 and 8 of a treatment period.
- Administration of the ARCs of the present invention may be provided in several ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. In some embodiments a slow- release preparation including the targeting agents(s) and/or other therapeutic agents may be administered. The various agents may be administered as a single treatment or in a series of treatments that continue as needed and for a duration of time that causes one or more symptoms of the cancer to be reduced or ameliorated, or that achieves another desired effect.
- the dose(s) may vary, for example, depending upon the identity, size, and condition of the subject, further depending upon the route by which the composition is to be administered and the desired effect. Appropriate doses of a therapeutic agent depend upon the potency with respect to the expression or activity to be modulated.
- the therapeutic agents can be administered to an animal (e.g., a human) at a relatively low dose at first, with the dose subsequently increased until an appropriate response is obtained.
- the radiotherapeutics disclosed herein such as any of the ARCs, may be administered simultaneously or sequentially with the one or more additional therapeutic agents. Moreover, when more than one additional therapeutic agent is included, the additional therapeutic agents may be administered simultaneously or sequentially with each other and/or with the radiotherapeutic.
- the radiotherapeutic may be labeled with a radioisotope such as an alpha emitter (e.g., 225 Ac) through conjugation of a chelator molecule, and chelation of the radioisotope.
- a radioisotope such as an alpha emitter (e.g., 225 Ac) through conjugation of a chelator molecule, and chelation of the radioisotope.
- the radiotherapeutic may be an antibody against that is deglycosylated in the constant region, such as at asparagine-297 (Asn-297, N297; kabat number) in the heavy chain CH2 domain, for the purpose of uncovering a unique conjugation site, glutamine (i.e., Gln-295, Q295) so that it is available for conjugation with bifunctional chelator molecules.
- the radiotherapeutic may be an antibody that may have reduced disulfide bonds such as by using reducing agents, which may then be converted to dehydroalanine for the purpose of conjugating with a bifunctional chelator molecule.
- the radiotherapeutic may be an antibody for which the disulfide bonds have been reduced using reducing agents, which is then conjugated via aryl bridges with a bifunctional chelator molecule.
- a linker molecule such as 3,5-bis(bromomethyl)benzene may be used to bridge the free sulfhydryl groups on the antibody.
- the radiotherapeutic may be an antibody that may have certain specific existing amino acids replaced with cysteine(s) that then can be used for site- specific labeling.
- the radiotherapeutic may be radiolabeled through site- specific conjugation of suitable bifunctional chelators.
- Exemplary chelator molecules that may be used include p-SCN-Bn-DOTA, NH2-DOTA, NH2-(CH2)1-20-DOTA, NH2-(PEG)1-20-DOTA, HS- DOTA, HS-(CH2)1-20-DOTA, HS-(PEG)1-20-DOTA, dibromo-S-(CH2)1-20-DOTA, dibromo-S- (PEG) 1-20 -DOTA, p-SCN-Bn-DOTP, NH 2 -DOTP, NH 2 -(CH 2 ) 1-20 -DOTP, NH 2 -(PEG) 1-20 -DOTP, HS-DOTP, HS-(CH 2 ) 1-20 -DOTP, HS-(PEG) 1-20 -DOTP, dibromo-S-(CH 2 ) 1-20 -DOTP, and dibromo- S-(PEG)1-20-DOTP.
- the chelator molecules may, for example, be attached to a targeting agent through a linker molecule.
- linker molecules include: -CH2(C6H4)NH2 or -CH2(C6H4)NH-X-Y, wherein X is -R 2 -CH 2 CH 2 O(CH 2 CH 2 O) n CH 2 CH 2 -, -R2-CH2CH2NHC(O)CH2CH2O(CH2CH2O)nCH2CH2-, -R2-(CH2)nCH2-, -R 2 -CH 2 CH 2 NHC(O)(CH 2 ) n CH 2 -, -R 2 -CH(C(O)R 3 )CH 2 -, wherein R 3 is -OH or a short peptide (1-20 amino acids), -R 2 -CH 2 CH 2 0(CH 2 CH 2 0) n CH 2 C(0)0-, or -R 2 -CH 2 CH 2 NHC(0)CH 2 CH 2 0(CH
- Y is -NH 2 or -SR4-, wherein R4 is -H or -CH 2 -3,5-bis(bromomethyl)benzene.
- Targeting agents such as protein targeting agents, for example antibodies and antigen-binding antibody fragments, and peptide targeting agents may, for example, be conjugated with a chelator for radiolabeling the targeting agent via chelation of a radionuclide.
- Such protein or peptide targeting agents may conveniently be conjugated to a DOTA chelating moiety using the bifunctional agent S-2-(4-Isothiocyanatobenzyl)- 1,4, 7,10- tetraazacyclododecane tetraacetic acid a/k/a/ “p-SCN-Bn-DOTA” (Catalog # B205; Macrocyclics, Inc., Plano, TX, USA).
- p-SCN-Bn-DOTA may be synthesized by a multi-step organic synthesis fully described in U.S. Patent No. 4,923,985. Chelation of a radionuclide by the DOTA moiety may be performed prior to chemical conjugation of the antibody with p-SCN-Bn-DOTA and/or after said conjugation.
- CD47 blockade refers to any agent that reduces the binding of CD47 (e.g., on a target cell) to SIRPa (e.g., on a phagocytic cell).
- suitable anti-CD47 reagents include SIRPa reagents, including without limitation SIRPa polypeptides, anti-SIRPa antibodies, soluble CD47 polypeptides, and anti-CD47 antibodies or antibody fragments.
- a suitable anti-CD47 agent e.g. an anti-CD47 antibody, a SIRPa reagent, etc. specifically binds CD47 to reduce the binding of CD47 to SIRPa.
- An agent for use in the methods of the invention will up-regulate phagocytosis by at least 10% (e.g., at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 120%, at least 140%, at least 160%, at least 180%, or at least 200%) compared to phagocytosis in the absence of the agent.
- an in vitro assay for levels of tyrosine phosphorylation of SIRPa will show a decrease in phosphorylation by at least 5% (e.g., at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, or 100%) compared to phosphorylation observed in absence of the candidate agent.
- a SIRPa reagent may include the portion of SIRPa that is sufficient to bind CD47 at a recognizable affinity, which normally lies between the signal sequence and the transmembrane domain, or a fragment thereof that retains the binding activity.
- a suitable SIRPa reagent reduces (e.g., blocks, prevents, etc.) the interaction between the native proteins SIRPa and CD47.
- the CD47 blocking agent may be any of those disclosed in U.S. Patent No. 9,969,789 including but not limited to the SIRPa-IgG Fc fusion proteins disclosed therein, such as TTI-621 and TTI-622.
- an anti-CD47 agent includes an antibody that specifically binds CD47 (i.e., an anti-CD47 antibody) and reduces the interaction between CD47 on one cell (e.g., an infected or malignant cell) and SIRPa on another cell (e.g., a phagocytic cell).
- an anti-CD47 antibody i.e., an anti-CD47 antibody
- suitable antibodies include clones B6H12, 5F9, 8B6, and C3 (for example as described in International Pub. No. WO 2011/143624).
- Suitable anti-CD47 antibodies include fully human, humanized or chimeric versions of such antibodies.
- Exemplary human or humanized antibodies especially useful for in vivo applications in humans due to their low antigenicity include at least monoclonal antibodies against CD47, such as Hu5F9-G4, a humanized monoclonal antibody available from Gilead as Magrolimab (Sikic, et al. (2019) Journal of Clinical Oncology 37:946); Lemzoparlimab and TJC4 from I-Mab Biopharma; AO-176 from Arch Oncology, Inc; AK117 from Akesobio Australia Pty; IMC-002 from Innovent Biologies; ZL-1201 from Zia Lab; SHR-1603 from Jiangsu HengRui Medincine Co.; and SRF231 from Surface Oncology.
- Bispecific monoclonal antibodies are also available, such as IB 1-322, targeting both CD47 and PD-L1 from Innovent Biologies.
- AO-176 in addition to inducing tumor phagocytosis through blocking the CD47- SIRPa interaction, has been found to preferentially bind tumor cells versus normal cells (particularly RBCs where binding is negligible) and directly kills tumor versus normal cells.
- Antibodies against SIRPa may also be used as CD47 blockades.
- anti-SIRPa antibodies also referred to as SIRPa antibodies herein
- antibodies that may be used in or embodied in any of the aspects of the invention include but are not limited to the following anti- SIRPa antibodies, antibodies that include one or both of the heavy chain and light chain variable regions of the following anti-SIRPa antibodies, antibodies that include one or both of the heavy chain and the light chain CDRs of any of the following anti-SIRPa antibodies, and antigen-binding fragments of any of said anti-SIRPa antibodies:
- ADU-1805 Sairopa B.V.; Aduro
- SIRPa antibodies any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018190719 or U.S. Pat. No. 10,851,164;
- SIRP-1 and SIRP-2 (Arch Oncology, Inc.) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2021222746, U.S. App. No. 63/107,200 or U.S. Pub. No. 20200297842;
- BYON4228 (Byondis B.V.; Synthon) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018210793, Inti. Pub. No. WO2018210795, or U.S. Pub. No. 20210070874;
- CD47 blockades that may be employed include any of those disclosed in U.S. Patent No. 9,969,789 including without limitation the SIRPa-IgG Fc fusion proteins TTI-621 and TTI-622 (Trillium Therapeutics, Inc.), both of which preferentially bind CD47 on tumor cells while also engaging activating Fc receptors.
- a SIRPa-IgG Fc fusion protein including the amino acid sequence SEQ ID NO: 116, SEQ ID NO: 117, or SEQ ID NO: 118 may, for example, be used.
- Still other SIRPa Fc domain fusions proteins that may be used include ALX148 from Alx Oncology or any of those disclosed in Int’l Pub. No WO2017027422 or U.S. Pat. No. 10,696,730.
- the CD47 blockade may alternatively, or additionally, include agents that modulate the expression of CD47 and/or SIRPa, such as phosphorodiamidate morpholino oligomers (PMO) that block translation of CD47 such as MBT-001 (PMO, morpholino, Sequence: 5'- CGTCAC AGGCAGGACCC ACTGCCC A-3 ') [SEQ ID NO: 114]) or any of the PMO oligomer CD47 inhibitors disclosed in any of U.S. Patent No. 8,557,788, U.S. Patent No. 8,236,313, U.S. Patent No. 10,370,439 and IntT Pub. No. W02008060785.
- PMO phosphorodiamidate morpholino oligomers
- Small molecule inhibitors of the CD47-SIRPa axis may also be used, such as RRx- 001 (1-bromoacetyl- 3,3 dinitroazetidine) from EpicentRx and Azelnidipine (CAS number 123524-52-7) or pharmaceutically acceptable salts thereof.
- Therapeutically effective doses of an anti-CD47 antibody or other protein CD47 inhibitor may be a dose that leads to sustained serum levels of the protein of about 40 pg/ml or more (e.g., about 50 ug/ml or more, about 60 ug/ml or more, about 75 ug/ml or more, about 100 ug/ml or more, about 125 ug/ml or more, or about 150 ug/ml or more).
- Therapeutically effective doses of a small molecule CD47 blockade such as those disclosed herein also, for example, include 0.01 mg/kg to 1,000 mg/kg and any subrange or value of mg/kg therein such as 0.01 mg/kg to 500 mg/kg or 0.05 mg/kg to 500 mg/kg, or 0.5 mg/kg to 200 mg/kg, or 0.5 mg/kg to 150 mg/kg, or 1.0 mg/kg to 100 mg/kg, or 10 mg/kg to 50 mg/kg.
- the anti-CD47 agent is a soluble CD47 polypeptide that specifically binds SIRPa and reduces the interaction between CD47 on one cell (e.g., an infected cell) and SIRPa on another cell (e.g., a phagocytic cell).
- a suitable soluble CD47 polypeptide can bind SIRPa without activating or stimulating signaling through SIRPa because activation of SIRPa would inhibit phagocytosis. Instead, suitable soluble CD47 polypeptides facilitate the preferential phagocytosis of infected cells over non-infected cells.
- a suitable soluble CD47 polypeptide specifically binds SIRPa without activating/stimulating enough of a signaling response to inhibit phagocytosis.
- a suitable soluble CD47 polypeptide can be a fusion protein (for example, as described in U.S. Pub. No. 20100239579).
- Additional agents may further include administration of one or more additional therapeutic agents.
- the additional agent(s) may be relevant for the disease or condition being treated.
- Such administration may be simultaneous, separate or sequential with the administration of the radiotherapeutic and CD47 blockade.
- the agents may be administered as one composition, or as separate compositions, as appropriate.
- Exemplary additional therapeutic agents include at least chemotherapeutic agents, anti-inflammatory agents, immunosuppressive agents, immunomodulatory agents, or a combination thereof.
- the one or more further therapeutic agents may include an antimyeloma agent, such as dexamethasone, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide.
- the methods may further include administration of a cytokine such as granulocyte colony-stimulating factor (GCSF) after administration of the radiotherapeutic and/or CD47 blockade.
- a cytokine such as granulocyte colony-stimulating factor (GCSF)
- GCSF granulocyte colony-stimulating factor
- the GCSF may be administered, for example, 7, 8, 9, 10, or 11 days after administration of the radiolabeled CD33 targeting agent.
- chemotherapeutic agents include, but are not limited to, anti -neoplastic agents including alkylating agents including: nitrogen mustards, such as mechlorethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas, such as carmustine (BCNU), lomustine (CCNU), and semustine (methyl-CCNU); TemodalTM (temozolamide), ethylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrimidine analogs such as 5-fluorouracil (5FU), fluorodeoxyuridine, gem
- the chemotherapeutic agent may be selected from the group consisting of taxanes (e.g., paclitaxel (Taxol®), docetaxel (Taxotere®), modified paclitaxel (e.g., Abraxane and Opaxio®), doxorubicin, sunitinib (Sutent®), sorafenib (Nexavar®), and other multikinase inhibitors, oxaliplatin, cisplatin and carboplatin, etoposide, gemcitabine, and vinblastine.
- the chemotherapeutic agent is selected from the group consisting of taxanes (like e.g. taxol (paclitaxel), docetaxel (Taxotere), modified paclitaxel (e.g. Abraxane and Opaxio)).
- the chemotherapeutic agent is selected from 5-fluorouracil (5-FU), leucovorin, irinotecan, or oxaliplatin.
- the chemotherapeutic agent is 5-fluorouracil, leucovorin and irinotecan (FOLFIRI).
- the chemotherapeutic agent is 5-fluorouracil, and oxaliplatin (FOLFOX).
- the chemotherapeutic agent is selected from taxanes (e.g., docetaxel or paclitaxel) or a modified paclitaxel (e.g., Abraxane or Opaxio), doxorubicin), capecitabine and/or bevacizumab (Avastin®) for the treatment of breast cancer; therapies with carboplatin, oxaliplatin, cisplatin, paclitaxel, doxorubicin (or modified doxorubicin (Caelyx® or Doxil®)), or topotecan (Hycamtin®) for the treatment of ovarian cancer; therapies with a multi-kinase inhibitor, MKI, (Sutent, Nexavar, or AMG 706) and/or doxorubicin for the treatment of kidney cancer; therapies with oxaliplatin, cisplatin and/or radiation for the treatment of squamous cell carcinoma; and
- the therapeutic agents may be administered according to any standard dose regime known in the field.
- therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m 2 , the amounts being calculated as a function of patient surface area (m 2 ).
- exemplary doses of the chemotherapeutic paclitaxel may include 15 mg/m 2 to 275 mg/m 2
- exemplary doses of docetaxel may include 60 mg/m 2 to 100 mg/m 2
- exemplary doses of epithilone may include 10 mg/m 2 to 20 mg/m 2
- an exemplary dose of calicheamicin may include 1 mg/m 2 to 10 mg/m 2 . While exemplary doses are listed herein, such are only provided for reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention.
- Exemplary anti-inflammatory agents may be selected from a steroidal drug and a NSAID (nonsteroidal anti-inflammatory drug).
- Other anti-inflammatory agents may be selected from aspirin and other salicylates, Cox-2 inhibitors (such as rofecoxib and celecoxib), NSAIDs (such as ibuprofen, fenoprofen, naproxen, sulindac, diclofenac, piroxicam, ketoprofen, diflunisal, nabumetone, etodolac, oxaprozin, and indomethacin), anti-IL6R antibodies, anti-IL8 antibodies, anti-IL15 antibodies, anti-IL15R antibodies, anti-CD4 antibodies, anti-CDl la antibodies (e.g., efalizumab), anti-alpha4/beta-l integrin (VLA4) antibodies (e.g natalizumab), CTLA4-1 g for the treatment of inflammatory diseases, pre-
- immunosuppressive and/or immunomodulatory agents include cyclosporine, azathioprine, mycophenolic acid, mycophenolate mofetil, corticosteroids such as prednisone, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, 15-deoxyspergualine, 6-mercaptopurine, cyclophosphamide, rapamycin, tacrolimus (FK-506), OKT3, anti-thymocyte globulin, thymopentin, thymosin-a and similar agents.
- corticosteroids such as prednisone, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, 15-deoxyspergualine, 6-mercaptopurine, cyclophosphamide, rapa
- the additional therapeutic agents may include an antimyeloma agent.
- antimyeloma agents include dexamethasone, melphalan, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide, several of which are indicated above as chemotherapeutic agents, anti-inflammatory agents, or immunosuppressive agents.
- the additional therapeutic agents may include allopurinol, administered at a dose of 300-600 mg/day orally starting on day 1 of the treatment period and continuing for at least 7 days after the CD33 targeting agent.
- Prophylactic antibiotics and antifungal therapies may be included for those patients who have an absolute neutrophil count of less than 500/ul.
- Analgesics and antihistamines may also be included prior at administration of the CD33 targeting agent by infusion to reduce infusion-related reactions.
- the additional therapeutic agents may be administered according to any standard dose regime known in the field.
- therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m 2 , the amounts being calculated as a function of patient surface area (m 2 ).
- exemplary doses of paclitaxel may include 15 mg/m 2 to 275 mg/m 2
- exemplary doses of docetaxel may include 60 mg/m 2 to 100 mg/m 2
- exemplary doses of epithilone may include 10 mg/m 2 to 20 mg/m 2
- an exemplary dose of calicheamicin may include 1 mg/m 2 to 10 mg/m 2 . While exemplary doses are listed herein, such are only provided for reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention.
- a therapeutic composition for the treatment of a cancer in a mammalian subject such as a human including: a radiotherapeutic agent, such as a radiolabeled cancer-targeting agent, such as a radiolabeled antigen targeting agent targeting a preselected cancer-associated antigen such as any of those disclosed herein, such as a radiolabeled antibody targeting a preselected cancer-associated antigen such as any of those disclosed herein; and a CD47 blockade.
- a radiotherapeutic agent such as a radiolabeled cancer-targeting agent, such as a radiolabeled antigen targeting agent targeting a preselected cancer-associated antigen such as any of those disclosed herein, such as a radiolabeled antibody targeting a preselected cancer-associated antigen such as any of those disclosed herein
- a radiotherapeutic agent such as a radiolabeled cancer-targeting agent, such as a radiolabeled antigen targeting agent targeting a preselected cancer-associated antigen such as any of those disclosed herein, such as
- Aspect 2 The composition according to aspect 1, wherein the radiotherapeutic agent includes a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, such as a radiolabeled anti-CD33, anti-DR5, anti-5T4, anti-HER2, anti-HER3, or anti-TROP2 monoclonal antibody, or a radiolabeled antigen-binding fragment of any of the preceding monoclonal antibodies.
- the radiotherapeutic agent includes a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, such as a radiolabeled anti-CD33, anti-DR5, anti-5T4, anti-HER2, anti-HER3, or anti-TROP2 monoclonal antibody, or a radiolabeled antigen-binding fragment of any of the preceding monoclonal antibodies.
- Aspect 3 The composition according to any preceding aspect, wherein the radiotherapeutic agent includes a radiolabel selected from 13 X I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 137 Cs, 212 Pb or 103 Pd, or a combination thereof.
- a radiolabel selected from 13 X I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 137 Cs, 212 Pb or 103 Pd, or a combination thereof.
- Aspect 4 The composition according to any preceding aspect, wherein the radiotherapeutic includes a CD33 targeting agent selected from radiolabeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof, such as actinium-225 or lutetium-177 labeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof.
- a CD33 targeting agent selected from radiolabeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof, such as actinium-225 or lutetium-177 labeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof.
- Aspect 5 The composition according to any preceding aspect, wherein the radiotherapeutic includes a radiolabeled DR5 targeting agent selected from radiolabeled mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, LBY-135, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- a radiolabeled DR5 targeting agent selected from radiolabeled mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, LBY-135, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- Aspect 6 The composition according to any preceding aspect, wherein the radiotherapeutic includes a radiolabeled 5T4 targeting agent selected from radiolabeled MED 10641, ALG.APV-527, Tb535, H6-DM5, ZV0508, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- a radiolabeled 5T4 targeting agent selected from radiolabeled MED 10641, ALG.APV-527, Tb535, H6-DM5, ZV0508, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- Aspect 7 The composition according to any preceding aspect, wherein the radiotherapeutic includes a radiolabeled HER3 targeting agent selected from radiolabeled patritumab, seribantumab, lumretuzumab, elgemtumab, AV-203, GSK2849330, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- a radiolabeled HER3 targeting agent selected from radiolabeled patritumab, seribantumab, lumretuzumab, elgemtumab, AV-203, GSK2849330, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- Aspect 8 The composition according to any preceding aspect, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 10 ⁇ Ci/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
- Aspect 9 The composition according to any preceding aspect, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 2 ⁇ Ci/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
- Aspect 10 The composition according to any preceding aspect, wherein the CD47 blocking agent includes a monoclonal antibody that prevents CD47 binding to SIRPa.
- Aspect 11 The composition according to any preceding aspect, wherein the CD47 blocking agent includes magrolimab, lemzoparlimab, AO-176, TTI-621, TTI-622, ALX148, RRx- 001, Azelni dipine, any CD47 blockade disclosed herein, or any combination thereof.
- the CD47 blocking agent includes magrolimab, lemzoparlimab, AO-176, TTI-621, TTI-622, ALX148, RRx- 001, Azelni dipine, any CD47 blockade disclosed herein, or any combination thereof.
- Aspect 12 The composition according to any preceding aspect, wherein the effective amount of the CD47 blocking agent is 0.05 to 5 mg/kg (agent weight/body weight).
- Aspect 13 The composition according to any preceding aspect, wherein the radiotherapeutic includes 225 Ac-lintuzumab having a radiation dose of 0.1 to 2 ⁇ Ci/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
- Aspect 14 The composition according to any preceding aspect, wherein the cancer is a solid tumor cancer.
- Aspect 15 The composition according to any one of aspects 1-14, wherein the cancer is a hematological cancer.
- Aspect 16 The composition according to aspect 15, wherein the hematological cancer is a myeloid malignancy.
- Aspect 17 The composition according to aspect 15, wherein the hematological cancer includes multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
- Aspect 18 The composition according to any one of aspects 14-17, wherein the hematological cancer is relapsed/refractory acute myeloid leukemia.
- Aspect 19 The composition according to any preceding aspect, wherein the cancer is a CD33 positive, DR5 positive, 5T4 positive, HER2, HER3, and/or TROP2 positive cancer.
- Aspect 20 The composition according to aspect 19, wherein the CD33 positive cancer includes cells expressing CD33, wherein the CD33 expressing cells include myeloblast cells or malignant plasmacytes.
- Aspect 21 The composition according to any preceding aspect, further including at least one pharmaceutically acceptable excipient.
- Aspect 22 A method for treating a cancer in a mammalian subj ect, such as a human, the method including administering a composition according to any one of aspects 1 to 21.
- a method for treating a cancer in a mammalian subj ect, such as a human including administering (i) a radiolabeled cancer-targeting agent, such as any of those disclosed herein, such as a radiolabeled antigen-targeting agent targeting a preselected cancer- associated antigen such as any of those disclosed herein, such as a radiolabeled antibody targeting a preselected cancer-associated antigen such as any of those disclosed herein; and (ii) a CD47 blockade.
- a radiolabeled cancer-targeting agent such as any of those disclosed herein, such as a radiolabeled antigen-targeting agent targeting a preselected cancer- associated antigen such as any of those disclosed herein, such as a radiolabeled antibody targeting a preselected cancer-associated antigen such as any of those disclosed herein.
- Aspect 24 The method according to aspect 22 or 23, wherein the radiotherapeutic agent includes in radiolabeled form an anti-CD33 monoclonal antibody or a CD33-binding fragment thereof, and the cancer is a hematological disease or disorder selected from one or more of multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, and myeloproliferative neoplasm, or a solid tumor cancer such as any of those disclosed herein; or an anti-5T4 monoclonal antibody or a 5T4-binding fragment thereof, and the cancer is colorectal cancer, gastric cancer, ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, or any combination thereof; or an anti-DR5 monoclonal antibody or a DR5-binding fragment thereof, and the cancer is breast cancer, triple negative breast cancer, ovarian cancer, or prostate cancer; an anti-
- Aspect 25 The method according to aspect 22 or 23, wherein the radiotherapeutic agent includes a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, such as a radiolabeled anti-CD33, anti-DR5, anti-5T4, anti-HER2, anti-HER3, or anti-TROP2 monoclonal antibody.
- the radiotherapeutic agent includes a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, such as a radiolabeled anti-CD33, anti-DR5, anti-5T4, anti-HER2, anti-HER3, or anti-TROP2 monoclonal antibody.
- Aspect 26 The method according to any one of aspects 22-25, wherein the radiotherapeutic agent includes a radiolabel selected from 13 X I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 137 Cs, 212 Pb or 103 Pd, or a combination thereof.
- the radiotherapeutic agent includes a radiolabel selected from 13 X I, 125 I, 123 I, 90 Y, 177 Lu, 186 Re, 188 Re, 89 Sr, 153 Sm, 32 P, 225 Ac, 213 Bi, 213 Po, 211 At, 212 Bi, 213 Bi, 223 Ra, 227 Th, 149 Tb, 137 Cs, 212 Pb or 103 Pd, or a combination thereof.
- Aspect 27 The method according to any one of aspects 22-26, wherein the radiotherapeutic includes a CD33 targeting agent selected from radiolabeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof, such as actinium-225 or lutetium-177 labeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof.
- a CD33 targeting agent selected from radiolabeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof, such as actinium-225 or lutetium-177 labeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof.
- Aspect 28 The method according to any one of aspects 22-27, wherein the radiotherapeutic includes a radiolabeled DR5 targeting agent selected from radiolabeled mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, LBY-135, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- a radiolabeled DR5 targeting agent selected from radiolabeled mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, LBY-135, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- Aspect 29 The method according to any one of aspects 22-28, wherein the radiotherapeutic includes a radiolabeled 5T4 targeting agent selected from radiolabeled
- MED 10641 ALG.APV-527, Tb535, H6-DM5, ZV0508, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- Aspect 30 The method according to any one of aspects 22-29, wherein the radiotherapeutic includes a radiolabeled HER3 targeting agent selected from radiolabeled patritumab, seribantumab, lumretuzumab, elgemtumab, AV-203, GSK2849330, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- a radiolabeled HER3 targeting agent selected from radiolabeled patritumab, seribantumab, lumretuzumab, elgemtumab, AV-203, GSK2849330, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
- Aspect 31 The method according to any one of aspects 22-29, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 10 ⁇ Ci/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
- Aspect 32 The method according to aspect 31, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 2 ⁇ Ci/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
- Aspect 33 The method according to any one of aspects 22-30, wherein the CD47 blocking agent includes a monoclonal antibody that prevents CD47 binding to SIRPa.
- Aspect 34 The method according to any one of aspects 22-30, wherein the CD47 blocking agent includes magrolimab, lemzoparlimab, AO-176, TTI-621, TTI-622, ALX-148, RRx-001, Azelni dipine, any CD47 blockade disclosed herein, or any combination thereof.
- the CD47 blocking agent includes magrolimab, lemzoparlimab, AO-176, TTI-621, TTI-622, ALX-148, RRx-001, Azelni dipine, any CD47 blockade disclosed herein, or any combination thereof.
- Aspect 35 The method according to any one of aspects 22-34, wherein the effective amount of the CD47 blocking agent is 0.05 to 5 mg/kg (agent weight/body weight).
- Aspect 36 The method according to any one of aspects 22-35, wherein the radiotherapeutic includes 225 Ac-lintuzumab having a radiation dose of 0.1 to 2 ⁇ Ci/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
- Aspect 37 The method according to any one of aspects 22-36, wherein the cancer is a solid tumor cancer.
- Aspect 38 The method according to any one of aspects 22-37, wherein the cancer is a hematological cancer.
- Aspect 39 The method according to aspect 38, wherein the hematological cancer is a myeloid malignancy.
- Aspect 40 The method according to aspect 38, wherein the hematological cancer includes multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
- Aspect 41 The composition according to any one of aspects 38-40, wherein the hematological cancer is relapsed/refractory acute myeloid leukemia.
- Aspect 42 The composition according to any one of aspects 22-41, wherein the cancer is a CD33 positive, DR5 positive, 5T4 positive, HER2, HER3, and/or TROP2 positive cancer.
- Aspect 43 The composition according to aspect 42, wherein cancer includes CD33 positive cancers including one or both of CD33 positive myeloblast cells and CD33 positive malignant plasmacytes.
- Aspect 44 Use of a therapeutically active radiolabeled cancer-targeting targeting agent such as a radiolabeled agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein, in the preparation of a medicament for the treatment of a cancer or a precancerous proliferative disorder, such as a hematological malignancy or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a human patient, in combination with a CD47 blockade, such as any of those disclosed herein.
- a therapeutically active radiolabeled cancer-targeting targeting agent such as a radiolabeled agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein, in the preparation of a medicament for the treatment of a cancer or a precancerous proliferative disorder, such as a hematological malignancy or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a
- Aspect 45 Use of a CD47 blockade/blocking agent, such as any of those disclosed herein, in the preparation of a medicament for the treatment of a cancer or a precancerous proliferative disorder, such as a hematological malignancy or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a human patient, in combination with a therapeutically active radiolabeled cancer targeting agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein.
- Aspect 46 Use of a therapeutically active radiolabeled cancer targeting agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein, in combination with a CD47 blockade, such as any of those disclosed herein, for the treatment of a cancer or a precancerous proliferative disorder, such as hematological malignancy or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a human patient.
- a cancer-associated antigen or otherwise targeting cancer cells such as any of those disclosed herein
- a CD47 blockade such as any of those disclosed herein
- the radiolabeled targeting agent includes a targeting agent chemically conjugated to a chelator, wherein the chelator chelates a radionuclide such as any of those disclosed herein.
- Aspect 48 Preceding aspect 47, wherein the chelator includes DOTA or a DOTA derivative.
- Aspect 49 Any of the preceding aspects, wherein the radionuclide is 177 Lu, 225 Ac, 131 I, or 90 Y.
- the various aspects and embodiments of the invention are not part of a cellular therapy, such as an engineered cell therapy, such as CAR-T therapy, and are not used in combination or conjunction with a cell therapy, such as a genetically engineered cell therapy, such as CAR-T therapy.
- a cell therapy such as a genetically engineered cell therapy, such as CAR-T therapy.
- the CD47 blockade agent such as anti-CD47 mAh or anti-SIRPa mAh or SIRPa-Fc fusion protein, is not radiolabeled.
- the CD47 blockade agent and the radiolabeled targeting agent or radiotherapeutic are separate and discrete molecules, i.e., not parts of the same molecule.
- CD47 blockade increases the overall tolerability and survivability of a mammalian subject to the radiation dose(s) delivered by the radiolabeled agent (and any external radiation and/or brachytherapy) without substantially reducing lethality of the combined treatment toward the target cancer cells (or target precancerous disorder cells), thereby permitting higher, more effective radiation doses to be employed, and/or more frequent dosing, and/or longer courses of treatment than could be employed without the CD47 blockade.
- a targeting agent such as an antibody or other protein or peptide may, for example, be labeled with a radionuclide, such as 131 I or 225 Ac, according to the procedures described in any of U.S. Patent No. 10,420,851, U.S. Patent No. 9,603,954, International Pub. No. WO 2017/155937 and U.S. Provisional Patent Application No.63/042,651 filed December 9, 2019 and titled “Compositions and methods for preparation of site-specific radioconjugates.”
- Radiolabeling The antibody may be conjugated to a linker, such as any of the linkers described in the above indicated patent applications.
- An exemplary linker includes at least dodecane tetraacetic acid (DOTA), wherein a goal of the conjugation reaction is to achieve a DOTA-antibody ratio of 3:1 to 5:1.
- a goal of the conjugation reaction is to achieve a DOTA-antibody ratio of 3:1 to 5:1.
- Chelation with the radionuclide, such as 177 Lu, 90 Y, or 225 Ac may then be performed and efficiency and purity of the resulting radiolabeled antibody, such as an anti-CD33 antibody, may be determined by HPLC and iTLC.
- a 1mM DTPA solution may be added to the reaction mixture and incubated at room temperature for 20 min to bind the unreacted 225 Ac into the 225 Ac-DTPA complex.
- Instant thin layer chromatography with 10cm silica gel strip and 10mM EDTA/normal saline mobile phase may be used to determine the radiochemical purity of 225 Ac-DOTA-anti-CD33 through separating 225 Ac-labeled anti-CD33 ( 225 Ac-DOTA-anti-CD33) from free 225 Ac ( 225 Ac-DTPA). In this system, the radiolabeled antibody stays at the point of application and 225 Ac-DTPA moves with the solvent front.
- An exemplary radiolabeled targeting agent such as 225 Ac-DOTA- antibody, may be purified either on PD10 columns pre-blocked with 1% HSA or on Vivaspin centrifugal concentrators with a 50 kDa MW cut-off with 2 x 1.5 mL washes, 3 min per spin.
- Example 2 Specificity and stability of CD33 ARC
- Lintuzumab conjugated with Actinium-225 ( 225 Ac) was tested for cytotoxicity against specific cell types which express CD33.
- a maximum tolerated dose (MTD) of a single injection of the radiolabeled lintuzumab was determined to be 3 ⁇ Ci/kg patient weight.
- the MTD was determined to be 2 ⁇ Ci/kg per dose, or 4 ⁇ Ci/kg total. This data was determined by injections into patients with relapsed/refractory AML: 21 patients were injected with increasing doses of the radiolabeled lintuzumab - 0.5 ⁇ Ci/kg to 4 ⁇ Ci/kg. Determination of MTD was based on the severity of the adverse effects observed at each dose level. Anti-leukemic effects included elimination of peripheral blood blasts in 13 of 19 evaluable patients. Twelve of 18 patients who were evaluable at 4 weeks following treatment had reductions in bone marrow blasts, including nine with reductions ⁇ 50%.
- Example 3 Human maximal tolerated dose and efficacy of CD33 ARC
- a maximum tolerated dose (MTD) of fractionated doses of lintuzumab-Ac 225 followed by Granulocyte Colony Stimulating factor (GCSF) support in each cycle may be determined using a dosing cycle of approximately 42 days.
- a cycle starts with administration of a fractionated dose of Lintuzumab-Ac 225 on Day 1 followed by the administration of GCSF on Day 9 and continuing GCSF per appropriate dosing instructions until absolute neutrophil count (ANC) is greater than 1,000, which is expected to occur within 5 – 10 days.
- ANC absolute neutrophil count
- peripheral blood may be assessed for paraprotein burden.
- a bone marrow aspirate will be performed to assess plasmocyte infiltration on Day 42. If a response is a partial response or better but less than a complete response on Day 42, and the patient remains otherwise eligible, the patient will be re-dosed in a new cycle at the same dose level no sooner than 60 days after Day 1 of the first cycle.
- Example 4 Syngeneic mouse model for 5T4 targeting agents
- a syngeneic mouse model may be used to explore targeting 5T4 in a model where the antibody can also react with 5T4 expressed on normal tissues. Such a model provides the opportunity to observe any toxicities that may arise through targeting this protein with a radioisotope warhead.
- Woods Woods (Woods, A. M. et al. (2002) Biochem.
- J.366, 353–365 reported discovery of an antibody (9A7) that is reactive to mouse 5T4 and was used to screen mouse tumor lines for 5T4 expression (see Table 4; taken from Woods, 2002).
- 9A7 an antibody that is reactive to mouse 5T4 and was used to screen mouse tumor lines for 5T4 expression
- Table 4 taken from Woods, 2002.
- the EMT6 mammary adenocarcinoma cell line has high levels of 5T4 expression, is readily available for purchase from commercial sources to perform experiments. Moreover, this cell line has been reported to be sensitive to radiation.
- Certain mouse 5T4-reactive antibodies are available, including B3F1 (Southgate, T. D. et al. (2010) PLoS One 5, e9982).
- a exemplary experimental plan includes conjugation of the 5T4 antibody B3F1 with the chelator DOTA, following by radiolabeling with 111 In or 225 Ac. Specific activity, efficiency of labeling, and stability of the radiolabeled antibody can be determined as set forth in Examples 1 and 2. TABLE 4 [0289] An in vitro cell killing assay may be performed with the 225 Ac radiolabeled B3F1 antibody.
- EMT6 cells may be used as a positive control for cells that express 5T4 and will be exposed to a dilution series of 225Ac-labeled DOTA-B3F1 and unlabeled DOTA-B3F1 for 1 hour. Cell viability can be measured using an XTT assay as described hereinabove. If desired, a cell line that does not express 5T4 such as LL/2 cells (see Table 4, Source – Woods, 2002) can be used as a negative control. [0290] Table 4 shows a Fluorescent Activated Cell Sorting (FACS) analysis of the 9A7 antibody against a panel of murine cell lines, wherein 105 cells of each line were stained with 9A7.
- FACS Fluorescent Activated Cell Sorting
- Biodistribution experiments An 111 In labeled B3F1 antibody can be used in a first round of biodistribution experiments performed with tumor-free BALB/c mice to evaluate any binding of the antibody to normal tissues and to calculate absorbed dose of radiation to organs. A second round of biodistribution experiments can be performed using BALB/c mice bearing EMT6 tumors to evaluate specific targeting of antibody to the 5T4-expressing tumor and to calculate absorbed dose of radiation to the tumor and to other organs.
- tumor-bearing mice can be treated with escalating single doses of 225 AC-DOTA-B3F1 to establish the maximum tolerated dose (MTD) of the antibody.
- the range of doses may be from 50nCi to 400 nCi.
- Tolerability of the antibody can be determined through measurements of body weight, behavior, and blood chemistry/counts.
- Example 5 Xenograft mouse model for 5T4 targeting agent
- Xenograft mouse models may be utilized to determine if a therapeutic targeting agent has an effect on human derived cancerous cells. However, unless the targeting agent cross- reacts with the mouse target, it primarily only provides information about the cell-killing ability of the agent on the xenograft cells and may not provide information regarding on-target but off- tumor effects.
- 5T4 antibodies that may be used include the following antibodies or the antibody portions of the following: Medimmune/AstraZeneca (MED10641), Aptevo Therapeutics/ Alligator Bioscience (ALG.APV- 527), Biotecnol/Chiome Bioscience (Tb535), Guangdong Zhongsheng Pharmaceuticals (H6- DM5), and Zova Biotherapeutics (ZV0508). Additional antibodies that are bispecific or are available as antibody drug conjugates are listed in Table 1 and provide additional 5T4 targeting agents, i.e., the 5T4 specific binding portions.
- the Medimmune/Astrazeneca antibody includes an engineered cysteine, which can be used for site-specific conjugation of DOTA and subsequent chelation with a radioisotope, such as described in U.S. Provisional Patent Application Nos. 62/945,383 filed December 9, 2019 and 63/119,093 filed November 30, 2020 each titled “Compositions and methods for preparation of site-specific radioconjugates,” incorporated by reference herein.
- Biodistribution studies may be performed in mice with 4T1 tumors to establish the normal tissue distribution and dosimetry profile of the DR5-targeting ARC and to confirm the selective uptake of the radiolabeled MD5-1 antibody to the tumor.
- 111 In will again be used as a surrogate for 225 Ac due to the similar radiochemical properties of the two isotopes, and the increased sensitivity and reliability of detection of 111 In-radiolabeled agents in vivo due to the gamma-emission from this isotope that does not occur with 225 Ac.
- mice Five groups of 4 female mice (ages 6-8 weeks) each will be injected with 111 In-labeled MD5-1 and one group of mice will be euthanized at each of the following time points: 4, 24, 48, 96, and 168 hours. Organs (liver, lung, kidney, spleen, brain, stomach, muscle, and tumor) may then be harvested and gamma counts measured. These measurements will be used for dosimetry calculations in which the absorbed dose of radiation to each organ is determined, including the dose delivered to the tumor.
- Example 7 Determine MTD and single agent activity of 225Ac-MD5-1
- Bodyweights and tumor measurements may be taken twice weekly for the 6-week duration of the study, beginning at animal arrival to the Invicro facility.
- Serum chemistry Alkaline Phosphatase, Total bilirubin, Blood Urea Nitrogen, Calcium, Phosphorus, Total Protein, Albumin, Globulin, Albumin/Globulin Ratio, Amylase, Glucose, Total Cholesterol, Lipase
- CBC complete blood counts
- Example 8 Combination of HER2 targeting ARC and CD47 blocking antibody in human solid tumor cancer model [0303] These studies examined the effects of combining a HER2 specific targeting ARC and a CD47 blocking antibody on human HER2-expressing ovarian cancer cell line SK-OV3.
- the anti-HER2 antibody Trastuzumab was conjugated with p-SCN-DOTA and radiolabeled with 225 Ac or 177Lu.
- the biological activity of both radioconjugates was evaluated using human recombinant HER2 and receptor positive tumor cell lines.
- the cytotoxic effect of radioconjugates and the ability to upregulate calreticulin (CRT) was evaluated using XTT assay and flow cytometry, respectively, on the SK-OV3 cells.
- CRT calreticulin
- the Trastuzumab ARCs have similar binding properties to native antibody and demonstrated specific cytotoxicity. Importantly, ARC -mediated CRT upregulation in HER2 expressing cells was demonstrated. Further, the combination of HER2 targeting ARC and CD47 blocking antibody enhanced in vitro macrophage-mediated tumor cell phagocytosis at a radiation dose below the maximum tested compared to the effect of each agent alone on phagocytosis.
- FIG. l is a graph showing the comparative effects on tumor growth of vehicle only (control), magrolimab alone (10 mg/kg), 225 Ac-trastuzumab alone (0.025 ⁇ Ci/animal), and the combination of magrolimab (10 mg/kg) and 225 Ac-trastuzumab (0.025 ⁇ Ci/animal), in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line. Each cohort consisted of eight animals.
- FIG. 2 is a graph showing the comparative effects on tumor growth of vehicle only (control), magrolimab alone (10 mg/kg), 177Lu-trastuzumab alone (25 ⁇ Ci/animal), and the combination of magrolimab (10 mg/kg) and 177Lu-trastuzumab (25 ⁇ Ci/animal), in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line. Each cohort consisted of eight animals.
- Example 9 Combination of CD33 targeting ARC and CD47 blocking antibody in AML models
- These studies examined the effects of combining the anti-CD33 ARC armed with 225Ac or Lutetium-177 (177Lu) and a CD47 blocking antibody, using in vitro human AML model cell lines U937 and HL-60.
- the anti-CD33 antibody Lintuzumab was conjugated with p-SCN-DOTA and radiolabeled with 225Ac or 177Lu. The biological activity of both radioconjugates was examined using human recombinant CD33 and receptor positive cell lines U937 and HL-60.
- the cytotoxic effect of the radioconjugates and the ability to upregulate calreticulin (CRT) were evaluated using XTT assay and flow cytometry, respectively, in the CD33 expressing cell lines.
- CRT calreticulin
- FIGS. 4A and 4B show that 225 Ac-labeled lintuzumab induces an increase in cell surface calreticulin in human leukemia cell lines at different time points versus control untreated cells.
- CRT Cell surface calreticulin
- 5A, 5B, and 5C show that combination treatment with 225 Ac-labeled lintuzumab and an anti-CD47 antibody, B6.H12 (BioXCell, Lebanon, NH, USA) enhances phagocytosis of three human leukemia cell lines.
- Target cells MV-4-11 in FIG.5A, U937 in FIG. 5B, and HL-60 in FIG. 5C
- the cells were labeled with DiD and cocultured for 2 hours in the presence of the anti-CD47 mAb (1 ⁇ g/ml) with human macrophages labeled with DiO.
- FIG. 3 is a graph showing the comparative effects on phagocytosis by human macrophages of BxPC3 human pancreatic cancer cell line (adenocarcinoma) cells of: a non- radiolabeled anti-human HER3 IgG monoclonal antibody AT-02 alone (“HER3 mAb”), an anti- human CD47 antibody alone (10 ⁇ g/mL; Clone B6.H12; BioXcell catalog no.
- HER3 mAb non- radiolabeled anti-human HER3 IgG monoclonal antibody AT-02 alone
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Cell Biology (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Oncology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Developmental Biology & Embryology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Mycology (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Provided are compositions and methods for treating cancers and precancerous proliferative disorders in a mammalian subject that involve the combination use of a radiotherapeutic agent, such as a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, and a CD47 checkpoint inhibitor, such as a SIRPα-IgG Fc fusion protein or a monoclonal antibody against CD47 or SIRPα.
Description
COMBINATION RADIOIMMUNOTHERAPY AND CD47 BLOCKADE IN THE TREATMENT OF CANCER
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to each of the following patent applications: U.S. application serial no. 17/702,648 filed March 23, 2022 which claims priority to International application no. PCT/US2021/056259 filed October 21, 2021, which claims priority to U.S. provisional application serial nos. 63,250,725 filed September 30, 2021 and 63/226,699 filed July 28, 2021.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on April 20, 2022, is named ATNM-001PCT2_SL_ST25.txt and is 262,596 bytes in size.
FIELD OF THE INVENTION
[0003] The presently claimed invention relates to the field of radiotherapeutics. BACKGROUND
[0004] CD47 is an integrin-associated transmembrane protein that is ubiquitously expressed on the surface of both normal and malignant tissues. The binding of CD47 to its cognate receptor partner, signal receptor protein-alpha (SIRPa), found on phagocytes such as macrophages and dendritic cells results in an inhibition of phagocytosis. CD47 therefore provides a “don’t eat me” signal to the phagocytes.
[0005] CD47 is expressed on virtually all normal cells, including red blood cells even though they do not express integrins. This pathway has evolved as a natural process by which the immune system can effectively and selectively clear aged, dead, or dying cells, but leave normal cells alone. To this end, CD47 is frequently overexpressed on the surface of many types of tumors as a means of immune evasion to avoid engulfment and clearance of tumor cells. Suppression of CD47 engagement of SIRPa by therapeutic blocking antibodies leads to the enablement of phagocytosis.
[0006] Suppression of the don’t eat me signal by CD47, however, is insufficient to trigger macrophage phagocytosis. Under normal physiologic conditions, cellular homeostasis is partly
regulated by balancing pro- and anti -phagocytic signals. For target cells to be phagocytosed upon CD47 blockade, the cells must also display a potent pro-phagocytic signal, the main “eat me” signals being elicited by surface expressed calreticulin and phosphatidylserine. This is a process for engulfment and removal of dead or dying cells. Significantly, blockade of the CD47 - SIRPa interaction to facilitate tumor cell engulfment is an emerging therapeutic strategy in the treatment of many types of cancer. However, clinical responses to single agent therapeutics such as treatment with an anti-CD47 blocking antibody therapy have been modest.
[0007] What is needed and provided by the present invention are new therapeutic approaches for the treatment of proliferative disorders, such as cancers and precancerous proliferative disorders, that include the administration of one or more radiolabeled cancer targeting agents and one or more CD47 blocking agents.
SUMMARY OF THE INVENTION
[0008] The presently disclosed invention is based on the discovery that administration of a combination including at least one radiotherapeutic, such as a radiolabeled cancer-associated antigen-targeting agent, and a CD47 blockade tips the balance of the pro- and anti -phagocytic signals toward phagocytosis for cancer cells. More specifically, the combination of radioimmunotherapies such as a radiolabeled targeting agent directed against a cancer-associated antigen such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of those disclosed herein and a CD47 blocking agent, such as a blocking monoclonal antibody against CD47 or SIRPa, may enhance clinical outcomes for cancer patients, including those with solid tumor cancers or hematological malignancies.
[0009] Accordingly, the present invention provides compositions and methods for treating a subject having a proliferative disorder such as cancer or a precancerous proliferative order. The compositions generally include a radiotherapeutic agent and a CD47 blockade. Exemplary radiotherapeutic agents include a radiolabeled targeting agent directed against CD33, DR5, 5T4, HER2, HER3, or TROP2 such as a radiolabeled antibody, peptide, or small molecule that binds specifically to CD33, DR5, 5T4, HER2, HER3, or TROP2. Exemplary CD33 targeting agents include any one or more of the monoclonal anti-CD33 antibodies lintuzumab, gemtuzumab, or vadastuximab, such as 225Ac-lintuzumab. Exemplary DR5 targeting agents include any one or more of the monoclonal anti-DR5 antibodies mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. Exemplary 5T4 targeting agents include any one or more
of the monoclonal anti-5T4 antibodies MED 10641, ALG.APV-527, Tb535, H6-DM5, and ZV0508. Exemplary HER3 targeting agents may bind to an epitope of HER3 recognized by HER3 recognized by patritumab, seribantumab, lumretuzumab, elgemtumab, GSK2849330, or AV-203. Exemplary TROP2 targeting agents include the monoclonal antibodies Sacituzumab and Datopotamab, and antibodies recognizing the same epitope of TROP2 recognized by either of said antibodies. Exemplary CD47 blockades include agents capable of blocking CD47 binding to SIRPa, such as magrolimab, lemzoparlimab, AO-176, ALX148, TTI-621, or TTI-622, as well as nucleic acid based modulators such as MBT-001 and small molecule modulators such as RRx- 001
[0010] According to certain aspects, the radiotherapeutic includes an actinium labeled monoclonal antibody against CD33, DR5, 5T4, HER2, HER3, or TROP2 administered in a radiation dose of 0.1 to 10 μCi/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject. The CD47 blocking agent may, for example, include a monoclonal antibody that prevents CD47 binding to SIRPa. The CD47 blockade may, for example, include magrolimab, lemzoparlimab, AO-176, AK117, IMC-002, IBI-188, IBI-322, BI 766063, ZL-1201, AXL148, RRx-001, Azelnidipine, ES004, SRF231, SHR-1603, TJC4, TTI-621, or TTI- 622. Exemplary effective doses for the CD47 blockade include 0.05 to 50 mg/kg, such as 0.05 to 5 mg/kg patient weight, or the doses approved for drug use or clinical trials of the agents. Exemplary doses of RRx-001 include 5-80 mg/m2 or any subrange between integer values therein, such as 10-50 mg/m2, 10-30 mg/m2, or 10-20 mg/m2, or any whole integer numerical value in said range ± 5%.
[0011] According to certain aspects, the cancer may be a solid tumor or a hematological cancer such as a myeloid malignancy. Exemplary myeloid malignancies include multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm. According to certain aspects, the cancer may be associated with CD33 positive cells, such as myeloblast cells or malignant plasmacytes.
[0012] Additional features, advantages, and aspects of the invention may be set forth or apparent from consideration of the following detailed description, drawings if any, and claims. Moreover, it is to be understood that both the foregoing summary of the invention and the following detailed description are exemplary and intended to provide further explanation without limiting the scope of the invention as claimed.
BRIEF DESCRIPTION OF THE DRAWINGS
[0013] FIG. 1 is a graph showing the comparative effects on tumor growth of vehicle (control), magrolimab alone, 225Ac-trastuzumab alone, and the combination of magrolimab and 225Ac-trastuzumab in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line.
[0014] FIG. 2 is a graph showing the comparative effects on tumor growth of vehicle (control), magrolimab alone, 177Lu-trastuzumab alone, and the combination of magrolimab and 177Lu-trastuzumab in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line.
[0015] FIG. 3 is a graph showing the comparative effects on phagocytosis by human macrophages of BxPC3 human pancreatic cancer cell line (adenocarcinoma) cells of: a non- radiolabeled anti -human HER3 IgG monoclonal antibody AT-02 alone (“HER3 mAh”), an anti human CD47 antibody alone (10 μg/mL; Clone B6.H12; BioXcell catalog no. BE0019-1; “CD47 mAh”), 225 Ac-labeled AT-02 anti-HER3 mAh alone (100 nCi/mL; 225Ac-HER3 mAh), and the combination of the anti-CD47 mAh (10 pg/mL) and 225 Ac-labeled AT-02 anti-HER3 mAh (100 nCi/mL). As shown in the figure, the combination prominently enhanced phagocytosis of BxPC3 cells versus any of the individual agents.
[0016] FIGS 4A and 4B are graphs showing that 225 Ac-labeled lintuzumab induces an increase in cell surface calreticulin in human leukemia cell lines.
[0017] FIGS. 5A, 5B, and 5C are graphs showing that combination treatment with 225 Ac- labeled lintuzumab and an anti-CD47 antibody enhances phagocytosis of three human leukemia cell lines versus either agent alone.
DETAILED DESCRIPTION
[0018] In one aspect, the presently disclosed invention provides methods for treating a proliferative disease or disorder, such as a hematological malignancy or solid cancer, by administering an effective amount of a radiotherapeutic and an effective amount of a CD47 blockade.
[0019] According to certain aspects, the radiotherapeutic may be a radiolabeled targeting agent, such as but not limited to a radiolabeled monoclonal antibody, radiolabeled antigen-binding fragment of a monoclonal antibody, radiolabeled antibody mimetic, radiolabeled peptide or radiolabeled small molecule, that specifically binds to one or more cancer-associated antigens such
as the mammalian, for example human, forms of CD33, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), Tn Ag, prostate specific membrane antigen (PSMA), ROR1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Receptor 5 (SSTR5), gastrin-releasing peptide receptor (GRPR), NKG2D ligands (such as MICA, MICB, RAET 1 E/ULBP4, RAET1G/ULBP5, RAET 1 H/ULBP2, RAETl/ULBPl, RAET1L/ULBP6, and RAET1N/ULBP3), LYPD3 (C4.4A), Nectin-4, urokinase plasminogen activator receptor (uPAR), Folate receptor alpha (FOLR1), CUB-domain containing protein 1 (CDCP1), Glypican-3 (GPC3), tenascin, tenascin-C, CEACAM5, Cadherin-3, CCK2R, Neurotensin receptor type 1 (NTSR1), human Kallikrein 2 (hK2), norepinephrine transporter, Integrin alpha-V-beta-6, CD37, CD66, CXCR4, Fibronectin extradomain B (EBD), LAT-1, Carbonic anhydrase IX (CAIX), B7-H3 (a/k/a CD276), Disialoganglioside GD2 Antigen (GD2), calreticulin, phosphatidylserine, GRP78 (BiP), TAG72, CD38, CD44v6, CEA, EPCAM, B7H3, KIT, IL-13Ra2, interleukin- 11 receptor a (IL-1 IRa), PSCA, PRSS21, VEGFR2, LewisY, CD24, platelet-derived growth factor receptor-beta (PDGFR- beta), S SEA-4, CD20, Folate receptor alpha (FRa), MUC1, epidermal growth factor receptor (EGFR), EGFRvIII, NCAM, Prostase, PAP, ELF2M, Ephrin B2, IGF-I receptor, CAIX, LMP2, gplOO, bcr-abl, tyrosinase, EphA2, Fucosyl GM1, sLe, GM3, DR5, 5T4, TGS5, HMWMAA, o- acetyl-GD2, Folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD 179a, ALK, Polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TARP, WT1, NY-ESO-1, L AGE-1 a, MAGE-A1, legumain, HPVE6,E7, MAGE Al, MAGE A3, MAGEA3/A6, ETV6-AML, sperm protein 17, XAGEl, Tie 2, MAD-CT-
1, MAD-CT-2, Fos-related antigen 1, prostein, survivin and telomerase, PCTA-l/Galectin 8, KRAS, MelanA/MARTl, Ras mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B 1, MYCN, RhoC, TRP-
2, CYPIB 1, BORIS, SART3, PAX5, OY- TES 1, LCK, AKAP-4, SSX2, RAGE-1, human telomerase reverse transcriptase, RU1, RU2, intestinal carboxyl esterase, mut hsp70-2, CD79a, CD79b, CD72, LAIRl, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, GPA7, and IGLL1.
[0020] According to certain aspects, the CD47 blockade may include a CD47 blocking moiety, such as an antibody against CD47.
[0021] Each therapy regime may be administered according to a specific dosing schedule, wherein the method provides for administration of each of the radiotherapy and the CD47 blockade sequentially or simultaneously.
[0022] Definitions and Abbreviations
[0023] Throughout this description and in the appended claims, use of the singular includes the plural and plural encompasses singular, unless specifically stated otherwise. For example, although reference is made herein to “an” antibody, “a” radionuclide, and “the” targeting agent, one or more of any of these components and/or any other components described herein may be used.
[0024] The words “comprising” and forms of the word “comprising” as well as the word “including” and forms of the word “including,” as used in this description and in the claims, do not limit the inclusion of elements beyond what is referred to. Additionally, although throughout the present disclosure various aspects or elements thereof are described in terms of “including” or “comprising,” corresponding aspects or elements thereof described in terms of “consisting essentially of’ or “consisting of’ are similarly disclosed. For example, while certain aspects of the invention have been described in terms of a method “including” or “comprising” administering a radiolabeled targeting agent, corresponding methods instead reciting “consisting essentially of’ or “consisting of’ administering the radiolabeled target are also within the scope of said aspects and disclosed by this disclosure.
[0025] The term “about” when used in this disclosure in connection with a numerical designation or value, e.g., in describing temperature, time, amount, and concentration, including in the description of a range, indicates a variance of ±10% and, within that larger variance, variances of ±5% or ±1% of the numerical designation or value.
[0026] As used herein, “administer”, with respect to a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, peptide, or small molecule means to deliver the agent to a subject’s body via any known method suitable for antibody delivery. Specific modes of administration include, without limitation, intravenous, transdermal, subcutaneous, intraperitoneal, intrathecal and intra-tumoral administration. Exemplary administration methods for antibodies may be as substantially described in International Publication No. WO 2016/187514, incorporated by reference herein. For example, according to certain aspects, the targeting agent may be administered as a patient specific therapeutic composition which may
be included in a single dose container, the total volume of which may be administered to a patient in a single treatment session. The composition may include a monoclonal antibody or antibody fragment and a pharmaceutically acceptable carrier, wherein a dose of an effector molecule (e.g., radionuclide) of the monoclonal antibody and a total protein amount of the monoclonal antibody may depend on at least one patient specific parameter. Patient specific parameters include, but are not limited to, a patient weight, a patient age, a patient height, a patient gender, a patient medical condition, and a patient medical history.
[0027] In addition, compositions including a radiolabeled targeting agent, such as a radiolabeled antibody or radiolabeled antigen-binding antibody fragment, may include one or more pharmaceutically acceptable carriers or pharmaceutically acceptable excipients. Such carriers are well known to those skilled in the art. For example, injectable drug delivery systems include solutions, suspensions, gels, microspheres and polymeric injectables, and can include excipients such as solubility-altering agents (e.g., ethanol, propylene glycol and sucrose) and polymers (e.g., polycaprylactones and PLGA's). An exemplary formulation may be as substantially described in International Pub. No. WO 2017/155937, incorporated by reference herein. For example, according to certain aspects, the formulation may include 0.5% to 5.0% (w/v) of an excipient selected from the group consisting of ascorbic acid, polyvinylpyrrolidone (PVP), human serum albumin (HSA), a water-soluble salt of HSA, and mixtures thereof. Certain formulations may include 0.5-5% ascorbic acid; 0.5-4% polyvinylpyrrolidone (PVP); and the monoclonal antibody in 50 mM PBS buffer, pH 7.
[0028] As used herein, the term “antibody” includes, without limitation, (a) an immunoglobulin molecule including two heavy chains and two light chains and which recognizes an antigen; (b) polyclonal and monoclonal immunoglobulin molecules; (c) monovalent and divalent fragments or versions thereof, such as Fab, di-Fab, scFvs, diabodies, minibodies, and nanobodies (sdAb); (d) naturally occurring and non-naturally occurring, such as wholly synthetic antibodies, IgG-Fc-silent, and chimeric; and (e) bi-specific forms thereof. Immunoglobulin molecules may derive from any of the commonly known classes, including but not limited to IgA, secretory IgA, IgG and IgM. IgG subclasses are also well known to those in the art and include, but are not limited to, human IgGl, IgG2, IgG3 and IgG4. The N-terminus of each chain defines a “variable region” of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (VL) and variable heavy chain (VH) refer to these
regions of light and heavy chains respectively. Antibodies may be human, humanized or nonhuman. When a specific aspect of the presently disclosed invention refers to or recites an “antibody,” it is envisioned as referring to any of the full-length antibodies or fragments thereof disclosed herein, unless explicitly denoted otherwise.
[0029] A “humanized” antibody refers to an antibody in which some, most or all amino acids outside the CDR domains of a non-human antibody are replaced with corresponding amino acids derived from human immunoglobulins. In one embodiment of a humanized form of an antibody, some, most or all of the amino acids outside the CDR domains have been replaced with amino acids from human immunoglobulins, whereas some, most or all amino acids within one or more CDR regions are unchanged. Small additions, deletions, insertions, substitutions or modifications of amino acids are permissible as long as they do not abrogate the ability of the antibody to bind to a particular antigen. A “humanized” antibody retains an antigenic specificity similar to that of the original antibody.
[0030] A “chimeric antibody” refers to an antibody in which the variable regions are derived from one species and the constant regions are derived from another species, such as an antibody in which the variable regions are derived from a mouse antibody and the constant regions are derived from a human antibody.
[0031] A “complementarity-determining region”, or “CDR”, refers to amino acid sequences that, together, define the binding affinity and specificity of the variable region of a native immunoglobulin binding site. There are three CDRs in each of the light and heavy chains of an antibody.
[0032] A “framework region”, or “FR”, refers to amino acid sequences interposed between CDRs, typically conserved, that act as the scaffold between the CDRs.
[0033] A “constant region” refers to the portion of an antibody molecule that is consistent for a class of antibodies and is defined by the type of light and heavy chains. For example, a light chain constant region can be of the kappa or lambda chain type and a heavy chain constant region can be of one of the five chain isotypes: alpha, delta, epsilon, gamma or mu. This constant region, in general, can confer effector functions exhibited by the antibodies. Heavy chains of various subclasses (such as the IgG subclass of heavy chains) are mainly responsible for different effector functions.
[0034] As used herein, “Immunoreactivity” refers to a measure of the ability of an immunoglobulin to recognize and bind to a specific antigen. “Specific binding” or “specifically binds” or “binds” refers to an antibody binding to an antigen or an epitope within the antigen with greater affinity than for other antigens. Typically, the antibody binds to the antigen or the epitope within the antigen with an equilibrium dissociation constant (KD) of about 1×10−8 M or less, for example about 1×10−9 M or less, about 1×10−10 M or less, about 1×10−11 M or less, or about 1×10−12 M or less, typically with the KD that is at least one hundred fold less than its KD for binding to a nonspecific antigen (e.g., BSA, casein). The dissociation constant may be measured using standard procedures. Antibodies that specifically bind to the antigen or the epitope within the antigen may, however, have cross-reactivity to other related antigens, for example to the same antigen from other species (homologs), such as human or monkey, for example Macaca fascicularis (cynomolgus, cyno), Pan troglodytes (chimpanzee, chimp) or Callithrix jacchus (common marmoset, marmoset). [0035] As used herein, the term “CD33 targeting agent” includes, for example, an antibody, antibody fragment, antibody mimetic, peptide, Fab fragment, aptamer, or small molecule that binds to any available epitope of CD33. According to certain aspects, the anti-CD33 targeting agent is a humanized antibody against CD33, such as lintuzumab (HuM195), gemtuzumab, or vadastuximab. According to certain aspects, the anti-CD33 targeting agent binds to the epitope recognized by the monoclonal antibody “lintuzumab” or “HuM195.” HuM195 is known, as are methods of making it. [0036] As used herein, the term “DR5 targeting agent” includes, for example, an antibody, antibody fragment, antibody mimetic peptide, Fab fragment, aptamer, or small molecule that binds to any available epitope of DR5. According to certain aspects, the anti-DR5 antibody is a human or humanized antibody against DR5. According to certain aspects, the anti-DR5 antibody binds to an epitope of DR5 recognized by the any of mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. According to certain aspects, the anti-DR5 antibody is selected from mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and/or LBY-135.
Table 1
[0037] As used herein, the term “5T4 targeting agent” includes, for example, an antibody, antibody fragment, antibody mimetic, peptide, Fab fragment, aptamer, or small molecule that binds to any available epitope of 5T4. For example, the 5T4 targeting agent may be a monoclonal antibody. The original description of an anti-5T4 antibody sequence was provided by Hole & Stem (Hole & Stern (1988) Br. J Cancer 57, 239-246). An antibody for use as an 5T4 targeting agent according to the presently disclosed invention, such as in preclinical studies, may be produced using the sequence provided by Hole & Stern. According to certain aspects, the 5T4 targeting
agent is a humanized antibody against 5T4, such as described in U.S. Patent Nos. 7,074,909 and 8,044,178. Exemplary antibodies against 5T4 include at least MED10641, described in Harper (Harper, J. et a/.(2017) Mol. Cancer Ther. 16, 1576-1587) and developed by
Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics. See also Table 1 disclosing further antibodies and antibody-drug conjugates, wherein the anti-5T4 portions thereof may be used as 5T4 targeting agents in the various aspects of the presently disclosed invention.
[0038] As used herein, an “anti-HER2 antibody” is an antibody, such as but not limited to a monoclonal antibody (mAb), that binds to any available epitope of HER2 (ErbB2). According to certain aspects, the anti-HER2 antibody employed may be Trastuzumab or a different antibody that binds to an epitope of HER2 recognized by Trastuzumab and/or the antibody employed may be Pertuzumab or a different antibody that binds to an epitope of HER2 recognized by Pertuzumab. According to certain aspects, the anti-HER2 antibody may also be a multispecific antibody, such as bispecific antibody, against any available epitope of HER3/HER2 such as MM-111 and MM- 141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech.
[0039] The amino acid sequences of the light chain and the heavy chain of Trastuzumab reported by DrugBank Online are: light chain (SEQ ID NO: 102) and heavy chain (SEQ ID NO: 103).
[0040] Applicants have successfully conjugated Trastuzumab with p-SCN-DOTA and radiolabeled the composition with 225 Ac or 177Lu.
[0041] The amino acid sequences of the light chain and the heavy chain of Pertuzumab reported by DrugBank Online are: light chain (SEQ ID NO: 104) and heavy chain (SEQ ID NO: 105).
[0042] Still other radiolabeled HER2 -targeting agents that may be used or embodied in the various aspects of the invention include 212Pb-TCMC-Trastuzumab (Orano Med) and 131I-CAM- H2 (131-Iodine conjugated anti-HER2 sdAb 2Rsl5d; Precirix NV) to treat HER2 expressing cancers, such as breast cancers, advanced/metastatic HER2-positive breast cancer, gastric cancer, gastro-esophageal junction (GEJ) cancer and any of those disclosed herein.
[0043] As used herein, an “anti-HER3 antibody” is an antibody, such as but not limited to a monoclonal antibody (mAb), that binds to any available epitope of HER3. According to certain aspects, the anti-HER3 antibody may be one of the following antibodies or bind to an epitope of HER3 recognized by one of the following antibodies: Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, AV-203 (a/k/a CAN017; Aveo Oncology), or GSK2849330. According to certain aspects, the anti-HER3 antibody is selected from one or more of Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX-3379, or GSK2849330. According to certain aspects, the anti-HER3 antibody may be a multispecific antibody, such as a bispecific antibody, against any available epitope of HER3/HER2 such as MM-111 and MM-141/Istiratumab from Merrimack Pharmaceuticals, MCLA-128 from Merus NV, and MEHD7945A/Duligotumab from Genentech. The antibody may, for example, be one of the anti-HER3 antibodies disclosed in U.S. Pub No. 20210025006 such as CAN017 (heavy chain SEQ ID NO:119 and light chain SEQ ID NO: 120 ), 04D01 (heavy chain SEQ ID NO: 121 and light chain SEQ ID NO: 122 ), 09D03 (heavy chain SEQ ID NO: 123 and light chain SEQ ID NO: 124), 11G01 (heavy chain SEQ ID NO: 125 and light chain SEQ ID NO: 126), 12A07 (heavy chain SEQ ID NO: 127 and light chain SEQ ID NO: 128), 18H02 (heavy chain SEQ ID NO: 129 and light chain SEQ ID NO: 130) and 22A02 (heavy chain SEQ ID NO: 131 and light chain SEQ ID NO: 132), an IgG having the heavy chain of SEQ ID NO: 133 and the light chain of SEQ ID NO: 134, a HER3-binding antibody, such as an IgG, having a heavy chain including 1, 2 or 3 of the heavy chain CDRs of any of said antibodies and/or having a light chain having 1, 2 or 3 of the light chain CDRs of said antibodies, or an antibody binding to an epitope of HER3 recognized by any of said antibodies.
[0044] An “epitope” refers to the target molecule site (e.g., at least a portion of an antigen) that is capable of being recognized by, and bound by, a targeting agent such as an antibody, antibody fragment, Fab fragment, aptamer, or small molecule. For a protein antigen, for example, this may refer to the region of the protein (i.e., amino acids, and particularly their side chains) that is bound by the targeting agent. Overlapping epitopes include at least one to five common amino acid residues. Methods of identifying epitopes of antibodies are known to those skilled in the art and include, for example, those described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988).
[0045] As used herein, the terms “proliferative disorder” and “cancer” may be used interchangeably and may include, without limitation, a solid cancer (e.g., a tumor). “Solid cancers”
include, without limitation, bone cancer, pancreatic cancer, skin cancer, cancer of the head or neck, cutaneous or intraocular malignant melanoma, uterine cancer, ovarian cancer, prostate cancer, rectal cancer, cancer of the anal region, stomach cancer, testicular cancer, uterine cancer, carcinoma of the fallopian tubes, carcinoma of the endometrium, carcinoma of the cervix, carcinoma of the vagina, carcinoma of the vulva, cancer of the esophagus, cancer of the small intestine, cancer of the endocrine system, cancer of the thyroid gland, cancer of the parathyroid gland, cancer of the adrenal gland, sarcoma of soft tissue, cancer of the urethra, cancer of the penis, pediatric tumors, cancer of the bladder, cancer of the kidney or ureter, carcinoma of the renal pelvis, neoplasm of the central nervous system (CNS), primary CNS lymphoma, tumor angiogenesis, spinal axis tumor, brain stem glioma, pituitary adenoma, Kaposi's sarcoma, epidermoid cancer, squamous cell cancer, environmentally-induced cancers including those induced by asbestos.
[0046] According to certain aspects, the solid cancer may be breast cancer such as tamoxifen-sensitive breast cancer, tamoxifen-resistant breast cancer or triple negative breast cancer (TNBC), gastric cancer, bladder cancer, cervical cancer, endometrial cancer, skin cancer such as melanoma, stomach cancer, testicular cancer, esophageal cancer, bronchioloalveolar cancer, prostate cancer such as castration resistant prostate cancer (CRPC), colorectal cancer, ovarian cancer, cervical epidermoid cancer, liver cancer such as hepatocellular carcinoma (HCC) or cholangiocarcinoma, pancreatic cancer, lung cancer such as non-small cell lung carcinoma (NSCLC) or small cell lung cancer (SCLC), renal cancer, head and neck cancer such as head and neck squamous cell cancer, a carcinoma, a sarcoma, or any combination thereof.
[0047] As used herein, “cancer” also includes, without limitation, a hematologic malignancy. A “hematologic disease” or “hematological disorder” may be taken to refer to at least a blood cancer. Such cancers originate in blood-forming tissue, such as the bone marrow or other cells of the immune system. A hematologic disease or disorder includes, without limitation, leukemias (such as acute myeloid leukemia (AML), acute promyelocytic leukemia, acute lymphoblastic leukemia (ALL), acute mixed lineage leukemia, chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), hairy cell leukemia and large granular lymphocytic leukemia), myelodysplastic syndrome (MDS), myeloproliferative disorders (polycythemia vera, essential thrombocytosis, primary myelofibrosis and chronic myeloid leukemia), lymphomas, multiple myeloma, MGUS and similar disorders, Hodgkin's lymphoma (HL), non-Hodgkin
lymphoma (NHL), primary mediastinal large B-cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, transformed follicular lymphoma, splenic marginal zone lymphoma, lymphocytic lymphoma, T-cell lymphoma, and other B-cell malignancies. [0048] According to certain aspects, the radiotherapeutic may include a targeting agent labeled with a radioisotope. As used herein, a “radioisotope” and “radionuclide” may be used interchangeably, and can be an alpha-emitting isotope, a beta-emitting isotope, and/or a gamma- emitting isotope. Examples of radioisotopes include the following: 131I, 125I, 123I, 90Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225Ac, 213Bi, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 137Cs, 212Pb and 103Pd. Methods for affixing a protein such as an antibody or antibody fragment (i.e., “labeling” an antibody with a radioisotope) are well known. Specific methods for labeling are described, for example, in U.S. Patent No.9,603,954, International Publication No. WO 2017/155937 and U.S. Provisional Patent Application No.63/119,093 filed November 30, 2020 and titled “Compositions and methods for preparation of site-specific radioconjugates,” both of which are incorporated by reference herein. [0049] For example, according to certain aspects, the radiotherapeutic targeting agent may be labeled by (a) conjugating a targeting agent such as an antibody or peptide with a chelant, such as p-SCN-Bn-DOTA, in a buffered solution, (b) labeling the chelant-conjugated targeting agent with a radionuclide in a buffered solution, such as 225-Actinium or “225Ac”, (c) quenching the reaction by the addition of a quenching chelate (e.g. diethylenetriaminepentaacetic acid (DTPA)), and (d) purifying the radiolabeled chelator-conjugated targeting agent, for example, via filtration. Exemplary chelators include compounds having the dual functionality of sequestering metal ions, such as the radionuclide, plus the ability to covalently bind a biological carrier/targeting agent such as an antibody. [0050] Exemplary chelators that may be used include, but are not limited to S-2-(4- Isothiocyanatobenzyl)-1,4,7,10 tetraazacyclododecanetetraacetic acid (p-SCN-Bn-DOTA), diethylene triamine pentaacetic acid (DTPA); ethylene diamine tetraacetic acid (EDTA); 1,4,7,10-tetra-azacyclododecane-N,N′,N″,N′″-tetraacetic acid (DOTA); p- isothiocyanatobenzyl-1,4,7,10-tetra-azacyclododecane-1,4,7,10-te-traacetic acid (p-SCN-Bz- DOTA); 1,4,7,10-tetra-azacyclododecane-N,N′,N″-triacetic acid (DO3A); 1,4,7,10-tetra- azacyclododecane-1,4,7,10-tetrakis(2-propionic acid) (DOTMA); 3,6,9-triaza-12-oxa-3,6,9- tricarboxymethylene-10-carboxy-13-phenyl-tridecanoic acid (“B-19036”); 1,4,7-
triazacyclononane-N,N ' ,N " -triacetic acid (NOTA); 1,4,8, 1 l-tetra-azacyclotetradecane-N,N' ,N" ,N' " -tetraacetic acid (TET A); tri ethylene tetraamine hexaacetic acid (TTHA); trans- 1,2- diaminohexane tetraacetic acid (CYDTA); l,4,7,10-tetra-azacyclododecane-l-(2- hydroxypropyl)-4,7,10-triacetic acid (HP-D03A); trans-cyclohexane-diamine tetraacetic acid (CDTA); trans(l,2)-cyclohexane dietylene triamine pentaacetic acid (CDTPA); l-oxa-4,7,10- triazacyclododecane-N,N ' ,N " -triacetic acid (OTTA); 1,4,7,10-tetra-azacyclododecane- 1 ,4,7, 10-tetrakis { 3 -(4-carboxyl)-butanoic acid } ; 1 ,4,7, 10-tetra-azacyclododecane- 1 ,4,7, 10- tetrakis(acetic acid-methyl amide); 1,4,7, 10-tetra-azacyclododecane-l, 4,7, 10-tetrakis(methylene phosphonic acid); and derivatives thereof.
[0051] According to certain aspects, when the radiotherapeutic targeting agent is 225 Ac- labeled, the effective amount is below 50 μCi/kg, 40 μCi/kg, 30 μCi/kg, 20 μCi/kg, 10 μCi/kg, 5 μCi/kg, 4 μCi/kg, 3 μCi/kg, 2 μCi/kg, 1 μCi/kg, or even 0.5 μCi/kg. According to certain aspects, the effective amount is at least 0.05 μCi/kg, or 0.1 μCi/kg, 0.2 μCi/kg, 0.3 μCi/kg, 0.4 μCi/kg, 0.5 μCi/kg, 1 μCi/kg, 2 μCi/kg, 3 μCi/kg, 4 μCi/kg, 5 μCi/kg, 6 μCi/kg, 7 μCi/kg, 8 μCi/kg, 9 μCi/kg, 10 μCi/kg, 12 μCi/kg, 14 μCi/kg, 15 μCi/kg, 16 μCi/kg, 18 μCi/kg, 20 μCi/kg, 30 μCi/kg, or 40 μCi/kg. According to certain aspects, the 225 Ac-labeled targeting agent may be administered at a dose that includes any combination of upper and lower limits as described herein, such as from at least 0.1 μCi/kg to at or below 5 μCi/kg, or from at least 5 μCi/kg to at or below 20 μCi/kg.
[0052] According to certain aspects, the radiotherapeutic targeting agent is 225 Ac-labeled, and the effective amount may be below 2 mCi (i.e., wherein the 225 Ac is administered to the subject in a non-weight-based dosage). According to certain aspects, the effective amount may be below 1 mCi, such as 0.9 mCi, 0.8 mCi, 0.7 mCi, 0.6 mCi, 0.5 mCi, 0.4 mCi, 0.3 mCi, 0.2 mCi, 0.1 mCi, 90 μCi, 80 μCi, 70 μCi, 60 μCi, 50 μCi, 40 μCi, 30 μCi, 20 μCi, 10 μCi, or 5 μCi. The effective amount may be at least 2 μCi, such as at least 5 μCi, 10 μCi, 20 μCi, 30 μCi, 40 μCi, 50 μCi, 60 μCi, 70 μCi, 80 μCi, 90 μCi, 100 μCi, 200 μCi, 300 μCi, 400 μCi, 500 μCi, 600 μCi, 700 μCi, 800 μCi, 900 μCi, 1 mCi, 1.1 mCi, 1.2 mCi, 1.3 mCi, 1.4 mCi, or 1.5 mCi. According to certain aspects, the 225 Ac-labeled CD33 targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 2 μCi to at or below lmCi, or from at least 2 μCi to at or below 250 μCi, or from 75 μCi to at or below 400 μCi.
[0053] According to certain aspects, the 225 Ac-labeled radiotherapeutic targeting agent includes a single dose that delivers less than 12Gy, or less than 8 Gy, or less than 6 Gy, or less
than 4 Gy, or less than 2 Gy, such as doses of 2 Gy to 8 Gy, to the subject, such as predominantly to the targeted solid tumor.
[0054] According to certain aspects, the radiotherapeutic targeting agent is radiolabeled with 177LU (“177Lu4abeled”), and the effective amount may be, for example, below 1 mCi/kg (i.e., where the amount of 177Lu-labeled targeting agent administered to the subject delivers a radiation dose of below 1000 mCi per kilogram of subject’s body weight). According to certain aspects, the effective amount is below 900 μCi/kg, 800 μCi/kg, 700 μCi/kg, 600 μCi/kg, 500 μCi/kg, 400 μCi/kg, 300 μCi/kg, 200 μCi/kg, 150 μCi/kg, 100 μCi/kg, 80 μCi/kg, 60 μCi/kg, 50 μCi/kg, 40 μCi/kg, 30 μCi/kg, 20 μCi/kg, 10 μCi/kg, 5 μCi/kg, or 1 μCi/kg. According to certain aspects, the effective amount is at least 1 μCi/kg, 2.5 μCi/kg, 5 μCi/kg, 10 μCi/kg, 20 μCi/kg, 30 μCi/kg, 40 μCi/kg, 50 μCi/kg, 60 μCi/kg, 70 μCi/kg, 80 μCi/kg, 90 μCi/kg, 100 μCi/kg, 150 μCi/kg, 200 μCi/kg, 250 μCi/kg, 300 μCi/kg, 350 μCi/kg, 400 μCi/kg or 450 μCi/kg. According to certain aspects, an 177Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 5 mCi/kg to at or below 50 μCi/kg, or from at least 50 mCi/kg to at or below 500 μCi/kg.
[0055] According to certain aspects, the radiotherapeutic targeting agent is 177Lu-labeled, and the effective amount may be below 45 mCi, such as below 40 mCi, 30 mCi, 20 mCi, 10 mCi, 5 mCi, 3.0 mCi, 2.0 mCi, 1.0 mCi, 800 μCi, 600 μCi, 400 μCi, 200 μCi, 100 μCi, or 50 μCi. According to certain aspects, the effective amount may be at least 10 μCi, such as at least 25 μCi, 50 μCi, 100 μCi, 200 μCi, 300 μCi, 400 μCi, 500 μCi, 600 μCi, 700 μCi, 800 μCi, 900 μCi, 1 mCi, 2 mCi, 3 mCi, 4 mCi, 5 mCi, 10 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi. According to certain aspects, an 177Lu-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 10 mCi to at or below 30 mCi, or from at least 100 μCi to at or below 3 mCi, or from 3 mCi to at or below 30 mCi.
[0056] According to certain aspects, the radiotherapeutic targeting agent is radiolabeled with 131I (“131I-labeled”), and the effective amount may be below, for example, 1200 mCi (i.e., where the amount of 131I administered to the subject delivers a total body radiation dose of below 1200 mCi in a non-weight-based dose). According to certain aspects, the effective amount may be below 1100 mCi, below 1000 mCi, below 900 mCi, below 800 mCi, below 700 mCi, below 600 mCi, below 500 mCi, below 400 mCi, below 300 mCi, below 200 mCi, below 150 mCi, or below 100 mCi. According to certain aspects, the effective amount may be below 200 mCi, such as below
190 mCi, 180 mCi, 170 mCi, 160 mCi, 150 mCi, 140 mCi, 130 mCi, 120 mCi, 110 mCi, 100 mCi, 90 mCi, 80 mCi, 70 mCi, 60 mCi, or 50 mCi. According to certain aspects, the effective amount may be at least 1 mCi, such as at least 2 mCi, 3 mCi, 4 mCi, 5 mCi, 6 mCi, 7 mCi, 8 mCi, 9 mCi, 10 mCi, 20 mCi, 30 mCi, 40 mCi, 50 mCi, 60 mCi, 70 mCi, 80 mCi, 90 mCi, 100 mCi, 110 mCi, 120 mCi, 130 mCi, 140 mCi, 150 mCi, 160 mCi, 170 mCi, 180 mCi, 190 mCi, 200 mCi, 250 mCi, 300 mCi, 350 mCi, 400 mCi, 450 mCi, 500 mCi. According to certain aspects, an 131I-labeled targeting agent may be administered in an amount that includes any combination of upper and lower limits as described herein, such as from at least 1 mCi to at or below 100 mCi, or at least 10 mCi to at or below 200 mCi.
[0057] While select radionuclides have been disclosed in detail herein, any of those disclosed herein are contemplated for labeling the targeting agents (i.e., radiotherapeutic or radioimmunotherapy) that are part of the presently disclosed invention.
[0058] According to certain aspects of the presently disclosed invention, a majority of the radiotherapeutic targeting agent (antibody, antibody fragment, peptide, small molecule, etc.) administered to a subject typically consists of non-labeled targeting agent, with the minority being the labeled targeting agent. The ratio of labeled to non-labeled targeting agent can be adjusted using known methods. According to certain aspects, the radiotherapeutic (e.g., radioimmunotherapy) may include a labeled fraction and an unlabeled fraction, wherein the ratio of labeled : unlabeled may be from about 0.01:10 to 1:1, such as 0.1:10 to 1:1 labeled : unlabeled. Moreover, the radiotherapeutic may be provided as a single dose composition tailored to a specific patient, wherein the amount of labeled and unlabeled targeting agent in the composition may depend on at least a patient weight, age, gender, diagnosis, and/or disease state or health status, such as detailed in International Pub. No. WO 2016/187514.
[0059] This inventive combination of a labeled fraction and a non-labeled fraction of the targeting agent of the radiotherapeutic allows the composition to be tailored to a specific patient. For example, when the radiotherapeutic is a radioimmunotherapy (i.e., the targeting agent is an antibody), each of the radiation dose and the protein dose of the antibody may be personalized to that patient based on at least one patient specific parameter. As such, each vial of the composition may be made for a specific patient, where the entire content of the vial is delivered to that patient in a single dose. When a treatment regime calls for multiple doses, each dose may be formulated as a patient specific dose in a vial to be administered to the patient as a “single dose” (i.e., full
contents of the vial administered at one time). The subsequent dose may be formulated in a similar manner, such that each dose in the regime provides a patient specific dose in a single dose container. One of the advantages of the disclosed composition is that there will be no left-over radiation that would need to be discarded or handled by the medical personnel, e.g., no dilution, or other manipulation to obtain a dose for the patient. When provided in a single dose container, the container may simply be placed in-line in an infusion tubing set for infusion to the patient. Moreover, the volume can be standardized so that there is a greatly reduced possibility of medical error (i.e., delivery of an incorrect dose, as the entire volume of the composition is to be administered in one infusion).
[0060] According to certain aspects, when the radiotherapeutic targeting agent is an antibody, it may be provided in a total protein amount of up to lOOmg, such as up to 60 mg, such as 5mg to 45mg, or a total protein amount of between 0.01 mg/kg patient weight to 16.0 mg/kg patient weight, such as between 0.01 mg/kg patient weight to 10.0 mg/kg, or between 0.05 mg/kg patient weight to 5.0 mg/kg, or between 0.01 mg/kg patient weight to 1.0 mg/kg, or between 0.01 mg/kg patient weight to 0.6 mg/kg patient weight, or 0.01 mg/kg patient weight, 0.015 mg/kg patient weight, 0.02 mg/kg patient weight, or 0.04 mg/kg patient weight, or 0.06 mg/kg patient weight.
[0061] According to certain aspects, the effective amount of an antibody in the radioimmunotherapy may include a total protein amount of less than 10mg/m2, such as about 6mg/m2, or 3mg/m2, or even 2mg/m2.
[0062] As used herein, the term “subject” includes, without limitation, a mammal such as a human, a non-human primate, a dog, a cat, a horse, a sheep, a goat, a cow, a rabbit, a pig, a rat and a mouse. Where the subject is human, the subject can be of any age. For example, the subject can be 60 years or older, 65 or older, 70 or older, 75 or older, 80 or older, 85 or older, or 90 or older. Alternatively, the subject can be 50 years or younger, 45 or younger, 40 or younger, 35 or younger, 30 or younger, 25 or younger, or 20 or younger. For a human subject afflicted with cancer, the subject may, for example, be newly diagnosed, or relapsed and/or refractory, or in remission.
[0063] As used herein, “treating” a subject afflicted with a cancer shall include, without limitation, (i) slowing, stopping or reversing the cancer's progression, (ii) slowing, stopping or reversing the progression of the cancer’s symptoms, (iii) reducing the likelihood of the cancer’s recurrence, and/or (iv) reducing the likelihood that the cancer’s symptoms will recur. According
to certain preferred aspects, treating a subject afflicted with a cancer means (i) reversing the cancer's progression, ideally to the point of eliminating the cancer, and/or (ii) reversing the progression of the cancer’s symptoms, ideally to the point of eliminating the symptoms, and/or (iii) reducing or eliminating the likelihood of relapse (i.e., consolidation, which ideally results in the destruction of any remaining cancer cells). It should be understood that wherever in this disclosure a cancer-associated target antigen is disclosed, the invention provides methods for treating a cancer, whether hematological or solid, that expresses or overexpresses said target antigen, which method includes administering a radiolabeled targeting agent that binds said target antigen to a mammalian subject such as a human patient, in need of treatment for the cancer in combination with or in conjunction administration of one or more CD47 blockades to the subject.
[0064] “Therapeutically effective amount” or “effective amount” refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result. A therapeutically effective amount may vary according to factors such as the disease state, age, gender, and weight of the individual, and the ability of a therapeutic or a combination of therapeutics to elicit a desired response in the individual. Exemplary indicators of an effective therapeutic or combination of therapeutics include, for example, improved well-being of the patient, reduction in a tumor burden, arrested or slowed growth of a tumor, and/or absence of metastasis of cancer cells to other locations in the body. According to certain aspects, “therapeutically effective amount” or “effective amount” refers to an amount of the therapeutic agent, i.e., radiotherapeutic or CD47 blockade that may deplete or cause a reduction in the overall number of cancer cells, such as a reduction in certain hematological cells (e.g., CD33 expressing cells), or DR5 expressing cells, or 5T4 expressing cells, HER2, or HER3 expressing cells, or TROP2 expressing cells or may inhibit growth of a tumor, when used together or when used separately.
[0065] “Inhibits growth” refers to a measurable decrease or delay in the growth of a malignant cell or tissue (e.g., tumor) in vitro or in vivo when contacted with a therapeutic or a combination of therapeutics or drugs, when compared to the decrease or delay in the growth of the same cells or tissue in the absence of the therapeutic or the combination of therapeutic drugs. Inhibition of growth of a malignant cell or tissue in vitro or in vivo may be at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, or 100%.
[0066] Throughout this application, various patents, patent applications and other publications are cited. The disclosures of these patents, patent applications and other publications are hereby incorporated by reference in their entireties into this application.
[0067] Unless otherwise defined or clear from the context in which presented, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the presently disclosed invention belongs. Although methods and materials similar or equivalent to those described herein may be used in the practice or testing described herein, suitable methods and materials are described below.
[0068] ASPECTS OF THE INVENTION
[0069] The present disclosure relates to methods for treating a mammalian subject, such as a human patient, with cancer by administration of a radiotherapeutic and a CD47 blockade. The radiotherapeutic may include a radiolabeled cancer targeting agent, such as a radiolabeled antibody that recognizes a cancer-associated antigen, and the CD47 blockade may include an agent that prevents CD47 binding to SIRPa, such as an anti-CD47 blocking antibody or affinity agent or an anti-SIRPa blocking antibody, or an agent that otherwise downregulates CD47-SIRPa axis activity.
[0070] CD47 (originally named integrin-associated protein (LAP)) is a cell surface protein of the immunoglobulin (Ig) superfamily, which is heavily glycosylated and expressed by virtually all cells in the body. Typically associated with integrin avb3 on most cell types, except RBCs (which lack integrins), it is an indicator of self, providing a “don’t eat me signal” to macrophages/phagocytes. That is, cell-surface CD47 interacts with its receptor on macrophages, SIRPa, to inhibit phagocytosis of normal, healthy cells. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. CD47 is also highly expressed on several human cancers including myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), non-Hodgkin lymphoma, and bladder cancer as a means to evade phagocytosis by the innate immune system (Eladl, et al. (2020 ) Hematology & Oncology, 13:96).
[0071] There are as many as thirty CD47 blocking agents being developed for the treatment of cancer in both solid tumors and hematological malignancies. Strategies to block the CD47- SIRPa axis include biologies that bind or otherwise affect either CD47 or SIRPa and many are currently in clinical testing. Examples include magrolimab, lemzoparlimab, and AO- 176. Although these molecules block the engagement between CD47 and SIRPa, they may be
engineered to include or ablate Fc function, e.g., IgGl vs IgG2 or IgG4, so the mechanistic properties of these molecules may be different. For example, certain CD47 blocking antibodies also bind to CD47 expressed on red blood cells, and as a result, in the clinic, a related adverse event is anemia.
[0072] Anti-tumor responses have been observed in preclinical trials, such as for the anti- CD47 antibody AO- 176, and in clinical human trials, however the overall response to single agent anti-CD47 or anti-SIRPa has been modest. This is likely due to the necessity for up-regulation of pro-phagocytic responses, e.g., eat me signals, in addition to don’t eat me blockade to enable efficient tumor cell phagocytosis. Under normal physiologic conditions, cellular homeostasis is partly regulated by balancing pro- and anti-phagocytic signals. For target cells to be phagocytosed upon CD47 blockade, the cells must also display a potent pro-phagocytic signal, the main “eat me” signals being elicited by surface expressed calreticulin and phosphatidylserine. It is therefore likely that drugs that target the CD47-SIRPa axis will require therapeutic combinations to enable significant clinical responses.
[0073] The presently disclosed invention relates directly to compositions and methods that tip the balance of cellular homeostasis toward pro-phagocytic signals, such as for specific cell types involved in cancers and hematological malignancies. To this end, the presently disclosed invention relates to a blockade of the CD47 interaction with SIRPa (on phagocytic cells) that interrupts or otherwise downregulates the “don’t eat me” signal, in combination with a radiotherapeutic that enhances the “eat me” signal.
[0074] As an example, the anti-CD47 antibody magrolimab recently demonstrated significant clinical responses in high risk previously untreated patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The requirement for up-regulation of eat me signals appears critical to enable these responses. Radiation is an ideal combination therapy for agents that block the CD47 pathway due to its ability to induce both the innate and adaptive immune response (de la Cruz-Merino, et al. (2014) Frontiers in Immunology , vol 5, article 102; Vermeer, et al. (2012) International Journal of Cancer , 133 : 120).
[0075] The radiobiological response causes the activation of different T-cell lines, generating the “switch-on” of the adaptive immune response. The radiobiological model considers that DNA damage after radiation induces different types of biological response as a result of direct damage of tumor cells or indirectly due to induction of free radicals. Most cells survive for a
limited time after irradiation and, during this time, they generate molecular signals (damage- associated molecular patterns (DAMPs)) that induce the overexpression of specific genes that control the expression of growth factors, cytokines, chemokines, and cell surface receptors - activate both innate and adaptive immune system inflammatory response.
[0076] Radiation has been delivered to cells via IR and to human patients via directed external beam radiation. This radiation has been found to enhance cancer-specific peptide release from damaged cancer cells, facilitate antigen uptake and presentation by dendritic cells, decrease CD47 and increases calreticulin, and upregulate MHC-I expression on tumor cells to increase cancer cell recognition by T cells. Moreover, the radiation-induced DNA damage triggers cGAS- STING pathway to activate IFN gene transcription.
[0077] However, this modality is not an option for patients with hematologic, or blood, cancers since their disease is disseminated and systemic irradiation by external beam radiation would expose normal tissues and organs to radiation, risking significant toxicities. To the contrary, targeted radiation with an antibody radioconjugate (ARC), or other radiotherapeutic directed to a selective tumor antigen or otherwise preferentially targeting cancer cells enables the effective delivery of the potency of radiation to the tumor cells by the targeting agent. Such a combination leads to in vivo tumor elimination in targeted cells without significant effects on most normal cells.
[0078] Exemplary radiotherapeutics of the presently disclosed invention include antibody radioconjugates (ARCs) against CD33, DR5, 5T4, HER2, HER3 and/or TROP2. Exemplary ARCs include any of an anti-CD33, DR5, 5T4, HER2, HER3 and/or TROP2 antibody labeled with the potent alpha particle emitting radioisotope actinium-225 (225Ac). For example, when the radiotherapeutic includes an actinium-225 labeled monoclonal antibody against CD33, such as 225Ac-lintuzumab, the radiation is delivered directly to CD33 positive cells and finds use as a therapeutic against heme malignancies such as AML, MDS, and multiple myeloma. By delivering radiation directly to tumor cells, ARCs have the potential to affect the potent radiobiologic effects of external beam radiation in a manner safe for administration to patients, and especially those with a disseminated disease. As a result, exposure of tumor cells to the ARC’s of the present invention will up-regulate ‘eat me’ signals such as calreticulin and down-regulate CD47 on the surface of cancer cells.
[0079] As such, the combination use of an ARC with a CD47-SIRPa blocking agent is an object of the present invention and enhances the pro-phagocytic response to a CD47-SIRPa blockade as a result of the radioimmunobiologic effects of the targeted radionuclide warhead.
[0080] Further, since targeted ARC radiation itself can impart a direct anti-tumor effect, as well as further stimulate the adaptive immune response, the combination of these two types of agents provides a synergistic therapeutic, improving both the therapeutic outcomes and durability of the response. For example, 225Ac-lintuzumab has demonstrated evidence of clinical activity and tolerability in human trials in relap sed/refractory AML and has shown promising responses in early combination studies with standard of care therapies. Several anti-CD47 blocking agents are currently being tested as single agent and in combination with chemotherapy and targeted therapy in myeloid diseases such as AML and MDS. The combination of 225 Ac-lintuzumab with a CD47 blocking agent in myeloid diseases provides a potent and potentially well-tolerated therapeutic strategy in these diseases. This approach can also be extended to other tumor types including solid tumors and other blood cancers.
[0081] Radiotherapeutic agents targeting CD33
[0082] The overexpression of CD33 is commonly found in hematological malignancies, including AML, CML, and MDS. In AML, 85-90% of patients express CD33, which has led to the development of targeted therapies, such as gemtuzumab-ozogamicin (Mylotarg™). Approximately 96% of MDS patients express CD33 on their myeloblasts (Sanford et al. (2016) Leukemia & Lymphoma , vol. 57(8): 1965-1968). In another study, MDS patients demonstrated approximately twice as many CD33 molecules per bone marrow cell as the control samples (Jilani, et al. (200) Am J Clin Pathol vol. 118:560-566). The CD33 antigen is expressed on virtually all cases of CML. Moreover, patients older than 60 years have a poor prognosis with only 10% to 15% of 4-year disease-free survival for AML. This high relapse rate for AML patients and the poor prognosis for older patients highlight the urgent need for novel therapeutics preferentially targeting CD33+ cells.
[0083] Accordingly, the methods disclosed herein may include administration of a radioimmunotherapy against CD33 in combination with a CD47 blockade. Such methods may be used to treat a proliferative disorder such as a solid cancer and/or a hematological disease or disorder (e.g., a hematological cancer) and/or may be used to inhibit growth and/or proliferation of a cell expressing CD33, and/or may also be used to treat a disease or disorder involving cells
expressing or overexpressing CD33. Moreover, the methods may be used to treat a hematological disease or disorder which is multiple myeloma, acute myeloid leukemia, myelodysplastic syndrome, myeloproliferative neoplasm, chronic myeloid leukemia (CML), or a relapsed/refractory (relapsed and/or refractory) form of any of the preceding.
[0084] Radiolabeled CD33 targeting agents may also be used to deplete CD33 -expressing myeloid-derived suppressor cells (MDSCs) found in solid tumors or which act as immune suppressors in hematological cancers, such as leukemias and lymphomas, in the treatment of such disorders. Thus, according to one aspect of the invention, one or more radiolabeled CD33 targeting agents, such as a radiolabeled anti-CD33 monoclonal antibody or a radiolabeled CD33 -binding antibody fragment, such as an 225 Ac labeled anti-CD33 antibody, such as 225 Ac lintuzumab, may be administered to a mammalian subject, such as a human subject, in need of treatment of a hematological cancer or proliferative disorder or a solid tumor, such as a solid tumor infiltrated by or subject to infiltration by MDSCs, in combination or conjunction with administering one or more CD47 blockades to the subject. Suitable CD33 targeting agents for radiolabeling and use include, for example, lintuzumab, gemtuzumab, vadastuximab, antibodies having the heavy chain and light chain CDRs of the preceding monoclonal antibodies, and CD33 -binding fragments of any of the preceding monoclonal antibodies. The solid tumor may, for example, be a sarcoma, osteosarcoma, fibrosarcoma, pancreatic cancer, breast cancer, tamoxifen-resistant breast cancer, TNBC, hepatocellular carcinoma, melanoma, lung cancer, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), Lewis lung carcinoma, Solid Ehrlich carcinoma, endometrial cancer, glioma, glioblastoma, mesothelioma, carcinomas, colon cancer, colorectal carcinoma, oral carcinoma, renal carcinoma, ovarian cancer, or any of the solid tumor cancers disclosed herein.
[0085] CD33 is a 67 Kd type I transmembrane receptor glycoprotein that may function as a sialic acid-dependent cell adhesion molecule. CD33 has a long N-terminal extracellular domain, a helical transmembrane domain, and a short C-terminal cytoplasmic domain. Expressed on early myeloid progenitor and myeloid leukemic (e.g., acute myelogenous leukemia, AML) cells, CD33 is not expressed on stem cells. Amino acid residues 1-259 of the CD33 protein represent the extracellular domain, amino acids 260-282 represent the helical transmembrane domain, and amino acids 283-364 represent the cytosolic domain (intracellular). There are at least three known single nucleotide polymorphisms (“SNPs”) in the extracellular domain of CD33 (i.e., W22R, R69G, S128N).
[0086] Antibodies against CD33, such as lintuzumab (HuM195), gemtuzumab, and vadastuximab have been, and are currently being evaluated in the clinic for their efficacy to treat hematological malignancies and plasma cell disorders, including acute myeloid leukemia (AML). Each antibody has been found to bind to a different portion of the extracellular region of CD33, and each demonstrates different clinical responses ( e.g ., anti -tumor effects). Gemtuzumab is available from Pfizer as the ADC Mylotarg™, and vadastuximab is available from Seattle Genetics as the ADC Vadastuximab talirine.
[0087] Studies with an unconjugated Ml 95, derived from a mouse immunized with live human leukemic myeloblasts, demonstrated transient decreases in peripheral blast counts in human patients when administered at saturating or supra-saturating doses. The humanized antibody HuM195 was constructed by grafting complementarity-determining regions of Ml 95 into a human IgGl framework and backbone. HuM195 was found to have greater than 8-fold higher binding avidity than M195 and, unlike M195, demonstrated antibody-dependent cell-mediated cytotoxicity (ADCC). Still, while limited studies point toward some activity in acute promyelocytic leukemias (APL) when used in in patients with minimal residual disease, HuM195 has very modest activity as a single agent in AML even at supra-saturating doses that fully blocked CD33 binding sites throughout a 4-week period, with the infrequent achievement of complete or partial remissions limited to patients with low tumor burden. Efficacy could perhaps be increased if supra-saturating doses are given repeatedly, as suggested by a small trial in which very high doses of lintuzumab were given weekly for 5 weeks and then every other week for patients with clinical benefit.
[0088] While these currently available anti-CD33 antibodies eliminate CD33-positive cells by antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), and apoptosis in their unlabeled state, the currently disclosed invention provides use of such antibodies including a radiolabel (ARCs). As such, the concentrations required to induce the radiobiologic effects on targeted cells, as disclosed herein, are much lower. Thus, the negative side effects associated with the high concentrations of the unlabeled antibodies of the prior art methods are reduced or eliminated.
[0089] Moreover, when the anti-CD33 antibodies are radiolabeled with an alpha-emitting radionuclide, such as actinium-225, the effects of the radiobiologic are highly targeted. The 225 Ac payload delivers high energy alpha particles directly to the tumor site or CD33 expressing cells, generating lethal double strand DNA breaks without necessitating significant payload
accumulation within the tumor cell, and providing therapeutic efficacy for even low target antigen expressing tumors. Due to its short path length, the range of its high energy alpha particle emission is only a few cell diameters thick, thereby limiting damage to nearby normal tissues. Manufacturing of Lintuzumab Satetraxetan Ac-225 is described, for example, in U.S. Patent No. 9,603,954.
[0090] Radiotherapeutic agents targeting DR5
[0091] Humans express two functional death receptors (DR4 and DR5), also known as tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2 (TRAIL-Rl and -R2), which become upregulated on cell surfaces as part of an immune surveillance mechanism to alert the immune system of the presence of virally infected or transformed cells. TRAIL, the ligand that binds death receptors, is expressed on immune cells such as T-cells and NK cells, and upon engagement of DR4 or DR5, TRAIL trimerizes the death receptor and induces an apoptotic cascade that is independent of p53 (Naoum, et el. (2017) Oncol. Rev. 11, 332). While DR4 and DR5 can be found expressed at low levels in some normal tissues (Spierings, et al. (2004) J. Histochem. Cytochem ., 52, 821-31), they are upregulated on the surface of many tumor tissues including renal, lung, acute myeloid leukemia (AML), cervical, and breast cancers.
[0092] Following the identification of death receptors as a viable therapeutic target, many DR4 and DR5-targeting antibodies and recombinant TRAIL (rTRAIL) proteins have been developed, including mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, and LBY-135. Tigatuzumab has been evaluated in a Phase 2 clinical trial in triple negative breast cancer (TNBC) patients, wherein the expression of DR5 on both primary and metastatic tumor samples was confirmed, demonstrating that DR5 is a suitable target for directing therapeutic intervention in this cancer type and metastatic disease (Forero-Torres, et al. (2015) Clin. Cancer Res., 21, 2722-9).
[0093] In treatment regimens targeting solid tumors, such as breast cancer, radiation is typically used only to treat the site of the primary tumor after surgical resection and is only used palliatively for metastases. An additional or alternative approach to achieve targeted delivery of radiation to both primary and metastatic tumors and to spare normal tissues from radiation toxicity is through use of a radiotherapeutic, as disclosed herein, directed to the tumor related antigen DR5.
[0094] Accordingly, radiotherapeutic agents that may be used include at least antibodies, peptides, and/or small molecules that target DR5. Exemplary radiotherapeutics include ARCs
targeted to DR5, such as radiolabeled monoclonal antibodies against DR5 (e.g., 225Ac-DR5). Exemplary antibodies against DR5 include at least tigatuzumab (CD- 1008) from Daiichi Sankyo, conatumumab (AMG 655) from Amgen, mapatumumab from AstraZeneca, lexatumumab (also known as ETR2-ST01) from Creative Biolabs (Shirley, NY, USA), LBY-135, and drozitumab from Genentech. Studies in mice may use the surrogate mouse antibody TRA-8 or MD5-1.
[0095] Radiotherapeutic agents targeting 5T4
[0096] Trophoblast glycoprotein (TBPG), also known as 5T4, is a glycoprotein that is categorized as an oncofetal antigen, meaning it is expressed on cells during fetal developmental stages but is not expressed in adult tissues except on tumors (Southall, P. J. et al. (1990) Br. ./. Cancer 61, 89-95). 5T4 is expressed widely across many different tumor types, including lung, breast, head and neck, colorectal, bladder, ovarian, pancreatic, and many others (Stem, P. L. & Harrop, R. (2017) Cancer Immunol. Immunother. 66, 415-426). Favorable characteristics for targeting 5T4 with a radiolabeled targeting agent include its high rate of internalization, expression on the tumor periphery, and expression on cancer stem cells.
[0097] Several attempts have been made to develop therapeutics against tumors through 5T4 expression, including antibodies, vaccines, and cellular therapies. While an unlabeled 5T4- targeting antibody is not an effective therapeutic (Boghaert, et al. (2008) Int. J. Oncol. 32, 221- 234), armed antibodies such as antibody drug-conjugates (ADC) with toxins have been developed and tested preclinically. Only an auristatin based ADC developed by Pfizer was tested clinically, with no objective responses reported and toxicity related to the auristatin conjugate observed (Shapiro, G. I. etal. (2017) Invest. New Drugs 35, 315-323).
[0098] Accordingly, radiotherapeutic agents of the presently disclosed invention include at least antibodies, peptides, and/or small molecules that target 5T4. Exemplary radiotherapeutics include ARCs targeted to 5T4, such as radiolabeled monoclonal antibodies against 5T4 (e.g., 225AC-5T4). Exemplary antibodies against 5T4 include at least MED 10641 developed by Medimmune/AstraZeneca; ALG.APV-527, developed by Aptevo Therapeutics/Alligator Bioscience; Tb535, developed by Biotecnol/Chiome Bioscience; H6-DM5 developed by Guangdong Zhongsheng Pharmaceuticals; and ZV0508 developed by Zova Biotherapeutics.
[0099] Radiotherapeutic agents targeting HER3
[0100] The human epidermal growth factor receptor 3 (ErbB3, also known as HER3) is a receptor protein tyrosine kinase belonging to the epidermal growth factor receptor (EGFR)
subfamily of receptor protein tyrosine kinases. The transmembrane receptor HER3 consists of an extracellular ligand-binding domain having a dimerization domain therein, a transmembrane domain, an intracellular protein tyrosine kinase-like domain and a C-terminal phosphorylation domain. Unlike the other HER family members, the kinase domain of HER3 displays very low intrinsic kinase activity.
[0101] The ligands neuregulin 1 or neuregulin 2 bind to the extracellular domain of HER3 and activate receptor-mediated signaling pathway by promoting dimerization with other dimerization partners such as HER2. Heterodimerization results in activation and transphosphorylation of HER3's intracellular domain and is a means not only for signal diversification but also signal amplification. In addition, HER3 heterodimerization can occur in the absence of activating ligands and this is commonly termed ligand-independent HER3 activation. For example, when HER2 is expressed at high levels as a result of gene amplification (e.g. in breast, lung, ovarian or gastric cancer) spontaneous HER2/HER3 dimers can be formed. In this situation, the HER2/HER3 is considered the most active ErbB signaling dimer and is highly transforming.
[0102] Increased HER3 has been found in several types of cancer such as breast, lung, gastrointestinal and pancreatic cancers. Interestingly, a correlation between the expression of HER2/HER3 and the progression from a non-invasive to an invasive stage has been shown (Alimandi et al. (1995) Oncogene 10:1813-1821; DeFazio et al. (2000) Cancer 87:487-498).
[0103] Accordingly, radiotherapeutic agents of the presently disclosed invention include at least antibodies, peptides, and/or small molecules that target HER3. Exemplary radiotherapeutics include ARCs targeted to HER3, such as radiolabeled monoclonal antibodies against HER3 (e.g., 225Ac-HER3). Exemplary antibodies against HER3 include the monoclonal antibodies Patritumab, Seribantumab, Lumretuzumab, Elgemtumab, US-1402, AV-203, CDX- 3379, and GSK2849330, the bispecific antibodies MM-111, MM-141/Istiratumab, MCLA-128, and MEHD7945A/Duligotumab, and the other anti-HER3 antibodies disclosed herein.
[0104] Exemplary anti-HER3 antibodies (also referred to as “HER3 antibodies” herein) , such as anti-human HER3 antibodies, that that may be radiolabeled and embodied in and/or used in the various aspect of the presently disclosed invention include, without limitation, the following antibodies, and antibodies such as but not limited to immunoglobulins, such as but not limited to IgG, that (i) include the heavy chain variable region of the HER3 antibody or heavy chain, (ii)
include 1, 2 or 3 of the heavy chain CDRs (e.g., by the Kabat definition) of the HER3 antibody or heavy chain or those recited, (iii) include the light chain variable region of the HER3 antibody or light chain, and/or (iv) include 1, 2 or 3 of the light chain CDRs (e.g., by the Kabat definition) of the HER3 antibody or light chain or those recited. It should also be understood that where a HER3 antibody heavy chain or HER3 antibody light chain is disclosed that includes an N-terminal leader sequence, also intended to be disclosed for embodiment in and use in the various aspects of the invention are corresponding heavy chains and corresponding light chains that lack the leader sequence.
[0105] An exemplary HER3 antibody that may be radiolabeled and embodied in and/or used in the presently disclosed invention may, for example, include a murine monoclonal antibody against HER3 including a heavy chain having the amino acid sequence as set forth in SEQ ID NO:9 or 11 and/or a light chain having the amino acid sequence as set forth in SEQ ID NO: 10 or 12, or an antibody such as a humanized antibody derived from one or more of said sequences. An exemplary HER3 antibody that may be radiolabeled and embodied in and/or used in the presently disclosed invention may include or a heavy chain with an N-terminal region having the sequence set forth in SEQ ID NO: 13 and/or a light chain with an N-terminal region having the sequence as set forth in SEQ ID NO: 14. A HER3 antibody that may be similarly embodied or used in various aspect of the invention may, for example, include the heavy chain variable region having the amino acid sequence as set forth in SEQ ID NO:7, and/or a light chain variable region having an amino acid sequence as set forth in SEQ ID NO:8; and/or a heavy chain including one or more of CDR1, CDR2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS: 1-3, and/or a light chain with one or more of the CDR1, CD2 and CDR3 having the amino acid sequences respectively set forth in SEQ ID NOS:4-6. A HER3 antibody embodied in and/or used in any of the aspects of the invention may, for example, include any combination of the aforementioned light chain sequences and/or heavy chain sequences.
[0106] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO: 15, a CDR-H2 including SEQ ID NO: 16, and a CDR-H3 including SEQ ID NO: 17, and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 18, a CDR-L2 including SEQ ID NO: 19, and a CDR- L3 including SEQ ID NO:20. An exemplary An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:21 and/or an immunoglobulin
light chain variable region including SEQ ID NO:22. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:23 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:24.
[0107] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:25, a CDR-H2 including SEQ ID NO:26, and a CDR-H3 including SEQ ID NO:27; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:31 and/or an immunoglobulin light chain variable region including SEQ ID NO:32.. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:33 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:34
[0108] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:35, a CDR-H2 including SEQ ID NO:36, and a CDR-H3 including SEQ ID NO:37; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO: 38, a CDR-L2 including SEQ ID NO: 39, and a CDR- L3 including SEQ ID NO:40. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:41, and/or an immunoglobulin light chain variable region SEQ ID NO:42. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:43 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:44.
[0109] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:45, a CDR-H2 including SEQ ID NO:46, and a CDR-H3 including SEQ ID NO:47; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:48, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:49. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:50 and/or an immunoglobulin light chain variable region including SEQ ID NO:51. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:52 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:53.
[0110] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:54, a CDR-H2 including SEQ ID NO:55, and a CDR-H3 including SEQ ID NO:56; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:57 and/or an immunoglobulin light chain variable region including SEQ ID NO: 58. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:59 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO: 60.
[0111] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:61, a CDR-H2 including SEQ ID NO:62, and a CDR-H3 including SEQ ID NO:63; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:64, a CDR-L2 including SEQ ID NO:65, and a CDR- L3 including SEQ ID NO:66. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:67, and/or an immunoglobulin light chain variable region including SEQ ID NO: 68. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO: 69 and an immunoglobulin light chain amino acid sequence of SEQ ID NO:70.
[0112] An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including a CDR-H1 including SEQ ID NO:71, a CDR-H2 including SEQ ID NO:72, and a CDR-H3 including SEQ ID NO:66; and/or an immunoglobulin light chain variable region including a CDR-L1 including SEQ ID NO:28, a CDR-L2 including SEQ ID NO:29, and a CDR- L3 including SEQ ID NO:30. An exemplary HER3 antibody includes an immunoglobulin heavy chain variable region including SEQ ID NO:73, and/or an immunoglobulin light chain variable region including SEQ ID NO:74. An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:75 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:76.
[0113] An exemplary HER3 antibody includes an immunoglobulin heavy chain amino acid sequence of SEQ ID NO:77 and/or an immunoglobulin light chain amino acid sequence of SEQ ID NO:78.
[0114] An exemplary HER3 antibody includes an immunoglobulin light chain variable region including SEQ ID NOS: 86, 87, 88, 89, 90 or 91 and/or a heavy chain variable region including SEQ ID NOS:79, 80, 81, 82, 83, 84 or 85.
[0115] An exemplary HER3 antibody includes an immunoglobulin heavy chain sequence including SEQ ID NO:92, 94, 95, 98 or 99 and/or an immunoglobulin light chain sequence including SEQ ID NO: 93, 96, 97, 100 or 101.
[0116] Exemplary HER3 antibodies also include Barecetamab (ISU104) from Isu Abxis Co and any of the HER3 antibodies disclosed in U.S. Patent No. 10,413,607.
[0117] Exemplary HER3 antibodies also include HMBD-001 (10D1F) from Hummingbird Bioscience Pte. and any of the HER3 antibodies disclosed in International Pub. Nos. WO 2019185164 and WO2019185878, U.S. Patent 10,662,241; and U.S. Pub. Nos. 20190300624, 20210024651, and 20200308275.
[0118] Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MCLA-128 (i.e., Zenocutuzumab) from Merus N.V.; and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20210206875, 20210155698, 20200102393, 20170058035, and 20170037145.
[0119] Exemplary HER3 antibodies also include the HER3 antibody Patritumab (U3- 1287), an antibody including heavy chain sequence SEQ ID NO: 106 and/or light chain sequence SEQ ID NO:7 which are reported chains of Patritumab, and any of the HER3 antibodies disclosed in U.S. Patent Nos. 9,249,230 and 7,705,130 and International Pub. No. W02007077028.
[0120] Exemplary HER3 antibodies also include the HER3 antibody MM-121 and any of the HER3 antibodies disclosed in U.S. Patent No. 7,846,440 and International Pub. No. W02008100624.Exemplary HER3 antibodies also include the EGFR/HER3 bispecific antibody DL1 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Patent Nos. 9,327,035 and 8,597,652, U.S. Pub. No. 20140193414, and International Pub. No. W02010108127.
[0121] Exemplary HER3 antibodies also include the HER2/HER3 bispecific antibody MM-111 and any of the HER3 antibodies, whether monospecific or multi-specific, disclosed in U.S. Pub. Nos. 20130183311 and 20090246206 and International Pub. Nos. W02006091209 and W02005117973.
[0122] According to certain aspects, the HER3 targeting agent includes an anti-HER3 antibody that binds to an epitope of HER3 recognized by Patritumab from Daiichi Sankyo, Seribantumab (MM-121) from Merrimack Pharmaceuticals, Lumretuzumab from Roche, Elgemtumab from Novartis, GSK2849330 from GlaxoSmithKline, CDX-3379 of Celldex Therapeutics, EV20 and MP-RM-1 from MediPharma, Barecetamab (ISU 104) from Isu Abxis Co., HMBD-001 (10D1F) from Hummingbird Bioscience Pte., REGN1400 from Regeneron Pharmaceuticals, and/or AV-203 from AVEO Oncology. According to certain aspects, the anti- HER3 antibody is selected from one or more of Patritumab, Seribantumab or an antibody including heavy chain sequence SEQ ID NO: 108 and/or light chain sequence SEQ ID NO: 109 which are reported for Seribantumab, Lumretuzumab or an antibody including heavy chain sequence SEQ ID NO: 110 and/or light chain sequence SEQ ID NO: 111 which are reported for Lumretuzumab, Elgemtumab or an antibody including heavy chain sequence SEQ ID NO: 112 and/or light chain sequence SEQ ID NO: 113 which are reported for Elgemtumab, AV-203, CDX-3379, GSK2849330, EV20, MP-RM-1, ISU104, HMBD-001 (10D1F), and REGN1400. Exemplary antibodies along with exemplary treatment indications are also described in Table 2.
Table 2
[0123] The sequence and structure of human HER3, human HER2, and human EGFR (HER1) are all known. An amino acid sequence of the human HER3 precursor protein (receptor tyrosine-protein kinase erbB-3 isoform 1 precursor NCBI Reference Sequence: NP 001973.2) is provided herein as SEQ ID NO: 115. Those skilled in the art will readily appreciate that given known target protein amino acid sequences, various types of suitable antibodies and antibody mimetics specific for the extracellular domain of HER3, such as of human HER3, for use in the various aspects of the invention, may be produced using immunization and/or panning and/or antibody engineering techniques that are well established in the art.
[0124] A HER3 targeting agent that is radiolabeled for use in the various embodiments of the invention may, for example, include a HER3 binding peptide such as chelator-bearing HER3 binding peptide, such as a DOTA-bearing HER3 binding peptide, such as any of those disclosed in U.S. Pub. No. 20200121814.
[0125] Radiotherapeutic agents targeting TROP2
[0126] Tumor-associated calcium signal transducer 2, also known as Trop-2 and as epithelial glycoprotein- 1 antigen (EGP-1), is a protein encoded by the human TACSTD2 gene which is overexpressed in carcinomas. Overexpression of TROP2 is associated with poor survival in human solid tumor patients. Cancers that may be targeted with a TROP2 targeting agent and treated with a radiolabeled TROP2 targeting agent according to the invention include but are not
limited to carcinomas, squamous cell carcinomas, adenocarcinomas, non-small cell lung cancer (NSCLC), Small-cell lung cancer (SCLC), colorectal cancer, gastric adenocarcinoma, esophageal cancer, hepatocellular carcinoma, ovarian epithelial cancer, breast cancer, metastatic breast cancer, triple negative breast cancer (TNBC), prostate cancer, hormone-refractory prostate cancer, pancreatic ductal adenocarcinoma, head and neck cancers, renal cell cancer, urinary bladder neoplasms, cervical cancer, endometrial cancer, uterine cancer, follicular thyroid cancer, glioblastoma multiforme.
[0127] Exemplary TROP2 targeting agents that may be radiolabeled and used in conjunction with one or more CD47 blockades in the treatment of a proliferative disorder include the monoclonal antibodies Sacituzumab and Datopotamab, antibodies having one or both of the heavy chain and light chain of said antibodies, and antibodies having one or both of the heavy chain CDRs and the light chain CDRs of said antibodies, or TROP2-binding fragments of any of the aforementioned antibodies. Sacituzumab biosimilar is commercially available as Catalog No. A2175 from BioVision Incorporated (an Abeam company, Waltham, MA, USA). Datopotamab biosimilar is commercially available as Catalog No. PX-TA1653 from ProteoGenix (Schiltigheim, France).
[0128] Exemplary TROP2 targeting agents that may be radiolabeled and used in conjunction with one or more CD47 blockade in the treatment of a proliferative disorder include a monoclonal antibody having a heavy chain SEQ ID NO: 135 and/or a light chain SEQ ID NO: 140 (reported as the heavy and light chains of Sacituzumab), or an antibody including one or both of the heavy chain variable region (SEQ ID NO: 136) or the light chain variable region (SEQ ID NO: 141) of said chains, or an antibody including 1, 2, or 3 of the heavy chain CDRs of said heavy chain (CDRHl-3: SEQ ID NOS: 137-139 respectively) and/or 1, 2 or 3 of the light chain CDRs of said light chain (CDRLl-3: SEQ ID NOS: 142-144 respectively), and any of the anti-human TROP antibodies disclosed in Pat. No. 7,238,785 (hRS7), U.S. Pat. No. 9,492,566, U.S. Pat. No. 10,195,517, or U.S. Pat. No. 11,116,846, or an antibody including one or both of the heavy chain and light chain variable regions of said antibodies, or an antibody including a heavy chain including 1, 2 or 3 of the heavy chain CDRs of any of said antibodies and/or a light chain including 1, 2, or 3 of the light chain CDRs of any of said antibodies.
[0129] Further exemplary TROP2 targeting agents that may be radiolabeled and used in conjunction with one or more CD47 blockade in the treatment of a proliferative disorder include a
monoclonal antibody heavy chain SEQ ID NO: 145 and/or a light chain SEQ ID NO: 150 (reported as the heavy and light chains of Datopotamab), or an antibody including one or both of the variable region of said heavy chain (SEQ ID NO: 146) and the variable region of said light chain (SEQ ID NO:151), or an antibody including 1, 2, or 3 of the heavy chain CDRs of said heavy chain (CDRs 1-3: SEQ ID NOS: 147-149 respectively) and/or 1, 2 or 3 of the light chain CDRs of the said light chain (CDR HI -3: SEQ ID NOS: 152-154 respectively), and any of the anti-human TROP antibodies disclosed in Int’l Pub. No. W02015098099 or U.S. Pub. No. 20210238303, or an antibody including one or both of the heavy chain and light chain variable regions of said antibodies, or an antibody including a heavy chain including 1, 2 or 3 of the heavy chain CDRs of any of said antibodies and/or a light chain including 1, 2, or 3 of the light chain CDRs of any of said antibodies.
[0130] Radiotherapeutic agents targeting MU Cl
[0131] Exemplary MUC1 targeting agents that may be radiolabeled and used in combination or conjunction with one or more CD47 blockades such as any of those disclosed herein for the treatment of a proliferative disorder such as a MUC1 expressing cancer, include hTAB004 (OncoTAb, Inc.) and any of the anti-MUCl antibodies disclosed in any of U.S. Pub. No. 20200061216 and U.S. Patent Nos.: 8,518,405; 9,090,698; 9,217,038; 9,546,217; 10,017,580; 10,507,251 10,517,966; 10,919,973; 11,136,410; and 11,161,911. An exemplary radiolabeled MUC1 targeting agent that may be used in combination or conjunction with one or more CD47 blockades according to the invention is 90Y IMMU-107 (hPAM4-Cide; Immunomedics, Inc.; Gilead Sciences, Inc.), or 177Lu or 225 Ac alternatively labeled versions thereof. Radiolabeled MUC1 targeting agents may be used in the treatment of MUC1 overexpressing cancers, such as MUC1 overexpressing solid tumors, such as pancreatic cancer, locally advanced or metastatic pancreatic cancer and breast cancer, such as metastatic breast cancer, tamoxifen-resistant breast cancer, HER2 -negative breast cancer, and triple negative breast cancer (TNBC).
[0132] Radiotherapeutic agents targeting LYPD 3 (C4.4A)
[0133] Exemplary LYPD3 (C4.4A) targeting agents that may be radiolabeled for use in combination or conjunction with one or more CD47 blockades according to the invention include, for example, BAY 1129980 (a/k/a Lupartumab amadotin; Bayer AG, Germany) an Auristatin- based anti-C4.4A (LYPD3) ADC or its antibody component Lupartumab, IgGi mAb GT-002 (Glycotope GmbH, Germany) and any of those disclosed in U.S. Pub. No. 20210309711,
20210238292, 20210164985, 20180031566, 20170158775, or 20150030618, 20120321619, Canadian Patent Application No. CA3124332A1, Taiwan Application No. TW202202521A, or IntT Pub. No. W02021260208, W02007044756, W02022042690, or WO2020138489. Such use may, for example, be for the treatment of a LYPD3 -expressing hematological or solid tumor cancer in a mammal, such as carcinomas, primary and metastatic transitional cell carcinomas (TCCs), adenocarcinomas, lung cancer, lung adenocarcinoma, non-small cell lung cancer (NSCLC), hepatocellular carcinoma (HCC), breast cancer, endocrine therapy -resistant breast cancer (such as tamoxifen-resistant breast cancer), HER2-positive breast cancer, triple negative breast cancer (TNBC), esophageal cancer, renal cell carcinomas, colorectal cancer, cervical cancer, head and neck cancer, urothelial cancer, skin cancer, melanoma, and acute myelogenous leukemia (AML).
[0134] It should be understood that wherever in this disclosure specific antibodies, specific antibody heavy chains and specific antibody light chains are disclosed, against CD33, 5T4, DR5, HER2, HER3, TROP2 or against any target, also intended to be disclosed for embodiment in or use in the various aspects of the invention are antibodies, such as but not limited to immunoglobulins, such as but not limited to IgG, that (i) include the heavy chain variable region of the disclosed antibody or heavy chain, (ii) include 1, 2 or 3 of the heavy chain CDRs (e.g., by Rabat definition) of the disclosed antibody or heavy chain, (iii) include the light chain variable region of the disclosed antibody or light chain, and/or (iv) include 1, 2 or 3 of the light chain CDRs (e.g., by Rabat definition) of the disclosed antibody or light chain. It should also be understood that wherever in this disclosure an antibody heavy chain or an antibody light chain is disclosed that includes an N-terminal leader sequence, also intended to be disclosed for embodiment in and use in the various aspects of the invention are corresponding heavy chains and corresponding light chains that lack the leader sequence.
[0135] Radiotherapeutic agents targeting PSMA
[0136] In one aspect of the invention the radiolabeled targeting agent used in combination or conjunction with a one or more CD47 blocked may be a radiolabeled PSMA-targeting agent such as a radiolabeled anti-PSMA monoclonal antibody such as J591 labeled for example with 177LU or 225 Ac or Rosopatamab labeled for example with 177Lu or 225 Ac, or a radiolabeled PSMA- binding small molecule such as PSMA-617 labeled for example with 177Lu or 225 Ac, PSMA I&T labeled for example with 177Lu or 225 Ac, FrhPSMA-7 labeled for example with 177Lu, 64/67Cu- SAR-bisPSMA (Clarity Pharmaceuticals), CONY 01-a (Convergent Therapeutics, Inc.) labeled
for example with 225 Ac, 177Lu-PSMA I&T-b + 225Ac-CONV01-a combination (Convergent Therapeutics, Inc.), 131I-1095 (Lantheus Holdings/Progenics Pharmaceuticals, Inc.), 131I PSMA- PK-Rx (Noria Therapeutics, Inc.; Bayer), or PSMA-R2 labeled for example with 177Lu, CTT1403 (Cancer Targeted Technology LLC) labeled for example with 177Lu, PNT2002 / Lu-177-PSMA- I&T (Point Biopharma Global Inc.), PNT2002 / Lu-177-PSMA-I&T + 225Ac-J591, TLX591 (177Lu-Rosopatamab; Telix Pharmaceuticals Ltd.), TLX-591-CHO (Telix Pharmaceuticals Ltd.), and 177LU-EB-PSMA-617 (Sinotau Radiopharmaceutical). Such agents may, for example, be used in the treatment of prostate cancer, such as metastatic prostate cancer, castration-resistant prostate cancer (CRPC), metastatic CRPC (mCRPC), and/or hormone therapy resistant prostate cancer (anti-androgen therapy resistant prostate cancer) in combination with or in conjunction with one or more CD47 blockades according to the invention. Any of the agents that include DOTA or a DOTA derivative as a chelator may alternatively be labeled with any therapeutically active radionuclide that can be chelated by DOTA, such as 225 Ac, 177Lu and 90Y.
[0137] Other radiolabeled cancer targeting agents
[0138] The radiolabeled cancer targeting agent used in combination or conjunction with one or more CD47 blockades, such as any of those disclosed herein, may for example also be any of the following radiolabeled targeting agents:
[0139] a radiolabeled FAP targeting agent such as 177Lu-FAP-2286 (Clovis Oncology, Inc.) to treat, for example, solid tumors or any of the cancers disclosed herein;
[0140] a radiolabeled CCK2R targeting agents such as DEBIO 1124 / 177Lu-DOTA-PP- F11N (Debiopharm International SA) to treat, for example, advanced, unresectable pulmonary extrapulmonary small cell carcinoma, and thyroid cancer such as metastatic thyroid cancer, or any of the cancers disclosed herein;
[0141] a radiolabeled CDH3 (cadherin-3, P-cadherin) targeting agent such as 90Y labeled FF-21101 (FujiFilm Holdings Corporation / FujiFilm Toyama Chemical) to treat, for example, solid tumors such as epithelial ovarian peritoneal or fallopian tube carcinoma, TNBC, head and neck squamous cell carcinoma (HNSCC), cholangiocarcinoma, pancreatic, colorectal cancer, or any of the cancers disclosed herein;
[0142] a radiolabeled IGF-R1 targeting agent such as 225 Ac FPI-1434 (Fusion Pharmaceuticals, Inc.) to treat, for example, solid tumors expressing IGF-R1, or any of the cancers disclosed herein;
[0143] a radiolabeled CEACAM5 targeting agent such as 90Y-hMN14 and 90Y TF2 (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, solid tumors such as colon cancer, colorectal cancer, pancreatic cancer, breast cancer such as HER-negative breast cancer, and thyroid cancer such medullary thyroid carcinoma, or any of the cancers disclosed herein;
[0144] a radiolabeled CD22 targeting agent such as IMMU-102 (90Y-epratuzumab) (Immunomedics, Inc.; Gilead Sciences Inc.) to treat, for example, hematological malignancies such as CD22-positive acute lymphoblastic leukemia, non-Hodgkin lymphoma (NHL), stage IIEIV DLBCL, follicular lymphoma, or any of the cancers disclosed herein;
[0145] a radiolabeled SSTR2 targeting agent such as Lutathera™ (lutetium Lu 177 dotatate; 177Lu-DOTAO-Tyr3-Octreotate; Novartis), Lutathera™ (lutetium Lu 177 dotatate) + 90Y-DOTATATE combination (Novartis), 177LU-OPS201 (Ipsen Pharmaceuticals) the combination 177LU-OPS201 / 177Lu-IPN01072 (Ipsen Pharmaceuticals), EBTATE (177Lu-DOTA- EB-TATE; Molecular Targeting Technologies, Inc.), ORM2110 (AlphaMedix™; Orano Med), and PNT2003 labeled for example with 177Lu (Point Biopharma Global Inc.), for the treatment of SSTR2 expressing cancers such as solid tumors, for example, neuroendocrine tumors, small cell lung cancer, breast cancer, prostate cancer such as metastatic prostate cancer, such as metastatic castration-resistant prostate cancer, neuroendocrine tumors, gastroenteropancreatico neuroendocrine tumors (GEP-NET), as well as such as locally advanced or metastatic forms thereof, or any of the cancers disclosed herein;
[0146] a radiolabeled SSTR2 and SSTR5 targeting agent such as Solucin™ (177Lu- Edotreotide; Isotopen Technologien Miinchen AG (ITM)) to treat, for example, neuroendocrine tumors, or any of the cancers disclosed herein;
[0147] a radiolabeled Neurotensin receptor type 1 (NTSR1) targeting agent such as 177Lu- SRN01087 / 177LU-3BP-227 or (Ipsen Pharmaceuticals) to treat, for example, solid tumors expressing NTSR1 such as pancreatic ductal adenocarcinoma, colorectal cancer, gastric cancer, squamous cell carcinoma of the head and neck, bone cancer, advanced cancer, recurrent disease, metastatic tumors, or any of the cancers disclosed herein;
[0148] a radiolabeled human Kallikrein-2 (hK2) targeting agent such as JNJ-69086420 (Janssen / Janssen Pharmaceutica NV) labeled for example with 225 Ac, to treat, for example, prostate cancer such as locally advance or metastatic prostate cancer, or any of the cancers disclosed herein;
[0149] a radiolabeled NET (via norepinephrine transporter) targeting agent such as 131I- MIBG (Jubilant Radioharma) to treat, for example, neuroblastoma such as relapsed/refractory neuroblastoma, or any of the cancers disclosed herein; [0150] a radiolabeled neuroepinephrine transporter targeting agents such as AzedraTM (iobenguane 131I; Lantheus Holdings/Progenics Pharmaceuticals, Inc.) to treat, for example, glioma, paraglioma, malignant pheochromocytoma/paraganglioma, and malignant relapsed/refractory pheochromocytoma/paraganglioma, or any of the cancers disclosed herein; [0151] a radiolabeled Integrin αVβ6 targeting agent such as DOTA-ABM-5G, αVβ6 Binding Peptide (ABP; Luminance Biosciences, Inc.) labeled for example with 177Lu, 225Ac or 90Y, to treat, for example, solid tumors such as pancreatic cancer, or any of the cancers disclosed herein; [0152] a radiolabeled CD37 targeting agent such as BetalutinTM (177Lu-lilotomab satetraxetan; Nordic Nanovector ASA) to treat, for example, hematological malignancies such as lymphomas, such as follicular lymphoma or non-Hodgkin lymphoma (NHL) such as relapsed and/or refractory forms thereof, or any of the cancers disclosed herein; [0153] a radiolabeled GRPR targeting agent such as 177Lu-NeoB (Novartis) and 212Pb- DOTAM-GRPR1 (Orano Med) to treat GRPR-expressing cancers, for example, prostate cancer, such as advanced prostrate cancer, locally advanced prostate cancer, metastatic prostate cancer, and castration-resistant prostate cancer, or any of the cancers disclosed herein; [0154] a radiolabeled CXCR4 targeting agents such as PentixaTherTM (PentixaPharm GmbH) labeled with 177Lu, 90Y or 225Ac to treat, for example, lymphoproliferative or myeloid malignancies, including relapsed and/or refractory forms thereof, or any of the cancers disclosed herein; [0155] a radiolabeled Tenascin-C targeting agent such as 131I-F16SIP (Philogen S.p.A.) to treat, for example, solid tumors or hematological malignancies such as any of those disclosed herein; [0156] a radiolabeled Fibronectin extradomain B (EBD) targeting agent such as 131I- L19SIP (Philogen S.p.A.)) to treat, for example, solid tumors such as solid tumor brain metastases and non-small cell lung cancer (NSCLC), or any of the cancers disclosed herein; [0157] a radiolabeled LAT-1 targeting agent such as 4-131Iodo-L-phenylalanine (Telix Pharmaceuticals Ltd.) to treat, for example, glioblastoma such as recurrent glioblastoma, or any of the cancers disclosed herein;
[0158] a radiolabeled Carbonic Anhydrase IX (CAIX) targeting agent such as radiolabeled Girentuxumab (cG250) such as DOTA conjugated Girentuxumab (cG250) labeled for example with 177LU (such as TLX250; Telix Pharmaceuticals Ltd.), 225 Ac or 90Y, to treat, for example, renal cell carcinoma, such as ccRCC, or any of the cancers disclosed herein;
[0159] a radiolabeled CD66 targeting agent such as 90Y-besilesomab (90Y-anti-CD66- MTR; Telix Pharmaceuticals Ltd.) to treat, for example, leukemias, myelomas and lymphomas, such as any of those disclosed herein including pediatric and adult forms, or any of the cancers disclosed herein;
[0160] a radiolabeled B7-H3 targeting agents such as radiolabeled omburtumab, such 131I- 8H9 (1311-omburtumab; Y-mAbs Therapeutics, Inc.) and 177Lu-omburtamab (Y-mAbs Therapeutics, Inc.) to treat, for example, gliomas such as non-progressive diffuse pontine gliomas, such as non-progressive diffuse pontine gliomas previously treated with external beam radiation therapy, brain tumors, central nervous system tumors, neuroblastomas, sarcomas, leptomeningeal metastasis from solid tumors, and medulloblastoma, including in pediatric and adult forms, or any of the cancers disclosed herein;
[0161] a radiolabeled NKG2D ligand targeting agent such as a radiolabeled recombinant human NKG2D Fc chimeric protein, for example, Catalog No. 1299-NK from Biotechne (R&D Systems, Inc., Minneapolis, MN, USA) which includes Phe78-Val216 of Human NKG2D (Accession # P26718) or a radiolabeled recombinant human NKG2D Fc chimeric protein including SEQ ID NO: 155 plus/minus an amino-terminal histidine tag such as (His)6, or a radiolabeled antibody or antigen-binding fragment thereof against an NKG2D ligand such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET 1 H/ULBP2, RAETl/ULBPl, RAET1L/ULBP6, or RAET1N/ULBP3 - to treat, for example solid tumors or hematological malignancies expressing one or more NKG2D ligands, or any of the cancers disclosed herein;
[0162] a radiolabeled GD2 targeting agent such as GD2-SADA:177Lu-DOTA (Y-mAbs Therapeutics, Inc.) to treat, for example, SCLC, melanoma, sarcoma or any of the cancers disclosed herein;
[0163] a radiolabeled Folate receptor alpha (FOLR1) targeting agent such as a radiolabeled anti-FOLRl antibody such as radiolabeled Mirvetuximab or Farletuzumab, to treat, for example, solid cancers such as ovarian cancer, lung cancer, NSCLC, breast cancer, TNBC, brain cancer, glioblastoma, colorectal cancer or any of the cancers disclosed herein;
[0164] a radiolabeled Nectin-4 targeting agent, such as a radiolabeled anti-Nectin-4 monoclonal antibody such as radiolabeled Enfortumab or radiolabeled forms of any of the anti- Nectin-4 antibodies or targeting agents disclosed in U.S. Pub. No. 20210130459, U.S. Pub. No. 20200231670, U.S. Patent No. 10,675,357, or Int’l Pub. No. WO2022051591, to treat, for example, solid tumors such as urothelial carcinoma, bladder carcinoma, breast cancer, TNBC, lung cancer, NSCLC, colorectal cancer, pancreatic cancer, endometrial cancer, ovarian cancer or any of the cancers disclosed herein;
[0165] a radiolabeled CUB-domain containing protein 1 (CDCP1) targeting agent such as a radiolabeled monoclonal antibody such as radiolabeled forms of any of the CDCP1 targeting agents and antibodies disclosed in U.S. Pub. No. 20210179729, U.S. Pub. No. 20200181281, U.S. Pub. No. 20090196873, U.S. Patent. No. 8,883,159, U.S. Patent No. 9,346,886, or Int’l Pub No. WO2021087575, to treat, for example, solid cancers such as breast cancer, TNBC, lung cancer, colorectal cancer, ovarian cancer, kidney cancer, liver cancer, HCC, pancreatic cancer, skin cancer, melanoma, or a hematological malignancy such as acute myeloid leukemia, or any of the cancers disclosed herein;
[0166] a radiolabeled Glypican-3 (GPC3) targeting agent such as a radiolabeled anti-GPC3 mAb such as the radiolabeled humanized IgGi mAb GC33 (a/k/a Codrituzumab; commercially available as Catalog No. TAB-H14 from Creative Biolabs), such as 225Ac-Macropa-GC33 (Bell et al ., Glypican-3-Targeted Alpha Particle Therapy for Hepatocellular Carcinoma. Molecules. 2020 Dec 22;26(1):4.) or a radiolabeled form of any of the anti-GPC3 antibodies or other targeting agents disclosed in U.S. Patent No. 10,118,959, U.S. Patent No. 10,093,746, U.S. Patent No. 10,752,697, U.S. Patent No. 9,932,406, U.S. Patent No. 9,217,033, U.S. Patent No. 8,263,077, U.S. Patent No. 7,871,613, U.S. Patent No. 7,867,734, U.S. Pub. No. 20190046659, U.S. Pub. No. 20180243451, U.S. Pub. No. 20170369561, or U.S. Pub. No. 20150315278, to treat GPC3- expressing cancers such as hepatocellular carcinoma, ovarian clear cell carcinoma, melanoma, NSCLC, squamous cell carcinoma of the lung, hepatoblastoma, nephroblastoma (Wilms tumor), yolk sac tumor, gastric carcinoma, colorectal carcinoma, head and neck cancer, and breast cancer.
[0167] a radiolabeled urokinase plasminogen activator receptor (uPAR) targeting agent, such as a radiolabeled monoclonal antibody such as radiolabeled MNPR-101 (huATN-658) such as MNPR-101 -PTC A- Ac225 (Monopar Therapeutics, Inc., Wilmette, IL, USA) or radiolabeled forms of any of the anti-uP AR antibodies or targeting agents disclosed in U.S. Patent No.
9,029,509, U.S. Pub. No. 20080199476, U.S. Pub. No. 20040204348 or Int’l Pub. No. WO2021257552, to treat, for example, solid cancers or hematological malignancies such as any of those disclosed herein; and/or
[0168] a radiolabeled LewisY antigen (LeY) targeting agent such as a radiolabeled anti- LeY monoclonal antibody such as radiolabeled forms of 3S1931 and/or of a humanized version thereof such as Hu3S1933, or of any of monoclonal antibodies B34, BR55-2, BR55/BR96, and IGN 133, or antigen binding fragments of any of the preceding antibodies, to treat, for example, solid tumors such as squamous cell lung carcinoma, lung adenocarcinoma, ovarian carcinoma, or colorectal adenocarcinoma or any of the cancers disclosed herein.
[0169] In still further embodiments of the invention, a radiolabeled targeting agent used in combination or conjunction with one or more CD47 blockades for the treatment of a cancer or proliferative disorder such as any of those disclosed herein in a mammal, such as a human, includes a phospholipid-based cancer targeting agent. In certain embodiments, the phospholipid-based cancer targeting agent includes any of the radioactive phospholipid metal chelates disclosed in U.S. Pub. No. 20200291049, incorporated by reference herein, such as but not limited to
(a/k/a NM600) or a pharmaceutically acceptable salt thereof, chelated with a radionuclide, such as 225 Ac, 177LU, or 90Y.
[0170] In certain aspects, the lipid based radiolabeled targeting agent used in conjunction with one or more CD47 blockades includes any of the radiolabeled phospholipid compounds disclosed in U.S. Pub. No. 20140030187 or U.S. Patent No, 6,417,384, each incorporated by reference herein, such as but not limited to
i.e., 18-(p-iodophenyl)octadecyl phosphocholine, wherein iodine is 131I (a/k/a NM404 1-131, and CLR 131), or a pharmaceutically acceptable salt thereof. In certain aspects, the phospholipid- based radiolabeled targeting agent used in conjunction with one or more CD47 blockades includes any of the phospholipid drug conjugate compounds disclosed in U.S. Patent No. 9,480,754, incorporated by reference herein.
[0171] Multi-specific targeting aspects
[0172] While an exemplary radiotherapeutic disclosed herein may include an antibody radioconjugate (ARC) against a single antigen, such as CD33, DR5, 5T4, HER2, HER3, or TROP2 multi-specific antibodies are also within the scope of the present invention. Thus, according to certain aspects, the radiotherapeutic may include a multi-specific targeting agent, such as a multi specific antibody, that recognizes a first epitope of an antigen (such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of the cancer-associated antigen targets disclosed herein) and a second epitope of the same antigen, or recognizes an epitope of a first antigen and an epitope of one or more different antigens selected, for example, from any of the cancer-associated antigens disclosed herein. Thus, in one aspect, an ARC may include a multi-specific antibody), such as a bispecific antibody, that includes at least a first target recognition component which specifically binds to an epitope of a first antigen (such as CD33, DR5, 5T4, HER2, HER3, TROP2 or any of the cancer- associated antigen targets disclosed herein) and a second target recognition component which specifically binds to an epitope of an antigen other than the first antigen, such as any of the cancer- associated antigens disclosed herein.
[0173] The invention also provides compositions and methods for treatment of a proliferative disorder such as any of those disclosed herein that include or utilize at least two discrete radiolabeled targeting agents wherein the two targeting agents have specificity against
different cancer-associated antigens and/or different cancer/tumor targeting mechanisms, and which targeting agents may for example, be any of those disclosed herein and/or may be directed against any of the targets disclosed herein.
[0174] In the various aspects of the invention, the cancer-associated antigen or antigens for which a radiolabeled targeting agent (such as an ARC) has specificity may, for example, include one or more of the following: CD33, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), Tn Ag, prostate specific membrane antigen (PSMA), ROR1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Receptor 5 (SSTR5), gastrin-releasing peptide receptor (GRPR), NKG2D ligands (such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET 1 H/ULBP2, RAETl/ULBPl, RAET1L/ULBP6, and RAET1N/ULBP3), LYPD3 (C4.4A), Nectin-4, urokinase plasminogen activator receptor (uPAR), Folate receptor alpha (FOLR1), CUB-domain containing protein 1 (CDCP1), Glypican-3 (GPC3), tenascin, tenascin-C, CEACAM5, Cadherin-3, CCK2R, Neurotensin receptor type 1 (NTSR1), human Kallikrein 2 (hK2), norepinephrine transporter, Integrin alpha-V-beta-6, CD37, CD66, CXCR4, Fibronectin extradomain B (EBD), LAT-1, Carbonic anhydrase IX (CAIX), B7-H3 (a/k/a CD276), Disialoganglioside GD2 Antigen (GD2), calreticulin, phosphatidylserine, GRP78 (BiP), TAG72, CD38, CD44v6, CEA, EPCAM, B7H3, KIT, IL-13Ra2, interleukin- 11 receptor a (IL-1 IRa), PSCA, PRSS21, VEGFR2, LewisY, CD24, platelet-derived growth factor receptor-beta (PDGFR- beta), S SEA-4, CD20, Folate receptor alpha (FRa), MUC1, epidermal growth factor receptor (EGFR), EGFRvIII, NCAM, Prostase, PAP, ELF2M, Ephrin B2, IGF-I receptor, CAIX, LMP2, gplOO, bcr-abl, tyrosinase, EphA2, Fucosyl GM1, sLe, GM3, DR5, 5T4, TGS5, HMWMAA, o- acetyl-GD2, Folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD 179a, ALK, Polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TARP, WT1, NY-ESO-1, L AGE-1 a, MAGE-A1, legumain, HPVE6,E7, MAGE Al, MAGE A3, MAGEA3/A6, ETV6-AML, sperm protein 17, XAGEl, Tie 2, MAD-CT-
1, MAD-CT-2, Fos-related antigen 1, prostein, survivin and telomerase, PCTA-l/Galectin 8, KRAS, MelanA/MARTl, Ras mutant, hTERT, sarcoma translocation breakpoints, ML-IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B 1, MYCN, RhoC, TRP-
2, CYPIB 1, BORIS, SART3, PAX5, OY- TES 1, LCK, AKAP-4, SSX2, RAGE-1, human
telomerase reverse transcriptase, RU1, RU2, intestinal carboxyl esterase, mut hsp70-2, CD79a, CD79b, CD72, LAIRl, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, GPA7, and IGLL1.
[0175] The first target recognition component may, for example, include one of: a first full-length heavy chain and a first full-length light chain, a first Fab fragment, or a first single chain variable fragment (scFvs). The first target recognition component may, for example, be derived from any of the monoclonal antibodies listed herein that are directed against CD33, DR5, 5T4, HER2, or HER3. The second target recognition component may, for example, include one of: a second full-length heavy chain and a second full-length light chain, a second Fab fragment, or a second single-chain variable fragment (scFvs). Moreover, the second target recognition component may be derived from any of the additional different antigens listed above.
[0176] Alternatively, the presently disclosed invention contemplates methods which include administration of a first ARC against at least one first antigen (i.e., CD33, DR5, 5T4, HER2, or HER3), and administration of a second ARC, wherein the second ARC is against a different epitope of the first antigen, or is against an epitope of a different antigen, such as an antigen selected from the list presented above, or another of the antigens against CD33, DR5, 5T4, HER2, or HER3 not targeted by the first ARC.
[0177] According to certain aspects, the effective amount of the radiotherapeutic, such as any of the ARCs disclosed herein, includes a maximum tolerated dose (MTD).
[0178] According to certain aspects, when more than one ARC or other cancer-targeting radiotherapeutic is administered, the agents may be administered at the same time. As such, according to certain aspects of the present invention, the agents may, for example, be provided in a single composition. Alternatively, the two radiotherapeutics may be administered sequentially. As such, a first ARC or other cancer-targeting radiotherapeutic may be administered before a second ARC or other cancer-targeting radiotherapeutic, after the second ARC or other cancer targeting radiotherapeutic, or both before and after the second ARC or other cancer-targeting radiotherapeutic. Moreover, the second ARC or other cancer-targeting radiotherapeutic may be administered before the first ARC or other cancer-targeting radiotherapeutic, after the first ARC or other cancer-targeting radiotherapeutic, or both before and after the first ARC or other cancer targeting radiotherapeutic.
[0179] According to certain aspects, the ARC or other cancer-targeting radiotherapeutic may be administered according to a dosing schedule selected from the group consisting of one every 7, 10, 12, 14, 20, 24, 28, 35, and 42 days throughout a treatment period, wherein the treatment period includes at least two doses.
[0180] According to certain aspects, the ARC or other cancer-targeting radiotherapeutic may be administered according to a dose schedule that includes 2 doses, such as on days 1 and 5, 6, 7, 8, 9, or 10 of a treatment period, or days 1 and 8 of a treatment period.
[0181] Administration of the ARCs of the present invention, in addition to other therapeutic agents, may be provided in several ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be intratracheal, intranasal, epidermal and transdermal, oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. In some embodiments a slow- release preparation including the targeting agents(s) and/or other therapeutic agents may be administered. The various agents may be administered as a single treatment or in a series of treatments that continue as needed and for a duration of time that causes one or more symptoms of the cancer to be reduced or ameliorated, or that achieves another desired effect.
[0182] The dose(s) may vary, for example, depending upon the identity, size, and condition of the subject, further depending upon the route by which the composition is to be administered and the desired effect. Appropriate doses of a therapeutic agent depend upon the potency with respect to the expression or activity to be modulated. The therapeutic agents can be administered to an animal (e.g., a human) at a relatively low dose at first, with the dose subsequently increased until an appropriate response is obtained.
[0183] The radiotherapeutics disclosed herein, such as any of the ARCs, may be administered simultaneously or sequentially with the one or more additional therapeutic agents. Moreover, when more than one additional therapeutic agent is included, the additional therapeutic agents may be administered simultaneously or sequentially with each other and/or with the radiotherapeutic.
[0184] Radiolabeling the cancer targeting agent
[0185] The radiotherapeutic may be labeled with a radioisotope such as an alpha emitter (e.g., 225 Ac) through conjugation of a chelator molecule, and chelation of the radioisotope.
According to certain aspects, the radiotherapeutic may be an antibody against that is deglycosylated in the constant region, such as at asparagine-297 (Asn-297, N297; kabat number) in the heavy chain CH2 domain, for the purpose of uncovering a unique conjugation site, glutamine (i.e., Gln-295, Q295) so that it is available for conjugation with bifunctional chelator molecules. [0186] According to certain aspects, the radiotherapeutic may be an antibody that may have reduced disulfide bonds such as by using reducing agents, which may then be converted to dehydroalanine for the purpose of conjugating with a bifunctional chelator molecule. [0187] According to certain aspects, the radiotherapeutic may be an antibody for which the disulfide bonds have been reduced using reducing agents, which is then conjugated via aryl bridges with a bifunctional chelator molecule. For example, according to certain aspects a linker molecule such as 3,5-bis(bromomethyl)benzene may be used to bridge the free sulfhydryl groups on the antibody. [0188] According to certain aspects, the radiotherapeutic may be an antibody that may have certain specific existing amino acids replaced with cysteine(s) that then can be used for site- specific labeling. [0189] According to certain aspects, the radiotherapeutic may be radiolabeled through site- specific conjugation of suitable bifunctional chelators. Exemplary chelator molecules that may be used include p-SCN-Bn-DOTA, NH2-DOTA, NH2-(CH2)1-20-DOTA, NH2-(PEG)1-20-DOTA, HS- DOTA, HS-(CH2)1-20-DOTA, HS-(PEG)1-20-DOTA, dibromo-S-(CH2)1-20-DOTA, dibromo-S- (PEG)1-20-DOTA, p-SCN-Bn-DOTP, NH2-DOTP, NH2-(CH2)1-20-DOTP, NH2-(PEG)1-20-DOTP, HS-DOTP, HS-(CH2)1-20-DOTP, HS-(PEG)1-20-DOTP, dibromo-S-(CH2)1-20-DOTP, and dibromo- S-(PEG)1-20-DOTP. [0190] The chelator molecules may, for example, be attached to a targeting agent through a linker molecule. Exemplary linker molecules include: -CH2(C6H4)NH2 or -CH2(C6H4)NH-X-Y, wherein X is -R2-CH2CH2O(CH2CH2O)nCH2CH2-, -R2-CH2CH2NHC(O)CH2CH2O(CH2CH2O)nCH2CH2-, -R2-(CH2)nCH2-, -R2-CH2CH2NHC(O)(CH2)nCH2-, -R2-CH(C(O)R3)CH2-, wherein R3 is -OH or a short peptide (1-20 amino acids),
-R2-CH2CH20(CH2CH20)nCH2C(0)0-, or -R2-CH2CH2NHC(0)CH2CH20(CH2CH20)nCH2CC(0)0-, wherein n is 1-20, and R2 is -C(O)- or -C(S)NH-; and
Y is -NH2 or -SR4-, wherein R4 is -H or -CH2-3,5-bis(bromomethyl)benzene.
[0191] Targeting agents, such as protein targeting agents, for example antibodies and antigen-binding antibody fragments, and peptide targeting agents may, for example, be conjugated with a chelator for radiolabeling the targeting agent via chelation of a radionuclide. Such protein or peptide targeting agents, for example, that include lysine(s), may conveniently be conjugated to a DOTA chelating moiety using the bifunctional agent S-2-(4-Isothiocyanatobenzyl)- 1,4, 7,10- tetraazacyclododecane tetraacetic acid a/k/a/ “p-SCN-Bn-DOTA” (Catalog # B205; Macrocyclics, Inc., Plano, TX, USA). p-SCN-Bn-DOTA may be synthesized by a multi-step organic synthesis fully described in U.S. Patent No. 4,923,985. Chelation of a radionuclide by the DOTA moiety may be performed prior to chemical conjugation of the antibody with p-SCN-Bn-DOTA and/or after said conjugation.
[0192] Methods for labeling a chelator- conjugated targeting agent with an exemplary radionuclide are described in in Example 1.
[0193] CD47 blockades
[0194] As used herein, the term “CD47 blockade” refers to any agent that reduces the binding of CD47 (e.g., on a target cell) to SIRPa (e.g., on a phagocytic cell). Non-limiting examples of suitable anti-CD47 reagents include SIRPa reagents, including without limitation SIRPa polypeptides, anti-SIRPa antibodies, soluble CD47 polypeptides, and anti-CD47 antibodies or antibody fragments. According to certain aspects, a suitable anti-CD47 agent (e.g. an anti-CD47 antibody, a SIRPa reagent, etc.) specifically binds CD47 to reduce the binding of CD47 to SIRPa. An agent for use in the methods of the invention will up-regulate phagocytosis by at least 10% (e.g., at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 120%, at least 140%, at least 160%, at least 180%, or at least 200%) compared to phagocytosis in the absence of the agent. Similarly, an in vitro assay for levels of tyrosine phosphorylation of SIRPa will show a decrease in phosphorylation by at least 5% (e.g., at least 10%, at least 15%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at
least 70%, at least 80%, at least 90%, or 100%) compared to phosphorylation observed in absence of the candidate agent.
[0195] According to certain aspects, a SIRPa reagent may include the portion of SIRPa that is sufficient to bind CD47 at a recognizable affinity, which normally lies between the signal sequence and the transmembrane domain, or a fragment thereof that retains the binding activity. A suitable SIRPa reagent reduces (e.g., blocks, prevents, etc.) the interaction between the native proteins SIRPa and CD47. For example, the CD47 blocking agent may be any of those disclosed in U.S. Patent No. 9,969,789 including but not limited to the SIRPa-IgG Fc fusion proteins disclosed therein, such as TTI-621 and TTI-622.
[0196] According to certain aspects, an anti-CD47 agent includes an antibody that specifically binds CD47 (i.e., an anti-CD47 antibody) and reduces the interaction between CD47 on one cell (e.g., an infected or malignant cell) and SIRPa on another cell (e.g., a phagocytic cell). Non-limiting examples of suitable antibodies include clones B6H12, 5F9, 8B6, and C3 (for example as described in International Pub. No. WO 2011/143624). Suitable anti-CD47 antibodies include fully human, humanized or chimeric versions of such antibodies.
[0197] Exemplary human or humanized antibodies especially useful for in vivo applications in humans due to their low antigenicity include at least monoclonal antibodies against CD47, such as Hu5F9-G4, a humanized monoclonal antibody available from Gilead as Magrolimab (Sikic, et al. (2019) Journal of Clinical Oncology 37:946); Lemzoparlimab and TJC4 from I-Mab Biopharma; AO-176 from Arch Oncology, Inc; AK117 from Akesobio Australia Pty; IMC-002 from Innovent Biologies; ZL-1201 from Zia Lab; SHR-1603 from Jiangsu HengRui Medincine Co.; and SRF231 from Surface Oncology. Bispecific monoclonal antibodies are also available, such as IB 1-322, targeting both CD47 and PD-L1 from Innovent Biologies.
[0198] AO-176, in addition to inducing tumor phagocytosis through blocking the CD47- SIRPa interaction, has been found to preferentially bind tumor cells versus normal cells (particularly RBCs where binding is negligible) and directly kills tumor versus normal cells.
[0199] Antibodies against SIRPa may also be used as CD47 blockades. Without limitation, anti-SIRPa antibodies (also referred to as SIRPa antibodies herein) that may be used in or embodied in any of the aspects of the invention include but are not limited to the following anti- SIRPa antibodies, antibodies that include one or both of the heavy chain and light chain variable regions of the following anti-SIRPa antibodies, antibodies that include one or both of the heavy
chain and the light chain CDRs of any of the following anti-SIRPa antibodies, and antigen-binding fragments of any of said anti-SIRPa antibodies:
(1) ADU-1805 (Sairopa B.V.; Aduro) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018190719 or U.S. Pat. No. 10,851,164;
(2) AL008 (Alector LLC) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02018107058, U.S. Pub. No. 20190275150, or U.S. Pub. No. 20210179728;
(3) AL008 (Apexigen, Inc.) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2021174127 or U.S. App. No. 63/108,547;
(4) SIRP-1 and SIRP-2 (Arch Oncology, Inc.) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2021222746, U.S. App. No. 63/107,200 or U.S. Pub. No. 20200297842;
(5) OSE-172 (a/k/a BI 765063; Boehringer Ingelheim) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2017178653 or U.S. Pub. No. 20190127477;
(6) CC-95251 (Bristol Myers Squibb; Celgene) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02020068752 or U.S. Pub. No. 20200102387;
(7) ES004 (Elpiscience Biopharma) and any of the SIRPa antibodies disclosed in Inti. Pub. No. W02021032078 or U.S. Pub. No. 20210347908;
(8) FSI-189 (Gilead Sciences, Inc.; Forty Seven) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2019023347, U.S. Pat. No. 10,961,318 or U.S. Pub. No. 20210171654;
(9) BYON4228 (Byondis B.V.; Synthon) and any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018210793, Inti. Pub. No. WO2018210795, or U.S. Pub. No. 20210070874;
(10) any of the SIRPa antibodies disclosed in Inti. Pub. No. WO2018057669, U.S. Pat. No.
11,242,404 or U.S. Pub. No. 20220002434 (Alexo Therapeutics Inc., now ALX Oncology Inc.);
(11) any of the SIRPa antibodies disclosed in Inti. Pub. No. W02015138600, U.S. Pat. No. 10,781,256 or U.S. Pat. No. 10,081,680 (Leland Stanford Junior University);
(12) BR105 (Bioray Pharma); or
(13) BSI-050 (Biosion, Inc.).
[0200] Other CD47 blockades that may be employed include any of those disclosed in U.S. Patent No. 9,969,789 including without limitation the SIRPa-IgG Fc fusion proteins TTI-621 and TTI-622 (Trillium Therapeutics, Inc.), both of which preferentially bind CD47 on tumor cells while also engaging activating Fc receptors. A SIRPa-IgG Fc fusion protein including the amino
acid sequence SEQ ID NO: 116, SEQ ID NO: 117, or SEQ ID NO: 118 may, for example, be used. Still other SIRPa Fc domain fusions proteins that may be used include ALX148 from Alx Oncology or any of those disclosed in Int’l Pub. No WO2017027422 or U.S. Pat. No. 10,696,730.
[0201] The CD47 blockade may alternatively, or additionally, include agents that modulate the expression of CD47 and/or SIRPa, such as phosphorodiamidate morpholino oligomers (PMO) that block translation of CD47 such as MBT-001 (PMO, morpholino, Sequence: 5'- CGTCAC AGGCAGGACCC ACTGCCC A-3 ') [SEQ ID NO: 114]) or any of the PMO oligomer CD47 inhibitors disclosed in any of U.S. Patent No. 8,557,788, U.S. Patent No. 8,236,313, U.S. Patent No. 10,370,439 and IntT Pub. No. W02008060785.
[0202] Small molecule inhibitors of the CD47-SIRPa axis may also be used, such as RRx- 001 (1-bromoacetyl- 3,3 dinitroazetidine) from EpicentRx and Azelnidipine (CAS number 123524-52-7) or pharmaceutically acceptable salts thereof.
[0203] Various CD47 blockades that may be used are found in Table 1 of Zhang, et ah,
(2020), Frontiers in Immunology vol 11, article 18, and in Table 3 below.
Table 3
[0204] Therapeutically effective doses of an anti-CD47 antibody or other protein CD47 inhibitor may be a dose that leads to sustained serum levels of the protein of about 40 pg/ml or more (e.g., about 50 ug/ml or more, about 60 ug/ml or more, about 75 ug/ml or more, about 100 ug/ml or more, about 125 ug/ml or more, or about 150 ug/ml or more). Therapeutically effective doses or administration of a CD47 blockade, such as an anti-CD47 antibody or SIRPa fusion protein or small molecule, include, for example, amounts of 0.05 - 10 mg/kg (agent weight/subject weight), such as at least 0.1 mg/kg, 0.5 mg/kg, 1.0 mg/kg, 1.5 mg/kg, 2.0 mg/kg, 2.5 mg/kg, 3.0 mg/kg, 3.5 mg/kg, 4.0 mg/kg, 4.5 mg/kg, 5.0 mg/kg, 5.5 mg/kg, 6.0 mg/kg, 6.5 mg/kg, 7.0 mg/kg, 7.5 mg/kg, 8.0 mg/kg, 8.5 mg/kg, 9.0 mg/kg; or not more than 10 mg/kg, 9.5 mg/kg,
9.0 mg/kg, 8.5 mg/kg, 8.0 mg/kg, 7.5 mg/kg, 7.0 mg/kg, 6.5 mg/kg, 6.0 mg/kg, 5.5 mg/kg,
5.0 mg/kg, 4.5 mg/kg, 4.0 mg/kg, 3.5 mg/kg, 3.0 mg/kg, 2.5 mg/kg, 2.0 mg/kg, 1.5 mg/kg,
1.0 mg/kg, or any combination of these upper and lower limits. Therapeutically effective doses of a small molecule CD47 blockade such as those disclosed herein also, for example, include 0.01 mg/kg to 1,000 mg/kg and any subrange or value of mg/kg therein such as 0.01 mg/kg to 500 mg/kg or 0.05 mg/kg to 500 mg/kg, or 0.5 mg/kg to 200 mg/kg, or 0.5 mg/kg to 150 mg/kg, or 1.0 mg/kg to 100 mg/kg, or 10 mg/kg to 50 mg/kg.
[0205] According to certain aspects, the anti-CD47 agent is a soluble CD47 polypeptide that specifically binds SIRPa and reduces the interaction between CD47 on one cell (e.g., an infected cell) and SIRPa on another cell (e.g., a phagocytic cell). A suitable soluble CD47 polypeptide can bind SIRPa without activating or stimulating signaling through SIRPa because activation of SIRPa would inhibit phagocytosis. Instead, suitable soluble CD47 polypeptides facilitate the preferential phagocytosis of infected cells over non-infected cells. Those cells that express higher levels of CD47 (e.g., infected cells) relative to normal, non-target cells (normal cells) will be preferentially phagocytosed. Thus, a suitable soluble CD47 polypeptide specifically binds SIRPa without activating/stimulating enough of a signaling response to inhibit phagocytosis. In some cases, a suitable soluble CD47 polypeptide can be a fusion protein (for example, as described in U.S. Pub. No. 20100239579).
[0206] Additional agents
[0207] The methods of the present invention, which include administration of a radiotherapeutic and a CD47 blockade, may further include administration of one or more additional therapeutic agents. According to certain aspects, the additional agent(s) may be relevant for the disease or condition being treated. Such administration may be simultaneous, separate or sequential with the administration of the radiotherapeutic and CD47 blockade. For simultaneous administration, the agents may be administered as one composition, or as separate compositions, as appropriate.
[0208] Exemplary additional therapeutic agents include at least chemotherapeutic agents, anti-inflammatory agents, immunosuppressive agents, immunomodulatory agents, or a combination thereof. Moreover, the one or more further therapeutic agents may include an antimyeloma agent, such as dexamethasone, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide.
[0209] According to certain aspects of the present invention, the methods may further include administration of a cytokine such as granulocyte colony-stimulating factor (GCSF) after administration of the radiotherapeutic and/or CD47 blockade. The GCSF may be administered, for example, 7, 8, 9, 10, or 11 days after administration of the radiolabeled CD33 targeting agent.
[0210] Exemplary chemotherapeutic agents include, but are not limited to, anti -neoplastic agents including alkylating agents including: nitrogen mustards, such as mechlorethamine, cyclophosphamide, ifosfamide, melphalan and chlorambucil; nitrosoureas, such as carmustine (BCNU), lomustine (CCNU), and semustine (methyl-CCNU); Temodal™ (temozolamide), ethylenimines/methylmelamine such as thriethylenemelamine (TEM), triethylene, thiophosphoramide (thiotepa), hexamethylmelamine (HMM, altretamine); alkyl sulfonates such as busulfan; triazines such as dacarbazine (DTIC); antimetabolites including folic acid analogs such as methotrexate and trimetrexate, pyrimidine analogs such as 5-fluorouracil (5FU), fluorodeoxyuridine, gemcitabine, cytosine arabinoside (AraC, cytarabine), 5-azacytidine, 2,2'- difluorodeoxycytidine, purine analogs such as 6-mercaptopurine, 6-thioguamne, azathioprine, T- deoxycoformycin (pentostatin), erythrohydroxynonyladenine (EHNA), fludarabine phosphate, and 2-chlorodeoxyadenosine (cladribine, 2-CdA); natural products including antimitotic drugs such as paclitaxel, vinca alkaloids including vinblastine (VLB), vincristine, and vinorelbine, taxotere, estramustine, and estramustine phosphate; pipodophylotoxins such as etoposide and teniposide; antibiotics such as actinomycin D, daunomycin (rubidomycin), doxorubicin,
mitoxantrone, idarubicin, bleomycins, plicamycin (mithramycin), mitomycin C, and actinomycin; enzymes such as L-asparaginase; biological response modifiers such as interferon-alpha, IL-2, G- CSF and GM-CSF; miscellaneous agents including platinum coordination complexes such as oxaliplatin, cisplatin and carboplatin, anthracenediones such as mitoxantrone, substituted urea such as hydroxyurea, methylhydrazine derivatives including N-methylhydrazine (MIH) and procarbazine, adrenocortical suppressants such as mitotane (o, p-DDD) and aminoglutethimide; hormones and antagonists including adrenocorticosteroid antagonists such as prednisone and equivalents, dexamethasone and aminoglutethimide; Gemzar™ (gemcitabine), progestin such as hydroxyprogesterone caproate, medroxyprogesterone acetate and megestrol acetate; estrogen such as diethyl stilbestrol and ethinyl estradiol equivalents; antiestrogen such as tamoxifen; androgens including testosterone propionate and fluoxymesterone/equivalents; antiandrogens such as flutamide, gonadotropin-releasing hormone analogs and leuprolide; and non-steroidal antiandrogens such as flutamide. Therapies targeting epigenetic mechanism including, but not limited to, histone deacetylase inhibitors, demethylating agents (e.g., Vidaza®) and release of transcriptional repression (ATRA) therapies can also be combined with antibodies of the invention.
[0211] According to certain aspects, the chemotherapeutic agent may be selected from the group consisting of taxanes (e.g., paclitaxel (Taxol®), docetaxel (Taxotere®), modified paclitaxel (e.g., Abraxane and Opaxio®), doxorubicin, sunitinib (Sutent®), sorafenib (Nexavar®), and other multikinase inhibitors, oxaliplatin, cisplatin and carboplatin, etoposide, gemcitabine, and vinblastine. In one embodiment the chemotherapeutic agent is selected from the group consisting of taxanes (like e.g. taxol (paclitaxel), docetaxel (Taxotere), modified paclitaxel (e.g. Abraxane and Opaxio)).
[0212] According to aspects of the presently disclosed invention, the chemotherapeutic agent is selected from 5-fluorouracil (5-FU), leucovorin, irinotecan, or oxaliplatin. According to certain aspects, the chemotherapeutic agent is 5-fluorouracil, leucovorin and irinotecan (FOLFIRI). According to other aspects, the chemotherapeutic agent is 5-fluorouracil, and oxaliplatin (FOLFOX).
[0213] According to aspects of the presently disclosed invention, the chemotherapeutic agent is selected from taxanes (e.g., docetaxel or paclitaxel) or a modified paclitaxel (e.g., Abraxane or Opaxio), doxorubicin), capecitabine and/or bevacizumab (Avastin®) for the treatment of breast cancer; therapies with carboplatin, oxaliplatin, cisplatin, paclitaxel,
doxorubicin (or modified doxorubicin (Caelyx® or Doxil®)), or topotecan (Hycamtin®) for the treatment of ovarian cancer; therapies with a multi-kinase inhibitor, MKI, (Sutent, Nexavar, or AMG 706) and/or doxorubicin for the treatment of kidney cancer; therapies with oxaliplatin, cisplatin and/or radiation for the treatment of squamous cell carcinoma; and therapies with taxol and/or carboplatin for the treatment of lung cancer.
[0214] The therapeutic agents may be administered according to any standard dose regime known in the field. For example, therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m2, the amounts being calculated as a function of patient surface area (m2). For example, exemplary doses of the chemotherapeutic paclitaxel may include 15 mg/m2 to 275 mg/m2, exemplary doses of docetaxel may include 60 mg/m2 to 100 mg/m2, exemplary doses of epithilone may include 10 mg/m2 to 20 mg/m2, and an exemplary dose of calicheamicin may include 1 mg/m2 to 10 mg/m2. While exemplary doses are listed herein, such are only provided for reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention.
[0215] Exemplary anti-inflammatory agents may be selected from a steroidal drug and a NSAID (nonsteroidal anti-inflammatory drug). Other anti-inflammatory agents may be selected from aspirin and other salicylates, Cox-2 inhibitors (such as rofecoxib and celecoxib), NSAIDs (such as ibuprofen, fenoprofen, naproxen, sulindac, diclofenac, piroxicam, ketoprofen, diflunisal, nabumetone, etodolac, oxaprozin, and indomethacin), anti-IL6R antibodies, anti-IL8 antibodies, anti-IL15 antibodies, anti-IL15R antibodies, anti-CD4 antibodies, anti-CDl la antibodies (e.g., efalizumab), anti-alpha4/beta-l integrin (VLA4) antibodies (e.g natalizumab), CTLA4-1 g for the treatment of inflammatory diseases, prednisolone, prednisone, disease modifying antirheumatic drugs (DMARDs) such as methotrexate, hydroxychloroquine, sulfasalazine, pyrimidine synthesis inhibitors (such as leflunomide), IL-1 receptor blocking agents (such as anakinra), TNF-a blocking agents (such as etanercept, infliximab, and adalimumab) and similar agents.
[0216] Exemplary immunosuppressive and/or immunomodulatory agents include cyclosporine, azathioprine, mycophenolic acid, mycophenolate mofetil, corticosteroids such as prednisone, methotrexate, gold salts, sulfasalazine, antimalarials, brequinar, leflunomide, mizoribine, 15-deoxyspergualine, 6-mercaptopurine, cyclophosphamide, rapamycin, tacrolimus (FK-506), OKT3, anti-thymocyte globulin, thymopentin, thymosin-a and similar agents.
[0217] According to certain aspects of the presently disclosed invention, the additional therapeutic agents may include an antimyeloma agent. Exemplary antimyeloma agents include dexamethasone, melphalan, doxorubicin, bortezomib, lenalidomide, prednisone, carmustine, etoposide, cisplatin, vincristine, cyclophosphamide, and thalidomide, several of which are indicated above as chemotherapeutic agents, anti-inflammatory agents, or immunosuppressive agents.
[0218] According to certain aspects of the presently disclosed invention, the additional therapeutic agents may include allopurinol, administered at a dose of 300-600 mg/day orally starting on day 1 of the treatment period and continuing for at least 7 days after the CD33 targeting agent. Prophylactic antibiotics and antifungal therapies may be included for those patients who have an absolute neutrophil count of less than 500/ul. Analgesics and antihistamines may also be included prior at administration of the CD33 targeting agent by infusion to reduce infusion-related reactions.
[0219] The additional therapeutic agents may be administered according to any standard dose regime known in the field. For example, therapeutic agents may be administered at concentrations in the range of 1 to 500 mg/m2, the amounts being calculated as a function of patient surface area (m2). For example, exemplary doses of paclitaxel may include 15 mg/m2 to 275 mg/m2, exemplary doses of docetaxel may include 60 mg/m2 to 100 mg/m2, exemplary doses of epithilone may include 10 mg/m2 to 20 mg/m2, and an exemplary dose of calicheamicin may include 1 mg/m2 to 10 mg/m2. While exemplary doses are listed herein, such are only provided for reference and are not intended to limit the dose ranges of the drug agents of the presently disclosed invention.
[0220] Without limitation, the following aspects of the invention are also provided by this disclosure:
[0221] Aspect 1 : A therapeutic composition for the treatment of a cancer in a mammalian subject such as a human, the composition including: a radiotherapeutic agent, such as a radiolabeled cancer-targeting agent, such as a radiolabeled antigen targeting agent targeting a preselected cancer-associated antigen such as any of those disclosed herein, such as a radiolabeled antibody targeting a preselected cancer-associated antigen such as any of those disclosed herein; and a CD47 blockade.
[0222] Aspect 2: The composition according to aspect 1, wherein the radiotherapeutic agent includes a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, such as a radiolabeled anti-CD33, anti-DR5, anti-5T4, anti-HER2, anti-HER3, or anti-TROP2 monoclonal antibody, or a radiolabeled antigen-binding fragment of any of the preceding monoclonal antibodies.
[0223] Aspect 3: The composition according to any preceding aspect, wherein the radiotherapeutic agent includes a radiolabel selected from 13 XI, 125I, 123I, 90 Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Bi, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 137Cs, 212Pb or 103Pd, or a combination thereof.
[0224] Aspect 4: The composition according to any preceding aspect, wherein the radiotherapeutic includes a CD33 targeting agent selected from radiolabeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof, such as actinium-225 or lutetium-177 labeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof.
[0225] Aspect 5: The composition according to any preceding aspect, wherein the radiotherapeutic includes a radiolabeled DR5 targeting agent selected from radiolabeled mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, LBY-135, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
[0226] Aspect 6: The composition according to any preceding aspect, wherein the radiotherapeutic includes a radiolabeled 5T4 targeting agent selected from radiolabeled MED 10641, ALG.APV-527, Tb535, H6-DM5, ZV0508, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
[0227] Aspect 7: The composition according to any preceding aspect, wherein the radiotherapeutic includes a radiolabeled HER3 targeting agent selected from radiolabeled patritumab, seribantumab, lumretuzumab, elgemtumab, AV-203, GSK2849330, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
[0228] Aspect 8: The composition according to any preceding aspect, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 10 μCi/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
[0229] Aspect 9: The composition according to any preceding aspect, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 2 μCi/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
[0230] Aspect 10: The composition according to any preceding aspect, wherein the CD47 blocking agent includes a monoclonal antibody that prevents CD47 binding to SIRPa.
[0231] Aspect 11 : The composition according to any preceding aspect, wherein the CD47 blocking agent includes magrolimab, lemzoparlimab, AO-176, TTI-621, TTI-622, ALX148, RRx- 001, Azelni dipine, any CD47 blockade disclosed herein, or any combination thereof.
[0232] Aspect 12: The composition according to any preceding aspect, wherein the effective amount of the CD47 blocking agent is 0.05 to 5 mg/kg (agent weight/body weight).
[0233] Aspect 13: The composition according to any preceding aspect, wherein the radiotherapeutic includes 225Ac-lintuzumab having a radiation dose of 0.1 to 2 μCi/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
[0234] Aspect 14: The composition according to any preceding aspect, wherein the cancer is a solid tumor cancer.
[0235] Aspect 15: The composition according to any one of aspects 1-14, wherein the cancer is a hematological cancer.
[0236] Aspect 16: The composition according to aspect 15, wherein the hematological cancer is a myeloid malignancy.
[0237] Aspect 17: The composition according to aspect 15, wherein the hematological cancer includes multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
[0238] Aspect 18: The composition according to any one of aspects 14-17, wherein the hematological cancer is relapsed/refractory acute myeloid leukemia.
[0239] Aspect 19: The composition according to any preceding aspect, wherein the cancer is a CD33 positive, DR5 positive, 5T4 positive, HER2, HER3, and/or TROP2 positive cancer.
[0240] Aspect 20: The composition according to aspect 19, wherein the CD33 positive cancer includes cells expressing CD33, wherein the CD33 expressing cells include myeloblast cells or malignant plasmacytes.
[0241] Aspect 21. The composition according to any preceding aspect, further including at least one pharmaceutically acceptable excipient.
[0242] Aspect 22 : A method for treating a cancer in a mammalian subj ect, such as a human, the method including administering a composition according to any one of aspects 1 to 21.
[0243] Aspect 23 : A method for treating a cancer in a mammalian subj ect, such as a human, the method including administering (i) a radiolabeled cancer-targeting agent, such as any of those disclosed herein, such as a radiolabeled antigen-targeting agent targeting a preselected cancer- associated antigen such as any of those disclosed herein, such as a radiolabeled antibody targeting a preselected cancer-associated antigen such as any of those disclosed herein; and (ii) a CD47 blockade.
[0244] Aspect 24: The method according to aspect 22 or 23, wherein the radiotherapeutic agent includes in radiolabeled form an anti-CD33 monoclonal antibody or a CD33-binding fragment thereof, and the cancer is a hematological disease or disorder selected from one or more of multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, and myeloproliferative neoplasm, or a solid tumor cancer such as any of those disclosed herein; or an anti-5T4 monoclonal antibody or a 5T4-binding fragment thereof, and the cancer is colorectal cancer, gastric cancer, ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, or any combination thereof; or an anti-DR5 monoclonal antibody or a DR5-binding fragment thereof, and the cancer is breast cancer, triple negative breast cancer, ovarian cancer, or prostate cancer; an anti-HER2 monoclonal antibody or a HER2 -binding fragment thereof, and the cancer is pancreatic cancer, lung cancer, head and neck cancer, breast cancer, gastric cancer, colorectal cancer, esophageal cancer, or ovarian cancer; an anti-HER3 monoclonal antibody or a HER3-binding fragment thereof, and the cancer is pancreatic cancer, lung cancer, head and neck cancer, breast cancer, gastric cancer, colorectal cancer, esophageal cancer, or ovarian cancer; or an anti-TROP2 monoclonal antibody or a TROP2-binding fragment thereof, and the cancer is pancreatic cancer, lung cancer, head and neck cancer, breast cancer, gastric cancer, colorectal cancer, esophageal cancer, or ovarian cancer.
[0245] Aspect 25: The method according to aspect 22 or 23, wherein the radiotherapeutic agent includes a radiolabeled CD33, DR5, 5T4, HER2, HER3, or TROP2 targeting agent, such as
a radiolabeled anti-CD33, anti-DR5, anti-5T4, anti-HER2, anti-HER3, or anti-TROP2 monoclonal antibody.
[0246] Aspect 26: The method according to any one of aspects 22-25, wherein the radiotherapeutic agent includes a radiolabel selected from 13 XI, 125I, 123I, 90 Y, 177Lu, 186Re, 188Re, 89Sr, 153Sm, 32P, 225 Ac, 213Bi, 213Po, 211At, 212Bi, 213Bi, 223Ra, 227Th, 149Tb, 137Cs, 212Pb or 103Pd, or a combination thereof.
[0247] Aspect 27: The method according to any one of aspects 22-26, wherein the radiotherapeutic includes a CD33 targeting agent selected from radiolabeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof, such as actinium-225 or lutetium-177 labeled lintuzumab, gemtuzumab, vadastuximab, or a combination thereof.
[0248] Aspect 28: The method according to any one of aspects 22-27, wherein the radiotherapeutic includes a radiolabeled DR5 targeting agent selected from radiolabeled mapatumumab, conatumumab, lexatumumab, tigatuzumab, drozitumab, LBY-135, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
[0249] Aspect 29: The method according to any one of aspects 22-28, wherein the radiotherapeutic includes a radiolabeled 5T4 targeting agent selected from radiolabeled
MED 10641, ALG.APV-527, Tb535, H6-DM5, ZV0508, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
[0250] Aspect 30: The method according to any one of aspects 22-29, wherein the radiotherapeutic includes a radiolabeled HER3 targeting agent selected from radiolabeled patritumab, seribantumab, lumretuzumab, elgemtumab, AV-203, GSK2849330, or a combination thereof, such as any of the aforementioned targeting agents or any combination thereof radiolabeled with actinium-225 or lutetium-177.
[0251] Aspect 31 : The method according to any one of aspects 22-29, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 10 μCi/kg body weight of the subject and a protein dose of less than 10 mg/kg body weight of the subject.
[0252] Aspect 32: The method according to aspect 31, wherein the effective amount of the actinium-225 labeled radiotherapeutic includes a radiation dose of 0.1 to 2 μCi/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
[0253] Aspect 33: The method according to any one of aspects 22-30, wherein the CD47 blocking agent includes a monoclonal antibody that prevents CD47 binding to SIRPa.
[0254] Aspect 34: The method according to any one of aspects 22-30, wherein the CD47 blocking agent includes magrolimab, lemzoparlimab, AO-176, TTI-621, TTI-622, ALX-148, RRx-001, Azelni dipine, any CD47 blockade disclosed herein, or any combination thereof.
[0255] Aspect 35 : The method according to any one of aspects 22-34, wherein the effective amount of the CD47 blocking agent is 0.05 to 5 mg/kg (agent weight/body weight).
[0256] Aspect 36: The method according to any one of aspects 22-35, wherein the radiotherapeutic includes 225Ac-lintuzumab having a radiation dose of 0.1 to 2 μCi/kg body weight of the subject and a protein dose of less than 5 mg/kg body weight of the subject.
[0257] Aspect 37: The method according to any one of aspects 22-36, wherein the cancer is a solid tumor cancer.
[0258] Aspect 38: The method according to any one of aspects 22-37, wherein the cancer is a hematological cancer.
[0259] Aspect 39: The method according to aspect 38, wherein the hematological cancer is a myeloid malignancy.
[0260] Aspect 40: The method according to aspect 38, wherein the hematological cancer includes multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
[0261] Aspect 41: The composition according to any one of aspects 38-40, wherein the hematological cancer is relapsed/refractory acute myeloid leukemia.
[0262] Aspect 42: The composition according to any one of aspects 22-41, wherein the cancer is a CD33 positive, DR5 positive, 5T4 positive, HER2, HER3, and/or TROP2 positive cancer.
[0263] Aspect 43 : The composition according to aspect 42, wherein cancer includes CD33 positive cancers including one or both of CD33 positive myeloblast cells and CD33 positive malignant plasmacytes.
[0264] Aspect 44. Use of a therapeutically active radiolabeled cancer-targeting targeting agent such as a radiolabeled agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein, in the preparation of a medicament for the treatment of a cancer or a precancerous proliferative disorder, such as a hematological malignancy
or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a human patient, in combination with a CD47 blockade, such as any of those disclosed herein.
[0265] Aspect 45. Use of a CD47 blockade/blocking agent, such as any of those disclosed herein, in the preparation of a medicament for the treatment of a cancer or a precancerous proliferative disorder, such as a hematological malignancy or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a human patient, in combination with a therapeutically active radiolabeled cancer targeting agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein.
[0266] Aspect 46. Use of a therapeutically active radiolabeled cancer targeting agent targeting a cancer-associated antigen or otherwise targeting cancer cells, such as any of those disclosed herein, in combination with a CD47 blockade, such as any of those disclosed herein, for the treatment of a cancer or a precancerous proliferative disorder, such as hematological malignancy or a solid cancer, such as any of those disclosed herein, in a mammalian subject such as a human patient.
[0267] Aspect 47. Any of the preceding aspects, wherein the radiolabeled targeting agent includes a targeting agent chemically conjugated to a chelator, wherein the chelator chelates a radionuclide such as any of those disclosed herein.
[0268] Aspect 48. Preceding aspect 47, wherein the chelator includes DOTA or a DOTA derivative.
[0269] Aspect 49. Any of the preceding aspects, wherein the radionuclide is 177Lu, 225 Ac, 131I, or 90Y.
[0270] In one variation, the various aspects and embodiments of the invention are not part of a cellular therapy, such as an engineered cell therapy, such as CAR-T therapy, and are not used in combination or conjunction with a cell therapy, such as a genetically engineered cell therapy, such as CAR-T therapy. Thus, in one variation, the methods of treatment of the invention do not include a cell therapy, such as a genetically engineered cell therapy, such as CAR-T therapy.
[0271] In one variation of the various aspects and embodiment of the invention, the CD47 blockade agent, such as anti-CD47 mAh or anti-SIRPa mAh or SIRPa-Fc fusion protein, is not radiolabeled. In another variation of the various aspects and embodiments of the invention, the CD47 blockade agent and the radiolabeled targeting agent or radiotherapeutic are separate and discrete molecules, i.e., not parts of the same molecule.
[0272] Advantageously, CD47 blockade increases the overall tolerability and survivability of a mammalian subject to the radiation dose(s) delivered by the radiolabeled agent (and any external radiation and/or brachytherapy) without substantially reducing lethality of the combined treatment toward the target cancer cells (or target precancerous disorder cells), thereby permitting higher, more effective radiation doses to be employed, and/or more frequent dosing, and/or longer courses of treatment than could be employed without the CD47 blockade. [0273] EXAMPLES [0274] Example 1: Production of radiolabeled targeting agent [0275] A targeting agent such as an antibody or other protein or peptide may, for example, be labeled with a radionuclide, such as 131I or 225Ac, according to the procedures described in any of U.S. Patent No. 10,420,851, U.S. Patent No. 9,603,954, International Pub. No. WO 2017/155937 and U.S. Provisional Patent Application No.63/042,651 filed December 9, 2019 and titled “Compositions and methods for preparation of site-specific radioconjugates.” [0276] Radiolabeling: The antibody may be conjugated to a linker, such as any of the linkers described in the above indicated patent applications. An exemplary linker includes at least dodecane tetraacetic acid (DOTA), wherein a goal of the conjugation reaction is to achieve a DOTA-antibody ratio of 3:1 to 5:1. Chelation with the radionuclide, such as 177Lu, 90Y, or 225Ac may then be performed and efficiency and purity of the resulting radiolabeled antibody, such as an anti-CD33 antibody, may be determined by HPLC and iTLC. [0277] An exemplary labeling reaction for 225Ac is as follows: A reaction including 15μl 0.15M NH4OAc buffer, pH=6.5 and 2 μL (10 μg) DOTA-anti-CD33 (5 mg/ml) may be mixed in an Eppendorf reaction tube, and 4μL 225Ac (10 μCi) in 0.05 M HCl subsequently added. The contents of the tube may be mixed with a pipette tip and the reaction mixture incubated at 37°C for 90 min with shaking at 100 rpm. At the end of the incubation period, 3 μL of a 1mM DTPA solution may be added to the reaction mixture and incubated at room temperature for 20 min to bind the unreacted 225Ac into the 225Ac-DTPA complex. Instant thin layer chromatography with 10cm silica gel strip and 10mM EDTA/normal saline mobile phase may be used to determine the radiochemical purity of 225Ac-DOTA-anti-CD33 through separating 225Ac-labeled anti-CD33 (225Ac-DOTA-anti-CD33) from free 225Ac (225Ac-DTPA). In this system, the radiolabeled antibody stays at the point of application and 225Ac-DTPA moves with the solvent front. The strips
may be cut in halves and counted in the gamma counter equipped with the multichannel analyzer using channels 72-110 for 225Ac to exclude its daughters. [0278] Purification: An exemplary radiolabeled targeting agent, such as 225Ac-DOTA- antibody, may be purified either on PD10 columns pre-blocked with 1% HSA or on Vivaspin centrifugal concentrators with a 50 kDa MW cut-off with 2 x 1.5 mL washes, 3 min per spin. HPLC analyses of the 225Ac-DOTA-antibody after purification may be conducted using a Waters HPLC system equipped with flow-through Waters UV and Bioscan Radiation detectors, using a TSK3000SW XL column eluted with PBS at pH=7.4 and a flow rate of 1ml/min. [0279] Example 2: Specificity and stability of CD33 ARC [0280] Lintuzumab conjugated with Actinium-225 (225Ac) was tested for cytotoxicity against specific cell types which express CD33. For example, suspensions of HL60 (leukemia cells) were incubated with various doses of radiolabeled lintuzumab (lintuzumab- Ac225), and the dose at which 50% of the cells were killed (LD50) was found to be 8 pCi per mL of cell suspension. [0281] In studies to access the reactivity of the radiolabeled lintuzumab with peripheral blood and bone marrow cells from nonhuman primate and human frozen tissues, the radiolabeled lintuzumab showed reactivity with mononuclear cells only, demonstrating specificity. Moreover, in studies to determine the stability of the radiolabel on the antibody, 10 normal mice (8-week old Balb/c female mice from Taconic, Germantown, New York) were injected in the tail with 300 nCi radiolabeled lintuzumab (in 0.12ml). Serum samples taken over a 5-day period showed that the Actinium-225 remained bound to the lintuzumab, demonstrating the stability of the radiolabel on the antibody in vivo. [0282] A maximum tolerated dose (MTD) of a single injection of the radiolabeled lintuzumab was determined to be 3 µCi/kg patient weight. As a split dose (e.g., 2 equal doses administered 4-7 days apart), the MTD was determined to be 2 µCi/kg per dose, or 4 µCi/kg total. This data was determined by injections into patients with relapsed/refractory AML: 21 patients were injected with increasing doses of the radiolabeled lintuzumab - 0.5 µCi/kg to 4 µCi/kg. Determination of MTD was based on the severity of the adverse effects observed at each dose level. Anti-leukemic effects included elimination of peripheral blood blasts in 13 of 19 evaluable patients. Twelve of 18 patients who were evaluable at 4 weeks following treatment had reductions in bone marrow blasts, including nine with reductions ≥ 50%. Three patients treated with 1 µCi/kg, 3 µCi/kg and 4 µCi/kg respectively had ≤ 5% blasts after therapy.
[0283] Example 3: Human maximal tolerated dose and efficacy of CD33 ARC [0284] A maximum tolerated dose (MTD) of fractionated doses of lintuzumab-Ac225 followed by Granulocyte Colony Stimulating factor (GCSF) support in each cycle may be determined using a dosing cycle of approximately 42 days. A cycle starts with administration of a fractionated dose of Lintuzumab-Ac225 on Day 1 followed by the administration of GCSF on Day 9 and continuing GCSF per appropriate dosing instructions until absolute neutrophil count (ANC) is greater than 1,000, which is expected to occur within 5 – 10 days. On Days 14, 21, 28, 35 and 42 peripheral blood may be assessed for paraprotein burden. A bone marrow aspirate will be performed to assess plasmocyte infiltration on Day 42. If a response is a partial response or better but less than a complete response on Day 42, and the patient remains otherwise eligible, the patient will be re-dosed in a new cycle at the same dose level no sooner than 60 days after Day 1 of the first cycle. In absence of dose limiting toxicities, cycles will continue using the above-described algorithm until the patient has received a cumulative dose of 4 μCi/kg of lintuzumab-Ac225. [0285] Example 4: Syngeneic mouse model for 5T4 targeting agents [0286] A syngeneic mouse model may be used to explore targeting 5T4 in a model where the antibody can also react with 5T4 expressed on normal tissues. Such a model provides the opportunity to observe any toxicities that may arise through targeting this protein with a radioisotope warhead. [0287] Woods (Woods, A. M. et al. (2002) Biochem. J.366, 353–365) reported discovery of an antibody (9A7) that is reactive to mouse 5T4 and was used to screen mouse tumor lines for 5T4 expression (see Table 4; taken from Woods, 2002). Of the cell lines reported to be positive for 5T4 expression, the EMT6 mammary adenocarcinoma cell line has high levels of 5T4 expression, is readily available for purchase from commercial sources to perform experiments. Moreover, this cell line has been reported to be sensitive to radiation. Certain mouse 5T4-reactive antibodies are available, including B3F1 (Southgate, T. D. et al. (2010) PLoS One 5, e9982). This antibody exhibits strong binding to 5T4 in ELISA, FACS, and Western blot assays and is suitable as a targeting agent in preclinical proof of concept studies. Therefore, the B3F1 anti-mouse 5T4 antibody will be utilized for radiolabeling to target the 5T4-expressing tumor cell line EMT6. [0288] Experimental plan: A exemplary experimental plan includes conjugation of the 5T4 antibody B3F1 with the chelator DOTA, following by radiolabeling with 111In or 225Ac. Specific
activity, efficiency of labeling, and stability of the radiolabeled antibody can be determined as set forth in Examples 1 and 2. TABLE 4
[0289] An in vitro cell killing assay may be performed with the 225Ac radiolabeled B3F1 antibody. EMT6 cells may be used as a positive control for cells that express 5T4 and will be exposed to a dilution series of 225Ac-labeled DOTA-B3F1 and unlabeled DOTA-B3F1 for 1 hour. Cell viability can be measured using an XTT assay as described hereinabove. If desired, a cell line that does not express 5T4 such as LL/2 cells (see Table 4, Source – Woods, 2002) can be used as a negative control. [0290] Table 4 shows a Fluorescent Activated Cell Sorting (FACS) analysis of the 9A7 antibody against a panel of murine cell lines, wherein 105 cells of each line were stained with 9A7. The last column indicates the relative reactivity of 9A7 against the panel of cell lines, wherein the mammary cell line EMT6 is highly reactive and the lung carcinoma cell line LL/2 is non-reactive. [0291] Biodistribution experiments: An 111In labeled B3F1 antibody can be used in a first round of biodistribution experiments performed with tumor-free BALB/c mice to evaluate any binding of the antibody to normal tissues and to calculate absorbed dose of radiation to organs. A second round of biodistribution experiments can be performed using BALB/c mice bearing EMT6
tumors to evaluate specific targeting of antibody to the 5T4-expressing tumor and to calculate absorbed dose of radiation to the tumor and to other organs.
[0292] Following biodistribution experiments, tumor-bearing mice can be treated with escalating single doses of 225AC-DOTA-B3F1 to establish the maximum tolerated dose (MTD) of the antibody. The range of doses may be from 50nCi to 400 nCi. Tolerability of the antibody can be determined through measurements of body weight, behavior, and blood chemistry/counts.
[0293] Example 5: Xenograft mouse model for 5T4 targeting agent
[0294] Xenograft mouse models may be utilized to determine if a therapeutic targeting agent has an effect on human derived cancerous cells. However, unless the targeting agent cross- reacts with the mouse target, it primarily only provides information about the cell-killing ability of the agent on the xenograft cells and may not provide information regarding on-target but off- tumor effects.
[0295] Numerous anti-human 5T4 therapies have been developed for 5T4-expressing cancers, some of which are summarized in Table 1. The original description of an anti-5T4 antibody sequence was provided by Hole & Stem (Hole, 1988). An antibody for use as an 5T4 targeting agent according to the presently disclosed invention, such as in preclinical studies, may be produced using the sequence provided by Hole & Stem. Alternatively, other 5T4 antibodies that may be used include the following antibodies or the antibody portions of the following: Medimmune/AstraZeneca (MED10641), Aptevo Therapeutics/ Alligator Bioscience (ALG.APV- 527), Biotecnol/Chiome Bioscience (Tb535), Guangdong Zhongsheng Pharmaceuticals (H6- DM5), and Zova Biotherapeutics (ZV0508). Additional antibodies that are bispecific or are available as antibody drug conjugates are listed in Table 1 and provide additional 5T4 targeting agents, i.e., the 5T4 specific binding portions.
[0296] The Medimmune/Astrazeneca antibody includes an engineered cysteine, which can be used for site-specific conjugation of DOTA and subsequent chelation with a radioisotope, such as described in U.S. Provisional Patent Application Nos. 62/945,383 filed December 9, 2019 and 63/119,093 filed November 30, 2020 each titled “Compositions and methods for preparation of site-specific radioconjugates,” incorporated by reference herein.
[0297] Tumor dose
[0298] Biodistribution studies may be performed in mice with 4T1 tumors to establish the normal tissue distribution and dosimetry profile of the DR5-targeting ARC and to confirm the
selective uptake of the radiolabeled MD5-1 antibody to the tumor. 111In will again be used as a surrogate for 225Ac due to the similar radiochemical properties of the two isotopes, and the increased sensitivity and reliability of detection of 111In-radiolabeled agents in vivo due to the gamma-emission from this isotope that does not occur with 225Ac. Five groups of 4 female mice (ages 6-8 weeks) each will be injected with 111In-labeled MD5-1 and one group of mice will be euthanized at each of the following time points: 4, 24, 48, 96, and 168 hours. Organs (liver, lung, kidney, spleen, brain, stomach, muscle, and tumor) may then be harvested and gamma counts measured. These measurements will be used for dosimetry calculations in which the absorbed dose of radiation to each organ is determined, including the dose delivered to the tumor. [0299] Example 7: Determine MTD and single agent activity of 225Ac-MD5-1 [0300] Six (6) groups with 6 mice per group, with established subcutaneous 4T1 tumors (~150-200 mm3) will be injected with unlabeled MD5-1 (500 ng) or a dose escalation of 225Ac- MD5-1 (50, 100, 200, 400, 500 nanoCurie (nCi), 500 ng total antibody) to identify the maximum tolerated dose (MTD), which is defined as the highest administered activity that allows survival of all treated mice without resulting in >20% weight loss. Bodyweights and tumor measurements may be taken twice weekly for the 6-week duration of the study, beginning at animal arrival to the Invicro facility. Serum chemistry (Alanine Aminotransferase, Alkaline Phosphatase, Total bilirubin, Blood Urea Nitrogen, Calcium, Phosphorus, Total Protein, Albumin, Globulin, Albumin/Globulin Ratio, Amylase, Glucose, Total Cholesterol, Lipase) and complete blood counts (CBC) will be evaluated in animals on-study at baseline, week 3, and at the terminal time point. Humane euthanasia criteria include a decrease in body weight of >20%, or an increase in body weight due to ascites of >10%. Any signs of pain or distress may also be considered. [0301] Animal health measurements and observations can be used to determine the MTD. Observations on tumor volume and survival may be recorded and considered with the toxicity/tolerability profile, to determine the MTD of 225Ac-MD5-1. During this experimental stage, preliminary anti-tumor efficacy can be determined by tumor measurements, and survival used as a proxy for lung metastases, as has been previously reported (Demaria, S. et al. (2005) Clin. Cancer Res.11, 728–34). [0302] Example 8 Combination of HER2 targeting ARC and CD47 blocking antibody in human solid tumor cancer model
[0303] These studies examined the effects of combining a HER2 specific targeting ARC and a CD47 blocking antibody on human HER2-expressing ovarian cancer cell line SK-OV3.
[0304] The anti-HER2 antibody Trastuzumab was conjugated with p-SCN-DOTA and radiolabeled with 225 Ac or 177Lu. The biological activity of both radioconjugates was evaluated using human recombinant HER2 and receptor positive tumor cell lines. The cytotoxic effect of radioconjugates and the ability to upregulate calreticulin (CRT) was evaluated using XTT assay and flow cytometry, respectively, on the SK-OV3 cells. To evaluate the effect of anti-HER2 ARC and CD47 antibody combination in vitro, a flow cytometry macrophage phagocytosis assay was developed.
[0305] Results. The Trastuzumab ARCs have similar binding properties to native antibody and demonstrated specific cytotoxicity. Importantly, ARC -mediated CRT upregulation in HER2 expressing cells was demonstrated. Further, the combination of HER2 targeting ARC and CD47 blocking antibody enhanced in vitro macrophage-mediated tumor cell phagocytosis at a radiation dose below the maximum tested compared to the effect of each agent alone on phagocytosis.
[0306] These findings suggest that ARC mediated upregulation of CRT potentiates the pro-phagocytic signal and anti-CD47 mode of action, thereby enhancing antitumor activity.
[0307] Tumor xenograft studies examining the effect of ARC treatment in combination with CD47 blockade on tumor growth were also performed.
[0308] FIG. l is a graph showing the comparative effects on tumor growth of vehicle only (control), magrolimab alone (10 mg/kg), 225Ac-trastuzumab alone (0.025 μCi/animal), and the combination of magrolimab (10 mg/kg) and 225Ac-trastuzumab (0.025 μCi/animal), in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line. Each cohort consisted of eight animals.
[0309] FIG. 2 is a graph showing the comparative effects on tumor growth of vehicle only (control), magrolimab alone (10 mg/kg), 177Lu-trastuzumab alone (25 μCi/animal), and the combination of magrolimab (10 mg/kg) and 177Lu-trastuzumab (25 μCi/animal), in an NGS mouse xenograft model using the SK-OV3 human ovarian cancer cell line. Each cohort consisted of eight animals.
[0310] Example 9 Combination of CD33 targeting ARC and CD47 blocking antibody in AML models
[0311] These studies examined the effects of combining the anti-CD33 ARC armed with 225Ac or Lutetium-177 (177Lu) and a CD47 blocking antibody, using in vitro human AML model cell lines U937 and HL-60. [0312] The anti-CD33 antibody Lintuzumab was conjugated with p-SCN-DOTA and radiolabeled with 225Ac or 177Lu. The biological activity of both radioconjugates was examined using human recombinant CD33 and receptor positive cell lines U937 and HL-60. The cytotoxic effect of the radioconjugates and the ability to upregulate calreticulin (CRT) were evaluated using XTT assay and flow cytometry, respectively, in the CD33 expressing cell lines. To assess the therapeutic combination of anti-CD33 ARC and CD47 antibody in vitro, a flow cytometry macrophage phagocytosis assay was used. [0313] Results. The anti-CD33 ARCs have similar binding properties to native antibody and demonstrate specific cell cytotoxicity. ARC-mediated upregulation of cell surface CRT in both of the CD33 expressing AML cells was demonstrated. Further, the in vitro combination of CD33 targeting ARC and CD47 blocking antibody enhanced macrophage-mediated phagocytosis for both of the AML cell lines at a radiation dose less than the maximum tested, compared to the effect of each agent alone on phagocytosis. [0314] FIGS. 4A and 4B show that 225Ac-labeled lintuzumab induces an increase in cell surface calreticulin in human leukemia cell lines at different time points versus control untreated cells. Cell surface calreticulin (CRT) levels of AML cells (MV-4-11 and HL-60 in FIG.4A and MV-4-11 and U937 in FIG 4B) treated with 100 nCi/mL or 200 nCi/mL of 225Ac-labeled lintuzumab and of untreated control cells were detected by flow cytometry at 72 hours (FIG.4A) or at 96 hours (FIG.4B). Statistical analysis was performed using Two-Way ANOVA (*p < 0.05). [0315] FIGS. 5A, 5B, and 5C show that combination treatment with 225Ac-labeled lintuzumab and an anti-CD47 antibody, B6.H12 (BioXCell, Lebanon, NH, USA) enhances phagocytosis of three human leukemia cell lines. Target cells (MV-4-11 in FIG.5A, U937 in FIG. 5B, and HL-60 in FIG. 5C) were treated with 225Ac-labeled lintuzumab for 96 hours. The cells were labeled with DiD and cocultured for 2 hours in the presence of the anti-CD47 mAb (1 µg/ml) with human macrophages labeled with DiO. The percentage of phagocytosis was measured by flow cytometry (macrophages DiO+/DiD+). Statistical analysis was performed using One-Way ANOVA (*p < 0.05, **p< 0.01, ***p<0.001 and ****p < 0.0001). In each of FIGS.5A-5C, bar 1 shows the results for non-specific IgG control, bar 2 show the results for the anti-CD47 mAb
only, bar 3 shows the results for 100 nCi 225Ac-labeled lintuzumab only, and bar 4 shows the results for the combination of the anti-CD47 mAb and 100 nCi 225Ac-labeled lintuzumab. [0316] These findings support a novel synergistic mechanism in which the CD33 ARC targeted radiation induces upregulation of CRT, thereby potentiating a pro-phagocytic innate immune response in combination with anti-CD47 blocking antibody. [0317] Example 10 Combination effect of HER3 targeting ARC and CD47 blocking antibody on phagocytosis of human BxPC3 pancreatic cells [0318] FIG. 3 is a graph showing the comparative effects on phagocytosis by human macrophages of BxPC3 human pancreatic cancer cell line (adenocarcinoma) cells of: a non- radiolabeled anti-human HER3 IgG monoclonal antibody AT-02 alone (“HER3 mAb”), an anti- human CD47 antibody alone (10 µg/mL; Clone B6.H12; BioXcell catalog no. BE0019-1; “CD47 mAb”), 225Ac-labeled AT-02 anti-HER3 mAb alone (100 nCi/mL; “225Ac-HER3 mAb”), and the combination of the anti-CD47 mAb (10 µg/mL) and the 225Ac-labeled AT-02 anti-HER3 mAb (100 nCi/mL). As shown in the figure, the combination prominently enhanced phagocytosis of BxPC3 cells versus any of the individual agents. [0319] While various specific aspects and embodiments have been illustrated and described herein, it will be appreciated that various changes can be made without departing from the spirit and scope of the invention(s). Moreover, features described in connection with one aspect or embodiment of the invention may be used in conjunction with other aspects and embodiments of the invention, even if not explicitly exemplified in combination within.
Claims
1. A method for treating a cancer or precancerous proliferative disorder in a mammalian subject, comprising: administering to a mammalian subject having the cancer or precancerous proliferative disorder an effective amount of one or more therapeutically radiolabeled cancer targeting agents; and administering to the mammalian subject an effective amount of one or more CD47 blockades, wherein the one or more CD47 blockades comprise one or more of an anti-CD47 antibody, an anti-SIRPa antibody, a SIRPa Fc fusion protein, a CD47 antisense phosphorodiamidate morpholino oligomer (PMO), and 1-bromoacetyl- 3,3 dinitroazetidine or a pharmaceutically acceptable salt thereof.
2. The method of claim 1, wherein at least one of the one or more radiolabeled cancer targeting agents is labeled with an alpha particle emitting radionuclide.
3. The method of claim 1, wherein at least one of the one or more radiolabeled cancer targeting agents is labeled with a beta particle emitting radionuclide.
4. The method of claim 1, wherein the one or more radiolabeled cancer targeting agents comprises one or more of a monoclonal antibody against CD33 or an antigen-binding fragment thereof, a monoclonal antibody against DR5 or an antigen-binding fragment thereof, a monoclonal antibody against 5T4 or an antigen-binding fragment thereof, a monoclonal antibody against HER2 or an antigen-binding fragment thereof, or a monoclonal antibody against HER.3 or an antigen-binding fragment thereof, a monoclonal antibody against TROP2 or an antigen-binding fragment thereof, and a monoclonal antibody against MUC1 or an antigen-binding fragment thereof.
5. The method of claim 4, wherein the one or more radiolabeled cancer targeting agents comprise a composition of 225 Ac-labeled antibody and non-radiolab el ed antibody, the composition comprising a
radiation dose of 0.1-2.0 μCi/kg body weight of the subject and a protein dose of 0.1-5.0 mg/kg body weight of the subject, and/or the CD47 blockade is administered at a total dose of 0.05-5.0 mg/kg body weight of the subject.
6. The method of claim 4, wherein the monoclonal antibody is an anti-CD33 antibody and the cancer or precancerous proliferative disorder is a solid tumor, osteosarcoma, multiple myeloma, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome, or myeloproliferative neoplasm.
7. The method of claim 4, wherein monoclonal antibody is an anti-5T4 antibody and the cancer or precancerous proliferative disorder is colorectal cancer, gastric cancer, ovarian cancer, non-small cell lung carcinoma, head and neck squamous cell cancer, pancreatic cancer, renal cancer, or any combination thereof.
8. The method of claim 4, wherein the monoclonal antibody is an anti-DR5 antibody and the cancer or precancerous proliferative disorder is breast cancer, triple negative breast cancer, ovarian cancer, or prostate cancer.
9. The method of claim 4, wherein the monoclonal antibody is an anti-HER3 antibody and the cancer or precancerous proliferative disorder is pancreatic cancer, lung cancer, head and neck cancer, breast cancer, gastric cancer, colorectal cancer, esophageal cancer, or ovarian cancer.
10. The method of claim 4, wherein the monoclonal antibody is an anti-HER2 antibody and the cancer or precancerous proliferative disorder comprises HER2-expressing cancer cells.
11. The method of claim 10, wherein the cancer or precancerous proliferative disorder is a breast cancer or an ovarian cancer.
12. The method of claim 4, wherein the monoclonal antibody is an anti-TROP2 antibody and the cancer or precancerous proliferative disorder comprises TROP2-expressing cancer cells.
13. The method of claim 12, wherein the cancer or precancerous proliferative disorder is pancreatic cancer, lung cancer, head and neck cancer, breast cancer, gastric cancer, colorectal cancer, esophageal cancer, or ovarian cancer.
14. The method of claim 1, wherein the one or more radiolabeled cancer targeting agents comprises a radiolabeled PSMA-targeting agent.
15. The method of claim 14, wherein the cancer or precancerous proliferative disorder is a prostate cancer.
16. The method of any one of claims 1-5, wherein the cancer or precancerous proliferative disorder is a solid cancer or a hematological malignancy.
17. The method of any one of the preceding claims, wherein the one or more CD47 blockades are separate and discrete molecule from the one or more therapeutically radiolabeled cancer targeting agents.
18. Use of a therapeutically radiolabeled cancer targeting agent in conjunction with a CD47 blockade, for the treatment of a solid tumor cancer or a hematological malignancy in a mammalian subject.
19. The use of claim 18, wherein the therapeutically radiolabeled cancer targeting agent targets a cancer-associated antigen selected from CD33, DR5, 5T4, HER2 (ERBB2; Her2/neu), HER3, TROP2, mesothelin, TSHR, CD19, CD123, CD22, CD30, CD45, CD171, CD138, CS-1, CLL- 1, GD2, GD3, B-cell maturation antigen (BCMA), Tn Ag, prostate specific membrane antigen (PSMA), ROR1, FLT3, fibroblast activation protein (FAP), a Somatostatin receptor, Somatostatin Receptor 2 (SSTR2), Somatostatin Receptor 5
(SSTR5), gastrin-releasing peptide receptor (GRPR), NKG2D ligands (such as MICA, MICB, RAET1E/ULBP4, RAET1G/ULBP5, RAET 1 H/ULBP2, RAET1/ULBP1, RAET1L/ULBP6, and RAET1N/ULBP3), LYPD3 (C4.4A), Nectin-4, urokinase plasminogen activator receptor (uPAR), Folate receptor alpha (FOLR1), CUB-domain containing protein 1 (CDCP1), Glypican-3 (GPC3), tenascin, tenascin-C, CEACAM5, Cadherin-3, CCK2R, Neurotensin receptor type 1 (NTSR1), human Kallikrein 2 (hK2), norepinephrine transporter, Integrin alpha-V-beta-6, CD37, CD66, CXCR4, Fibronectin extradomain B (EBD), LAT-1, Carbonic anhydrase IX (CAIX), B7-H3 (a/k/a CD276), Disialoganglioside GD2 Antigen (GD2), calreticulin, phosphatidylserine, GRP78 (BiP), TAG72, CD38, CD44v6, CEA, EPCAM, B7H3, KIT, IL-13Ra2, interleukin- 11 receptor a (IL-1 IRa), PSCA, PRSS21, VEGFR2, LewisY, CD24, platelet-derived growth factor receptor-beta (PDGFR-beta), S SEA-4, CD20, Folate receptor alpha (FRa), MUC1, epidermal growth factor receptor (EGFR), EGFRvIII, NCAM, Prostase, PAP, ELF2M, Ephrin B2, IGF-I receptor, CAIX, LMP2, gplOO, bcr-abl, tyrosinase, EphA2, Fucosyl GM1, sLe, GM3, DR5, 5T4, TGS5, HMWMAA, o-acetyl-GD2, Folate receptor beta, TEM1/CD248, TEM7R, CLDN6, GPRC5D, CXORF61, CD97, CD 179a, ALK, Polysialic acid, PLAC1, GloboH, NY-BR-1, UPK2, HAVCR1, ADRB3, PANX3, GPR20, LY6K, OR51E2, TARP, WT1, NY-ESO-1, L AGE-1 a, MAGE-A1, legumain, HPVE6,E7, MAGE Al, MAGE A3, MAGEA3/A6, ETV6-AML, sperm protein 17, XAGE1, Tie 2, MAD-CT- 1, MAD-CT-2, Fos-related antigen 1, prostein, survivin and telomerase, PCTA-l/Galectin 8, KRAS, MelanA/MARTl, Ras mutant, hTERT, sarcoma translocation breakpoints, ML- IAP, ERG (TMPRSS2 ETS fusion gene), NA17, PAX3, Androgen receptor, Cyclin B 1, MYCN, RhoC, TRP-2, CYPIB 1, BORIS, SART3, PAX5, OY- TES 1, LCK, AKAP-4, SSX2, RAGE-1, human telomerase reverse transcriptase, RU1, RU2, intestinal carboxyl esterase, mut hsp70-2, CD79a, CD79b, CD72, LAIRl, FCAR, LILRA2, CD300LF, CLEC12A, BST2, EMR2, LY75, GPC3, FCRL5, GPA7, and IGLL1.
20. The use of claim 18 or 19, wherein the therapeutically radiolabeled cancer targeting agent is labeled with an alpha particle emitting radionuclide.
21. The use of claim 18 or 19, wherein the therapeutically radiolabeled cancer targeting agent is labeled with a beta particle emitting radionuclide.
22. The use of any one of claims 18-21, wherein the therapeutically radiolabeled cancer targeting agent and the CD47 blockade are separate and discrete molecules.
23. The use of any one of claims 18-22, wherein the mammalian subject is human.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163226699P | 2021-07-28 | 2021-07-28 | |
US202163250725P | 2021-09-30 | 2021-09-30 | |
PCT/US2021/056259 WO2022087416A1 (en) | 2020-10-22 | 2021-10-22 | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer |
US17/702,648 US20220211886A1 (en) | 2020-10-22 | 2022-03-23 | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer |
PCT/US2022/025655 WO2023009189A1 (en) | 2021-07-28 | 2022-04-20 | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4376856A1 true EP4376856A1 (en) | 2024-06-05 |
Family
ID=85087177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22850033.6A Pending EP4376856A1 (en) | 2021-07-28 | 2022-04-20 | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4376856A1 (en) |
JP (1) | JP2024528081A (en) |
CA (1) | CA3227223A1 (en) |
WO (1) | WO2023009189A1 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014149477A1 (en) * | 2013-03-15 | 2014-09-25 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for achieving therapeutically effective doses of anti-cd47 agents |
US20210179710A1 (en) * | 2018-01-08 | 2021-06-17 | Actinium Pharmaceuticals, Inc. | Combination immunotherapy and chemotherapy for the treatment of a hematological malignancy |
-
2022
- 2022-04-20 JP JP2024505372A patent/JP2024528081A/en active Pending
- 2022-04-20 CA CA3227223A patent/CA3227223A1/en active Pending
- 2022-04-20 EP EP22850033.6A patent/EP4376856A1/en active Pending
- 2022-04-20 WO PCT/US2022/025655 patent/WO2023009189A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2024528081A (en) | 2024-07-26 |
CA3227223A1 (en) | 2023-02-02 |
WO2023009189A1 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220211886A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
US20240197931A1 (en) | Radioimmunotherapy directed to ccr8 for depletion of tumor infiltrating regulatory t cells | |
US20220288244A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
US20220008570A1 (en) | Combination of radioimmunotherapy and immune checkpoint therapy in the treatment of cancer | |
CA3087346A1 (en) | Combination immunotherapy and chemotherapy for the treatment of a hematological malignancy | |
US20240216554A1 (en) | Radioimmunoconjugates directed to nkg2d ligands for the treatment of cancer | |
US20230092668A1 (en) | Radioconjugates targeting cd33 in the treatment of cancers | |
US20220143228A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
WO2023028613A2 (en) | Radioimmunoconjugates targeting phosphatidylserine for use in the treatment of cancer | |
US20220251239A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
US20230302167A1 (en) | Radioconjugates targeting cd33 in the treatment of cancers | |
EP4376856A1 (en) | Combination radioimmunotherapy and cd47 blockade in the treatment of cancer | |
WO2023015322A1 (en) | Radioconjugates targeting cd33 in the treatment of cancers | |
US20240226345A1 (en) | Radioimmunoconjugates targeting calreticulin for use in the treatment of cancer | |
US20230248855A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
WO2022056354A1 (en) | Trophoblast glycoprotein radioimmunotherapy for the treatment of solid cancers | |
WO2022109404A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
WO2024138019A1 (en) | Her3 radioimmunotherapy for the treatment of solid cancers | |
WO2023056302A1 (en) | Radioconjugates targeting grp78 for use in the treatment of cancer | |
US20200283539A1 (en) | Combination therapy for treatment of a hematological disease |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240131 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |