EP4225072A1 - Aerosol-generating article with low resistance to draw and improved flavour delivery - Google Patents
Aerosol-generating article with low resistance to draw and improved flavour deliveryInfo
- Publication number
- EP4225072A1 EP4225072A1 EP21789715.6A EP21789715A EP4225072A1 EP 4225072 A1 EP4225072 A1 EP 4225072A1 EP 21789715 A EP21789715 A EP 21789715A EP 4225072 A1 EP4225072 A1 EP 4225072A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- aerosol
- percent
- generating
- millimetres
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000796 flavoring agent Substances 0.000 title description 24
- 235000019634 flavors Nutrition 0.000 title description 23
- 239000000758 substrate Substances 0.000 claims abstract description 250
- 239000000443 aerosol Substances 0.000 claims abstract description 146
- 238000010438 heat treatment Methods 0.000 claims abstract description 65
- 235000002637 Nicotiana tabacum Nutrition 0.000 claims description 151
- 238000011144 upstream manufacturing Methods 0.000 claims description 150
- 241000208125 Nicotiana Species 0.000 claims description 132
- 238000009423 ventilation Methods 0.000 claims description 110
- 239000000945 filler Substances 0.000 claims description 48
- 230000002093 peripheral effect Effects 0.000 claims description 21
- 239000000203 mixture Substances 0.000 description 166
- 239000000499 gel Substances 0.000 description 153
- 239000000463 material Substances 0.000 description 152
- 241000196324 Embryophyta Species 0.000 description 114
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 84
- 239000002245 particle Substances 0.000 description 69
- 239000003349 gelling agent Substances 0.000 description 47
- 150000001875 compounds Chemical class 0.000 description 41
- 239000000123 paper Substances 0.000 description 41
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 38
- 238000004132 cross linking Methods 0.000 description 38
- -1 for example Chemical class 0.000 description 37
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 35
- 229960002715 nicotine Drugs 0.000 description 35
- 229930013930 alkaloid Natural products 0.000 description 34
- 235000011187 glycerol Nutrition 0.000 description 31
- 229960005150 glycerol Drugs 0.000 description 31
- 229930003827 cannabinoid Natural products 0.000 description 30
- 239000003557 cannabinoid Substances 0.000 description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 25
- 244000061176 Nicotiana tabacum Species 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 19
- 238000009472 formulation Methods 0.000 description 17
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 14
- 229920002301 cellulose acetate Polymers 0.000 description 14
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 14
- QHMBSVQNZZTUGM-UHFFFAOYSA-N Trans-Cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- QHMBSVQNZZTUGM-ZWKOTPCHSA-N cannabidiol Chemical compound OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 QHMBSVQNZZTUGM-ZWKOTPCHSA-N 0.000 description 12
- ZTGXAWYVTLUPDT-UHFFFAOYSA-N cannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1C1C(C(C)=C)CC=C(C)C1 ZTGXAWYVTLUPDT-UHFFFAOYSA-N 0.000 description 12
- 229950011318 cannabidiol Drugs 0.000 description 12
- PCXRACLQFPRCBB-ZWKOTPCHSA-N dihydrocannabidiol Natural products OC1=CC(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)C)CCC(C)=C1 PCXRACLQFPRCBB-ZWKOTPCHSA-N 0.000 description 12
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 11
- 235000010980 cellulose Nutrition 0.000 description 11
- 229920002678 cellulose Polymers 0.000 description 11
- 239000001913 cellulose Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 238000010899 nucleation Methods 0.000 description 11
- 230000006911 nucleation Effects 0.000 description 11
- JOOXCMJARBKPKM-UHFFFAOYSA-N 4-oxopentanoic acid Chemical compound CC(=O)CCC(O)=O JOOXCMJARBKPKM-UHFFFAOYSA-N 0.000 description 10
- 229920002148 Gellan gum Polymers 0.000 description 10
- 235000010418 carrageenan Nutrition 0.000 description 10
- 229920001525 carrageenan Polymers 0.000 description 10
- 239000000679 carrageenan Substances 0.000 description 10
- 229940113118 carrageenan Drugs 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 125000002252 acyl group Chemical group 0.000 description 9
- 229920001285 xanthan gum Polymers 0.000 description 9
- 235000010493 xanthan gum Nutrition 0.000 description 9
- 239000000230 xanthan gum Substances 0.000 description 9
- 229940082509 xanthan gum Drugs 0.000 description 9
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 8
- 229920001817 Agar Polymers 0.000 description 8
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 8
- 229920002907 Guar gum Polymers 0.000 description 8
- CYQFCXCEBYINGO-UHFFFAOYSA-N THC Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3C21 CYQFCXCEBYINGO-UHFFFAOYSA-N 0.000 description 8
- 239000008272 agar Substances 0.000 description 8
- 235000010419 agar Nutrition 0.000 description 8
- 235000010443 alginic acid Nutrition 0.000 description 8
- 229920000615 alginic acid Polymers 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000000919 ceramic Substances 0.000 description 8
- 235000019504 cigarettes Nutrition 0.000 description 8
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 8
- 229960004242 dronabinol Drugs 0.000 description 8
- 235000010417 guar gum Nutrition 0.000 description 8
- 239000000665 guar gum Substances 0.000 description 8
- 229960002154 guar gum Drugs 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229920001222 biopolymer Polymers 0.000 description 7
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 7
- 239000001768 carboxy methyl cellulose Substances 0.000 description 7
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 7
- 229940105329 carboxymethylcellulose Drugs 0.000 description 7
- 239000004310 lactic acid Substances 0.000 description 7
- 235000014655 lactic acid Nutrition 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 235000010981 methylcellulose Nutrition 0.000 description 7
- 239000001923 methylcellulose Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000000391 smoking effect Effects 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 150000005846 sugar alcohols Polymers 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 229920002472 Starch Polymers 0.000 description 6
- 235000010489 acacia gum Nutrition 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- ZDJFDFNNEAPGOP-UHFFFAOYSA-N dimethyl tetradecanedioate Chemical compound COC(=O)CCCCCCCCCCCCC(=O)OC ZDJFDFNNEAPGOP-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000005672 electromagnetic field Effects 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 229920000609 methyl cellulose Polymers 0.000 description 6
- 229920001277 pectin Polymers 0.000 description 6
- 239000001814 pectin Substances 0.000 description 6
- 235000010987 pectin Nutrition 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- OMDQUFIYNPYJFM-XKDAHURESA-N (2r,3r,4s,5r,6s)-2-(hydroxymethyl)-6-[[(2r,3s,4r,5s,6r)-4,5,6-trihydroxy-3-[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]methoxy]oxane-3,4,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)[C@H](O)[C@H](O)[C@H](O)O1 OMDQUFIYNPYJFM-XKDAHURESA-N 0.000 description 5
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 5
- 244000215068 Acacia senegal Species 0.000 description 5
- 229920000936 Agarose Polymers 0.000 description 5
- 241000218236 Cannabis Species 0.000 description 5
- 229920000926 Galactomannan Polymers 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- 229920000084 Gum arabic Polymers 0.000 description 5
- 229920002752 Konjac Polymers 0.000 description 5
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 5
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 5
- 239000000205 acacia gum Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229940072056 alginate Drugs 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 239000000252 konjac Substances 0.000 description 5
- 235000019823 konjac gum Nutrition 0.000 description 5
- 229940040102 levulinic acid Drugs 0.000 description 5
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 5
- 239000008108 microcrystalline cellulose Substances 0.000 description 5
- 229940016286 microcrystalline cellulose Drugs 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 235000013772 propylene glycol Nutrition 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000008107 starch Substances 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- AAXZFUQLLRMVOG-UHFFFAOYSA-N 2-methyl-2-(4-methylpent-3-enyl)-7-propylchromen-5-ol Chemical compound C1=CC(C)(CCC=C(C)C)OC2=CC(CCC)=CC(O)=C21 AAXZFUQLLRMVOG-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 235000019437 butane-1,3-diol Nutrition 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 229920003086 cellulose ether Polymers 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000002788 crimping Methods 0.000 description 4
- 230000005294 ferromagnetic effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 4
- 240000005475 Abelmoschus moschatus Species 0.000 description 3
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 3
- 235000006886 Zingiber officinale Nutrition 0.000 description 3
- 244000273928 Zingiber officinale Species 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- IZMOTZDBVPMOFE-UHFFFAOYSA-N dimethyl dodecanedioate Chemical compound COC(=O)CCCCCCCCCCC(=O)OC IZMOTZDBVPMOFE-UHFFFAOYSA-N 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 235000008397 ginger Nutrition 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004537 pulping Methods 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 235000019615 sensations Nutrition 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 3
- RBEAVAMWZAJWOI-MTOHEIAKSA-N (5as,6s,9r,9ar)-6-methyl-3-pentyl-9-prop-1-en-2-yl-7,8,9,9a-tetrahydro-5ah-dibenzofuran-1,6-diol Chemical compound C1=2C(O)=CC(CCCCC)=CC=2O[C@H]2[C@@H]1[C@H](C(C)=C)CC[C@]2(C)O RBEAVAMWZAJWOI-MTOHEIAKSA-N 0.000 description 2
- ZROLHBHDLIHEMS-HUUCEWRRSA-N (6ar,10ar)-6,6,9-trimethyl-3-propyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-ol Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCC)=CC(O)=C3[C@@H]21 ZROLHBHDLIHEMS-HUUCEWRRSA-N 0.000 description 2
- YJYIDZLGVYOPGU-XNTDXEJSSA-N 2-[(2e)-3,7-dimethylocta-2,6-dienyl]-5-propylbenzene-1,3-diol Chemical compound CCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 YJYIDZLGVYOPGU-XNTDXEJSSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- KASVLYINZPAMNS-UHFFFAOYSA-N Cannabigerol monomethylether Natural products CCCCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(OC)=C1 KASVLYINZPAMNS-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 229920003043 Cellulose fiber Polymers 0.000 description 2
- UCONUSSAWGCZMV-HZPDHXFCSA-N Delta(9)-tetrahydrocannabinolic acid Chemical compound C([C@H]1C(C)(C)O2)CC(C)=C[C@H]1C1=C2C=C(CCCCC)C(C(O)=O)=C1O UCONUSSAWGCZMV-HZPDHXFCSA-N 0.000 description 2
- ZROLHBHDLIHEMS-UHFFFAOYSA-N Delta9 tetrahydrocannabivarin Natural products C1=C(C)CCC2C(C)(C)OC3=CC(CCC)=CC(O)=C3C21 ZROLHBHDLIHEMS-UHFFFAOYSA-N 0.000 description 2
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 235000016639 Syzygium aromaticum Nutrition 0.000 description 2
- 244000223014 Syzygium aromaticum Species 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229920002522 Wood fibre Polymers 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 150000003797 alkaloid derivatives Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 244000213578 camo Species 0.000 description 2
- YJYIDZLGVYOPGU-UHFFFAOYSA-N cannabigeroldivarin Natural products CCCC1=CC(O)=C(CC=C(C)CCC=C(C)C)C(O)=C1 YJYIDZLGVYOPGU-UHFFFAOYSA-N 0.000 description 2
- 229940065144 cannabinoids Drugs 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 235000019506 cigar Nutrition 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000003240 coconut oil Substances 0.000 description 2
- 235000019864 coconut oil Nutrition 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 235000010492 gellan gum Nutrition 0.000 description 2
- 239000000216 gellan gum Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 125000000468 ketone group Chemical group 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 230000005291 magnetic effect Effects 0.000 description 2
- 240000004308 marijuana Species 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Chemical class 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- IXJXRDCCQRZSDV-GCKMJXCFSA-N (6ar,9r,10as)-6,6,9-trimethyl-3-pentyl-6a,7,8,9,10,10a-hexahydro-6h-1,9-epoxybenzo[c]chromene Chemical compound C1C[C@@H](C(O2)(C)C)[C@@H]3C[C@]1(C)OC1=C3C2=CC(CCCCC)=C1 IXJXRDCCQRZSDV-GCKMJXCFSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- SOPPBXUYQGUQHE-JTQLQIEISA-N Anatabine Chemical compound C1C=CCN[C@@H]1C1=CC=CN=C1 SOPPBXUYQGUQHE-JTQLQIEISA-N 0.000 description 1
- SOPPBXUYQGUQHE-UHFFFAOYSA-N Anatabine Natural products C1C=CCNC1C1=CC=CN=C1 SOPPBXUYQGUQHE-UHFFFAOYSA-N 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- UVOLYTDXHDXWJU-UHFFFAOYSA-N Cannabichromene Chemical compound C1=CC(C)(CCC=C(C)C)OC2=CC(CCCCC)=CC(O)=C21 UVOLYTDXHDXWJU-UHFFFAOYSA-N 0.000 description 1
- REOZWEGFPHTFEI-JKSUJKDBSA-N Cannabidivarin Chemical compound OC1=CC(CCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 REOZWEGFPHTFEI-JKSUJKDBSA-N 0.000 description 1
- VBGLYOIFKLUMQG-UHFFFAOYSA-N Cannabinol Chemical compound C1=C(C)C=C2C3=C(O)C=C(CCCCC)C=C3OC(C)(C)C2=C1 VBGLYOIFKLUMQG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 235000008227 Illicium verum Nutrition 0.000 description 1
- 240000007232 Illicium verum Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- IGHTZQUIFGUJTG-QSMXQIJUSA-N O1C2=CC(CCCCC)=CC(O)=C2[C@H]2C(C)(C)[C@@H]3[C@H]2[C@@]1(C)CC3 Chemical compound O1C2=CC(CCCCC)=CC(O)=C2[C@H]2C(C)(C)[C@@H]3[C@H]2[C@@]1(C)CC3 IGHTZQUIFGUJTG-QSMXQIJUSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N Trimethylene glycol Natural products OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000001785 acacia senegal l. willd gum Substances 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- YXTPWUNVHCYOSP-UHFFFAOYSA-N bis($l^{2}-silanylidene)molybdenum Chemical compound [Si]=[Mo]=[Si] YXTPWUNVHCYOSP-UHFFFAOYSA-N 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- WVOLTBSCXRRQFR-DLBZAZTESA-N cannabidiolic acid Chemical compound OC1=C(C(O)=O)C(CCCCC)=CC(O)=C1[C@H]1[C@H](C(C)=C)CCC(C)=C1 WVOLTBSCXRRQFR-DLBZAZTESA-N 0.000 description 1
- QXACEHWTBCFNSA-SFQUDFHCSA-N cannabigerol Chemical compound CCCCCC1=CC(O)=C(C\C=C(/C)CCC=C(C)C)C(O)=C1 QXACEHWTBCFNSA-SFQUDFHCSA-N 0.000 description 1
- SVTKBAIRFMXQQF-UHFFFAOYSA-N cannabivarin Chemical compound C1=C(C)C=C2C3=C(O)C=C(CCC)C=C3OC(C)(C)C2=C1 SVTKBAIRFMXQQF-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 235000002780 gingerol Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920013819 hydroxyethyl ethylcellulose Polymers 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 239000002648 laminated material Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940057917 medium chain triglycerides Drugs 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229960002900 methylcellulose Drugs 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910021343 molybdenum disilicide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000002907 paramagnetic material Substances 0.000 description 1
- 239000011088 parchment paper Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229940057910 shea butter Drugs 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000011122 softwood Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 230000009967 tasteless effect Effects 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000002982 water resistant material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D1/00—Cigars; Cigarettes
- A24D1/20—Cigarettes specially adapted for simulated smoking devices
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24C—MACHINES FOR MAKING CIGARS OR CIGARETTES
- A24C5/00—Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
- A24C5/14—Machines of the continuous-rod type
- A24C5/18—Forming the rod
- A24C5/1885—Forming the rod for cigarettes with an axial air duct
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D1/00—Cigars; Cigarettes
- A24D1/02—Cigars; Cigarettes with special covers
- A24D1/027—Cigars; Cigarettes with special covers with ventilating means, e.g. perforations
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/02—Manufacture of tobacco smoke filters
- A24D3/0275—Manufacture of tobacco smoke filters for filters with special features
- A24D3/0279—Manufacture of tobacco smoke filters for filters with special features with tubes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D3/00—Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
- A24D3/04—Tobacco smoke filters characterised by their shape or structure
- A24D3/043—Tobacco smoke filters characterised by their shape or structure with ventilation means, e.g. air dilution
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
Definitions
- the present invention relates to an aerosol-generating article comprising an aerosolgenerating substrate and adapted to produce an inhalable aerosol upon heating.
- Aerosol-generating articles in which an aerosol-generating substrate, such as a tobacco-containing substrate, is heated rather than combusted, are known in the art.
- an aerosol is generated by the transfer of heat from a heat source to a physically separate aerosol-generating substrate or material, which may be located in contact with, within, around, or downstream of the heat source.
- volatile compounds are released from the aerosol-generating substrate by heat transfer from the heat source and are entrained in air drawn through the aerosol-generating article. As the released compounds cool, they condense to form an aerosol.
- aerosol-generating devices for consuming aerosol-generating articles.
- Such devices include, for example, electrically heated aerosolgenerating devices in which an aerosol is generated by the transfer of heat from one or more electrical heater elements of the aerosol-generating device to the aerosol-generating substrate of a heated aerosol-generating article.
- electrically heated aerosolgenerating devices have been proposed that comprise an internal heater blade which is adapted to be inserted into the aerosol-generating substrate.
- inductively heatable aerosol-generating articles comprising an aerosol-generating substrate and a susceptor arranged within the aerosol-generating substrate have been proposed by WO 2015/176898.
- WO 2020/115151 discloses an aerosol-generating article used in combination with an external heating system comprising one or more heating elements arranged around the periphery of the aerosol-generating article.
- external heating elements may be provided in the form of flexible heating foils on a dielectric substrate, such as polyimide.
- Aerosol-generating articles in which a tobacco-containing substrate is heated rather than combusted present a number of challenges that were not encountered with conventional smoking articles.
- tobacco-containing substrates are typically heated to significantly lower temperatures compared with the temperatures reached by the combustion front in a conventional cigarette. This may have an impact on nicotine release from the tobaccocontaining substrate and nicotine delivery to the consumer.
- the heating temperature is increased in an attempt to boost nicotine delivery, then the aerosol generated typically needs to be cooled to a greater extent and more rapidly before it reaches the consumer.
- a number of aerosol-generating articles have been proposed wherein multiple elements are combined, for example in longitudinal alignment, with an aerosol-generating element containing the aerosolgenerating substrate.
- the aerosol-generating element has been combined with a support element to impart improved structural strength to the article, an aerosol-cooling element adapted to lower the temperature of the aerosol, a low-filtration mouthpiece element, etc.
- the present disclosure relates to an aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising an aerosol-generating element.
- the aerosol-generating element may be in the form of a rod.
- the aerosol-generating element may comprise an aerosolgenerating substrate, the aerosol-generating substrate comprising an aerosol-former.
- the aerosol-generating article may comprise a downstream section at a location downstream of the aerosol-generating element.
- the downstream section may extend from a downstream end of the aerosol-generating element to the mouth end of the aerosol-generating article.
- the downstream section may comprise a hollow tubular element.
- a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 3.0.
- An RTD of the downstream section may be less than 10 mm H2O.
- an aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising: an aerosol-generating element comprising an aerosol-generating substrate, the aerosol-generating substrate comprising an aerosol-former; a downstream section at a location downstream of the aerosol-generating element, the downstream section extending from a downstream end of the aerosol-generating element to the mouth end of the aerosol-generating article.
- the downstream section comprises a hollow tubular element.
- a length to diameter ratio of the aerosol-generating rod is from about 0.5 to about 3.0.
- An RTD of the downstream section is less than 10 mm H2O.
- the aerosol-generating article according to the present invention therefore provides a novel configuration of the section of the aerosol-generating downstream of the rod of aerosolgenerating substrate, which is characterised by having an RTD below 10 mm H2O.
- This particularly low RTD downstream of the aerosol-generating substrate is provided in combination with an aerosol-generating element in the form of a rod that has a length to diameter ratio falling within the range from about 0.5 to about 3.0.
- a downstream section having such a low RTD has the effect that substantially all the RTD of the aerosol-generating article is provided by the aerosol-generating element (for example, by a rod-shaped aerosol-generating element) itself and optionally by elements located upstream of the aerosol-generating element.
- the aerosol-generating element for example, by a rod-shaped aerosol-generating element
- elements located upstream of the aerosol-generating element for example, by a rod-shaped aerosol-generating element
- the inventors have found that when an aerosol-generating article having an aerosol-generating rod with the geometry described above and one such RTD distribution along the length of the article, it is advantageously possible to optimise the delivery of an aerosol to the consumer, especially if the article is used in combination with an external heating system.
- Aerosol delivery may to an extent be impacted by the RTD of the aerosol-generating element itself. This is because the aerosol generated in an upstream portion of the aerosolgenerating element needs first of all to flow through the remainder, downstream portion of the aerosol-generating element.
- controlling the geometry of the aerosol-generating element also enables a more effective control of aerosol delivery, and in general aerosol delivery is made more consistent from aerosol-generating article to aerosol-generating article.
- an aerosol-generating article for generating an inhalable aerosol upon heating.
- the aerosol-generating article comprises an element comprising an aerosol-generating substrate.
- aerosol generating article is used herein to denote an article wherein an aerosol generating substrate is heated to produce and deliver an inhalable aerosol to a consumer.
- aerosol generating substrate denotes a substrate capable of releasing volatile compounds upon heating to generate an aerosol.
- a conventional cigarette is lit when a user applies a flame to one end of the cigarette and draws air through the other end.
- the localised heat provided by the flame and the oxygen in the air drawn through the cigarette causes the end of the cigarette to ignite, and the resulting combustion generates an inhalable smoke.
- an aerosol is generated by heating a flavour generating substrate, such as tobacco.
- Known heated aerosol generating articles include, for example, electrically heated aerosol generating articles and aerosol generating articles in which an aerosol is generated by the transfer of heat from a combustible fuel element or heat source to a physically separate aerosol forming material.
- aerosol generating articles according to the invention find particular application in aerosol generating systems comprising an electrically heated aerosol generating device having an internal heater blade which is adapted to be inserted into the rod of aerosol generating substrate.
- Aerosol generating articles of this type are described in the prior art, for example, in EP 0822670.
- aerosol generating device refers to a device comprising a heater element that interacts with the aerosol generating substrate of the aerosol generating article to generate an aerosol.
- the aerosol-generating element may be in the form of a rod comprising or made of the aerosol-generating substrate.
- rod is used to denote a generally cylindrical element of substantially circular, oval or elliptical cross-section.
- the term “longitudinal” refers to the direction corresponding to the main longitudinal axis of the aerosol-generating article, which extends between the upstream and downstream ends of the aerosol-generating article.
- the terms “upstream” and “downstream” describe the relative positions of elements, or portions of elements, of the aerosol-generating article in relation to the direction in which the aerosol is transported through the aerosol-generating article during use.
- any reference to the “cross-section” of the aerosol-generating article or a component of the aerosol-generating article refers to the transverse cross-section unless stated otherwise.
- length denotes the dimension of a component of the aerosol-generating article in the longitudinal direction.
- length may be used to denote the dimension of the rod or of the elongate tubular elements in the longitudinal direction.
- the aerosol-generating article further comprises a downstream section at a location downstream of the rod of aerosol-generating substrate.
- the downstream section may comprise one or more downstream elements.
- the downstream section may comprise a hollow section between the mouth end of the aerosol-generating article and the aerosol-generating element.
- the hollow section may comprise a hollow tubular element.
- the term “hollow tubular segment” or “hollow tubular element” is used to denote a generally elongate element defining a lumen or airflow passage along a longitudinal axis thereof.
- tubular will be used in the following with reference to an element or segment having a substantially cylindrical cross-section and defining at least one airflow conduit establishing an uninterrupted fluid communication between an upstream end of the tubular element or segment and a downstream end of the tubular element or segment.
- alternative geometries for example, alternative cross-sectional shapes
- a hollow tubular segment or hollow tubular element provides an unrestricted flow channel.
- the hollow tubular segment or hollow tubular element provides a negligible level of resistance to draw (RTD).
- RTD resistance to draw
- the term “negligible level of RTD” is used to describe an RTD of less than 1 mm H2O per 10 millimetres of length of the hollow tubular segment or hollow tubular element, preferably less than 0.4 mm H2O per 10 millimetres of length of the hollow tubular segment or hollow tubular element, more preferably less than 0.1 mm H2O per 10 millimetres of length of the hollow tubular segment or hollow tubular element.
- the flow channel should therefore be free from any components that would obstruct the flow of air in a longitudinal direction.
- the flow channel is substantially empty.
- a “hollow tubular segment” or “hollow tubular element” may also be referred to as a “hollow tube” or a “hollow tube segment”.
- the aerosol-generating article may comprise a ventilation zone at a location along the downstream section.
- the aerosol-generating article may comprise a ventilation zone at a location along the hollow tubular element.
- the aerosol-generating article may further comprise an upstream section at a location upstream of the rod of aerosol-generating substrate.
- the upstream section may comprise one or more upstream elements.
- the upstream section may comprise an upstream element arranged immediately upstream of the aerosol-generating element
- an aerosol-generating article in accordance with the present invention comprises an element comprising an aerosol-generating substrate.
- the aerosol-generating element may be provided in the form of a rod comprising the aerosol-generating substrate.
- the aerosol-generating element may comprise a rod of aerosol-generating substrate circumscribed by a wrapper.
- the element comprising the aerosol-generating substrate may have a length of at least about 5 millimetres.
- the element comprising the aerosol generating substrate has a length of at least about 7 millimetres. More preferably, the element comprising the aerosol generating substrate has a length of at least about 10 millimetres. In particularly preferred embodiments, the element comprising the aerosol generating substrate has a length of at least about 12 millimetres.
- the element comprising the aerosol generating substrate may have a length of up to about 80 millimetres.
- the element comprising the aerosol generating substrate has a length of less than or equal to about 65 millimetres. More preferably, the element comprising the aerosol generating substrate has a length of less than or equal to about 60 millimetres. Even more preferably, the element comprising the aerosol generating substrate has a length of less than or equal to about 55 millimetres.
- the element comprising the aerosol generating substrate has a length of less than or equal to about 50 millimetres, more preferably less than or equal to about 35 millimetres, even more preferably less than or equal to about 25 millimetres. In particularly preferred embodiments, the element comprising the aerosol generating substrate has a length of less than or equal to about 20 millimetres or even less than or equal to about 15 millimetres.
- the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 60 millimetres, preferably from about 6 millimetres to about 60 millimetres, more preferably from about 7 millimetres to about 60 millimetres, even more preferably from about 10 millimetres to about 60 millimetres, most preferably from about 12 millimetres to about 60 millimetres.
- the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 55 millimetres, preferably from about 6 millimetres to about 55 millimetres, more preferably from about 7 millimetres to about 55 millimetres, even more preferably from about 10 millimetres to about 55 millimetres, most preferably from about 12 millimetres to about 55 millimetres.
- the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 50 millimetres, preferably from about 6 millimetres to about 50 millimetres, more preferably from about 7 millimetres to about 50 millimetres, even more preferably from about 10 millimetres to about 50 millimetres, most preferably from about 12 millimetres to about 50 millimetres.
- the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 30 millimetres, preferably from about 6 millimetres to about 30 millimetres, more preferably from about 7 millimetres to about 30 millimetres, even more preferably from about 10 millimetres to about 30 millimetres.
- the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 20 millimetres, preferably from about 6 millimetres to about 20 millimetres, more preferably from about 7 millimetres to about 20 millimetres, even more preferably from about 10 millimetres to about 20 millimetres.
- the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 15 millimetres, preferably from about 7 millimetres to about 20 millimetres, more preferably from about 9 millimetres to about 16 millimetres, even more preferably from about 10 millimetres to about 15 millimetres.
- a rod-shaped element comprising the aerosol-generating substrate preferably has an external diameter that is approximately equal to the external diameter of the aerosol generating article.
- the element comprising the aerosol generating substrate has an external diameter of at least about 5 millimetres. More preferably, the element comprising the aerosol generating substrate has an external diameter of at least about 6 millimetres. Even more preferably, the element comprising the aerosol generating substrate has an external diameter of at least about 7 millimetres.
- the element comprising the aerosol generating substrate preferably has an external diameter of less than or equal to about 12 millimetres. More preferably, the element comprising the aerosol generating substrate has an external diameter of less than or equal to about 10 millimetres. Even more preferably, the element comprising the aerosol generating substrate has an external diameter of less than or equal to about 8 millimetres.
- a diameter of the rod-shaped element comprising the aerosol-generating substrate falling within the ranges described herein is particularly advantageous in terms of a balance between energy consumption and aerosol delivery.
- This advantage is felt in particular when an aerosol-generating article comprising a rod comprising the aerosol-generating substrate having a diameter as described herein is used in combination with an external heater arranged around the periphery of the aerosol-generating article. Under such operating conditions, it has been observed that less thermal energy is required to achieve a sufficiently high temperature at the core of the rod comprising the aerosol-generating substrate and, in general, at the core of the article. Thus, when operating at lower temperatures, a desired target temperature at the core of the aerosol-generating substrate may be achieved within a desirably reduced time frame and by a lower energy consumption.
- the element comprising the aerosol generating substrate has an external diameter from about 5 millimetres to about 12 millimetres, preferably from about 6 millimetres to about 12 millimetres, more preferably from about 7 millimetres to about 12 millimetres. In other embodiments, the element comprising the aerosol generating substrate has an external diameter from about 5 millimetres to about 12 millimetres, preferably from about 6 millimetres to about 10 millimetres, more preferably from about 7 millimetres to about 10 millimetres.
- the element comprising the aerosol generating substrate has an external diameter from about 5 millimetres to about 8 millimetres, preferably from about 6 millimetres to about 8 millimetres, more preferably from about 7 millimetres to about 8 millimetres. In particularly preferred embodiments, the element comprising the aerosol generating substrate has an external diameter of less than about 7.5 millimetres. By way of example, the element comprising the aerosol generating substrate may an external diameter of about 7.2 millimetres.
- a length to diameter ratio of the aerosol-generating element is at least about 0.5.
- a length to diameter ratio of the aerosol-generating element is at least about 0.75. More preferably, a length to diameter ratio of the aerosol-generating element is at least about 1 .0. Even more preferably, a length to diameter ratio of the aerosol-generating element is at least about 1.25.
- a length to diameter ratio of the aerosol-generating element is less than or equal to about 3.0.
- a length to diameter ratio of the aerosol-generating element is less than or equal to about 2.75. More preferably, a length to diameter ratio of the aerosol-generating element is less than or equal to about 2.5. Even more preferably, a length to diameter ratio of the aerosol-generating element is less than or equal to about 2.25.
- a length to diameter ratio of the aerosol-generating element is from about 0.5 to about 3.0.
- a length to diameter ratio of the aerosol-generating element is from about 0.75 to about 3.0. More preferably, a length to diameter ratio of the aerosol-generating element is from about 1.0 to about 3.0. Even more preferably, a length to diameter ratio of the aerosol-generating element is from about 1.25 to about 3.0.
- a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 2.75.
- a length to diameter ratio of the aerosolgenerating element is from about 0.75 to about 2.75.
- a length to diameter ratio of the aerosol-generating element is from about 1 .0 to about 2.75.
- a length to diameter ratio of the aerosol-generating element is from about 1 .25 to about 2.75.
- a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 2.5.
- a length to diameter ratio of the aerosolgenerating element is from about 0.75 to about 2.5. More preferably, a length to diameter ratio of the aerosol-generating element is from about 1 .0 to about 2.5. Even more preferably, a length to diameter ratio of the aerosol-generating element is from about 1.25 to about 2.5.
- a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 2.25.
- a length to diameter ratio of the aerosol-generating element is from about 0.75 to about 2.25.
- a length to diameter ratio of the aerosol-generating element is from about 1.0 to about 2.25.
- a length to diameter ratio of the aerosol-generating element is from about 1 .25 to about 2.25.
- a length to diameter ratio of the aerosolgenerating element may be at least about 1.3, more preferably about 1.4, even more preferably about 1.5.
- a length to diameter ratio of the aerosolgenerating element may be less than or equal to about 2.0, more preferably less than or equal to about 1.9, even more preferably less than or equal to about 1.8.
- a length to diameter ratio of the aerosol-generating element is preferably from about 1.3 to about 2.0, more preferably from about 1 .4 to about 2.0, even more preferably from about 1.5 to about 2.0. In other embodiments, a length to diameter ratio of the aerosol-generating element is preferably from about 1.3 to about 1 .9, more preferably from about 1.4 to about 1.7, even more preferably from about 1.5 to about 1.9. In further embodiments, a length to diameter ratio of the aerosol-generating element is preferably from about 1.3 to about 1.8, more preferably from about 1.4 to about 1.8, even more preferably from about 1 .5 to about 1.8.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article may be at least about 0.10.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is at least about 0.15. More preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is at least about 0.20. Even more preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is at least about 0.25.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article may be less than or equal to about 0.60.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.50. More preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.45. Even more preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.40.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.35, and most preferably less than or equal to about 0.30.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.45, preferably from about 0.15 to about 0.45, more preferably from about 0.20 to about 0.45, even more preferably from about 0.25 to about 0.45. In other embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.40, preferably from about 0.15 to about 0.40, more preferably from about 0.20 to about 0.40, even more preferably from about 0.25 to about 0.40.
- a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.35, preferably from about 0.15 to about 0.35, more preferably from about 0.20 to about 0.35, even more preferably from about 0.25 to about 0.35. In yet further embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.30, preferably from about 0.15 to about 0.30, more preferably from about 0.20 to about 0.30, even more preferably from about 0.25 to about 0.30.
- the aerosol-generating element comprises a rod-shaped element comprising aerosol generating substrate that has a substantially uniform cross-section along the length of the element.
- the rod-shaped element comprising aerosol generating substrate has a substantially circular cross-section.
- an aerosol-generating article in accordance with the present invention comprises a downstream section comprising a hollow tubular element.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.66.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.60.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.50.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.40.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.10.
- a ratio between the length of the aerosolgenerating element and a length of the hollow tubular element may be at least about 0.15.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.20.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.25.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.30.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element is from about 0.15 to about 0.60, preferably from about 0.20 to about 0.60, more preferably from about 0.25 to about 0.60, even more preferably from about 0.30 to about 0.60. In other embodiments, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element is from about 0.15 to about 0.50, preferably from about 0.20 to about 0.50, more preferably from about 0.25 to about 0.50, even more preferably from about 0.30 to about 0.50.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element is from about 0.15 to about 0.40, preferably from about 0.20 to about 0.40, more preferably from about 0.25 to about 0.40, even more preferably from about 0.30 to about 0.40.
- a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be about 0.35.
- a density of the aerosol-generating substrate may be at least about 100 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate is at least about 115 micrograms/cubic centimetre. More preferably, a density of the aerosolgenerating substrate is at least about 130 micrograms/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is at least about 140 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate may be less than or equal to about 200 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate is less than or equal to about 185 micrograms/cubic centimetre. More preferably, a density of the aerosol-generating substrate is less than or equal to about 170 micrograms/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is less than or equal to about 160 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate is from 100 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 100 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 100 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 100 micrograms/cubic centimetre to 160 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate is from 115 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 115 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 115 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 115 micrograms/cubic centimetre to 160 micrograms/cubic centimetre.
- a density of the aerosolgenerating substrate is from 130 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 130 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 130 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 130 micrograms/cubic centimetre to 160 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate is from 140 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 140 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 140 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 140 micrograms/cubic centimetre to 160 micrograms/cubic centimetre. In some particularly preferred embodiments, a density of the aerosol-generating substrate is about 150 micrograms/cubic centimetre.
- a density of the aerosol-generating substrate may be at least about 100 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate is at least about 115 milligrams/cubic centimetre. More preferably, a density of the aerosolgenerating substrate is at least about 130 milligrams/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is at least about 140 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate may be less than or equal to about 200 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate is less than or equal to about 185 milligrams/cubic centimetre. More preferably, a density of the aerosol-generating substrate is less than or equal to about 170 milligrams/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is less than or equal to about 160 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate is from 100 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 100 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 100 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 100 milligrams/cubic centimetre to 160 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate is from 115 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 115 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 115 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 115 milligrams/cubic centimetre to 160 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate is from 130 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 130 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 130 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 130 milligrams/cubic centimetre to 160 milligrams/cubic centimetre.
- a density of the aerosol-generating substrate is from 140 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 140 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 140 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 140 milligrams/cubic centimetre to 160 milligrams/cubic centimetre. In some particularly preferred embodiments, a density of the aerosol-generating substrate is about 150 milligrams/cubic centimetre.
- the aerosol-generating element may comprise from about 100 milligrams to about 250 milligrams of aerosol-generating substrate.
- the aerosol-generating element comprises from about 210 milligrams to about 230 milligrams of aerosol-generating substrate, preferably from 215 milligrams to about 220 milligrams of aerosol-generating substrate.
- the aerosol-generating element comprises from about 150 milligrams to about 180 milligrams of aerosol-generating substrate, preferably from 160 milligrams to about 165 milligrams of aerosol-generating substrate.
- the aerosol-generating substrate may be a solid aerosol-generating substrate.
- the aerosol-generating substrate comprises homogenised plant material, preferably a homogenised tobacco material.
- homogenised plant material encompasses any plant material formed by the agglomeration of particles of plant.
- sheets or webs of homogenised tobacco material for the aerosol-generating substrates of the present invention may be formed by agglomerating particles of tobacco material obtained by pulverising, grinding or comminuting plant material and optionally one or more of tobacco leaf lamina and tobacco leaf stems.
- the homogenised plant material may be produced by casting, extrusion, paper making processes or other any other suitable processes known in the art.
- the homogenised plant material can be provided in any suitable form.
- the homogenised plant material may be in the form of one or more sheets.
- sheet describes a laminar element having a width and length substantially greater than the thickness thereof.
- the homogenised plant material may be in the form of a plurality of pellets or granules.
- the homogenised plant material may be in the form of a plurality of strands, strips or shreds.
- strand describes an elongate element of material having a length that is substantially greater than the width and thickness thereof.
- the term “strand” should be considered to encompass strips, shreds and any other homogenised plant material having a similar form.
- the strands of homogenised plant material may be formed from a sheet of homogenised plant material, for example by cutting or shredding, or by other methods, for example, by an extrusion method.
- the strands may be formed in situ within the aerosol-generating substrate as a result of the splitting or cracking of a sheet of homogenised plant material during formation of the aerosol-generating substrate, for example, as a result of crimping.
- the strands of homogenised plant material within the aerosol-generating substrate may be separate from each other.
- each strand of homogenised plant material within the aerosol-generating substrate may be at least partially connected to an adjacent strand or strands along the length of the strands.
- adjacent strands may be connected by one or more fibres. This may occur, for example, where the strands have been formed due to the splitting of a sheet of homogenised plant material during production of the aerosolgenerating substrate, as described above.
- the homogenised plant material may typically be provided in the form of one or more sheets.
- sheets of homogenised plant material may be produced by a casting process.
- sheets of homogenised plant material may be produced by a paper-making process.
- the aerosol-generating substrate comprises cut filler.
- cut filler is used to describe to a blend of shredded plant material, such as tobacco plant material, including, in particular, one or more of leaf lamina, processed stems and ribs, homogenised plant material.
- the cut filler may also comprise other after-cut, filler tobacco or casing.
- the cut filler comprises at least 25 percent of plant leaf lamina, more preferably, at least 50 percent of plant leaf lamina, still more preferably at least 75 percent of plant leaf lamina and most preferably at least 90 percent of plant leaf lamina.
- the plant material is one of tobacco, mint, tea and cloves.
- the invention is equally applicable to other plant material that has the ability to release substances upon the application of heat that can subsequently form an aerosol.
- the cut filler comprises tobacco plant material comprising lamina of one or more of bright tobacco, dark tobacco, aromatic tobacco and filler tobacco.
- tobacco describes any plant member of the genus Nicotiana. Bright tobaccos are tobaccos with a generally large, light coloured leaves. Throughout the specification, the term “bright tobacco” is used for tobaccos that have been flue cured. Examples for bright tobaccos are Chinese Flue-Cured, Flue-Cured Brazil, US Flue-Cured such as Virginia tobacco, Indian Flue-Cured, Flue-Cured from Africa or other African Flue Cured. Bright tobacco is characterized by a high sugar to nitrogen ratio.
- bright tobacco is a tobacco type which, after curing, is associated with a spicy and lively sensation.
- bright tobaccos are tobaccos with a content of reducing sugars of between about 2.5 percent and about 20 percent of dry weight base of the leaf and a total ammonia content of less than about 0.12 percent of dry weight base of the leaf.
- Reducing sugars comprise for example glucose or fructose.
- Total ammonia comprises for example ammonia and ammonia salts.
- dark tobaccos are tobaccos with a generally large, dark coloured leaves.
- dark tobacco is used for tobaccos that have been air cured. Additionally, dark tobaccos may be fermented. Tobaccos that are used mainly for chewing, snuff, cigar, and pipe blends are also included in this category. Typically, these dark tobaccos are air cured and possibly fermented. From a sensorial perspective, dark tobacco is a tobacco type which, after curing, is associated with a smoky, dark cigar type sensation. Dark tobacco is characterized by a low sugar to nitrogen ratio. Examples for dark tobacco are Burley Malawi or other African Burley, Dark Cured Brazil Galpao, Sun Cured or Air Cured Indonesian Kasturi. According to the invention, dark tobaccos are tobaccos with a content of reducing sugars of less than about 5 percent of dry weight base of the leaf and a total ammonia content of up to about 0.5 percent of dry weight base of the leaf.
- Aromatic tobaccos are tobaccos that often have small, light coloured leaves.
- aromatic tobacco is used for other tobaccos that have a high aromatic content, e.g. of essential oils.
- aromatic tobacco is a tobacco type which, after curing, is associated with spicy and aromatic sensation.
- Example for aromatic tobaccos are Greek Oriental, Oriental Turkey, semi-oriental tobacco but also Fire Cured, US Burley, such as Perique, Rustica, US Burley or Meriland.
- Filler tobacco is not a specific tobacco type, but it includes tobacco types which are mostly used to complement the other tobacco types used in the blend and do not bring a specific characteristic aroma direction to the final product.
- Examples for filler tobaccos are stems, midrib or stalks of other tobacco types. A specific example may be flue cured stems of Flue Cure Brazil lower stalk.
- the cut filler suitable to be used with the present invention generally may resemble cut filler used for conventional smoking articles.
- the cut width of the cut filler preferably is between 0.3 millimetres and 2.0 millimetres, more preferably, the cut width of the cut filler is between 0.5 millimetres and 1 .2 millimetres and most preferably, the cut width of the cut filler is between 0.6 millimetres and 0.9 millimetres.
- the cut width may play a role in the distribution of heat inside the aerosol-generating element. Also, the cut width may play a role in the resistance to draw of the article. Further, the cut width may impact the overall density of the aerosolgenerating substrate as a whole.
- the strand length of the cut-filler is to some extent a random value as the length of the strands will depend on the overall size of the object that the strand is cut off from. Nevertheless, by conditioning the material before cutting, for example by controlling the moisture content and the overall subtlety of the material, longer strands can be cut.
- the strands have a length of between about 10 millimetres and about 40 millimetres before the strands are collated to form the aerosol-generating element.
- the final aerosol-generating element may comprise strands that are on average shorter than the initial strand length.
- the strand length of the cut-filler is such that between about 20 percent and 60 percent of the strands extend along the full length of the aerosol-generating element This prevents the strands from dislodging easily from the aerosol-generating element.
- the weight of the cut filler is between 80 milligrams and 400 milligrams, preferably between 150 milligrams and 250 milligrams, more preferably between 170 milligrams and 220 milligrams.
- This amount of cut filler typically allows for sufficient material for the formation of an aerosol. Additionally, in the light of the aforementioned constraints on diameter and size, this allows for a balanced density of the aerosol-generating element between energy uptake, resistance to draw and fluid passageways within the aerosol-generating element where the aerosol-generating substrate comprises plant material.
- the cut filler is soaked with aerosol former. Soaking the cut filler can be done by spraying or by other suitable application methods.
- the aerosol former may be applied to the blend during preparation of the cut filler.
- the aerosol former may be applied to the blend in the direct conditioning casing cylinder (DCCC).
- DCCC direct conditioning casing cylinder
- Conventional machinery can be used for applying an aerosol former to the cut filler.
- the aerosol former may be any suitable known compound or mixture of compounds that, in use, facilitates formation of a dense and stable aerosol.
- the aerosol former may be facilitating that the aerosol is substantially resistant to thermal degradation at temperatures typically applied during use of the aerosol-generating article.
- Suitable aerosol formers are for example to: polyhydric alcohols such as, for example, triethylene glycol, 1 ,3-butanediol, propylene glycol and glycerine; esters of polyhydric alcohols such as, for example, glycerol mono-, di- or triacetate; aliphatic esters of mono-, di- or polycarboxylic acids such as, for example, dimethyl dodecanedioate and dimethyl tetradecanedioate; and combinations thereof.
- polyhydric alcohols such as, for example, triethylene glycol, 1 ,3-butanediol, propylene glycol and glycerine
- esters of polyhydric alcohols such as, for example, glycerol mono-, di- or triacetate
- aliphatic esters of mono-, di- or polycarboxylic acids such as, for example, dimethyl dodecanedioate and dimethyl tetradecanedi
- the aerosol former comprises one or more of glycerine and propylene glycol.
- the aerosol former may consist of glycerine or propylene glycol or of a combination of glycerine and propylene glycol.
- the amount of aerosol former is between 6 percent and 20 percent by weight on a dry weight basis of the cut filler, more preferably, the amount of aerosol former is between 8 percent and 18 percent by weight on a dry weight basis of the cut filler, most preferably the amount of aerosol former is between 10 percent and 15 percent by weight on a dry weight basis of the cut filler.
- the cut filler may become relatively sticky. This advantageously help retain the cut filler at a predetermined location within the article, as the particles of cut filler display a tendency to adhere to surrounding cut filler particles as well as to surrounding surfaces (for example, the internal surface of a wrapper circumscribing the cut filler).
- the amount of aerosol former has a target value of about 13 percent by weight on a dry weight basis of the cut filler.
- the most efficient amount of aerosol former will depend also on the cut filler, whether the cut filler comprises plant lamina or homogenized plant material. For example, among other factors, the type of cut filler will determine to which extent the aerosol-former can facilitate the release of substances from the cut filler.
- an aerosol-generating element comprising cut filler as described above is capable of efficiently generating sufficient amount of aerosol at relatively low temperatures.
- a temperature of between 150 degrees Celsius and 200 degrees Celsius in the heating chamber is sufficient for one such cut filler to generate sufficient amounts of aerosol while in aerosol-generating devices using tobacco cast leave sheets typically temperatures of about 250 degrees Celsius are employed.
- a further advantage connected with operating at lower temperatures is that there is a reduced need to cool down the aerosol. As generally low temperatures are used, a simpler cooling function may be sufficient. This in turn allows using a simpler and less complex structure of the aerosol-generating article.
- the aerosol-generating substrate comprises a homogenised plant material
- the homogenised plant material may be provided in the form of one or more sheets.
- the one or more sheets as described herein may each individually have a thickness of between 100 micrometres and 600 micrometres, preferably between 150 micrometres and 300 micrometres, and most preferably between 200 micrometres and 250 micrometres.
- Individual thickness refers to the thickness of the individual sheet
- combined thickness refers to the total thickness of all sheets that make up the aerosol-generating substrate. For example, if the aerosol-generating substrate is formed from two individual sheets, then the combined thickness is the sum of the thickness of the two individual sheets or the measured thickness of the two sheets where the two sheets are stacked in the aerosolgenerating substrate.
- the one or more sheets as described herein may each individually have a grammage of between about 100 grams per square metre and about 600 grams per square metre.
- the one or more sheets as described herein may each individually have a density of from about 0.3 grams per cubic centimetre to about 1.3 grams per cubic centimetre, and preferably from about 0.7 grams per cubic centimetre to about 1 .0 gram per cubic centimetre.
- the sheets are preferably in the form of one or more gathered sheets.
- gathered denotes that the sheet of homogenised plant material is convoluted, folded, or otherwise compressed or constricted substantially transversely to the cylindrical axis of a plug or a rod.
- the one or more sheets of homogenised plant material may be gathered transversely relative to the longitudinal axis thereof and circumscribed with a wrapper to form a continuous rod or a plug.
- the one or more sheets of homogenised plant material may advantageously be crimped or similarly treated.
- crimped denotes a sheet having a plurality of substantially parallel ridges or corrugations.
- the one or more sheets of homogenised plant material may be embossed, debossed, perforated or otherwise deformed to provide texture on one or both sides of the sheet.
- each sheet of homogenised plant material may be crimped such that it has a plurality of ridges or corrugations substantially parallel to the cylindrical axis of the plug.
- This treatment advantageously facilitates gathering of the crimped sheet of homogenised plant material to form the plug.
- the one or more sheets of homogenised plant material may be gathered.
- crimped sheets of homogenised plant material may alternatively or in addition have a plurality of substantially parallel ridges or corrugations disposed at an acute or obtuse angle to the cylindrical axis of the plug.
- the sheet may be crimped to such an extent that the integrity of the sheet becomes disrupted at the plurality of parallel ridges or corrugations causing separation of the material, and results in the formation of shreds, strands or strips of homogenised plant material.
- the one or more sheets of homogenised plant material may be cut into strands as referred to above.
- the aerosol-generating substrate comprises a plurality of strands of the homogenised plant material.
- the strands may be used to form a plug.
- the width of such strands is about 5 millimetres, or about 4 millimetres, or about 3 millimetres, or about 2 millimetres or less.
- the length of the strands may be greater than about 5 millimetres, between about 5 millimetres to about 15 millimetres, about 8 millimetres to about 12 millimetres, or about 12 millimetres.
- the strands have substantially the same length as each other.
- the length of the strands may be determined by the manufacturing process whereby a rod is cut into shorter plugs and the length of the strands corresponds to the length of the plug.
- the strands may be fragile which may result in breakage especially during transit. In such cases, the length of some of the strands may be less than the length of the plug.
- the plurality of strands preferably extend substantially longitudinally along the length of the aerosol-generating substrate, aligned with the longitudinal axis. Preferably, the plurality of strands are therefore aligned substantially parallel to each other.
- the homogenised plant material may comprise up to about 95 percent by weight of plant particles, on a dry weight basis.
- the homogenised plant material comprises up to about 90 percent by weight of plant particles, more preferably up to about 80 percent by weight of plant particles, more preferably up to about 70 percent by weight of plant particles, more preferably up to about 60 percent by weight of plant particles, more preferably up to about 50 percent by weight of plant particles, on a dry weight basis.
- the homogenised plant material may comprise between about 2.5 percent and about 95 percent by weight of plant particles, or about 5 percent and about 90 percent by weight of plant particles, or between about 10 percent and about 80 percent by weight of plant particles, or between about 15 percent and about 70 percent by weight of plant particles, or between about 20 percent and about 60 percent by weight of plant particles, or between about 30 percent and about 50 percent by weight of plant particles, on a dry weight basis.
- the homogenised plant material is a homogenised tobacco material comprising tobacco particles.
- Sheets of homogenised tobacco material for use in such embodiments of the invention may have a tobacco content of at least about 40 percent by weight on a dry weight basis, more preferably of at least about 50 percent by weight on a dry weight basis more preferably at least about 70 percent by weight on a dry weight basis and most preferably at least about 90 percent by weight on a dry weight basis.
- tobacco particles describes particles of any plant member of the genus Nicotiana.
- tobacco particles encompasses ground or powdered tobacco leaf lamina, ground or powdered tobacco leaf stems, tobacco dust, tobacco fines, and other particulate tobacco by-products formed during the treating, handling and shipping of tobacco.
- the tobacco particles are substantially all derived from tobacco leaf lamina.
- isolated nicotine and nicotine salts are compounds derived from tobacco but are not considered tobacco particles for purposes of the invention and are not included in the percentage of particulate plant material.
- the tobacco particles may be prepared from one or more varieties of tobacco plants. Any type of tobacco may be used in a blend. Examples of tobacco types that may be used include, but are not limited to, sun-cured tobacco, flue-cured tobacco, Burley tobacco, Maryland tobacco, Oriental tobacco, Virginia tobacco, and other speciality tobaccos.
- Flue-curing is a method of curing tobacco, which is particularly used with Virginia tobaccos. During the flue-curing process, heated air is circulated through densely packed tobacco. During a first stage, the tobacco leaves turn yellow and wilt. During a second stage, the laminae of the leaves are completely dried. During a third stage, the leaf stems are completely dried.
- Burley tobacco plays a significant role in many tobacco blends.
- Burley tobacco has a distinctive flavour and aroma and also has an ability to absorb large amounts of casing.
- Oriental is a type of tobacco which has small leaves, and high aromatic qualities.
- Oriental tobacco has a milder flavour than, for example, Burley. Generally, therefore, Oriental tobacco is used in relatively small proportions in tobacco blends.
- Kasturi, Madura and Jatim are subtypes of sun-cured tobacco that can be used.
- Kasturi tobacco and flue-cured tobacco may be used in a blend to produce the tobacco particles.
- the tobacco particles in the particulate plant material may comprise a blend of Kasturi tobacco and flue-cured tobacco.
- the tobacco particles may have a nicotine content of at least about 2.5 percent by weight, based on dry weight. More preferably, the tobacco particles may have a nicotine content of at least about 3 percent, even more preferably at least about 3.2 percent, even more preferably at least about 3.5 percent, most preferably at least about 4 percent by weight, based on dry weight.
- the homogenised plant material comprises tobacco particles in combination with non-tobacco plant flavour particles.
- the non-tobacco plant flavour particles are selected from one or more of: ginger particles, eucalyptus particles, clove particles and star anise particles.
- the homogenised plant material comprises at least about 2.5 percent by weight of the non-tobacco plant flavour particles, on a dry weight basis, with the remainder of the plant particles being tobacco particles.
- the homogenised plant material comprises at least about 4 percent by weight of non-tobacco plant flavour particles, more preferably at least about 6 percent by weight of non-tobacco plant flavour particles, more preferably at least about 8 percent by weight of non-tobacco plant flavour particles and more preferably at least about 10 percent by weight of non-tobacco plant flavour particles, on a dry weight basis.
- the homogenised plant material comprises up to about 20 percent by weight of non-tobacco plant flavour particles, more preferably up to about 18 percent by weight of non- tobacco plant flavour particles, more preferably up to about 16 percent by weight of non- tobacco plant flavour particles.
- the weight ratio of the non-tobacco plant flavour particles and the tobacco particles in the particulate plant material forming the homogenised plant material may vary depending on the desired flavour characteristics and composition of the aerosol produced from the aerosolgenerating substrate during use.
- the homogenised plant material comprises at least a 1 :30 weight ratio of non-tobacco plant flavour particles to tobacco particles, more preferably at least a 1 :20 weight ratio of non-tobacco plant flavour particles to tobacco particles, more preferably at least a 1 :10 weight ratio of non-tobacco plant flavour particles to tobacco particles and most preferably at least a1 :5 weight ratio of non-tobacco plant flavour particles to tobacco particles, on a dry weight basis.
- the homogenised plant material may comprise cannabis particles.
- cannabis particles refers to particles of a cannabis plant, such as the species Cannabis sativa, Cannabis indica, and Cannabis ruderalis.
- the homogenised plant material preferably comprises no more than 95 percent by weight of the particulate plant material, on a dry weight basis.
- the particulate plant material is therefore typically combined with one or more other components to form the homogenised plant material.
- the homogenised plant material may further comprise a binder to alter the mechanical properties of the particulate plant material, wherein the binder is included in the homogenised plant material during manufacturing as described herein.
- Suitable exogenous binders would be known to the skilled person and include but are not limited to: gums such as, for example, guar gum, xanthan gum, arabic gum and locust bean gum; cellulosic binders such as, for example, hydroxypropyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose and ethyl cellulose; polysaccharides such as, for example, starches, organic acids, such as alginic acid, conjugate base salts of organic acids, such as sodium-alginate, agar and pectins; and combinations thereof.
- the binder comprises guar gum.
- the binder may be present in an amount of from about 1 percent to about 10 percent by weight, based on the dry weight of the homogenised plant material, preferably in an amount of from about 2 percent to about 5 percent by weight, based on the dry weight of the homogenised plant material.
- the homogenised plant material may further comprise one or more lipids to facilitate the diffusivity of volatile components (for example, aerosol formers, gingerols and nicotine), wherein the lipid is included in the homogenised plant material during manufacturing as described herein.
- Suitable lipids for inclusion in the homogenised plant material include, but are not limited to: medium-chain triglycerides, cocoa butter, palm oil, palm kernel oil, mango oil, shea butter, soybean oil, cottonseed oil, coconut oil, hydrogenated coconut oil, candellila wax, carnauba wax, shellac, sunflower wax, sunflower oil, rice bran, and Revel A; and combinations thereof.
- the homogenised plant material may further comprise a pH modifier.
- the homogenised plant material may further comprise fibres to alter the mechanical properties of the homogenised plant material, wherein the fibres are included in the homogenised plant material during manufacturing as described herein.
- Suitable exogenous fibres for inclusion in the homogenised plant material are known in the art and include fibres formed from non-tobacco material and non- ginger material, including but not limited to: cellulose fibres; soft-wood fibres; hard-wood fibres; jute fibres and combinations thereof. Exogenous fibres derived from tobacco and/or ginger can also be added. Any fibres added to the homogenised plant material are not considered to form part of the “particulate plant material” as defined above.
- fibres Prior to inclusion in the homogenised plant material, fibres may be treated by suitable processes known in the art including, but not limited to: mechanical pulping; refining; chemical pulping; bleaching; sulphate pulping; and combinations thereof.
- a fibre typically has a length greater than its width.
- Suitable fibres typically have lengths of greater than 400 micrometres and less than or equal to 4 millimetres, preferably within the range of 0.7 millimetres to 4 millimetres.
- the fibres are present in an amount of about 2 percent to about 15 percent by weight, most preferably at about 4 percent by weight, based on the dry weight of the substrate.
- the aerosol-generating substrate may further comprise one or more aerosol formers.
- an aerosol former can convey other vaporised compounds released from the aerosol-generating substrate upon heating, such as nicotine and flavourants, in an aerosol.
- Suitable aerosol formers for inclusion in the homogenised plant material include, but are not limited to: polyhydric alcohols, such as triethylene glycol, propylene glycol, 1 ,3-butanediol and glycerol; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
- polyhydric alcohols such as triethylene glycol, propylene glycol, 1 ,3-butanediol and glycerol
- esters of polyhydric alcohols such as glycerol mono-, di- or triacetate
- aliphatic esters of mono-, di- or polycarboxylic acids such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
- the aerosol-generating substrate may have an aerosol former content of between about 5 percent and about 30 percent by weight on a dry weight basis, such as between about 10 percent and about 25 percent by weight on a dry weight basis, or between about 15 percent and about 20 percent by weight on a dry weight basis.
- the substrate may preferably include an aerosol former content of between about 5 percent to about 30 percent by weight on a dry weight basis.
- the aerosol former is preferably glycerol.
- the aerosol-generating substrate may have an aerosol former content of about 1 percent to about 5 percent by weight on a dry weight basis.
- the substrate may have an aerosol former content of greater than 1 percent and less than about 5 percent.
- the aerosol former is volatilised upon heating and a stream of the aerosol former is contacted with the aerosol-generating substrate so as to entrain the flavours from the aerosol-generating substrate in the aerosol.
- the homogenised plant material may have an aerosol former content of about 30 percent by weight to about 45 percent by weight.
- the homogenised plant material preferably further comprises between about 2 percent by weight and about 10 percent by weight of cellulose ether, on a dry weight basis and between about 5 percent by weight and about 50 percent by weight of additional cellulose, on a dry weight basis.
- the use of the combination of cellulose ether and additional cellulose has been found to provide a particularly effective delivery of aerosol when used in an aerosol-generating substrate having an aerosol former content of between 30 percent by weight and 45 percent by weight.
- Suitable cellulose ethers include but are not limited to methyl cellulose, hydroxypropyl methyl cellulose, ethyl cellulose, hydroxyl ethyl cellulose, hydroxyl propyl cellulose, ethyl hydroxyl ethyl cellulose and carboxymethyl cellulose (CMC).
- the cellulose ether is carboxymethyl cellulose.
- additional cellulose encompasses any cellulosic material incorporated into the homogenised plant material which does not derive from the non-tobacco plant particles or tobacco particles provided in the homogenised plant material.
- the additional cellulose is therefore incorporated in the homogenised plant material in addition to the nontobacco plant material or tobacco material, as a separate and distinct source of cellulose to any cellulose intrinsically provided within the non-tobacco plant particles or tobacco particles.
- the additional cellulose will typically derive from a different plant to the non-tobacco plant particles or tobacco particles.
- the additional cellulose is in the form of an inert cellulosic material, which is sensorially inert and therefore does not substantially impact the organoleptic characteristics of the aerosol generated from the aerosol-generating substrate.
- the additional cellulose is preferably a tasteless and odourless material.
- the additional cellulose may comprise cellulose powder, cellulose fibres, or a combination thereof.
- the aerosol former may act as a humectant in the aerosol-generating substrate.
- the wrapper circumscribing the rod of homogenised plant material may be a paper wrapper or a non-paper wrapper.
- Suitable paper wrappers for use in specific embodiments of the invention are known in the art and include, but are not limited to: cigarette papers; and filter plug wraps.
- Suitable non-paper wrappers for use in specific embodiments of the invention are known in the art and include, but are not limited to sheets of homogenised tobacco materials.
- the wrapper may be formed of a laminate material comprising a plurality of layers.
- the wrapper is formed of an aluminium co-laminated sheet. The use of a co-laminated sheet comprising aluminium advantageously prevents combustion of the aerosol-generating substrate in the event that the aerosol-generating substrate should be ignited, rather than heated in the intended manner.
- the aerosol-generating substrate comprises a gel composition that includes an alkaloid compound, or a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound.
- the aerosol-generating substrate comprises a gel composition that includes nicotine.
- the gel composition comprises an alkaloid compound, or a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound; an aerosol former; and at least one gelling agent.
- the at least one gelling agent forms a solid medium and the glycerol is dispersed in the solid medium, with the alkaloid or cannabinoid dispersed in the glycerol.
- the gel composition is a stable gel phase.
- a stable gel composition comprising nicotine provides predictable composition form upon storage or transit from manufacture to the consumer.
- the stable gel composition comprising nicotine substantially maintains its shape.
- the stable gel composition comprising nicotine substantially does not release a liquid phase upon storage or transit from manufacture to the consumer.
- the stable gel composition comprising nicotine may provide for a simple consumable design. This consumable may not have to be designed to contain a liquid, thus a wider range of materials and container constructions may be contemplated.
- the gel composition described herein may be combined with an aerosol-generating device to provide a nicotine aerosol to the lungs at inhalation or air flow rates that are within conventional smoking regime inhalation or air flow rates.
- the aerosol-generating device may continuously heat the gel composition.
- a consumer may take a plurality of inhalations or “puffs” where each “puff’ delivers an amount of nicotine aerosol.
- the gel composition may be capable of delivering a high nicotine/low total particulate matter (TPM) aerosol to a consumer when heated, preferably in a continuous manner.
- TPM total particulate matter
- stable gel phase or “stable gel” refers to gel that substantially maintains its shape and mass when exposed to a variety of environmental conditions.
- the stable gel may not substantially release (sweat) or absorb water when exposed to a standard temperature and pressure while varying relative humidity from about 10 percent to about 60 percent.
- the stable gel may substantially maintain its shape and mass when exposed to a standard temperature and pressure while varying relative humidity from about 10 percent to about 60 percent.
- the gel composition includes an alkaloid compound, or a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound.
- the gel composition may include one or more alkaloids.
- the gel composition may include one or more cannabinoids.
- the gel composition may include a combination of one or more alkaloids and one or more cannabinoids.
- alkaloid compound refers to any one of a class of naturally occurring organic compounds that contain one or more basic nitrogen atoms. Generally, an alkaloid contains at least one nitrogen atom in an amine-type structure. This or another nitrogen atom in the molecule of the alkaloid compound can be active as a base in acid-base reactions. Most alkaloid compounds have one or more of their nitrogen atoms as part of a cyclic system, such as for example a heterocylic ring. In nature, alkaloid compounds are found primarily in plants, and are especially common in certain families of flowering plants. However, some alkaloid compounds are found in animal species and fungi. In this disclosure, the term “alkaloid compound” refers to both naturally derived alkaloid compounds and synthetically manufactured alkaloid compounds.
- the gel composition may preferably include an alkaloid compound selected from the group consisting of nicotine, anatabine, and combinations thereof.
- the gel composition includes nicotine.
- nicotine refers to nicotine and nicotine derivatives such as free-base nicotine, nicotine salts and the like.
- cannabinoid compound refers to any one of a class of naturally occurring compounds that are found in parts of the cannabis plant - namely the species Cannabis sativa, Cannabis indica, and Cannabis ruderalis. Cannabinoid compounds are especially concentrated in the female flower heads. Cannabinoid compounds naturally occurring in the cannabis plant include cannabidiol (CBD) and tetrahydrocannabinol (THC). In this disclosure, the term “cannabinoid compounds” is used to describe both naturally derived cannabinoid compounds and synthetically manufactured cannabinoid compounds.
- CBD cannabidiol
- THC tetrahydrocannabinol
- the gel may include a cannabinoid compound selected from the group consisting of cannabidiol (CBD), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabielsoin (CBE),cannabicitran (CBT), and combinations thereof.
- CBD cannabidiol
- THC tetrahydrocannabinol
- THCA tetrahydrocannabinolic acid
- CBDA
- the gel composition may preferably include a cannabinoid compound selected from the group consisting of cannabidiol (CBD), THC (tetrahydrocannabinol) and combinations thereof.
- CBD cannabidiol
- THC tetrahydrocannabinol
- the gel may preferably include cannabidiol (CBD).
- CBD cannabidiol
- the gel composition may include nicotine and cannabidiol (CBD).
- CBD cannabidiol
- the gel composition may include nicotine, cannabidiol (CBD), and THC (tetrahydrocannabinol).
- CBD cannabidiol
- THC tetrahydrocannabinol
- the gel composition preferably includes about 0.5 percent by weight to about 10 percent by weight of an alkaloid compound, or about 0.5 percent by weight to about 10 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 0.5 percent by weight to about 10 percent by weight.
- the gel composition may include about 0.5 percent by weight to about 5 percent by weight of an alkaloid compound, or about 0.5 percent by weight to about 5 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 0.5 percent by weight to about 5 percent by weight.
- the gel composition includes about 1 percent by weight to about 3 percent by weight of an alkaloid compound, or about 1 percent by weight to about 3 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 1 percent by weight to about 3 percent by weight.
- the gel composition may preferably include about 1 .5 percent by weight to about 2.5 percent by weight of an alkaloid compound, or about 1.5 percent by weight to about 2.5 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 1.5 percent by weight to about 2.5 percent by weight.
- the gel composition may preferably include about 2 percent by weight of an alkaloid compound, or about 2 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount of about 2 percent by weight.
- the alkaloid compound component of the gel formulation may be the most volatile component of the gel formulation.
- water may be the most volatile component of the gel formulation and the alkaloid compound component of the gel formulation may be the second most volatile component of the gel formulation.
- the cannabinoid compound component of the gel formulation may be the most volatile component of the gel formulation.
- water may be the most volatile component of the gel formulation and the alkaloid compound component of the gel formulation may be the second most volatile component of the gel formulation.
- the nicotine is included in the gel compositions.
- the nicotine may be added to the composition in a free base form or a salt form.
- the gel composition includes about 0.5 percent by weight to about 10 percent by weight nicotine, or about 0.5 percent by weight to about 5 percent by weight nicotine.
- the gel composition includes about 1 percent by weight to about 3 percent by weight nicotine, or about 1 .5 percent by weight to about 2.5 percent by weight nicotine, or about 2 percent by weight nicotine.
- the nicotine component of the gel formulation may be the most volatile component of the gel formulation. In some aspects water may be the most volatile component of the gel formulation and the nicotine component of the gel formulation may be the second most volatile component of the gel formulation.
- the gel composition includes an aerosol-former.
- the aerosol-former is substantially resistant to thermal degradation at the operating temperature of the associated aerosol-generating device.
- Suitable aerosol-formers include, but are not limited to: polyhydric alcohols, such as triethylene glycol, 1 , 3-butanediol and glycerine; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
- Polyhydric alcohols or mixtures thereof may be one or more of triethylene glycol, 1 , 3- butanediol and, glycerine (glycerol or propane-1 , 2, 3-triol) or polyethylene glycol.
- the aerosolformer is preferably glycerol.
- the gel composition may include a majority of an aerosol-former.
- the gel composition may include a mixture of water and the aerosol-former where the aerosol-former forms a majority (by weight) of the gel composition.
- the aerosol-former may form at least about 50 percent by weight of the gel composition.
- the aerosol-former may form at least about 60 percent by weight or at least about 65 percent by weight or at least about 70 percent by weight of the gel composition.
- the aerosol-former may form about 70 percent by weight to about 80 percent by weight of the gel composition.
- the aerosol-former may form about 70 percent by weight to about 75 percent by weight of the gel composition.
- the gel composition may include a majority of glycerol.
- the gel composition may include a mixture of water and the glycerol where the glycerol forms a majority (by weight) of the gel composition.
- the glycerol may form at least about 50 percent by weight of the gel composition.
- the glycerol may form at least about 60 percent by weight or at least about 65 percent by weight or at least about 70 percent by weight of the gel composition.
- the glycerol may form about 70 percent by weight to about 80 percent by weight of the gel composition.
- the glycerol may form about 70 percent by weight to about 75 percent by weight of the gel composition.
- the gel composition preferably includes at least one gelling agent.
- the gel composition includes a total amount of gelling agents in a range from about 0.4 percent by weight to about 10 percent by weight. More preferably, the composition includes the gelling agents in a range from about 0.5 percent by weight to about 8 percent by weight. More preferably, the composition includes the gelling agents in a range from about 1 percent by weight to about 6 percent by weight. More preferably, the composition includes the gelling agents in a range from about 2 percent by weight to about 4 percent by weight. More preferably, the composition includes the gelling agents in a range from about 2 percent by weight to about 3 percent by weight.
- gelling agent refers to a compound that homogeneously, when added to a 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of about 0.3 percent by weight, forms a solid medium or support matrix leading to a gel.
- Gelling agents include, but are not limited to, hydrogen-bond crosslinking gelling agents, and ionic crosslinking gelling agents.
- the gelling agent may include one or more biopolymers.
- the biopolymers may be formed of polysaccharides.
- Biopolymers include, for example, gellan gums (native, low acyl gellan gum, high acyl gellan gums with low acyl gellan gum being preferred), xanthan gum, alginates (alginic acid), agar, guar gum, and the like.
- the composition may preferably include xanthan gum.
- the composition may include two biopolymers.
- the composition may include three biopolymers.
- the composition may include the two biopolymers in substantially equal weights.
- the composition may include the three biopolymers in substantially equal weights.
- the gel composition comprises at least about 0.2 percent by weight hydrogen-bond crosslinking gelling agent.
- the gel composition preferably comprises at least about 0.2 percent by weight ionic crosslinking gelling agent.
- the gel composition comprises at least about 0.2 percent by weight hydrogenbond crosslinking gelling agent and at least about 0.2 percent by weight ionic crosslinking gelling agent.
- the gel composition may comprise about 0.5 percent by weight to about 3 percent by weight hydrogen-bond crosslinking gelling agent and about 0.5 percent by weight to about 3 percent by weight ionic crosslinking gelling agent, or about 1 percent by weight to about 2 percent by weight hydrogen-bond crosslinking gelling agent and about 1 percent by weight to about 2 percent by weight ionic crosslinking gelling agent.
- the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent may be present in the gel composition in substantially equal amounts by weight.
- hydrogen-bond crosslinking gelling agent refers to a gelling agent that forms non-covalent crosslinking bonds or physical crosslinking bonds via hydrogen bonding. Hydrogen bonding is a type of electrostatic dipole-dipole attraction between molecules, not a covalent bond to a hydrogen atom. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom and another very electronegative atom.
- the hydrogen-bond crosslinking gelling agent may include one or more of a galactomannan, gelatin, agarose, or konjac gum, or agar.
- the hydrogen-bond crosslinking gelling agent may preferably include agar.
- the gel composition preferably includes the hydrogen-bond crosslinking gelling agent in a range from about 0.3 percent by weight to about 5 percent by weight.
- the composition includes the hydrogen-bond crosslinking gelling agent in a range from about 0.5 percent by weight to about 3 percent by weight.
- the composition includes the hydrogen-bond crosslinking gelling agent in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include a galactomannan in a range from about 0.2 percent by weight to about 5 percent by weight.
- the galactomannan may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the galactomannan may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the galactomannan may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include a gelatin in a range from about 0.2 percent by weight to about 5 percent by weight.
- the gelatin may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the gelatin may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the gelatin may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include agarose in a range from about 0.2 percent by weight to about 5 percent by weight.
- the agarose may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the agarose may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the agarose may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include konjac gum in a range from about 0.2 percent by weight to about 5 percent by weight.
- the konjac gum may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the konjac gum may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the konjac gum may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include agar in a range from about 0.2 percent by weight to about 5 percent by weight.
- the agar may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the agar may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the agar may be in a range from about 1 percent by weight to about 2 percent by weight.
- ionic crosslinking gelling agent refers to a gelling agent that forms non- covalent crosslinking bonds or physical crosslinking bonds via ionic bonding. Ionic crosslinking involves the association of polymer chains by noncovalent interactions. A crosslinked network is formed when multivalent molecules of opposite charges electrostatically attract each other giving rise to a crosslinked polymeric network.
- the ionic crosslinking gelling agent may include low acyl gellan, pectin, kappa carrageenan, iota carrageenan or alginate.
- the ionic crosslinking gelling agent may preferably include low acyl gellan.
- the gel composition may include the ionic crosslinking gelling agent in a range from about 0.3 percent by weight to about 5 percent by weight.
- the composition includes the ionic crosslinking gelling agent in a range from about 0.5 percent by weight to about 3 percent by weight by weight.
- the composition includes the ionic crosslinking gelling agent in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include low acyl gellan in a range from about 0.2 percent by weight to about 5 percent by weight.
- the low acyl gellan may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the low acyl gellan may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the low acyl gellan may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include pectin in a range from about 0.2 percent by weight to about 5 percent by weight.
- the pectin may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the pectin may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the pectin may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include kappa carrageenan in a range from about 0.2 percent by weight to about 5 percent by weight.
- the kappa carrageenan may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the kappa carrageenan may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the kappa carrageenan may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include iota carrageenan in a range from about 0.2 percent by weight to about 5 percent by weight.
- the iota carrageenan may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the iota carrageenan may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the iota carrageenan may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include alginate in a range from about 0.2 percent by weight to about 5 percent by weight.
- the alginate may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the alginate may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the alginate may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent in a ratio of about 3:1 to about 1 :3.
- the gel composition may include the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent in a ratio of about 2:1 to about 1 :2.
- the gel composition may include the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent in a ratio of about 1 :1.
- the gel composition may further include a viscosifying agent.
- the viscosifying agent combined with the hydrogen-bond crosslinking gelling agent and the ionic crosslinking gelling agent appears to surprisingly support the solid medium and maintain the gel composition even when the gel composition comprises a high level of glycerol.
- viscosifying agent refers to a compound that, when added homogeneously into a 25°C, 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of 0.3 percent by weight., increases the viscosity without leading to the formation of a gel, the mixture staying or remaining fluid.
- the viscosifying agent refers to a compound that when added homogeneously into a 25°C 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of 0.3 percent by weight, increases the viscosity to at least 50 cPs, preferably at least 200 cPs, preferably at least 500 cPs, preferably at least 1000 cPs at a shear rate of 0.1 s' 1 , without leading to the formation of a gel, the mixture staying or remaining fluid.
- the viscosifying agent refers to a compound that when added homogeneously into a 25°C 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of 0.3 percent by weight, increases the viscosity at least 2 times, or at least 5 times, or at least 10 times, or at least 100 times higher than before addition, at a shear rate of 0.1 s’ 1 , without leading to the formation of a gel, the mixture staying or remaining fluid.
- the viscosity values recited herein can be measured using a Brookfield RVT viscometer rotating a disc type RV#2 spindle at 25°C at a speed of 6 revolutions per minute (rpm).
- the gel composition preferably includes the viscosifying agent in a range from about 0.2 percent by weight to about 5 percent by weight.
- the composition includes the viscosifying agent in a range from about 0.5 percent by weight to about 3 percent by weight.
- the composition includes the viscosifying agent in a range from about 0.5 percent by weight to about 2 percent by weight.
- the composition includes the viscosifying agent in a range from about 1 percent by weight to about 2 percent by weight.
- the viscosifying agent may include one or more of xanthan gum, carboxymethylcellulose, microcrystalline cellulose, methyl cellulose, gum Arabic, guar gum, lambda carrageenan, or starch.
- the viscosifying agent may preferably include xanthan gum.
- the gel composition may include xanthan gum in a range from about 0.2 percent by weight to about 5 percent by weight.
- the xanthan gum may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the xanthan gum may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the xanthan gum may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include carboxymethyl-cellulose in a range from about 0.2 percent by weight to about 5 percent by weight.
- the carboxymethyl-cellulose may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the carboxymethyl-cellulose may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the carboxymethyl-cellulose may be in a range from about 1 percent by weight to about 2 percent by weight
- the gel composition may include microcrystalline cellulose in a range from about 0.2 percent by weight to about 5 percent by weight.
- the microcrystalline cellulose may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the microcrystalline cellulose may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the microcrystalline cellulose may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include methyl cellulose in a range from about 0.2 percent by weight to about 5 percent by weight.
- the methyl cellulose may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the methyl cellulose may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the methyl cellulose may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include gum Arabic in a range from about 0.2 percent by weight to about 5 percent by weight.
- the gum Arabic may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the gum Arabic may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the gum Arabic may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include guar gum in a range from about 0.2 percent by weight to about 5 percent by weight.
- the guar gum may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the guar gum may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the guar gum may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include lambda carrageenan in a range from about 0.2 percent by weight to about 5 percent by weight.
- the lambda carrageenan may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the lambda carrageenan may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the lambda carrageenan may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include starch in a range from about 0.2 percent by weight to about 5 percent by weight.
- the starch may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the starch may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the starch may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may further include a divalent cation.
- the divalent cation includes calcium ions, such as calcium lactate in solution.
- Divalent cations (such as calcium ions) may assist in the gel formation of compositions that include gelling agents such as the ionic crosslinking gelling agent, for example. The ion effect may assist in the gel formation.
- the divalent cation may be present in the gel composition in a range from about 0.1 to about 1 percent by weight, or about 0.5 percent by weight.
- the gel composition may further include an acid.
- the acid may comprise a carboxylic acid.
- the carboxylic acid may include a ketone group.
- the carboxylic acid may include a ketone group having less than about 10 carbon atoms, or less than about 6 carbon atoms or less than about 4 carbon atoms, such as levulinic acid or lactic acid.
- this carboxylic acid has three carbon atoms (such as lactic acid). Lactic acid surprisingly improves the stability of the gel composition even over similar carboxylic acids.
- the carboxylic acid may assist in the gel formation.
- the carboxylic acid may reduce variation of the alkaloid compound concentration, or the cannabinoid compound concentration, or both the alkaloid compound concentration and the cannabinoid compound within the gel composition during storage.
- the carboxylic acid may reduce variation of the nicotine concentration within the gel composition during storage.
- the gel composition may include a carboxylic acid in a range from about 0.1 percent by weight to about 5 percent by weight.
- the carboxylic acid may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the carboxylic acid may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the carboxylic acid may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include lactic acid in a range from about 0.1 percent by weight to about 5 percent by weight.
- the lactic acid may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the lactic acid may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the lactic acid may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition may include levulinic acid in a range from about 0.1 percent by weight to about 5 percent by weight.
- the levulinic acid may be in a range from about 0.5 percent by weight to about 3 percent by weight.
- the levulinic acid may be in a range from about 0.5 percent by weight to about 2 percent by weight.
- the levulinic acid may be in a range from about 1 percent by weight to about 2 percent by weight.
- the gel composition preferably comprises some water.
- the gel composition is more stable when the composition comprises some water.
- the gel composition comprises at least about 1 percent by weight, or at least about 2 percent by weight. , or at least about 5 percent by weight of water.
- the gel composition comprises at least about 10 percent by weight or at least about 15 percent by weight water.
- the gel composition comprises between about 8 percent by weight to about 32 percent by weight water. Preferably the gel composition comprises from about 15 percent by weight to about 25 percent by weight water. Preferably the gel composition comprises from about 18 percent by weight to about 22 percent by weight water. Preferably the gel composition comprises about 20 percent by weight water.
- the aerosol-generating substrate comprises between about 150 mg and about 350 mg of the gel composition.
- the aerosol-generating substrate comprises a porous medium loaded with the gel composition.
- a porous medium loaded with the gel composition is that the gel composition is retained within the porous medium, and this may aid manufacturing, storage or transport of the gel composition. It may assist in keeping the desired shape of the gel composition, especially during manufacture, transport, or use.
- the porous medium may be any suitable porous material able to hold or retain the gel composition. Ideally the porous medium can allow the gel composition to move within it.
- the porous medium comprises natural materials, synthetic, or semisynthetic, or a combination thereof.
- the porous medium comprises sheet material, foam, or fibres, for example loose fibres; or a combination thereof.
- the porous medium comprises a woven, non-woven, or extruded material, or combinations thereof.
- the porous medium comprises, cotton, paper, viscose, PLA, or cellulose acetate, of combinations thereof.
- the porous medium comprises a sheet material, for example, cotton or cellulose acetate.
- the porous medium comprises a sheet made from cotton fibres.
- the porous medium used in the present invention may be crimped or shredded.
- the porous medium is crimped.
- the porous medium comprises shredded porous medium.
- the crimping or shredding process can be before or after loading with the gel composition.
- Crimping of the sheet material has the benefit of improving the structure to allow passageways through the structure.
- the passageways though the crimped sheet material assist in loading up gel, retaining gel and also for fluid to pass through the crimped sheet material. Therefore there are advantages of using crimped sheet material as the porous medium.
- Shredding gives a high surface area to volume ratio to the medium thus able to absorb gel easily.
- the sheet material is a composite material.
- the sheet material is porous.
- the sheet material may aid manufacture of the tubular element comprising a gel.
- the sheet material may aid introducing an active agent to the tubular element comprising a gel.
- the sheet material may help stabilise the structure of the tubular element comprising a gel.
- the sheet material may assist transport or storage of the gel. Using a sheet material enables, or aids, adding structure to the porous medium for example by crimping of the sheet material.
- the porous medium may be a thread.
- the thread may comprise for example cotton, paper or acetate tow.
- the thread may also be loaded with gel like any other porous medium.
- the thread may be loaded with gel by any known means.
- the thread may be simply coated with gel, or the thread may be impregnated with gel. In the manufacture, the threads may be impregnated with gel and stored ready for use to be included in the assembly of a tubular element.
- the porous medium loaded with the gel composition is preferably provided within a tubular element that forms a part of the aerosol-generating article.
- tubular element is used to describe a component suitable for use in an aerosol generating article.
- the tubular element may be longer in longitudinal length then in width but not necessarily as it may be one part of a multi- component item that ideally will be longer in its longitudinal length then its width.
- the tubular element is cylindrical but not necessarily.
- the tubular element may have an oval, polygonal like triangular or rectangular or random cross section.
- the tubular element preferably comprises a first longitudinal passageway.
- the tubular element is preferably formed of a wrapper that defines the first longitudinal passageway.
- the wrapper is preferably a water-resistant wrapper. This water-resistant property the wrapper may be achieved by using a water-resistant material, or by treating the material of the wrapper. It may be achieved by treating one side or both sides of the wrapper. Being water- resistant would assist in not losing structure, stiffness or rigidity. It may also assist in preventing leaks of gel or liquid, especially when gels of a fluid structure are used.
- Embodiments of the invention in which the aerosol-generating element comprises an aerosol-generating substrate comprising a gel composition may advantageously comprise an upstream element upstream of the aerosol-generating element.
- the upstream element advantageously prevents physical contact with the gel composition.
- the upstream element can also advantageously compensate for any potential reduction in RTD, for example, due to evaporation of the gel composition upon heating of the aerosol-generating element during use. Further details about the provision of one such upstream element will be described below.
- the downstream section may have any length.
- the downstream section may have a length of at least about 10 millimetres.
- the downstream section may have a length of at least about 15 millimetres, at least about 20 millimetres, at least about 25 millimetres, or at least about 30 millimetres.
- the provision of a downstream section having a length greater than the values set out above may advantageously provide space for the aerosol to cool and condense before reaching the consumer. This may also ensure a user is spaced apart from the heating element when the aerosol-generating article is used in conjunction with an aerosol generating device.
- the downstream section may have a length of no more than about 60 millimetres.
- the downstream section may have a length of no more than about 50 millimetres, no more than about 55 millimetres, no more than about 40 millimetres, or no more than about 35 millimetres.
- the downstream section may have a length of between about 10 millimetres and about 60 millimetres, between about 15 millimetres and about 50 millimetres, between about 20 millimetres and about 55 millimetres, between about 25 millimetres and about 40 millimetres, or between about 30 millimetres and about 35 millimetres.
- the downstream section may have a length of about 33 millimetres.
- a ratio between the length of the downstream section and the length of the element comprising aerosol-generating substrate may be from about 1.0 to about 4.5.
- a ratio between the length of the downstream section and the length of the aerosol-generating element is at least about 1 .5, more preferably at least about 2.0, even more preferably at least about 2.5. In preferred embodiments, a ratio between the length of the downstream section and the length of the aerosol-generating element is less than about 4.0, more preferably less than about 3.5, even more preferably less than about 3.0.
- a ratio between the length of the downstream section and the length of the aerosol-generating element is from about 1.5 to about 4.0, preferably from about 2.0 to about 3.5, more preferably from about 2.5 to about 3.0.
- a ratio between the length of the downstream section and the length of the aerosol-generating element is about 2.75.
- a ratio between the length of the downstream section and the overall length of the aerosol-generating article may be from about 0.1 to about 1.5.
- a ratio between the length of the downstream section and the overall length of the aerosol-generating article is at least about 0.25, more preferably at least about 0.50.
- a ratio between the length of the downstream section and the overall length of the aerosolgenerating article is preferably less than about 1 .25, more preferably less than about 1 .0.
- a ratio between the length of the downstream section and the overall length of the aerosol-generating article is preferably from about 0.25 to about 1 .25, more preferably from about 0.5 to about 1.0.
- a ratio between the length of the downstream section and the overall length of the aerosol-generating article is about 0.73.
- the length of the downstream section may be composed of the sum of the lengths of the individual components forming the downstream section.
- an RTD of the downstream section is less than about 10 mm H2O.
- an RTD of the downstream section is less than or equal to about 8 mm H2O, more preferably less than or equal to about 5 mm H2O, even more preferably less than or equal to about 1 mm H2O.
- the RTD of the downstream section will also be discussed in greater detail below.
- the downstream section may comprise an unobstructed airflow pathway from the downstream end of the aerosol-generating substrate to the downstream end of the downstream section.
- the unobstructed airflow pathway from the downstream end of the aerosol-generating substrate to the downstream end of the downstream section has a minimum diameter of about 0.5 millimetres.
- the unobstructed airflow pathway may have a minimum diameter of 1 millimetre, 2 millimetres, 3 millimetres, or 5 millimetres.
- the downstream section may comprise a hollow tube segment.
- a hollow tube segment may advantageously provide a desired overall length of the aerosol-generating article without increasing the resistance to draw unacceptably.
- the hollow tube may extend from the downstream end of the downstream section to the upstream end of the downstream section. In other words, the entire length of the downstream section may be accounted for by the hollow tube segment. Where this is the case, it will be appreciated that the lengths and length ratios set out above in relation to the downstream section are equally applicable to the length of the hollow tube segment.
- the hollow tube segment may abut the downstream end of the aerosol-generating article.
- the hollow tube segment may be spaced apart from the downstream end of the aerosol-generating article. Where this is the case, there may be an empty space between the downstream end of the aerosol-generating substrate and the upstream end of the hollow tube segment.
- the hollow tube segment may have an internal diameter.
- the hollow tube segment may have a constant internal diameter along the length of the hollow tube segment.
- the internal diameter of the hollow tube segment may vary along the length of the hollow tube segment.
- the hollow tube segment may have an internal diameter of at least about 2 millimetres.
- the hollow tube segment may have an internal diameter of at least about 4 millimetres, at least about 5 millimetres, or at least about 7 millimetres.
- the provision of a hollow tube segment having an internal diameter as set out above may advantageously provide sufficient rigidity and strength to the hollow tube segment
- the hollow tube segment may have an internal diameter of no more than about 10 millimetres.
- the hollow tube segment may have an internal diameter of no more than about 9 millimetres, no more than about 8 millimetres, or no more than about 7.5 millimetres.
- a hollow tube segment having an internal diameter as set out above may advantageously reduce the resistance to draw of the hollow tubular segment.
- the hollow tube segment may have an internal diameter of between about 2 millimetres and about 10 millimetres, between about 4 millimetres and about 9 millimetres, between about 5 millimetres and about 8 millimetres, or between about 7 millimetres and about 7.5 millimetres.
- the hollow tube segment may have an internal diameter of about 7.1 millimetres.
- the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be at least about 0.8.
- the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be at least about 0.85, at least about 0.9, or at least about 0.95.
- the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be no more than about 0.99.
- the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be no more than about 0.98.
- the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be about 0.97.
- the provision of relatively large internal diameter may advantageously reduce the resistance to draw of the hollow tubular segment.
- the lumen of the hollow tubular segment may have any cross sectional shape.
- the lumen of the hollow tubular segment may have a circular cross sectional shape.
- the hollow tubular segment may be formed from any material.
- the hollow tube may comprise cellulose acetate tow.
- the hollow tubular segment may have a thickness of between about 0.1 millimetre and about 1 millimetre.
- the hollow tubular segment may have a thickness of about 0.5 millimetres.
- the hollow tubular segment comprises cellulose acetate tow
- the cellulose acetate tow may have a denier per filament of between about 2 and about 4 and a total denier of between about 25 and about 40.
- the hollow tubular segment may comprise paper.
- the hollow tubular segment may comprise at least one layer of paper.
- the paper may be very rigid paper.
- the paper may be crimped paper, such as crimped heat resistant paper or crimped parchment paper.
- the paper may be cardboard.
- the hollow tabular segment may be paper tube.
- the hollow tubular segment may be a tube formed from spirally wound paper.
- the hollow tabular segment may be formed from a plurality of layers of the paper.
- the paper may have a basis weight of at least about 50 grams per square meter, at least about 60 grams per square meter, at least about 70 grams per square meter, or at least about 90 grams per square meter.
- the paper may have a thickness of at least about 50 micrometres.
- the paper may have a thickness of at least about 70 micrometres, at least about 90 micrometres, or at least about 100 micrometres.
- the hollow tubular segment may comprise a polymer.
- the hollow tubular segment may comprise a polymeric film.
- the polymeric film may comprise a cellulosic film.
- the hollow tubular segment may comprise low density polyethylene (LDPE) or polyhydroxyalkanoate (PHA) fibres.
- LDPE low density polyethylene
- PHA polyhydroxyalkanoate
- the downstream section may comprise a modified tubular element.
- the modified tubular element may be provided instead of a hollow tubular element.
- the modified tubular element may be provided immediately downstream of the aerosol-generating substrate.
- the modified tubular element may abut the aerosol-generating substrate.
- the modified tubular element may comprise a tubular body defining a cavity extending from a first upstream end of the tubular body to a second downstream end of the tubular body.
- the modified tubular element may also comprise a folded end portion forming a first end wall at the first upstream end of the tubular body.
- the first end wall may delimit an opening which permits airflow between the cavity and the exterior of the modified tubular element.
- the opening is configured to allow airflow from the aerosol-generating substrate through the opening and into the cavity.
- the cavity of the tubular body may be substantially empty to allow substantially unrestricted airflow along the cavity.
- the RTD of the modified tubular element may be localised at a specific longitudinal position of the modified tubular element.
- the RTD of the modified tubular element may be localised at the first end wall. In this way, the RTD of the modified tubular element may be substantially controlled through the chosen configuration of the first end wall and its corresponding opening.
- the RTD of the modified tubular element (which is essentially the RTD of the first end wall) is of the same order of magnitude of the RTD of a hollow tubular segment as described above.
- the modified tubular element may have any length.
- the modified tubular element may have a length of between about 10 millimetres and about 60 millimetres, between about 15 millimetres and about 50 millimetres, between about 20 millimetres and about 55 millimetres, between about 25 millimetres and about 40 millimetres, or between about 30 millimetres and about 35 millimetres.
- the modified tubular element may have a length of about 33 millimetres.
- the modified tubular element may have any external diameter (DE).
- the modified tubular element may have an external diameter (DE) of between about 5 millimetres and about 12 millimetres, between about 6 millimetres and about 12 millimetres, or between about 7 millimetres and about 12 millimetres.
- the modified tubular element may have an external diameter (DE) of about 7.3 millimetres.
- the modified tubular element may have any internal diameter (Di).
- the modified tubular element may have an internal diameter (Di) of between about 2 millimetres and about 10 millimetres, between about 4 millimetres and about 9 millimetres, between about 5 millimetres and about 8 millimetres, or between about 7 millimetres and about 7.5 millimetres.
- the modified tubular element may have an internal diameter (Di) of about 7.1 millimetres.
- the modified tubular element may have a peripheral wall having any thickness.
- the peripheral wall of the modified tubular element may have a thickness of between about 0.05 millimetres and about 0.5 millimetres.
- the peripheral wall of the modified tubular element may have a thickness of about 0.1 millimetres.
- the downstream section may include ventilation.
- the ventilation may be provided to allow cooler air from outside the aerosol-generating article to enter the interior of the downstream section.
- the aerosol-generating article may typically have a ventilation level of at least about 10 percent, preferably at least about 20 percent.
- the aerosol-generating article has a ventilation level of at least about 20 percent or 25 percent or 30 percent. More preferably, the aerosol-generating article has a ventilation level of at least about 35 percent.
- the aerosol-generating article preferably has a ventilation level of less than about 80 percent. More preferably, the aerosol-generating article has a ventilation level of less than about 60 percent or less than about 50 percent.
- the aerosol-generating article may typically have a ventilation level of between about 10 percent and about 80 percent.
- the aerosol-generating article has a ventilation level from about 20 percent to about 80 percent, preferably from about 20 percent to about 60 percent, more preferably from about 20 percent to about 50 percent. In other embodiments, the aerosolgenerating article has a ventilation level from about 25 percent to about 80 percent, preferably from about 25 percent to about 60 percent, more preferably from about 25 percent to about 50 percent. In further embodiments, the aerosol-generating article has a ventilation level from about 30 percent to about 80 percent, preferably from about 30 percent to about 60 percent, more preferably from about 30 percent to about 50 percent. n particularly preferred embodiments, the aerosol-generating article has a ventilation level from about 40 percent to about 50 percent. In some particularly preferred embodiments, the aerosol-generating article has a ventilation level of about 45 percent.
- the inventors have found that the temperature drop caused by the admission of cooler, external air into the hollow tubular segment may have an advantageous effect on the nucleation and growth of aerosol particles.
- Formation of an aerosol from a gaseous mixture containing various chemical species depends on a delicate interplay between nucleation, evaporation, and condensation, as well as coalescence, all the while accounting for variations in vapour concentration, temperature, and velocity fields.
- the so-called classical nucleation theory is based on the assumption that a fraction of the molecules in the gas phase are large enough to stay coherent for long times with sufficient probability (for example, a probability of one half) .
- These molecules represent some kind of a critical, threshold molecule clusters among transient molecular aggregates, meaning that, on average, smaller molecule clusters are likely to disintegrate rather quickly into the gas phase, while larger clusters are, on average, likely to grow.
- Such critical cluster is identified as the key nucleation core from which droplets are expected to grow due to condensation of molecules from the vapour. It is assumed that virgin droplets that just nucleated emerge with a certain original diameter, and then may grow by several orders of magnitude. This is facilitated and may be enhanced by rapid cooling of the surrounding vapour, which induces condensation. In this connection, it helps to bear in mind that evaporation and condensation are two sides of one same mechanism, namely gas— liquid mass transfer. While evaporation relates to net mass transfer from the liquid droplets to the gas phase, condensation is net mass transfer from the gas phase to the droplet phase. Evaporation (or condensation) will make the droplets shrink (or grow), but it will not change the number of droplets.
- the temperature and rate of cooling can play a critical role in determining how the system responds.
- different cooling rates may lead to significantly different temporal behaviours as concerns the formation of the liquid phase (droplets), because the nucleation process is typically nonlinear.
- nucleation burst it is hypothesised that cooling can cause a rapid increase in the number concentration of droplets, which is followed by a strong, short-lived increase in this growth (nucleation burst). This nucleation burst would appear to be more significant at lower temperatures. Further, it would appear that higher cooling rates may favour an earlier onset of nucleation.
- the rapid cooling induced by the admission of external air into the hollow tubular segment can be favourably used to favour nucleation and growth of aerosol droplets.
- the admission of external air into the hollow tubular segment has the immediate drawback of diluting the aerosol stream delivered to the consumer.
- the inventors have surprisingly found that the diluting effect on the aerosol - which can be assessed by measuring, in particular, the effect on the delivery of aerosol former (such as glycerol) included in the aerosol-generating substrate) is advantageously minimised when the ventilation level is within the ranges described above.
- aerosol former such as glycerol
- ventilation levels between 25 percent and 50 percent, and even more preferably between 28 and 42 percent, have been found to lead to particularly satisfactory values of glycerin delivery.
- the extent of nucleation and, as a consequence, the delivery of nicotine and aerosolformer (for example, glycerol) are enhanced.
- the ventilation into the downstream section may be provided along substantially the entire length of the downstream section.
- the downstream section may comprise a porous material which allows air to enter the downstream section.
- the hollow segment may be formed from a porous material which allows air to enter the interior of the hollow tubular segment.
- the wrapper may be formed from a porous material which allows air to enter the interior of the hollow tubular segment.
- the downstream section may comprise a first ventilation zone for providing ventilation into the downstream section.
- the first ventilation zone comprises a portion of the downstream section through which a greater volume of air may pass compared to the remainder of the downstream section.
- the first ventilation zone may be a portion of the downstream section having a higher porosity than the remainder of the downstream section.
- the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of at least 5 percent.
- the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of at least 10 percent, at least 20 percent, at least 25 percent, at least 30 percent, or at least 35 percent.
- the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of no more than 80 percent.
- the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of no more than 60 percent, or less than 50 percent.
- the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 10 percent and 80 percent, between 20 percent and 80 percent, between 20 percent and 60 percent, or from 20 percent and 50 percent. In other embodiments, the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 25 percent and 80 percent, between 25 percent and 60 percent, or between 25 percent and 50 percent. In further embodiments, the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 30 percent and 80 percent, between 30 percent and 60 percent, or between 30 percent and 50 percent.
- the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 40 percent and 50 percent. In some particularly preferred embodiments, first ventilation zone may comprise a porous portion of the downstream section having a ventilation of 45 percent.
- the first ventilation zone may comprise a first line of perforation holes circumscribing the downstream section.
- the ventilation zone may comprise two circumferential rows of perforation holes.
- the perforation holes may be formed online during manufacturing of the aerosol-generating article.
- Each circumferential row of perforation holes may comprise between about 5 and about 40 perforations, for example each circumferential row of perforation holes may comprise between about 8 and about 30 perforations.
- the ventilation zone preferably comprises at least one corresponding circumferential row of perforation holes provided through a portion of the combining plug wrap. These may also be formed online during manufacture of the smoking article. Preferably, the circumferential row or rows of perforation holes provided through a portion of the combining plug wrap are in substantial alignment with the row or rows of perforations through the downstream section.
- the ventilation zone preferably comprises at least one corresponding circumferential row of perforation holes provided through the band of tipping paper. These may also be formed online during manufacture of the smoking article.
- the circumferential row or rows of perforation holes provided through the band of tipping paper are in substantial alignment with the row or rows of perforations through the downstream section.
- the first line of perforation holes may comprise at least one perforation hole having a width of at least about 50 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a width of at least about 65 micrometres, at least about 80 micrometres, at least about 90 micrometres, or at least about 100 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a width no greater than about 200 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a width no greater than about 175 micrometres, no greater than about 150 micrometres, no greater than about 125 micrometres, or no greater than about 120 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a width of between about 50 micrometres and about 200 micrometres, between about 65 micrometres and about 175 micrometres, between about 90 micrometres and about 150 micrometres, or between about 100 micrometres and about 120 micrometres.
- the width of the perforation holes may be determined by the focus diameter of the laser.
- the first line of perforation holes may comprise at least one perforation hole having a length of at least about 400 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a length of at least about 425 micrometres, at least about 450 micrometres, at least about 475 micrometres, or at least about 500 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a length no greater than about 1 millimetre.
- the first line of perforation holes may comprise at least one perforation hole having a length no greater than about 950 micrometres, no greater than about 900 micrometres, no greater than about 850 micrometres, or no greater than about 800 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having a length of between about 400 micrometres and about 1 millimetre, between about 425 micrometres and about 950 micrometres, between about 450 micrometres and about 900 micrometres, between about 475 micrometres and about 850 micrometres, or between about 500 micrometres and about 800 micrometres.
- the first line of perforation holes may comprise at least one perforation hole having an opening area of at least about 0.01 millimetres squared.
- the first line of perforation holes may comprise at least one perforation hole having an opening area of at least about 0.02 millimetres squared, at least about 0.03 millimetres squared, or at least about 0.05 millimetres squared.
- the first line of perforation holes may comprise at least one perforation hole having an opening area of no more than about 0.5 millimetres squared.
- the first line of perforation holes may comprise at least one perforation hole having an opening area of no more than about 0.3 millimetres squared, no more than about 0.25 millimetres squared, or no more than about 0.1 millimetres squared.
- the first line of perforation holes may comprise at least one perforation hole having an opening area of between about 0.01 millimetres squared and about 0.5 millimetres squared, between about 0.02 millimetres squared and about 0.3 millimetres squared, between about 0.03 millimetres squared and about 0.25 millimetres squared, or between about 0.05 millimetres squared and about 0.1 millimetres squared.
- the first line of perforation holes may comprise at least one perforation hole having an opening area of between about 0.05 millimetres squared and about 0.096 millimetres squared.
- the aerosol-generating article may comprise a wrapper circumscribing at least a portion of the downstream section, the first ventilation zone may comprise a porous portion of the wrapper.
- the wrapper may be a paper wrapper, and the first ventilation zone may comprise a portion of porous paper.
- the downstream section may comprise a hollow tube spaced apart from the downstream end of the aerosol generating substrate.
- the hollow tube may be connected to the aerosol-generating substrate by a paper wrapper.
- the wrapper may be a porous paper wrapper.
- the first ventilation zone may comprise the portion of porous paper wrapper overlaying the space between the downstream end of the aerosol-generating substrate and the upstream end of the hollow tube. In this case, the upstream end of the first ventilation zone abuts the downstream end of the aerosol-generating substrate and the downstream end of the first ventilation zone abuts the upstream end of the hollow tube.
- the porous portion of the wrapper forming the first ventilation zone may have a basis weight which is lower than that of a portion of the wrapper which does not form part of the first ventilation zone.
- the porous portion of the wrapper forming the first ventilation zone may have a thickness which is lower than that of a portion of the wrapper which does not form part of the first ventilation zone.
- the upstream end of the first ventilation zone may be less than 10 millimetres from the downstream end of the aerosol-generating substrate.
- the upstream end of the first ventilation zone may be less than 8 millimetres, less than 5 millimetres, less than 3 millimetres, or less than 1 millimetre from the from the downstream end of the aerosol-generating substrate.
- the upstream end of the first ventilation zone may be longitudinally aligned with the downstream end of the aerosol-generating substrate.
- the upstream end of the first ventilation zone may be located less than 25 percent of the way along the length of the downstream element from the downstream end of the aerosolgenerating substrate.
- the upstream end of the first ventilation zone may be located less than 20 percent, less than 18 percent, less than 15 percent, less than 10 percent, less than 5 percent, or less than 1 percent of the way along the length of the downstream element from the downstream end of the aerosol-generating substrate.
- the downstream end of the first ventilation zone may be located less than 30 percent of the way along the length of the downstream element from the downstream end of the aerosol-generating substrate.
- the downstream end of the first ventilation zone may be located less than 25 percent, less than 20 percent, less than 18 percent, less than 15 percent, less than 10 percent, or less than 5 percent of the way along the length of the downstream element from the downstream end of the aerosol-generating substrate.
- the downstream end of the first ventilation zone may be no further than 10 millimetres from the downstream end of the aerosol-generating substrate. In other words, the first ventilation zone may be entirely located within 10 millimetres of the aerosol-generating substrate.
- the downstream end of the first ventilation zone may be no further than 8 millimetres, no further than 5 millimetres, or no further than 3 millimetres from the downstream end of the aerosol-generating substrate.
- the first ventilation zone may be located anywhere along the length of the downstream section.
- the downstream end of the first ventilation zone may be located no more than about 25 millimetres from the downstream end of the aerosol-generating article.
- the first ventilation zone may be located no more than about 20 millimetres from the downstream end of the aerosol generating article.
- Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded when the aerosol-generating article is inserted into an aerosol generating device.
- the downstream end of the first ventilation zone may be located at least about 8 millimetres from the downstream end of the aerosol generating article.
- the downstream end of the first ventilation zone may be located at least about 10 millimetres, at least 12 millimetres, or at least about 15 millimetres from the downstream end of the aerosolgenerating article.
- Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded by a user’s mouth or lips when the aerosol-generating article is in use.
- the downstream end of the first ventilation zone may be located between about 8 millimetres and about 25 millimetres, between about 10 millimetres and about 25 millimetres, or between about 15 millimetres and about 20 millimetres from the downstream end of the aerosol-generating article.
- the downstream end of the first ventilation zone may be located about 18 millimetres from the downstream end of the aerosol-generating article.
- the upstream end of the first ventilation zone may be located at least about 20 millimetres from the upstream end of the aerosol-generating article.
- the upstream end of the first ventilation zone may be located at least about 25 millimetres from the upstream end of the aerosol-generating article.
- Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded when the aerosol-generating article is inserted into an aerosol generating device.
- the upstream end of the first ventilation zone may be located no more than 37 millimetres from the upstream end of the aerosol-generating article.
- the upstream end of the first ventilation zone may be located no more than about 30 millimetres from the upstream end of the aerosol-generating article.
- Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded by a user’s mouth or lips when the aerosol-generating article is in use.
- the upstream end of the first ventilation zone may be located between about 20 millimetres and about 37 millimetres, or between about 25 millimetres and about 30 millimetres from the upstream end of the aerosol-generating article.
- the upstream end of the first ventilation zone may be located about 27 millimetres from the downstream end of the aerosolgenerating article.
- the first ventilation zone may have any length.
- the first ventilation zone may have a length of at least 0.5 millimetres.
- the longitudinal distance between the downstream end of the first ventilation zone and the an upstream end of the first ventilation zone is at least 0.5 millimetres.
- the first ventilation zone may have a length of at least 1 millimetre, at least 2 millimetres, at least 5 millimetres, or at least 8 millimetres.
- the first ventilation zone may have a length of no more than 10 millimetres.
- the first ventilation zone may have a length of no more than 8 millimetres, or no more than 5 millimetres.
- the first ventilation zone may have a length of between 0.5 millimetres and 10 millimetres.
- the first ventilation zone may have a length of between 1 millimetre and 8 millimetres, or between 2 millimetres and 5 millimetres.
- the aerosol-generating article may further comprise a further element or component in addition to the hollow tubular element and the aerosol-generating element, such as a filter segment or mouthpiece segment.
- a further element or component in addition to the hollow tubular element and the aerosol-generating element such as a filter segment or mouthpiece segment.
- the downstream section of the aerosolgenerating article may comprise an element or component in addition to the hollow tubular element, such as a filter segment or mouthpiece segment.
- Such a further element may be located downstream of the hollow tubular element. Such a further element may be located immediately downstream of the hollow tubular element. Such a further element may be located between the aerosol-generating element and the hollow tubular element. Such a further element may extend from the downstream end of the hollow tubular element to the mouth end of the aerosol-generating article or to the downstream end of the downstream section. Such a further element is preferably a downstream element or segment. Such a further element may be a filter element or segment or a mouthpiece segment. Such a further element may form part of the downstream section of the aerosolgenerating article of the present disclosure. Such a further element may be in axial alignment with the rest of the components of the aerosol-generating article, such as the aerosolgenerating element and the hollow tubular element. Furthermore, the further element may have a similar diameter to the outer diameter of the hollow tubular element, the diameter of the aerosol-generating element or the diameter of the aerosol-generating article.
- the aerosol-generating article of the present disclosure preferably comprises a wrapper circumscribing the downstream section (or the components of the downstream section).
- a wrapper may be an outer tipping wrapper that circumscribes the downstream section and a portion of the aerosol-generating element, such that the downstream section is attached to the aerosol-generating element.
- the downstream section of the aerosol-generating article of the present disclosure may define a recessed cavity.
- first segment or “further element” may alternatively be referred to in the present disclosure as a “mouthpiece segment”, a “retaining segment”, a “downstream segment”, a “mouthpiece element”, a “downstream element”, a “retaining element”, a “filter element” or a “filter segment” or a “downstream plug element”.
- mouthpiece may refer to an element of the aerosol-generating article that is located downstream of the aerosol-generating element of the aerosol-generating article, preferably in the vicinity of the mouth end of the article.
- the resistance to draw (RTD) of a component or the aerosol-generating article is measured in accordance with ISO 6565-2015.
- the RTD refers the pressure required to force air through the full length of a component.
- the terms “pressure drop” or “draw resistance” of a component or article may also refer to the “resistance to draw”.
- Such terms generally refer to the measurements in accordance with ISO 6565-2015 are normally carried out at under test at a volumetric flow rate of about 17.5 millilitres per second at the output or downstream end of the measured component at a temperature of about 22 degrees Celsius, a pressure of about 101 kPa (about 760 T orr) and a relative humidity of about 60%.
- the resistance to draw per unit length of a particular component (or element) of the aerosol-generating article can be calculated by dividing the measured resistance to draw of the component by the total axial length of the component.
- the RTD per unit length refers to the pressure required to force air through a unit length of a component. Throughout the present disclosure, a unit length refers to a length of 1 mm. Accordingly, in order to derive the RTD per unit length of a particular component, a specimen of a particular length, 15 mm for example, of the component can be used in measurement. The RTD of such a specimen is measured in accordance with ISO 6565-2015.
- the RTD per unit length of the component is about 1 mm H2O per mm.
- the RTD per unit length of the component is dependent on the structural properties of the material used for the component as well as the cross-sectional geometry or profile of the component, amongst other factors.
- the relative RTD, or RTD per unit length, of the downstream section may be between about 0 mm H2O per mm and about 3 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2.5 mm H2O O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 1 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 0.75 mm H2O per mm.
- the relative RTD, or RTD per unit length, of the downstream section may be greater than about 0 mm H2O per mm and less than about 3 mm H2O per mm.
- the RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 2.5 mm H2O per mm.
- the RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 2 mm H 2 O per mm.
- the RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 1 mm H2O per mm.
- the RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 0.75 mm H2O per mm.
- the RTD per unit length of the downstream section may be greater or equal to about 0 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 3 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2.5 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 1 mm H2O per mm.
- the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 0.75 mm H2O per mm.
- the resistance to draw of the downstream section may be greater than or equal to about 0 mm H2O and less than about 10 mm H2O.
- the resistance to draw of the downstream section may be greater than 0 mm H2O and less than about 5 mm H2O.
- the resistance to draw of the downstream section may be greater than 0 mm H2O and less than about 2 mm H2O.
- the resistance to draw of the downstream section may be greater than 0 mm H2O and less than about 1 mm H2O.
- the upstream end of the aerosol-generating article may be defined by a wrapper.
- the provision of a wrapper at the upstream end of the aerosol-generating article may advantageously retain the aerosol-forming substrate in the aerosol-generating article. This feature may also advantageously prevent users from coming into direct contact with the aerosol-generating substrate.
- the wrapper may be mechanically closed at the upstream end of the aerosolgenerating article. This may be achieved by folding or twisting the wrapper.
- An adhesive may be used to close the upstream end of the aerosol-generating article.
- the wrapper defining the upstream end of the aerosol-generating article may be formed from the same piece of material as the wrapper circumscribing at least a portion of the downstream section.
- This provision may advantageously simplify manufacture of the aerosol-generating article since only one piece of wrapper material may be needed.
- the use of a single piece of wrapper material may remove the need for a seam to connect two pieces of wrapper material. This may advantageously simplify manufacture.
- the lack of a seam may also advantageously prevent or reduce any of the aerosol-generating substrate from leaking out of the aerosol-generating article.
- the aerosol-generating article of the present invention may further comprise an upstream element upstream of the aerosol-generating substrate.
- the upstream element may extend from an upstream end of the aerosol-generating substrate to the upstream end of the aerosol-generating article.
- the upstream element may abut the upstream end of the aerosolgenerating article.
- the upstream element may be referred to as an upstream section.
- the aerosol-generating article may comprise an air inlet at the upstream end of the aerosol-generating article.
- the air inlet may be provided through the upstream element. The air entering through the air inlet may pass into the aerosol-generating substrate in order to generate the mainstream aerosol.
- the upstream section may have a high RTD.
- the provision of an upstream element having a relatively high RTD may advantageously provide an acceptable overall RTD without the need for a high RTD element, such as a filter, downstream of the aerosolgenerating substrate.
- a high RTD element such as a filter
- the majority of the overall RTD of the aerosol-generating article may be accounted for by the RTD of the upstream section.
- the ratio of the RTD of the upstream section to the RTD of the downstream section may be more than 1.
- the RTD of the downstream section may be more than about 2, more than about 5, more than about 8, more than about 10, more than about 15, more than about 20, or more than about 50.
- the RTD of the upstream section may be at least about 5 mm H2O.
- the RTD of the upstream section may be at least about 10 mm H2O, at least about 12 mm H2O, at least about 15 mm H2O, at least about 20 mm H2O.
- the RTD of the upstream section may be no more than about 80 mm H2O.
- the RTD of the upstream section may be no more than about 70 mm H2O, no more than about 60 mm H2O, no more than about 50 mm H2O, or no more than about 40 mm H2O.
- the RTD of the upstream section may be between about 5 mm H2O and about 80 mm H2O.
- the RTD of the upstream section may be between about 10 mm H2O and about 70 mm H2O, between about 12 mm H2O and about 60 mm H2O, between about 15 mm H2O and about 50 mm H2O, or between about 20 mm H2O and about 40 mm H2O.
- the upstream section may advantageously prevent direct physical contact with the upstream end of the aerosol-generating substrate.
- the upstream section may prevent direct physical contact with the upstream end of the susceptor element. This helps to prevent the displacement or deformation of the susceptor element during handling or transport of the aerosol-generating article. This in turn helps to secure the form and position of the susceptor element.
- the presence of an upstream section may help to prevent any loss of the substrate, which may be advantageous, for example, if the substrate contains particulate plant material.
- the upstream section may also provide an improved appearance to the upstream end of the aerosol-generating article. Furthermore, if desired, the upstream section may be used to provide information on the aerosol-generating article, such as information on brand, flavour, content, or details of the aerosol-generating device that the article is intended to be used with.
- the upstream section may comprise a porous plug element.
- the porous plug element may have a porosity of at least about 50 percent in the longitudinal direction of the aerosolgenerating article. More preferably, the porous plug element has a porosity of between about 50 percent and about 90 percent in the longitudinal direction.
- the porosity of the porous plug element in the longitudinal direction is defined by the ratio of the cross-sectional area of material forming the porous plug element and the internal cross-sectional area of the aerosolgenerating article at the position of the porous plug element
- the porous plug element may be made of a porous material or may comprise a plurality of openings. This may, for example, be achieved through laser perforation. Preferably, the plurality of openings is distributed homogeneously over the cross-section of the porous plug element.
- the porosity or permeability of the upstream section may advantageously be varied in order to provide a desirable overall resistance to draw of the aerosol-generating article.
- the upstream section may be formed from a material that is impermeable to air.
- the aerosol-generating article may be configured such that air flows into the aerosol-generating element through suitable ventilation means provided in a wrapper.
- the upstream section may be made of any material suitable for use in an aerosolgenerating article.
- the upstream element may comprise a plug of material.
- Suitable materials for forming the upstream section include filter materials, ceramic, polymer material, cellulose acetate, cardboard, zeolite or aerosol-generating substrate.
- the upstream section comprises a plug comprising cellulose acetate.
- the downstream end of the plug of material may about the upstream end of the aerosol-generating substrate.
- the upstream section may comprise a plug comprising cellulose acetate abutting the upstream end of the aerosol-generating substrate. This may advantageously help retain the aerosol- generating substrate in place.
- the downstream end of the plug of material may be spaced apart from the upstream end of the aerosol-generating substrate.
- the upstream element may comprise a plug comprising fibrous filtration material.
- the upstream section is formed of a heat resistant material.
- the upstream section is formed of a material that resists temperatures of up to 350 degrees Celsius. This ensures that the upstream section is not adversely affected by the heating means for heating the aerosol-generating substrate.
- the upstream section has a diameter that is approximately equal to the diameter of the aerosol-generating article.
- the upstream section may have a length of at least about 1 millimetre.
- the upstream section may have a length of at least about 2 millimetres, at least about 4 millimetres, or at least about 6 millimetres.
- the upstream section may have a length of no more than about 15 millimetres.
- the upstream section may have a length of no more than about 12 millimetres, no more than about 10 millimetres, or no more than about 8 millimetres.
- the upstream section may have a length of between about 1 millimetre and about 15 millimetres.
- the upstream section may have a length of between about 2 millimetres and about 12 millimetres, between about 4 millimetres and about 10 millimetres, or between about 6 millimetres and about 8 millimetres.
- the length of the upstream section can advantageously be varied in order to provide the desired total length of the aerosol-generating article. For example, where it is desired to reduce the length of one of the other components of the aerosol-generating article, the length of the upstream section may be increased in order to maintain the same overall length of the article.
- the upstream section preferably has a substantially homogeneous structure.
- the upstream section may be substantially homogeneous in texture and appearance.
- the upstream section may, for example, have a continuous, regular surface over its entire cross section.
- the upstream section may, for example, have no recognisable symmetries.
- the upstream section may comprise a second tubular element.
- the second tubular element may be provided instead of an upstream element.
- the second tubular element may be provided immediately upstream of the aerosol-generating substrate.
- the second tubular element may abut the aerosol-generating substrate.
- the second tubular element may comprise a tubular body defining a cavity extending from a first upstream end of the tubular body to a second downstream end of the tubular body.
- the second tubular element may also comprise a folded end portion forming a first end wall at the first upstream end of the tubular body.
- the first end wall may delimit an opening which permits airflow between the cavity and the exterior of the second tubular element. Preferably, air may flow from the cavity through the opening and into the aerosol-generating substrate.
- the second tubular element may comprise a second end wall at the second end of its tubular body.
- This second end wall may be formed by folding an end portion of the second tubular element at the second downstream end of the tubular body.
- the second end wall may delimit an opening, which may also permit airflow between the cavity and the exterior of the second tubular element.
- the opening may be configured to so that air may flow from the exterior of the aerosol-generating article through the opening and into the cavity. The opening may therefore provide a conduit through which air can be drawn into the aerosol-generating article and through the aerosol-generating substrate.
- the upstream section is preferably circumscribed by a wrapper.
- the wrapper circumscribing the upstream section is preferably a stiff plug wrap, for example, a plug wrap having a basis weight of at least about 80 grams per square metre (gsm), or at least about 100 gsm, or at least about 110 gsm. This provides structural rigidity to the upstream section.
- an aerosol-generating system comprising an aerosol-generating device having a distal end and a mouth end.
- the aerosol-generating device comprises a body.
- the body of the aerosol-generating device defines a device cavity for removably receiving the aerosol-generating article at the mouth end of the device.
- the aerosol-generating device comprises a heating element or heater for heating the aerosol-generating substrate when the aerosol-generating article is received within the device cavity.
- the device cavity may be referred to as the heating chamber of the aerosol-generating device.
- the device cavity may extend between a distal end and a mouth, or proximal, end.
- the distal end of the device cavity may be a closed end and the mouth, or proximal, end of the device cavity may be an open end.
- An aerosol-generating article may be inserted into the device cavity, or heating chamber, via the open end of the device cavity.
- the device cavity may be cylindrical in shape so as to conform to the same shape of an aerosol-generating article.
- the expression “received within” may refer to the fact that a component or element is fully or partially received within another component or element.
- the expression “aerosol-generating article is received within the device cavity” refers to the aerosol-generating article being fully or partially received within the device cavity of the aerosol-generating article.
- the aerosol-generating article may abut the distal end of the device cavity.
- the aerosol-generating article may be in substantial proximity to the distal end of the device cavity.
- the distal end of the device cavity may be defined by an end-wall.
- the length of the device cavity may be between about 10 mm and about 50 mm.
- the length of the device cavity may be between about 20 mm and about 40 mm.
- the length of the device cavity may be between about 25 mm and about 30 mm.
- the length of the device cavity (or heating chamber) may be the same as or greater than the length of the rod of the aerosol-forming substrate.
- a diameter of the device cavity may be between about 4 mm and about 50 mm.
- a diameter of the device cavity may be between about 4 mm and about 30 mm.
- a diameter of the device cavity may be between about 5 mm and about 15 mm.
- a diameter of the device cavity may be between about 6 mm and about 12 mm.
- a diameter of the device cavity may be between about 7 mm and about 10 mm.
- a diameter of the device cavity may be between about 7 mm and about 8 mm.
- a diameter of the device cavity may be the same as or greater than a diameter of the aerosol-generating article.
- a diameter of the device cavity may be the same as a diameter of the aerosol-generating article in order to establish a tight fit with the aerosol-generating article.
- the device cavity may be configured to establish a tight fit with an aerosol-generating article received within the device cavity. Tight fit may refer to a snug fit.
- the aerosol- generating device may comprise a peripheral wall. Such a peripheral wall may define the device cavity, or heating chamber. The peripheral wall defining the device cavity may be configured to engage with an aerosol-generating article received within the device cavity in a tight fit manner, so that there is substantially no gap or empty space between the peripheral wall defining the device cavity and the aerosol-generating article when received within the device.
- Such a tight fit may establish an airtight fit or configuration between the device cavity and an aerosol-generating article received therein.
- the tight fit with an aerosol-generating article may be established along the entire length of the device cavity or along a portion of the length of the device cavity.
- the aerosol-generating device may comprise an air-flow channel extending between a channel inlet and a channel outlet.
- the air-flow channel may be configured to establish a fluid communication between the interior of the device cavity and the exterior of the aerosolgenerating device.
- the air-flow channel of the aerosol-generating device may be defined within the housing of the aerosol-generating device to enable fluid communication between the interior of the device cavity and the exterior of the aerosol-generating device.
- the air-flow channel may be configured to provide air flow into the article in order to deliver generated aerosol to a user drawing from the mouth end of the article.
- the air-flow channel of the aerosol-generating device may be defined within, or by, the peripheral wall of the housing of the aerosol-generating device.
- the air-flow channel of the aerosol-generating device may be defined within the thickness of the peripheral wall or by the inner surface of the peripheral wall, or a combination of both.
- the air-flow channel may partially be defined by the inner surface of the peripheral wall and may be partially defined within the thickness of the peripheral wall.
- the inner surface of the peripheral wall defines a peripheral boundary of the device cavity.
- the air-flow channel of the aerosol-generating device may extend from an inlet located at the mouth end, or proximal end, of the aerosol-generating device to an outlet located away from mouth end of the device.
- the air-flow channel may extend along a direction parallel to the longitudinal axis of the aerosol-generating device.
- the aerosol-generating device may comprise an elongate heater (or heating element) arranged for insertion into an aerosol-generating article when an aerosol-generating article is received within the device cavity.
- the elongate heater may be arranged with the device cavity.
- the elongate heater may extend into the device cavity. Alternative heating arrangements are discussed further below.
- the heater may be any suitable type of heater.
- the heater is an external heater.
- the heater may externally heat the aerosol-generating article when received within the aerosol-generating device.
- Such an external heater may circumscribe the aerosol-generating article when inserted in or received within the aerosol-generating device.
- the heater is arranged to heat the outer surface of the aerosolforming substrate. In some embodiments, the heater is arranged for insertion into an aerosolforming substrate when the aerosol-forming substrate is received within the cavity. The heater may be positioned within the device cavity, or heating chamber.
- the heater may comprise at least one heating element.
- the at least one heating element may be any suitable type of heating element.
- the device comprises only one heating element.
- the device comprises a plurality of heating elements.
- the heater may comprise at least one resistive heating element.
- the heater comprises a plurality of resistive heating elements.
- the resistive heating elements are electrically connected in a parallel arrangement.
- providing a plurality of resistive heating elements electrically connected in a parallel arrangement may facilitate the delivery of a desired electrical power to the heater while reducing or minimising the voltage required to provide the desired electrical power.
- reducing or minimising the voltage required to operate the heater may facilitate reducing or minimising the physical size of the power supply.
- Suitable materials for forming the at least one resistive heating element include but are not limited to: semiconductors such as doped ceramics, electrically ‘conductive’ ceramics (such as, for example, molybdenum disilicide), carbon, graphite, metals, metal alloys and composite materials made of a ceramic material and a metallic material. Such composite materials may comprise doped or undoped ceramics. Examples of suitable doped ceramics include doped silicon carbides. Examples of suitable metals include titanium, zirconium, tantalum and metals from the platinum group.
- suitable metal alloys include stainless steel, nickel-, cobalt-, chromium-, aluminium- titanium- zirconium-, hafnium-, niobium-, molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel, Timetai® and iron- manganese-aluminium based alloys.
- the at least one resistive heating element comprises one or more stamped portions of electrically resistive material, such as stainless steel.
- the at least one resistive heating element may comprise a heating wire or filament, for example a Ni-Cr (Nickel-Chromium), platinum, tungsten or alloy wire.
- the at least one heating element comprises an electrically insulating substrate, wherein the at least one resistive heating element is provided on the electrically insulating substrate.
- the electrically insulating substrate may comprise any suitable material.
- the electrically insulating substrate may comprise one or more of: paper, glass, ceramic, anodized metal, coated metal, and Polyimide.
- the ceramic may comprise mica, Alumina (AI2O3) or Zirconia (ZrOa).
- the electrically insulating substrate has a thermal conductivity of less than or equal to about 40 Watts per metre Kelvin, preferably less than or equal to about 20 Watts per metre Kelvin and ideally less than or equal to about 2 Watts per metre Kelvin.
- the heater may comprise a heating element comprising a rigid electrically insulating substrate with one or more electrically conductive tracks or wire disposed on its surface.
- the size and shape of the electrically insulating substrate may allow it to be inserted directly into an aerosol-forming substrate. If the electrically insulating substrate is not sufficiently rigid, the heating element may comprise a further reinforcement means. A current may be passed through the one or more electrically conductive tracks to heat the heating element and the aerosol-forming substrate.
- the heater comprises an inductive heating arrangement.
- the inductive heating arrangement may comprise an inductor coil and a power supply configured to provide high frequency oscillating current to the inductor coil.
- a high frequency oscillating current means an oscillating current having a frequency of between 500 kHz and 30 MHz.
- the heater may advantageously comprise a DC/AC inverter for converting a DC current supplied by a DC power supply to the alternating current.
- the inductor coil may be arranged to generate a high frequency oscillating electromagnetic field on receiving a high frequency oscillating current from the power supply.
- the inductor coil may be arranged to generate a high frequency oscillating electromagnetic field in the device cavity.
- the inductor coil may substantially circumscribe the device cavity.
- the inductor coil may extend at least partially along the length of the device cavity.
- the heater may comprise an inductive heating element.
- the inductive heating element may be a susceptor element.
- the term 'susceptor element' refers to an element comprising a material that is capable of converting electromagnetic energy into heat.
- Heating of the susceptor element may be the result of at least one of hysteresis losses and eddy currents induced in the susceptor, depending on the electrical and magnetic properties of the susceptor material.
- a susceptor element may be arranged such that, when the aerosol-generating article is received in the cavity of the aerosol-generating device, the oscillating electromagnetic field generated by the inductor coil induces a current in the susceptor element, causing the susceptor element to heat up.
- the aerosol-generating device is preferably capable of generating a fluctuating electromagnetic field having a magnetic field strength (H-field strength) of between 1 and 5 kilo amperes per metre (kA m), preferably between 2 and 3 kA/m, for example about 2.5 kA/m.
- the electrically-operated aerosolgenerating device is preferably capable of generating a fluctuating electromagnetic field having a frequency of between 1 and 30 MHz, for example between 1 and 10 MHz, for example between 5 and 7 MHz.
- a susceptor element is located in the aerosol-generating article.
- the susceptor element is preferably located in contact with the aerosolforming substrate.
- the susceptor element may be located in the aerosol-forming substrate.
- a susceptor element is located in the aerosol-generating device.
- the susceptor element may be located in the cavity.
- the aerosol-generating device may comprise only one susceptor element.
- the aerosol-generating device may comprise a plurality of susceptor elements.
- the susceptor element is arranged to heat the outer surface of the aerosol-forming substrate. In some embodiments, the susceptor element is arranged for insertion into an aerosol-forming substrate when the aerosol-forming substrate is received within the cavity.
- the susceptor element may comprise any suitable material.
- the susceptor element may be formed from any material that can be inductively heated to a temperature sufficient to release volatile compounds from the aerosol-forming substrate.
- Suitable materials for the elongate susceptor element include graphite, molybdenum, silicon carbide, stainless steels, niobium, aluminium, nickel, nickel containing compounds, titanium, and composites of metallic materials.
- Some susceptor elements comprise a metal or carbon.
- the susceptor element may comprise or consist of a ferromagnetic material, for example, ferritic iron, a ferromagnetic alloy, such as ferromagnetic steel or stainless steel, ferromagnetic particles, and ferrite.
- a suitable susceptor element may be, or comprise, aluminium.
- the susceptor element preferably comprises more than about 5 percent, preferably more than about 20 percent, more preferably more than about 50 percent or more than about 90 percent of ferromagnetic or paramagnetic materials. Some elongate susceptor elements may be heated to a temperature in excess of about 250 degrees Celsius.
- the susceptor element may comprise a non-metallic core with a metal layer disposed on the non-metallic core.
- the susceptor element may comprise metallic tracks formed on an outer surface of a ceramic core or substrate.
- the aerosol-generating device may comprise at least one resistive heating element and at least one inductive heating element. In some embodiments the aerosol-generating device may comprise a combination of resistive heating elements and inductive heating elements.
- the heater may be controlled to operate within a defined operating temperature range, below a maximum operating temperature.
- An operating temperature range between about 150 degrees Celsius and about 300 degrees Celsius in the heating chamber (or device cavity) is preferable.
- the operating temperature range of the heater may be between about 150 degrees Celsius and about 250 degrees Celsius.
- the operating temperature range of the heater may be between about 150 degrees Celsius and about 200 degrees Celsius. More preferably, the operating temperature range of the heater may be between about 180 degrees Celsius and about 200 degrees Celsius.
- optimal and consistent aerosol delivery may be achieved when using an aerosol-generating device having an external heater, which has an operating temperature range between about 180 degrees Celsius and about 200 degrees Celsius, with aerosol-generating articles having a relatively low RTD (for example, less than 10 mm H2O), as described throughout the present disclosure.
- the ventilation zone may be arranged to be exposed when the aerosol-generating article is received within the device cavity.
- the aerosol-generating device may comprise a power supply.
- the power supply may be a DC power supply.
- the power supply is a battery.
- the power supply may be a nickel-metal hydride battery, a nickel cadmium battery, or a lithium based battery, for example a lithium-cobalt, a lithium-iron-phosphate or a lithium-polymer battery.
- the power supply may be another form of charge storage device, such as a capacitor.
- the power supply may require recharging and may have a capacity that allows for the storage of enough energy for one or more user operations, for example one or more aerosol-generating experiences.
- the power supply may have sufficient capacity to allow for continuous heating of an aerosol-forming substrate for a period of around six minutes, corresponding to the typical time taken to smoke a conventional cigarette, or for a period that is a multiple of six minutes.
- the power supply may have sufficient capacity to allow for a predetermined number of puffs or discrete activations of the heater.
- the aerosol-generating article may have an overall length from about 35 millimetres to about 100 millimetres.
- an overall length of an aerosol-generating article in accordance with the invention is at least about 38 millimetres. More preferably, an overall length of an aerosolgenerating article in accordance with the invention is at least about 40 millimetres. Even more preferably, an overall length of an aerosol-generating article in accordance with the invention is at least about 42 millimetres.
- An overall length of an aerosol-generating article in accordance with the invention is preferably less than or equal to 70 millimetres. More preferably, an overall length of an aerosol-generating article in accordance with the invention is preferably less than or equal to 60 millimetres. Even more preferably, an overall length of an aerosol-generating article in accordance with the invention is preferably less than or equal to 50 millimetres.
- an overall length of the aerosol-generating article is preferably from about 38 millimetres to about 70 millimetres, more preferably from about 40 millimetres to about 70 millimetres, even more preferably from about 42 millimetres to about 70 millimetres. In other embodiments, an overall length of the aerosol-generating article is preferably from about 38 millimetres to about 60 millimetres, more preferably from about 40 millimetres to about 60 millimetres, even more preferably from about 42 millimetres to about 60 millimetres.
- an overall length of the aerosol-generating article is preferably from about 38 millimetres to about 50 millimetres, more preferably from about 40 millimetres to about 50 millimetres, even more preferably from about 42 millimetres to about 50 millimetres. In an exemplary embodiment, an overall length of the aerosol-generating article is about 45 millimetres.
- the aerosol-generating article has an external diameter of at least 5 millimetres.
- the aerosol-generating article has an external diameter of at least 6 millimetres. More preferably, the aerosol-generating article has an external diameter of at least 7 millimetres.
- the aerosol-generating article has an external diameter of less than or equal to about 12 millimetres. More preferably, the aerosol-generating article has an external diameter of less than or equal to about 10 millimetres. Even more preferably, the aerosolgenerating article has an external diameter of less than or equal to about 8 millimetres.
- the aerosol-generating article has an external diameter from about 5 millimetres to about 12 millimetres, preferably from about 6 millimetres to about 12 millimetres, more preferably from about 7 millimetres to about 12 millimetres. In other embodiments, the aerosol-generating article has an external diameter from about 5 millimetres to about 10 millimetres, preferably from about 6 millimetres to about 10 millimetres, more preferably from about 7 millimetres to about 10 millimetres.
- the aerosol-generating article has an external diameter from about 5 millimetres to about 8 millimetres, preferably from about 6 millimetres to about 8 millimetres, more preferably from about 7 millimetres to about 8 millimetres.
- One or more of the components of the aerosol-generating article may be individually circumscribed by a wrapper. In preferred embodiments, all the components of the aerosol-generating article are individually circumscribed by their own wrapper. Preferably, at least one of the components of the aerosol-generating article is wrapped in a hydrophobic wrapper.
- hydrophobic refers to a surface exhibiting water repelling properties.
- the “water contact angle” is the angle, conventionally measured through the liquid, where a liquid/vapour interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. Hydrophobicity or water contact angle may be determined by utilizing TAPPI T558 test method and the result is presented as an interfacial contact angle and reported in “degrees” and can range from near zero to near 180 degrees.
- the hydrophobic wrapper is one including a paper layer having a water contact angle of about 30 degrees or greater, and preferably about 35 degrees or greater, or about 40 degrees or greater, or about 45 degrees or greater.
- the paper layer may comprise PVOH (polyvinyl alcohol) or silicon.
- PVOH polyvinyl alcohol
- the PVOH may be applied to the paper layer as a surface coating, or the paper layer may comprise a surface treatment comprising PVOH or silicon.
- an aerosol-generating article in accordance with the present invention comprises, in linear sequential arrangement, an aerosol-generating element comprising a rod comprising an aerosol-generating substrate and a hollow tubular element located immediately downstream of the aerosol-generating element.
- the hollow tubular element may abut the aerosol-generating element.
- the aerosol-generating article has a substantially cylindrical shape and an outer diameter of about 7.3 millimetres.
- the hollow tubular element is in the form of a hollow cellulose acetate tube and has an internal diameter of about 7.1 millimetres. Thus, a thickness of a peripheral wall of the hollow tubular element is about 0.1 millimetres.
- a ventilation zone is provided at a location along the hollow tubular element.
- the aerosol-generating element is in the form of a rod of aerosol-generating substrate circumscribed by a paper wrapper, and comprises at least one of the types of aerosolgenerating substrate described above, such as plant cut filler, and particularly tobacco cut filler, homogenised tobacco, a gel formulation or a homogenised plant material comprising particles of a plant other than tobacco.
- An outer tipping wrapper circumscribes the hollow tubular element and a portion of the aerosol-generating element, such that the hollow tubular element is attached to the aerosolgenerating element.
- an aerosol-generating article in accordance with the present invention comprises, in linear sequential arrangement, an upstream element, an aerosol-generating element located immediately downstream of the upstream element, the aerosol-generating element comprising a rod comprising an aerosol-generating substrate, and a hollow tubular element located immediately downstream of the aerosol-generating element.
- the rod of aerosol-generating substrate may abut the upstream element.
- the hollow tubular element may abut the aerosol-generating element.
- the aerosol-generating article has a substantially cylindrical shape and an outer diameter of about 7.3 millimetres.
- the hollow tubular element is in the form of a hollow cellulose acetate tube and has an internal diameter of about 7.1 millimetres. Thus, a thickness of a peripheral wall of the hollow tubular element is about 0.1 millimetres.
- a ventilation zone is provided at a location along the hollow tubular element.
- the aerosol-generating element is in the form of a rod of aerosol-generating substrate circumscribed by a paper wrapper, and comprises at least one of the types of aerosolgenerating substrate described above, such as plant cut filler, and particularly tobacco cut filler, homogenised tobacco, a gel formulation or a homogenised plant material comprising particles of a plant other than tobacco.
- An outer tipping wrapper circumscribes the hollow tubular element and a portion of the aerosol-generating element, such that the hollow tubular element is attached to the aerosolgenerating element.
- the upstream element has a length of 5 millimetres
- the rod of aerosol-generating substrate has a length of about 12 millimetres
- the hollow tubular element has a length of about 28 millimetres.
- an overall length of the aerosol-generating article is about 45 millimetres.
- Example 1 An aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising: a rod-shaped aerosol-generating element comprising an aerosol-generating substrate, the aerosol-generating substrate comprising an aerosol-former; a downstream section at a location downstream of the aerosol-generating element, the downstream section extending from a downstream end of the aerosol-generating element to the mouth end of the aerosolgenerating article; wherein the downstream section comprises a hollow tubular element; wherein a length to diameter ratio of the aerosol-generating element is from about 0.5 to about 3.0; and wherein an RTD of the downstream section is less than 10 mm H2O.
- Example 2 An aerosol-generating article according to Example 1 , wherein the length to diameter ratio of the aerosol-generating element is from about 1 .3 to about 1 .9.
- Example 3 An aerosol-generating article according to Example 1 or 2, wherein the aerosolgenerating element has a length from about 10 millimetres to about 35 millimetres.
- Example 4 An aerosol-generating article according to any one of Examples 1 to 3, wherein the aerosol-generating element has a diameter from about 6 millimetres to about 7.5 millimetres.
- Example 5 An aerosol-generating article according to any one of the preceding Examples, wherein the aerosol-generating substrate comprises tobacco cut filler.
- Example 6 An aerosol-generating article according to any one of the preceding Examples, wherein the aerosol former content in the aerosol-generating substrate is at least about 10 percent by weight.
- Example 7 An aerosol-generating article according to any one of the preceding Examples, wherein the downstream section comprises a ventilation zone at a location along the hollow tubular element.
- Example 8 An aerosol-generating article according to Example 7, wherein the aerosolgenerating article has a ventilation level of at least about 10 percent.
- Example 9 An aerosol-generating article according to Example 7 or 8, wherein a distance between the ventilation zone and the mouth end of the aerosol-generating article is less than about 22 millimetres.
- Example 10 An aerosol-generating article according to any one of Examples 7 to 9, wherein a distance between the ventilation zone and the mouth end of the aerosol-generating article is at least about 11 millimetres.
- Example 11 An aerosol-generating article according to any one of the preceding Examples, wherein the hollow tubular element has a length of at least about 25 millimetres and a crosssection of the hollow tubular element is substantially constant.
- Example 12 An aerosol-generating article according to any one of the preceding Examples, wherein a peripheral wall thickness of the hollow tubular element is less than about 1.5 millimetres.
- Example 13 An aerosol-generating article according to any one of Examples 1 to 12, wherein the hollow tubular element extends all the way to the mouth end of the aerosolgenerating article.
- Example 14 An aerosol-generating article according to any one Examples 1 to 12, wherein the downstream section has an RTD of less than about 5 millimetres H2O.
- Example 15 An aerosol-generating article according to any one of the preceding Examples further comprising an upstream section upstream of the aerosol-generating element, the upstream section having an RTD from about 10 millimetres H2O to about 70 millimetres H2O.
- Figure 1 shows a schematic side sectional view of an aerosol-generating article in accordance with an embodiment of the invention
- Figure 2 shows a schematic side sectional view of another aerosol-generating article in accordance with another embodiment of the invention
- Figure 3 shows a schematic side sectional view of a variant of the aerosol-generating article of Figure 1 ;
- Figure 4 shows a schematic side sectional view of a variant of the aerosol-generating article of Figure 2.
- the aerosol-generating article 10 shown in Figure 1 comprises a rod 12 of aerosolgenerating substrate 12 and a downstream section 14 at a location downstream of the rod 12 of aerosol-generating substrate.
- the aerosol-generating article 10 extends from an upstream or distal end 16 - which substantially coincides with an upstream end of the rod 12 - to a downstream or mouth end 18, which coincides with a downstream end of the downstream section 14.
- the aerosol-generating article 10 has an overall length of about 45 millimetres.
- the rod of aerosol-generating substrate 12 comprises tobacco cut filler impregnated with about 12 percent by weight of an aerosol former, such as glycerin.
- the tobacco cut filler comprises 90 percent by weight of tobacco leaf lamina.
- the cut width of the tobacco cut filler is about 0.7 millimetres.
- the rod of aerosol-generating substrate 12 comprises about 130 milligrams of tobacco cut filler.
- the downstream section 14 comprises a hollow tubular element 20 located immediately downstream of the rod 12 of aerosol-generating substrate, the hollow tubular element 20 being in longitudinal alignment with the rod 12.
- the upstream end of the hollow tubular element 20 abuts the downstream end of the rod 12 of aerosol-generating substrate.
- the hollow tubular element 20 defines a hollow section of the aerosol-generating article 10.
- the hollow tubular element does not substantially contribute to the overall RTD of the aerosol-generating article.
- an RTD of the downstream section is about 0 mm H 2 O.
- the hollow tubular element 20 is provided in the form of a hollow cylindrical tube made of cellulose acetate or of stiff paper, such as paper having a grammage of at least about 90 g/sqm.
- the hollow tubular element 20 defines an internal cavity 22 that extends all the way from an upstream end 24 of the hollow tubular segment to a downstream end 26 of the hollow tubular element 20.
- the internal cavity 22 is substantially empty, and so substantially unrestricted airflow is enabled along the internal cavity 22.
- the hollow tubular element 20 does not substantially contribute to the overall RTD of the aerosol-generating article 10.
- the hollow tubular element 20 has a length of about 33 millimetres, an external diameter (DE) of about 7.3 millimetres, and an internal diameter (Di) of about 7.1 millimetres.
- a thickness of a peripheral wall of the hollow tubular element 20 is about 0.1 millimetres.
- the aerosol-generating article 10 comprises a ventilation zone 30 provided at a location along the hollow tubular element 20.
- the ventilation zone 30 is provided at about 18 millimetres from the downstream end 26 of the hollow tubular element 20.
- the ventilation zone 30 is effectively provided at 18 millimetres from the mouth end 18 of the aerosol-generating article 10.
- a ventilation level of the aerosolgenerating article 10 is about 40 percent.
- the aerosol-generating article does not comprise any additional component upstream of the rod of aerosol-generating substrate 12 or downstream of the hollow tubular segment 20.
- the aerosol-generating article 100 shown in Figure 2 differs from the aerosol-generating article 10 described above only by the provision of an upstream section at a location upstream of the aerosol-generating element. Accordingly, the aerosol-generating article 100 will only be described insofar as it differs from the aerosol-generating article 10.
- the aerosol-generating article 100 On top of a rod 12 of aerosol-generating substrate and a downstream section 14 at a location downstream of the rod 12, the aerosol-generating article 100 comprises an upstream section 40 at a location upstream of the rod 12. As such, the aerosol-generating article 10 extends from a distal end 16 substantially coinciding with an upstream end of the upstream section 40 to a mouth end or downstream end 18 substantially coinciding with a downstream end of the downstream section 14.
- the upstream section 40 comprises an upstream element 42 located immediately upstream of the rod 12 of aerosol-generating substrate, the upstream element 42 being in longitudinal alignment with the rod 12.
- the downstream end of the upstream element 42 abuts the upstream end of the rod 12 of aerosol-generating substrate.
- the upstream element 42 is provided in the form of a cylindrical plug of cellulose acetate circumscribed by a stiff wrapper.
- the upstream element 42 has a length of about 5 millimetres.
- the RTD of the upstream element 42 is about 30 millimetres H2O.
- FIG 3 shows an aerosol-generating article 200 which is a variant of the aerosolgenerating article 10 described above.
- the aerosol-generating article 200 is generally the same as the aerosol-generating article 10 of the embodiment of Figure 1 , with the exception that the aerosol-generating article 200 of the variant of the first embodiment does not comprise a cylindrical hollow tubular element 22 as described above. Instead, the aerosol-generating article 200 of the variant of the first embodiment comprises a modified tubular element 220 located immediately downstream of the aerosol-generating element 12.
- the modified tubular element 220 comprises a tubular body 222 defining a cavity 224 extending from a first end of the tubular body 222 to a second end of the tubular body 222.
- the modified tubular element 220 also comprises a folded end portion forming a first end wall 226 at the first end of the tubular body 222.
- the first end wall 226 delimits an opening 228, which permits airflow between the cavity 224 and the exterior of the modified tubular element 220.
- the embodiment of Figure 3 is configured so that aerosol may flow from the aerosol-generating element 12 through the opening 228 into the cavity 224.
- the cavity 224 of the tubular body 222 is substantially empty, and so substantially unrestricted airflow is enabled along the cavity 222. Consequently, the RTD of the modified tubular element 220 can be localised at a specific longitudinal position of the modified tubular element 220 - namely, at the first end wall 226 - and can be controlled through the chosen configuration of the first end wall 226 and its corresponding opening 228.
- the modified tubular element 220 has a length of about 33 millimetres, an external diameter (DE) of about 7.3 millimetres, and an internal diameter (DFTS) of about 7.1 millimetres.
- a thickness of a peripheral wall of the tubular body 222 is about 0.1 millimetres.
- FIG 4 shows an aerosol-generating article 300 which is a variant of the aerosolgenerating article 100 described above.
- the aerosol-generating article 300 is generally the same as the aerosol-generating article 100 of the embodiment of Figure 2, with the exception that the aerosol-generating article 300 of the variant of the second embodiment does not comprise an upstream element 42 provided in the form of a cylindrical plug of cellulose acetate circumscribed by a stiff wrapper.
- the aerosol-generating article 300 of the variant of the second embodiment comprises a second tubular element 44 located immediately upstream of the aerosol-generating element 12. Consequently, in this variant of the second embodiment, the hollow tubular element 20 located immediately downstream of the aerosolgenerating element 12 can be referred to as a first tubular element 20.
- the second tubular element 44 comprises a tubular body 46 defining a cavity 48 extending from a first end of the tubular body 46 to a second end of the tubular body 46.
- the second tubular element 44 also comprises a folded end portion forming a first end wall 50 at the first end of the tubular body 46.
- the first end wall 50 delimits an opening 52, which permits airflow between the cavity 48 and the exterior of the second tubular element 44.
- the embodiment of Figure 4 is configured so that air may flow from the cavity 48 through the opening 52 and into the aerosol-generating element 12.
- the second tubular element 44 comprises a second end wall 54 at the second end of its tubular body 46.
- This second end wall 54 is formed by folding an end portion of the second tubular element 44 at the second end of the tubular body 46.
- the second end wall 54 delimits an opening 56, which also permits airflow between the cavity 48 and the exterior of the second tubular element 44.
- the opening 56 is configured to so that air may flow from the exterior of the aerosol-generating article 300 through the opening 56 and into the cavity 48.
- the opening 56 therefore provides a conduit through which air can be drawn into the aerosol-generating article 300 and through the aerosol-generating element 12.
- a downstream end of the second tubular element 44 abuts the upstream end of the rod 12 of aerosol-generating substrate.
- the second tubular element 44 has a length of about 5 millimetres.
Landscapes
- Medicinal Preparation (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
- Cold Cathode And The Manufacture (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
- Food-Manufacturing Devices (AREA)
- Manufacture Of Tobacco Products (AREA)
- Seasonings (AREA)
Abstract
An aerosol-generating article (10) for producing an inhalable aerosol upon heating extends from a mouth end to a distal end, and comprises: a rod-shaped aerosol-generating element (12) comprising an aerosol-generating substrate, the aerosol-generating substrate comprising an aerosol-former; and a downstream section (14) at a location downstream of the aerosol- generating element, the downstream section extending from a downstream end of the aerosol- generating element (10) to the mouth end of the aerosol-generating article (10). The downstream section comprises a hollow tubular element (20). A length to diameter ratio of the aerosol-generating element is from about 0.5 to about 3.0. An RTD of the downstream section (14) is less than 10 mm H2O.
Description
AEROSOL-GENERATING ARTICLE WITH LOW RESISTANCE TO DRAW AND
IMPROVED FLAVOUR DELIVERY
The present invention relates to an aerosol-generating article comprising an aerosolgenerating substrate and adapted to produce an inhalable aerosol upon heating.
Aerosol-generating articles in which an aerosol-generating substrate, such as a tobacco-containing substrate, is heated rather than combusted, are known in the art. Typically, in such heated smoking articles an aerosol is generated by the transfer of heat from a heat source to a physically separate aerosol-generating substrate or material, which may be located in contact with, within, around, or downstream of the heat source. During use of the aerosol-generating article, volatile compounds are released from the aerosol-generating substrate by heat transfer from the heat source and are entrained in air drawn through the aerosol-generating article. As the released compounds cool, they condense to form an aerosol.
A number of prior art documents disclose aerosol-generating devices for consuming aerosol-generating articles. Such devices include, for example, electrically heated aerosolgenerating devices in which an aerosol is generated by the transfer of heat from one or more electrical heater elements of the aerosol-generating device to the aerosol-generating substrate of a heated aerosol-generating article. For example, electrically heated aerosolgenerating devices have been proposed that comprise an internal heater blade which is adapted to be inserted into the aerosol-generating substrate. As an alternative, inductively heatable aerosol-generating articles comprising an aerosol-generating substrate and a susceptor arranged within the aerosol-generating substrate have been proposed by WO 2015/176898. A further alternative has been described in WO 2020/115151 , which discloses an aerosol-generating article used in combination with an external heating system comprising one or more heating elements arranged around the periphery of the aerosol-generating article. For example, external heating elements may be provided in the form of flexible heating foils on a dielectric substrate, such as polyimide.
Aerosol-generating articles in which a tobacco-containing substrate is heated rather than combusted present a number of challenges that were not encountered with conventional smoking articles. First of all, tobacco-containing substrates are typically heated to significantly lower temperatures compared with the temperatures reached by the combustion front in a conventional cigarette. This may have an impact on nicotine release from the tobaccocontaining substrate and nicotine delivery to the consumer. At the same time, if the heating temperature is increased in an attempt to boost nicotine delivery, then the aerosol generated typically needs to be cooled to a greater extent and more rapidly before it reaches the
consumer. However, technical solutions that were commonly used for cooling the mainstream smoke in conventional smoking articles, such as the provision of a high filtration efficiency segment at the mouth end of a cigarette, may have undesirable effects in an aerosolgenerating article wherein a tobacco-containing substrate is heated rather than combusted, as they may reduce nicotine delivery.
In order to address one or more of the challenges specifically associated with heating rather than combusting an aerosol-generating substrate to generate an aerosol, a number of aerosol-generating articles have been proposed wherein multiple elements are combined, for example in longitudinal alignment, with an aerosol-generating element containing the aerosolgenerating substrate. By way of example, the aerosol-generating element has been combined with a support element to impart improved structural strength to the article, an aerosol-cooling element adapted to lower the temperature of the aerosol, a low-filtration mouthpiece element, etc.
A need is generally felt for aerosol-generating articles that are easy to use and have improved practicality. Additionally, it would be desirable to provide aerosol-generating articles that are easier to manufacture and that may make the whole production chain more sustainable and cost-effective. There is also a need for an aerosol-generating article that is especially suitable for use in combination with an external heating system, and particularly one that has improved aerosol generation and aerosol former delivery.
Therefore, it would be desirable to provide a new and improved aerosol-generating article adapted to satisfy at least one of the needs described above. Further, it would be desirable to provide one such aerosol-generating article that can be manufactured efficiently and at high speed, preferably with a satisfactory low RTD variability from one article to another.
The present disclosure relates to an aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising an aerosol-generating element. The aerosol-generating element may be in the form of a rod. The aerosol-generating element may comprise an aerosolgenerating substrate, the aerosol-generating substrate comprising an aerosol-former. Further, the aerosol-generating article may comprise a downstream section at a location downstream of the aerosol-generating element. The downstream section may extend from a downstream end of the aerosol-generating element to the mouth end of the aerosol-generating article. The downstream section may comprise a hollow tubular element. A length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 3.0. An RTD of the downstream section may be less than 10 mm H2O.
According to the present invention there is provided an aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising: an aerosol-generating element comprising an
aerosol-generating substrate, the aerosol-generating substrate comprising an aerosol-former; a downstream section at a location downstream of the aerosol-generating element, the downstream section extending from a downstream end of the aerosol-generating element to the mouth end of the aerosol-generating article. The downstream section comprises a hollow tubular element. A length to diameter ratio of the aerosol-generating rod is from about 0.5 to about 3.0. An RTD of the downstream section is less than 10 mm H2O.
The aerosol-generating article according to the present invention therefore provides a novel configuration of the section of the aerosol-generating downstream of the rod of aerosolgenerating substrate, which is characterised by having an RTD below 10 mm H2O. This particularly low RTD downstream of the aerosol-generating substrate is provided in combination with an aerosol-generating element in the form of a rod that has a length to diameter ratio falling within the range from about 0.5 to about 3.0.
The provision of a downstream section having such a low RTD has the effect that substantially all the RTD of the aerosol-generating article is provided by the aerosol-generating element (for example, by a rod-shaped aerosol-generating element) itself and optionally by elements located upstream of the aerosol-generating element. The inventors have found that when an aerosol-generating article having an aerosol-generating rod with the geometry described above and one such RTD distribution along the length of the article, it is advantageously possible to optimise the delivery of an aerosol to the consumer, especially if the article is used in combination with an external heating system.
Aerosol delivery may to an extent be impacted by the RTD of the aerosol-generating element itself. This is because the aerosol generated in an upstream portion of the aerosolgenerating element needs first of all to flow through the remainder, downstream portion of the aerosol-generating element. Thus, controlling the geometry of the aerosol-generating element also enables a more effective control of aerosol delivery, and in general aerosol delivery is made more consistent from aerosol-generating article to aerosol-generating article.
This is desirable as it simplifies the construction and operation of both aerosolgenerating article and heating device. Further, it has been found that this makes it possible for the substrate to be heated to lower temperatures without prejudice to the quality and amount of the aerosol delivered to the consumer.
In addition, as the provision of such a low RTD downstream of the aerosol-generating rod may be achieved by providing a hollow element downstream of the aerosol-generating rod, a substantially empty volume is provided within the article wherein nucleation and growth of aerosol particles is favoured, whilst RTD is substantially eliminated. This may further contribute to enhancing aerosol generation and delivery compared with existing articles.
For the purpose of the present description and of the appended claims, except where otherwise indicated, all numbers expressing amounts, quantities, percentages, and so forth,
are to be understood as being modified in all instances by the term "about". Also, all ranges include the maximum and minimum points disclosed and include any intermediate ranges therein, which may or may not be specifically enumerated herein. In this context, therefore, a number A is understood as A ± 10% of A. Within this context, a number A may be considered to include numerical values that are within general standard error for the measurement of the property that the number A modifies. The number A, in some instances as used in the appended claims, may deviate by the percentages enumerated above provided that the amount by which A deviates does not materially affect the basic and novel characteristic(s) of the claimed invention. Also, all ranges include the maximum and minimum points disclosed and include any intermediate ranges therein, which may or may not be specifically enumerated herein.
In accordance with the present invention there is provided an aerosol-generating article for generating an inhalable aerosol upon heating. The aerosol-generating article comprises an element comprising an aerosol-generating substrate.
The term “aerosol generating article” is used herein to denote an article wherein an aerosol generating substrate is heated to produce and deliver an inhalable aerosol to a consumer. As used herein, the term “aerosol generating substrate” denotes a substrate capable of releasing volatile compounds upon heating to generate an aerosol.
A conventional cigarette is lit when a user applies a flame to one end of the cigarette and draws air through the other end. The localised heat provided by the flame and the oxygen in the air drawn through the cigarette causes the end of the cigarette to ignite, and the resulting combustion generates an inhalable smoke. By contrast, in heated aerosol generating articles, an aerosol is generated by heating a flavour generating substrate, such as tobacco. Known heated aerosol generating articles include, for example, electrically heated aerosol generating articles and aerosol generating articles in which an aerosol is generated by the transfer of heat from a combustible fuel element or heat source to a physically separate aerosol forming material. For example, aerosol generating articles according to the invention find particular application in aerosol generating systems comprising an electrically heated aerosol generating device having an internal heater blade which is adapted to be inserted into the rod of aerosol generating substrate. Aerosol generating articles of this type are described in the prior art, for example, in EP 0822670.
As used herein, the term “aerosol generating device” refers to a device comprising a heater element that interacts with the aerosol generating substrate of the aerosol generating article to generate an aerosol.
The aerosol-generating element may be in the form of a rod comprising or made of the aerosol-generating substrate. As used herein with reference to the present invention, the term
“rod” is used to denote a generally cylindrical element of substantially circular, oval or elliptical cross-section.
As used herein, the term “longitudinal” refers to the direction corresponding to the main longitudinal axis of the aerosol-generating article, which extends between the upstream and downstream ends of the aerosol-generating article. As used herein, the terms “upstream” and “downstream” describe the relative positions of elements, or portions of elements, of the aerosol-generating article in relation to the direction in which the aerosol is transported through the aerosol-generating article during use.
During use, air is drawn through the aerosol-generating article in the longitudinal direction. The term “transverse” refers to the direction that is perpendicular to the longitudinal axis. Any reference to the “cross-section” of the aerosol-generating article or a component of the aerosol-generating article refers to the transverse cross-section unless stated otherwise.
The term “length” denotes the dimension of a component of the aerosol-generating article in the longitudinal direction. For example, it may be used to denote the dimension of the rod or of the elongate tubular elements in the longitudinal direction.
The aerosol-generating article further comprises a downstream section at a location downstream of the rod of aerosol-generating substrate. As will become apparent from the following description of different embodiments of the aerosol-generating article of the invention, the downstream section may comprise one or more downstream elements.
In some embodiments, the downstream section may comprise a hollow section between the mouth end of the aerosol-generating article and the aerosol-generating element. The hollow section may comprise a hollow tubular element.
As used herein, the term "hollow tubular segment" or “hollow tubular element” is used to denote a generally elongate element defining a lumen or airflow passage along a longitudinal axis thereof. In particular, the term "tubular" will be used in the following with reference to an element or segment having a substantially cylindrical cross-section and defining at least one airflow conduit establishing an uninterrupted fluid communication between an upstream end of the tubular element or segment and a downstream end of the tubular element or segment. However, it will be understood that alternative geometries (for example, alternative cross-sectional shapes) of the tubular element or segment may be possible.
In the context of the present invention a hollow tubular segment or hollow tubular element provides an unrestricted flow channel. This means that the hollow tubular segment or hollow tubular element provides a negligible level of resistance to draw (RTD). The term “negligible level of RTD” is used to describe an RTD of less than 1 mm H2O per 10 millimetres of length of the hollow tubular segment or hollow tubular element, preferably less than 0.4 mm H2O per 10 millimetres of length of the hollow tubular segment or hollow tubular element, more
preferably less than 0.1 mm H2O per 10 millimetres of length of the hollow tubular segment or hollow tubular element.
The flow channel should therefore be free from any components that would obstruct the flow of air in a longitudinal direction. Preferably, the flow channel is substantially empty.
In the present specification, a “hollow tubular segment” or “hollow tubular element” may also be referred to as a “hollow tube” or a “hollow tube segment”.
In some embodiments, the aerosol-generating article may comprise a ventilation zone at a location along the downstream section. In more detail, the aerosol-generating article may comprise a ventilation zone at a location along the hollow tubular element. As such, fluid communication is established between the flow channel internally defined by the hollow tubular element and the outer environment.
The aerosol-generating article may further comprise an upstream section at a location upstream of the rod of aerosol-generating substrate. The upstream section may comprise one or more upstream elements. In some embodiments, the upstream section may comprise an upstream element arranged immediately upstream of the aerosol-generating element
As described briefly above, an aerosol-generating article in accordance with the present invention comprises an element comprising an aerosol-generating substrate.
In some embodiments, the aerosol-generating element may be provided in the form of a rod comprising the aerosol-generating substrate. By way of example, the aerosol-generating element may comprise a rod of aerosol-generating substrate circumscribed by a wrapper.
The element comprising the aerosol-generating substrate may have a length of at least about 5 millimetres. Preferably, the element comprising the aerosol generating substrate has a length of at least about 7 millimetres. More preferably, the element comprising the aerosol generating substrate has a length of at least about 10 millimetres. In particularly preferred embodiments, the element comprising the aerosol generating substrate has a length of at least about 12 millimetres.
The element comprising the aerosol generating substrate may have a length of up to about 80 millimetres. Preferably, the element comprising the aerosol generating substrate has a length of less than or equal to about 65 millimetres. More preferably, the element comprising the aerosol generating substrate has a length of less than or equal to about 60 millimetres. Even more preferably, the element comprising the aerosol generating substrate has a length of less than or equal to about 55 millimetres.
In particularly preferred embodiments, the element comprising the aerosol generating substrate has a length of less than or equal to about 50 millimetres, more preferably less than or equal to about 35 millimetres, even more preferably less than or equal to about 25 millimetres. In particularly preferred embodiments, the element comprising the aerosol
generating substrate has a length of less than or equal to about 20 millimetres or even less than or equal to about 15 millimetres.
In some embodiments, the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 60 millimetres, preferably from about 6 millimetres to about 60 millimetres, more preferably from about 7 millimetres to about 60 millimetres, even more preferably from about 10 millimetres to about 60 millimetres, most preferably from about 12 millimetres to about 60 millimetres. In other embodiments, the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 55 millimetres, preferably from about 6 millimetres to about 55 millimetres, more preferably from about 7 millimetres to about 55 millimetres, even more preferably from about 10 millimetres to about 55 millimetres, most preferably from about 12 millimetres to about 55 millimetres. In further embodiments, the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 50 millimetres, preferably from about 6 millimetres to about 50 millimetres, more preferably from about 7 millimetres to about 50 millimetres, even more preferably from about 10 millimetres to about 50 millimetres, most preferably from about 12 millimetres to about 50 millimetres.
In some particularly preferred embodiments, the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 30 millimetres, preferably from about 6 millimetres to about 30 millimetres, more preferably from about 7 millimetres to about 30 millimetres, even more preferably from about 10 millimetres to about 30 millimetres. In other particularly preferred embodiments, the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 20 millimetres, preferably from about 6 millimetres to about 20 millimetres, more preferably from about 7 millimetres to about 20 millimetres, even more preferably from about 10 millimetres to about 20 millimetres. In further particularly preferred embodiments, the element comprising the aerosol generating substrate has a length from about 5 millimetres to about 15 millimetres, preferably from about 7 millimetres to about 20 millimetres, more preferably from about 9 millimetres to about 16 millimetres, even more preferably from about 10 millimetres to about 15 millimetres.
A rod-shaped element comprising the aerosol-generating substrate preferably has an external diameter that is approximately equal to the external diameter of the aerosol generating article.
Preferably, the element comprising the aerosol generating substrate has an external diameter of at least about 5 millimetres. More preferably, the element comprising the aerosol generating substrate has an external diameter of at least about 6 millimetres. Even more preferably, the element comprising the aerosol generating substrate has an external diameter of at least about 7 millimetres.
The element comprising the aerosol generating substrate preferably has an external diameter of less than or equal to about 12 millimetres. More preferably, the element comprising the aerosol generating substrate has an external diameter of less than or equal to about 10 millimetres. Even more preferably, the element comprising the aerosol generating substrate has an external diameter of less than or equal to about 8 millimetres.
In general, it has been observed that the smaller the diameter of a rod-shaped element comprising the aerosol generating substrate, the lower the temperature that is required to raise a core temperature of the aerosol-generating element such that sufficient amounts of vaporizable species are released from the aerosol-generating substrate to form a desired amount of aerosol. At the same time, without wishing to be bound by theory, it is understood that a smaller diameter of the rod-shaped element comprising the aerosol-generating substrate allows for a faster penetration of heat supplied to the aerosol-generating article into the entire volume of aerosol-forming substrate. Nevertheless, where the diameter of the rodshaped element comprising the aerosol-generating substrate is too small, a volume-to-surface ratio of the aerosol-generating substrate becomes less favourable, as the amount of available aerosol-forming substrate diminishes.
A diameter of the rod-shaped element comprising the aerosol-generating substrate falling within the ranges described herein is particularly advantageous in terms of a balance between energy consumption and aerosol delivery. This advantage is felt in particular when an aerosol-generating article comprising a rod comprising the aerosol-generating substrate having a diameter as described herein is used in combination with an external heater arranged around the periphery of the aerosol-generating article. Under such operating conditions, it has been observed that less thermal energy is required to achieve a sufficiently high temperature at the core of the rod comprising the aerosol-generating substrate and, in general, at the core of the article. Thus, when operating at lower temperatures, a desired target temperature at the core of the aerosol-generating substrate may be achieved within a desirably reduced time frame and by a lower energy consumption.
In some embodiments, the element comprising the aerosol generating substrate has an external diameter from about 5 millimetres to about 12 millimetres, preferably from about 6 millimetres to about 12 millimetres, more preferably from about 7 millimetres to about 12 millimetres. In other embodiments, the element comprising the aerosol generating substrate has an external diameter from about 5 millimetres to about 12 millimetres, preferably from about 6 millimetres to about 10 millimetres, more preferably from about 7 millimetres to about 10 millimetres. In further embodiments, the element comprising the aerosol generating substrate has an external diameter from about 5 millimetres to about 8 millimetres, preferably from about 6 millimetres to about 8 millimetres, more preferably from about 7 millimetres to about 8 millimetres.
In particularly preferred embodiments, the element comprising the aerosol generating substrate has an external diameter of less than about 7.5 millimetres. By way of example, the element comprising the aerosol generating substrate may an external diameter of about 7.2 millimetres.
A length to diameter ratio of the aerosol-generating element is at least about 0.5. Preferably, a length to diameter ratio of the aerosol-generating element is at least about 0.75. More preferably, a length to diameter ratio of the aerosol-generating element is at least about 1 .0. Even more preferably, a length to diameter ratio of the aerosol-generating element is at least about 1.25.
A length to diameter ratio of the aerosol-generating element is less than or equal to about 3.0. Preferably, a length to diameter ratio of the aerosol-generating element is less than or equal to about 2.75. More preferably, a length to diameter ratio of the aerosol-generating element is less than or equal to about 2.5. Even more preferably, a length to diameter ratio of the aerosol-generating element is less than or equal to about 2.25.
In more detail, in aerosol-generating articles in accordance with the present invention a length to diameter ratio of the aerosol-generating element is from about 0.5 to about 3.0.
Preferably, a length to diameter ratio of the aerosol-generating element is from about 0.75 to about 3.0. More preferably, a length to diameter ratio of the aerosol-generating element is from about 1.0 to about 3.0. Even more preferably, a length to diameter ratio of the aerosol-generating element is from about 1.25 to about 3.0.
In other embodiments, a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 2.75. Preferably, a length to diameter ratio of the aerosolgenerating element is from about 0.75 to about 2.75. More preferably, a length to diameter ratio of the aerosol-generating element is from about 1 .0 to about 2.75. Even more preferably, a length to diameter ratio of the aerosol-generating element is from about 1 .25 to about 2.75.
In further embodiments, a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 2.5. Preferably, a length to diameter ratio of the aerosolgenerating element is from about 0.75 to about 2.5. More preferably, a length to diameter ratio of the aerosol-generating element is from about 1 .0 to about 2.5. Even more preferably, a length to diameter ratio of the aerosol-generating element is from about 1.25 to about 2.5.
In yet further embodiments, a length to diameter ratio of the aerosol-generating element may be from about 0.5 to about 2.25. Preferably, a length to diameter ratio of the aerosol-generating element is from about 0.75 to about 2.25. More preferably, a length to diameter ratio of the aerosol-generating element is from about 1.0 to about 2.25. Even more preferably, a length to diameter ratio of the aerosol-generating element is from about 1 .25 to about 2.25.
In particularly preferred embodiments, a length to diameter ratio of the aerosolgenerating element may be at least about 1.3, more preferably about 1.4, even more preferably about 1.5.
In particularly preferred embodiments, a length to diameter ratio of the aerosolgenerating element may be less than or equal to about 2.0, more preferably less than or equal to about 1.9, even more preferably less than or equal to about 1.8.
In some embodiments, a length to diameter ratio of the aerosol-generating element is preferably from about 1.3 to about 2.0, more preferably from about 1 .4 to about 2.0, even more preferably from about 1.5 to about 2.0. In other embodiments, a length to diameter ratio of the aerosol-generating element is preferably from about 1.3 to about 1 .9, more preferably from about 1.4 to about 1.7, even more preferably from about 1.5 to about 1.9. In further embodiments, a length to diameter ratio of the aerosol-generating element is preferably from about 1.3 to about 1.8, more preferably from about 1.4 to about 1.8, even more preferably from about 1 .5 to about 1.8.
A ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article may be at least about 0.10. Preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is at least about 0.15. More preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is at least about 0.20. Even more preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is at least about 0.25.
In general, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article may be less than or equal to about 0.60. Preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.50. More preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.45. Even more preferably, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.40. In particularly preferred embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is less than or equal to about 0.35, and most preferably less than or equal to about 0.30.
In some embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.45, preferably from about 0.15 to about 0.45, more preferably from about 0.20 to about 0.45, even more preferably from about 0.25 to about 0.45. In other embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.40, preferably from about 0.15 to about 0.40, more preferably
from about 0.20 to about 0.40, even more preferably from about 0.25 to about 0.40. In further embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.35, preferably from about 0.15 to about 0.35, more preferably from about 0.20 to about 0.35, even more preferably from about 0.25 to about 0.35. In yet further embodiments, a ratio between the length of the aerosol-generating element and an overall length of the aerosol-generating article is from about 0.10 to about 0.30, preferably from about 0.15 to about 0.30, more preferably from about 0.20 to about 0.30, even more preferably from about 0.25 to about 0.30.
Preferably, the aerosol-generating element comprises a rod-shaped element comprising aerosol generating substrate that has a substantially uniform cross-section along the length of the element. Particularly preferably, the rod-shaped element comprising aerosol generating substrate has a substantially circular cross-section.
As will be described in greater detail below, an aerosol-generating article in accordance with the present invention comprises a downstream section comprising a hollow tubular element. In an aerosol-generating article in accordance with the present invention a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.66. Preferably, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.60. More preferably, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.50. Even more preferably, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be less than or equal to about 0.40.
In an aerosol-generating article in accordance with the present invention a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.10. Preferably, a ratio between the length of the aerosolgenerating element and a length of the hollow tubular element may be at least about 0.15. More preferably, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.20. Even more preferably, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.25. In particularly preferred embodiments, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be at least about 0.30.
In some embodiments, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element is from about 0.15 to about 0.60, preferably from about 0.20 to about 0.60, more preferably from about 0.25 to about 0.60, even more preferably from about 0.30 to about 0.60. In other embodiments, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element is from about 0.15 to
about 0.50, preferably from about 0.20 to about 0.50, more preferably from about 0.25 to about 0.50, even more preferably from about 0.30 to about 0.50. In further embodiments, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element is from about 0.15 to about 0.40, preferably from about 0.20 to about 0.40, more preferably from about 0.25 to about 0.40, even more preferably from about 0.30 to about 0.40. By way of example, a ratio between the length of the aerosol-generating element and a length of the hollow tubular element may be about 0.35.
A density of the aerosol-generating substrate may be at least about 100 micrograms/cubic centimetre. Preferably, a density of the aerosol-generating substrate is at least about 115 micrograms/cubic centimetre. More preferably, a density of the aerosolgenerating substrate is at least about 130 micrograms/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is at least about 140 micrograms/cubic centimetre.
A density of the aerosol-generating substrate may be less than or equal to about 200 micrograms/cubic centimetre. Preferably, a density of the aerosol-generating substrate is less than or equal to about 185 micrograms/cubic centimetre. More preferably, a density of the aerosol-generating substrate is less than or equal to about 170 micrograms/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is less than or equal to about 160 micrograms/cubic centimetre.
In some embodiments, a density of the aerosol-generating substrate is from 100 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 100 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 100 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 100 micrograms/cubic centimetre to 160 micrograms/cubic centimetre. In other embodiments, a density of the aerosol-generating substrate is from 115 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 115 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 115 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 115 micrograms/cubic centimetre to 160 micrograms/cubic centimetre. In further embodiments, a density of the aerosolgenerating substrate is from 130 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 130 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 130 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even more preferably from 130 micrograms/cubic centimetre to 160 micrograms/cubic centimetre. In yet other embodiments, a density of the aerosol-generating substrate is from 140 micrograms/cubic centimetre to 200 micrograms/cubic centimetre, preferably from 140 micrograms/cubic centimetre to 185 micrograms/cubic centimetre, more preferably from 140 micrograms/cubic centimetre to 170 micrograms/cubic centimetre, even
more preferably from 140 micrograms/cubic centimetre to 160 micrograms/cubic centimetre. In some particularly preferred embodiments, a density of the aerosol-generating substrate is about 150 micrograms/cubic centimetre.
A density of the aerosol-generating substrate may be at least about 100 milligrams/cubic centimetre. Preferably, a density of the aerosol-generating substrate is at least about 115 milligrams/cubic centimetre. More preferably, a density of the aerosolgenerating substrate is at least about 130 milligrams/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is at least about 140 milligrams/cubic centimetre.
A density of the aerosol-generating substrate may be less than or equal to about 200 milligrams/cubic centimetre. Preferably, a density of the aerosol-generating substrate is less than or equal to about 185 milligrams/cubic centimetre. More preferably, a density of the aerosol-generating substrate is less than or equal to about 170 milligrams/cubic centimetre. Even more preferably, a density of the aerosol-generating substrate is less than or equal to about 160 milligrams/cubic centimetre.
In some embodiments, a density of the aerosol-generating substrate is from 100 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 100 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 100 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 100 milligrams/cubic centimetre to 160 milligrams/cubic centimetre. In other embodiments, a density of the aerosol-generating substrate is from 115 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 115 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 115 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 115 milligrams/cubic centimetre to 160 milligrams/cubic centimetre. In further embodiments, a density of the aerosol-generating substrate is from 130 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 130 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 130 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 130 milligrams/cubic centimetre to 160 milligrams/cubic centimetre. In yet other embodiments, a density of the aerosol-generating substrate is from 140 milligrams/cubic centimetre to 200 milligrams/cubic centimetre, preferably from 140 milligrams/cubic centimetre to 185 milligrams/cubic centimetre, more preferably from 140 milligrams/cubic centimetre to 170 milligrams/cubic centimetre, even more preferably from 140 milligrams/cubic centimetre to 160 milligrams/cubic centimetre. In some particularly preferred embodiments, a density of the aerosol-generating substrate is about 150 milligrams/cubic centimetre.
By way of example, the aerosol-generating element may comprise from about 100 milligrams to about 250 milligrams of aerosol-generating substrate. In some embodiments, the aerosol-generating element comprises from about 210 milligrams to about 230 milligrams of aerosol-generating substrate, preferably from 215 milligrams to about 220 milligrams of aerosol-generating substrate. In other embodiments, the aerosol-generating element comprises from about 150 milligrams to about 180 milligrams of aerosol-generating substrate, preferably from 160 milligrams to about 165 milligrams of aerosol-generating substrate.
The aerosol-generating substrate may be a solid aerosol-generating substrate.
In certain preferred embodiments, the aerosol-generating substrate comprises homogenised plant material, preferably a homogenised tobacco material.
As used herein, the term “homogenised plant material” encompasses any plant material formed by the agglomeration of particles of plant. For example, sheets or webs of homogenised tobacco material for the aerosol-generating substrates of the present invention may be formed by agglomerating particles of tobacco material obtained by pulverising, grinding or comminuting plant material and optionally one or more of tobacco leaf lamina and tobacco leaf stems. The homogenised plant material may be produced by casting, extrusion, paper making processes or other any other suitable processes known in the art.
The homogenised plant material can be provided in any suitable form.
In some embodiments, the homogenised plant material may be in the form of one or more sheets. As used herein with reference to the invention, the term “sheet” describes a laminar element having a width and length substantially greater than the thickness thereof.
Alternatively or in addition, the homogenised plant material may be in the form of a plurality of pellets or granules.
Alternatively or in addition, the homogenised plant material may be in the form of a plurality of strands, strips or shreds. As used herein, the term “strand” describes an elongate element of material having a length that is substantially greater than the width and thickness thereof. The term “strand” should be considered to encompass strips, shreds and any other homogenised plant material having a similar form. The strands of homogenised plant material may be formed from a sheet of homogenised plant material, for example by cutting or shredding, or by other methods, for example, by an extrusion method.
In some embodiments, the strands may be formed in situ within the aerosol-generating substrate as a result of the splitting or cracking of a sheet of homogenised plant material during formation of the aerosol-generating substrate, for example, as a result of crimping. The strands of homogenised plant material within the aerosol-generating substrate may be separate from each other. Alternatively, each strand of homogenised plant material within the
aerosol-generating substrate may be at least partially connected to an adjacent strand or strands along the length of the strands. For example, adjacent strands may be connected by one or more fibres. This may occur, for example, where the strands have been formed due to the splitting of a sheet of homogenised plant material during production of the aerosolgenerating substrate, as described above.
Where the aerosol-generating substrate comprises a homogenised plant material, the homogenised plant material may typically be provided in the form of one or more sheets. In particular, sheets of homogenised plant material may be produced by a casting process. Preferably, sheets of homogenised plant material may be produced by a paper-making process.
In some preferred embodiments, the aerosol-generating substrate comprises cut filler. Within the context of the present specification, the term “cut filler” is used to describe to a blend of shredded plant material, such as tobacco plant material, including, in particular, one or more of leaf lamina, processed stems and ribs, homogenised plant material.
The cut filler may also comprise other after-cut, filler tobacco or casing.
Preferably, the cut filler comprises at least 25 percent of plant leaf lamina, more preferably, at least 50 percent of plant leaf lamina, still more preferably at least 75 percent of plant leaf lamina and most preferably at least 90 percent of plant leaf lamina. Preferably, the plant material is one of tobacco, mint, tea and cloves. However, as will be discussed below in greater detail, the invention is equally applicable to other plant material that has the ability to release substances upon the application of heat that can subsequently form an aerosol.
Preferably, the cut filler comprises tobacco plant material comprising lamina of one or more of bright tobacco, dark tobacco, aromatic tobacco and filler tobacco. With reference to the present invention , the term “tobacco” describes any plant member of the genus Nicotiana. Bright tobaccos are tobaccos with a generally large, light coloured leaves. Throughout the specification, the term “bright tobacco” is used for tobaccos that have been flue cured. Examples for bright tobaccos are Chinese Flue-Cured, Flue-Cured Brazil, US Flue-Cured such as Virginia tobacco, Indian Flue-Cured, Flue-Cured from Tanzania or other African Flue Cured. Bright tobacco is characterized by a high sugar to nitrogen ratio. From a sensorial perspective, bright tobacco is a tobacco type which, after curing, is associated with a spicy and lively sensation. Within the context of the present invention, bright tobaccos are tobaccos with a content of reducing sugars of between about 2.5 percent and about 20 percent of dry weight base of the leaf and a total ammonia content of less than about 0.12 percent of dry weight base of the leaf. Reducing sugars comprise for example glucose or fructose. Total ammonia comprises for example ammonia and ammonia salts.
Dark tobaccos are tobaccos with a generally large, dark coloured leaves. Throughout the specification, the term “dark tobacco” is used for tobaccos that have been air cured.
Additionally, dark tobaccos may be fermented. Tobaccos that are used mainly for chewing, snuff, cigar, and pipe blends are also included in this category. Typically, these dark tobaccos are air cured and possibly fermented. From a sensorial perspective, dark tobacco is a tobacco type which, after curing, is associated with a smoky, dark cigar type sensation. Dark tobacco is characterized by a low sugar to nitrogen ratio. Examples for dark tobacco are Burley Malawi or other African Burley, Dark Cured Brazil Galpao, Sun Cured or Air Cured Indonesian Kasturi. According to the invention, dark tobaccos are tobaccos with a content of reducing sugars of less than about 5 percent of dry weight base of the leaf and a total ammonia content of up to about 0.5 percent of dry weight base of the leaf.
Aromatic tobaccos are tobaccos that often have small, light coloured leaves. Throughout the specification, the term “aromatic tobacco” is used for other tobaccos that have a high aromatic content, e.g. of essential oils. From a sensorial perspective, aromatic tobacco is a tobacco type which, after curing, is associated with spicy and aromatic sensation. Example for aromatic tobaccos are Greek Oriental, Oriental Turkey, semi-oriental tobacco but also Fire Cured, US Burley, such as Perique, Rustica, US Burley or Meriland. Filler tobacco is not a specific tobacco type, but it includes tobacco types which are mostly used to complement the other tobacco types used in the blend and do not bring a specific characteristic aroma direction to the final product. Examples for filler tobaccos are stems, midrib or stalks of other tobacco types. A specific example may be flue cured stems of Flue Cure Brazil lower stalk.
The cut filler suitable to be used with the present invention generally may resemble cut filler used for conventional smoking articles. The cut width of the cut filler preferably is between 0.3 millimetres and 2.0 millimetres, more preferably, the cut width of the cut filler is between 0.5 millimetres and 1 .2 millimetres and most preferably, the cut width of the cut filler is between 0.6 millimetres and 0.9 millimetres. The cut width may play a role in the distribution of heat inside the aerosol-generating element. Also, the cut width may play a role in the resistance to draw of the article. Further, the cut width may impact the overall density of the aerosolgenerating substrate as a whole.
The strand length of the cut-filler is to some extent a random value as the length of the strands will depend on the overall size of the object that the strand is cut off from. Nevertheless, by conditioning the material before cutting, for example by controlling the moisture content and the overall subtlety of the material, longer strands can be cut. Preferably, the strands have a length of between about 10 millimetres and about 40 millimetres before the strands are collated to form the aerosol-generating element. Obviously, if the strands are arranged in an aerosol-generating element in a longitudinal extension where the longitudinal extension of the section is below 40 millimetres, the final aerosol-generating element may comprise strands that are on average shorter than the initial strand length. Preferably, the
strand length of the cut-filler is such that between about 20 percent and 60 percent of the strands extend along the full length of the aerosol-generating element This prevents the strands from dislodging easily from the aerosol-generating element.
In preferred embodiments, the weight of the cut filler is between 80 milligrams and 400 milligrams, preferably between 150 milligrams and 250 milligrams, more preferably between 170 milligrams and 220 milligrams. This amount of cut filler typically allows for sufficient material for the formation of an aerosol. Additionally, in the light of the aforementioned constraints on diameter and size, this allows for a balanced density of the aerosol-generating element between energy uptake, resistance to draw and fluid passageways within the aerosol-generating element where the aerosol-generating substrate comprises plant material.
Preferably, the cut filler is soaked with aerosol former. Soaking the cut filler can be done by spraying or by other suitable application methods. The aerosol former may be applied to the blend during preparation of the cut filler. For example, the aerosol former may be applied to the blend in the direct conditioning casing cylinder (DCCC). Conventional machinery can be used for applying an aerosol former to the cut filler. The aerosol former may be any suitable known compound or mixture of compounds that, in use, facilitates formation of a dense and stable aerosol. The aerosol former may be facilitating that the aerosol is substantially resistant to thermal degradation at temperatures typically applied during use of the aerosol-generating article. Suitable aerosol formers are for example to: polyhydric alcohols such as, for example, triethylene glycol, 1 ,3-butanediol, propylene glycol and glycerine; esters of polyhydric alcohols such as, for example, glycerol mono-, di- or triacetate; aliphatic esters of mono-, di- or polycarboxylic acids such as, for example, dimethyl dodecanedioate and dimethyl tetradecanedioate; and combinations thereof.
Preferably, the aerosol former comprises one or more of glycerine and propylene glycol. The aerosol former may consist of glycerine or propylene glycol or of a combination of glycerine and propylene glycol.
Preferably, the amount of aerosol former is between 6 percent and 20 percent by weight on a dry weight basis of the cut filler, more preferably, the amount of aerosol former is between 8 percent and 18 percent by weight on a dry weight basis of the cut filler, most preferably the amount of aerosol former is between 10 percent and 15 percent by weight on a dry weight basis of the cut filler. When aerosol former is added to the cut filler in the amounts described above, the cut filler may become relatively sticky. This advantageously help retain the cut filler at a predetermined location within the article, as the particles of cut filler display a tendency to adhere to surrounding cut filler particles as well as to surrounding surfaces (for example, the internal surface of a wrapper circumscribing the cut filler).
For some embodiments the amount of aerosol former has a target value of about 13 percent by weight on a dry weight basis of the cut filler. The most efficient amount of aerosol former will depend also on the cut filler, whether the cut filler comprises plant lamina or homogenized plant material. For example, among other factors, the type of cut filler will determine to which extent the aerosol-former can facilitate the release of substances from the cut filler.
For these reasons, an aerosol-generating element comprising cut filler as described above is capable of efficiently generating sufficient amount of aerosol at relatively low temperatures. A temperature of between 150 degrees Celsius and 200 degrees Celsius in the heating chamber is sufficient for one such cut filler to generate sufficient amounts of aerosol while in aerosol-generating devices using tobacco cast leave sheets typically temperatures of about 250 degrees Celsius are employed.
A further advantage connected with operating at lower temperatures is that there is a reduced need to cool down the aerosol. As generally low temperatures are used, a simpler cooling function may be sufficient. This in turn allows using a simpler and less complex structure of the aerosol-generating article.
As described briefly above, where the aerosol-generating substrate comprises a homogenised plant material, the homogenised plant material may be provided in the form of one or more sheets.
The one or more sheets as described herein may each individually have a thickness of between 100 micrometres and 600 micrometres, preferably between 150 micrometres and 300 micrometres, and most preferably between 200 micrometres and 250 micrometres. Individual thickness refers to the thickness of the individual sheet, whereas combined thickness refers to the total thickness of all sheets that make up the aerosol-generating substrate. For example, if the aerosol-generating substrate is formed from two individual sheets, then the combined thickness is the sum of the thickness of the two individual sheets or the measured thickness of the two sheets where the two sheets are stacked in the aerosolgenerating substrate.
The one or more sheets as described herein may each individually have a grammage of between about 100 grams per square metre and about 600 grams per square metre.
The one or more sheets as described herein may each individually have a density of from about 0.3 grams per cubic centimetre to about 1.3 grams per cubic centimetre, and preferably from about 0.7 grams per cubic centimetre to about 1 .0 gram per cubic centimetre.
In embodiments of the present invention in which the aerosol-generating substrate comprises one or more sheets of homogenised plant material, the sheets are preferably in the form of one or more gathered sheets. As used herein, the term “gathered” denotes that the
sheet of homogenised plant material is convoluted, folded, or otherwise compressed or constricted substantially transversely to the cylindrical axis of a plug or a rod.
The one or more sheets of homogenised plant material may be gathered transversely relative to the longitudinal axis thereof and circumscribed with a wrapper to form a continuous rod or a plug.
The one or more sheets of homogenised plant material may advantageously be crimped or similarly treated. As used herein, the term “crimped” denotes a sheet having a plurality of substantially parallel ridges or corrugations. Alternatively or in addition to being crimped, the one or more sheets of homogenised plant material may be embossed, debossed, perforated or otherwise deformed to provide texture on one or both sides of the sheet.
Preferably, each sheet of homogenised plant material may be crimped such that it has a plurality of ridges or corrugations substantially parallel to the cylindrical axis of the plug. This treatment advantageously facilitates gathering of the crimped sheet of homogenised plant material to form the plug. Preferably, the one or more sheets of homogenised plant material may be gathered. It will be appreciated that crimped sheets of homogenised plant material may alternatively or in addition have a plurality of substantially parallel ridges or corrugations disposed at an acute or obtuse angle to the cylindrical axis of the plug. The sheet may be crimped to such an extent that the integrity of the sheet becomes disrupted at the plurality of parallel ridges or corrugations causing separation of the material, and results in the formation of shreds, strands or strips of homogenised plant material.
Alternatively, the one or more sheets of homogenised plant material may be cut into strands as referred to above. In such embodiments, the aerosol-generating substrate comprises a plurality of strands of the homogenised plant material. The strands may be used to form a plug. Typically, the width of such strands is about 5 millimetres, or about 4 millimetres, or about 3 millimetres, or about 2 millimetres or less. The length of the strands may be greater than about 5 millimetres, between about 5 millimetres to about 15 millimetres, about 8 millimetres to about 12 millimetres, or about 12 millimetres. Preferably, the strands have substantially the same length as each other. The length of the strands may be determined by the manufacturing process whereby a rod is cut into shorter plugs and the length of the strands corresponds to the length of the plug. The strands may be fragile which may result in breakage especially during transit. In such cases, the length of some of the strands may be less than the length of the plug.
The plurality of strands preferably extend substantially longitudinally along the length of the aerosol-generating substrate, aligned with the longitudinal axis. Preferably, the plurality of strands are therefore aligned substantially parallel to each other.
The homogenised plant material may comprise up to about 95 percent by weight of plant particles, on a dry weight basis. Preferably, the homogenised plant material comprises
up to about 90 percent by weight of plant particles, more preferably up to about 80 percent by weight of plant particles, more preferably up to about 70 percent by weight of plant particles, more preferably up to about 60 percent by weight of plant particles, more preferably up to about 50 percent by weight of plant particles, on a dry weight basis.
For example, the homogenised plant material may comprise between about 2.5 percent and about 95 percent by weight of plant particles, or about 5 percent and about 90 percent by weight of plant particles, or between about 10 percent and about 80 percent by weight of plant particles, or between about 15 percent and about 70 percent by weight of plant particles, or between about 20 percent and about 60 percent by weight of plant particles, or between about 30 percent and about 50 percent by weight of plant particles, on a dry weight basis.
In certain embodiments of the invention, the homogenised plant material is a homogenised tobacco material comprising tobacco particles. Sheets of homogenised tobacco material for use in such embodiments of the invention may have a tobacco content of at least about 40 percent by weight on a dry weight basis, more preferably of at least about 50 percent by weight on a dry weight basis more preferably at least about 70 percent by weight on a dry weight basis and most preferably at least about 90 percent by weight on a dry weight basis.
With reference to the homogenised plant material in the context of the present invention, the term “tobacco particles” describes particles of any plant member of the genus Nicotiana. The term “tobacco particles” encompasses ground or powdered tobacco leaf lamina, ground or powdered tobacco leaf stems, tobacco dust, tobacco fines, and other particulate tobacco by-products formed during the treating, handling and shipping of tobacco. In a preferred embodiment, the tobacco particles are substantially all derived from tobacco leaf lamina. By contrast, isolated nicotine and nicotine salts are compounds derived from tobacco but are not considered tobacco particles for purposes of the invention and are not included in the percentage of particulate plant material.
The tobacco particles may be prepared from one or more varieties of tobacco plants. Any type of tobacco may be used in a blend. Examples of tobacco types that may be used include, but are not limited to, sun-cured tobacco, flue-cured tobacco, Burley tobacco, Maryland tobacco, Oriental tobacco, Virginia tobacco, and other speciality tobaccos.
Flue-curing is a method of curing tobacco, which is particularly used with Virginia tobaccos. During the flue-curing process, heated air is circulated through densely packed tobacco. During a first stage, the tobacco leaves turn yellow and wilt. During a second stage, the laminae of the leaves are completely dried. During a third stage, the leaf stems are completely dried.
Burley tobacco plays a significant role in many tobacco blends. Burley tobacco has a distinctive flavour and aroma and also has an ability to absorb large amounts of casing.
Oriental is a type of tobacco which has small leaves, and high aromatic qualities. However, Oriental tobacco has a milder flavour than, for example, Burley. Generally, therefore, Oriental tobacco is used in relatively small proportions in tobacco blends.
Kasturi, Madura and Jatim are subtypes of sun-cured tobacco that can be used. Preferably, Kasturi tobacco and flue-cured tobacco may be used in a blend to produce the tobacco particles. Accordingly, the tobacco particles in the particulate plant material may comprise a blend of Kasturi tobacco and flue-cured tobacco.
The tobacco particles may have a nicotine content of at least about 2.5 percent by weight, based on dry weight. More preferably, the tobacco particles may have a nicotine content of at least about 3 percent, even more preferably at least about 3.2 percent, even more preferably at least about 3.5 percent, most preferably at least about 4 percent by weight, based on dry weight.
In certain other embodiments of the invention, the homogenised plant material comprises tobacco particles in combination with non-tobacco plant flavour particles. Preferably, the non-tobacco plant flavour particles are selected from one or more of: ginger particles, eucalyptus particles, clove particles and star anise particles. Preferably, in such embodiments, the homogenised plant material comprises at least about 2.5 percent by weight of the non-tobacco plant flavour particles, on a dry weight basis, with the remainder of the plant particles being tobacco particles. Preferably, the homogenised plant material comprises at least about 4 percent by weight of non-tobacco plant flavour particles, more preferably at least about 6 percent by weight of non-tobacco plant flavour particles, more preferably at least about 8 percent by weight of non-tobacco plant flavour particles and more preferably at least about 10 percent by weight of non-tobacco plant flavour particles, on a dry weight basis. Preferably, the homogenised plant material comprises up to about 20 percent by weight of non-tobacco plant flavour particles, more preferably up to about 18 percent by weight of non- tobacco plant flavour particles, more preferably up to about 16 percent by weight of non- tobacco plant flavour particles.
The weight ratio of the non-tobacco plant flavour particles and the tobacco particles in the particulate plant material forming the homogenised plant material may vary depending on the desired flavour characteristics and composition of the aerosol produced from the aerosolgenerating substrate during use. Preferably, the homogenised plant material comprises at least a 1 :30 weight ratio of non-tobacco plant flavour particles to tobacco particles, more preferably at least a 1 :20 weight ratio of non-tobacco plant flavour particles to tobacco particles, more preferably at least a 1 :10 weight ratio of non-tobacco plant flavour particles to tobacco particles and most preferably at least a1 :5 weight ratio of non-tobacco plant flavour particles to tobacco particles, on a dry weight basis.
Alternatively or in addition to the inclusion of tobacco particles into the homogenised plant material of the aerosol-generating substrate according to the invention, the homogenised plant material may comprise cannabis particles. The term “cannabis particles” refers to particles of a cannabis plant, such as the species Cannabis sativa, Cannabis indica, and Cannabis ruderalis.
The homogenised plant material preferably comprises no more than 95 percent by weight of the particulate plant material, on a dry weight basis. The particulate plant material is therefore typically combined with one or more other components to form the homogenised plant material.
The homogenised plant material may further comprise a binder to alter the mechanical properties of the particulate plant material, wherein the binder is included in the homogenised plant material during manufacturing as described herein. Suitable exogenous binders would be known to the skilled person and include but are not limited to: gums such as, for example, guar gum, xanthan gum, arabic gum and locust bean gum; cellulosic binders such as, for example, hydroxypropyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose and ethyl cellulose; polysaccharides such as, for example, starches, organic acids, such as alginic acid, conjugate base salts of organic acids, such as sodium-alginate, agar and pectins; and combinations thereof. Preferably, the binder comprises guar gum.
The binder may be present in an amount of from about 1 percent to about 10 percent by weight, based on the dry weight of the homogenised plant material, preferably in an amount of from about 2 percent to about 5 percent by weight, based on the dry weight of the homogenised plant material.
Alternatively or in addition, the homogenised plant material may further comprise one or more lipids to facilitate the diffusivity of volatile components (for example, aerosol formers, gingerols and nicotine), wherein the lipid is included in the homogenised plant material during manufacturing as described herein. Suitable lipids for inclusion in the homogenised plant material include, but are not limited to: medium-chain triglycerides, cocoa butter, palm oil, palm kernel oil, mango oil, shea butter, soybean oil, cottonseed oil, coconut oil, hydrogenated coconut oil, candellila wax, carnauba wax, shellac, sunflower wax, sunflower oil, rice bran, and Revel A; and combinations thereof.
Alternatively or in addition, the homogenised plant material may further comprise a pH modifier.
Alternatively or in addition, the homogenised plant material may further comprise fibres to alter the mechanical properties of the homogenised plant material, wherein the fibres are included in the homogenised plant material during manufacturing as described herein. Suitable exogenous fibres for inclusion in the homogenised plant material are known in the art and include fibres formed from non-tobacco material and non- ginger material, including but
not limited to: cellulose fibres; soft-wood fibres; hard-wood fibres; jute fibres and combinations thereof. Exogenous fibres derived from tobacco and/or ginger can also be added. Any fibres added to the homogenised plant material are not considered to form part of the “particulate plant material” as defined above. Prior to inclusion in the homogenised plant material, fibres may be treated by suitable processes known in the art including, but not limited to: mechanical pulping; refining; chemical pulping; bleaching; sulphate pulping; and combinations thereof. A fibre typically has a length greater than its width.
Suitable fibres typically have lengths of greater than 400 micrometres and less than or equal to 4 millimetres, preferably within the range of 0.7 millimetres to 4 millimetres. Preferably, the fibres are present in an amount of about 2 percent to about 15 percent by weight, most preferably at about 4 percent by weight, based on the dry weight of the substrate.
Alternatively or in addition, the aerosol-generating substrate may further comprise one or more aerosol formers. Upon volatilisation, an aerosol former can convey other vaporised compounds released from the aerosol-generating substrate upon heating, such as nicotine and flavourants, in an aerosol. Suitable aerosol formers for inclusion in the homogenised plant material are known in the art and include, but are not limited to: polyhydric alcohols, such as triethylene glycol, propylene glycol, 1 ,3-butanediol and glycerol; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate.
The aerosol-generating substrate may have an aerosol former content of between about 5 percent and about 30 percent by weight on a dry weight basis, such as between about 10 percent and about 25 percent by weight on a dry weight basis, or between about 15 percent and about 20 percent by weight on a dry weight basis.
For example, if the substrate is intended for use in an aerosol-generating article for an electrically-operated aerosol-generating system having a heating element, it may preferably include an aerosol former content of between about 5 percent to about 30 percent by weight on a dry weight basis. If the substrate is intended for use in an aerosol-generating article for an electrically-operated aerosol-generating system having a heating element, the aerosol former is preferably glycerol.
In other embodiments, the aerosol-generating substrate may have an aerosol former content of about 1 percent to about 5 percent by weight on a dry weight basis. For example, if the substrate is intended for use in an aerosol-generating article in which aerosol former is kept in a reservoir separate from the substrate, the substrate may have an aerosol former content of greater than 1 percent and less than about 5 percent. In such embodiments, the aerosol former is volatilised upon heating and a stream of the aerosol former is contacted with the aerosol-generating substrate so as to entrain the flavours from the aerosol-generating substrate in the aerosol.
n other embodiments, the homogenised plant material may have an aerosol former content of about 30 percent by weight to about 45 percent by weight. This relatively high level of aerosol former is particularly suitable for aerosol-generating substrates that are intended to be heated at a temperature of less than 275 degrees Celsius. In such embodiments, the homogenised plant material preferably further comprises between about 2 percent by weight and about 10 percent by weight of cellulose ether, on a dry weight basis and between about 5 percent by weight and about 50 percent by weight of additional cellulose, on a dry weight basis. The use of the combination of cellulose ether and additional cellulose has been found to provide a particularly effective delivery of aerosol when used in an aerosol-generating substrate having an aerosol former content of between 30 percent by weight and 45 percent by weight.
Suitable cellulose ethers include but are not limited to methyl cellulose, hydroxypropyl methyl cellulose, ethyl cellulose, hydroxyl ethyl cellulose, hydroxyl propyl cellulose, ethyl hydroxyl ethyl cellulose and carboxymethyl cellulose (CMC). In particularly preferred embodiments, the cellulose ether is carboxymethyl cellulose.
As used herein, the term “additional cellulose” encompasses any cellulosic material incorporated into the homogenised plant material which does not derive from the non-tobacco plant particles or tobacco particles provided in the homogenised plant material. The additional cellulose is therefore incorporated in the homogenised plant material in addition to the nontobacco plant material or tobacco material, as a separate and distinct source of cellulose to any cellulose intrinsically provided within the non-tobacco plant particles or tobacco particles. The additional cellulose will typically derive from a different plant to the non-tobacco plant particles or tobacco particles. Preferably, the additional cellulose is in the form of an inert cellulosic material, which is sensorially inert and therefore does not substantially impact the organoleptic characteristics of the aerosol generated from the aerosol-generating substrate. For example, the additional cellulose is preferably a tasteless and odourless material.
The additional cellulose may comprise cellulose powder, cellulose fibres, or a combination thereof.
The aerosol former may act as a humectant in the aerosol-generating substrate.
The wrapper circumscribing the rod of homogenised plant material may be a paper wrapper or a non-paper wrapper. Suitable paper wrappers for use in specific embodiments of the invention are known in the art and include, but are not limited to: cigarette papers; and filter plug wraps. Suitable non-paper wrappers for use in specific embodiments of the invention are known in the art and include, but are not limited to sheets of homogenised tobacco materials. In certain preferred embodiments, the wrapper may be formed of a laminate material comprising a plurality of layers. Preferably, the wrapper is formed of an aluminium co-laminated sheet. The use of a co-laminated sheet comprising aluminium
advantageously prevents combustion of the aerosol-generating substrate in the event that the aerosol-generating substrate should be ignited, rather than heated in the intended manner.
In certain alternative embodiments of the present invention, the aerosol-generating substrate comprises a gel composition that includes an alkaloid compound, or a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound. In particularly preferred embodiments, the aerosol-generating substrate comprises a gel composition that includes nicotine.
Preferably, the gel composition comprises an alkaloid compound, or a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound; an aerosol former; and at least one gelling agent. Preferably, the at least one gelling agent forms a solid medium and the glycerol is dispersed in the solid medium, with the alkaloid or cannabinoid dispersed in the glycerol. Preferably, the gel composition is a stable gel phase.
Advantageously, a stable gel composition comprising nicotine provides predictable composition form upon storage or transit from manufacture to the consumer. The stable gel composition comprising nicotine substantially maintains its shape. The stable gel composition comprising nicotine substantially does not release a liquid phase upon storage or transit from manufacture to the consumer. The stable gel composition comprising nicotine may provide for a simple consumable design. This consumable may not have to be designed to contain a liquid, thus a wider range of materials and container constructions may be contemplated.
The gel composition described herein may be combined with an aerosol-generating device to provide a nicotine aerosol to the lungs at inhalation or air flow rates that are within conventional smoking regime inhalation or air flow rates. The aerosol-generating device may continuously heat the gel composition. A consumer may take a plurality of inhalations or “puffs” where each “puff’ delivers an amount of nicotine aerosol. The gel composition may be capable of delivering a high nicotine/low total particulate matter (TPM) aerosol to a consumer when heated, preferably in a continuous manner.
The phrase “stable gel phase” or “stable gel” refers to gel that substantially maintains its shape and mass when exposed to a variety of environmental conditions. The stable gel may not substantially release (sweat) or absorb water when exposed to a standard temperature and pressure while varying relative humidity from about 10 percent to about 60 percent. For example, the stable gel may substantially maintain its shape and mass when exposed to a standard temperature and pressure while varying relative humidity from about 10 percent to about 60 percent.
The gel composition includes an alkaloid compound, or a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound. The gel composition may include one or more alkaloids. The gel composition may include one or more cannabinoids. The gel
composition may include a combination of one or more alkaloids and one or more cannabinoids.
The term “alkaloid compound” refers to any one of a class of naturally occurring organic compounds that contain one or more basic nitrogen atoms. Generally, an alkaloid contains at least one nitrogen atom in an amine-type structure. This or another nitrogen atom in the molecule of the alkaloid compound can be active as a base in acid-base reactions. Most alkaloid compounds have one or more of their nitrogen atoms as part of a cyclic system, such as for example a heterocylic ring. In nature, alkaloid compounds are found primarily in plants, and are especially common in certain families of flowering plants. However, some alkaloid compounds are found in animal species and fungi. In this disclosure, the term “alkaloid compound” refers to both naturally derived alkaloid compounds and synthetically manufactured alkaloid compounds.
The gel composition may preferably include an alkaloid compound selected from the group consisting of nicotine, anatabine, and combinations thereof.
Preferably the gel composition includes nicotine.
The term “nicotine” refers to nicotine and nicotine derivatives such as free-base nicotine, nicotine salts and the like.
The term “cannabinoid compound” refers to any one of a class of naturally occurring compounds that are found in parts of the cannabis plant - namely the species Cannabis sativa, Cannabis indica, and Cannabis ruderalis. Cannabinoid compounds are especially concentrated in the female flower heads. Cannabinoid compounds naturally occurring in the cannabis plant include cannabidiol (CBD) and tetrahydrocannabinol (THC). In this disclosure, the term “cannabinoid compounds” is used to describe both naturally derived cannabinoid compounds and synthetically manufactured cannabinoid compounds.
The gel may include a cannabinoid compound selected from the group consisting of cannabidiol (CBD), tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), cannabinol (CBN), cannabigerol (CBG), cannabichromene (CBC), cannabicyclol (CBL), cannabivarin (CBV), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabichromevarin (CBCV), cannabigerovarin (CBGV), cannabigerol monomethyl ether (CBGM), cannabielsoin (CBE),cannabicitran (CBT), and combinations thereof.
The gel composition may preferably include a cannabinoid compound selected from the group consisting of cannabidiol (CBD), THC (tetrahydrocannabinol) and combinations thereof.
The gel may preferably include cannabidiol (CBD).
The gel composition may include nicotine and cannabidiol (CBD).
The gel composition may include nicotine, cannabidiol (CBD), and THC (tetrahydrocannabinol).
The gel composition preferably includes about 0.5 percent by weight to about 10 percent by weight of an alkaloid compound, or about 0.5 percent by weight to about 10 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 0.5 percent by weight to about 10 percent by weight. The gel composition may include about 0.5 percent by weight to about 5 percent by weight of an alkaloid compound, or about 0.5 percent by weight to about 5 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 0.5 percent by weight to about 5 percent by weight. Preferably the gel composition includes about 1 percent by weight to about 3 percent by weight of an alkaloid compound, or about 1 percent by weight to about 3 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 1 percent by weight to about 3 percent by weight. The gel composition may preferably include about 1 .5 percent by weight to about 2.5 percent by weight of an alkaloid compound, or about 1.5 percent by weight to about 2.5 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount from about 1.5 percent by weight to about 2.5 percent by weight. The gel composition may preferably include about 2 percent by weight of an alkaloid compound, or about 2 percent by weight of a cannabinoid compound, or both an alkaloid compound and a cannabinoid compound in a total amount of about 2 percent by weight. The alkaloid compound component of the gel formulation may be the most volatile component of the gel formulation. In some aspects water may be the most volatile component of the gel formulation and the alkaloid compound component of the gel formulation may be the second most volatile component of the gel formulation. The cannabinoid compound component of the gel formulation may be the most volatile component of the gel formulation. In some aspects water may be the most volatile component of the gel formulation and the alkaloid compound component of the gel formulation may be the second most volatile component of the gel formulation.
Preferably nicotine is included in the gel compositions. The nicotine may be added to the composition in a free base form or a salt form. The gel composition includes about 0.5 percent by weight to about 10 percent by weight nicotine, or about 0.5 percent by weight to about 5 percent by weight nicotine. Preferably the gel composition includes about 1 percent by weight to about 3 percent by weight nicotine, or about 1 .5 percent by weight to about 2.5 percent by weight nicotine, or about 2 percent by weight nicotine. The nicotine component of the gel formulation may be the most volatile component of the gel formulation. In some aspects water may be the most volatile component of the gel formulation and the nicotine component of the gel formulation may be the second most volatile component of the gel formulation.
The gel composition includes an aerosol-former. Ideally the aerosol-former is substantially resistant to thermal degradation at the operating temperature of the associated aerosol-generating device. Suitable aerosol-formers include, but are not limited to: polyhydric alcohols, such as triethylene glycol, 1 , 3-butanediol and glycerine; esters of polyhydric alcohols, such as glycerol mono-, di- or triacetate; and aliphatic esters of mono-, di- or polycarboxylic acids, such as dimethyl dodecanedioate and dimethyl tetradecanedioate. Polyhydric alcohols or mixtures thereof, may be one or more of triethylene glycol, 1 , 3- butanediol and, glycerine (glycerol or propane-1 , 2, 3-triol) or polyethylene glycol. The aerosolformer is preferably glycerol.
The gel composition may include a majority of an aerosol-former. The gel composition may include a mixture of water and the aerosol-former where the aerosol-former forms a majority (by weight) of the gel composition. The aerosol-former may form at least about 50 percent by weight of the gel composition. The aerosol-former may form at least about 60 percent by weight or at least about 65 percent by weight or at least about 70 percent by weight of the gel composition. The aerosol-former may form about 70 percent by weight to about 80 percent by weight of the gel composition. The aerosol-former may form about 70 percent by weight to about 75 percent by weight of the gel composition.
The gel composition may include a majority of glycerol. The gel composition may include a mixture of water and the glycerol where the glycerol forms a majority (by weight) of the gel composition. The glycerol may form at least about 50 percent by weight of the gel composition. The glycerol may form at least about 60 percent by weight or at least about 65 percent by weight or at least about 70 percent by weight of the gel composition. The glycerol may form about 70 percent by weight to about 80 percent by weight of the gel composition. The glycerol may form about 70 percent by weight to about 75 percent by weight of the gel composition.
The gel composition preferably includes at least one gelling agent. Preferably, the gel composition includes a total amount of gelling agents in a range from about 0.4 percent by weight to about 10 percent by weight. More preferably, the composition includes the gelling agents in a range from about 0.5 percent by weight to about 8 percent by weight. More preferably, the composition includes the gelling agents in a range from about 1 percent by weight to about 6 percent by weight. More preferably, the composition includes the gelling agents in a range from about 2 percent by weight to about 4 percent by weight. More preferably, the composition includes the gelling agents in a range from about 2 percent by weight to about 3 percent by weight.
The term “gelling agent” refers to a compound that homogeneously, when added to a 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of about 0.3 percent by weight, forms a solid medium or support matrix leading to a gel. Gelling agents
include, but are not limited to, hydrogen-bond crosslinking gelling agents, and ionic crosslinking gelling agents.
The gelling agent may include one or more biopolymers. The biopolymers may be formed of polysaccharides.
Biopolymers include, for example, gellan gums (native, low acyl gellan gum, high acyl gellan gums with low acyl gellan gum being preferred), xanthan gum, alginates (alginic acid), agar, guar gum, and the like. The composition may preferably include xanthan gum. The composition may include two biopolymers. The composition may include three biopolymers. The composition may include the two biopolymers in substantially equal weights. The composition may include the three biopolymers in substantially equal weights.
Preferably, the gel composition comprises at least about 0.2 percent by weight hydrogen-bond crosslinking gelling agent. Alternatively or in addition, the gel composition preferably comprises at least about 0.2 percent by weight ionic crosslinking gelling agent. Most preferably, the gel composition comprises at least about 0.2 percent by weight hydrogenbond crosslinking gelling agent and at least about 0.2 percent by weight ionic crosslinking gelling agent. The gel composition may comprise about 0.5 percent by weight to about 3 percent by weight hydrogen-bond crosslinking gelling agent and about 0.5 percent by weight to about 3 percent by weight ionic crosslinking gelling agent, or about 1 percent by weight to about 2 percent by weight hydrogen-bond crosslinking gelling agent and about 1 percent by weight to about 2 percent by weight ionic crosslinking gelling agent. The hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent may be present in the gel composition in substantially equal amounts by weight.
The term “hydrogen-bond crosslinking gelling agent” refers to a gelling agent that forms non-covalent crosslinking bonds or physical crosslinking bonds via hydrogen bonding. Hydrogen bonding is a type of electrostatic dipole-dipole attraction between molecules, not a covalent bond to a hydrogen atom. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom and another very electronegative atom.
The hydrogen-bond crosslinking gelling agent may include one or more of a galactomannan, gelatin, agarose, or konjac gum, or agar. The hydrogen-bond crosslinking gelling agent may preferably include agar.
The gel composition preferably includes the hydrogen-bond crosslinking gelling agent in a range from about 0.3 percent by weight to about 5 percent by weight. Preferably the composition includes the hydrogen-bond crosslinking gelling agent in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the composition includes the hydrogen-bond crosslinking gelling agent in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include a galactomannan in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the galactomannan may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the galactomannan may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the galactomannan may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include a gelatin in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the gelatin may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the gelatin may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the gelatin may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include agarose in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the agarose may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the agarose may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the agarose may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include konjac gum in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the konjac gum may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the konjac gum may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the konjac gum may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include agar in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the agar may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the agar may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the agar may be in a range from about 1 percent by weight to about 2 percent by weight.
The term “ionic crosslinking gelling agent” refers to a gelling agent that forms non- covalent crosslinking bonds or physical crosslinking bonds via ionic bonding. Ionic crosslinking involves the association of polymer chains by noncovalent interactions. A crosslinked network is formed when multivalent molecules of opposite charges electrostatically attract each other giving rise to a crosslinked polymeric network.
The ionic crosslinking gelling agent may include low acyl gellan, pectin, kappa carrageenan, iota carrageenan or alginate. The ionic crosslinking gelling agent may preferably include low acyl gellan.
The gel composition may include the ionic crosslinking gelling agent in a range from about 0.3 percent by weight to about 5 percent by weight. Preferably the composition includes the ionic crosslinking gelling agent in a range from about 0.5 percent by weight to about 3
percent by weight by weight. Preferably the composition includes the ionic crosslinking gelling agent in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include low acyl gellan in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the low acyl gellan may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the low acyl gellan may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the low acyl gellan may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include pectin in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the pectin may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the pectin may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the pectin may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include kappa carrageenan in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the kappa carrageenan may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the kappa carrageenan may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the kappa carrageenan may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include iota carrageenan in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the iota carrageenan may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the iota carrageenan may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the iota carrageenan may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include alginate in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the alginate may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the alginate may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the alginate may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent in a ratio of about 3:1 to about 1 :3. Preferably the gel composition may include the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent in a ratio of about 2:1 to about 1 :2. Preferably the gel composition may include the hydrogen-bond crosslinking gelling agent and ionic crosslinking gelling agent in a ratio of about 1 :1.
The gel composition may further include a viscosifying agent. The viscosifying agent combined with the hydrogen-bond crosslinking gelling agent and the ionic crosslinking gelling
agent appears to surprisingly support the solid medium and maintain the gel composition even when the gel composition comprises a high level of glycerol.
The term “viscosifying agent” refers to a compound that, when added homogeneously into a 25°C, 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of 0.3 percent by weight., increases the viscosity without leading to the formation of a gel, the mixture staying or remaining fluid. Preferably the viscosifying agent refers to a compound that when added homogeneously into a 25°C 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of 0.3 percent by weight, increases the viscosity to at least 50 cPs, preferably at least 200 cPs, preferably at least 500 cPs, preferably at least 1000 cPs at a shear rate of 0.1 s'1 , without leading to the formation of a gel, the mixture staying or remaining fluid. Preferably the viscosifying agent refers to a compound that when added homogeneously into a 25°C 50 percent by weight water/50 percent by weight glycerol mixture, in an amount of 0.3 percent by weight, increases the viscosity at least 2 times, or at least 5 times, or at least 10 times, or at least 100 times higher than before addition, at a shear rate of 0.1 s’1, without leading to the formation of a gel, the mixture staying or remaining fluid.
The viscosity values recited herein can be measured using a Brookfield RVT viscometer rotating a disc type RV#2 spindle at 25°C at a speed of 6 revolutions per minute (rpm).
The gel composition preferably includes the viscosifying agent in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the composition includes the viscosifying agent in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the composition includes the viscosifying agent in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the composition includes the viscosifying agent in a range from about 1 percent by weight to about 2 percent by weight.
The viscosifying agent may include one or more of xanthan gum, carboxymethylcellulose, microcrystalline cellulose, methyl cellulose, gum Arabic, guar gum, lambda carrageenan, or starch. The viscosifying agent may preferably include xanthan gum.
The gel composition may include xanthan gum in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the xanthan gum may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the xanthan gum may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the xanthan gum may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include carboxymethyl-cellulose in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the carboxymethyl-cellulose may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the carboxymethyl-cellulose may be in a range from about 0.5 percent by weight to about 2
percent by weight. Preferably the carboxymethyl-cellulose may be in a range from about 1 percent by weight to about 2 percent by weight
The gel composition may include microcrystalline cellulose in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the microcrystalline cellulose may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the microcrystalline cellulose may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the microcrystalline cellulose may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include methyl cellulose in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the methyl cellulose may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the methyl cellulose may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the methyl cellulose may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include gum Arabic in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the gum Arabic may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the gum Arabic may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the gum Arabic may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include guar gum in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the guar gum may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the guar gum may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the guar gum may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include lambda carrageenan in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the lambda carrageenan may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the lambda carrageenan may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the lambda carrageenan may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include starch in a range from about 0.2 percent by weight to about 5 percent by weight. Preferably the starch may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the starch may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the starch may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may further include a divalent cation. Preferably the divalent cation includes calcium ions, such as calcium lactate in solution. Divalent cations (such as
calcium ions) may assist in the gel formation of compositions that include gelling agents such as the ionic crosslinking gelling agent, for example. The ion effect may assist in the gel formation. The divalent cation may be present in the gel composition in a range from about 0.1 to about 1 percent by weight, or about 0.5 percent by weight.
The gel composition may further include an acid. The acid may comprise a carboxylic acid. The carboxylic acid may include a ketone group. Preferably the carboxylic acid may include a ketone group having less than about 10 carbon atoms, or less than about 6 carbon atoms or less than about 4 carbon atoms, such as levulinic acid or lactic acid. Preferably this carboxylic acid has three carbon atoms (such as lactic acid). Lactic acid surprisingly improves the stability of the gel composition even over similar carboxylic acids. The carboxylic acid may assist in the gel formation. The carboxylic acid may reduce variation of the alkaloid compound concentration, or the cannabinoid compound concentration, or both the alkaloid compound concentration and the cannabinoid compound within the gel composition during storage. The carboxylic acid may reduce variation of the nicotine concentration within the gel composition during storage.
The gel composition may include a carboxylic acid in a range from about 0.1 percent by weight to about 5 percent by weight. Preferably the carboxylic acid may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the carboxylic acid may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the carboxylic acid may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include lactic acid in a range from about 0.1 percent by weight to about 5 percent by weight. Preferably the lactic acid may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the lactic acid may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the lactic acid may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition may include levulinic acid in a range from about 0.1 percent by weight to about 5 percent by weight. Preferably the levulinic acid may be in a range from about 0.5 percent by weight to about 3 percent by weight. Preferably the levulinic acid may be in a range from about 0.5 percent by weight to about 2 percent by weight. Preferably the levulinic acid may be in a range from about 1 percent by weight to about 2 percent by weight.
The gel composition preferably comprises some water. The gel composition is more stable when the composition comprises some water. Preferably the gel composition comprises at least about 1 percent by weight, or at least about 2 percent by weight. , or at least about 5 percent by weight of water. Preferably the gel composition comprises at least about 10 percent by weight or at least about 15 percent by weight water.
Preferably the gel composition comprises between about 8 percent by weight to about 32 percent by weight water. Preferably the gel composition comprises from about 15 percent
by weight to about 25 percent by weight water. Preferably the gel composition comprises from about 18 percent by weight to about 22 percent by weight water. Preferably the gel composition comprises about 20 percent by weight water.
Preferably, the aerosol-generating substrate comprises between about 150 mg and about 350 mg of the gel composition.
Preferably, the aerosol-generating substrate comprises a porous medium loaded with the gel composition. Advantages of a porous medium loaded with the gel composition is that the gel composition is retained within the porous medium, and this may aid manufacturing, storage or transport of the gel composition. It may assist in keeping the desired shape of the gel composition, especially during manufacture, transport, or use.
The porous medium may be any suitable porous material able to hold or retain the gel composition. Ideally the porous medium can allow the gel composition to move within it. In specific embodiments the porous medium comprises natural materials, synthetic, or semisynthetic, or a combination thereof. In specific embodiments the porous medium comprises sheet material, foam, or fibres, for example loose fibres; or a combination thereof. In specific embodiments the porous medium comprises a woven, non-woven, or extruded material, or combinations thereof. Preferably the porous medium comprises, cotton, paper, viscose, PLA, or cellulose acetate, of combinations thereof. Preferably the porous medium comprises a sheet material, for example, cotton or cellulose acetate. In a particularly preferred embodiment, the porous medium comprises a sheet made from cotton fibres.
The porous medium used in the present invention may be crimped or shredded. In preferred embodiments, the porous medium is crimped. In alternative embodiments the porous medium comprises shredded porous medium. The crimping or shredding process can be before or after loading with the gel composition.
Crimping of the sheet material has the benefit of improving the structure to allow passageways through the structure. The passageways though the crimped sheet material assist in loading up gel, retaining gel and also for fluid to pass through the crimped sheet material. Therefore there are advantages of using crimped sheet material as the porous medium.
Shredding gives a high surface area to volume ratio to the medium thus able to absorb gel easily.
In specific embodiments the sheet material is a composite material. Preferably the sheet material is porous. The sheet material may aid manufacture of the tubular element comprising a gel. The sheet material may aid introducing an active agent to the tubular element comprising a gel. The sheet material may help stabilise the structure of the tubular element comprising a gel. The sheet material may assist transport or storage of the gel. Using
a sheet material enables, or aids, adding structure to the porous medium for example by crimping of the sheet material.
The porous medium may be a thread. The thread may comprise for example cotton, paper or acetate tow. The thread may also be loaded with gel like any other porous medium. An advantage of using a thread as the porous medium is that it may aid ease of manufacturing.
The thread may be loaded with gel by any known means. The thread may be simply coated with gel, or the thread may be impregnated with gel. In the manufacture, the threads may be impregnated with gel and stored ready for use to be included in the assembly of a tubular element.
The porous medium loaded with the gel composition is preferably provided within a tubular element that forms a part of the aerosol-generating article. The term “tubular element” is used to describe a component suitable for use in an aerosol generating article. Ideally the tubular element may be longer in longitudinal length then in width but not necessarily as it may be one part of a multi- component item that ideally will be longer in its longitudinal length then its width. Typically, the tubular element is cylindrical but not necessarily. For example, the tubular element may have an oval, polygonal like triangular or rectangular or random cross section.
The tubular element preferably comprises a first longitudinal passageway. The tubular element is preferably formed of a wrapper that defines the first longitudinal passageway. The wrapper is preferably a water-resistant wrapper. This water-resistant property the wrapper may be achieved by using a water-resistant material, or by treating the material of the wrapper. It may be achieved by treating one side or both sides of the wrapper. Being water- resistant would assist in not losing structure, stiffness or rigidity. It may also assist in preventing leaks of gel or liquid, especially when gels of a fluid structure are used.
Embodiments of the invention in which the aerosol-generating element comprises an aerosol-generating substrate comprising a gel composition, as described above, may advantageously comprise an upstream element upstream of the aerosol-generating element. In this case, the upstream element advantageously prevents physical contact with the gel composition. The upstream element can also advantageously compensate for any potential reduction in RTD, for example, due to evaporation of the gel composition upon heating of the aerosol-generating element during use. Further details about the provision of one such upstream element will be described below.
The downstream section may have any length. The downstream section may have a length of at least about 10 millimetres. For example, the downstream section may have a length of at least about 15 millimetres, at least about 20 millimetres, at least about 25 millimetres, or at least about 30 millimetres.
The provision of a downstream section having a length greater than the values set out above may advantageously provide space for the aerosol to cool and condense before reaching the consumer. This may also ensure a user is spaced apart from the heating element when the aerosol-generating article is used in conjunction with an aerosol generating device.
The downstream section may have a length of no more than about 60 millimetres. For example, the downstream section may have a length of no more than about 50 millimetres, no more than about 55 millimetres, no more than about 40 millimetres, or no more than about 35 millimetres.
The downstream section may have a length of between about 10 millimetres and about 60 millimetres, between about 15 millimetres and about 50 millimetres, between about 20 millimetres and about 55 millimetres, between about 25 millimetres and about 40 millimetres, or between about 30 millimetres and about 35 millimetres. For example, the downstream section may have a length of about 33 millimetres.
A ratio between the length of the downstream section and the length of the element comprising aerosol-generating substrate may be from about 1.0 to about 4.5.
Preferably, a ratio between the length of the downstream section and the length of the aerosol-generating element is at least about 1 .5, more preferably at least about 2.0, even more preferably at least about 2.5. In preferred embodiments, a ratio between the length of the downstream section and the length of the aerosol-generating element is less than about 4.0, more preferably less than about 3.5, even more preferably less than about 3.0.
In some embodiments, a ratio between the length of the downstream section and the length of the aerosol-generating element is from about 1.5 to about 4.0, preferably from about 2.0 to about 3.5, more preferably from about 2.5 to about 3.0.
In a particularly preferred embodiments, a ratio between the length of the downstream section and the length of the aerosol-generating element is about 2.75.
A ratio between the length of the downstream section and the overall length of the aerosol-generating article may be from about 0.1 to about 1.5.
Preferably, a ratio between the length of the downstream section and the overall length of the aerosol-generating article is at least about 0.25, more preferably at least about 0.50. A ratio between the length of the downstream section and the overall length of the aerosolgenerating article is preferably less than about 1 .25, more preferably less than about 1 .0.
In some embodiments, a ratio between the length of the downstream section and the overall length of the aerosol-generating article is preferably from about 0.25 to about 1 .25, more preferably from about 0.5 to about 1.0.
In a particularly preferred embodiment, a ratio between the length of the downstream section and the overall length of the aerosol-generating article is about 0.73.
The length of the downstream section may be composed of the sum of the lengths of the individual components forming the downstream section.
As described briefly above, in aerosol-generating articles in accordance with the present invention, an RTD of the downstream section is less than about 10 mm H2O. Preferably, an RTD of the downstream section is less than or equal to about 8 mm H2O, more preferably less than or equal to about 5 mm H2O, even more preferably less than or equal to about 1 mm H2O. The RTD of the downstream section will also be discussed in greater detail below.
The downstream section may comprise an unobstructed airflow pathway from the downstream end of the aerosol-generating substrate to the downstream end of the downstream section.
The unobstructed airflow pathway from the downstream end of the aerosol-generating substrate to the downstream end of the downstream section has a minimum diameter of about 0.5 millimetres. For example, the unobstructed airflow pathway may have a minimum diameter of 1 millimetre, 2 millimetres, 3 millimetres, or 5 millimetres.
The downstream section may comprise a hollow tube segment.
The provision of a hollow tube segment may advantageously provide a desired overall length of the aerosol-generating article without increasing the resistance to draw unacceptably.
The hollow tube may extend from the downstream end of the downstream section to the upstream end of the downstream section. In other words, the entire length of the downstream section may be accounted for by the hollow tube segment. Where this is the case, it will be appreciated that the lengths and length ratios set out above in relation to the downstream section are equally applicable to the length of the hollow tube segment.
The hollow tube segment may abut the downstream end of the aerosol-generating article.
The hollow tube segment may be spaced apart from the downstream end of the aerosol-generating article. Where this is the case, there may be an empty space between the downstream end of the aerosol-generating substrate and the upstream end of the hollow tube segment.
The hollow tube segment may have an internal diameter. The hollow tube segment may have a constant internal diameter along the length of the hollow tube segment. The internal diameter of the hollow tube segment may vary along the length of the hollow tube segment.
The hollow tube segment may have an internal diameter of at least about 2 millimetres. For example, the hollow tube segment may have an internal diameter of at least about 4 millimetres, at least about 5 millimetres, or at least about 7 millimetres.
The provision of a hollow tube segment having an internal diameter as set out above may advantageously provide sufficient rigidity and strength to the hollow tube segment
The hollow tube segment may have an internal diameter of no more than about 10 millimetres. For example, the hollow tube segment may have an internal diameter of no more than about 9 millimetres, no more than about 8 millimetres, or no more than about 7.5 millimetres.
The provision of a hollow tube segment having an internal diameter as set out above may advantageously reduce the resistance to draw of the hollow tubular segment.
The hollow tube segment may have an internal diameter of between about 2 millimetres and about 10 millimetres, between about 4 millimetres and about 9 millimetres, between about 5 millimetres and about 8 millimetres, or between about 7 millimetres and about 7.5 millimetres.
The hollow tube segment may have an internal diameter of about 7.1 millimetres.
The ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be at least about 0.8. For example, the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be at least about 0.85, at least about 0.9, or at least about 0.95.
The ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be no more than about 0.99. For example, the ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be no more than about 0.98.
The ratio between an internal diameter of the hollow tube segment and the external diameter of the hollow tube segment may be about 0.97.
The provision of relatively large internal diameter may advantageously reduce the resistance to draw of the hollow tubular segment.
The lumen of the hollow tubular segment may have any cross sectional shape. The lumen of the hollow tubular segment may have a circular cross sectional shape.
The hollow tubular segment may be formed from any material. For example, the hollow tube may comprise cellulose acetate tow. Where the hollow tubular segment comprises cellulose acetate tow, the hollow tubular segment may have a thickness of between about 0.1 millimetre and about 1 millimetre. The hollow tubular segment may have a thickness of about 0.5 millimetres.
Where the hollow tubular segment comprises cellulose acetate tow, the cellulose acetate tow may have a denier per filament of between about 2 and about 4 and a total denier of between about 25 and about 40.
The hollow tubular segment may comprise paper. The hollow tubular segment may comprise at least one layer of paper. The paper may be very rigid paper. The paper may be
crimped paper, such as crimped heat resistant paper or crimped parchment paper. The paper may be cardboard. The hollow tabular segment may be paper tube. The hollow tubular segment may be a tube formed from spirally wound paper. The hollow tabular segment may be formed from a plurality of layers of the paper. The paper may have a basis weight of at least about 50 grams per square meter, at least about 60 grams per square meter, at least about 70 grams per square meter, or at least about 90 grams per square meter.
Where the tubular segment comprises paper, the paper may have a thickness of at least about 50 micrometres. For example, the paper may have a thickness of at least about 70 micrometres, at least about 90 micrometres, or at least about 100 micrometres.
The hollow tubular segment may comprise a polymer. For example, the hollow tubular segment may comprise a polymeric film. The polymeric film may comprise a cellulosic film. The hollow tubular segment may comprise low density polyethylene (LDPE) or polyhydroxyalkanoate (PHA) fibres.
The downstream section may comprise a modified tubular element. The modified tubular element may be provided instead of a hollow tubular element. The modified tubular element may be provided immediately downstream of the aerosol-generating substrate. The modified tubular element may abut the aerosol-generating substrate.
The modified tubular element may comprise a tubular body defining a cavity extending from a first upstream end of the tubular body to a second downstream end of the tubular body. The modified tubular element may also comprise a folded end portion forming a first end wall at the first upstream end of the tubular body. The first end wall may delimit an opening which permits airflow between the cavity and the exterior of the modified tubular element. Preferably, the opening is configured to allow airflow from the aerosol-generating substrate through the opening and into the cavity.
The cavity of the tubular body may be substantially empty to allow substantially unrestricted airflow along the cavity. The RTD of the modified tubular element may be localised at a specific longitudinal position of the modified tubular element. In particular, the RTD of the modified tubular element may be localised at the first end wall. In this way, the RTD of the modified tubular element may be substantially controlled through the chosen configuration of the first end wall and its corresponding opening. The RTD of the modified tubular element (which is essentially the RTD of the first end wall) is of the same order of magnitude of the RTD of a hollow tubular segment as described above.
The modified tubular element may have any length. The modified tubular element may have a length of between about 10 millimetres and about 60 millimetres, between about 15 millimetres and about 50 millimetres, between about 20 millimetres and about 55 millimetres, between about 25 millimetres and about 40 millimetres, or between about 30 millimetres and
about 35 millimetres. For example, the modified tubular element may have a length of about 33 millimetres.
The modified tubular element may have any external diameter (DE). The modified tubular element may have an external diameter (DE) of between about 5 millimetres and about 12 millimetres, between about 6 millimetres and about 12 millimetres, or between about 7 millimetres and about 12 millimetres. The modified tubular element may have an external diameter (DE) of about 7.3 millimetres.
The modified tubular element may have any internal diameter (Di). The modified tubular element may have an internal diameter (Di) of between about 2 millimetres and about 10 millimetres, between about 4 millimetres and about 9 millimetres, between about 5 millimetres and about 8 millimetres, or between about 7 millimetres and about 7.5 millimetres. The modified tubular element may have an internal diameter (Di) of about 7.1 millimetres. The modified tubular element may have a peripheral wall having any thickness. The peripheral wall of the modified tubular element may have a thickness of between about 0.05 millimetres and about 0.5 millimetres. The peripheral wall of the modified tubular element may have a thickness of about 0.1 millimetres.
The downstream section may include ventilation. The ventilation may be provided to allow cooler air from outside the aerosol-generating article to enter the interior of the downstream section.
The aerosol-generating article may typically have a ventilation level of at least about 10 percent, preferably at least about 20 percent.
In preferred embodiments, the aerosol-generating article has a ventilation level of at least about 20 percent or 25 percent or 30 percent. More preferably, the aerosol-generating article has a ventilation level of at least about 35 percent.
The aerosol-generating article preferably has a ventilation level of less than about 80 percent. More preferably, the aerosol-generating article has a ventilation level of less than about 60 percent or less than about 50 percent.
The aerosol-generating article may typically have a ventilation level of between about 10 percent and about 80 percent.
In some embodiments, the aerosol-generating article has a ventilation level from about 20 percent to about 80 percent, preferably from about 20 percent to about 60 percent, more preferably from about 20 percent to about 50 percent. In other embodiments, the aerosolgenerating article has a ventilation level from about 25 percent to about 80 percent, preferably from about 25 percent to about 60 percent, more preferably from about 25 percent to about 50 percent. In further embodiments, the aerosol-generating article has a ventilation level from about 30 percent to about 80 percent, preferably from about 30 percent to about 60 percent, more preferably from about 30 percent to about 50 percent.
n particularly preferred embodiments, the aerosol-generating article has a ventilation level from about 40 percent to about 50 percent. In some particularly preferred embodiments, the aerosol-generating article has a ventilation level of about 45 percent.
Without wishing to be bound by theory, the inventors have found that the temperature drop caused by the admission of cooler, external air into the hollow tubular segment may have an advantageous effect on the nucleation and growth of aerosol particles.
Formation of an aerosol from a gaseous mixture containing various chemical species depends on a delicate interplay between nucleation, evaporation, and condensation, as well as coalescence, all the while accounting for variations in vapour concentration, temperature, and velocity fields. The so-called classical nucleation theory is based on the assumption that a fraction of the molecules in the gas phase are large enough to stay coherent for long times with sufficient probability (for example, a probability of one half) . These molecules represent some kind of a critical, threshold molecule clusters among transient molecular aggregates, meaning that, on average, smaller molecule clusters are likely to disintegrate rather quickly into the gas phase, while larger clusters are, on average, likely to grow. Such critical cluster is identified as the key nucleation core from which droplets are expected to grow due to condensation of molecules from the vapour. It is assumed that virgin droplets that just nucleated emerge with a certain original diameter, and then may grow by several orders of magnitude. This is facilitated and may be enhanced by rapid cooling of the surrounding vapour, which induces condensation. In this connection, it helps to bear in mind that evaporation and condensation are two sides of one same mechanism, namely gas— liquid mass transfer. While evaporation relates to net mass transfer from the liquid droplets to the gas phase, condensation is net mass transfer from the gas phase to the droplet phase. Evaporation (or condensation) will make the droplets shrink (or grow), but it will not change the number of droplets.
In this scenario, which may be further complicated by coalescence phenomena, the temperature and rate of cooling can play a critical role in determining how the system responds. In general, different cooling rates may lead to significantly different temporal behaviours as concerns the formation of the liquid phase (droplets), because the nucleation process is typically nonlinear. Without wishing to be bound by theory, it is hypothesised that cooling can cause a rapid increase in the number concentration of droplets, which is followed by a strong, short-lived increase in this growth (nucleation burst). This nucleation burst would appear to be more significant at lower temperatures. Further, it would appear that higher cooling rates may favour an earlier onset of nucleation. By contrast, a reduction of the cooling rate would appear to have a favourable effect on the final size that the aerosol droplets ultimately reach.
Therefore, the rapid cooling induced by the admission of external air into the hollow tubular segment can be favourably used to favour nucleation and growth of aerosol droplets. However, at the same time, the admission of external air into the hollow tubular segment has the immediate drawback of diluting the aerosol stream delivered to the consumer.
The inventors have surprisingly found that the diluting effect on the aerosol - which can be assessed by measuring, in particular, the effect on the delivery of aerosol former (such as glycerol) included in the aerosol-generating substrate) is advantageously minimised when the ventilation level is within the ranges described above. In particular, ventilation levels between 25 percent and 50 percent, and even more preferably between 28 and 42 percent, have been found to lead to particularly satisfactory values of glycerin delivery. At the same time, the extent of nucleation and, as a consequence, the delivery of nicotine and aerosolformer (for example, glycerol) are enhanced.
The ventilation into the downstream section may be provided along substantially the entire length of the downstream section. Where this is the case, the downstream section may comprise a porous material which allows air to enter the downstream section. For example, where the downstream section comprises a hollow tubular segment, the hollow segment may be formed from a porous material which allows air to enter the interior of the hollow tubular segment. Where the downstream section comprises a wrapper, the wrapper may be formed from a porous material which allows air to enter the interior of the hollow tubular segment.
The downstream section may comprise a first ventilation zone for providing ventilation into the downstream section. The first ventilation zone comprises a portion of the downstream section through which a greater volume of air may pass compared to the remainder of the downstream section. For example, the first ventilation zone may be a portion of the downstream section having a higher porosity than the remainder of the downstream section.
The first ventilation zone may comprise a porous portion of the downstream section having a ventilation of at least 5 percent. For example, the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of at least 10 percent, at least 20 percent, at least 25 percent, at least 30 percent, or at least 35 percent.
The first ventilation zone may comprise a porous portion of the downstream section having a ventilation of no more than 80 percent. For example, the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of no more than 60 percent, or less than 50 percent.
The first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 10 percent and 80 percent, between 20 percent and 80 percent, between 20 percent and 60 percent, or from 20 percent and 50 percent. In other embodiments, the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 25 percent and 80 percent, between 25 percent and
60 percent, or between 25 percent and 50 percent. In further embodiments, the first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 30 percent and 80 percent, between 30 percent and 60 percent, or between 30 percent and 50 percent.
The first ventilation zone may comprise a porous portion of the downstream section having a ventilation of between 40 percent and 50 percent. In some particularly preferred embodiments, first ventilation zone may comprise a porous portion of the downstream section having a ventilation of 45 percent.
The first ventilation zone may comprise a first line of perforation holes circumscribing the downstream section.
In some embodiments, the ventilation zone may comprise two circumferential rows of perforation holes. For example, the perforation holes may be formed online during manufacturing of the aerosol-generating article. Each circumferential row of perforation holes may comprise between about 5 and about 40 perforations, for example each circumferential row of perforation holes may comprise between about 8 and about 30 perforations.
Where the aerosol-generating article comprises a combining plug wrap the ventilation zone preferably comprises at least one corresponding circumferential row of perforation holes provided through a portion of the combining plug wrap. These may also be formed online during manufacture of the smoking article. Preferably, the circumferential row or rows of perforation holes provided through a portion of the combining plug wrap are in substantial alignment with the row or rows of perforations through the downstream section.
Where the aerosol-generating article comprises a band of tipping paper, wherein the band of tipping paper extends over the circumferential row or rows of perforations in the downstream section, the ventilation zone preferably comprises at least one corresponding circumferential row of perforation holes provided through the band of tipping paper. These may also be formed online during manufacture of the smoking article. Preferably, the circumferential row or rows of perforation holes provided through the band of tipping paper are in substantial alignment with the row or rows of perforations through the downstream section.
The first line of perforation holes may comprise at least one perforation hole having a width of at least about 50 micrometres. For example, the first line of perforation holes may comprise at least one perforation hole having a width of at least about 65 micrometres, at least about 80 micrometres, at least about 90 micrometres, or at least about 100 micrometres.
The first line of perforation holes may comprise at least one perforation hole having a width no greater than about 200 micrometres. For example, the first line of perforation holes may comprise at least one perforation hole having a width no greater than about 175
micrometres, no greater than about 150 micrometres, no greater than about 125 micrometres, or no greater than about 120 micrometres.
The first line of perforation holes may comprise at least one perforation hole having a width of between about 50 micrometres and about 200 micrometres, between about 65 micrometres and about 175 micrometres, between about 90 micrometres and about 150 micrometres, or between about 100 micrometres and about 120 micrometres.
Where the perforation holes are formed from using laser perforation techniques, the width of the perforation holes may be determined by the focus diameter of the laser.
The first line of perforation holes may comprise at least one perforation hole having a length of at least about 400 micrometres. For example, the first line of perforation holes may comprise at least one perforation hole having a length of at least about 425 micrometres, at least about 450 micrometres, at least about 475 micrometres, or at least about 500 micrometres.
The first line of perforation holes may comprise at least one perforation hole having a length no greater than about 1 millimetre. For example, the first line of perforation holes may comprise at least one perforation hole having a length no greater than about 950 micrometres, no greater than about 900 micrometres, no greater than about 850 micrometres, or no greater than about 800 micrometres.
The first line of perforation holes may comprise at least one perforation hole having a length of between about 400 micrometres and about 1 millimetre, between about 425 micrometres and about 950 micrometres, between about 450 micrometres and about 900 micrometres, between about 475 micrometres and about 850 micrometres, or between about 500 micrometres and about 800 micrometres.
The first line of perforation holes may comprise at least one perforation hole having an opening area of at least about 0.01 millimetres squared. For example, the first line of perforation holes may comprise at least one perforation hole having an opening area of at least about 0.02 millimetres squared, at least about 0.03 millimetres squared, or at least about 0.05 millimetres squared.
The first line of perforation holes may comprise at least one perforation hole having an opening area of no more than about 0.5 millimetres squared. For example, the first line of perforation holes may comprise at least one perforation hole having an opening area of no more than about 0.3 millimetres squared, no more than about 0.25 millimetres squared, or no more than about 0.1 millimetres squared.
The first line of perforation holes may comprise at least one perforation hole having an opening area of between about 0.01 millimetres squared and about 0.5 millimetres squared, between about 0.02 millimetres squared and about 0.3 millimetres squared, between about 0.03 millimetres squared and about 0.25 millimetres squared, or between about 0.05
millimetres squared and about 0.1 millimetres squared. The first line of perforation holes may comprise at least one perforation hole having an opening area of between about 0.05 millimetres squared and about 0.096 millimetres squared.
As set out above, the aerosol-generating article may comprise a wrapper circumscribing at least a portion of the downstream section, the first ventilation zone may comprise a porous portion of the wrapper.
The wrapper may be a paper wrapper, and the first ventilation zone may comprise a portion of porous paper.
As set out above, the downstream section may comprise a hollow tube spaced apart from the downstream end of the aerosol generating substrate. Where this is the case, the hollow tube may be connected to the aerosol-generating substrate by a paper wrapper. The wrapper may be a porous paper wrapper. Where this is the case, the first ventilation zone may comprise the portion of porous paper wrapper overlaying the space between the downstream end of the aerosol-generating substrate and the upstream end of the hollow tube. In this case, the upstream end of the first ventilation zone abuts the downstream end of the aerosol-generating substrate and the downstream end of the first ventilation zone abuts the upstream end of the hollow tube.
The porous portion of the wrapper forming the first ventilation zone may have a basis weight which is lower than that of a portion of the wrapper which does not form part of the first ventilation zone.
The porous portion of the wrapper forming the first ventilation zone may have a thickness which is lower than that of a portion of the wrapper which does not form part of the first ventilation zone.
The upstream end of the first ventilation zone may be less than 10 millimetres from the downstream end of the aerosol-generating substrate.
For example, the upstream end of the first ventilation zone may be less than 8 millimetres, less than 5 millimetres, less than 3 millimetres, or less than 1 millimetre from the from the downstream end of the aerosol-generating substrate.
The upstream end of the first ventilation zone may be longitudinally aligned with the downstream end of the aerosol-generating substrate.
The upstream end of the first ventilation zone may be located less than 25 percent of the way along the length of the downstream element from the downstream end of the aerosolgenerating substrate. For example, the upstream end of the first ventilation zone may be located less than 20 percent, less than 18 percent, less than 15 percent, less than 10 percent, less than 5 percent, or less than 1 percent of the way along the length of the downstream element from the downstream end of the aerosol-generating substrate.
The downstream end of the first ventilation zone may be located less than 30 percent of the way along the length of the downstream element from the downstream end of the aerosol-generating substrate. For example, the downstream end of the first ventilation zone may be located less than 25 percent, less than 20 percent, less than 18 percent, less than 15 percent, less than 10 percent, or less than 5 percent of the way along the length of the downstream element from the downstream end of the aerosol-generating substrate.
The downstream end of the first ventilation zone may be no further than 10 millimetres from the downstream end of the aerosol-generating substrate. In other words, the first ventilation zone may be entirely located within 10 millimetres of the aerosol-generating substrate.
For example, the downstream end of the first ventilation zone may be no further than 8 millimetres, no further than 5 millimetres, or no further than 3 millimetres from the downstream end of the aerosol-generating substrate.
The first ventilation zone may be located anywhere along the length of the downstream section. The downstream end of the first ventilation zone may be located no more than about 25 millimetres from the downstream end of the aerosol-generating article. For example, the first ventilation zone may be located no more than about 20 millimetres from the downstream end of the aerosol generating article.
Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded when the aerosol-generating article is inserted into an aerosol generating device.
The downstream end of the first ventilation zone may be located at least about 8 millimetres from the downstream end of the aerosol generating article. For example, the downstream end of the first ventilation zone may be located at least about 10 millimetres, at least 12 millimetres, or at least about 15 millimetres from the downstream end of the aerosolgenerating article.
Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded by a user’s mouth or lips when the aerosol-generating article is in use.
The downstream end of the first ventilation zone may be located between about 8 millimetres and about 25 millimetres, between about 10 millimetres and about 25 millimetres, or between about 15 millimetres and about 20 millimetres from the downstream end of the aerosol-generating article. The downstream end of the first ventilation zone may be located about 18 millimetres from the downstream end of the aerosol-generating article.
The upstream end of the first ventilation zone may be located at least about 20 millimetres from the upstream end of the aerosol-generating article. For example, the
upstream end of the first ventilation zone may be located at least about 25 millimetres from the upstream end of the aerosol-generating article.
Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded when the aerosol-generating article is inserted into an aerosol generating device.
The upstream end of the first ventilation zone may be located no more than 37 millimetres from the upstream end of the aerosol-generating article. For example, the upstream end of the first ventilation zone may be located no more than about 30 millimetres from the upstream end of the aerosol-generating article.
Locating the first ventilation zone as outlined above may advantageously prevent the first ventilation zone being occluded by a user’s mouth or lips when the aerosol-generating article is in use.
The upstream end of the first ventilation zone may be located between about 20 millimetres and about 37 millimetres, or between about 25 millimetres and about 30 millimetres from the upstream end of the aerosol-generating article. The upstream end of the first ventilation zone may be located about 27 millimetres from the downstream end of the aerosolgenerating article.
The first ventilation zone may have any length. The first ventilation zone may have a length of at least 0.5 millimetres. In other words, the longitudinal distance between the downstream end of the first ventilation zone and the an upstream end of the first ventilation zone is at least 0.5 millimetres. For example, the first ventilation zone may have a length of at least 1 millimetre, at least 2 millimetres, at least 5 millimetres, or at least 8 millimetres.
The first ventilation zone may have a length of no more than 10 millimetres. For example, the first ventilation zone may have a length of no more than 8 millimetres, or no more than 5 millimetres.
The first ventilation zone may have a length of between 0.5 millimetres and 10 millimetres. For example, the first ventilation zone may have a length of between 1 millimetre and 8 millimetres, or between 2 millimetres and 5 millimetres.
The aerosol-generating article may further comprise a further element or component in addition to the hollow tubular element and the aerosol-generating element, such as a filter segment or mouthpiece segment. Preferably, the downstream section of the aerosolgenerating article may comprise an element or component in addition to the hollow tubular element, such as a filter segment or mouthpiece segment.
Such a further element may be located downstream of the hollow tubular element. Such a further element may be located immediately downstream of the hollow tubular element. Such a further element may be located between the aerosol-generating element and the hollow tubular element. Such a further element may extend from the downstream end of the
hollow tubular element to the mouth end of the aerosol-generating article or to the downstream end of the downstream section. Such a further element is preferably a downstream element or segment. Such a further element may be a filter element or segment or a mouthpiece segment. Such a further element may form part of the downstream section of the aerosolgenerating article of the present disclosure. Such a further element may be in axial alignment with the rest of the components of the aerosol-generating article, such as the aerosolgenerating element and the hollow tubular element. Furthermore, the further element may have a similar diameter to the outer diameter of the hollow tubular element, the diameter of the aerosol-generating element or the diameter of the aerosol-generating article.
The aerosol-generating article of the present disclosure preferably comprises a wrapper circumscribing the downstream section (or the components of the downstream section). Such a wrapper may be an outer tipping wrapper that circumscribes the downstream section and a portion of the aerosol-generating element, such that the downstream section is attached to the aerosol-generating element.
The downstream section of the aerosol-generating article of the present disclosure may define a recessed cavity.
The above described “further element” may be also be referred to in the present disclosure as a “first section” or “first segment” of the “downstream section”. The terms “first segment” or “further element” may alternatively be referred to in the present disclosure as a “mouthpiece segment”, a “retaining segment”, a “downstream segment”, a “mouthpiece element”, a “downstream element”, a “retaining element”, a “filter element” or a “filter segment” or a “downstream plug element”. The term “mouthpiece” may refer to an element of the aerosol-generating article that is located downstream of the aerosol-generating element of the aerosol-generating article, preferably in the vicinity of the mouth end of the article.
Unless otherwise specified, the resistance to draw (RTD) of a component or the aerosol-generating article is measured in accordance with ISO 6565-2015. The RTD refers the pressure required to force air through the full length of a component. The terms “pressure drop” or “draw resistance” of a component or article may also refer to the “resistance to draw”. Such terms generally refer to the measurements in accordance with ISO 6565-2015 are normally carried out at under test at a volumetric flow rate of about 17.5 millilitres per second at the output or downstream end of the measured component at a temperature of about 22 degrees Celsius, a pressure of about 101 kPa (about 760 T orr) and a relative humidity of about 60%.
The resistance to draw per unit length of a particular component (or element) of the aerosol-generating article, such as the downstream section, the first section or the first segment, can be calculated by dividing the measured resistance to draw of the component by the total axial length of the component. The RTD per unit length refers to the pressure required
to force air through a unit length of a component. Throughout the present disclosure, a unit length refers to a length of 1 mm. Accordingly, in order to derive the RTD per unit length of a particular component, a specimen of a particular length, 15 mm for example, of the component can be used in measurement. The RTD of such a specimen is measured in accordance with ISO 6565-2015. If, for example, the measured RTD is about 15 mm H2O, then the RTD per unit length of the component is about 1 mm H2O per mm. The RTD per unit length of the component is dependent on the structural properties of the material used for the component as well as the cross-sectional geometry or profile of the component, amongst other factors.
The relative RTD, or RTD per unit length, of the downstream section may be between about 0 mm H2O per mm and about 3 mm H2O per mm. Alternatively, the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2.5 mm H2O O per mm. Alternatively, the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2 mm H2O per mm. The RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 1 mm H2O per mm. The RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 0.75 mm H2O per mm.
As mentioned above, the relative RTD, or RTD per unit length, of the downstream section may be greater than about 0 mm H2O per mm and less than about 3 mm H2O per mm. Alternatively, the RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 2.5 mm H2O per mm. Alternatively, the RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 2 mm H2O per mm. The RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 1 mm H2O per mm. The RTD per unit length of the downstream section may be greater than about 0 mm H2O per mm and less than about 0.75 mm H2O per mm.
The RTD per unit length of the downstream section may be greater or equal to about 0 mm H2O per mm. Thus, the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 3 mm H2O per mm. Alternatively, the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2.5 mm H2O per mm. Alternatively, the RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 2 mm H2O per mm. The RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 1 mm H2O per mm. The RTD per unit length of the downstream section may be between about 0 mm H2O per mm and about 0.75 mm H2O per mm.
The resistance to draw of the downstream section may be greater than or equal to about 0 mm H2O and less than about 10 mm H2O. The resistance to draw of the downstream section may be greater than 0 mm H2O and less than about 5 mm H2O. The resistance to
draw of the downstream section may be greater than 0 mm H2O and less than about 2 mm H2O. The resistance to draw of the downstream section may be greater than 0 mm H2O and less than about 1 mm H2O.
The upstream end of the aerosol-generating article may be defined by a wrapper. The provision of a wrapper at the upstream end of the aerosol-generating article may advantageously retain the aerosol-forming substrate in the aerosol-generating article. This feature may also advantageously prevent users from coming into direct contact with the aerosol-generating substrate.
The wrapper may be mechanically closed at the upstream end of the aerosolgenerating article. This may be achieved by folding or twisting the wrapper. An adhesive may be used to close the upstream end of the aerosol-generating article.
The wrapper defining the upstream end of the aerosol-generating article may be formed from the same piece of material as the wrapper circumscribing at least a portion of the downstream section.
This provision may advantageously simplify manufacture of the aerosol-generating article since only one piece of wrapper material may be needed. In addition, the use of a single piece of wrapper material may remove the need for a seam to connect two pieces of wrapper material. This may advantageously simplify manufacture. The lack of a seam may also advantageously prevent or reduce any of the aerosol-generating substrate from leaking out of the aerosol-generating article.
The aerosol-generating article of the present invention may further comprise an upstream element upstream of the aerosol-generating substrate. The upstream element may extend from an upstream end of the aerosol-generating substrate to the upstream end of the aerosol-generating article. The upstream element may abut the upstream end of the aerosolgenerating article. The upstream element may be referred to as an upstream section.
The aerosol-generating article may comprise an air inlet at the upstream end of the aerosol-generating article. Where the aerosol-generating article comprises an upstream element, the air inlet may be provided through the upstream element. The air entering through the air inlet may pass into the aerosol-generating substrate in order to generate the mainstream aerosol.
The upstream section may have a high RTD.
In embodiments of the present invention where the downstream section has a relatively low RTD, for example an RTD of less than about 10 mm H2O, the provision of an upstream element having a relatively high RTD may advantageously provide an acceptable overall RTD without the need for a high RTD element, such as a filter, downstream of the aerosolgenerating substrate. In use, air enters the aerosol-generating article through the upstream end of the upstream section, passes through the upstream section and into the aerosol-
generating substrate. The air then passes into and through the downstream section and then out of the downstream end of the downstream section.
The majority of the overall RTD of the aerosol-generating article may be accounted for by the RTD of the upstream section.
The ratio of the RTD of the upstream section to the RTD of the downstream section may be more than 1. For example, the RTD of the downstream section may be more than about 2, more than about 5, more than about 8, more than about 10, more than about 15, more than about 20, or more than about 50.
The RTD of the upstream section may be at least about 5 mm H2O. For example, the RTD of the upstream section may be at least about 10 mm H2O, at least about 12 mm H2O, at least about 15 mm H2O, at least about 20 mm H2O.
The RTD of the upstream section may be no more than about 80 mm H2O. For example, the RTD of the upstream section may be no more than about 70 mm H2O, no more than about 60 mm H2O, no more than about 50 mm H2O, or no more than about 40 mm H2O.
The RTD of the upstream section may be between about 5 mm H2O and about 80 mm H2O. For example, the RTD of the upstream section may be between about 10 mm H2O and about 70 mm H2O, between about 12 mm H2O and about 60 mm H2O, between about 15 mm H2O and about 50 mm H2O, or between about 20 mm H2O and about 40 mm H2O.
The upstream section may advantageously prevent direct physical contact with the upstream end of the aerosol-generating substrate. In particular, where the aerosol-generating substrate comprises a susceptor element, the upstream section may prevent direct physical contact with the upstream end of the susceptor element. This helps to prevent the displacement or deformation of the susceptor element during handling or transport of the aerosol-generating article. This in turn helps to secure the form and position of the susceptor element. Furthermore, the presence of an upstream section may help to prevent any loss of the substrate, which may be advantageous, for example, if the substrate contains particulate plant material.
The upstream section may also provide an improved appearance to the upstream end of the aerosol-generating article. Furthermore, if desired, the upstream section may be used to provide information on the aerosol-generating article, such as information on brand, flavour, content, or details of the aerosol-generating device that the article is intended to be used with.
The upstream section may comprise a porous plug element. The porous plug element may have a porosity of at least about 50 percent in the longitudinal direction of the aerosolgenerating article. More preferably, the porous plug element has a porosity of between about 50 percent and about 90 percent in the longitudinal direction. The porosity of the porous plug element in the longitudinal direction is defined by the ratio of the cross-sectional area of
material forming the porous plug element and the internal cross-sectional area of the aerosolgenerating article at the position of the porous plug element
The porous plug element may be made of a porous material or may comprise a plurality of openings. This may, for example, be achieved through laser perforation. Preferably, the plurality of openings is distributed homogeneously over the cross-section of the porous plug element.
The porosity or permeability of the upstream section may advantageously be varied in order to provide a desirable overall resistance to draw of the aerosol-generating article.
In alternative embodiments, the upstream section may be formed from a material that is impermeable to air. In such embodiments, the aerosol-generating article may be configured such that air flows into the aerosol-generating element through suitable ventilation means provided in a wrapper.
The upstream section may be made of any material suitable for use in an aerosolgenerating article. For example, the upstream element may comprise a plug of material. Suitable materials for forming the upstream section include filter materials, ceramic, polymer material, cellulose acetate, cardboard, zeolite or aerosol-generating substrate. Preferably, the upstream section comprises a plug comprising cellulose acetate.
Where the upstream section comprises a plug of material, the downstream end of the plug of material may about the upstream end of the aerosol-generating substrate. For example, the upstream section may comprise a plug comprising cellulose acetate abutting the upstream end of the aerosol-generating substrate. This may advantageously help retain the aerosol- generating substrate in place.
Where the upstream section comprises a plug of material, the downstream end of the plug of material may be spaced apart from the upstream end of the aerosol-generating substrate. The upstream element may comprise a plug comprising fibrous filtration material.
Preferably, the upstream section is formed of a heat resistant material. For example, preferably the upstream section is formed of a material that resists temperatures of up to 350 degrees Celsius. This ensures that the upstream section is not adversely affected by the heating means for heating the aerosol-generating substrate.
Preferably, the upstream section has a diameter that is approximately equal to the diameter of the aerosol-generating article.
The upstream section may have a length of at least about 1 millimetre. For example, the upstream section may have a length of at least about 2 millimetres, at least about 4 millimetres, or at least about 6 millimetres.
The upstream section may have a length of no more than about 15 millimetres. For example, the upstream section may have a length of no more than about 12 millimetres, no more than about 10 millimetres, or no more than about 8 millimetres.
The upstream section may have a length of between about 1 millimetre and about 15 millimetres. For example, the upstream section may have a length of between about 2 millimetres and about 12 millimetres, between about 4 millimetres and about 10 millimetres, or between about 6 millimetres and about 8 millimetres.
The length of the upstream section can advantageously be varied in order to provide the desired total length of the aerosol-generating article. For example, where it is desired to reduce the length of one of the other components of the aerosol-generating article, the length of the upstream section may be increased in order to maintain the same overall length of the article.
The upstream section preferably has a substantially homogeneous structure. For example, the upstream section may be substantially homogeneous in texture and appearance. The upstream section may, for example, have a continuous, regular surface over its entire cross section. The upstream section may, for example, have no recognisable symmetries.
The upstream section may comprise a second tubular element. The second tubular element may be provided instead of an upstream element. The second tubular element may be provided immediately upstream of the aerosol-generating substrate. The second tubular element may abut the aerosol-generating substrate.
The second tubular element may comprise a tubular body defining a cavity extending from a first upstream end of the tubular body to a second downstream end of the tubular body. The second tubular element may also comprise a folded end portion forming a first end wall at the first upstream end of the tubular body. The first end wall may delimit an opening which permits airflow between the cavity and the exterior of the second tubular element. Preferably, air may flow from the cavity through the opening and into the aerosol-generating substrate.
The second tubular element may comprise a second end wall at the second end of its tubular body. This second end wall may be formed by folding an end portion of the second tubular element at the second downstream end of the tubular body. The second end wall may delimit an opening, which may also permit airflow between the cavity and the exterior of the second tubular element. In the case of the second end wall, the opening may be configured to so that air may flow from the exterior of the aerosol-generating article through the opening and into the cavity. The opening may therefore provide a conduit through which air can be drawn into the aerosol-generating article and through the aerosol-generating substrate.
The upstream section is preferably circumscribed by a wrapper. The wrapper circumscribing the upstream section is preferably a stiff plug wrap, for example, a plug wrap having a basis weight of at least about 80 grams per square metre (gsm), or at least about 100 gsm, or at least about 110 gsm. This provides structural rigidity to the upstream section.
As discussed above, the present disclosure also relates to an aerosol-generating system comprising an aerosol-generating device having a distal end and a mouth end. The
aerosol-generating device comprises a body. The body of the aerosol-generating device defines a device cavity for removably receiving the aerosol-generating article at the mouth end of the device. The aerosol-generating device comprises a heating element or heater for heating the aerosol-generating substrate when the aerosol-generating article is received within the device cavity.
The device cavity may be referred to as the heating chamber of the aerosol-generating device. The device cavity may extend between a distal end and a mouth, or proximal, end. The distal end of the device cavity may be a closed end and the mouth, or proximal, end of the device cavity may be an open end. An aerosol-generating article may be inserted into the device cavity, or heating chamber, via the open end of the device cavity. The device cavity may be cylindrical in shape so as to conform to the same shape of an aerosol-generating article.
The expression “received within” may refer to the fact that a component or element is fully or partially received within another component or element. For example, the expression “aerosol-generating article is received within the device cavity” refers to the aerosol-generating article being fully or partially received within the device cavity of the aerosol-generating article. When the aerosol-generating article is received within the device cavity, the aerosolgenerating article may abut the distal end of the device cavity. When the aerosol-generating article is received within the device cavity, the aerosol-generating article may be in substantial proximity to the distal end of the device cavity. The distal end of the device cavity may be defined by an end-wall.
The length of the device cavity may be between about 10 mm and about 50 mm. The length of the device cavity may be between about 20 mm and about 40 mm. The length of the device cavity may be between about 25 mm and about 30 mm. The length of the device cavity (or heating chamber) may be the same as or greater than the length of the rod of the aerosol-forming substrate.
A diameter of the device cavity may be between about 4 mm and about 50 mm. A diameter of the device cavity may be between about 4 mm and about 30 mm. A diameter of the device cavity may be between about 5 mm and about 15 mm. A diameter of the device cavity may be between about 6 mm and about 12 mm. A diameter of the device cavity may be between about 7 mm and about 10 mm. A diameter of the device cavity may be between about 7 mm and about 8 mm.
A diameter of the device cavity may be the same as or greater than a diameter of the aerosol-generating article. A diameter of the device cavity may be the same as a diameter of the aerosol-generating article in order to establish a tight fit with the aerosol-generating article.
The device cavity may be configured to establish a tight fit with an aerosol-generating article received within the device cavity. Tight fit may refer to a snug fit. The aerosol-
generating device may comprise a peripheral wall. Such a peripheral wall may define the device cavity, or heating chamber. The peripheral wall defining the device cavity may be configured to engage with an aerosol-generating article received within the device cavity in a tight fit manner, so that there is substantially no gap or empty space between the peripheral wall defining the device cavity and the aerosol-generating article when received within the device.
Such a tight fit may establish an airtight fit or configuration between the device cavity and an aerosol-generating article received therein.
With such an airtight configuration, there would be substantially no gap or empty space between the peripheral wall defining the device cavity and the aerosol-generating article for air to flow through.
The tight fit with an aerosol-generating article may be established along the entire length of the device cavity or along a portion of the length of the device cavity.
The aerosol-generating device may comprise an air-flow channel extending between a channel inlet and a channel outlet. The air-flow channel may be configured to establish a fluid communication between the interior of the device cavity and the exterior of the aerosolgenerating device. The air-flow channel of the aerosol-generating device may be defined within the housing of the aerosol-generating device to enable fluid communication between the interior of the device cavity and the exterior of the aerosol-generating device. When an aerosol-generating article is received within the device cavity, the air-flow channel may be configured to provide air flow into the article in order to deliver generated aerosol to a user drawing from the mouth end of the article.
The air-flow channel of the aerosol-generating device may be defined within, or by, the peripheral wall of the housing of the aerosol-generating device. In other words, the air-flow channel of the aerosol-generating device may be defined within the thickness of the peripheral wall or by the inner surface of the peripheral wall, or a combination of both. The air-flow channel may partially be defined by the inner surface of the peripheral wall and may be partially defined within the thickness of the peripheral wall. The inner surface of the peripheral wall defines a peripheral boundary of the device cavity.
The air-flow channel of the aerosol-generating device may extend from an inlet located at the mouth end, or proximal end, of the aerosol-generating device to an outlet located away from mouth end of the device. The air-flow channel may extend along a direction parallel to the longitudinal axis of the aerosol-generating device.
The aerosol-generating device may comprise an elongate heater (or heating element) arranged for insertion into an aerosol-generating article when an aerosol-generating article is received within the device cavity. The elongate heater may be arranged with the device cavity.
The elongate heater may extend into the device cavity. Alternative heating arrangements are discussed further below.
The heater may be any suitable type of heater. Preferably, the heater is an external heater.
Preferably, the heater may externally heat the aerosol-generating article when received within the aerosol-generating device. Such an external heater may circumscribe the aerosol-generating article when inserted in or received within the aerosol-generating device.
In some embodiments, the heater is arranged to heat the outer surface of the aerosolforming substrate. In some embodiments, the heater is arranged for insertion into an aerosolforming substrate when the aerosol-forming substrate is received within the cavity. The heater may be positioned within the device cavity, or heating chamber.
The heater may comprise at least one heating element. The at least one heating element may be any suitable type of heating element. In some embodiments, the device comprises only one heating element. In some embodiments, the device comprises a plurality of heating elements. The heater may comprise at least one resistive heating element. Preferably, the heater comprises a plurality of resistive heating elements. Preferably, the resistive heating elements are electrically connected in a parallel arrangement. Advantageously, providing a plurality of resistive heating elements electrically connected in a parallel arrangement may facilitate the delivery of a desired electrical power to the heater while reducing or minimising the voltage required to provide the desired electrical power. Advantageously, reducing or minimising the voltage required to operate the heater may facilitate reducing or minimising the physical size of the power supply.
Suitable materials for forming the at least one resistive heating element include but are not limited to: semiconductors such as doped ceramics, electrically ‘conductive’ ceramics (such as, for example, molybdenum disilicide), carbon, graphite, metals, metal alloys and composite materials made of a ceramic material and a metallic material. Such composite materials may comprise doped or undoped ceramics. Examples of suitable doped ceramics include doped silicon carbides. Examples of suitable metals include titanium, zirconium, tantalum and metals from the platinum group. Examples of suitable metal alloys include stainless steel, nickel-, cobalt-, chromium-, aluminium- titanium- zirconium-, hafnium-, niobium-, molybdenum-, tantalum-, tungsten-, tin-, gallium-, manganese- and iron-containing alloys, and super-alloys based on nickel, iron, cobalt, stainless steel, Timetai® and iron- manganese-aluminium based alloys.
In some embodiments, the at least one resistive heating element comprises one or more stamped portions of electrically resistive material, such as stainless steel. Alternatively, the at least one resistive heating element may comprise a heating wire or filament, for example a Ni-Cr (Nickel-Chromium), platinum, tungsten or alloy wire.
In some embodiments, the at least one heating element comprises an electrically insulating substrate, wherein the at least one resistive heating element is provided on the electrically insulating substrate.
The electrically insulating substrate may comprise any suitable material. For example, the electrically insulating substrate may comprise one or more of: paper, glass, ceramic, anodized metal, coated metal, and Polyimide. The ceramic may comprise mica, Alumina (AI2O3) or Zirconia (ZrOa). Preferably, the electrically insulating substrate has a thermal conductivity of less than or equal to about 40 Watts per metre Kelvin, preferably less than or equal to about 20 Watts per metre Kelvin and ideally less than or equal to about 2 Watts per metre Kelvin.
The heater may comprise a heating element comprising a rigid electrically insulating substrate with one or more electrically conductive tracks or wire disposed on its surface. The size and shape of the electrically insulating substrate may allow it to be inserted directly into an aerosol-forming substrate. If the electrically insulating substrate is not sufficiently rigid, the heating element may comprise a further reinforcement means. A current may be passed through the one or more electrically conductive tracks to heat the heating element and the aerosol-forming substrate.
In some embodiments, the heater comprises an inductive heating arrangement. The inductive heating arrangement may comprise an inductor coil and a power supply configured to provide high frequency oscillating current to the inductor coil. As used herein, a high frequency oscillating current means an oscillating current having a frequency of between 500 kHz and 30 MHz. The heater may advantageously comprise a DC/AC inverter for converting a DC current supplied by a DC power supply to the alternating current. The inductor coil may be arranged to generate a high frequency oscillating electromagnetic field on receiving a high frequency oscillating current from the power supply. The inductor coil may be arranged to generate a high frequency oscillating electromagnetic field in the device cavity. In some embodiments, the inductor coil may substantially circumscribe the device cavity. The inductor coil may extend at least partially along the length of the device cavity.
The heater may comprise an inductive heating element. The inductive heating element may be a susceptor element. As used herein, the term 'susceptor element' refers to an element comprising a material that is capable of converting electromagnetic energy into heat. When a susceptor element is located in an alternating electromagnetic field, the susceptor is heated. Heating of the susceptor element may be the result of at least one of hysteresis losses and eddy currents induced in the susceptor, depending on the electrical and magnetic properties of the susceptor material.
A susceptor element may be arranged such that, when the aerosol-generating article is received in the cavity of the aerosol-generating device, the oscillating electromagnetic field
generated by the inductor coil induces a current in the susceptor element, causing the susceptor element to heat up. In these embodiments, the aerosol-generating device is preferably capable of generating a fluctuating electromagnetic field having a magnetic field strength (H-field strength) of between 1 and 5 kilo amperes per metre (kA m), preferably between 2 and 3 kA/m, for example about 2.5 kA/m. The electrically-operated aerosolgenerating device is preferably capable of generating a fluctuating electromagnetic field having a frequency of between 1 and 30 MHz, for example between 1 and 10 MHz, for example between 5 and 7 MHz.
In some embodiments, a susceptor element is located in the aerosol-generating article. In these embodiments, the susceptor element is preferably located in contact with the aerosolforming substrate. The susceptor element may be located in the aerosol-forming substrate.
In some embodiments, a susceptor element is located in the aerosol-generating device. In these embodiments, the susceptor element may be located in the cavity. The aerosol-generating device may comprise only one susceptor element. The aerosol-generating device may comprise a plurality of susceptor elements.
In some embodiments, the susceptor element is arranged to heat the outer surface of the aerosol-forming substrate. In some embodiments, the susceptor element is arranged for insertion into an aerosol-forming substrate when the aerosol-forming substrate is received within the cavity.
The susceptor element may comprise any suitable material. The susceptor element may be formed from any material that can be inductively heated to a temperature sufficient to release volatile compounds from the aerosol-forming substrate. Suitable materials for the elongate susceptor element include graphite, molybdenum, silicon carbide, stainless steels, niobium, aluminium, nickel, nickel containing compounds, titanium, and composites of metallic materials. Some susceptor elements comprise a metal or carbon. Advantageously the susceptor element may comprise or consist of a ferromagnetic material, for example, ferritic iron, a ferromagnetic alloy, such as ferromagnetic steel or stainless steel, ferromagnetic particles, and ferrite. A suitable susceptor element may be, or comprise, aluminium. The susceptor element preferably comprises more than about 5 percent, preferably more than about 20 percent, more preferably more than about 50 percent or more than about 90 percent of ferromagnetic or paramagnetic materials. Some elongate susceptor elements may be heated to a temperature in excess of about 250 degrees Celsius.
The susceptor element may comprise a non-metallic core with a metal layer disposed on the non-metallic core. For example, the susceptor element may comprise metallic tracks formed on an outer surface of a ceramic core or substrate.
In some embodiments the aerosol-generating device may comprise at least one resistive heating element and at least one inductive heating element. In some embodiments
the aerosol-generating device may comprise a combination of resistive heating elements and inductive heating elements.
During use, the heater may be controlled to operate within a defined operating temperature range, below a maximum operating temperature. An operating temperature range between about 150 degrees Celsius and about 300 degrees Celsius in the heating chamber (or device cavity) is preferable. The operating temperature range of the heater may be between about 150 degrees Celsius and about 250 degrees Celsius.
Preferably, the operating temperature range of the heater may be between about 150 degrees Celsius and about 200 degrees Celsius. More preferably, the operating temperature range of the heater may be between about 180 degrees Celsius and about 200 degrees Celsius. In particular, it has been found that optimal and consistent aerosol delivery may be achieved when using an aerosol-generating device having an external heater, which has an operating temperature range between about 180 degrees Celsius and about 200 degrees Celsius, with aerosol-generating articles having a relatively low RTD (for example, less than 10 mm H2O), as described throughout the present disclosure.
In embodiments where the aerosol-generating article comprises a ventilation zone at a location along the downstream section or the hollow tubular element, the ventilation zone may be arranged to be exposed when the aerosol-generating article is received within the device cavity.
The aerosol-generating device may comprise a power supply. The power supply may be a DC power supply. In some embodiments, the power supply is a battery. The power supply may be a nickel-metal hydride battery, a nickel cadmium battery, or a lithium based battery, for example a lithium-cobalt, a lithium-iron-phosphate or a lithium-polymer battery. However, in some embodiments the power supply may be another form of charge storage device, such as a capacitor. The power supply may require recharging and may have a capacity that allows for the storage of enough energy for one or more user operations, for example one or more aerosol-generating experiences. For example, the power supply may have sufficient capacity to allow for continuous heating of an aerosol-forming substrate for a period of around six minutes, corresponding to the typical time taken to smoke a conventional cigarette, or for a period that is a multiple of six minutes. In another example, the power supply may have sufficient capacity to allow for a predetermined number of puffs or discrete activations of the heater.
The aerosol-generating article may have an overall length from about 35 millimetres to about 100 millimetres.
Preferably, an overall length of an aerosol-generating article in accordance with the invention is at least about 38 millimetres. More preferably, an overall length of an aerosolgenerating article in accordance with the invention is at least about 40 millimetres. Even more
preferably, an overall length of an aerosol-generating article in accordance with the invention is at least about 42 millimetres.
An overall length of an aerosol-generating article in accordance with the invention is preferably less than or equal to 70 millimetres. More preferably, an overall length of an aerosol-generating article in accordance with the invention is preferably less than or equal to 60 millimetres. Even more preferably, an overall length of an aerosol-generating article in accordance with the invention is preferably less than or equal to 50 millimetres.
In some embodiments, an overall length of the aerosol-generating article is preferably from about 38 millimetres to about 70 millimetres, more preferably from about 40 millimetres to about 70 millimetres, even more preferably from about 42 millimetres to about 70 millimetres. In other embodiments, an overall length of the aerosol-generating article is preferably from about 38 millimetres to about 60 millimetres, more preferably from about 40 millimetres to about 60 millimetres, even more preferably from about 42 millimetres to about 60 millimetres. In further embodiments, an overall length of the aerosol-generating article is preferably from about 38 millimetres to about 50 millimetres, more preferably from about 40 millimetres to about 50 millimetres, even more preferably from about 42 millimetres to about 50 millimetres. In an exemplary embodiment, an overall length of the aerosol-generating article is about 45 millimetres.
The aerosol-generating article has an external diameter of at least 5 millimetres. Preferably, the aerosol-generating article has an external diameter of at least 6 millimetres. More preferably, the aerosol-generating article has an external diameter of at least 7 millimetres.
Preferably, the aerosol-generating article has an external diameter of less than or equal to about 12 millimetres. More preferably, the aerosol-generating article has an external diameter of less than or equal to about 10 millimetres. Even more preferably, the aerosolgenerating article has an external diameter of less than or equal to about 8 millimetres.
In some embodiments, the aerosol-generating article has an external diameter from about 5 millimetres to about 12 millimetres, preferably from about 6 millimetres to about 12 millimetres, more preferably from about 7 millimetres to about 12 millimetres. In other embodiments, the aerosol-generating article has an external diameter from about 5 millimetres to about 10 millimetres, preferably from about 6 millimetres to about 10 millimetres, more preferably from about 7 millimetres to about 10 millimetres. In further embodiments, the aerosol-generating article has an external diameter from about 5 millimetres to about 8 millimetres, preferably from about 6 millimetres to about 8 millimetres, more preferably from about 7 millimetres to about 8 millimetres.
One or more of the components of the aerosol-generating article may be individually circumscribed by a wrapper. In preferred embodiments, all the components of the aerosol-
generating article are individually circumscribed by their own wrapper. Preferably, at least one of the components of the aerosol-generating article is wrapped in a hydrophobic wrapper.
The term “hydrophobic” refers to a surface exhibiting water repelling properties. One useful way to determine this is to measure the water contact angle. The “water contact angle” is the angle, conventionally measured through the liquid, where a liquid/vapour interface meets a solid surface. It quantifies the wettability of a solid surface by a liquid via the Young equation. Hydrophobicity or water contact angle may be determined by utilizing TAPPI T558 test method and the result is presented as an interfacial contact angle and reported in “degrees” and can range from near zero to near 180 degrees.
In preferred embodiments, the hydrophobic wrapper is one including a paper layer having a water contact angle of about 30 degrees or greater, and preferably about 35 degrees or greater, or about 40 degrees or greater, or about 45 degrees or greater.
By way of example, the paper layer may comprise PVOH (polyvinyl alcohol) or silicon. The PVOH may be applied to the paper layer as a surface coating, or the paper layer may comprise a surface treatment comprising PVOH or silicon.
In a particularly preferred embodiment, an aerosol-generating article in accordance with the present invention comprises, in linear sequential arrangement, an aerosol-generating element comprising a rod comprising an aerosol-generating substrate and a hollow tubular element located immediately downstream of the aerosol-generating element.
In more detail, the hollow tubular element may abut the aerosol-generating element.
The aerosol-generating article has a substantially cylindrical shape and an outer diameter of about 7.3 millimetres.
The hollow tubular element is in the form of a hollow cellulose acetate tube and has an internal diameter of about 7.1 millimetres. Thus, a thickness of a peripheral wall of the hollow tubular element is about 0.1 millimetres. A ventilation zone is provided at a location along the hollow tubular element.
The aerosol-generating element is in the form of a rod of aerosol-generating substrate circumscribed by a paper wrapper, and comprises at least one of the types of aerosolgenerating substrate described above, such as plant cut filler, and particularly tobacco cut filler, homogenised tobacco, a gel formulation or a homogenised plant material comprising particles of a plant other than tobacco.
An outer tipping wrapper circumscribes the hollow tubular element and a portion of the aerosol-generating element, such that the hollow tubular element is attached to the aerosolgenerating element.
The rod of aerosol-generating substrate has a length of about 12 millimetres, the hollow tubular element has a length of about 33 millimetres. Thus, an overall length of the aerosolgenerating article is about 45 millimetres.
In another preferred embodiment, an aerosol-generating article in accordance with the present invention comprises, in linear sequential arrangement, an upstream element, an aerosol-generating element located immediately downstream of the upstream element, the aerosol-generating element comprising a rod comprising an aerosol-generating substrate, and a hollow tubular element located immediately downstream of the aerosol-generating element.
In more detail, the rod of aerosol-generating substrate may abut the upstream element. Further, the hollow tubular element may abut the aerosol-generating element.
The aerosol-generating article has a substantially cylindrical shape and an outer diameter of about 7.3 millimetres.
The hollow tubular element is in the form of a hollow cellulose acetate tube and has an internal diameter of about 7.1 millimetres. Thus, a thickness of a peripheral wall of the hollow tubular element is about 0.1 millimetres. A ventilation zone is provided at a location along the hollow tubular element.
The aerosol-generating element is in the form of a rod of aerosol-generating substrate circumscribed by a paper wrapper, and comprises at least one of the types of aerosolgenerating substrate described above, such as plant cut filler, and particularly tobacco cut filler, homogenised tobacco, a gel formulation or a homogenised plant material comprising particles of a plant other than tobacco.
An outer tipping wrapper circumscribes the hollow tubular element and a portion of the aerosol-generating element, such that the hollow tubular element is attached to the aerosolgenerating element.
The upstream element has a length of 5 millimetres, the rod of aerosol-generating substrate has a length of about 12 millimetres, the hollow tubular element has a length of about 28 millimetres. Thus, an overall length of the aerosol-generating article is about 45 millimetres.
The invention is defined in the claims. However, below there is provided a non- exhaustive list of non-limiting examples. Any one or more of the features of these examples may be combined with any one or more features of another example, embodiment, or aspect described herein.
Example 1. An aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising: a rod-shaped aerosol-generating element comprising an aerosol-generating substrate, the aerosol-generating substrate comprising an aerosol-former; a downstream section at a location downstream of the aerosol-generating element, the downstream section extending from a downstream end of the aerosol-generating element to the mouth end of the aerosolgenerating article; wherein the downstream section comprises a hollow tubular element;
wherein a length to diameter ratio of the aerosol-generating element is from about 0.5 to about 3.0; and wherein an RTD of the downstream section is less than 10 mm H2O.
Example 2. An aerosol-generating article according to Example 1 , wherein the length to diameter ratio of the aerosol-generating element is from about 1 .3 to about 1 .9.
Example 3. An aerosol-generating article according to Example 1 or 2, wherein the aerosolgenerating element has a length from about 10 millimetres to about 35 millimetres.
Example 4. An aerosol-generating article according to any one of Examples 1 to 3, wherein the aerosol-generating element has a diameter from about 6 millimetres to about 7.5 millimetres.
Example 5. An aerosol-generating article according to any one of the preceding Examples, wherein the aerosol-generating substrate comprises tobacco cut filler.
Example 6. An aerosol-generating article according to any one of the preceding Examples, wherein the aerosol former content in the aerosol-generating substrate is at least about 10 percent by weight.
Example 7. An aerosol-generating article according to any one of the preceding Examples, wherein the downstream section comprises a ventilation zone at a location along the hollow tubular element.
Example 8. An aerosol-generating article according to Example 7, wherein the aerosolgenerating article has a ventilation level of at least about 10 percent.
Example 9. An aerosol-generating article according to Example 7 or 8, wherein a distance between the ventilation zone and the mouth end of the aerosol-generating article is less than about 22 millimetres.
Example 10. An aerosol-generating article according to any one of Examples 7 to 9, wherein a distance between the ventilation zone and the mouth end of the aerosol-generating article is at least about 11 millimetres.
Example 11. An aerosol-generating article according to any one of the preceding Examples, wherein the hollow tubular element has a length of at least about 25 millimetres and a crosssection of the hollow tubular element is substantially constant.
Example 12. An aerosol-generating article according to any one of the preceding Examples, wherein a peripheral wall thickness of the hollow tubular element is less than about 1.5 millimetres.
Example 13. An aerosol-generating article according to any one of Examples 1 to 12, wherein the hollow tubular element extends all the way to the mouth end of the aerosolgenerating article.
Example 14. An aerosol-generating article according to any one Examples 1 to 12, wherein the downstream section has an RTD of less than about 5 millimetres H2O.
Example 15. An aerosol-generating article according to any one of the preceding Examples further comprising an upstream section upstream of the aerosol-generating element, the upstream section having an RTD from about 10 millimetres H2O to about 70 millimetres H2O.
In the following, the invention will be further described with reference to the drawings of the accompanying Figures, wherein:
Figure 1 shows a schematic side sectional view of an aerosol-generating article in accordance with an embodiment of the invention;
Figure 2 shows a schematic side sectional view of another aerosol-generating article in accordance with another embodiment of the invention;
Figure 3 shows a schematic side sectional view of a variant of the aerosol-generating article of Figure 1 ; and
Figure 4 shows a schematic side sectional view of a variant of the aerosol-generating article of Figure 2.
The aerosol-generating article 10 shown in Figure 1 comprises a rod 12 of aerosolgenerating substrate 12 and a downstream section 14 at a location downstream of the rod 12 of aerosol-generating substrate. Thus, the aerosol-generating article 10 extends from an upstream or distal end 16 - which substantially coincides with an upstream end of the rod 12 - to a downstream or mouth end 18, which coincides with a downstream end of the downstream section 14.
The aerosol-generating article 10 has an overall length of about 45 millimetres.
The rod of aerosol-generating substrate 12 comprises tobacco cut filler impregnated with about 12 percent by weight of an aerosol former, such as glycerin. The tobacco cut filler comprises 90 percent by weight of tobacco leaf lamina. The cut width of the tobacco cut filler is about 0.7 millimetres. The rod of aerosol-generating substrate 12 comprises about 130 milligrams of tobacco cut filler.
The downstream section 14 comprises a hollow tubular element 20 located immediately downstream of the rod 12 of aerosol-generating substrate, the hollow tubular element 20 being in longitudinal alignment with the rod 12. In the embodiment of Figure 1 , the upstream end of the hollow tubular element 20 abuts the downstream end of the rod 12 of aerosol-generating substrate.
The hollow tubular element 20 defines a hollow section of the aerosol-generating article 10. The hollow tubular element does not substantially contribute to the overall RTD of the aerosol-generating article. In more detail, an RTD of the downstream section is about 0 mm H2O.
The hollow tubular element 20 is provided in the form of a hollow cylindrical tube made of cellulose acetate or of stiff paper, such as paper having a grammage of at least about 90 g/sqm. The hollow tubular element 20 defines an internal cavity 22 that extends all the way
from an upstream end 24 of the hollow tubular segment to a downstream end 26 of the hollow tubular element 20. The internal cavity 22 is substantially empty, and so substantially unrestricted airflow is enabled along the internal cavity 22. The hollow tubular element 20 does not substantially contribute to the overall RTD of the aerosol-generating article 10.
The hollow tubular element 20 has a length of about 33 millimetres, an external diameter (DE) of about 7.3 millimetres, and an internal diameter (Di) of about 7.1 millimetres. Thus, a thickness of a peripheral wall of the hollow tubular element 20 is about 0.1 millimetres.
The aerosol-generating article 10 comprises a ventilation zone 30 provided at a location along the hollow tubular element 20. In more detail, the ventilation zone 30 is provided at about 18 millimetres from the downstream end 26 of the hollow tubular element 20. As such, in the embodiment of Figure 1 the ventilation zone 30 is effectively provided at 18 millimetres from the mouth end 18 of the aerosol-generating article 10. A ventilation level of the aerosolgenerating article 10 is about 40 percent.
In the embodiment of Figure 1 , the aerosol-generating article does not comprise any additional component upstream of the rod of aerosol-generating substrate 12 or downstream of the hollow tubular segment 20.
The aerosol-generating article 100 shown in Figure 2 differs from the aerosol-generating article 10 described above only by the provision of an upstream section at a location upstream of the aerosol-generating element. Accordingly, the aerosol-generating article 100 will only be described insofar as it differs from the aerosol-generating article 10.
On top of a rod 12 of aerosol-generating substrate and a downstream section 14 at a location downstream of the rod 12, the aerosol-generating article 100 comprises an upstream section 40 at a location upstream of the rod 12. As such, the aerosol-generating article 10 extends from a distal end 16 substantially coinciding with an upstream end of the upstream section 40 to a mouth end or downstream end 18 substantially coinciding with a downstream end of the downstream section 14.
The upstream section 40 comprises an upstream element 42 located immediately upstream of the rod 12 of aerosol-generating substrate, the upstream element 42 being in longitudinal alignment with the rod 12. In the embodiment of Figure 2, the downstream end of the upstream element 42 abuts the upstream end of the rod 12 of aerosol-generating substrate. The upstream element 42 is provided in the form of a cylindrical plug of cellulose acetate circumscribed by a stiff wrapper. The upstream element 42 has a length of about 5 millimetres. The RTD of the upstream element 42 is about 30 millimetres H2O.
Figure 3 shows an aerosol-generating article 200 which is a variant of the aerosolgenerating article 10 described above. The aerosol-generating article 200 is generally the same as the aerosol-generating article 10 of the embodiment of Figure 1 , with the exception that the aerosol-generating article 200 of the variant of the first embodiment does not comprise
a cylindrical hollow tubular element 22 as described above. Instead, the aerosol-generating article 200 of the variant of the first embodiment comprises a modified tubular element 220 located immediately downstream of the aerosol-generating element 12.
The modified tubular element 220 comprises a tubular body 222 defining a cavity 224 extending from a first end of the tubular body 222 to a second end of the tubular body 222. The modified tubular element 220 also comprises a folded end portion forming a first end wall 226 at the first end of the tubular body 222. The first end wall 226 delimits an opening 228, which permits airflow between the cavity 224 and the exterior of the modified tubular element 220. In particular, the embodiment of Figure 3 is configured so that aerosol may flow from the aerosol-generating element 12 through the opening 228 into the cavity 224.
Much like the cavity 22 of the first embodiment shown in Figure 1 , the cavity 224 of the tubular body 222 is substantially empty, and so substantially unrestricted airflow is enabled along the cavity 222. Consequently, the RTD of the modified tubular element 220 can be localised at a specific longitudinal position of the modified tubular element 220 - namely, at the first end wall 226 - and can be controlled through the chosen configuration of the first end wall 226 and its corresponding opening 228.
In the embodiment of Figure 3, the modified tubular element 220 has a length of about 33 millimetres, an external diameter (DE) of about 7.3 millimetres, and an internal diameter (DFTS) of about 7.1 millimetres. Thus, a thickness of a peripheral wall of the tubular body 222 is about 0.1 millimetres.
Figure 4 shows an aerosol-generating article 300 which is a variant of the aerosolgenerating article 100 described above. The aerosol-generating article 300 is generally the same as the aerosol-generating article 100 of the embodiment of Figure 2, with the exception that the aerosol-generating article 300 of the variant of the second embodiment does not comprise an upstream element 42 provided in the form of a cylindrical plug of cellulose acetate circumscribed by a stiff wrapper. Instead, the aerosol-generating article 300 of the variant of the second embodiment comprises a second tubular element 44 located immediately upstream of the aerosol-generating element 12. Consequently, in this variant of the second embodiment, the hollow tubular element 20 located immediately downstream of the aerosolgenerating element 12 can be referred to as a first tubular element 20.
The second tubular element 44 comprises a tubular body 46 defining a cavity 48 extending from a first end of the tubular body 46 to a second end of the tubular body 46. The second tubular element 44 also comprises a folded end portion forming a first end wall 50 at the first end of the tubular body 46. The first end wall 50 delimits an opening 52, which permits airflow between the cavity 48 and the exterior of the second tubular element 44. In particular, the embodiment of Figure 4 is configured so that air may flow from the cavity 48 through the opening 52 and into the aerosol-generating element 12.
Further, the second tubular element 44 comprises a second end wall 54 at the second end of its tubular body 46. This second end wall 54 is formed by folding an end portion of the second tubular element 44 at the second end of the tubular body 46. The second end wall 54 delimits an opening 56, which also permits airflow between the cavity 48 and the exterior of the second tubular element 44. In the case of the second end wall 54, the opening 56 is configured to so that air may flow from the exterior of the aerosol-generating article 300 through the opening 56 and into the cavity 48. The opening 56 therefore provides a conduit through which air can be drawn into the aerosol-generating article 300 and through the aerosol-generating element 12.
In the variant of Figure 4, a downstream end of the second tubular element 44 abuts the upstream end of the rod 12 of aerosol-generating substrate. The second tubular element 44 has a length of about 5 millimetres.
Claims
1. An aerosol-generating article for producing an inhalable aerosol upon heating, the aerosol-generating article extending from a mouth end to a distal end and comprising: a rod-shaped aerosol-generating element comprising an aerosol-generating substrate, the aerosol-generating substrate comprising an aerosol-former; a downstream section at a location downstream of the aerosol-generating element, the downstream section extending from a downstream end of the aerosol-generating element to the mouth end of the aerosol-generating article; wherein the downstream section comprises a hollow tubular element; wherein a length to diameter ratio of the aerosol-generating element is from about 0.5 to about 3.0; and wherein an RTD of the downstream section is less than 10 mm H2O.
2. An aerosol-generating article according to claim 1 , wherein the length to diameter ratio of the aerosol-generating element is from about 1 .3 to about 1 .9.
3. An aerosol-generating article according to claim 1 or 2, wherein the aerosol-generating element has a length from about 10 millimetres to about 35 millimetres.
4. An aerosol-generating article according to any one of claims 1 to 3, wherein the aerosol-generating element has a diameter from about 6 millimetres to about 7.5 millimetres.
5. An aerosol-generating article according to any one of the preceding claims, wherein the aerosol-generating substrate comprises tobacco cut filler.
6. An aerosol-generating article according to any one of the preceding claims, wherein the aerosol former content in the aerosol-generating substrate is at least about 10 percent by weight.
7. An aerosol-generating article according to any one of the preceding claims, wherein the downstream section comprises a ventilation zone at a location along the hollow tubular element.
8. An aerosol-generating article according to claim 7, wherein the aerosol-generating article has a ventilation level of at least about 10 percent.
70
9. An aerosol-generating article according to claim 7 or 8, wherein a distance between the ventilation zone and the mouth end of the aerosol-generating article is less than about 22 millimetres.
10. An aerosol-generating article according to any one of claims 7 to 9, wherein a distance between the ventilation zone and the mouth end of the aerosol-generating article is at least about 11 millimetres.
11. An aerosol-generating article according to any one of the preceding claims, wherein the hollow tubular element has a length of at least about 25 millimetres and a cross-section of the hollow tubular element is substantially constant.
12. An aerosol-generating article according to any one of the preceding claims, wherein a peripheral wall thickness of the hollow tubular element is less than about 1.5 millimetres.
13. An aerosol-generating article according to any one of claims 1 to 12, wherein the hollow tubular element extends all the way to the mouth end of the aerosol-generating article.
14. An aerosol-generating article according to any one claims 1 to 12, wherein the downstream section has an RTD of less than about 5 millimetres H2O.
15. An aerosol-generating article according to any one of the preceding claims further comprising an upstream section upstream of the aerosol-generating element, the upstream section having an RTD from about 10 millimetres H2O to about 70 millimetres H2O.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20201041 | 2020-10-09 | ||
PCT/EP2021/077784 WO2022074159A1 (en) | 2020-10-09 | 2021-10-07 | Aerosol-generating article with low resistance to draw and improved flavour delivery |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4225072A1 true EP4225072A1 (en) | 2023-08-16 |
Family
ID=72826737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21789715.6A Pending EP4225072A1 (en) | 2020-10-09 | 2021-10-07 | Aerosol-generating article with low resistance to draw and improved flavour delivery |
Country Status (8)
Country | Link |
---|---|
US (1) | US20230346008A1 (en) |
EP (1) | EP4225072A1 (en) |
JP (1) | JP2023544747A (en) |
KR (1) | KR20230080454A (en) |
CN (1) | CN116528699A (en) |
BR (1) | BR112023006266A2 (en) |
MX (1) | MX2023003948A (en) |
WO (1) | WO2022074159A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024017791A1 (en) * | 2022-07-20 | 2024-01-25 | Philip Morris Products S.A. | Aerosol-generating article with thick wrapper |
WO2024133124A1 (en) * | 2022-12-22 | 2024-06-27 | Philip Morris Products S.A. | Aerosol-generating article having compressible upstream element |
WO2024133089A1 (en) * | 2022-12-22 | 2024-06-27 | Philip Morris Products S.A. | Aerosol-generating system having compressible aerosol-generating article |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5774493A (en) | 1996-08-02 | 1998-06-30 | General Electric Company | Sequence constructions for delay-and-correlate transmitted reference signaling |
DK2797450T3 (en) * | 2011-12-30 | 2017-12-11 | Philip Morris Products Sa | SMOKING ARTICLE WITH FRONT PLUG AND METHOD |
SG11201608765UA (en) | 2014-05-21 | 2016-11-29 | Philip Morris Products Sa | Aerosol-generating article with internal susceptor |
BR112020004134A2 (en) * | 2017-09-27 | 2020-09-01 | Philip Morris Products S.A. | support element for aerosol generating article |
US12035742B2 (en) | 2018-12-06 | 2024-07-16 | Philip Morris Products S.A. | Aerosol-generating article with high aerosol former content |
MX2021006882A (en) * | 2018-12-20 | 2021-07-02 | Philip Morris Products Sa | Aerosol generating article with light hollow segment. |
-
2021
- 2021-10-07 EP EP21789715.6A patent/EP4225072A1/en active Pending
- 2021-10-07 WO PCT/EP2021/077784 patent/WO2022074159A1/en active Application Filing
- 2021-10-07 US US18/247,765 patent/US20230346008A1/en active Pending
- 2021-10-07 KR KR1020237014903A patent/KR20230080454A/en active Search and Examination
- 2021-10-07 BR BR112023006266A patent/BR112023006266A2/en unknown
- 2021-10-07 CN CN202180067064.1A patent/CN116528699A/en active Pending
- 2021-10-07 JP JP2023520236A patent/JP2023544747A/en active Pending
- 2021-10-07 MX MX2023003948A patent/MX2023003948A/en unknown
Also Published As
Publication number | Publication date |
---|---|
JP2023544747A (en) | 2023-10-25 |
CN116528699A (en) | 2023-08-01 |
MX2023003948A (en) | 2023-04-26 |
KR20230080454A (en) | 2023-06-07 |
BR112023006266A2 (en) | 2023-05-09 |
US20230346008A1 (en) | 2023-11-02 |
WO2022074159A1 (en) | 2022-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4225075B1 (en) | Aerosol-generating article with low density substrate | |
US20230346008A1 (en) | Aerosol-generating article with low resistance to draw and improved flavour delivery | |
AU2021226968A1 (en) | Aerosol-generating article with improved configuration | |
WO2021170675A1 (en) | Ventilated aerosol-generating article with upstream porous segment | |
CA3168770A1 (en) | Ventilated aerosol-generating article with induction heating | |
WO2022074115A1 (en) | Aerosol-generating article with ventilation | |
AU2021226971A1 (en) | Aerosol-generating article having novel configuration | |
US20230093519A1 (en) | Aerosol-generating article with improved configuration | |
US20240225088A1 (en) | Aerosol-generating article with non-homogenised tobacco substrate | |
US20230397666A1 (en) | Aerosol-generating system with low resistance to draw and improved flavour delivery | |
WO2024105242A1 (en) | An aerosol-generating article comprising a tubular element having an opening | |
WO2024105238A1 (en) | An aerosol-generating article having a downstream tubular element | |
WO2024089246A1 (en) | An aerosol-generating article comprising a tubular element having two end walls |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20221215 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |