EP4219822A1 - Séchoir d'un circuit d'air de traitement à haute étanchéité à l'air et procédé de fonctionnement du séchoir - Google Patents
Séchoir d'un circuit d'air de traitement à haute étanchéité à l'air et procédé de fonctionnement du séchoir Download PDFInfo
- Publication number
- EP4219822A1 EP4219822A1 EP22153372.2A EP22153372A EP4219822A1 EP 4219822 A1 EP4219822 A1 EP 4219822A1 EP 22153372 A EP22153372 A EP 22153372A EP 4219822 A1 EP4219822 A1 EP 4219822A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- conduit
- condensate
- pump
- dryer
- overflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 91
- 230000008569 process Effects 0.000 title claims abstract description 91
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 60
- 239000003507 refrigerant Substances 0.000 claims description 23
- 238000001035 drying Methods 0.000 claims description 18
- 238000005086 pumping Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000003570 air Substances 0.000 description 101
- 238000009833 condensation Methods 0.000 description 9
- 230000005494 condensation Effects 0.000 description 9
- 238000005485 electric heating Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/02—Domestic laundry dryers having dryer drums rotating about a horizontal axis
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/20—General details of domestic laundry dryers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/20—General details of domestic laundry dryers
- D06F58/206—Heat pump arrangements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/20—General details of domestic laundry dryers
- D06F58/24—Condensing arrangements
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/32—Control of operations performed in domestic laundry dryers
- D06F58/34—Control of operations performed in domestic laundry dryers characterised by the purpose or target of the control
- D06F58/36—Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry
- D06F58/38—Control of operational steps, e.g. for optimisation or improvement of operational steps depending on the condition of the laundry of drying, e.g. to achieve the target humidity
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2103/00—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
- D06F2103/58—Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers related to condensation, e.g. condensate water level
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F2105/00—Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
- D06F2105/08—Draining of washing liquids
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F25/00—Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F58/00—Domestic laundry dryers
- D06F58/30—Drying processes
Definitions
- the invention relates to a dryer with high air tightness of a process air circuit and a process for operating the dryer.
- the invention relates more particularly to a dryer comprising a drum for receiving laundry items to be dried and a process air circuit for passing process air through the drum, the process air circuit including a blower for driving the process air; a condensing device for condensing moisture from the process air coming from the drum; a condensate collecting vessel; a condensate tank for receiving water transferred from the condensate collecting vessel; an overflow container in which the condensate tank is placed; an electric pump unit associated to the condensate collecting vessel for pumping water contained in the condensate collecting vessel to the condensate tank; a pump conduit fluidly connecting a pump outlet to a condensate tank inlet; an overflow conduit fluidly connecting the overflow container to the condensate collecting vessel; and a siphon located in the pump conduit and/or in the overflow conduit to limit air transfer through these conduits; and a process
- Condensation laundry dryers having a drum rotatably mounted in a housing, a fan for generating a process air stream intended to flow through the drum as well as over a condensation device comprising a collecting vessel for collecting condensed water accumulating during the drying process, and in addition a condensate tank connected to the collecting vessel by means of a line, the condensate tank being arranged in a trough connected to the collecting vessel by means of a drain, are known.
- the condensate collected in the collecting vessel is usually conveyed to the condensate tank by means of a pump.
- the condensate tank is located in a trough which contains a drain to the collecting vessel.
- the publication EP 2 141 279 A1 discloses a condensing tumble dryer comprising a drum rotatably mounted in a housing, a fan for generating a process air flow which is provided to flow through the drum and via a condensing device which comprises a receiving vessel for receiving the condensation liquid produced in the drying process and a collection container connected to the receiving vessel by a line, the collection container being arranged in a tank which is connected to the receiving vessel by a discharge, the discharge having a valve which closes the discharge from the receiving vessel in an at least almost completely airtight manner and which can open the connection to the receiving vessel by means of the liquid flowing through the discharge, and the valve comprising a separate valve chamber which is separated from the receiving vessel and comprises an inlet opening and an outlet opening and in which a movable closure member is arranged for opening or closing the inlet opening and/or the outlet opening, wherein the inlet opening is arranged on the base of the valve chamber in such a way that the closure member can be moved from the rest position into the open position by liquid
- the publication EP 2 450 615 A1 discloses a dryer comprising a casing including a basement; a laundry chamber suitable to receive laundry to be dried; a process air circuit for circulating process air into said laundry chamber; a condensing device for removing moisture from the process air coming from said laundry chamber located within the process air circuit; a water collecting housing for the collection of moisture condensed by said condensing device; a condensate tank unit to collect water transferred from the water collecting housing; a pump unit associated to said water collecting housing for the removal of water contained therein and to pump it to the condensate tank unit; a first conduit fluidly connecting a pump unit outlet to a condensate tank unit inlet; a second conduit fluidly connecting the condensate tank unit to an inlet opening arranged in the basement; and wherein the dryer also includes a siphon-like element located in the first and/or in the second conduit to limit air transfer through the first and/or second conduit.
- the siphon-like element is located at one end of the first and/or second conduit.
- the siphon-like element is located at the end of the first conduit including the pump unit outlet and/or at the end of the second conduit including the inlet opening.
- a dryer is disclosed, wherein said first and/or second conduit includes a hose connecting the pump unit outlet to the condensate tank inlet and/or the outlet of the condensate tank to the inlet opening arranged in the basement.
- the siphon-like element comprises preferably an S-bent hose portion.
- a dryer should be provided wherein a barrier is created between an underpressure inside the dryer and atmospheric pressure in the surrounding environment. This should be achievable also after the operation of a condensate pump has stopped Preferably, the overall efficiency of the operation of the dryer should be improved.
- a further object was the provision of a process for operating this dryer.
- the invention is thus directed to a dryer comprising a drum for receiving laundry items to be dried and a process air circuit for passing process air through the drum, the process air circuit including a blower for driving the process air; a condensing device for condensing moisture from the process air coming from the drum; a condensate collecting vessel; a condensate tank for receiving water transferred from the condensate collecting vessel; an overflow container in which the condensate tank is placed; an electric pump unit associated to the condensate collecting vessel for pumping water contained in the condensate collecting vessel to the condensate tank; a pump conduit fluidly connecting a pump outlet to a condensate tank inlet; an overflow conduit fluidly connecting the overflow container to the condensate collecting vessel; and a siphon located in the pump conduit and/or in the overflow conduit to limit air transfer through these conduits; wherein the dryer comprises a bypass conduit which directly connects the pump conduit and the overflow conduit and wherein the pump conduit comprises at a bypass conduit entry point
- the dryer comprises a bypass conduit which directly connects the pump conduit and the overflow conduit. It is then preferred that a bypass conduit entry point is located between a pump siphon and the condensate tank. It is also preferred that a bypass closure device is located between a bypass conduit entry point and a bypass conduit exit point. This allows to regulate the water flow through the bypass conduit.
- the flap system and the flap are not limited as long as the aforementioned effect can be achieved. It is thus for example possible to change the orientation of the flap and thus the direction of the water flow electrically. This could be realized for example in that the orientation of the flap is changed when the electric pump unit is stopped. Such an interaction can be controlled by a suitable control unit.
- the flap system and the flap have such a form and orientation that the orientation of the flap depends on the flow direction of the water.
- the flap should be in general close to a wall of the pump conduit in front of the bypass conduit entry point when the condensed water is flowing in the pump conduit from the pump unit to the condensate tank. Accordingly, if this were not the case, the flap should be positioned and formed such that it is pushed to said wall of the pump by the flow of the condensed water to the condensate tank.
- the position and the form of the flap should be such that the orientation of the flap is changed to then prevent the condensed water to flow back to the pump but instead to the now open bypass conduit.
- the bypass conduit runs obliquely downwards from the pump conduit to the overflow conduit.
- a dryer In general a dryer is preferred, wherein a condensate collecting vessel level sensor is provided in the condensate collecting vessel. It is also preferred that a condensate tank water level sensor is provided in the condensate tank.
- the dryer thus contains a heat pump circuit comprising a refrigerant channel for circulating a refrigerant, a condenser as a heat source, an evaporator as a heat sink, an expansion device for expanding the refrigerant, and a compressor for driving and compressing the refrigerant, the refrigerant circulating sequentially through the compressor, the condenser, the expansion device and the evaporator.
- the condenser serves to heat the process air flow prior to entering the drum as drying chamber
- the evaporator serves to cool the air flow after leaving the drying chamber.
- the overflow conduit has an overflow siphon which closes the overflow conduit to the condensate collecting vessel in an at least almost airtight manner.
- the overflow siphon thus seals off the condensate collecting vessel, which is in communication with the process air and in which a negative pressure or positive pressure prevails, from the external pressure in the installation space.
- a dryer is moreover preferred that comprises both a pump siphon and an overflow siphon.
- the flap system is located in the pump conduit between the pump siphon and the condensate tank.
- the dryer can be a dryer as such or a washer-dryer which combines the function of washing laundry with the function of drying.
- the dryer of the present invention is preferably embodied as a washer-dryer.
- the condensate collecting vessel is for the condensation water produced during the drying process, which is pumped to the condensate tank by means of an electric pump unit via the pump conduit which is usually a hose.
- the condensate tank is placed in the overflow container, which is usually connected to the condensate collecting vessel via the overflow conduit comprising a pipe or hose.
- An overflow siphon is contained in the overflow conduit.
- the condensate collecting vessel is for example a tray open at the top and arranged below the condensing device so that it can collect condensate produced in the condensing device.
- the overflow siphon is present between the overflow conduit and the condensate collecting vessel, preventing secondary air from entering the process air from the drain when the overflow siphon is filled with water.
- a dryer of the invention is equipped with a heat pump including a compressor, heat exchanger and the piping for the refrigerant, no secondary air can enter the area of the condenser via the condensate collecting vessel or the overflow conduit, if the blower generates a negative pressure during drying operation.
- the process air circuit comprises a condensing device for removing moisture from the process air coming from the laundry chamber, i.e. the drum.
- Condensation water formed in the condensing device is collected in the condensate collecting vessel, preferably located in a basement of the dryer.
- the water in the condensate collecting vessel is then conveyed to the condensate tank which is preferably arranged on an upper portion of the dryer so that it can be easily and periodically emptied by a user.
- the condensate tank is preferably in the form of a drawer slidably arranged on said upper portion of the dryer.
- an electric pump unit is provided at said condensate collecting vessel.
- the electric pump unit is advantageously activated on the base of the water level inside the condensate collecting vessel.
- a level (height) sensor may also be provided at the condensate collecting vessel.
- the overflow container permits the water from the condensate tank to be transferred into the condensate collecting vessel when the condensate tank is full.
- the electric pump unit is advantageously positioned in a substantially airtight environment.
- airtight environment may cause a pressure difference between different volumes in the dryer, which in turn may cause an air flow from the condensate tank to the pump unit via the conveying pipe, i.e. the pump pipe, or from the condensate tank to the condensate collecting vessel via the overflow pipe (or vice-versa).
- the overflow siphon and, if present in the dryer, the pump siphon limit air transfer through the overflow conduit and the pump conduit, respectively.
- the conduits are realized in a simple manner by means of hoses.
- the siphons comprise an S-bent hose portion.
- the siphon does not require additional elements to be produced and mounted on the dryer, an S-shaped torsion of the hose produces a siphon which is suitable for the intended purposes.
- the dryer may be a front-loading dryer, which means that a drum in which the laundry is located has an axis which is positioned in a horizontal manner or slightly tilted with respect to the horizontal plane, or a top dryer, where the axis of the drum is substantially vertical.
- the dryer is a front loading laundry dryer.
- the process air circuit in particular a closed-loop circuit, includes a process air conduit for channeling a stream of air to dry the laundry load in the drum.
- the process air circuit is connected with its two opposite ends to the drum. More specifically, hot dry air is fed into the drying chamber, flowing over the laundry, and the resulting humid (and to a lower temperature cooled down) air exits the same.
- the humid process air is then fed into a condensing device, i.e. a heat exchanger.
- the humid air is fed to an evaporator of a heat pump system, where the moist process air is further cooled down and the humidity present therein condenses.
- the resulting cool dry air is then heated up before re-entering again in the drum by means of or example a condenser of the heat pump system, and the whole loop is repeated until the end of the drying process.
- the dehumidified process air can also to exhausted outside the dryer.
- an air-air type heat exchanger may be used. Such a heat exchanger generally receives ambient air as cooling fluid to cool down and remove humidity from the humid air stream passing therethrough.
- Process air might be heated before entering the drum by means of an electric heating device or by means of a gas powered heating device. Heated air flowing through and on humid laundry contained in the drum removes humidity from laundry. The condensing device is thus positioned in the process air circuit.
- the dryer comprises a heat pump circuit
- the refrigerant is circulated and thereby cyclically compressed and expanded as well as cooled and heated, on purpose of absorbing heat in the evaporator by evaporating the refrigerant at low pressure, and releasing heat in the condenser by condensing the refrigerant at high pressure.
- the dryer comprises a control device for controlling operation of the dryer, wherein the expansion device is a variable valve operably connected to the control device.
- Such operation may be of a switching type, whereby the valve is switched between an open position for recirculating a part of the refrigerant and a closed position which cuts off any recirculation.
- such operation may allow varying the amount of refrigerant which is recirculated, either stepwise or continuously.
- the overflow container can accept water from the condensate tank when the latter becomes full or water contained therein reaches a given level.
- the condensate tank includes a first aperture positioned on one of the sides of the condensate tank at a given level, so that if a level of the water in the condensate tank raises above such given level, the water drops into the overflow container. In this way, the condensate tank is always filled up to a predetermined maximum level or below. Any additional water pumped by the pump unit to the condensed tank spills from the aperture and falls into the overflow container.
- a siphon is positioned in the overflow conduit but preferably also the pump conduit.
- the position of the siphon may be any, as long as it is along these conduits.
- the presence of the siphon which blocks a quantity of water in the respective conduit also when the pump unit is not active or when water is not dripping from the condensate tank to the condensate collecting vessel, avoids or minimizes the possibility of air passage through the conduits. Pressure differences may be kept.
- the dryer in general comprises a control unit for the operation of the dryer.
- the invention is moreover directed to a process for the operation of a dryer comprising a drum for receiving laundry items to be dried and a process air circuit for passing process air through the drum, the process air circuit including a blower for driving the process air; a condensing device for condensing moisture from the process air coming from the drum; a condensate collecting vessel; a condensate tank for receiving water transferred from the condensate collecting vessel; an overflow container in which the condensate tank is placed; an electric pump unit associated to the condensate collecting vessel for pumping water contained in the condensate collecting vessel to the condensate tank; a pump conduit fluidly connecting a pump outlet to a condensate tank inlet; an overflow conduit fluidly connecting the overflow container to the condensate collecting vessel; a siphon located in the pump conduit and/or in the overflow conduit to limit air transfer through these conduits; wherein the dryer comprises a bypass conduit which directly connects the pump conduit and the overflow conduit and wherein the pump conduit comprises
- the invention provides several advantages. Advantages of the invention include an improvement of the performance of the dryer by providing a dryer with an improved airtightness of the process air circuit.
- the invention applies in this regard simple, cheap and quickly assembled means. The energy consumption is reduced during drying. Because the process air stream is now very well sealed, the effect of the process air stream is improved or optimized.
- the present invention allows to create an effective barrier between underpressure inside a dryer and atmospheric pressure in the surrounding environment. This allows not only a prefilling with water upon a first activation of the condensate pump but ensures air tightness even when the condensate pump is stopped. In any way, the process circuit can be kept air tight.
- the overflow siphon is filled upon first condensate pump activation and keeps air tight by refilling upon each condensate pump cycle.
- the sealing of the dryer's process air pressure from atmospheric pressure enables to reach better dryer's performance.
- Non-limiting examples for dryers according to the present invention or for parts which make a technical contribution to the invention and in which the process of the present invention can be implemented, are shown in Figs. 1 to 3 wherein corresponding components are identified by the same reference numerals.
- Fig. 1 shows a vertically cut condensation dryer 1 (in the following abbreviated as "dryer") according to a first embodiment wherein a condensate collecting vessel 5 is provided for condensate 22 originating from the evaporator 18 of a heat pump and wherein the condensate collecting vessel 5 is equipped with an electric pump unit 7.
- the dryer shown in Fig. 1 depicts a drum 2 as drying chamber which is rotatable around a horizontal axis. Within the drum, tappets 14 are fixed in order to move the laundry items (which are not shown here) during a rotation of the drum 2.
- An electric heating device 13 which supports here the heat pump, a heat pump 18, 19, 20, 11, as well as a blower 12 are provided in a process air circuit 3. Warm process air is thus moved to the drum 2, cooled after having passed through the drum 2 and warmed again after the condensation of the humidity contained in the process air. The heated process air is led from the rear, i.e.
- the overflow water container 8 is connected by means of an overflow conduit 10 to the condensate collecting vessel 5.
- a pump siphon 23 is placed in the pump conduit 9 and an overflow siphon 24 is placed in the overflow conduit 10 to limit air transfer through the pump and overflow conduit.
- Dryer 1 comprises a bypass conduit 26 which directly connects the pump conduit 9 and the overflow conduit 10.
- the pump conduit 9 comprises a flap system 25 including a flap (not to be seen here), wherein the flap system 25 including the flap is adapted to cause by means of the operation of the pump unit 7 a flow of condensate 22 from the pump outlet 35 directly to the condensate tank 6 in that the bypass conduit 26 is closed by the flap, and to cause a flow of condensate 22 in the opposite direction and into the bypass conduit 26 and an overflow siphon 24 in the overflow conduit 10 in that the bypass conduit 26 is no longer closed by the flap when the flow direction has changed.
- a direct bypass conduit 26 which directly connects the pump conduit 9 and the overflow conduit 10.
- a bypass conduit exit point of the bypass conduit 26 is located between an overflow siphon 24 and the condensate container 6.
- 23 refers to a pump siphon located in the pump conduit 9.
- a conduit closure device is located between the bypass conduit entrance point and the direct bypass conduit exit.
- a first water level sensor is provided in the condensate collecting vessel and a second water level sensor is provided in the condensate tank 6. Both water level sensors cannot be seen however in Fig. 1 .
- control of the dryer 1 is achieved by means of a control unit 4 which may be adjusted by a user by means of an operator panel 15.
- the refrigerant is evaporated in evaporator 18, compressed in compressor 11, which is here a variable power compressor, and subsequently condensed in condenser 19. 20 is a throttle.
- Process air is fed through the drum 2 in a process air circuit 3 by means of a blower 12. After passing through the drum 2, the moist, warm process air is directed into the evaporator 18 of a heat pump 38,18,19,20,11, which also has a variable-speed compressor 11, a throttle 20 and a condenser 19.
- the arrows shown in Fig. 1 indicate the flow direction of the coolant in the heat pump and of the air in the process air circuit.
- the refrigerant of the heat pump 38,18,19,20,11 evaporated in the evaporator 18 is led to the condenser 19 via the speed-dependent compressor 11.
- the condenser 19 the refrigerant liquefies, releasing heat to the process air flowing in the process air circuit 3.
- the refrigerant, which is now in liquid form, is again fed to the evaporator 18 via the throttle 20, thus closing the refrigerant circuit.
- a temperature sensor S T WPK 28 between evaporator 18 and compressor 11 measures the temperature T of the refrigerant.
- the electric heating device 13 serves to heat the process air more rapidly. In other embodiments of the invention, the electric heater 13 may be omitted.
- An optical/acoustical indication device 16 allows the user of the dryer to display, for example, operating parameters and/or an expected duration of the drying process.
- process air is repeatedly circulated through the process air circuit 3 until preferably a desired degree of drying of the laundry items is achieved.
- the dryer 1 of Fig. 1 further enables precise control of the operation of the heat pump, so that a drying phase can be efficiently controlled by regulating the blower 12 and the compressor 11 by means of the control unit 4 so that a predetermined maximum temperature T max for the temperature of the process air is not exceeded.
- Fig. 2 shows important parts related to the core of the invention, according to the first embodiment of the dryer of the present invention shown in Fig. 1 .
- An electric pump unit 7 is placed in the condensate collecting vessel 5 to allow condensate, i.e. water 22, to be pumped off.
- a water level sensor namely the so-called condensate collecting vessel level sensor 34, senses when the water level has reached a prescribed height such that condensate 22 should be pumped off.
- the condensate 22 is pumped via pump conduit 9 in which a pump siphon 23 is placed into the direction of the condensate tank 6 that is placed within an overflow container 8.
- the pump siphon 23 is located between the pump outlet 35 and the condensate tank inlet 36.
- the overflow conduit 10 is connected to the overflow container 8 at the exit 33 of the overflow container 8.
- the dryer comprises a bypass conduit 26 which directly connects the pump conduit 9 and the overflow conduit 10.
- condensate 22 from the condensate collecting vessel 5 can flow through bypass conduit 26 directly back into the condensate collecting vessel 5, i.e. without entering the condensate tank 6, and also in the overflow siphon 24 to efficiently contribute to the airtightness of the process air circuit.
- the pump conduit 9 comprises a flap system 25 including a flap (not to be seen here), wherein the flap system 25 including the flap is adapted to cause by means of the operation of the pump unit 7 a flow of condensate 22 from the pump outlet 35 directly to the condensate tank 6 in that the bypass conduit 26 is closed by the flap, and to cause a flow of condensate 22 in the opposite direction and into the bypass conduit 26 and the overflow siphon 24 in the overflow conduit 10 in that the bypass conduit 26 is no longer closed by the flap when the flow direction has changed.
- the flap system 27 including a flap is placed at the bypass conduit entry point 31 which is here located between a pump siphon 23 and the condensate tank 6.
- Fig. 3 shows an enlarged view of the pump conduit 9, in which a flap system 25 including a flap 27 is located, and the overflow conduit 10, wherein both conduits comprise a siphon 23,24 and are directly connected by a bypass conduit 26, in a state where the flap 27 blocks the bypass conduit entry 31 such that the condensate can flow directly from a pump unit to a condensate tank.
- a bypass conduit 26 runs obliquely downwards from the pump conduit 9 to the overflow conduit 10.
- Fig. 4 shows an enlarged view of the pump conduit 9, in which a flap system 25 including a flap 27 is located, and the overflow conduit 10.
- Both conduits 9,10 comprise a siphon 23,24 and are directly connected by a bypass conduit 26.
- the flap system 25 is shown in a state where the flap 27 blocks the pump conduit 9 such that the condensate flows in an opposite direction and down through the bypass conduit 27. It can be recognized clearly that the bypass conduit 26 runs obliquely downwards from the pump conduit 9 to the overflow conduit 10.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Detail Structures Of Washing Machines And Dryers (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22153372.2A EP4219822A1 (fr) | 2022-01-26 | 2022-01-26 | Séchoir d'un circuit d'air de traitement à haute étanchéité à l'air et procédé de fonctionnement du séchoir |
CN202310095654.6A CN116497575A (zh) | 2022-01-26 | 2023-01-20 | 具有改进的处理空气回路气密性的烘干机及相应操作方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22153372.2A EP4219822A1 (fr) | 2022-01-26 | 2022-01-26 | Séchoir d'un circuit d'air de traitement à haute étanchéité à l'air et procédé de fonctionnement du séchoir |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4219822A1 true EP4219822A1 (fr) | 2023-08-02 |
Family
ID=80035157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22153372.2A Pending EP4219822A1 (fr) | 2022-01-26 | 2022-01-26 | Séchoir d'un circuit d'air de traitement à haute étanchéité à l'air et procédé de fonctionnement du séchoir |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4219822A1 (fr) |
CN (1) | CN116497575A (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058009A1 (fr) * | 2005-11-18 | 2007-05-24 | Kabushiki Kaisha Toshiba | Machine a laver et a secher |
EP2141279A1 (fr) | 2008-07-03 | 2010-01-06 | Miele & Cie. KG | Sèche-linge doté d'un dispositif de condensation |
EP2450615A1 (fr) | 2010-06-04 | 2012-05-09 | Cree, Inc. | Lumière |
WO2015101388A1 (fr) * | 2013-12-30 | 2015-07-09 | Electrolux Appliances Aktiebolag | Appareil de traitement de linge comportant un système de lavage de filtre à peluches |
WO2017119589A1 (fr) * | 2016-01-05 | 2017-07-13 | 엘지전자 주식회사 | Appareil de traitement de vêtements |
KR20190128487A (ko) * | 2018-05-08 | 2019-11-18 | 엘지전자 주식회사 | 의류 처리 장치 |
-
2022
- 2022-01-26 EP EP22153372.2A patent/EP4219822A1/fr active Pending
-
2023
- 2023-01-20 CN CN202310095654.6A patent/CN116497575A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007058009A1 (fr) * | 2005-11-18 | 2007-05-24 | Kabushiki Kaisha Toshiba | Machine a laver et a secher |
EP2141279A1 (fr) | 2008-07-03 | 2010-01-06 | Miele & Cie. KG | Sèche-linge doté d'un dispositif de condensation |
EP2450615A1 (fr) | 2010-06-04 | 2012-05-09 | Cree, Inc. | Lumière |
WO2015101388A1 (fr) * | 2013-12-30 | 2015-07-09 | Electrolux Appliances Aktiebolag | Appareil de traitement de linge comportant un système de lavage de filtre à peluches |
WO2017119589A1 (fr) * | 2016-01-05 | 2017-07-13 | 엘지전자 주식회사 | Appareil de traitement de vêtements |
KR20190128487A (ko) * | 2018-05-08 | 2019-11-18 | 엘지전자 주식회사 | 의류 처리 장치 |
Also Published As
Publication number | Publication date |
---|---|
CN116497575A (zh) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3040470B1 (fr) | Appareil de traitement de vêtements | |
US7866061B2 (en) | Clothes dryer | |
CN102239290B (zh) | 具有壳体的冷凝式干衣机 | |
US7024795B2 (en) | Drying apparatus | |
EP3064629B1 (fr) | Lave-linge/sèche-linge combiné à pompe à chaleur du type pulsateur, et procédé de séchage | |
CN106968079B (zh) | 具有冷却水回路的洗涤-烘干机 | |
CN110331566B (zh) | 烘干系统及其使用方法 | |
US3027653A (en) | Domestic appliance | |
CN101275357A (zh) | 干燥装置以及具有该装置的洗衣干燥机 | |
JP2007209526A (ja) | 衣類乾燥機 | |
EP2573253B1 (fr) | Sèche-linge à pompe à chaleur | |
EP2549007B1 (fr) | Appareil de traitement de linge à pompe thermique | |
JP2009061217A (ja) | 衣類乾燥機 | |
JP2004135752A (ja) | 衣類乾燥装置 | |
US10774463B2 (en) | Dryer appliance | |
WO2006054431A1 (fr) | Machine a laver sechante a tambour | |
JP7319028B2 (ja) | 衣類乾燥機 | |
EP4219822A1 (fr) | Séchoir d'un circuit d'air de traitement à haute étanchéité à l'air et procédé de fonctionnement du séchoir | |
JP2004089413A (ja) | 衣類乾燥装置 | |
EP4219823A1 (fr) | Séchoir présentant une meilleure étanchéité à l'air d'un circuit d'air de traitement et procédé de fonctionnement du séchoir | |
CN218466156U (zh) | 衣物处理设备 | |
CN112941856A (zh) | 衣物类干燥机 | |
JP5887487B2 (ja) | 洗濯乾燥機 | |
CN218466157U (zh) | 衣物处理设备 | |
JP2008183304A (ja) | 乾燥機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240202 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |