EP4209708A1 - Radial nozzle solid fuel gasification heater - Google Patents
Radial nozzle solid fuel gasification heater Download PDFInfo
- Publication number
- EP4209708A1 EP4209708A1 EP22215893.3A EP22215893A EP4209708A1 EP 4209708 A1 EP4209708 A1 EP 4209708A1 EP 22215893 A EP22215893 A EP 22215893A EP 4209708 A1 EP4209708 A1 EP 4209708A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- gasification chamber
- chamber
- combustion chamber
- gasification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002309 gasification Methods 0.000 title claims abstract description 68
- 239000004449 solid propellant Substances 0.000 title claims abstract description 7
- 238000002485 combustion reaction Methods 0.000 claims abstract description 38
- 238000005192 partition Methods 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000009423 ventilation Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 description 15
- 239000000446 fuel Substances 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B1/00—Combustion apparatus using only lump fuel
- F23B1/16—Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support
- F23B1/18—Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support using inclined grate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B10/00—Combustion apparatus characterised by the combination of two or more combustion chambers
- F23B10/02—Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B50/00—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
- F23B50/02—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
- F23B50/06—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom the flue gases being removed downwards through one or more openings in the fuel-supporting surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B90/00—Combustion methods not related to a particular type of apparatus
- F23B90/04—Combustion methods not related to a particular type of apparatus including secondary combustion
- F23B90/06—Combustion methods not related to a particular type of apparatus including secondary combustion the primary combustion being a gasification or pyrolysis in a reductive atmosphere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/02—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment
- F23G5/027—Incineration of waste; Incinerator constructions; Details, accessories or control therefor with pretreatment pyrolising or gasifying stage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/08—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
- F23G5/14—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
- F23G5/16—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber
- F23G5/165—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion in a separate combustion chamber arranged at a different level
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/36—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a conical combustion chamber, e.g. "teepee" incinerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/10—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
- F23G7/105—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses of wood waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2201/00—Pretreatment
- F23G2201/40—Gasification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/10—Combustion in two or more stages
- F23G2202/103—Combustion in two or more stages in separate chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/26—Biowaste
- F23G2209/261—Woodwaste
Definitions
- This invention relates to a solid fuel radial nozzle type gasification heater.
- Known heaters of this concept contain a gasification chamber in the upper part and a combustion chamber in the lower part.
- the gassing chamber is almost always square or rectangular in cross-section.
- In the upper part it contains a hole for filling fuel.
- the gasification chamber and the combustion chamber are separated by a partition.
- the partition wall thus forms the floor of the gasification chamber with its upper surface and the ceiling of the combustion chamber with its lower surface.
- the partition contains a nozzle (vent or through hole) that connects the gasification chamber and the combustion chamber.
- the entrance opening (Slit) of the nozzle is usually located in the center of the bottom of the gasification chamber.
- the outlet of the nozzle is in the wall that usually forms the ceiling of the combustion chamber.
- the bottom of the gasification chamber can be horizontal or inclined towards the nozzle.
- the sloping floor of the gasification chamber is thus in the shape of a four-sided pyramid with the apex down, with 4 triangular walls, or a four-sided trough with a pair of opposing triangular walls and a pair of trapezoidal walls.
- the nozzle is therefore an important element, and its quality has a significant impact on the quality of the heater as a whole. From the stated functions of the nozzle it is clear that the requirements for the spatial arrangement of the nozzle are quite contradictory: the removal of gases and ash requires large nozzle dimensions, while the collection of unburned particles or mixing with air requires small nozzle dimensions .
- the ash removal requires multiple inlets in the tray area, while gas removal requires an inlet in the center of the tray.
- the walls of the nozzle are exposed to high temperatures (up to 1100°C), gas effects (oxidation and reduction reactions, etc.), ash effects (melting, high-temperature alkaline corrosion, etc.) and mechanical stress from parts of the fuel. This places extraordinary demands on the selection of the materials used.
- the walls of the nozzle can be made of heat-resistant metal alloys of iron (refractory steel and cast iron). This material is strong and allows you to create any shape (for example, a grate), but its temperature resistance is insufficient and its service life is short.
- Ceramic is most often used for the walls of the nozzle. Ceramics withstand temperatures well, but are fragile. The strength, especially under tension, is many times lower than that of metallic materials. Therefore, the ceramic parts must be solid, which imposes significant dimensional limitations.
- nozzle types differ mainly in the shape and number of inlet holes. Most often, nozzles with an inlet opening and a rectangular cross section with a significant side difference (elongated) are used. There are also square or round nozzles.
- the nozzle vent usually follows the inlet port. The cross-section of the vent widens downwards to prevent parts of the fuel from sticking.
- the outlet port is therefore usually identical to the inlet port, but slightly larger.
- the vents from each inlet hole are usually connected to a single outlet hole.
- each type of nozzle has a different combination of advantages and disadvantages.
- a square or round nozzle due to its central position in the bottom, achieves a higher energy value of the gas (and thus combustion quality), but has the disadvantage of a large waste of fuel parts, which are then missing in the gasification chamber. This reduces the efficiency of gasification, while the fuel parts in the combustion chamber are troublesome and deteriorate the quality of gas combustion.
- a rectangular nozzle has the advantage (because it is significantly narrower for the same area) that parts of the fuel lose a small drop.
- their disadvantage is that their ends reach into the edge areas of the ground, where the energy value of the gas is lower.
- Efforts to achieve the greatest possible proportion of the above advantages lead to the design of nozzles with a relatively small area of the inlet opening, which increases the gas throughput and thus the pressure loss of the nozzle.
- the heater must be equipped with a fan, while the fan power also increases with increasing pressure loss of the nozzle.
- High gas velocities locally increase the intensity of oxidation reactions, which increase the temperature due to the increased formation of harmful NOX emissions (nitrogen oxides) or cause undesirable melting of ash (slag formation).
- Nozzles with a larger number of inlet holes have favorable operating characteristics. However, for reasons of strength, they do not allow the use of ceramic material, so they must be made of metal. They therefore also have a short service life and have to be changed frequently, which makes operation more expensive.
- Some types of gasification heaters are characterized by a sharply sloping floor of the gasification chamber towards its center - or the nozzle.
- the bottom thus forms the shape of a four-sided pyramid with the apex at the bottom.
- a sufficient angle of fall (more than 40°)
- the ash slides down the bottom walls into the nozzle during operation, which is a significant advantage.
- this type of soil also has disadvantages. It limits e.g. B. the spatial possibilities of the nozzle, which is why heaters with a steeply inclined bottom usually have a square or round nozzle with the above defects (large droplet, high gas velocities, large pressure drop).
- a solid fuel gasifier-heater-nozzle with a radial nozzle containing a gasification chamber and a combustion chamber located below the gasification chamber.
- the floor of the gasification chamber is inclined towards the center of the gasification chamber by four inclined walls forming a pyramid shape form with the tip pointing into the combustion chamber, or forms a trough.
- the gasification chamber and the combustion chamber are separated by a partition through which the nozzle passes.
- the inlet opening is in the bottom of the gasification chamber and the outlet opening is in the wall of the combustion chamber.
- the inlet opening of the nozzle consists of a central slit in the shape of a rectangle or square and radial slits forming four rectangular openings. These are located in the rims between the sloping walls of the floor of the gasification chamber, creating a radial pattern.
- the central vent of the nozzle is routed under the central slot.
- the radial slots are followed by ducts which open into the central vent which forms an exit opening in the walls of the combustion chamber.
- the channels are at an angle of at least 40°, ie the angle from the bottom of the channels relative to the horizontal plane.
- the side walls of the channels are mutually open to their lower walls (bottom of the channels).
- gasification heater 100 gasification boiler
- solid fuel 6 for example wood
- the gasification boiler 100 includes a gasification chamber 4 with a square or rectangular cross-section and a combustion chamber 9 arranged below the gasification chamber 4.
- the gasification chamber 4 and the combustion chamber 9 are separated by a partition wall 5 which forms the bottom 10 of this gasification chamber 4 on the side of the gasification chamber 4 , and the combustion-side chambers 9 form the upper inner wall 7 of this combustion chamber.
- a nozzle 2 Through the partition 5 is a nozzle 2, consisting of an inlet opening 1 and an outlet opening 3 out.
- the bottom 10 of the gasification chamber 4 is inclined significantly towards the center of the gasification chamber 4 by four inclined walls 11.
- the walls 11 of the gasification chamber 4, which is square in cross section, are inclined in the form of a pyramid ( 2 ).
- the inclined walls 11 of the gasification chamber 4 of rectangular section are inclined in the form of a trough ( 10 ).
- the inlet opening 1 of the nozzle 2 on the gasification chamber 4 with a square cross-section contains a square central slot 13 and radial slots 14.
- a central vent 15 forming an exit opening 3 in the wall 7 of the nozzles 2 of the combustion chamber 9.
- the central vent 15 is in the form of a regular prism with a square profile, the upper part of which has folded corners.
- the radial slots 14 are formed by rectangular openings located in the edges 12 of the bottom 10 of the gasification chamber 4 . This will create a radial pattern generated that resembles a four-pointed star or a cross.
- the channels 8 leading to the central vent 15 are connected to the radial slots 14 through the nozzles 2.
- the channels 8 are inclined to the central vent 15 at an angle of at least 40°.
- the side walls 16 of the channels 8 are mutually open to their lower walls 17 ( Figures 8 and 9 ).
- the inlet opening 1 of the nozzle 2 on the gasification chamber 4 (which is rectangular in cross-section Figures 11 to 15 , 8 and 9 ) contains a central slit 13 of rectangular shape and radial slits 14. Below the opening 15, a central vent 15 with a central slit 13 is guided, which forms a combustion chamber wall 7,9.
- the combustion chamber wall 7, 9 has an outlet opening 3 and 2 nozzles.
- the central vent 15 has a variable size rectangular profile.
- the radial slots 14 are formed by rectangular openings located in the edges 12 of the bottom 10 of the gasification chamber 4 creating a radial pattern.
- the channels 8 leading to the central vent 15 are connected to the radial slots 14 through the nozzles 2.
- the channels 8 are inclined to the central vent 15 at an angle of at least 40°.
- the side walls 16 of the channels 8 are mutually open to their lower walls 17 ( Figures 8 and 9 ).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Wood Science & Technology (AREA)
- Spray-Type Burners (AREA)
Abstract
Die Erfindung betrifft ein Heizgerät für Festbrennstoffvergaser mit Radialdüse, einer Vergasungskammer (4) mit einem Boden (10), einer unterhalb der Vergasungskammer angeordneten Brennkammer (9), wobei der Boden (10) der Vergasungskammer (4) zu seiner Mitte hin geneigt und durch vier schräge Wände (11) definiert ist, die eine Pyramidenform mit zur Brennkammer (9) weisender Spitze oder eine Wannenform bilden, während die Vergasungskammer (4) und die Brennkammer (9 ) durch eine Trennwand (5) getrennt sind, die auf der Seite der Vergasungskammer (4) den Boden (10) dieser Vergasungskammer und auf der Seite der Brennkammer (9) die obere Innenwand (7) bildet, während die Trennwand (5) von der Düse (2) geführt ist, deren Eintrittsöffnung (1) im Boden der Vergasungskammer (4) und deren Austrittsöffnung (3) in der Innenwand (7) der Brennkammer (9) ausgebildet ist.The invention relates to a heater for solid fuel gasifiers with a radial nozzle, a gasification chamber (4) with a floor (10), a combustion chamber (9) arranged below the gasification chamber, the floor (10) of the gasification chamber (4) being inclined towards its center and through four sloping walls (11) are defined, forming a pyramid shape with the top pointing towards the combustion chamber (9) or a trough shape, while the gasification chamber (4) and the combustion chamber (9) are separated by a partition wall (5) placed on the side of the gasification chamber (4) forms the bottom (10) of this gasification chamber and on the side of the combustion chamber (9) the upper inner wall (7), while the partition wall (5) is guided by the nozzle (2), the inlet opening (1) of which is in the Bottom of the gasification chamber (4) and the outlet opening (3) in the inner wall (7) of the combustion chamber (9) is formed.
Description
Die Erfindung betrifft einen Festbrennstoff-Vergasungserhitzer mit radialer Düse.This invention relates to a solid fuel radial nozzle type gasification heater.
Das Konzept der Vergasungs- oder Pyrolyseerhitzer für feste Brennstoffe ist weit verbreitet. Es wird hauptsächlich in Warmwasser-Holzkesseln mit manueller Beschickung und in geringerem Umfang in Holzöfen verwendet.The concept of solid fuel gasification or pyrolysis heaters is widely used. It is mainly used in hot water wood-fired boilers with manual charging and to a lesser extent in wood-burning stoves.
Bekannte Erhitzer dieses Konzepts enthalten im oberen Teil eine Vergasungskammer und im unteren Teil eine Brennkammer. Die Vergasungskammer hat fast immer einen quadratischen oder rechteckigen Querschnitt. Im oberen Teil enthält sie ein Loch zum Einfüllen von Kraftstoff. Die Vergasungskammer und die Brennkammer sind durch eine Trennwand getrennt. Die Trennwand bildet somit mit ihrer oberen Fläche den Boden der Vergasungskammer und mit ihrer unteren Fläche die Decke der Brennkammer. Die Trennwand enthält eine Düse (Entlüftungs- oder Durchgangsloch), die die Vergasungskammer und die Brennkammer verbindet. Die Eintrittsöffnung (Schlitz) der Düse befindet sich üblicherweise in der Mitte des Bodens der Vergasungskammer. Der Austritt der Düse befindet sich in der Wand, die üblicherweise die Decke der Brennkammer bildet.Known heaters of this concept contain a gasification chamber in the upper part and a combustion chamber in the lower part. The gassing chamber is almost always square or rectangular in cross-section. In the upper part it contains a hole for filling fuel. The gasification chamber and the combustion chamber are separated by a partition. The partition wall thus forms the floor of the gasification chamber with its upper surface and the ceiling of the combustion chamber with its lower surface. The partition contains a nozzle (vent or through hole) that connects the gasification chamber and the combustion chamber. The entrance opening (Slit) of the nozzle is usually located in the center of the bottom of the gasification chamber. The outlet of the nozzle is in the wall that usually forms the ceiling of the combustion chamber.
Der Boden der Vergasungskammer kann horizontal oder zur Düse geneigt sein. Der geneigte Boden der Vergasungskammer hat somit die Form einer vierseitigen Pyramide mit der Spitze unten, mit 4 dreieckigen Wänden oder einer vierseitigen Rinne mit einem Paar gegenüberliegender dreieckiger Wände und einem Paar trapezförmiger Wände.The bottom of the gasification chamber can be horizontal or inclined towards the nozzle. The sloping floor of the gasification chamber is thus in the shape of a four-sided pyramid with the apex down, with 4 triangular walls, or a four-sided trough with a pair of opposing triangular walls and a pair of trapezoidal walls.
Der Vergasungserhitzer funktioniert wie folgt: Der Brennstoff wird in der Vergasungskammer zu Gas. Es strömt durch die Eintrittsöffnung in die Düse, wo es verbrennt. Das Brenngas strömt durch den Düsenaustritt in die Brennkammer. In der Düse wird in der Regel Luft in die Flamme geleitet, was die Verbrennung fördert. Die Luft wird üblicherweise durch eine Öffnung in der Trennwand geleitet, die in die Düse mündet. Die Düse des Vergasungserhitzers erfüllt somit mehrere Funktionen:
- Gasaustritt aus der Vergasungskammer, während es normalerweise wünschenswert ist, dass sich der Auslass im mittleren Teil des Bodens der Vergasungskammer befindet, wo der Energiewert (Temperatur und Heizwert) des Gases am höchsten ist.
- Entaschung vom Boden der Vergasungskammer.
- Eindämmung von unverbrannten Teilen des Brennstoffs (Kohle) in der Vergasungskammer (damit sie nicht in die Brennkammer fallen).
- Gas outlet from the gasification chamber, while it is usually desirable that the outlet be located in the middle part of the bottom of the gasification chamber, where the energy value (temperature and calorific value) of the gas is highest.
- Ash removal from the bottom of the gasification chamber.
- Containment of unburned parts of the fuel (coal) in the gasification chamber (so that they do not fall into the combustion chamber).
Die Düse ist daher ein wichtiges Element, und ihre Qualität hat einen wesentlichen Einfluss auf die Qualität des gesamten Erhitzers. Aus den genannten Funktionen der Düse wird deutlich, dass die Anforderungen an die räumliche Anordnung der Düse durchaus widersprüchlich sind: Die Entfernung von Gasen und Asche erfordert große Dimensionen der Düse, während das Auffangen von unverbrannten Partikeln oder das Mischen mit Luft kleine Abmessungen der Düse erfordern. Die Ascheentfernung erfordert mehrere Einlässe im Bodenbereich, während die Gasentfernung einen Einlass in der Mitte des Bodens erfordert. Während des Betriebs sind die Wände der Düse hohen Temperaturen (bis zu 1100° C), Gaseinwirkungen (Oxidations- und Reduktionsreaktionen usw.), Ascheeinwirkungen (Schmelzen, alkalische Hochtemperaturkorrosion usw.) und mechanischer Beanspruchung durch Teile des Kraftstoffs ausgesetzt. Dies stellt außerordentliche Anforderungen an die Auswahl der verwendeten Materialien.The nozzle is therefore an important element, and its quality has a significant impact on the quality of the heater as a whole. From the stated functions of the nozzle it is clear that the requirements for the spatial arrangement of the nozzle are quite contradictory: the removal of gases and ash requires large nozzle dimensions, while the collection of unburned particles or mixing with air requires small nozzle dimensions . The ash removal requires multiple inlets in the tray area, while gas removal requires an inlet in the center of the tray. During operation, the walls of the nozzle are exposed to high temperatures (up to 1100°C), gas effects (oxidation and reduction reactions, etc.), ash effects (melting, high-temperature alkaline corrosion, etc.) and mechanical stress from parts of the fuel. This places extraordinary demands on the selection of the materials used.
Die Wände der Düse können aus hitzebeständigen Metalllegierungen aus Eisen (feuerfester Stahl und Gusseisen) bestehen. Dieses Material ist stark und ermöglicht das Erstellen beliebiger Formen (z. B. eines Rosts), aber seine Temperaturbeständigkeit ist unzureichend und seine Lebensdauer ist kurz.The walls of the nozzle can be made of heat-resistant metal alloys of iron (refractory steel and cast iron). This material is strong and allows you to create any shape (for example, a grate), but its temperature resistance is insufficient and its service life is short.
Daher wird am häufigsten Keramik für die Wände der Düse verwendet. Keramik hält Temperaturen gut aus, ist aber zerbrechlich. Die Festigkeit, insbesondere bei Zug, ist um ein Vielfaches geringer als bei metallischen Werkstoffen. Daher müssen die Keramikteile massiv sein, was erhebliche Beschränkungen hinsichtlich der Abmessungen mit sich bringt.Therefore, ceramic is most often used for the walls of the nozzle. Ceramics withstand temperatures well, but are fragile. The strength, especially under tension, is many times lower than that of metallic materials. Therefore, the ceramic parts must be solid, which imposes significant dimensional limitations.
Aus den genannten Fakten wird deutlich, dass die Anforderungen an die maßliche Anordnung der Düse erheblich sind.The facts mentioned make it clear that the requirements for the dimensional arrangement of the nozzle are significant.
Bekannte Düsentypen unterscheiden sich hauptsächlich in Form und Anzahl der Einlasslöcher. Am häufigsten werden Düsen mit einer Eintrittsöffnung und einem rechteckigen Querschnitt mit deutlichem Seitenunterschied (länglich) verwendet. Es gibt auch quadratische oder runde Düsen. Bei Düsen mit einer einzigen Einlassöffnung folgt die Düsenentlüftung normalerweise der Einlassöffnung. Dabei erweitert sich der Querschnitt der Entlüftung nach unten, um ein Festsetzen von Teilen des Kraftstoffs zu verhindern. Die Auslassöffnung ist daher in der Regel identisch mit der Einlassöffnung, aber etwas größer. Bei Düsen mit einer größeren Anzahl von Einlasslöchern sind die Entlüftungen von den einzelnen Einlasslöchern normalerweise mit einem einzelnen Auslassloch verbunden.Known nozzle types differ mainly in the shape and number of inlet holes. Most often, nozzles with an inlet opening and a rectangular cross section with a significant side difference (elongated) are used. There are also square or round nozzles. For nozzles with a single inlet port, the nozzle vent usually follows the inlet port. The cross-section of the vent widens downwards to prevent parts of the fuel from sticking. The outlet port is therefore usually identical to the inlet port, but slightly larger. For nozzles with a larger number of inlet holes the vents from each inlet hole are usually connected to a single outlet hole.
Wie bereits erwähnt, sind die Anforderungen an die Düsen widersprüchlich, sodass jeder Düsentyp eine andere Kombination von Vor- und Nachteilen hat. Zum Beispiel erzielt eine quadratische oder runde Düse durch ihre zentrale Lage im Boden einen höheren Energiewert des Gases (und damit die Verbrennungsqualität), hat aber den Nachteil eines großen Abfalls von Brennstoffteilen, die dann in der Vergasungskammer fehlen. Das verringert die Effizienz der Vergasung, während die Brennstoffteile in der Brennkammer störend sind und die Qualität der Gasverbrennung verschlechtern. Andererseits hat eine rechteckige Düse den Vorteil (weil sie bei gleicher Fläche deutlich schmaler ist), dass Teile des Kraftstoffs einen kleinen Tropfen verlieren. Ihr Nachteil besteht aber darin, dass ihre Enden in die Randbereiche des Bodens reichen, wo der Energiewert des Gases niedriger ist. Das verringert die Gesamtqualität der Verbrennung. Die Inhomogenität des Gasstroms verschlechtert dann die richtige Vermischung mit der Sekundärluft. Dies erfordert beispielsweise die Notwendigkeit einer Homogenisierungs-(Misch-)Kammer hinter dem Auslass der Düse, was die Heizung teurer, aber auch komplizierter macht.As mentioned earlier, the requirements for the nozzles are conflicting, so each type of nozzle has a different combination of advantages and disadvantages. For example, a square or round nozzle, due to its central position in the bottom, achieves a higher energy value of the gas (and thus combustion quality), but has the disadvantage of a large waste of fuel parts, which are then missing in the gasification chamber. This reduces the efficiency of gasification, while the fuel parts in the combustion chamber are troublesome and deteriorate the quality of gas combustion. On the other hand, a rectangular nozzle has the advantage (because it is significantly narrower for the same area) that parts of the fuel lose a small drop. However, their disadvantage is that their ends reach into the edge areas of the ground, where the energy value of the gas is lower. This reduces the overall quality of the combustion. The inhomogeneity of the gas flow then impairs proper mixing with the secondary air. This requires, for example, the need for a homogenization (mixing) chamber behind the outlet of the nozzle, which makes the heater more expensive but also more complicated.
Das Bemühen, den größtmöglichen Anteil der genannten Vorteile zu erreichen, führt zur Konstruktion von Düsen mit relativ kleiner Fläche der Eintrittsöffnung, was den Gasdurchsatz und damit den Druckverlust der Düse erhöht. Dazu muss beispielsweise die Heizung mit einem Lüfter ausgestattet werden, während mit zunehmendem Druckverlust der Düse auch die Lüfterleistung zunimmt. Hohe Gasgeschwindigkeiten erhöhen lokal die Intensität von Oxidationsreaktionen, die durch erhöhte Bildung schädlicher NOX-Emissionen (Stickoxide) die Temperatur erhöhen oder ein unerwünschtes Aufschmelzen von Asche (Schlackenbildung) bewirken.Efforts to achieve the greatest possible proportion of the above advantages lead to the design of nozzles with a relatively small area of the inlet opening, which increases the gas throughput and thus the pressure loss of the nozzle. To do this, for example, the heater must be equipped with a fan, while the fan power also increases with increasing pressure loss of the nozzle. High gas velocities locally increase the intensity of oxidation reactions, which increase the temperature due to the increased formation of harmful NOX emissions (nitrogen oxides) or cause undesirable melting of ash (slag formation).
Düsen mit einer größeren Anzahl von Einlasslöchern haben vorteilhafte Betriebseigenschaften. Sie erlauben jedoch aus Festigkeitsgründen keine Verwendung von keramischem Material, daher müssen sie aus Metall hergestellt werden. Sie haben daher auch eine kurze Lebensdauer und müssen häufig gewechselt werden, was den Betrieb verteuert.Nozzles with a larger number of inlet holes have favorable operating characteristics. However, for reasons of strength, they do not allow the use of ceramic material, so they must be made of metal. They therefore also have a short service life and have to be changed frequently, which makes operation more expensive.
Einige Arten von Vergasungserhitzern zeichnen sich durch einen stark geneigten Boden der Vergasungskammer in Richtung ihrer Mitte - oder der Düse - aus. Der Boden bildet somit die Form einer vierseitigen Pyramide mit der Spitze unten. Bei ausreichendem Fallwinkel (mehr als 40°) rutscht die Asche im Betrieb an den Bodenwänden herunter in die Düse, was einen erheblichen Vorteil darstellt. Allerdings bringt diese Bodenart auch Nachteile mit sich. Sie schränkt z. B. die räumlichen Möglichkeiten der Düse ein, weshalb Erhitzer mit stark geneigtem Boden meist eine quadratische oder runde Düse mit den oben genannten Mängeln (großer Tropfen, hohe Gasgeschwindigkeiten, großer Druckverlust) aufweisen. Dieser Nachteil verschlechtert die Eigenschaften eines stark abfallenden Bodens derart, dass die meisten Hersteller von Vergasungsöfen einen waagerechten oder leicht abfallenden Boden (5 - 10°) bevorzugen. Der Nachteil dieser Bodentypen ist, dass die Asche nicht durch die Düse in die Brennkammer strömt und sich am Boden der Vergasungskammer ansammelt. Dies mindert die Verbrennungsqualität und belastet den Betreiber (Heizung muss regelmäßig abgeschaltet und die Asche entfernt werden).Some types of gasification heaters are characterized by a sharply sloping floor of the gasification chamber towards its center - or the nozzle. The bottom thus forms the shape of a four-sided pyramid with the apex at the bottom. With a sufficient angle of fall (more than 40°), the ash slides down the bottom walls into the nozzle during operation, which is a significant advantage. However, this type of soil also has disadvantages. It limits e.g. B. the spatial possibilities of the nozzle, which is why heaters with a steeply inclined bottom usually have a square or round nozzle with the above defects (large droplet, high gas velocities, large pressure drop). This disadvantage degrades the properties of a steeply sloping floor to such an extent that most gasification furnace manufacturers prefer a level or slightly sloping floor (5-10°). The disadvantage of these floor types is that the ash does not flow through the nozzle into the combustion chamber and accumulates at the bottom of the gasification chamber. This reduces the quality of combustion and puts a strain on the operator (heating has to be switched off regularly and the ash removed).
Zusammenfassend lässt sich sagen: Existierende Düsen von Vergasungsöfen weisen viele Mängel auf, deren Anteil je nach Art und Größe der Form und dem Gefälle (Grad des Gefälles) des Bodens variiert. Diese Mängel sind bei Heizgeräten mit geneigtem Boden besonders ausgeprägt.In summary, existing gasification furnace nozzles have many shortcomings, the proportion of which varies depending on the type and size of the mold and the slope (degree of slope) of the bottom. These shortcomings are especially pronounced in heaters with a sloping bottom.
Die Mängel bekannter Vergasungserhitzer-Düsen-Lösungen werden durch einen Vergasererhitzer für feste Brennstoffe mit einer Radialdüse, die eine Vergasungskammer und eine unterhalb der Vergasungskammer angeordnete Brennkammer enthält, vollständig oder weitgehend beseitigt. Der Boden der Vergasungskammer ist zur Mitte der Vergasungskammer durch vier geneigte Wände geneigt, die eine Pyramidenform bilden, wobei die Spitze in die Brennkammer zeigt, oder eine Mulde bildet. Die Vergasungskammer und die Brennkammer sind durch eine Trennwand getrennt, durch die die Düse geführt ist. Deren Eintrittsöffnung befindet sich im Boden der Vergasungskammer und deren Austrittsöffnung in der Wand der Brennkammer. Das Wesen der Erfindung besteht darin, dass die Einlassöffnung der Düse aus einem zentralen Schlitz in Form eines Rechtecks oder Quadrats und aus radialen Schlitzen besteht, die vier rechteckige Öffnungen bilden. Diese befinden sich in den Rändern zwischen den geneigten Wänden des Bodens der Vergasungskammer, wodurch ein radiales Muster entsteht. Die zentrale Entlüftung der Düse wird unter dem zentralen Schlitz geführt. An die radialen Schlitze schließen sich Kanäle an, die in die zentrale Entlüftung münden, die eine Austrittsöffnung in den Wänden der Brennkammer bildet. Dabei befinden sich die Kanäle in einem Winkel von mindestens 40°, d. h. dem Winkel von der Unterseite der Kanäle relativ zur horizontalen Ebene. Die Seitenwände der Kanäle sind gegenseitig zu ihren unteren Wänden (Boden der Kanäle) hin geöffnet.The deficiencies of known gasifier-heater-nozzle solutions are completely or largely eliminated by a solid fuel gasifier-heater with a radial nozzle containing a gasification chamber and a combustion chamber located below the gasification chamber. The floor of the gasification chamber is inclined towards the center of the gasification chamber by four inclined walls forming a pyramid shape form with the tip pointing into the combustion chamber, or forms a trough. The gasification chamber and the combustion chamber are separated by a partition through which the nozzle passes. The inlet opening is in the bottom of the gasification chamber and the outlet opening is in the wall of the combustion chamber. The essence of the invention is that the inlet opening of the nozzle consists of a central slit in the shape of a rectangle or square and radial slits forming four rectangular openings. These are located in the rims between the sloping walls of the floor of the gasification chamber, creating a radial pattern. The central vent of the nozzle is routed under the central slot. The radial slots are followed by ducts which open into the central vent which forms an exit opening in the walls of the combustion chamber. The channels are at an angle of at least 40°, ie the angle from the bottom of the channels relative to the horizontal plane. The side walls of the channels are mutually open to their lower walls (bottom of the channels).
Die Vorteile der Erfindung sind:
- Dank der radialen Form und der diagonalen Anordnung hat der Einlassbereich eine 2 - 3x größere Fläche als eine gleich breite rechteckige Düse, die traditionell im mittleren Teil des Bodens (d. h. parallel zur Seitenwand der Vergasungskammer) angeordnet ist.
- Das Austrittsloch konzentriert die Rauchgase zu einem kompakten Strom, was die Homogenität der Gase und die Qualität der Verbrennung erhöht.
- Die Geometrie der Düse erlaubt den Einsatz von Keramik (die Teile zwischen den einzelnen Balken sind ausreichend massiv).
- Der große Querschnitt der Düse reduziert den Druckverlust, was die Leistung des Ventilators reduziert und sogar den Betrieb nur mit dem natürlichen Schornsteinzug ermöglicht.
- Der Abfall eines Teils des Kraftstoffs ist deutlich kleiner als bei Düsen mit quadratischer oder kreisförmiger Eintrittsöffnung (von gleicher Fläche), die vorhandenen Heizungen mit einem deutlich abfallenden Boden haben.
- Thanks to the radial shape and diagonal arrangement, the inlet area has a 2 - 3x larger area than a rectangular nozzle of the same width, which is traditionally located in the central part of the bottom (ie parallel to the side wall of the gasification chamber).
- The exit hole concentrates the flue gases into a compact stream, which increases the homogeneity of the gases and the quality of the combustion.
- The geometry of the nozzle allows the use of ceramics (the parts between the individual bars are sufficiently solid).
- The large cross-section of the nozzle reduces the pressure loss, which reduces the fan's performance and even allows operation with only the natural chimney draft.
- The drop of part of the fuel is significantly smaller than in nozzles with a square or circular entrance opening (of the same area), which have existing heaters with a significantly sloping bottom.
Die Erfindung wird anhand der beigefügten Figuren näher erläutert. Es zeigen:
- Fig. 1
- ein Seitenteil eines Vergasungserhitzers mit stark geneigtem Boden mit Radialdüse,
- Fig. 2
- eine dimensionale Ansicht einer Vergasungskammer mit quadratischem Querschnitt und pyramidenstumpfförmigem Schrägboden,
- Fig. 3
- eine dimensionale Ansicht einer Düse in einem Vergaserheizer mit einer Vergasungskammer mit quadratischem Querschnitt,
- Fig. 3.1
- eine Draufsicht auf die Düse aus
Fig. 3 , - Fig. 3.2
- einen Schnitt A-A orientiert an
Fig. 3.1 , - Fig. 3.3
- eine Unteransicht der Düse aus
Fig. 3 , - Fig. 4
- eine räumliche Darstellung der Düse und Teile der Düse aus
Fig. 3 , - Fig. 5
- eine räumliche Darstellung der Düsenkanäle aus
Fig. 3 , - Fig. 6
- eine räumliche Darstellung der zentralen Entlüftung der Düse aus
Fig. 3 , - Fig. 7
- eine räumliche Darstellung der Eingangsöffnung aus
Fig. 3 , - Fig. 8
- einen Schnitt B-B orientiert an
Fig. 3.1 , der die Form des Kanals zeigt, - Fig. 9
- eine räumliche Darstellung des Kanals aus
Fig. 3 , - Fig. 10
- eine dreidimensionale Ansicht einer Vergasungskammer mit rechteckigem Querschnitt und schrägem, wannenförmigem Boden,
- Fig. 11
- eine Raumansicht einer Düse in einem Vergaserheizer mit einer im Querschnitt rechteckigen Vergasungskammer
- Fig. 11.1
- eine Draufsicht auf die Düse aus
Fig. 11 , - Fig. 11.2
- einen Schnitt A-A orientiert an
Fig. 11.1 , - Fig. 11.3
- eine Unteransicht der Düse aus
Fig. 11 , - Fig. 12
- eine räumliche Darstellung der Düse und Teile der Düse aus
Fig. 11 , - Fig. 13
- eine räumliche Darstellung der Düsenkanäle aus
Fig. 11 , - Fig. 14
- eine räumliche Darstellung der zentralen Entlüftung der Düse aus
Fig. 11 und - Fig. 15
- eine räumliche Darstellung der Eintrittsöffnung der Düse aus
Fig. 11 .
- 1
- a side part of a gasification heater with a steeply inclined bottom with a radial nozzle,
- 2
- a dimensional view of a gasification chamber with a square cross-section and a truncated pyramid-shaped sloping floor,
- 3
- a dimensional view of a nozzle in a gasifier heater with a square cross-section gasification chamber,
- Figure 3.1
- a top view of the
nozzle 3 , - Figure 3.2
- a section AA oriented to
Figure 3.1 , - Figure 3.3
- a bottom view of the
nozzle 3 , - 4
- a spatial representation of the nozzle and parts of the
nozzle 3 , - figure 5
- a spatial representation of the
nozzle channels 3 , - 6
- a spatial representation of the central vent of the
nozzle 3 , - 7
- a spatial representation of the
entrance opening 3 , - 8
- a cut BB oriented to
Figure 3.1 , showing the shape of the canal, - 9
- a spatial representation of the
channel 3 , - 10
- a three-dimensional view of a gassing chamber with a rectangular cross-section and a sloping, trough-shaped floor,
- 11
- a spatial view of a nozzle in a gasifier heater with a gasification chamber rectangular in cross-section
- Figure 11.1
- a top view of the
nozzle 11 , - Figure 11.2
- a section AA oriented to
Figure 11.1 , - 11.3
- a bottom view of the
nozzle 11 , - 12
- a spatial representation of the nozzle and parts of the
nozzle 11 , - 13
- a spatial representation of the
nozzle channels 11 , - 14
- a spatial representation of the central vent of the
nozzle 11 and - 15
- a spatial representation of the inlet opening of the
nozzle 11 .
Der Vergasungskessel 100 enthält eine Vergasungskammer 4 mit quadratischem oder rechteckigem Querschnitt und eine unterhalb der Vergasungskammer 4 angeordnete Verbrennungskammer 9. Die Vergasungskammer 4 und die Verbrennungskammer 9 sind durch eine Trennwand 5 getrennt, die auf der Seite der Vergasungskammer 4 den Boden 10 dieser Vergasungskammer 4 bildet, und die brennseitigen Kammern 9 bilden die obere Innenwand 7 dieser Brennkammer.The
Durch die Trennwand 5 ist eine Düse 2, bestehend aus einer Eintrittsöffnung 1 und einer Austrittsöffnung 3, geführt. Der Boden 10 der Vergasungskammer 4 ist durch vier geneigte Wände 11 deutlich zur Mitte der Vergasungskammer 4 hin geneigt Die Wände 11 der im Querschnitt quadratischen Vergasungskammer 4 sind in Form einer Pyramide geneigt (
Die Eintrittsöffnung 1 der Düse 2 an der Vergasungskammer 4 mit quadratischem Querschnitt (
Die Eintrittsöffnung 1 der Düse 2 an der im Querschnitt rechteckigen Vergasungskammer 4 (
- 1 - Eingangsloch1 - entrance hole
- 2 - Düse2 - nozzle
- 3 - Auslassloch3 - outlet hole
- 4 - Vergasungskammer4 - gasification chamber
- 5 - Schott5 - bulkhead
- 6 - Kraftstoff6 - fuel
- 7 - Wand7 - wall
- 8 - Kanal8 - channel
- 9 - Brennkammer9 - combustion chamber
- 10 - unten10 - below
- 11 - schräge Wand11 - sloping wall
- 12 - Kante12 - edge
- 13 - Mittelspalt13 - center gap
- 14 - Radialspalt14 - radial gap
- 15 - zentrale Entlüftung15 - central vent
- 16 - Seitenwand16 - side wall
- 17 - untere Wand17 - lower wall
- 100 - Heizung100 - heating
Claims (1)
dadurch gekennzeichnet,
characterized,
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CZ2022-1A CZ309513B6 (en) | 2022-01-03 | 2022-01-03 | Solid fuel gasification heater with radial nozzle |
Publications (3)
Publication Number | Publication Date |
---|---|
EP4209708A1 true EP4209708A1 (en) | 2023-07-12 |
EP4209708B1 EP4209708B1 (en) | 2024-05-15 |
EP4209708C0 EP4209708C0 (en) | 2024-05-15 |
Family
ID=85477724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22215893.3A Active EP4209708B1 (en) | 2022-01-03 | 2022-12-22 | Radial nozzle solid fuel gasification heater |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4209708B1 (en) |
CZ (1) | CZ309513B6 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0154956A2 (en) * | 1984-03-16 | 1985-09-18 | UNICAL S.p.A. | Burner for a solid fuel-fired steel construction boiler |
EP0409790A1 (en) * | 1989-07-19 | 1991-01-23 | Willi Hager | Combustion installation |
AT395905B (en) * | 1988-03-09 | 1993-04-26 | Prueller Josef | Grate firing system, in particular for heating boilers |
EP0563499A1 (en) * | 1992-03-31 | 1993-10-06 | Liebi Lnc Ag | Wood gasification boiler |
KR20100003789A (en) * | 2008-07-02 | 2010-01-12 | 김일상 | Firewood boiler |
EP2615369A1 (en) * | 2012-01-16 | 2013-07-17 | Cheap Heat B.V. | Heating device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203629009U (en) * | 2013-12-17 | 2014-06-04 | 迅达科技集团股份有限公司 | Normal pressure hot water boiler for half-gasification of biomass |
CN204176630U (en) * | 2014-09-23 | 2015-02-25 | 韩秀峰 | Biomass gasification fired normal-pressure boiler |
CZ2018122A3 (en) * | 2018-03-12 | 2019-07-03 | Blaze Harmony S.R.O. | Solid fuel heater with three-zone combustion air supply |
-
2022
- 2022-01-03 CZ CZ2022-1A patent/CZ309513B6/en unknown
- 2022-12-22 EP EP22215893.3A patent/EP4209708B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0154956A2 (en) * | 1984-03-16 | 1985-09-18 | UNICAL S.p.A. | Burner for a solid fuel-fired steel construction boiler |
AT395905B (en) * | 1988-03-09 | 1993-04-26 | Prueller Josef | Grate firing system, in particular for heating boilers |
EP0409790A1 (en) * | 1989-07-19 | 1991-01-23 | Willi Hager | Combustion installation |
EP0563499A1 (en) * | 1992-03-31 | 1993-10-06 | Liebi Lnc Ag | Wood gasification boiler |
KR20100003789A (en) * | 2008-07-02 | 2010-01-12 | 김일상 | Firewood boiler |
EP2615369A1 (en) * | 2012-01-16 | 2013-07-17 | Cheap Heat B.V. | Heating device |
Also Published As
Publication number | Publication date |
---|---|
EP4209708B1 (en) | 2024-05-15 |
EP4209708C0 (en) | 2024-05-15 |
CZ20221A3 (en) | 2023-03-15 |
CZ309513B6 (en) | 2023-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60013307T2 (en) | INJECTION NOZZLE FOR SUPPLYING COMBUSTIBLE FABRIC INTO A BOILER | |
EP2029939B1 (en) | Furnace for solid fuels | |
DE4007849C2 (en) | ||
EP0798510B1 (en) | Heating boiler | |
DE3833090C1 (en) | Burning apparatus for wood and coal | |
EP4209708B1 (en) | Radial nozzle solid fuel gasification heater | |
DE69300272T2 (en) | Ceramic burner for a blast furnace blast heater. | |
DE29605801U1 (en) | boiler | |
EP0483878B1 (en) | Combustion device for wood and coal | |
EP1477736B1 (en) | Heating Device | |
DE2700786C3 (en) | Ceramic gas burner for wind heaters | |
LU85029A1 (en) | FIREPLACE-FREE WINTER HEATER | |
DE19729506C2 (en) | Boiler for firing solid fuels | |
DE4009316C2 (en) | Solid fuel heater | |
DE3927803C2 (en) | Solid fuel heater, especially tiled stove use | |
EP0490343B1 (en) | Combustion apparatus for wood and coal | |
EP3228935B1 (en) | Method for low nitrous oxide combustion of solid, liquid or gaseous fuels, especially coal dust, a burner and a furnace for performing said method | |
EP0483877A2 (en) | Combustion device for wood and coal | |
DE3211735A1 (en) | Device on or in a prefurnace | |
DE8712826U1 (en) | Furnace for various solid fuels | |
EP0107244A1 (en) | Furnace heated by means of a regenerator | |
WO1982000331A1 (en) | Hot gas generator | |
DE34005C (en) | Grate for stoves and furnaces | |
DE4101101C2 (en) | Solid fuel heater with auxiliary air supply | |
DE4316337B4 (en) | Furnace for solid fuels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230920 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23G 7/10 20060101ALI20231121BHEP Ipc: F23G 5/36 20060101ALI20231121BHEP Ipc: F23G 5/16 20060101ALI20231121BHEP Ipc: F23G 5/027 20060101ALI20231121BHEP Ipc: F23B 90/06 20110101ALI20231121BHEP Ipc: F23B 50/06 20060101ALI20231121BHEP Ipc: F23B 10/02 20110101ALI20231121BHEP Ipc: F23B 30/00 20060101AFI20231121BHEP |
|
INTG | Intention to grant announced |
Effective date: 20231212 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BH PROPERTY S.R.O. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502022000912 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
U01 | Request for unitary effect filed |
Effective date: 20240529 |
|
U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20240606 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 44302 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240815 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240915 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240816 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240515 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240815 |