[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4207493B1 - Passive directional rf antenna with one or two-dimensional scanning - Google Patents

Passive directional rf antenna with one or two-dimensional scanning Download PDF

Info

Publication number
EP4207493B1
EP4207493B1 EP22214926.2A EP22214926A EP4207493B1 EP 4207493 B1 EP4207493 B1 EP 4207493B1 EP 22214926 A EP22214926 A EP 22214926A EP 4207493 B1 EP4207493 B1 EP 4207493B1
Authority
EP
European Patent Office
Prior art keywords
antenna
directional
directional antenna
waveguide
bottom part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22214926.2A
Other languages
German (de)
French (fr)
Other versions
EP4207493A1 (en
Inventor
Bertrand BOIN
Agnès Lesure
Eric Privat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP4207493A1 publication Critical patent/EP4207493A1/en
Application granted granted Critical
Publication of EP4207493B1 publication Critical patent/EP4207493B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/04Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation
    • H01Q3/06Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying one co-ordinate of the orientation over a restricted angle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • H01Q13/0225Corrugated horns of non-circular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation

Definitions

  • the invention lies in the field of antennas, and more particularly directional antennas. It applies in particular to antennas operating in the HF (Hyper Frequencies) frequency band, spanning the 300 MHz to 300 GHz band, but can apply to any frequency band for which the waves electromagnetics can be transmitted by waveguides.
  • HF Hexaper Frequencies
  • JP H06 82969 B2 discloses a directional antenna array including a waveguide.
  • the waveguide cavity includes a dielectric element that moves in translation to change the direction of radiation of the guide.
  • VICTS in English Variable Inclination Continuons Transverse Stub
  • US 9,413,073 B2 uses the rotation of two superimposed plates, each acting as a “prism” deflecting the beam in azimuth and elevation.
  • the lens thickness of this device is reduced compared to quasi-optical devices, it remains bulky.
  • rotation-based VICTS devices can only address circular antennas.
  • rotation-based devices only address circular antennas, while non-rotation-based devices generally require significant movement of the radio frequency (RF) source with respect to the focusing system (mirror). , lens), hence problems of junctions, losses, etc.
  • RF radio frequency
  • slot array antennas comprising a waveguide on which a plurality of radiating elements, generally slots, are arranged.
  • the wave propagating in the guide is emitted by each of the slots, with a phase shift which depends on the spacing between the radiating elements and the guided wavelength.
  • the direction of the beam of such an antenna can therefore be directed by modifying the wavelength of the signal propagating in the guide.
  • a modification generally involves a modification of the frequency, which is generally incompatible with the rest of the radio chain whose frequency is dictated by other requirements.
  • An object of the invention is therefore to propose a simple antenna system making it possible to control a network of N phased antennas without having to resort to N "electronic" phase shifters (that is to say electrically powered and independently controlled), and without use optical or quasi-optical systems.
  • the present invention describes a directional antenna array according to claim 1.
  • the bottom part of the rectangular waveguide is movable in translation in a direction of movement Oz parallel to the side faces, the maximum distance between the bottom part and the upper face being less than the distance between the side faces.
  • the bottom part comprises a core extending along the longitudinal axis Oy. It further comprises at least a first row of bars extending respectively from the core in a direction Ox perpendicular to the longitudinal axis Oy and to the direction of movement of the bottom piece Oz.
  • the directional radio frequency antenna according to the invention comprises N identical directional antenna arrays arranged in parallel directions and aligned. Adjusting the position of the bottom piece of the waveguides of the N antenna arrays makes it possible to orient the antenna beam in a plane Oyz comprising said longitudinal axis Oy and an axis Oz perpendicular to the axis longitudinal and parallel to the lateral faces of the waveguide(s) of the directional antenna array.
  • N is greater than or equal to three
  • it comprises N-1 identical directional antenna arrays arranged in parallel and aligned directions, and a separate directional antenna array configured so that its radiating elements radiate into ports of said N-1 directional antenna arrays.
  • This last antenna network is therefore used as a divider with one input and N-1 outputs (reciprocally a combiner with one output and N-1 inputs) whose phase shift is adjustable.
  • the invention also relates to a method of configuring the pointing direction of a directional radio frequency antenna according to claim 7.
  • the invention relates to a computer program comprising program code instructions for executing the steps of the method according to the invention when said program is executed on a computer.
  • the invention describes a slot guide type antenna making it possible to direct the pointing direction of the beam by mechanical action on the position of a bottom wall of the guide.
  • FIG. 1a represents a first embodiment of a passive directional antenna array 100 according to the invention.
  • the waveguide 101 comprises a rectangular waveguide 101, adapted to the propagation of an electromagnetic wave having a given maximum frequency.
  • the waveguide may have a waveguide width of order of magnitude approximately half the guided wavelength it carries.
  • the waveguide 101 extends along a longitudinal axis Oy (O being the center of the waveguide).
  • On the waveguide are arranged a plurality of radiating elements 102, regularly along the axis Oy.
  • the waveguide comprises an input and an output, which can either be accesses 103 or 104.
  • the signal to be transmitted is injected onto an access point of the guide, radiated by the radiating elements as it propagates in the waveguide, and ends up in the output, which is generally connected to a residual signal absorption element, such as a charge.
  • a residual signal absorption element such as a charge.
  • the ambient radio frequency signal is captured successively by the radiating elements, and propagates in the waveguide until the exit of the guide, connected to elements allowing it to be processed (radiofrequency chain, analog/digital converter, digital processing means, etc.).
  • the directional antenna array according to the invention is described in connection with a transmitting antenna, but applies in the same manner regardless of whether the antenna array is used for transmission or reception.
  • the simplest way of implementing the radiating elements 102 of the directional antenna network consists of making slots in the waveguide.
  • other embodiments are possible, for example by using as radiating elements patch type antennas, a printed dipole, a printed spiral, or others, powered by a means making it possible to couple the energy of the guide towards the radiating element, such as for example a coaxial cable plunging into the waveguide.
  • the invention will be described using slots as radiating elements, but can be implemented in different ways.
  • An electromagnetic wave propagating between access 103 and access 104 of the wave guide successively excites the different radiating elements 102.
  • Each radiating element captures part of the energy of the wave proportional to its surface, and the emits outside the waveguide.
  • Two adjacent radiating elements spaced a distance ⁇ y therefore emit the electromagnetic wave with a phase shift ⁇ ⁇ , which depends on ⁇ y and the wavelength ⁇ of the electromagnetic wave.
  • phase shift between two radiating elements of the passive antenna array therefore depends on the wavelength of the transmitted signal, the shape of the slots and their spacing.
  • the direction of the antenna beam depends directly on this phase shift.
  • This operation corresponds to the state of the art of slotted guide type antennas.
  • the waveguide comprises a fixed part, comprising the upper face and the two sides of the waveguide (the sides corresponding to the shortest lengths of the slice of the rectangular waveguide) and a bottom part movable in translation between the two sides, so that the height of the cavity located inside the waveguide can be adjusted without modifying the width of the guide, and therefore without modifying its cutoff frequency.
  • the movable bottom part constitutes the lower face, or bottom wall, of the waveguide.
  • the radiating elements are positioned on the upper face of the waveguide. Alternatively, they can be positioned on one side of the waveguide, or on both sides.
  • FIG. 1b is a representation of the interior of the antenna array of the figure 1a .
  • the variation in the height of the waveguide obtained by modifying the position of the movable bottom part, modifies the length of the electromagnetic wave passing through the waveguide, and therefore the direction of radiation of the beam emitted by the antenna network.
  • FIG 2a show the upper face 201 and the movable bottom part 202 of the waveguide, which constitutes its lower face.
  • slots 203 On the upper face are made slots 203, which have the function of radiating elements for an electromagnetic wave 204 transmitted in the waveguide.
  • the upper face and the bottom piece are separated by a distance h 1 .
  • the electromagnetic wave propagates in the waveguide with a wavelength ⁇ 1 .
  • THE figures 3a and 3b represent the radiation pattern obtained by a directional antenna array according to one embodiment of the invention.
  • the guided wavelength in the waveguide of the figure 3a is different from that of the figure 3b , which has the consequence that the lobe of the radiation diagram in the Oyz plane, plane comprising the longitudinal axis Oy in which the antenna array extends and the axis Oz perpendicular to this longitudinal axis and parallel to the lateral faces of the waveguide, does not have the same inclination in the two figures.
  • the implementation of the invention requires the production of a waveguide having a bottom wall movable in translation.
  • a waveguide (not shown) can be produced by separating the bottom wall of a waveguide, and by controlling it in translation by any mechanical element.
  • This solution has the disadvantage of having to be machined very finely since the movement of the bottom wall can be subject to friction deforming the waveguide and therefore deforming the guided electromagnetic waves, and since the connections between the back wall and sides must be electrically hermetic, again so as not to distort and attenuate the electromagnetic wave which propagates in the guide.
  • the inventors filed the patent application FR 2109055 (publication: FR 3 126 553 ), in which they describe a waveguide having a non-solid movable bottom part, presenting periodic patterns making it possible to close the waveguide in an electrically hermetic manner without the edges touching.
  • FIG 4 represents an electromagnetic waveguide as described in the patent application FR 2109055 , particularly suitable for the implementation of the invention.
  • This waveguide with a rectangular section comprises a fixed part with two side faces 402 and 403 facing each other on the short sides of the rectangle, and an upper face 401 joining the two side faces orthogonally.
  • the waveguide also comprises a bottom part 404 movable in translation between the two side faces in the direction of movement D, parallel to the side faces, and which constitutes the lower face of the guide.
  • the upper face, the two side faces and the bottom piece then form a conduit 410 of height H and width L, configured to guide the propagation of an electromagnetic wave in the waveguide.
  • the assembly is defined so that the height H is always less than the width L.
  • the bottom piece may comprise only a single row of bars, or more than two rows of bars.
  • the bars of successive rows can be of identical geometries and/or aligned.
  • the bottom part 404 or the upper face 401 of the waveguide may comprise a rib extending inside the cavity 410 over the entire length of the waveguide in a direction parallel to its longitudinal axis.
  • a rib makes it possible to reduce the dimension of the waveguide relative to the guided wavelength.
  • a clearance is preferably formed between the bars and the side faces, which allows the bottom part 404 to move without friction with the side faces 402 and 403.
  • Bars 406 to 408 are dimensioned as explained in the article from Berenguer, Antonio & Fusco, VF & Baquero, M. & Boria, Vicente: “A frequency-dependent equivalence between groove gap waveguide and rectangular waveguide”, 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting .
  • the bottom piece forms an electrically hermetic wall for the electromagnetic waves transmitted in the waveguide. Not necessarily being joined to the side walls, it can be easily moved in translation between these two walls.
  • the assembly formed by the fixed part and the mobile part is made of a conductive material, such as copper, brass, silver or titanium, or a plastic material covered with a thin metallic layer.
  • a means of adjusting the position of the bottom part such as a motor, for example a stepper motor, a piezoelectric motor or a coil motor controlled by a regulating device, can be configured to adjust the position of the bottom piece, and therefore the height H of the conduit 410 of the waveguide.
  • a motor for example a stepper motor, a piezoelectric motor or a coil motor controlled by a regulating device
  • the waveguide shown in figure 4 is therefore particularly suitable for the implementation of an array antenna according to the invention since it makes it possible to vary the volume of the internal cavity of the waveguide while being electrically hermetic and without friction with the lateral faces.
  • the antenna array shown in figure 1a can be used as a directional radio frequency antenna for which the radiation pattern can be controlled in one plane, i.e. a 1D RF antenna.
  • antenna arrays according to the invention can be implemented jointly so as to form a directive RF antenna whose radiation pattern can be controlled in two directions, i.e. a 2D RF antenna.
  • THE figures 5a and 5b represent an embodiment of a 2D directive RF antenna according to the invention.
  • the N-1 directional antenna arrays 502 to 50N are identical and arranged so as to form aligned parallel lines.
  • identical we mean that the dimension of the waveguide of these antenna arrays are equal, and that they all include the same number of radiating elements spaced identically.
  • the waveguides which form the N-1 directional antenna arrays are each arranged along a longitudinal axis parallel to the axis Oy shown in the figure, with O the center of the array formed by the N-1 antenna arrays directives 502 to 50N.
  • the assembly is configured so that the radiating elements of the directional antenna array radiate into one of the access points of the N-1 other directional antenna arrays. This can be done, for example, by arranging the antenna array 501 in a direction perpendicular to the direction of the N-1 antenna arrays 502 at 50N, and by connecting the slots of the array 501 with the accesses of the arrays 502 to 50N, as on the figure 5a .
  • the waveguide 501 can have any orientation, the radiating elements of the waveguide 501 being connected to the accesses of the networks 502 to 50N by coaxial links of the same lengths. Other embodiments are possible.
  • the number of radiating elements of the antenna array 501 is equal to N-1.
  • the length of the waveguide of the antenna array 501 and the spacing ⁇ y' between its radiating elements of the array 501 are not necessarily equal to those of the waveguides of the arrays 502 at 50N.
  • FIG. 5b represents the moving background parts of the access networks of the figure 5a .
  • the bottom pieces 512 to 51N of the access networks 502 to 50N are configured so that the distance between the upper face of the waveguide and the bottom piece is the same for each of these waveguides.
  • One possible embodiment consists of synchronizing the adjustment means ensuring the translation of these bottom parts.
  • Another embodiment consists of making these bottom pieces integral, the bottom pieces being moved in translation by the same adjustment device.
  • the bottom piece 511 of the isolated antenna array 501 is moved in translation by an adjustment means independent of that of the other antenna arrays.
  • an electromagnetic wave injected into an access of the waveguide of the network 501 propagates through the waveguide, and radiates into the different accesses of the waveguides of the antenna networks 502 at 50N with a phase shift ⁇ '. It then propagates in each of the waveguides of the antenna arrays 502 at 50N by successively exciting the radiating elements with a phase shift ⁇ , identical for all the waveguides 502 at 50N.
  • Adjusting the height of the bottom piece of the wave guides 502 to 50N therefore makes it possible to vary the wavelength of the guided wave inside these wave guides, and therefore to orient the beam of the RF antenna in a plane Oyz comprising the axis Oy passing through the center of the network formed by the networks 502 to 50N and parallel to the axis in which each of the networks 502 to 50N extend, and the axis Oz perpendicular to Oy and parallel to the lateral faces of the waveguides of the networks 502 to 50N.
  • Adjusting the height of the bottom piece of the waveguide 501 makes it possible to vary the wavelength of the guided wave inside this waveguide, and therefore to orient the beam of the RF antenna in an Oxz plane orthogonal to the Oy axis.
  • THE figures 6a and 6b represent the radiation pattern obtained by a 2D directional antenna array according to one embodiment of the invention.
  • the guided wavelength of the antenna array 501 of the figure 6a is different from those of the figure 6b , by translation of the movable bottom part of the waveguide 501. It is observed that the insertion of several waveguides 503 at 50N in parallel and of the network 501 has modified the beam of the antenna, so that the radiation pattern of the 1D antenna presenting a large main lobe (around 180°) in the Oxz plane has become very directional, and therefore has a greater gain. We also observe, by difference between the figures 6a and 6b , that the beam can be directed in the Oxz plane, by adjusting the height of the bottom wall of the antenna array 501. In addition, the pointing direction can also be modified in the Oyz plane by translation of the part of bottom of waveguides 502 to 50N.
  • the directional radio frequency antenna comprises N arrays of directional antennas according to the invention, with N greater than or equal to 2, arranged in parallel directions and aligned, like the guides 502 to 50N of there figure 5a .
  • the bottom pieces of these guides are adjusted in a similar manner, so that at any given moment the wavelength guided is the same in all waveguides.
  • the guides are powered by the same signal in phase.
  • Such a device constitutes a directive RF antenna of which it is possible to direct the beam in the Oyz plane, as for the network of the figure 1a , but differs from it in that the main lobe of the radiation pattern of this antenna is reduced (and therefore has more gain) in the Oxz plane.
  • the antenna networks according to the invention made from waveguides having a bottom part movable in translation making it possible to modify the height of the cavity of the waveguide in which the electromagnetic waves are transported, therefore make it possible to implement directional and orientable RF antennas in one or two dimensions, without mechanical action other than the presence of a motor making it possible to modify the bottom wall, and without active elements (phase shifters). They therefore respond to the technical problem posed.
  • the invention relates to an antenna array comprising a waveguide with a movable bottom piece and radiating elements and a directional radio frequency antenna implementing one or more of the antenna arrays according to the invention. It also relates to a method for configuring the pointing direction of a directive radio frequency antenna implemented from antenna networks according to the invention.
  • the invention also relates to a computer program comprising program code instructions for executing the steps of the method described above when said program is executed on a computer, or on any other calculation means such as a microprocessor, a DSP ( Digital Signal Processor) , an FPGA ( Field Programmable Gate Array ), an ASIC ( Application-Specific Integrated Circuit), or integrated circuit specific to an application), any combination of these means, or any hardware component making it possible to execute the steps of the method of configuring the pointing direction of a directive radio frequency antenna implemented from antenna networks according to the invention, and to send to the adjustment means instructions relating to the adjustment of the position of the bottom parts of the waveguides.
  • a microprocessor a DSP ( Digital Signal Processor) , an FPGA ( Field Programmable Gate Array ), an ASIC ( Application-Specific Integrated Circuit), or integrated circuit specific to an application
  • any combination of these means or any hardware component making it possible to execute the steps of the method of configuring the pointing direction of a directive radio frequency antenna implemented from antenna networks according to the

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

Domaine technique : Technical area :

L'invention se situe dans le domaine des antennes, et plus particulièrement des antennes directives. Elle s'applique en particulier pour les antennes fonctionnant dans la bande de fréquences HF (Hyper Fréquences), s'étalant dans la bande 300 MHz à 300 GHz, mais peut s'appliquer à n'importe quelle bande de fréquence pour laquelle les ondes électromagnétiques peuvent être transmises par des guides d'ondes.The invention lies in the field of antennas, and more particularly directional antennas. It applies in particular to antennas operating in the HF (Hyper Frequencies) frequency band, spanning the 300 MHz to 300 GHz band, but can apply to any frequency band for which the waves electromagnetics can be transmitted by waveguides.

Technique antérieure : Prior technique :

Afin de maximiser le bilan de liaison des communications radiofréquence, ou pour rendre une liaison plus sélective dans l'espace, il est d'usage d'utiliser des antennes directives, qui permettent d'orienter précisément l'antenne ou son maximum de rayonnement dans la direction souhaitée, et ce bien souvent sans bouger l'antenne.In order to maximize the link budget of radio frequency communications, or to make a link more selective in space, it is customary to use directional antennas, which make it possible to precisely orient the antenna or its maximum radiation in the desired direction, often without moving the antenna.

Pour cela, la solution la plus commune consiste à utiliser des antennes à balayage électronique passives (en anglais le terme de Passive Electronic Scanner Array, PESA) ou actives (en anglais Active Electronic Scanner Array, AESA), qui permettent de diriger le faisceau de rayonnement de l'antenne sans intervention mécanique. Ces solutions sont cependant complexes à implémenter, tant en hardware qu'en software. En effet, le principe est d'utiliser un élément déphaseur par antenne unitaire du réseau, d'où rapidement des milliers de déphaseurs à piloter simultanément. Ces antennes sont donc complexes à implémenter et couteuses. JP H06 82969 B2 divulgue un réseau d'antennes directif comprenant un guide d'ondes. La cavité du guide d'ondes comprend un élément diélectrique qui bouge en translation pour changer la direction de rayonnement du guide.For this, the most common solution consists of using passive electronic scanning antennas (in English the term Passive Electronic Scanner Array, PESA) or active (in English Active Electronic Scanner Array, AESA), which make it possible to direct the beam of antenna radiation without mechanical intervention. However, these solutions are complex to implement, both in hardware and software. Indeed, the principle is to use one phase shifter element per unit antenna of the network, resulting in quickly thousands of phase shifters to be controlled simultaneously. These antennas are therefore complex to implement and expensive. JP H06 82969 B2 discloses a directional antenna array including a waveguide. The waveguide cavity includes a dielectric element that moves in translation to change the direction of radiation of the guide.

Une autre famille d'antennes à balayage rassemble les dispositifs « quasi-optiques », basés sur de la transmission (lentille) ou de la réflexion (miroir), dont on fait varier la position de la source pour diriger le faisceau de l'antenne. Cependant, ces dispositifs sont le plus souvent encombrants (lentilles, miroirs ou assimilés) et peu efficaces.Another family of scanning antennas brings together “quasi-optical” devices, based on transmission (lens) or reflection (mirror), in which the position of the source is varied to direct the antenna beam. . However, these devices are most often bulky (lenses, mirrors or the like) and not very effective.

D'autres types de dispositifs sont connus, comme par exemple le dispositif VICTS (en anglais Variable Inclinaison Continuons Transverse Stub) décrit dans le brevet US 9.413.073 B2 . Il utilise la rotation de deux plateaux superposés jouant chacun le rôle de «prisme » déviant le faisceau en azimut et en élévation. Cependant, bien que l'épaisseur de lentille de ce dispositif soit réduite par rapport aux dispositifs quasi-optiques, il demeure encombrant. En outre, les dispositifs VICTS basés sur la rotation ne permettent d'adresser que des antennes circulaires.Other types of devices are known, such as for example the VICTS device (in English Variable Inclination Continuons Transverse Stub ) described in the patent US 9,413,073 B2 . It uses the rotation of two superimposed plates, each acting as a “prism” deflecting the beam in azimuth and elevation. However, although the lens thickness of this device is reduced compared to quasi-optical devices, it remains bulky. Additionally, rotation-based VICTS devices can only address circular antennas.

De manière générale, les dispositifs basés sur la rotation n'adressent que des antennes circulaires, tandis que les dispositifs non basés sur la rotation demandent en général un déplacement important de la source radiofréquence (RF) vis-à-vis du système focalisant (miroir, lentille), d'où des problématiques de jonctions, pertes, etc.Generally speaking, rotation-based devices only address circular antennas, while non-rotation-based devices generally require significant movement of the radio frequency (RF) source with respect to the focusing system (mirror). , lens), hence problems of junctions, losses, etc.

Sont également connues de l'art antérieur les antennes de type guides à fente (en anglais slot array), comprenant un guide d'ondes sur lequel sont disposés une pluralité d'éléments rayonnants, généralement des fentes. L'onde se propageant dans le guide est émis par chacune des fentes, avec un déphasage qui est fonction de l'écartement entre les éléments rayonnants et de la longueur d'onde guidée. La direction du faisceau d'une telle antenne peut donc être dirigée en modifiant la longueur d'onde du signal se propageant dans le guide. Cependant, une telle modification implique généralement une modification de la fréquence, ce qui est généralement incompatible avec le reste de la chaîne radio dont la fréquence est dictée par d'autres impératifs.Also known from the prior art are slot array antennas, comprising a waveguide on which a plurality of radiating elements, generally slots, are arranged. The wave propagating in the guide is emitted by each of the slots, with a phase shift which depends on the spacing between the radiating elements and the guided wavelength. The direction of the beam of such an antenna can therefore be directed by modifying the wavelength of the signal propagating in the guide. However, such a modification generally involves a modification of the frequency, which is generally incompatible with the rest of the radio chain whose frequency is dictated by other requirements.

Un objet de l'invention est donc de proposer un système antennaire peu complexe permettant de commander un réseau de N antennes phasées sans avoir recours à N déphaseurs « électroniques » (c'est-à-dire alimentés électriquement et pilotés indépendamment), et sans avoir recours à des systèmes optiques ou quasi-optiques.An object of the invention is therefore to propose a simple antenna system making it possible to control a network of N phased antennas without having to resort to N "electronic" phase shifters (that is to say electrically powered and independently controlled), and without use optical or quasi-optical systems.

Résumé de l'invention : Summary of the invention :

A cet effet, la présente invention décrit un réseau d'antennes directif selon la revendication 1.To this end, the present invention describes a directional antenna array according to claim 1.

Dans le réseau d'antennes directif selon l'invention, la pièce de fond du guide d'ondes rectangulaire est mobile en translation selon une direction de déplacement Oz parallèle aux faces latérales, la distance maximum entre la pièce de fond et la face supérieure étant inférieure à la distance entre les faces latérales.In the directional antenna array according to the invention, the bottom part of the rectangular waveguide is movable in translation in a direction of movement Oz parallel to the side faces, the maximum distance between the bottom part and the upper face being less than the distance between the side faces.

Dans un mode de réalisation de l'invention, la pièce de fond comprend une âme s'étendant selon l'axe longitudinal Oy. Elle comprend en outre au moins une première rangée de barres s'étendant respectivement depuis l'âme selon une direction Ox perpendiculaire à l'axe longitudinal Oy et à la direction de déplacement de la pièce de fond Oz.In one embodiment of the invention, the bottom part comprises a core extending along the longitudinal axis Oy. It further comprises at least a first row of bars extending respectively from the core in a direction Ox perpendicular to the longitudinal axis Oy and to the direction of movement of the bottom piece Oz.

L'invention porte également sur une antenne radiofréquence directive comprenant :

  • N réseaux d'antennes directifs selon l'invention, avec N supérieur ou égal à 1,
  • des moyens d'ajustement de la position de la pièce de fond des N réseaux d'antennes directifs, configurés pour ajuster la position de la pièce de fond des N guides d'ondes en fonction d'une direction de faisceau antennaire recherchée.
The invention also relates to a directional radio frequency antenna comprising:
  • N directional antenna networks according to the invention, with N greater than or equal to 1,
  • means for adjusting the position of the bottom piece of the N directional antenna arrays, configured to adjust the position of the bottom piece of the N waveguides as a function of a desired antenna beam direction.

Dans un mode de réalisation, l'antenne radiofréquence directive selon l'invention comprend N réseaux d'antennes directifs identiques disposés selon des directions parallèles et alignés. L'ajustement de la position de la pièce de fond des guides d'ondes des N réseaux d'antennes permet d'orienter le faisceau de l'antenne dans un plan Oyz comprenant ledit axe longitudinal Oy et un axe Oz perpendiculaire à l'axe longitudinal et parallèle aux faces latérales du ou des guide d'ondes du réseau d'antennes directif.In one embodiment, the directional radio frequency antenna according to the invention comprises N identical directional antenna arrays arranged in parallel directions and aligned. Adjusting the position of the bottom piece of the waveguides of the N antenna arrays makes it possible to orient the antenna beam in a plane Oyz comprising said longitudinal axis Oy and an axis Oz perpendicular to the axis longitudinal and parallel to the lateral faces of the waveguide(s) of the directional antenna array.

Dans un autre mode de réalisation de l'antenne radiofréquence directive selon l'invention, où N est supérieur ou égal à trois, elle comprend N-1 réseaux d'antennes directifs identiques et disposés selon des directions parallèles et alignés, et un réseau d'antennes directif distinct configuré de sorte que ses éléments rayonnants rayonnent dans des accès desdits N-1 réseaux d'antennes directifs. Ce dernier réseau d'antenne est donc utilisé comme un diviseur à une entrée et N-1 sorties (réciproquement un combineur à une sortie et N-1 entrées) dont le déphasage est réglable.In another embodiment of the directional radio frequency antenna according to the invention, where N is greater than or equal to three, it comprises N-1 identical directional antenna arrays arranged in parallel and aligned directions, and a separate directional antenna array configured so that its radiating elements radiate into ports of said N-1 directional antenna arrays. This last antenna network is therefore used as a divider with one input and N-1 outputs (reciprocally a combiner with one output and N-1 inputs) whose phase shift is adjustable.

Avantageusement :

  • l'écart entre la face supérieure et la pièce de fond des guides d'ondes des N -1 réseaux d'antennes directifs est le même pour chacun de ces guides d'ondes, et l'ajustement de la position des pièces de fond des guides d'ondes des N -1 réseaux d'antennes directifs permet d'orienter le faisceau de l'antenne dans un plan Oyz comprenant un axe Oy parallèle à l'axe longitudinal des N-1 réseaux d'antennes directifs, et un axe Oz perpendiculaire à ces axes longitudinaux et parallèle aux faces latérales des guides d'ondes des N-1 réseaux d'antennes directifs ;
  • la position de la pièce de fond du guide d'ondes du réseau d'antennes directif distinct permet d'orienter le faisceau de l'antenne dans un plan Oxz orthogonal à l'axe longitudinal Oy des N-1 réseaux d'antennes directifs.
Advantageously:
  • the distance between the upper face and the bottom piece of the wave guides of the N -1 directional antenna arrays is the same for each of these wave guides, and the adjustment of the position of the bottom pieces of the waveguides of the N -1 directional antenna arrays make it possible to orient the antenna beam in a plane Oyz comprising an axis Oy parallel to the longitudinal axis of the N-1 directional antenna arrays, and an axis Oz perpendicular to these longitudinal axes and parallel to the lateral faces of the waveguides of the N-1 directional antenna arrays;
  • the position of the bottom piece of the waveguide of the distinct directional antenna array makes it possible to orient the antenna beam in a plane Oxz orthogonal to the longitudinal axis Oy of the N-1 directional antenna arrays.

L'invention porte également sur un procédé de configuration de la direction de pointage d'une antenne radiofréquence directive selon la revendication 7.The invention also relates to a method of configuring the pointing direction of a directional radio frequency antenna according to claim 7.

Enfin, l'invention porte sur un programme d'ordinateur comprenant des instructions de code de programme pour l'exécution des étapes du procédé selon l'invention lorsque ledit programme est exécuté sur un ordinateur.Finally, the invention relates to a computer program comprising program code instructions for executing the steps of the method according to the invention when said program is executed on a computer.

Brève description des figures : Brief description of the figures :

L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages apparaîtront mieux à la lecture de la description qui suit, donnée à titre non limitatif, et grâce aux figures annexées, données à titre d'exemple.

  • [Fig. 1a] La figure 1a représente un premier mode de réalisation d'un réseau d'antennes directif passif selon l'invention ;
  • [Fig. 1b] La figure 1b est une représentation de l'intérieur du réseau d'antennes de la figure 1a ;
  • [Fig. 2a] La figure 2a illustre schématiquement le fonctionnement du réseau d'antennes, pour une longueur d'ondes donnée ;
  • [Fig. 2b] La figure 2b illustre schématiquement le fonctionnement du même réseau d'antennes qu'a la figure 2a, pour une autre longueur d'ondes ;
  • [Fig. 3a] La figure 3a représente le diagramme de rayonnement obtenu par un réseau d'antennes directif selon un mode de réalisation de l'invention, pour un déphasage donné ;
  • [Fig. 3b] La figure 3b représente le diagramme de rayonnement obtenu par le même réseau d'antennes directif qu'à la figure 3a, pour un autre déphasage ;
  • [Fig. 4] La figure 4 représente un guide d'ondes électromagnétique permettant de mettre en oeuvre l'invention ;
  • [Fig. 5a] La figure 5a représente un mode de réalisation d'une antenne RF directive 2D selon l'invention ;
  • [Fig. 5b] La figure 5b représente est une représentation de l'intérieur de l'antenne RF directive 2D de la figure 5a ;
  • [Fig. 6a] La figure 6a représente le diagramme de rayonnement obtenu par une antenne RF directive 2D selon un mode de réalisation de l'invention, pour un déphasage donné ;
  • [Fig. 6b] La figure 6b représente le diagramme de rayonnement obtenu par la même antenne RF directive 2D qu'à la figure 6a, pour un autre déphasage ;
  • [Fig. 7] La figure 7 décrit schématiquement les étapes d'un procédé de configuration de la direction de pointage d'une antenne radiofréquence directive mise en oeuvre à partir des réseaux d'antennes selon l'invention.
The invention will be better understood and other characteristics, details and advantages will appear better on reading the description which follows, given on a non-limiting basis, and thanks to the appended figures, given by way of example.
  • [ Fig. 1a ] There figure 1a represents a first embodiment of a passive directional antenna array according to the invention;
  • [ Fig. 1b ] There figure 1b is a representation of the interior of the antenna array of the figure 1a ;
  • [ Fig. 2a ] There figure 2a schematically illustrates the operation of the antenna array, for a given wavelength;
  • [ Fig. 2b ] There figure 2b schematically illustrates the operation of the same antenna network as in the figure 2a , for another wavelength;
  • [ Fig. 3a ] There figure 3a represents the radiation pattern obtained by a directional antenna array according to one embodiment of the invention, for a given phase shift;
  • [ Fig. 3b ] There figure 3b represents the radiation pattern obtained by the same directional antenna array as in the figure 3a , for another phase shift;
  • [ Fig. 4 ] There figure 4 represents an electromagnetic waveguide making it possible to implement the invention;
  • [ Fig. 5a ] There figure 5a represents an embodiment of a 2D directive RF antenna according to the invention;
  • [ Fig. 5b ] There figure 5b represents is a representation of the interior of the 2D directive RF antenna of the figure 5a ;
  • [ Fig. 6a ] There figure 6a represents the radiation pattern obtained by a 2D directive RF antenna according to one embodiment of the invention, for a given phase shift;
  • [ Fig. 6b ] There figure 6b represents the radiation pattern obtained by the same 2D directive RF antenna as in the figure 6a , for another phase shift;
  • [ Fig. 7 ] There Figure 7 schematically describes the steps of a method of configuring the pointing direction of a directional radio frequency antenna implemented from antenna networks according to the invention.

Des références identiques sont utilisées dans des figures différentes lorsqu'elles désignent des éléments identiques ou comparables.Identical references are used in different figures when they designate identical or comparable elements.

Description détaillée : Detailed description :

Afin de répondre aux défauts de l'art antérieur, l'invention décrit une antenne de type guide à fente permettant de diriger la direction de pointage du faisceau par une action mécanique sur la position d'une paroi de fond du guide.In order to respond to the defects of the prior art, the invention describes a slot guide type antenna making it possible to direct the pointing direction of the beam by mechanical action on the position of a bottom wall of the guide.

La figure 1a représente un premier mode de réalisation d'un réseau d'antennes directif passif 100 selon l'invention.There figure 1a represents a first embodiment of a passive directional antenna array 100 according to the invention.

II comprend un guide d'ondes rectangulaire 101, adapté à la propagation d'une onde électromagnétique ayant une fréquence maximum donnée. Par exemple, le guide d'ondes peut avoir une largeur de guide d'ondes dont l'ordre de grandeur est d'environ la moitié de la longueur d'onde guidée qu'il transporte. Le guide d'ondes 101 s'étend selon un axe longitudinal Oy (O étant le centre du guide d'ondes). Sur le guide d'ondes sont disposés une pluralité d'éléments rayonnants 102, de manière régulière le long de l'axe Oy. Le guide d'ondes comprend une entrée et une sortie, pouvant indifféremment être les accès 103 ou 104. Lorsque l'antenne est utilisée en émission, le signal à émettre est injecté sur un accès du guide, rayonné par les éléments rayonnants au fur et à mesure de sa propagation dans le guide d'ondes, et finit dans la sortie, qui est généralement reliée à un élément d'absorption du signal résiduel, comme une charge. Lorsque l'antenne est utilisée en réception, le signal radiofréquence ambiant est capté successivement par les éléments rayonnants, et se propage dans le guide d'onde jusqu'à la sortie du guide, reliée à des éléments permettant de le traiter (chaîne radiofréquence, convertisseur analogique/numérique, moyens de traitements numériques, ...).It comprises a rectangular waveguide 101, adapted to the propagation of an electromagnetic wave having a given maximum frequency. For example, the waveguide may have a waveguide width of order of magnitude approximately half the guided wavelength it carries. The waveguide 101 extends along a longitudinal axis Oy (O being the center of the waveguide). On the waveguide are arranged a plurality of radiating elements 102, regularly along the axis Oy. The waveguide comprises an input and an output, which can either be accesses 103 or 104. When the The antenna is used in transmission, the signal to be transmitted is injected onto an access point of the guide, radiated by the radiating elements as it propagates in the waveguide, and ends up in the output, which is generally connected to a residual signal absorption element, such as a charge. When the antenna is used in reception, the ambient radio frequency signal is captured successively by the radiating elements, and propagates in the waveguide until the exit of the guide, connected to elements allowing it to be processed (radiofrequency chain, analog/digital converter, digital processing means, etc.).

Par la suite, le réseau d'antennes directif selon l'invention est décrit en lien avec une antenne d'émission, mais s'applique de manière identique indépendamment de ce que le réseau d'antennes soit utilisé en émission ou en réception.Subsequently, the directional antenna array according to the invention is described in connection with a transmitting antenna, but applies in the same manner regardless of whether the antenna array is used for transmission or reception.

La manière la plus simple de mettre en oeuvre les éléments rayonnants 102 du réseau d'antenne directif consiste à pratiquer des fentes dans le guide d'onde. Cependant, d'autres modes de réalisation sont possibles, par exemple en utilisant comme éléments rayonnants des antennes de type patch, un dipôle imprimé, une spirale imprimée, ou autres, alimentés par un moyen permettant de coupler l'énergie du guide vers l'élément rayonnant, comme par exemple un câble coaxial plongeant dans le guide d'onde. Par la suite, l'invention sera décrite en utilisant des fentes comme éléments rayonnants, mais peut être mise en oeuvre de différentes manières.The simplest way of implementing the radiating elements 102 of the directional antenna network consists of making slots in the waveguide. However, other embodiments are possible, for example by using as radiating elements patch type antennas, a printed dipole, a printed spiral, or others, powered by a means making it possible to couple the energy of the guide towards the radiating element, such as for example a coaxial cable plunging into the waveguide. Subsequently, the invention will be described using slots as radiating elements, but can be implemented in different ways.

Une onde électromagnétique se propageant entre l'accès 103 et l'accès 104 du guide d'ondes excite successivement les différents éléments rayonnants 102. Chaque élément rayonnant capte une partie de l'énergie de l'onde proportionnelle à sa surface, et l'émet à l'extérieur du guide d'onde. Deux éléments rayonnants adjacents espacés d'une distance Δy émettent donc l'onde électromagnétique avec un déphasage Δϕ, qui dépend de Δy et de la longueur d'onde λ de l'onde électromagnétique. Ce déphasage permet de dépointer le faisceau du réseau d'antennes selon l'axe Oy d'un angle α par rapport à la normale du réseau tel que Δϕ = 2 π . Δy . sin α λ

Figure imgb0001
.An electromagnetic wave propagating between access 103 and access 104 of the wave guide successively excites the different radiating elements 102. Each radiating element captures part of the energy of the wave proportional to its surface, and the emits outside the waveguide. Two adjacent radiating elements spaced a distance Δ y therefore emit the electromagnetic wave with a phase shift Δ ϕ , which depends on Δ y and the wavelength λ of the electromagnetic wave. This phase shift makes it possible to shift the beam of the antenna array along the axis Oy by an angle α relative to the normal of the array such that Δϕ = 2 π . Δy . sin α λ
Figure imgb0001
.

Le déphasage entre deux éléments rayonnants du réseau d'antennes passif dépend donc de la longueur d'onde du signal transmis, de la forme des fentes et de leur écartement. La direction du faisceau de l'antenne dépend directement de ce déphasage.The phase shift between two radiating elements of the passive antenna array therefore depends on the wavelength of the transmitted signal, the shape of the slots and their spacing. The direction of the antenna beam depends directly on this phase shift.

Ce fonctionnement correspond à l'état de l'art des antennes de type guides à fentes.This operation corresponds to the state of the art of slotted guide type antennas.

L'invention se démarque de l'état de l'art en ce que le guide d'ondes comprend une partie fixe, comprenant la face supérieure et les deux côtés du guide d'ondes (les côtés correspondant aux plus petites longueurs de la tranche du guide d'ondes rectangulaire) et une pièce de fond mobile en translation entre les deux côtés, de sorte que la hauteur de la cavité située à l'intérieur du guide d'ondes peut être ajustée sans modifier la largeur du guide, et donc sans modifier sa fréquence de coupure. La pièce de fond mobile constitue la face inférieure, ou paroi de fond, du guide d'ondes.The invention stands out from the state of the art in that the waveguide comprises a fixed part, comprising the upper face and the two sides of the waveguide (the sides corresponding to the shortest lengths of the slice of the rectangular waveguide) and a bottom part movable in translation between the two sides, so that the height of the cavity located inside the waveguide can be adjusted without modifying the width of the guide, and therefore without modifying its cutoff frequency. The movable bottom part constitutes the lower face, or bottom wall, of the waveguide.

Dans la représentation des figures, les éléments rayonnants sont positionnés sur la face supérieure du guide d'onde. De manière alternative, ils peuvent être positionnés sur un des côtés du guide d'onde, ou sur les deux côtés.In the representation of the figures, the radiating elements are positioned on the upper face of the waveguide. Alternatively, they can be positioned on one side of the waveguide, or on both sides.

La figure 1b est une représentation de l'intérieur du réseau d'antennes de la figure 1a. On y voit la pièce de fond 110 du guide d'onde, mobile en translation selon l'axe Oz. La variation de la hauteur du guide d'ondes, obtenue en modifiant la position de la pièce de fond mobile, modifie la longueur de l'onde électromagnétique transitant dans le guide d'ondes, et donc la direction de rayonnement du faisceau émis par le réseau d'antennes.There figure 1b is a representation of the interior of the antenna array of the figure 1a . We see the bottom part 110 of the waveguide, movable in translation along the axis Oz. The variation in the height of the waveguide, obtained by modifying the position of the movable bottom part, modifies the length of the electromagnetic wave passing through the waveguide, and therefore the direction of radiation of the beam emitted by the antenna network.

Les figures 2a et 2b illustrent schématiquement le fonctionnement du réseau d'antennes selon l'invention.THE figures 2a and 2b schematically illustrate the operation of the antenna network according to the invention.

Sur la figure 2a figurent la face supérieure 201 et la pièce de fond mobile 202 du guide d'ondes, qui constitue sa face inférieure. Sur la face supérieure sont pratiquées des fentes 203, qui ont la fonction d'éléments rayonnants pour une onde électromagnétique 204 transmise dans le guide d'onde. La face supérieure et la pièce de fond sont écartées d'une distance h1. L'onde électromagnétique se propage dans le guide d'ondes avec une longueur d'onde λ1.On the figure 2a show the upper face 201 and the movable bottom part 202 of the waveguide, which constitutes its lower face. On the upper face are made slots 203, which have the function of radiating elements for an electromagnetic wave 204 transmitted in the waveguide. The upper face and the bottom piece are separated by a distance h 1 . The electromagnetic wave propagates in the waveguide with a wavelength λ 1 .

La figure 2b reprend les mêmes éléments, mais avec une distance h2 supérieure à h1 entre la face supérieure et la pièce de fond. De ce fait, l'onde électromagnétique se propage avec une longueur d'onde λ2 inférieure à λ1. Dans l'exemple des figures 2a et 2b, on a λ1 = 2.λ2, pour un même écart Δy entre les éléments rayonnants. La modification de la position de la pièce de fond 202 entraine un changement de la longueur d'onde du signal guidé, ce qui modifie le déphasage des signaux rayonnés par les éléments rayonnants 203, et donc la direction de pointage de l'antenne.There figure 2b uses the same elements, but with a distance h 2 greater than h 1 between the upper face and the bottom piece. As a result, the electromagnetic wave propagates with a wavelength λ 2 less than λ 1 . In the example of figures 2a and 2b , we have λ 1 = 2.λ 2 , for the same distance Δy between the radiating elements. Changing the position of the bottom piece 202 causes a change in the wavelength of the guided signal, which modifies the phase shift of the signals radiated by the radiating elements 203, and therefore the pointing direction of the antenna.

Les figures 3a et 3b représentent le diagramme de rayonnement obtenu par un réseau d'antennes directif selon un mode de réalisation de l'invention. En modifiant la position de la pièce de fond du guide d'ondes, la longueur d'onde guidée dans le guide d'ondes de la figure 3a est différente de celle de la figure 3b, ce qui a pour conséquence que le lobe du diagramme de rayonnement dans le plan Oyz, plan comprenant l'axe longitudinal Oy dans lequel s'étend le réseau d'antennes et l'axe Oz perpendiculaire à cet axe longitudinal et parallèle aux faces latérales du guide d'ondes, n'a pas la même inclinaison dans les deux figures.THE figures 3a and 3b represent the radiation pattern obtained by a directional antenna array according to one embodiment of the invention. By changing the position of the bottom piece of the waveguide, the guided wavelength in the waveguide of the figure 3a is different from that of the figure 3b , which has the consequence that the lobe of the radiation diagram in the Oyz plane, plane comprising the longitudinal axis Oy in which the antenna array extends and the axis Oz perpendicular to this longitudinal axis and parallel to the lateral faces of the waveguide, does not have the same inclination in the two figures.

La mise en oeuvre de l'invention nécessite la réalisation d'un guide d'ondes ayant une paroi de fond mobile en translation. Un tel guide d'ondes (non représenté) peut être réalisé en désolidarisant la paroi de fond d'un guide d'onde, et en l'asservissant en translation par un élément mécanique quelconque. Cette solution présente cependant l'inconvénient de devoir être usinée très finement puisque que le déplacement de la paroi de fond peut être sujette à des frottements venant déformer le guide d'ondes et donc déformer les ondes électromagnétiques guidées, et puisque que les liaisons entre la paroi de fond et les côtés doivent être hermétiques électriquement, là encore pour ne pas déformer et atténuer l'onde électromagnétique qui se propage dans le guide.The implementation of the invention requires the production of a waveguide having a bottom wall movable in translation. Such a waveguide (not shown) can be produced by separating the bottom wall of a waveguide, and by controlling it in translation by any mechanical element. This solution, however, has the disadvantage of having to be machined very finely since the movement of the bottom wall can be subject to friction deforming the waveguide and therefore deforming the guided electromagnetic waves, and since the connections between the back wall and sides must be electrically hermetic, again so as not to distort and attenuate the electromagnetic wave which propagates in the guide.

Les inventeurs ont déposé la demande de brevet FR 2109055 (publication : FR 3 126 553 ), dans laquelle ils décrivent un guide d'ondes ayant une pièce de fond mobile non pleine, présentant des motifs périodiques permettant de clore le guide d'ondes de manière hermétique électriquement sans que les bords ne se touchent.The inventors filed the patent application FR 2109055 (publication: FR 3 126 553 ), in which they describe a waveguide having a non-solid movable bottom part, presenting periodic patterns making it possible to close the waveguide in an electrically hermetic manner without the edges touching.

La figure 4 représente un guide d'ondes électromagnétique tel que décrit dans la demande de brevet FR 2109055 , particulièrement adapté pour la mise en oeuvre de l'invention.There figure 4 represents an electromagnetic waveguide as described in the patent application FR 2109055 , particularly suitable for the implementation of the invention.

Ce guide d'ondes à section rectangulaire comprend une partie fixe avec deux faces latérales 402 et 403 en regard l'une de l'autre sur les petits côtés du rectangle, et une face supérieure 401 joignant de manière orthogonale les deux faces latérales. Le guide d'ondes comprend également une pièce de fond 404 mobile en translation entre les deux faces latérales selon la direction de déplacement D, parallèle aux faces latérales, et qui constitue la face inférieure du guide. La face supérieure, les deux faces latérales et la pièce de fond forment alors un conduit 410 de hauteur H et de largeur L, configuré pour guider la propagation d'une onde électromagnétique dans le guide d'ondes. De manière à ne pas affecter la fréquence de coupure du guide d'ondes, l'ensemble est défini de sorte que la hauteur H est toujours inférieure à la largeur L.This waveguide with a rectangular section comprises a fixed part with two side faces 402 and 403 facing each other on the short sides of the rectangle, and an upper face 401 joining the two side faces orthogonally. The waveguide also comprises a bottom part 404 movable in translation between the two side faces in the direction of movement D, parallel to the side faces, and which constitutes the lower face of the guide. The upper face, the two side faces and the bottom piece then form a conduit 410 of height H and width L, configured to guide the propagation of an electromagnetic wave in the waveguide. In order not to affect the cutoff frequency of the waveguide, the assembly is defined so that the height H is always less than the width L.

Dans un mode de réalisation, la pièce de fond comprend :

  • une âme 405 s'étendant selon une direction parallèle à l'axe longitudinal du guide d'ondes, située à mi-distance des faces latérales 402 et 403, avec un bord supérieur en regard de la face supérieure du guide d'ondes ;
  • une première rangée de barres 406 et 407 disposées régulièrement et s'étendant depuis le bord supérieur de l'âme 405 vers les faces latérales du guide d'ondes dans une direction parallèle à la face supérieure 401. Ces barres délimitent, avec le bord supérieur de l'âme 405, la pièce de fond 404 ;
  • une deuxième rangée de barres 408 et 409 disposées régulièrement et s'étendant depuis l'âme 405 vers les faces latérales du guide d'ondes dans une direction parallèle à la face supérieure 401, positionnées sous la première rangée de barres.
In one embodiment, the bottom piece comprises:
  • a core 405 extending in a direction parallel to the longitudinal axis of the waveguide, located halfway between the side faces 402 and 403, with an upper edge facing the upper face of the waveguide;
  • a first row of bars 406 and 407 arranged regularly and extending from the upper edge of the core 405 towards the side faces of the waveguide in a direction parallel to the upper face 401. These bars delimit, with the upper edge of the soul 405, the bottom piece 404;
  • a second row of bars 408 and 409 arranged regularly and extending from the core 405 towards the side faces of the waveguide in a direction parallel to the upper face 401, positioned under the first row of bars.

Selon d'autres modes de réalisation, la pièce de fond peut ne comprendre qu'une seule rangée de barres, ou plus de deux rangées de barres. Les barres de rangées successives peuvent être de géométries identiques et/ou alignées.According to other embodiments, the bottom piece may comprise only a single row of bars, or more than two rows of bars. The bars of successive rows can be of identical geometries and/or aligned.

Selon un mode de réalisation, la pièce de fond 404 ou la face supérieure 401 du guide d'ondes peuvent comprendre une nervure s'étendant à l'intérieur de la cavité 410 sur toute la longueur du guide d'ondes selon une direction parallèle à son axe longitudinal. Une telle nervure permet de réduire la dimension du guide d'ondes par rapport à la longueur d'onde guidée.According to one embodiment, the bottom part 404 or the upper face 401 of the waveguide may comprise a rib extending inside the cavity 410 over the entire length of the waveguide in a direction parallel to its longitudinal axis. Such a rib makes it possible to reduce the dimension of the waveguide relative to the guided wavelength.

Un jeu est de préférence formé entre les barres et les faces latérales, qui permet le déplacement de la pièce de fond 404 sans friction avec les faces latérales 402 et 403.A clearance is preferably formed between the bars and the side faces, which allows the bottom part 404 to move without friction with the side faces 402 and 403.

Les barres 406 à 408 sont dimensionnées comme expliqué dans l'article de Berenguer, Antonio & Fusco, V.F. & Baquero, M. & Boria, Vicente : « A frequency-dependent équivalence between groove gap waveguide and rectangular waveguide », 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting .Bars 406 to 408 are dimensioned as explained in the article from Berenguer, Antonio & Fusco, VF & Baquero, M. & Boria, Vicente: “A frequency-dependent equivalence between groove gap waveguide and rectangular waveguide”, 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting .

De par ses propriétés géométriques, la pièce de fond forme une paroi hermétique électriquement pour les ondes électromagnétiques transmises dans le guide d'onde. N'étant pas nécessairement jointe aux parois latérales, elle peut être facilement déplacée en translation entre ces deux parois.Due to its geometric properties, the bottom piece forms an electrically hermetic wall for the electromagnetic waves transmitted in the waveguide. Not necessarily being joined to the side walls, it can be easily moved in translation between these two walls.

L'ensemble formé par la partie fixe et la partie mobile est réalisé en matériau conducteur, tel que le cuivre, le laiton, l'argent ou le titane, ou un matériau plastique recouvert d'une fine couche métallique.The assembly formed by the fixed part and the mobile part is made of a conductive material, such as copper, brass, silver or titanium, or a plastic material covered with a thin metallic layer.

Un moyen d'ajustement de la position de la pièce de fond, comme un moteur, par exemple un moteur pas-à-pas, un moteur piézoélectrique ou un moteur à bobine (en anglais coil motor) commandé par un dispositif de régulation, peut être configuré pour ajuster la position de la pièce de fond, et donc la hauteur H du conduit 410 du guide d'ondes.A means of adjusting the position of the bottom part, such as a motor, for example a stepper motor, a piezoelectric motor or a coil motor controlled by a regulating device, can be configured to adjust the position of the bottom piece, and therefore the height H of the conduit 410 of the waveguide.

Le guide d'ondes représenté à la figure 4 est donc particulièrement adapté pour la mise en oeuvre d'une antenne réseau selon l'invention puisqu'il permet de faire varier le volume de la cavité interne du guide d'onde tout en étant électriquement hermétique et sans frottement avec les faces latérales.The waveguide shown in figure 4 is therefore particularly suitable for the implementation of an array antenna according to the invention since it makes it possible to vary the volume of the internal cavity of the waveguide while being electrically hermetic and without friction with the lateral faces.

Le réseau d'antennes représenté à la figure 1a peut être utilisé en tant qu'antenne radiofréquence directive pour laquelle le diagramme de rayonnement peut être piloté dans un plan, soit une antenne RF 1D.The antenna array shown in figure 1a can be used as a directional radio frequency antenna for which the radiation pattern can be controlled in one plane, i.e. a 1D RF antenna.

Cependant, plusieurs réseaux d'antennes selon l'invention peuvent être mis en oeuvre conjointement de manière à former une antenne RF directive dont le diagramme de rayonnement peut être piloté dans deux directions, soit une antenne RF 2D.However, several antenna arrays according to the invention can be implemented jointly so as to form a directive RF antenna whose radiation pattern can be controlled in two directions, i.e. a 2D RF antenna.

Les figures 5a et 5b représentent un mode de réalisation d'une antenne RF directive 2D selon l'invention.THE figures 5a and 5b represent an embodiment of a 2D directive RF antenna according to the invention.

Elle comprend la mise en oeuvre de N réseaux d'antennes, avec N supérieur ou égal à trois :

  • un premier réseau d'antennes 501, et
  • N-1 réseaux d'antennes 502, 503, ..., 50N.
It includes the implementation of N antenna networks, with N greater than or equal to three:
  • a first antenna network 501, and
  • N-1 antenna arrays 502, 503, ..., 50N.

Les N-1 réseaux d'antennes directifs 502 à 50N sont identiques et disposés de manière à former des lignes parallèles alignées. On entend par identiques que la dimension du guide d'onde de ces réseaux d'antennes soient égales, et qu'ils comprennent tous le même nombre d'éléments rayonnants espacés de manière identique.The N-1 directional antenna arrays 502 to 50N are identical and arranged so as to form aligned parallel lines. By identical we mean that the dimension of the waveguide of these antenna arrays are equal, and that they all include the same number of radiating elements spaced identically.

Les guides d'ondes qui forment les N-1 réseaux d'antennes directifs sont agencés chacun selon un axe longitudinal parallèle à l'axe Oy représenté sur la figure, avec O le centre du réseau formé par les N-1 réseaux d'antennes directifs 502 à 50N.The waveguides which form the N-1 directional antenna arrays are each arranged along a longitudinal axis parallel to the axis Oy shown in the figure, with O the center of the array formed by the N-1 antenna arrays directives 502 to 50N.

L'ensemble est configuré de sorte que les éléments rayonnants du réseau d'antennes directif rayonnent dans un des accès des N-1 autres réseaux d'antennes directifs. Cela peut se faire, par exemple, en disposant le réseau d'antennes 501 dans une direction perpendiculaire à la direction des N-1 réseaux d'antennes 502 à 50N, et en reliant les fentes du réseau 501 avec les accès des réseaux 502 à 50N, comme sur la figure 5a. Dans un autre mode de réalisation, le guide d'ondes 501 peut avoir une orientation quelconque, les éléments rayonnants du guide d'ondes 501 étant reliés aux accès des réseaux 502 à 50N par des liaisons coaxiales de mêmes longueurs. D'autres modes de réalisation sont possibles.The assembly is configured so that the radiating elements of the directional antenna array radiate into one of the access points of the N-1 other directional antenna arrays. This can be done, for example, by arranging the antenna array 501 in a direction perpendicular to the direction of the N-1 antenna arrays 502 at 50N, and by connecting the slots of the array 501 with the accesses of the arrays 502 to 50N, as on the figure 5a . In another embodiment, the waveguide 501 can have any orientation, the radiating elements of the waveguide 501 being connected to the accesses of the networks 502 to 50N by coaxial links of the same lengths. Other embodiments are possible.

Le nombre d'éléments rayonnants du réseau d'antennes 501 est égal à N-1. La longueur du guide d'ondes du réseau d'antennes 501 et l'espacement Δy' entre ses éléments rayonnants du réseau 501 ne sont pas nécessairement égaux à ceux des guides d'onde des réseaux 502 à 50N.The number of radiating elements of the antenna array 501 is equal to N-1. The length of the waveguide of the antenna array 501 and the spacing Δy' between its radiating elements of the array 501 are not necessarily equal to those of the waveguides of the arrays 502 at 50N.

La figure 5b représente les pièces de fond mobiles des réseaux d'accès de la figure 5a. Les pièces de fond 512 à 51N des réseaux d'accès 502 à 50N sont configurées de sorte que l'écart entre la face supérieure du guide d'ondes et la pièce de fond soit le même pour chacun de ces guides d'ondes. Un mode de réalisation possible consiste à synchroniser les moyens d'ajustement assurant la translation de ces pièces de fond. Un autre mode de réalisation consiste à rendre ces pièces de fond solidaires, les pièces de fond étant déplacées en translation par un même dispositif d'ajustement.There figure 5b represents the moving background parts of the access networks of the figure 5a . The bottom pieces 512 to 51N of the access networks 502 to 50N are configured so that the distance between the upper face of the waveguide and the bottom piece is the same for each of these waveguides. One possible embodiment consists of synchronizing the adjustment means ensuring the translation of these bottom parts. Another embodiment consists of making these bottom pieces integral, the bottom pieces being moved in translation by the same adjustment device.

La pièce de fond 511 du réseau d'antennes isolé 501 est déplacée en translation par un moyen d'ajustement indépendant de celui des autres réseaux d'antennes.The bottom piece 511 of the isolated antenna array 501 is moved in translation by an adjustment means independent of that of the other antenna arrays.

Ainsi, une onde électromagnétique injectée dans un accès du guide d'ondes du réseau 501 se propage à travers le guide d'onde, et rayonne dans les différents accès des guides d'ondes des réseaux d'antennes 502 à 50N avec un déphasage Δϕ'. Elle se propage alors dans chacun des guides d'ondes des réseaux d'antennes 502 à 50N en excitant successivement les éléments rayonnants avec un déphasage Δϕ, identique pour tous les guides d'ondes 502 à 50N.Thus, an electromagnetic wave injected into an access of the waveguide of the network 501 propagates through the waveguide, and radiates into the different accesses of the waveguides of the antenna networks 502 at 50N with a phase shift Δϕ '. It then propagates in each of the waveguides of the antenna arrays 502 at 50N by successively exciting the radiating elements with a phase shift Δϕ, identical for all the waveguides 502 at 50N.

L'ajustement de la hauteur de la pièce de fond des guides d'ondes 502 à 50N permet donc de faire varier la longueur d'onde de l'onde guidée à l'intérieur de ces guides d'ondes, et donc d'orienter le faisceau de l'antenne RF dans un plan Oyz comprenant l'axe Oy passant par le centre du réseau formé par les réseaux 502 à 50N et parallèle à l'axe dans lequel s'étendent chacun des réseaux 502 à 50N, et l'axe Oz perpendiculaire à Oy et parallèle aux faces latérales des guides d'ondes des réseaux 502 à 50N.Adjusting the height of the bottom piece of the wave guides 502 to 50N therefore makes it possible to vary the wavelength of the guided wave inside these wave guides, and therefore to orient the beam of the RF antenna in a plane Oyz comprising the axis Oy passing through the center of the network formed by the networks 502 to 50N and parallel to the axis in which each of the networks 502 to 50N extend, and the axis Oz perpendicular to Oy and parallel to the lateral faces of the waveguides of the networks 502 to 50N.

L'ajustement de la hauteur de la pièce de fond du guide d'ondes 501 permet de faire varier la longueur d'onde de l'onde guidée à l'intérieur de ce guide d'ondes, et donc d'orienter le faisceau de l'antenne RF dans un plan Oxz orthogonal à l'axe Oy.Adjusting the height of the bottom piece of the waveguide 501 makes it possible to vary the wavelength of the guided wave inside this waveguide, and therefore to orient the beam of the RF antenna in an Oxz plane orthogonal to the Oy axis.

Les figures 6a et 6b représentent le diagramme de rayonnement obtenu par un réseau d'antennes directif 2D selon un mode de réalisation de l'invention. Dans ces figures données à titre d'exemple, le réseau d'antennes représenté ressemble à celui des figures 3a et 3b, cependant les simulations permettant de générer le diagramme de rayonnement ont été réalisées à partir d'un réseau d'antennes 2D à N = 9 réseaux d'antennes agencées comme sur les figures 5a et 5b.THE figures 6a and 6b represent the radiation pattern obtained by a 2D directional antenna array according to one embodiment of the invention. In these figures given as an example, the antenna network represented resembles that of the figures 3a and 3b , however the simulations making it possible to generate the radiation pattern were carried out from a 2D antenna array with N = 9 antenna arrays arranged as on the figures 5a and 5b .

La longueur d'onde guidée du réseau d'antennes 501 de la figure 6a est différente de celles de la figure 6b, par translation de la pièce de fond mobile du guide d'ondes 501. On observe que l'insertion de plusieurs guides d'ondes 503 à 50N en parallèle et du réseau 501 a modifié le faisceau de l'antenne, de sorte que le diagramme de rayonnement de l'antenne 1D présentant un large lobe principal (d'environ 180°) dans le plan Oxz est devenu très directionnel, et a donc un gain plus important. On observe également, par différence entre les figures 6a et 6b, que le faisceau peut être dirigé dans le plan Oxz, par ajustement de la hauteur de la paroi de fond du réseau d'antennes 501. En outre, la direction de pointage peut également être modifiée dans le plan Oyz par translation de la pièce de fond des guides d'ondes 502 à 50N.The guided wavelength of the antenna array 501 of the figure 6a is different from those of the figure 6b , by translation of the movable bottom part of the waveguide 501. It is observed that the insertion of several waveguides 503 at 50N in parallel and of the network 501 has modified the beam of the antenna, so that the radiation pattern of the 1D antenna presenting a large main lobe (around 180°) in the Oxz plane has become very directional, and therefore has a greater gain. We also observe, by difference between the figures 6a and 6b , that the beam can be directed in the Oxz plane, by adjusting the height of the bottom wall of the antenna array 501. In addition, the pointing direction can also be modified in the Oyz plane by translation of the part of bottom of waveguides 502 to 50N.

Dans un autre mode de réalisation, non représenté, l'antenne radiofréquence directive comprend N réseaux d'antennes directifs selon l'invention, avec N supérieur ou égal à 2, disposés selon des directions parallèles et alignés, comme les guides 502 à 50N de la figure 5a. Les pièces de fond de ces guides sont ajustées de manière similaire, de sorte qu'à chaque instant, la longueur d'onde guidée soit la même dans tous les guides d'ondes. Les guides sont alimentés par un même signal en phase. Un tel dispositif constitue une antenne RF directive dont il est possible d'orienter le faisceau dans le plan Oyz, comme le pour le réseau de la figure 1a, mais s'en différencie en ce que le lobe principal du diagramme de rayonnement de cette antenne est réduit (et possède donc plus de gain) dans le plan Oxz.In another embodiment, not shown, the directional radio frequency antenna comprises N arrays of directional antennas according to the invention, with N greater than or equal to 2, arranged in parallel directions and aligned, like the guides 502 to 50N of there figure 5a . The bottom pieces of these guides are adjusted in a similar manner, so that at any given moment the wavelength guided is the same in all waveguides. The guides are powered by the same signal in phase. Such a device constitutes a directive RF antenna of which it is possible to direct the beam in the Oyz plane, as for the network of the figure 1a , but differs from it in that the main lobe of the radiation pattern of this antenna is reduced (and therefore has more gain) in the Oxz plane.

Les réseaux d'antennes selon l'invention, réalisés à partir de guides d'ondes ayant une pièce de fond mobile en translation permettant de modifier la hauteur de la cavité du guide d'ondes dans laquelle sont transportées les ondes électromagnétiques, permettent donc de mettre en oeuvre des antennes RF directives et orientables selon une ou deux dimensions, sans action mécanique autre que la présence d'un moteur permettant de modifier la paroi de fond, et sans éléments actifs (déphaseurs). Ils répondent donc au problème technique posé.The antenna networks according to the invention, made from waveguides having a bottom part movable in translation making it possible to modify the height of the cavity of the waveguide in which the electromagnetic waves are transported, therefore make it possible to implement directional and orientable RF antennas in one or two dimensions, without mechanical action other than the presence of a motor making it possible to modify the bottom wall, and without active elements (phase shifters). They therefore respond to the technical problem posed.

L'invention porte sur un réseau d'antennes comprenant un guide d'ondes avec une pièce de fond mobile et des éléments rayonnants et une antenne radiofréquence directive implémentant un ou plusieurs des réseaux d'antennes selon l'invention. Elle porte également sur un procédé de configuration de la direction de pointage d'une antenne radiofréquence directive mise en oeuvre à partir des réseaux d'antennes selon l'invention.The invention relates to an antenna array comprising a waveguide with a movable bottom piece and radiating elements and a directional radio frequency antenna implementing one or more of the antenna arrays according to the invention. It also relates to a method for configuring the pointing direction of a directive radio frequency antenna implemented from antenna networks according to the invention.

Le procédé est décrit de manière schématique à la figure 7. Il est mis en oeuvre sur une antenne radiofréquence directive comprenant un ou plusieurs réseaux d'antennes selon l'invention, et comprend :

  • une première étape 701 de calcul de la position des pièces de fond des guides d'ondes du ou des réseaux d'antennes de l'antenne radiofréquence directive. Cette étape consiste à calculer une position de pièce de fond dans le cas d'une antenne 1D, et deux positions (une position pour les guides alignés 502 à 50N et une position pour le guide isolé 501) dans le cas d'une antenne 2D. Les positions sont obtenues en considérant la direction de pointage recherchée, et le nombre, la position et l'espacement des éléments rayonnants sur les guides d'ondes ;
  • une deuxième étape 702 de modification de la position des pièces de fond des guides d'ondes du ou des réseaux d'antennes directif. Cette étape se fait en actionnant les moyens d'ajustement (moteurs) reliés aux pièces de fond des guides d'ondes du ou des réseaux d'antennes, de manière à ce qu'ils soient positionnés comme calculé lors de la première étape.
The process is described schematically in Figure 7 . It is implemented on a directional radio frequency antenna comprising one or more antenna arrays according to the invention, and comprises:
  • a first step 701 of calculating the position of the bottom pieces of the waveguides of the antenna array(s) of the directional radio frequency antenna. This step consists of calculating a bottom part position in the case of a 1D antenna, and two positions (one position for the aligned guides 502 to 50N and one position for the insulated guide 501) in the case of a 2D antenna . The positions are obtained by considering the desired pointing direction, and the number, position and spacing of the radiating elements on the waveguides;
  • a second step 702 of modifying the position of the bottom parts of the waveguides of the directional antenna array(s). This step is done in actuating the adjustment means (motors) connected to the bottom pieces of the waveguides of the antenna array(s), so that they are positioned as calculated during the first step.

Enfin, l'invention porte également sur un programme d'ordinateur comprenant des instructions de code de programme pour l'exécution des étapes du procédé décrit précédemment lorsque ledit programme est exécuté sur un ordinateur, ou sur tout autre moyen de calculs tel qu'un microprocesseur, un DSP (sigle anglais pour Digital Signal Processor, ou processeur de signal numérique), un FPGA (sigle anglais pour Field Programmable Gate Array, ou réseau de portes programmable), un ASIC (acronyme anglais pour Application-Specific Integrated Circuit, ou circuit intégré propre à une application), n'importe quelle association de ces moyens, ou n'importe quel composant matériel permettant d'exécuter les étapes du procédé de configuration de la direction de pointage d'une antenne radiofréquence directive mise en oeuvre à partir des réseaux d'antennes selon l'invention, et d'adresser aux moyens d'ajustement des consignes relatives à l'ajustement de la position des pièces de fond des guides d'ondes.Finally, the invention also relates to a computer program comprising program code instructions for executing the steps of the method described above when said program is executed on a computer, or on any other calculation means such as a microprocessor, a DSP ( Digital Signal Processor) , an FPGA ( Field Programmable Gate Array ), an ASIC ( Application-Specific Integrated Circuit), or integrated circuit specific to an application), any combination of these means, or any hardware component making it possible to execute the steps of the method of configuring the pointing direction of a directive radio frequency antenna implemented from antenna networks according to the invention, and to send to the adjustment means instructions relating to the adjustment of the position of the bottom parts of the waveguides.

Claims (8)

  1. A directional antenna array, comprising:
    - a rectangular waveguide (101) with two feeds (103, 104), the guide extending along a longitudinal axis (Oy), said rectangular waveguide comprising:
    • a fixed portion with two lateral faces (402, 403) facing each other and an upper face (401) joining the two lateral faces orthogonally, and
    • a bottom part (404) placed between the two lateral faces and forming the lower face of the waveguide;
    - a plurality of radiating elements (102) placed regularly along said longitudinal axis on the fixed portion of the waveguide,
    the directional antenna array being characterised in that the bottom part of the rectangular waveguide is movable translationally in a direction of movement (Oz) parallel to the lateral faces, the maximum distance (H) between the bottom part and the upper face being smaller than the distance (L) between the lateral faces.
  2. The directional antenna array according to claim 1, wherein the bottom part comprises a core (405) extending along the longitudinal axis (Oy), the bottom part further comprising at least a first row of bars (406, 407) respectively extending from the core in a direction (Ox) perpendicular to the longitudinal axis (Oy) and to the direction of movement of the bottom part (Oz).
  3. A directional radio-frequency antenna, comprising:
    - N directional antenna arrays according to one of claims 1 and 2, with N higher than or equal to 1,
    - means for adjusting the position of the bottom part of the N directional antenna arrays, configured to adjust the position of the bottom part of the N waveguides depending on a desired antenna-beam direction.
  4. The directional radio-frequency antenna according to the preceding claim, comprising N identical directional antenna arrays placed in parallel directions and aligned, where adjustment of the position of the bottom part (404) of the waveguides of the N antenna arrays allows the beam of the antenna to be oriented in a plane (Oyz) comprising said longitudinal axis (Oy) and an axis (Oz) perpendicular to the longitudinal axis and parallel to the lateral faces (402, 403) of the waveguide(s) of the directional antenna array.
  5. The directional radio-frequency antenna according to claim 3, with N higher than or equal to three, comprising N-1 identical directional antenna arrays placed in parallel directions and aligned, and a separate directional antenna array configured so that its radiating elements radiate into feeds of said N-1 directional antenna arrays.
  6. The directional radio-frequency antenna according to the preceding claim, where:
    - the separation (H) between the upper face (401) and the bottom part (404) of the waveguides of the N-1 directional antenna arrays (502 to 50N) is the same for each of these waveguides, and where adjustment of the position of the bottom parts of the waveguides of the N-1 directional antenna arrays allows the beam of the antenna to be oriented in a plane (Oyz) comprising an axis (Oy) parallel to the longitudinal axis of the N-1 directional antenna arrays, and an axis (Oz) perpendicular to these longitudinal axes and parallel to the lateral faces (402, 403) of the waveguides of the N-1 directional antenna arrays;
    - the position of the bottom part of the waveguide of the separate directional antenna array (501) allows the beam of the antenna to be oriented in a plane (Oxz) orthogonal to the longitudinal axis (Oy) of the N-1 directional antenna arrays.
  7. A method for configuring the pointing direction of a directional radio-frequency antenna, said radio-frequency antenna comprising:
    - N directional antenna arrays (100, 502 to 50N) according to one of claims 1 and 2, with N higher than or equal to 1,
    - means for adjusting the position of the bottom part of the N directional antenna arrays, configured to adjust the position of the bottom part of the N waveguides depending on a desired antenna-beam direction,
    the method being characterised in that it comprises:
    - a step (701) of computing the position of the bottom parts (404) of the waveguides of the directional antenna array(s) of the directional radio-frequency antenna, and
    - a step (702) of modifying the position of the bottom parts of the waveguides of the directional antenna array(s) as computed in the first step (701).
  8. A computer program comprising program-code instructions for executing the steps of the method according to the preceding claim when said program is executed on a computer.
EP22214926.2A 2021-12-29 2022-12-20 Passive directional rf antenna with one or two-dimensional scanning Active EP4207493B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR2114610A FR3131467A1 (en) 2021-12-29 2021-12-29 Passive Directive RF Antenna with One or Two-Dimensional Scanning

Publications (2)

Publication Number Publication Date
EP4207493A1 EP4207493A1 (en) 2023-07-05
EP4207493B1 true EP4207493B1 (en) 2024-02-14

Family

ID=81581196

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22214926.2A Active EP4207493B1 (en) 2021-12-29 2022-12-20 Passive directional rf antenna with one or two-dimensional scanning

Country Status (5)

Country Link
US (1) US20230208031A1 (en)
EP (1) EP4207493B1 (en)
ES (1) ES2977347T3 (en)
FR (1) FR3131467A1 (en)
IL (1) IL299445A (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602893A (en) * 1942-03-31 1952-07-08 Sperry Corp Wave guide antenna
FR2109055A5 (en) 1970-07-07 1972-05-26 Legros Rene
JPH0682969B2 (en) * 1989-08-30 1994-10-19 株式会社横尾製作所 Array antenna
US9413073B2 (en) 2014-12-23 2016-08-09 Thinkom Solutions, Inc. Augmented E-plane taper techniques in variable inclination continuous transverse (VICTS) antennas
EP3487003A4 (en) * 2016-08-30 2019-08-28 Mitsubishi Electric Corporation Array antenna device
GB2572763B (en) * 2018-04-09 2022-03-16 Univ Heriot Watt Waveguide and antenna

Also Published As

Publication number Publication date
ES2977347T3 (en) 2024-08-22
IL299445A (en) 2023-07-01
EP4207493A1 (en) 2023-07-05
US20230208031A1 (en) 2023-06-29
FR3131467A1 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
EP2807702B1 (en) Two dimensional multibeam former, antenna using such and satellite telecommunication system.
EP3726642B1 (en) Polarising screen with wideband polarising radiofrequency cell(s)
EP2889954B1 (en) Method for defining the structure of a Ka-band antenna
EP0012055A1 (en) Microstrip monopulse primary feed and antenna using same
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
FR2886773A1 (en) Antenna e.g. airborne antenna, for airborne weather radar, has radiating waveguide divided into three sections, where central section of radiating wave guide is crossed with central section of vertical component stack of feed waveguide
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP3086409A1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
FR3069713B1 (en) ANTENNA INTEGRATING DELAY LENSES WITHIN A DISTRIBUTOR BASED ON PARALLEL PLATE WAVEGUIDE DIVIDERS
FR2953652A1 (en) Orthogonal double polarization multisector antenna system for e.g. multiple input and multiple output system, has group of horizontal polarization vivaldi antennas formed in sector and excited by corresponding set of power supply lines
EP4207493B1 (en) Passive directional rf antenna with one or two-dimensional scanning
EP3026754A1 (en) Compact radiofrequency excitation module with integrated kinematics and biaxial compact antenna comprising at least one such compact module
EP3446362B1 (en) System for deflecting and pointing a microwave beam
EP1188202B1 (en) Device for transmitting and/or receiving signals
FR3003700A1 (en) ANTENNA RADAR SIGNATURE REDUCTION DEVICE AND ASSOCIATED ANTENNA SYSTEM
EP3155689B1 (en) Flat antenna for satellite communication
EP3365943B1 (en) Acquisition aid antenna device and associated antenna system for monitoring a moving target
FR2886771A1 (en) Airborne weather radar antenna for e.g. meteorological phenomenon detection, has feed waveguide connected by coupling slots to radiating waveguides, where antenna beam pointing angle is varied by varying frequency of wave of feed waveguide
EP3155690B1 (en) Flat antenna for satellite communication
FR2968847A1 (en) COMPACT MULTIFACEAL ANTENNA SYSTEM
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
EP4391232A1 (en) Wide-angle impedance matching device for an array antenna with radiating elements and method for designing such a device
EP2889955B1 (en) Compact antenna structure for satellite telecommunication

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230727

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022001962

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1657866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2977347

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214