EP4298071A1 - Glass ceramic comprising a quartz-mixed crystal phase - Google Patents
Glass ceramic comprising a quartz-mixed crystal phaseInfo
- Publication number
- EP4298071A1 EP4298071A1 EP22706599.2A EP22706599A EP4298071A1 EP 4298071 A1 EP4298071 A1 EP 4298071A1 EP 22706599 A EP22706599 A EP 22706599A EP 4298071 A1 EP4298071 A1 EP 4298071A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- glass
- weight
- glass ceramic
- ceramic according
- particularly preferably
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002241 glass-ceramic Substances 0.000 title claims description 125
- 239000013078 crystal Substances 0.000 title claims description 73
- 239000011521 glass Substances 0.000 claims description 74
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 51
- 239000010453 quartz Substances 0.000 claims description 49
- 239000000843 powder Substances 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 13
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 12
- 238000002425 crystallisation Methods 0.000 claims description 12
- 230000008025 crystallization Effects 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000003825 pressing Methods 0.000 claims description 11
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 10
- 238000003754 machining Methods 0.000 claims description 9
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 claims description 8
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 7
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 7
- 239000008187 granular material Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000005548 dental material Substances 0.000 claims description 6
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 5
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims description 4
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 4
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- 229910052701 rubidium Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 10
- 230000003287 optical effect Effects 0.000 abstract description 10
- 239000000919 ceramic Substances 0.000 abstract description 7
- 239000002243 precursor Substances 0.000 abstract description 5
- 239000005355 lead glass Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 229910005793 GeO 2 Inorganic materials 0.000 description 3
- 229910010100 LiAlSi Inorganic materials 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- HZVVJJIYJKGMFL-UHFFFAOYSA-N almasilate Chemical compound O.[Mg+2].[Al+3].[Al+3].O[Si](O)=O.O[Si](O)=O HZVVJJIYJKGMFL-UHFFFAOYSA-N 0.000 description 3
- 239000005354 aluminosilicate glass Substances 0.000 description 3
- 239000007850 fluorescent dye Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000003991 Rietveld refinement Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- CNLWCVNCHLKFHK-UHFFFAOYSA-N aluminum;lithium;dioxido(oxo)silane Chemical compound [Li+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O CNLWCVNCHLKFHK-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000156 glass melt Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 229910052642 spodumene Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229910020203 CeO Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- HEHRHMRHPUNLIR-UHFFFAOYSA-N aluminum;hydroxy-[hydroxy(oxo)silyl]oxy-oxosilane;lithium Chemical compound [Li].[Al].O[Si](=O)O[Si](O)=O.O[Si](=O)O[Si](O)=O HEHRHMRHPUNLIR-UHFFFAOYSA-N 0.000 description 1
- 239000002419 bulk glass Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 229910000174 eucryptite Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052670 petalite Inorganic materials 0.000 description 1
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0009—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0004—Computer-assisted sizing or machining of dental prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/0003—Making bridge-work, inlays, implants or the like
- A61C13/0006—Production methods
- A61C13/0021—Production methods using stamping techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C5/00—Filling or capping teeth
- A61C5/70—Tooth crowns; Making thereof
- A61C5/77—Methods or devices for making crowns
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/802—Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/06—Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/005—Hot-pressing vitrified, non-porous, shaped glass products
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0007—Compositions for glass with special properties for biologically-compatible glass
- C03C4/0021—Compositions for glass with special properties for biologically-compatible glass for dental use
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/08—Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
- C03C2204/04—Opaque glass, glaze or enamel
Definitions
- Glass ceramic with a quartz mixed crystal phase The invention relates to glass ceramic with a quartz mixed crystal phase, which is particularly suitable for use in dentistry and preferably for the production of dental restorations, and preliminary stages for the production of this glass ceramic.
- Glass ceramics with a quartz mixed crystal phase are known in principle from the prior art.
- DE 2507 131 A1 describes special magnesium aluminosilicate glass ceramics which contain 20 to 35% by weight Al 2 O 3 and 9 to 15% by weight MgO.
- Bodies made from the glass ceramics have a heterogeneous structure in that the crystal structure of the surface layer differs from that of the interior of the body. The surface compressive stress generated in this way has a significant influence on the mechanical properties, so that machining the surface layer has an adverse effect. the mechanical properties would result.
- JP 2000/063144 A discloses magnesium aluminosilicate glasses for the production of substrates for storage media, which have 30 to 60 mol % SiO 2 and large amounts of B 2 O 3 .
- GB 2172282 A describes magnesium aluminosilicate glass ceramics which contain 10 to 40% by weight Al 2 O 3 .
- the glass ceramics are intended for microelectronic applications and in particular as a coating for substrates such as aluminum and, in addition to high strength, they have a suitable dielectric constant in the range from 7 to 10 and high electrical resistance.
- WO 2012/143137 A1 describes glass-ceramic bodies which contain at least 10.1% by weight Al 2 O 3 and have different crystal phases in different areas.
- the article by M. Dittmer and C. Rüssel in J. Biomed. mater Res. Part B:100B:463-470 (2012) describes glass-ceramics with a high-quartz or low-quartz mixed-crystal phase as the main crystal phase, which contain at least 25.9% by weight Al 2 O 3 .
- the strengths achieved with these known glass ceramics and also their optical properties are not entirely satisfactory for use as dental material.
- the invention is therefore based on the object of providing a glass ceramic which has a combination of high strength and good translucency.
- the glass ceramic should also have a thermal expansion coefficient that can be adjusted over a wide range.
- the glass ceramic should also be easy to process into dental restorations and should therefore be excellently suited as a restorative dental material.
- This object is achieved by the glass ceramic with a quartz mixed crystal phase according to claims 1 to 16 and 19.
- the invention also relates to the starting glass according to claims 17 to 19, the methods according to claims 20 and 23 and the use according to claims 21 and 22.
- the glass ceramic according to the invention is characterized in that it contains the following components: component weight % SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0.1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 and contains at least one quartz mixed crystal phase.
- This glass ceramic also referred to below as “glass ceramic with a quartz mixed crystal phase”, surprisingly shows an advantageous combination of mechanical and optical properties that are desirable for a restorative dental material.
- the glass-ceramic has high strength and yet it can be easily shaped into a dental restoration by pressing or machining. Furthermore, it was not to be expected that very good optical properties could nevertheless be achieved by the provision of one or more quartz mixed crystal phases. This is because many secondary crystal phases have a negative effect on the optical properties of glass ceramics. For example, they can reduce the translucency and they can also impair the ability to color the glass ceramic, which can lead to considerable difficulties when imitating the color of the natural tooth material to be replaced.
- quartz mixed crystal phase means a crystal phase of SiO 2 in which foreign atoms are built into the lattice of the SiO 2 either in interstitial sites or in lattice sites. These foreign atoms can in particular be Al, as well as Li, Mg and/or Zn.
- Al can preferably be present in a molar concentration which corresponds to the sum of the molar concentration of Li, twice the molar concentration of Mg and twice the molar concentration of Zn.
- the glass ceramic contains at least two different quartz mixed crystal phases.
- the at least one quartz mixed crystal phase can be both a stoichiometric and a non-stoichiometric quartz mixed crystal phase.
- Stoichiometric quartz mixed crystal phases are those crystal phases in which the number of silicon atoms and the number of one of the foreign atoms are in the ratio x:y, where x and y are integers in the range from 1 to 8 and in particular in the range from 1 to 5 are.
- the glass ceramic contains at least one and preferably at least two non-stoichiometric quartz mixed crystal phases.
- the at least one quartz mixed crystal phase can be a stoichiometric or non-stoichiometric aluminosilicate crystal phase.
- contains the glass-ceramic has at least one and preferably at least two stoichiometric or non-stoichiometric aluminosilicate crystal phases.
- the glass ceramic contains at least one and preferably at least two non-stoichiometric aluminosilicate crystal phases.
- Stoichiometric aluminosilicate crystal phases are understood as meaning crystal phases in which the number of silicon atoms and the number of aluminum atoms are in the ratio x:y, where x and y are integers in the range from 1 to 8 and in particular in the range from 1 to 5 are.
- Examples of stoichiometric aluminosilicate crystal phases are eucryptite (LiAlSiO 4 ), spodumene (LiAlSi 2 O 6 ), petalite (LiAlSi 4 O 10 ) and cordierite (Mg 2 Al 4 Si 5 O 18 ).
- the quartz mixed crystal phases of the glass ceramic according to the invention can be detected in particular by X-ray powder diffraction using Cu K ⁇ radiation.
- the quartz mixed crystal phases show characteristic peak patterns, which are derived from the peak pattern of deep quartz, but are shifted towards other 2 ⁇ values.
- the glass ceramic according to the invention with a quartz mixed crystal phase contains in particular 57.0 to 66.5% by weight, preferably 59.0 to 66.0% by weight and particularly preferably 62.1 to 65.5% by weight SiO 2 . It is further preferred that the glass ceramic according to the invention contains 13.3 to 18.0% by weight, preferably 16.1 to 17.5% by weight and particularly preferably 16.5 to 17.0% by weight Li 2 O.
- the glass ceramic contains 0.5 to 1.7% by weight, preferably 1.1 to 1.5% by weight and particularly preferably 1.2 to 1.4% by weight of K 2 O.
- the glass ceramic according to the invention contains 2.0 to 3.8% by weight and preferably 1.6 to 3.6% by weight Al 2 O 3 .
- the glass ceramic contains 4.3 to 6.0, preferably 4.5 to 5.9 and particularly preferably 5.1 to 5.8% by weight of P 2 O 5 . It is believed that the P 2 O 5 acts as a nucleating agent.
- the glass ceramic contains 7.2 to 13.0% by weight and preferably 9.0 to 12.0% by weight ZrO 2 . It is also preferred that the glass ceramic contains 1.0 to 8.0, preferably 1.0 to 5.5 and particularly preferably 1.5 to 2.5% by weight of oxide of monovalent elements Me I 2 O selected from the group of Na 2 O, Rb 2 O, Cs 2 O and mixtures thereof.
- the glass ceramic particularly preferably contains at least one and in particular all of the following oxides of monovalent elements MeI 2 O in the stated amounts: Component % by weight Na 2 O 0 to 2.0 Rb 2 O 0 to 8.0 Cs 2 O 0 bis 7.0.
- the glass ceramic according to the invention preferably contains 0.05 to 5.0, in particular 0.07 to 1.5, preferably 0.08 to 1.0, particularly preferably 0.09 to 0.4 and very particularly preferably 0.1 to 0 2 wt . It is assumed that oxides of divalent elements Me II O and in particular MgO promote the formation of one or more quartz solid solutions and avoid the formation of undesired crystal phases such as in particular cristobalite, which can have an adverse influence on the thermal expansion coefficient and the optical properties. In a further preferred embodiment, the glass ceramic contains less than 2.0% by weight of BaO. In particular, the glass ceramic is essentially free of BaO.
- the glass ceramic preferably contains at least one and in particular all of the following oxides of divalent elements Me II O in the stated amounts: Component % by weight CaO 0 to 3.0 MgO 0 to 5.0 SrO 0 to 5.0 ZnO 0 bis 3.0
- a glass ceramic is also preferred which contains 0 to 5.0, preferably 1.0 to 4.0 and particularly preferably 2.0 to 3.0% by weight of oxide of trivalent elements Me III 2 O 3 from the group of B 2 O 3 , Y 2 O 3 , La 2 O 3 , Ga 2 O 3 , In 2 O 3 and mixtures thereof.
- the glass ceramic particularly preferably contains at least one and in particular all of the following oxides of trivalent elements Me III 2 O 3 in the specified amounts: Component % by weight B 2 O 3 0 to 4.0 Y 2 O 3 0 to 5.0 La 2 O 3 0 to 5.0 Ga 2 O 3 0 to 3.0 In 2 O 3 0 to 5.0 Furthermore, preference is given to a glass ceramic which has 0 to 10.0 and particularly preferably 0 to 8.0 wt. % Oxide of tetravalent elements Me IV O 2 selected from the group consisting of TiO 2 , SnO 2 , CeO 2 , GeO 2 and mixtures thereof.
- the glass ceramic particularly preferably contains at least one and in particular all of the following oxides of tetravalent elements Me IV O 2 in the stated amounts: Component % by weight TiO 2 0 to 4.0 SnO 2 0 to 3.0 GeO 2 0 to 9.0 , especially 0 to 8.0 CeO 2 0 to 4.0.
- the glass ceramic contains 0 to 8.0, preferably 0 to 6.0% by weight oxide of pentavalent elements MeV 2 O 5 selected from the group of V 2 O 5 , Ta 2 O 5 , Nb 2 O 5 and mixtures thereof.
- the glass ceramic particularly preferably contains at least one and in particular all of the following oxides of pentavalent elements Me V 2 O 5 in the specified amounts: Component % by weight V 2 O 5 0 to 2.0 Ta 2 O 5 0 to 5.0 Nb 2 O 5 0 to 5.0
- the glass ceramic contains 0 to 5.0, preferably 0 to 4.0% by weight of oxide of the hexavalent element Me VI O 3 selected from the group consisting of WO 3 , MoO 3 and mixtures thereof .
- the glass ceramic particularly preferably contains at least one and in particular all of the following oxides Me VI O 3 in the stated amounts: Component % by weight WO 3 0 to 3.0 MoO 3 0 to 3.0
- the glass ceramic according to the invention contains 0 to 1.0% by weight and in particular 0 to 0.5% by weight of fluorine.
- a glass ceramic which contains at least one and preferably all of the following components in the stated amounts: component % by weight SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0, 1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 Me I 2 O 1.0 to 8.0 Me II O 0 to 5.0 Me III 2 O 3 1.0 to 8.0 Me IV O 2 0 to 10.0 Me V 2 O 5 0 to 8.0 Me VI O 3 0 to 5.0 fluorine 0 to 1, 0, where Me I 2 O, Me II O, Me III 2 O 3 , Me IV O 2 , MeV 2 O 5 and Me VI O 3 have the meaning given above.
- the glass-ceramic contains at least one and preferably all of the following components in the specified amounts: Component % by weight SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0 .1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 Na 2 O 0 to 2.0 Rb 2 O 0 to 8.0 Cs 2 O 0 to 7.0 CaO 0 to 3.0 MgO 0 to 5.0 SrO 0 to 5, 0 ZnO 0 to 3.0 B 2 O 3 0 to 4.0 Y 2 O 3 0 to 5.0 La 2 O 3 0 to 5.0 Ga 2 O 3 0 to 3.0 In 2 O 3 0 to 5 .0 TiO 2 0 to 4.0 SnO 2 0 to 3.0 GeO 2 0 to 9.0, in particular 0 to 8.0 CeO 2 0 to 4.0 V 2 O 5 0 to 2.0 Ta 2 O 5 0 to 5.0 Nb
- the glass-ceramic according to the invention can also contain other coloring agents and/or fluorescent agents. These can be made, for example, from Bi 2 O 3 or Bi 2 O 5 and in particular from other inorganic pigments and/or oxides of d and f elements, such as the oxides of Mn, Fe, Co, Pr, Nd, Tb, Er, Dy, Eu and Yb can be selected. With the help of these coloring agents and fluorescent agents, the glass ceramic can be easily colored in order to imitate the desired optical properties, in particular of natural tooth material. It is surprising that this is possible without any problems despite the presence of one or more quartz mixed crystal phases.
- the molar ratio of SiO 2 to Li 2 O is in the range from 1.5 to 6.0, in particular 1.55 to 3.0, preferably 1.6 to 1.8 and particularly preferably 1.65 to 1.75. It is surprising that the production of the glass ceramic according to the invention with a quartz mixed crystal phase is successful within these broad ranges. It is further preferred that the glass ceramic according to the invention contains lithium disilicate or lithium metasilicate as further crystal phases and in particular as the main crystal phase. The glass ceramic according to the invention particularly preferably contains lithium disilicate as a further crystal phase and in particular as the main crystal phase.
- the term "main crystal phase" refers to the crystal phase that has the highest proportion by weight of all the crystal phases present in the glass ceramic.
- the determination of the amounts of the crystal phases is carried out in particular using the Rietveld method.
- a suitable method for the quantitative analysis of the crystal phases using the Rietveld method is, for example, in the dissertation by M. Dittmer "Glasses and glass ceramics in the system MgO-Al 2 O 3 -SiO 2 with ZrO 2 as nucleating agent", University of Jena 2011, described. It is preferred that the glass ceramic according to the invention has at least 20% by weight, preferably 25 to 55% by weight and particularly preferably 30 to 55% by weight of lithium disilicate crystals. It is further preferred that the glass ceramic according to the invention has 0.2 to 28% by weight and preferably 0.2 to 25% by weight of quartz mixed crystals.
- the glass ceramic according to the invention with a quartz mixed crystal phase is characterized by particularly good mechanical properties and optical properties and it can be formed by heat treating a corresponding starting glass or a corresponding starting glass with nuclei. These materials can therefore serve as precursors for the quartz solid solution glass-ceramic according to the invention.
- the type and in particular the quantity of the crystal phases formed can be controlled by the composition of the starting glass and the heat treatment used to produce the glass-ceramic from the starting glass. The examples illustrate this by varying the composition of the starting glass and the heat treatment applied.
- the glass ceramic has a high biaxial breaking strength of preferably at least 200 MPa and particularly preferably 250 to 460 MPa. The biaxial fracture strength was determined according to ISO 6872 (2008) (piston on three balls test).
- the glass ceramic according to the invention has in particular a thermal expansion coefficient CTE (measured in the range from 100 to 500° C.) of 3.0 to 14.0 ⁇ 10 -6 K -1 , preferably 5.0 to 14.0 ⁇ 10 -6 K -1 and more preferably 7.0 to 14.0 x 10 -6 K -1 .
- the CTE is determined according to ISO 6872 (2008).
- the thermal expansion coefficient is adjusted to a desired value in particular by the type and quantity of the crystal phases present in the glass ceramic and the chemical composition of the glass ceramic.
- the translucency of the glass ceramic was determined in the form of the contrast value (CR value) according to British Standard BS 5612, and this contrast value was preferably 40 to 92.
- the present glass ceramic according to the invention special combination of properties allows it even as a dental material and to be used in particular as a material for the production of dental restorations.
- the invention also relates to precursors with a corresponding composition, from which the glass-ceramic according to the invention with a quartz mixed crystal phase can be produced by heat treatment. These precursors are a correspondingly composed starting glass and a correspondingly composed starting glass with nuclei.
- corresponding composition means that these precursors contain the same components in the same amounts as the glass ceramic, with the components being calculated as oxides as is usual with glasses and glass ceramics, with the exception of fluorine.
- the invention therefore also relates to a starting glass which contains the components of the glass-ceramic according to the invention with a quartz mixed crystal phase.
- the starting glass according to the invention therefore contains, in particular, suitable amounts of SiO 2 , Li 2 O, K 2 O, Al 2 O 3 , P 2 O 5 and ZrO 2 which are required to form the glass ceramic according to the invention with a quartz mixed crystal phase.
- the starting glass can also contain other components, as specified above for the glass-ceramic with quartz mixed crystal phase according to the invention. All such embodiments for the components of the starting glass are preferred which are also indicated as preferred for the components of the glass ceramic according to the invention with a quartz mixed crystal phase.
- the starting glass is particularly preferably in the form of a powder, a granulate or a powder compact pressed from a powder or granulate.
- the starting glass in the molds mentioned has a large inner surface on which the later crystallization of one and preferably several quartz mixed crystal phases can take place. This can have the advantage that compared to crystallization of glass monoliths, fewer heat treatment steps are required to form one or more quartz solid solutions.
- the invention also relates to such a starting glass containing nuclei for the crystallization of quartz mixed crystal phase.
- the starting glass preferably also contains nuclei for the crystallization of lithium disilicate or lithium metasilicate.
- the starting glass is produced in particular by melting a mixture of suitable starting materials, such as carbonates and oxides, at temperatures of, in particular, around 1500 to 1700° C.
- the glass melt obtained can be poured into water to form a glass frit, and the resulting frit is then melted again.
- the melt can then be poured into molds, eg steel or graphite molds, in order to produce blanks of the starting glass, so-called bulk glass blanks or monolithic blanks.
- These monolithic blanks are usually first stress-relieved, for example by being held at 800 to 1200° C. for 5 to 60 minutes, and then slowly cooled to room temperature.
- the melt is poured into water to make a frit. This glass frit can be processed into a powder or granules by grinding.
- the powder or granulate obtained in this way can preferably be pressed to give a blank, a so-called powder compact, optionally after the addition of further components such as colorants and fluorescent agents.
- multicolored blanks can be obtained in a simple manner, which have several areas with different color properties.
- the invention enables the production of highly aesthetic multicolored dental restorations, which can imitate the optical properties of natural tooth material particularly well.
- the further preliminary stage, starting glass with nuclei can first be produced by heat treatment of the starting glass.
- the glass ceramic according to the invention with a quartz mixed crystal phase can then be produced by heat treatment of this further preliminary stage.
- the quartz solid solution glass-ceramic of the present invention can be formed by heat treating the starting glass.
- the starting glass prefferably to subject the starting glass to a heat treatment at a temperature of 400 to 600° C., in particular 450 to 550° C., for a period of in particular 5 to 120 min, preferably 10 to 60 min, in order to nucleate the starting glass with nuclei for to produce the crystallization of quartz solid solution phase. It is further preferred that the starting glass or the starting glass with nuclei undergoes at least one heat treatment at a temperature of 600 to 1000° C., preferably 650 to 900° C. and particularly preferably 750 to 900° C., for a period of in particular 1 to 240 min, preferably 5 to 120 min, and more preferably 10 to 60 min to produce the quartz solid solution glass-ceramic.
- the starting glass or the starting glass with nuclei undergoes a first heat treatment at a temperature of 600 to 800° C., preferably 650 to 750° C. and particularly preferably 650 to 700° C., for a period of in particular 1 to 120 min, preferably 5 to 120 min and more preferably 10 to 60 min, and then a second heat treatment at a temperature of 750 to 950°C, preferably 800 to 900°C and more preferably 800 to 850°C for Duration of in particular 1 to 120 min, preferably 5 to 120 min and more preferably 10 to 60 min subjected.
- the invention therefore also relates to a method for producing the glass ceramic according to the invention with quartz mixed crystal phase in which the starting glass or the starting glass with nuclei, in particular in particulate form, preferably in the form of a powder and particularly preferably in the form of a powder compact, is subjected to at least one heat treatment in the range from 600 to 1000° C., preferably 650 to 900° C., for a duration of in particular 1 to 240 min, preferably 5 to 120 min and particularly preferably 10 to 60 min, and in particular sintered.
- the at least one heat treatment carried out in the method according to the invention can also be carried out as part of a hot pressing or sintering of the starting glass according to the invention or the starting glass according to the invention with nuclei.
- the glass ceramics according to the invention and the glasses according to the invention are present in particular as powders, granules or blanks in any shape and size, for example monolithic blanks such as platelets, cuboids or cylinders, or powder compacts. In these forms they can easily be further processed, eg to form dental restorations. However, they can also be present in the form of dental restorations, such as inlays, onlays, crowns, veneers, shells or abutments.
- the glass ceramics according to the invention are particularly preferably in the form of multicolored blanks, in particular multicolored presintered or sintered powder compacts.
- Dental restorations such as bridges, inlays, onlays, crowns, veneers, shells or abutments can be produced from the glass ceramics according to the invention and the glasses according to the invention.
- the invention therefore also relates to their use for producing dental restorations, in particular multicolored dental restorations.
- the glass ceramic or the glass is given the shape of the desired dental restoration by pressing or machining.
- the pressing usually takes place under increased pressure and increased temperature. It is preferable that the pressing is carried out at a temperature of 700 to 1200°C. It is also preferred to carry out the pressing at a pressure of 2 to 10 bar.
- the desired shape change is achieved through the viscous flow of the material used.
- the starting glass according to the invention, the starting glass with nuclei according to the invention and the glass-ceramic with quartz mixed crystal phase according to the invention can be used for the pressing.
- the glasses and glass ceramics according to the invention can be used in particular in the form of blanks of any shape and size, eg powder compacts, eg in unsintered, partially sintered or densely sintered form.
- the machining usually takes place by means of material-removing processes and in particular by milling and/or grinding. It is particularly preferred that the machining is carried out as part of a CAD/CAM process.
- the starting glass according to the invention, the starting glass with nuclei according to the invention and the glass-ceramic with quartz mixed crystal phase according to the invention can be used.
- the glasses and glass ceramics according to the invention can be used in particular in the form of blanks, eg powder compacts, eg in unsintered, partially sintered or densely sintered form. After the desired shaped dental restoration has been produced, eg by pressing or machining, it can still be heat treated in order to reduce the porosity, eg of an inserted porous powder compact.
- the glass ceramics according to the invention and the glasses according to the invention are also suitable as a coating material for ceramics and glass ceramics, for example.
- the invention is therefore also based on the use of the glasses according to the invention or the invention directed according glass ceramics for coating ceramics and glass ceramics in particular.
- the invention also relates to a method for coating ceramics, metals, metal alloys and glass ceramics, in which glass ceramic according to the invention or glass according to the invention is applied to the corresponding substrate and exposed to elevated temperature.
- glass ceramic according to the invention or glass according to the invention is applied to the corresponding substrate and exposed to elevated temperature.
- This can be done in particular by sintering or by joining an overlay produced using CAD-CAM with a suitable glass solder or adhesive and preferably by pressing on.
- the glass ceramic or the glass is applied to the material to be coated, such as ceramic or glass ceramic, in the usual way, for example as a powder, and then sintered at an elevated temperature.
- glass ceramic according to the invention or glass according to the invention for example in the form of powder compacts, is pressed on at an elevated temperature, for example from 700 to 1200° C., and with the application of pressure, for example from 2 to 10 bar.
- an elevated temperature for example from 700 to 1200° C.
- pressure for example from 2 to 10 bar.
- a suitable oven is, for example, the Programat EP 5000 from Ivoclar Vivadent AG, Liechtenstein. Due to the above-described properties of the glass ceramics according to the invention and the glasses according to the invention, these are particularly suitable for use in dentistry.
- the invention therefore also relates to the use of the glass ceramics according to the invention or the glasses according to the invention as dental material, preferably for coating dental restorations and particularly preferably for producing dental restorations such as bridges, inlays, onlays, veneers, abutments, partial crowns, crowns or shells.
- the invention therefore also relates to a method for producing a dental restoration, in particular a bridge, inlay, onlay, Veneer, abutment, partial crown, crown or shell, in which the glass ceramic according to the invention or the glass according to the invention is given the shape of the desired dental restoration by pressing or by machining, in particular as part of a CAD/CAM process. It is preferably a multicolored dental restoration.
- Example 1 to 3 the melts of the starting glasses were poured into graphite or steel molds to produce glass monoliths. These glass monoliths were stress relieved and slowly cooled to room temperature. They were then subjected to a first heat treatment at temperature T Kb for a duration t Kb for nucleation and then to a further heat treatment at temperature T C for a duration t C for crystallization.
- glass frits ie glass granules, were produced by pouring the molten starting glasses into water. The glass frits were ground to a particle size of ⁇ 45 ⁇ m using ball or mortar mills and pressed into powder compacts using powder presses.
- the powder compacts were optionally subjected to a heat treatment at temperature T Kb for a duration t Kb , a first heat treatment at temperature T C1 for a duration t C1 and a second heat treatment at temperature T C2 for a duration for nucleation and crystallization t subject to C2 .
- Table I QMK: quartz mixed crystal phase SP: spodumene (LiAlSi 2 O 6 )
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Dentistry (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Thermal Sciences (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Glass Compositions (AREA)
- Dental Preparations (AREA)
- Dental Prosthetics (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
The invention relates to quartz-mixed crystal glass ceramics and to precursors thereof, which are characterized by excellent mechanical and optical properties and which can be used, in particular, as restoration material in dentistry.
Description
Glaskeramik mit Quarz-Mischkristallphase Die Erfindung betrifft Glaskeramik mit Quarz-Mischkristallphase, welche sich insbesondere zum Einsatz in der Zahnheilkunde und bevorzugt zur Herstellung von dentalen Restaurationen eignet, sowie Vorstufen zur Herstellung dieser Glaskeramik. Glaskeramiken mit Quarz-Mischkristallphase sind aus dem Stand der Technik grundsätzlich bekannt. Die DE 2507 131 A1 beschreibt spezielle Magnesium-Aluminosilikat- Glaskeramiken, die 20 bis 35 Gew.-% Al2O3 und 9 bis 15 Gew.-% MgO enthalten. Aus den Glaskeramiken hergestellte Körper weisen eine heterogene Struktur auf, indem sich das Kristallgefüge der Ober- flächenschicht von dem des Inneren der Körper unterscheidet. Die auf diese Weise erzeugte Oberflächendruckspannung hat einen wesent- lichen Einfluss auf die mechanischen Eigenschaften, so dass eine maschinelle Bearbeitung der Oberflächenschicht eine Beeinträch-
tigung der mechanischen Eigenschaften zur Folge hätte. In der Oberflächenschicht konnten Hochquarz-Mischkristalle und im Inneren der Körper Tiefquarz-Mischkristalle nachgewiesen werden. Die JP 2000/063144 A offenbart Magnesium-Aluminosilikat-Gläser zur Herstellung von Substraten für Speichermedien, die 30 bis 60 mol-% SiO2 und große Mengen an B2O3 aufweisen. Die GB 2172282 A beschreibt Magnesium-Aluminosilikat-Glaskeramiken, die 10 bis 40 Gew.-% Al2O3 enthalten. Die Glaskeramiken sind für mikroelektronische Anwendungen und insbesondere als Beschichtung für Substrate wie z.B. Aluminium vorgesehen und sie haben neben einer hohen Festigkeit eine geeignete Dielektrizitätskonstante im Bereich von 7 bis 10 sowie einen hohen elektrischen Widerstand. WO 2012/143137 A1 beschreibt glaskeramische Körper, die mindestens 10,1 Gew.-% Al2O3 enthalten und in unterschiedlichen Bereichen unterschiedliche Kristallphasen aufweisen. In dem Artikel von M. Dittmer und C. Rüssel in J. Biomed. Mater. Res. Part B:100B:463–470 (2012) werden Glaskeramiken mit Hoch- quarz- oder Tiefquarz-Mischkristallphase als Hauptkristallphase beschrieben, die mindestens 25,9 Gew.-% Al2O3 enthalten. Insgesamt sind die mit diesen bekannten Glaskeramiken erzielten Festigkeiten und auch deren optische Eigenschaften nicht völlig zufriedenstellend für eine Anwendung als Dentalmaterial. Der Erfindung liegt daher die Aufgabe zugrunde, eine Glaskeramik bereitzustellen, die über eine Kombination von hoher Festigkeit und guter Transluzenz verfügt. Die Glaskeramik sollte zudem einen Wärmeausdehnungskoeffizienten aufweisen, der über einen breiten Bereich einstellbar ist. Die Glaskeramik soll weiter in einfacher Weise zu dentalen Restaurationen verarbeitbar sein und sich damit ausgezeichnet als restauratives Dentalmaterial eignen.
Diese Aufgabe wird durch die Glaskeramik mit Quarz-Mischkristall- phase nach den Ansprüchen 1 bis 16 und 19 gelöst. Gegenstand der Erfindung sind ebenfalls das Ausgangsglas nach den Ansprüchen 17 bis 19, die Verfahren nach den Ansprüchen 20 und 23 sowie die Ver- wendung nach den Ansprüchen 21 und 22. Die erfindungsgemäße Glaskeramik zeichnet sich dadurch aus, dass sie die folgenden Komponenten enthält Komponente Gew.-% SiO2 54,1 bis 67,0 Li2O 13,1 bis 18,5 K2O 0,1 bis 2,0 Al2O3 1,6 bis 4,0 P2O5 4,1 bis 6,5 ZrO2 7,0 bis 13,5 und mindestens eine Quarz-Mischkristallphase enthält. Diese Glaskeramik, im Folgenden auch als „Glaskeramik mit Quarz- Mischkristallphase“ bezeichnet, zeigt überraschenderweise eine vorteilhafte Kombination von für ein restauratives Dentalmaterial wünschenswerten mechanischen und optischen Eigenschaften. Die Glas- keramik hat eine hohe Festigkeit und dennoch kann ihr in einfacher Weise durch Verpressen oder maschinelle Bearbeitung die Form einer Dentalrestauration gegeben werden. Es war weiterhin nicht zu er- warten, dass durch das Vorsehen einer oder mehrerer Quarz-Misch- kristallphasen dennoch sehr gute optische Eigenschaften erzielt werden können. Denn viele Nebenkristallphasen haben einen negativen Effekt auf die optischen Eigenschaften von Glaskeramiken. Sie können beispielsweise die Transluzenz vermindern und sie können ebenfalls die Einfärbbarkeit der Glaskeramik beeinträchtigen, was bei der Nachahmung der Farbe des zu ersetzenden natürlichen Zahnmaterials zu erheblichen Schwierigkeiten führen kann.
Weiter hat sich gezeigt, dass sich über Art und Menge der gebilde- ten Quarz-Mischkristallphase der Wärmeausdehnungskoeffizient der erfindungsgemäßen Glaskeramiken in einem weiten Bereich verändern lässt. Schließlich wurde auch festgestellt, dass die erfindungs- gemäßen Glaskeramiken im Vergleich zu Lithiumsilikat-Quarz-Glas- keramiken bei höheren Temperaturen dichtgesintert werden können, ohne dabei ihre Form zu verlieren. Mit dem Begriff “Quarz-Mischkristallphase“ ist eine Kristallphase aus SiO2 gemeint, bei der in das Gitter des SiO2 Fremdatome ent- weder in Zwischengitterplätze oder in Gitterplätze eingebaut sind. Bei diesen Fremdatomen kann es sich insbesondere um Al sowie Li, Mg und/oder Zn handeln. Dabei kann Al vorzugsweise in einer molaren Konzentration vorliegen, die der Summe aus der molaren Konzentra- tion von Li, dem Doppelten der molaren Konzentration von Mg und dem Doppelten der molaren Konzentration von Zn entspricht. In einer bevorzugten Ausführungsform enthält die Glaskeramik min- destens zwei unterschiedliche Quarz-Mischkristallphasen. Bei der mindestens einen Quarz-Mischkristallphase kann es sich sowohl um eine stöchiometrische als auch um eine nicht-stöchiometrische Quarz-Mischkristallphase handeln. Unter stöchiometrischen Quarz- Mischkristallphasen werden solche Kristallphasen verstanden, bei denen die Anzahl der Siliziumatome und die Anzahl eines der Fremd- atome im Verhältnis x:y stehen, wobei x und y ganze Zahlen im Bereich von 1 bis 8 und insbesondere im Bereich von 1 bis 5 sind. In einer bevorzugten Ausführungsform enthält die Glaskeramik mindestens eine und vorzugsweise mindestens zwei nicht-stöchiometrische Quarz- Mischkristallphasen. Bei der mindestens einen Quarz-Mischkristallphase kann es sich um eine stöchiometrische oder nicht-stöchiometrische Aluminosilikat- Kristallphase handeln. In einer bevorzugten Ausführungsform enthält
die Glaskeramik mindestens eine und vorzugsweise mindestens zwei stöchiometrische oder nicht-stöchiometrische Aluminosilikat-Kris- tallphasen. In einer besonders bevorzugten Ausführungsform enthält die Glaskeramik mindestens eine und vorzugsweise mindestens zwei nicht-stöchiometrische Aluminosilikat-Kristallphasen. Dabei werden unter stöchiometrischen Aluminosilikat-Kristallphasen solche Kris- tallphasen verstanden, bei denen die Anzahl der Siliziumatome und die Anzahl der Aluminiumatome im Verhältnis x:y stehen, wobei x und y ganze Zahlen im Bereich von 1 bis 8 und insbesondere im Bereich von 1 bis 5 sind. Beispiele für stöchiometrische Aluminosilikat- Kristallphasen sind Eucryptit (LiAlSiO4), Spodumen (LiAlSi2O6), Petalit (LiAlSi4O10) und Cordierit (Mg2Al4Si5O18). Die Quarz-Mischkristallphasen der erfindungsgemäßen Glaskeramik lassen sich insbesondere durch Röntgenpulverbeugung mittels CuKα- Strahlung detektieren. Dabei zeigen die Quarz-Mischkristallphasen charakteristische Peakmuster, die sich jeweils vom Peakmuster von Tiefquarz ableiten, aber zu anderen 2Θ-Werten hin verschoben sind. Die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase enthält insbesondere 57,0 bis 66,5, bevorzugt 59,0 bis 66,0 und besonders bevorzugt 62,1 bis 65,5 Gew.-% SiO2. Es ist weiter bevorzugt, dass die erfindungsgemäße Glaskeramik 13,3 bis 18,0, bevorzugt 16,1 bis 17,5 und besonders bevorzugt 16,5 bis 17,0 Gew.-% Li2O enthält. Es wird angenommen, dass Li2O die Viskosität der Glasmatrix erniedrigt und damit die Kristal- lisation der gewünschten Phasen fördert. Auch ist es bevorzugt, dass die Glaskeramik 0,5 bis 1,7, vorzugs- weise 1,1 bis 1,5 und besonders bevorzugt 1,2 bis 1,4 Gew.-% K2O enthält. In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Glaskeramik 2,0 bis 3,8 und bevorzugt 1,6 bis 3,6 Gew.-% Al2O3.
In einer weiteren bevorzugten Ausführungsform enthält die Glas- keramik 4,3 bis 6,0, bevorzugt 4,5 bis 5,9 und besonders bevor- zugt 5,1 bis 5,8 Gew.-% P2O5. Es wird angenommen, dass das P2O5 als Keimbildner wirkt. Es ist weiter bevorzugt, dass die Glaskeramik 7,2 bis 13,0 und bevorzugt 9,0 bis 12,0 Gew.-% ZrO2 enthält. Auch ist es bevorzugt, dass die Glaskeramik 1,0 bis 8,0, bevorzugt 1,0 bis 5,5 und besonders bevorzugt 1,5 bis 2,5 Gew.-% Oxid ein- wertiger Elemente MeI 2O ausgewählt aus der Gruppe von Na2O, Rb2O, Cs2O und Mischungen davon enthält. Besonders bevorzugt enthält die Glaskeramik mindestens eines und insbesondere alle der folgenden Oxide einwertiger Elemente MeI 2O in den angegebenen Mengen: Komponente Gew.-% Na2O 0 bis 2,0 Rb2O 0 bis 8,0 Cs2O 0 bis 7,0. Die erfindungsgemäße Glaskeramik enthält vorzugsweise 0,05 bis 5,0, insbesondere 0,07 bis 1,5, bevorzugt 0,08 bis 1,0, besonders bevorzugt 0,09 bis 0,4 und ganz besonders bevorzugt 0,1 bis 0,2 Gew.-% Oxid zweiwertiger Elemente MeIIO ausgewählt aus der Gruppe von CaO, MgO, SrO, ZnO und Mischungen davon, wobei das MeIIO vor- zugsweise MgO ist. Es wird angenommen, dass Oxide zweiwertiger Elemente MeIIO und insbesondere MgO die Bildung von einer oder mehreren Quarz-Mischkristallphasen fördern und die Bildung von unerwünschten Kristallphasen wie insbesondere Cristobalit vermei- den, die nachteiligen Einfluss auf den Wärmeausdehnungskoeffizienten und die optischen Eigenschaften haben können.
In einer weiteren bevorzugten Ausführungsform enthält die Glaskeramik weniger als 2,0 Gew.-% an BaO. Die Glaskeramik ist insbesondere im Wesentlichen frei von BaO. Bevorzugt enthält die Glaskeramik mindestens eines und insbeson- dere alle der folgenden Oxide zweiwertiger Elemente MeIIO in den angegebenen Mengen: Komponente Gew.-% CaO 0 bis 3,0 MgO 0 bis 5,0 SrO 0 bis 5,0 ZnO 0 bis 3,0 Es ist weiter eine Glaskeramik bevorzugt, die 0 bis 5,0, bevor- zugt 1,0 bis 4,0 und besonders bevorzugt 2,0 bis 3,0 Gew.-% Oxid dreiwertiger Elemente MeIII 2O3 ausgewählt aus der Gruppe von B2O3, Y2O3, La2O3, Ga2O3, In2O3 und Mischungen davon enthält. Besonders bevorzugt enthält die Glaskeramik mindestens eines und insbesondere alle der folgenden Oxide dreiwertiger Elemente MeIII 2O3 in den angegebenen Mengen: Komponente Gew.-% B2O3 0 bis 4,0 Y2O3 0 bis 5,0 La2O3 0 bis 5,0 Ga2O3 0 bis 3,0 In2O3 0 bis 5,0 Ferner ist eine Glaskeramik bevorzugt, die 0 bis 10,0 und be- sonders bevorzugt 0 bis 8,0 Gew.-% Oxid vierwertiger Elemente MeIVO2 ausgewählt aus der Gruppe von TiO2, SnO2, CeO2, GeO2 und Mischungen davon enthält.
Besonders bevorzugt enthält die Glaskeramik mindestens eines und insbesondere alle der folgenden Oxide vierwertiger Elemente MeIVO2 in den angegebenen Mengen: Komponente Gew.-% TiO2 0 bis 4,0 SnO2 0 bis 3,0 GeO2 0 bis 9,0, insbesondere 0 bis 8,0 CeO2 0 bis 4,0. In einer weiteren Ausführungsform enthält die Glaskeramik 0 bis 8,0, bevorzugt 0 bis 6,0 Gew.-% Oxid fünfwertiger Elemente MeV 2O5 ausgewählt aus der Gruppe von V2O5, Ta2O5, Nb2O5 und Mischungen davon. Besonders bevorzugt enthält die Glaskeramik mindestens eines und insbesondere alle der folgenden Oxide fünfwertiger Elemente MeV 2O5 in den angegebenen Mengen: Komponente Gew.-% V2O5 0 bis 2,0 Ta2O5 0 bis 5,0 Nb2O5 0 bis 5,0 In einer weiteren Ausführungsform enthält die Glaskeramik 0 bis 5,0, bevorzugt 0 bis 4,0 Gew.-% Oxid sechswertiger Element MeVIO3 ausgewählt aus der Gruppe von WO3, MoO3 und Mischungen davon. Besonders bevorzugt enthält die Glaskeramik mindestens eines und insbesondere alle der folgenden Oxide MeVIO3 in den angegebenen Mengen: Komponente Gew.-% WO3 0 bis 3,0 MoO3 0 bis 3,0
In einer weiteren Ausführungsform enthält die erfindungsgemäße Glaskeramik 0 bis 1,0 und insbesondere 0 bis 0,5 Gew.-% Fluor. Besonders bevorzugt ist eine Glaskeramik, die mindestens eine und bevorzugt alle der folgenden Komponenten in den angegebenen Mengen enthält: Komponente Gew.-% SiO2 54,1 bis 67,0 Li2O 13,1 bis 18,5 K2O 0,1 bis 2,0 Al2O3 1,6 bis 4,0 P2O5 4,1 bis 6,5 ZrO2 7,0 bis 13,5 MeI 2O 1,0 bis 8,0 MeIIO 0 bis 5,0 MeIII 2O3 1,0 bis 8,0 MeIVO2 0 bis 10,0 MeV 2O5 0 bis 8,0 MeVIO3 0 bis 5,0 Fluor 0 bis 1,0, wobei MeI 2O, MeIIO, MeIII 2O3, MeIVO2, MeV 2O5 und MeVIO3 die oben an- gegebene Bedeutung haben. In einer weiteren besonders bevorzugten Ausführungsform enthält die Glaskeramik mindestens eine und bevorzugt alle der folgenden Komponenten in den angegebenen Mengen: Komponente Gew.-% SiO2 54,1 bis 67,0 Li2O 13,1 bis 18,5 K2O 0,1 bis 2,0 Al2O3 1,6 bis 4,0 P2O5 4,1 bis 6,5
ZrO2 7,0 bis 13,5 Na2O 0 bis 2,0 Rb2O 0 bis 8,0 Cs2O 0 bis 7,0 CaO 0 bis 3,0 MgO 0 bis 5,0 SrO 0 bis 5,0 ZnO 0 bis 3,0 B2O3 0 bis 4,0 Y2O3 0 bis 5,0 La2O3 0 bis 5,0 Ga2O3 0 bis 3,0 In2O3 0 bis 5,0 TiO2 0 bis 4,0 SnO2 0 bis 3,0 GeO2 0 bis 9,0, insbesondere 0 bis 8,0 CeO2 0 bis 4,0 V2O5 0 bis 2,0 Ta2O5 0 bis 5,0 Nb2O5 0 bis 5,0 WO3 0 bis 3,0 MoO3 0 bis 3,0 Fluor 0 bis 1,0. Manche der vorstehend genannten Komponenten können als Färbemittel und/oder Fluoreszenzmittel dienen. Die erfindungsgemäße Glaskeramik kann darüber hinaus noch weitere Färbemittel und/oder Fluores- zenzmittel enthalten. Diese können z.B. aus Bi2O3 oder Bi2O5 und insbesondere aus weiteren anorganischen Pigmenten und/oder Oxiden von d- und f-Elementen, wie z.B. den Oxiden von Mn, Fe, Co, Pr, Nd, Tb, Er, Dy, Eu und Yb, ausgewählt sein. Mithilfe dieser Färbe- mittel und Fluoreszenzmittel ist eine einfache Einfärbung der Glaskeramik möglich, um die gewünschten optischen Eigenschaften insbesondere von natürlichem Zahnmaterial zu imitieren. Es ist
überraschend, dass dies trotz des Vorhandenseins einer oder mehrerer Quarz-Mischkristallphasen problemlos möglich ist. In einer bevorzugten Ausführungsform der Glaskeramik liegt das Molverhältnis von SiO2 zu Li2O im Bereich von im Bereich von 1,5 bis 6,0, insbesondere 1,55 bis 3,0, bevorzugt 1,6 bis 1,8 und besonders bevorzugt 1,65 bis 1,75. Es ist überraschend, dass inner- halb dieser breiten Bereiche die Herstellung der erfindungsgemäßen Glaskeramik mit Quarz-Mischkristallphase gelingt. Es ist weiter bevorzugt, dass die erfindungsgemäße Glaskeramik Lithiumdisilikat oder Lithiummetasilikat als weitere Kristall- phasen und insbesondere als Hauptkristallphase enthält. Besonders bevorzugt enthält die erfindungsgemäße Glaskeramik Lithiumdisilikat als weitere Kristallphase und insbesondere als Hauptkristallphase. Mit dem Begriff „Hauptkristallphase“ wird die Kristallphase bezeich- net, die von allen in der Glaskeramik vorhandenen Kristallphasen den höchsten Gewichtsanteil hat. Die Bestimmung der Mengen der Kristallphasen erfolgt dabei insbesondere mit der Rietveld-Methode. Ein geeignetes Verfahren zur quantitativen Analyse der Kristall- phasen mittels der Rietveld-Methode ist z.B. in der Dissertation von M. Dittmer „Gläser und Glaskeramiken im System MgO-Al2O3-SiO2 mit ZrO2 als Keimbildner“, Universität Jena 2011, beschrieben. Es ist bevorzugt, dass die erfindungsgemäße Glaskeramik mindes- tens 20 Gew.-%, bevorzugt 25 bis 55 Gew.-% und besonders bevorzugt 30 bis 55 Gew.-% Lithiumdisilikat-Kristalle aufweist. Es ist weiter bevorzugt, dass die erfindungsgemäße Glaskeramik 0,2 bis 28 Gew.-% und bevorzugt 0,2 bis 25 Gew.-% Quarz-Mischkristalle aufweist. Die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase zeichnet sich durch besonders gute mechanische Eigenschaften und
optische Eigenschaften aus und sie kann durch Wärmebehandlung eines entsprechenden Ausgangsglases oder eines entsprechenden Aus- gangsglases mit Keimen gebildet werden. Diese Materialien können daher als Vorstufen für die erfindungsgemäße Glaskeramik mit Quarz- Mischkristallphase dienen. Die Art und insbesondere die Menge der gebildeten Kristallphasen können durch die Zusammensetzung des Ausgangsglases sowie die Wärme- behandlung gesteuert werden, die zur Herstellung der Glaskeramik aus dem Ausgangsglas angewendet wird. Die Beispiele veranschaulichen dies anhand der Variation der Zusammensetzung des Ausgangsglases und der angewendeten Wärmebehandlung. Die Glaskeramik weist eine hohe biaxiale Bruchfestigkeit von vor- zugsweise mindestens 200 MPa und besonders bevorzugt 250 bis 460 MPa auf. Die biaxiale Bruchfestigkeit wurde gemäß ISO 6872 (2008) (Kolben-auf-drei-Kugeln-Prüfung) bestimmt. Die erfindungsgemäße Glaskeramik weist insbesondere einen ther- mischen Ausdehnungskoeffizienten WAK (gemessen im Bereich von 100 bis 500°C) von 3,0 bis 14,0·10-6 K-1, bevorzugt 5,0 bis 14,0·10-6 K-1 und besonders bevorzugt 7,0 bis 14,0·10-6 K-1 auf. Der WAK wird gemäß ISO 6872 (2008) bestimmt. Eine Einstellung des Wärmeausdeh- nungskoeffizienten auf einen gewünschten Wert erfolgt insbesondere durch die Art und Menge der in der Glaskeramik vorhandenen Kris- tallphasen sowie die chemische Zusammensetzung der Glaskeramik. Die Transluzenz der Glaskeramik wurde in Form des Kontrastwerts (CR-Wert) gemäß British Standard BS 5612 bestimmt, und dieser Kontrastwert betrug vorzugsweise 40 bis 92. Die bei der erfindungsgemäßen Glaskeramik vorliegende besondere Kombination an Eigenschaften erlaubt es sogar, sie als Dentalmate- rial und insbesondere als Material zur Herstellung von Dental- restaurationen einzusetzen.
Die Erfindung betrifft ebenfalls Vorstufen mit entsprechender Zusammensetzung, aus denen die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase durch Wärmebehandlung hergestellt werden können. Diese Vorstufen sind ein entsprechend zusammengesetztes Ausgangsglas und ein entsprechend zusammengesetztes Ausgangsglas mit Keimen. Die Bezeichnung „entsprechender Zusammensetzung“ be- deutet, dass diese Vorstufen die gleichen Komponenten in den gleichen Mengen wie die Glaskeramik enthalten, wobei die Komponenten wie bei Gläsern und Glaskeramiken üblich mit Ausnahme von Fluor als Oxide berechnet werden. Die Erfindung betrifft daher ebenfalls ein Ausgangsglas, das die Komponenten der erfindungsgemäßen Glaskeramik mit Quarz-Mischkris- tallphase enthält. Das erfindungsgemäße Ausgangsglas enthält daher insbesondere ge- eignete Mengen an SiO2, Li2O, K2O, Al2O3, P2O5 und ZrO2, die zur Ausbildung der erfindungsgemäßen Glaskeramik mit Quarz-Mischkris- tallphase erforderlich sind. Weiter kann das Ausgangsglas auch noch andere Komponenten enthalten, wie sie oben für die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase angegeben sind. Es sind alle solche Ausführungsformen für die Komponenten des Ausgangs- glases bevorzugt, die auch für die Komponenten der erfindungsgemäßen Glaskeramik mit Quarz-Mischkristallphase als bevorzugt angegeben sind. Besonders bevorzugt liegt das Ausgangsglas in Form eines Pulvers, eines Granulats oder eines aus einem Pulver oder Granulat gepress- ten Pulverpresslings vor. Im Gegensatz zu einem Glasmonolithen, wie er etwa durch Gießen einer Glasschmelze in eine Form erhalten wird, hat das Ausgangsglas in den genannten Formen eine große innere Oberfläche, an denen die spätere Kristallisation von einer und bevorzugt mehreren Quarz-Mischkristallphasen erfolgen kann. Dies kann den Vorteil haben, dass im Vergleich zur Kristallisation
von Glasmonolithen weniger Wärmebehandlungsschritte erforderlich sind, um eine oder mehrere Quarz-Mischkristallphasen zu bilden. Die Erfindung betrifft ebenfalls ein solches Ausgangsglas, das Keime für die Kristallisation von Quarz-Mischkristallphase enthält. Vorzugsweise enthält das Ausgangsglas ferner Keime für die Kris- tallisation von Lithiumdisilikat oder Lithiummetasilikat. Die Herstellung des Ausgangsglases erfolgt insbesondere in der Weise, dass eine Mischung von geeigneten Ausgangsmaterialien, wie z.B. Carbonaten und Oxiden, bei Temperaturen von insbesondere etwa 1500 bis 1700°C für 0,5 bis 4 h geschmolzen wird. Zur Erzielung einer besonders hohen Homogenität kann die erhaltene Glasschmelze in Wasser gegossen werden, um eine Glasfritte zu bilden, und die erhaltene Fritte wird dann erneut aufgeschmolzen. Die Schmelze kann dann in Formen, z.B. Stahl- oder Graphitformen, gegossen werden, um Rohlinge des Ausgangsglases, sogenannte Massiv- glasrohlinge oder monolithische Rohlinge, zu erzeugen. Üblicher- weise werden diese monolithischen Rohlinge zunächst entspannt, z.B. indem sie 5 bis 60 min bei 800 bis 1200°C gehalten werden, und dann langsam auf Raumtemperatur abgekühlt. In einer bevorzugten Ausführungsform wird die Schmelze in Wasser gegossen, um eine Fritte herzustellen. Diese Glasfritte kann durch Mahlen zu einem Pulver oder Granulat verarbeitet werden. Vorzugs- weise kann das so erhaltene Pulver oder Granulat, gegebenenfalls nach Zugabe weiterer Komponenten, wie Färbe- und Fluoreszenzmitteln, zu einem Rohling, einem sogenannten Pulverpressling, gepresst werden. Dabei können durch Verwendung von mehreren unterschiedlich ein- gefärbten Pulvern in einfacher Weise mehrfarbige Rohlinge erhalten werden, die mehrere Bereiche mit unterschiedlichen Farbeigenschaf- ten aufweisen. Dadurch ermöglicht die Erfindung die Herstellung von hochästhetischen mehrfarbigen dentalen Restaurationen, welche
die optischen Eigenschaften des natürlichen Zahnmaterials besonders gut imitieren können. Durch Wärmebehandlung des Ausgangsglases kann zunächst die weitere Vorstufe Ausgangsglas mit Keimen erzeugt werden. Durch Wärmebe- handlung dieser weiteren Vorstufe kann dann die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase erzeugt werden. Alter- nativ kann die erfindungsgemäße Glaskeramik mit Quarz-Mischkristall- phase durch Wärmebehandlung des Ausgangsglases gebildet werden. Es ist bevorzugt, das Ausgangsglas einer Wärmebehandlung bei einer Temperatur von 400 bis 600°C, insbesondere 450 bis 550°C, für eine Dauer von insbesondere 5 bis 120 min, bevorzugt 10 bis 60 min, zu unterwerfen, um das Ausgangsglas mit Keimen für die Kristallisation von Quarz-Mischkristallphase zu erzeugen. Es ist weiter bevorzugt, das Ausgangsglas oder das Ausgangsglas mit Keimen mindestens einer Wärmebehandlung bei einer Temperatur von 600 bis 1000°C, vorzugsweise 650 bis 900°C und besonders be- vorzugt 750 bis 900°C, für eine Dauer von insbesondere 1 bis 240 min, bevorzugt 5 bis 120 min und besonders bevorzugt 10 bis 60 min, zu unterwerfen, um die Glaskeramik mit Quarz-Mischkristallphase herzustellen. In einer besonders bevorzugten Ausführungsform wird das Ausgangsglas oder das Ausgangsglas mit Keimen einer ersten Wärmebehandlung bei einer Temperatur von 600 bis 800°C, vorzugs- weise 650 bis 750°C und besonders bevorzugt 650 bis 700°C, für eine Dauer von insbesondere 1 bis 120 min, bevorzugt 5 bis 120 min und besonders bevorzugt 10 bis 60 min, und danach einer zweiten Wärmebehandlung bei einer Temperatur von 750 bis 950°C, vorzugs- weise 800 bis 900°C und besonders bevorzugt 800 bis 850°C, für eine Dauer von insbesondere 1 bis 120 min, bevorzugt 5 bis 120 min und besonders bevorzugt 10 bis 60 min, unterworfen. Die Erfindung betrifft daher ebenfalls ein Verfahren zur Her- stellung der erfindungsgemäßen Glaskeramik mit Quarz-Mischkristall-
phase, bei dem das Ausgangsglas oder das Ausgangsglas mit Keimen, insbesondere in partikulärer Form, bevorzugt in Form eines Pulvers und besonders bevorzugt in Form eines Pulverpresslings, mindestens einer Wärmebehandlung im Bereich von 600 bis 1000°C, vorzugsweise 650 bis 900°C, für eine Dauer von insbesondere 1 bis 240 min, bevorzugt 5 bis 120 min und besonders bevorzugt 10 bis 60 min, unterzogen und insbesondere gesintert wird. Die im erfindungsgemäßen Verfahren durchgeführte mindestens eine Wärmebehandlung kann auch im Rahmen eines Heißpressens oder Auf- sinterns des erfindungsgemäßen Ausgangsglases oder des erfindungs- gemäßen Ausgangsglases mit Keimen erfolgen. Die erfindungsgemäßen Glaskeramiken und die erfindungsgemäßen Gläser liegen insbesondere als Pulver, Granulate oder Rohlinge in belie- biger Form und Größe, z.B. monolithische Rohlingen, wie Plättchen, Quader oder Zylinder, oder Pulverpresslinge, vor. In diesen Formen können sie einfach weiterverarbeitet werden, z.B. zu dentalen Res- taurationen. Sie können aber auch in Form von dentalen Restaura- tionen, wie Inlays, Onlays, Kronen, Veneers, Schalen oder Abutments, vorliegen. Besonders bevorzugt liegen die erfindungsgemäßen Glaskeramiken in Form von mehrfarbigen Rohlingen, insbesondere mehrfarbigen vor- gesinterten oder gesinterten Pulverpresslingen, vor. Aus den erfindungsgemäßen Glaskeramiken und den erfindungsgemäßen Gläsern können dentale Restaurationen, wie Brücken, Inlays, Onlays, Kronen, Veneers, Schalen oder Abutments, hergestellt werden. Die Erfindung betrifft daher auch deren Verwendung zur Herstellung dentaler Restaurationen, insbesondere mehrfarbiger dentaler Restau- rationen. Dabei ist es bevorzugt, dass der Glaskeramik oder dem Glas durch Verpressen oder maschinelle Bearbeitung die Form der gewünschten dentalen Restauration gegeben wird.
Das Verpressen erfolgt üblicherweise unter erhöhtem Druck und erhöhter Temperatur. Es ist bevorzugt, dass das Verpressen bei einer Temperatur von 700 bis 1200°C erfolgt. Weiter ist es bevorzugt, das Verpressen bei einem Druck von 2 bis 10 bar durchzuführen. Beim Verpressen wird durch viskoses Fließen des eingesetzten Ma- terials die gewünschte Formänderung erreicht. Es können für das Verpressen das erfindungsgemäße Ausgangsglas, das erfindungsgemäße Ausgangsglas mit Keimen und die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase verwendet werden. Dabei können die erfin- dungsgemäßen Gläser und Glaskeramiken insbesondere in Form von Rohlingen in beliebiger Form und Größe, z.B. Pulverpresslingen, z.B. in ungesinterter, teilgesinterter oder dichtgesinterter Form, eingesetzt werden. Die maschinelle Bearbeitung erfolgt üblicherweise durch materi- alabtragende Verfahren und insbesondere durch Fräsen und/oder Schleifen. Es ist besonders bevorzugt, dass die maschinelle Be- arbeitung im Rahmen eines CAD/CAM-Verfahrens durchgeführt wird. Für die maschinelle Bearbeitung können das erfindungsgemäße Aus- gangsglas, das erfindungsgemäße Ausgangsglas mit Keimen und die erfindungsgemäße Glaskeramik mit Quarz-Mischkristallphase verwendet werden. Dabei können die erfindungsgemäßen Gläser und Glaskeramiken insbesondere in Form von Rohlingen, z.B. Pulverpresslingen, z.B. in ungesinterter, teilgesinterter oder dichtgesinterter Form, eingesetzt werden. Nach der Herstellung der gewünscht geformten dentalen Restauration, z.B. durch Verpressen oder maschinelle Bearbeitung, kann diese noch wärmebehandelt werden, um die Porosität, z.B. eines eingesetzten porösen Pulverpresslings, zu vermindern. Die erfindungsgemäßen Glaskeramiken und die erfindungsgemäßen Gläser eignen sich allerdings auch als Beschichtungsmaterial von z.B. Keramiken und Glaskeramiken. Die Erfindung ist daher ebenfalls auf die Verwendung der erfindungsgemäßen Gläser oder der erfindungs-
gemäßen Glaskeramiken zur Beschichtung von insbesondere Keramiken und Glaskeramiken gerichtet. Die Erfindung betrifft auch ein Verfahren zur Beschichtung von Keramiken, Metallen, Metalllegierungen und Glaskeramiken, bei dem erfindungsgemäße Glaskeramik oder erfindungsgemäßes Glas auf das entsprechende Substrat aufgebracht und erhöhter Temperatur ausgesetzt wird. Dies kann insbesondere durch Aufsintern oder durch Fügen eines mittels CAD-CAM hergestellten Überwurfs mit einem geeigneten Glaslot oder Kleber und bevorzugt durch Aufpressen erfolgen. Beim Auf- sintern wird die Glaskeramik oder das Glas in üblicher Weise, z.B. als Pulver, auf das zu beschichtende Material, wie Keramik oder Glaskeramik, aufgebracht und anschließend bei erhöhter Tempera- tur gesintert. Bei dem bevorzugten Aufpressen wird erfindungsgemäße Glaskeramik oder erfindungsgemäßes Glas, z.B. in Form von Pulver- presslingen, bei einer erhöhten Temperatur, von z.B. 700 bis 1200°C, und unter Anwendung von Druck, z.B. 2 bis 10 bar, aufgepresst. Hierzu können insbesondere die in der EP 231773 beschriebenen Verfahren und der dort offenbarte Pressofen eingesetzt werden. Ein geeigneter Ofen ist z.B. der Programat EP 5000 von Ivoclar Vivadent AG, Liechtenstein. Aufgrund der vorstehend geschilderten Eigenschaften der erfindungs- gemäßen Glaskeramiken und der erfindungsgemäßen Gläser eignen sich diese insbesondere zum Einsatz in der Zahnheilkunde. Gegenstand der Erfindung ist daher auch die Verwendung der erfindungsgemäßen Glaskeramiken oder der erfindungsgemäßen Gläser als Dentalmaterial, bevorzugt zur Beschichtung dentaler Restaurationen und besonders bevorzugt zur Herstellung dentaler Restaurationen, wie Brücken, Inlays, Onlays, Veneers, Abutments, Teilkronen, Kronen oder Schalen. Die Erfindung betrifft mithin auch ein Verfahren zur Herstellung einer dentalen Restauration, insbesondere Brücke, Inlay, Onlay,
Veneer, Abutment, Teilkrone, Krone oder Schale, bei dem der er- findungsgemäßen Glaskeramik oder dem erfindungsgemäßen Glas durch Verpressen oder durch maschinelle Bearbeitung, insbesondere im Rahmen eines CAD/CAM-Verfahrens, die Form der gewünschten dentalen Restauration gegeben wird. Bevorzugt handelt es sich dabei um eine mehrfarbige dentale Restauration. Mit einer solchen Restauration können die optischen Eigenschaften des natürlichen Zahnmaterials besonders gut nachgeahmt werden. Die Erfindung wird im Folgenden anhand von sie nicht-beschränkenden Beispielen näher erläutert. Beispiele Beispiele 1 bis 9 – Zusammensetzung und Kristallphasen Es wurden insgesamt 9 erfindungsgemäße Gläser und Glaskeramiken mit der in Tabelle I angegebenen Zusammensetzung über Erschmelzung entsprechender Ausgangsgläser und anschließende Wärmebehandlung zur gesteuerten Kristallisation hergestellt. Die angewendeten Wärmebehandlungen sind ebenfalls in Tabelle I angegeben. Dabei bedeuten Tg Glasübergangstemperatur, bestimmt mittels DSC TKb und tKb Angewendete Temperatur und Zeit für Keimbildung des Ausgangsglases TC und tC Angewendete Temperatur und Zeit für die Kris- tallisation Dazu wurden zunächst die Ausgangsgläser aus üblichen Rohstoffen in einem Platin-Rhodium-Tiegel bei 1500 bis 1700°C erschmolzen.
In den Beispielen 1 bis 3 wurden die Schmelzen der Ausgangsgläser in Graphit- oder Stahlformen eingegossen, um Glasmonolithe zu erzeugen. Diese Glasmonolithe wurden entspannt und langsam auf Raumtemperatur abgekühlt. Anschließend wurden sie einer ersten Wärmebehandlung bei der Temperatur TKb für eine Dauer tKb zur Keim- bildung und danach einer weiteren Wärmebehandlung bei der Tem- peratur TC für eine Dauer tC zur Kristallisation unterworfen. In den Beispielen 4 bis 9 wurden durch Eingießen der erschmolzenen Ausgangsgläser in Wasser Glasfritten, d.h. Glasgranulate, herge- stellt. Die Glasfritten wurden unter Verwendung von Kugel- oder Mörsermühlen auf eine Partikelgröße von < 45 µm aufgemahlen und mittels Pulverpressen zu Pulverpresslingen verpresst. Die Pulver- presslinge wurden zur Keimbildung und Kristallisation gegebenen- falls einer Wärmebehandlung bei der Temperatur TKb für eine Dauer tKb, einer ersten Wärmebehandlung bei der Temperatur TC1 für eine Dauer tC1 und einer zweiten Wärmebehandlung bei der Temperatur TC2 für eine Dauer tC2 unterworfen. In der folgenden Tabelle I bedeutet: QMK: Quarz-Mischkristallphase SP: Spodumen (LiAlSi2O6)
Glass ceramic with a quartz mixed crystal phase The invention relates to glass ceramic with a quartz mixed crystal phase, which is particularly suitable for use in dentistry and preferably for the production of dental restorations, and preliminary stages for the production of this glass ceramic. Glass ceramics with a quartz mixed crystal phase are known in principle from the prior art. DE 2507 131 A1 describes special magnesium aluminosilicate glass ceramics which contain 20 to 35% by weight Al 2 O 3 and 9 to 15% by weight MgO. Bodies made from the glass ceramics have a heterogeneous structure in that the crystal structure of the surface layer differs from that of the interior of the body. The surface compressive stress generated in this way has a significant influence on the mechanical properties, so that machining the surface layer has an adverse effect. the mechanical properties would result. High-quartz mixed crystals could be detected in the surface layer and low-quartz mixed crystals inside the bodies. JP 2000/063144 A discloses magnesium aluminosilicate glasses for the production of substrates for storage media, which have 30 to 60 mol % SiO 2 and large amounts of B 2 O 3 . GB 2172282 A describes magnesium aluminosilicate glass ceramics which contain 10 to 40% by weight Al 2 O 3 . The glass ceramics are intended for microelectronic applications and in particular as a coating for substrates such as aluminum and, in addition to high strength, they have a suitable dielectric constant in the range from 7 to 10 and high electrical resistance. WO 2012/143137 A1 describes glass-ceramic bodies which contain at least 10.1% by weight Al 2 O 3 and have different crystal phases in different areas. In the article by M. Dittmer and C. Rüssel in J. Biomed. mater Res. Part B:100B:463-470 (2012) describes glass-ceramics with a high-quartz or low-quartz mixed-crystal phase as the main crystal phase, which contain at least 25.9% by weight Al 2 O 3 . Overall, the strengths achieved with these known glass ceramics and also their optical properties are not entirely satisfactory for use as dental material. The invention is therefore based on the object of providing a glass ceramic which has a combination of high strength and good translucency. The glass ceramic should also have a thermal expansion coefficient that can be adjusted over a wide range. The glass ceramic should also be easy to process into dental restorations and should therefore be excellently suited as a restorative dental material. This object is achieved by the glass ceramic with a quartz mixed crystal phase according to claims 1 to 16 and 19. The invention also relates to the starting glass according to claims 17 to 19, the methods according to claims 20 and 23 and the use according to claims 21 and 22. The glass ceramic according to the invention is characterized in that it contains the following components: component weight % SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0.1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 and contains at least one quartz mixed crystal phase. This glass ceramic, also referred to below as “glass ceramic with a quartz mixed crystal phase”, surprisingly shows an advantageous combination of mechanical and optical properties that are desirable for a restorative dental material. The glass-ceramic has high strength and yet it can be easily shaped into a dental restoration by pressing or machining. Furthermore, it was not to be expected that very good optical properties could nevertheless be achieved by the provision of one or more quartz mixed crystal phases. This is because many secondary crystal phases have a negative effect on the optical properties of glass ceramics. For example, they can reduce the translucency and they can also impair the ability to color the glass ceramic, which can lead to considerable difficulties when imitating the color of the natural tooth material to be replaced. It has also been shown that the thermal expansion coefficient of the glass ceramics according to the invention can be changed over a wide range via the type and quantity of the quartz mixed crystal phase formed. Finally, it was also found that the glass ceramics according to the invention can be densely sintered at higher temperatures in comparison to lithium silicate quartz glass ceramics without losing their shape. The term "quartz mixed crystal phase" means a crystal phase of SiO 2 in which foreign atoms are built into the lattice of the SiO 2 either in interstitial sites or in lattice sites. These foreign atoms can in particular be Al, as well as Li, Mg and/or Zn. In this case, Al can preferably be present in a molar concentration which corresponds to the sum of the molar concentration of Li, twice the molar concentration of Mg and twice the molar concentration of Zn. In a preferred embodiment, the glass ceramic contains at least two different quartz mixed crystal phases. The at least one quartz mixed crystal phase can be both a stoichiometric and a non-stoichiometric quartz mixed crystal phase. Stoichiometric quartz mixed crystal phases are those crystal phases in which the number of silicon atoms and the number of one of the foreign atoms are in the ratio x:y, where x and y are integers in the range from 1 to 8 and in particular in the range from 1 to 5 are. In a preferred embodiment, the glass ceramic contains at least one and preferably at least two non-stoichiometric quartz mixed crystal phases. The at least one quartz mixed crystal phase can be a stoichiometric or non-stoichiometric aluminosilicate crystal phase. In a preferred embodiment contains the glass-ceramic has at least one and preferably at least two stoichiometric or non-stoichiometric aluminosilicate crystal phases. In a particularly preferred embodiment, the glass ceramic contains at least one and preferably at least two non-stoichiometric aluminosilicate crystal phases. Stoichiometric aluminosilicate crystal phases are understood as meaning crystal phases in which the number of silicon atoms and the number of aluminum atoms are in the ratio x:y, where x and y are integers in the range from 1 to 8 and in particular in the range from 1 to 5 are. Examples of stoichiometric aluminosilicate crystal phases are eucryptite (LiAlSiO 4 ), spodumene (LiAlSi 2 O 6 ), petalite (LiAlSi 4 O 10 ) and cordierite (Mg 2 Al 4 Si 5 O 18 ). The quartz mixed crystal phases of the glass ceramic according to the invention can be detected in particular by X-ray powder diffraction using Cu Kα radiation. The quartz mixed crystal phases show characteristic peak patterns, which are derived from the peak pattern of deep quartz, but are shifted towards other 2Θ values. The glass ceramic according to the invention with a quartz mixed crystal phase contains in particular 57.0 to 66.5% by weight, preferably 59.0 to 66.0% by weight and particularly preferably 62.1 to 65.5% by weight SiO 2 . It is further preferred that the glass ceramic according to the invention contains 13.3 to 18.0% by weight, preferably 16.1 to 17.5% by weight and particularly preferably 16.5 to 17.0% by weight Li 2 O. It is assumed that Li 2 O lowers the viscosity of the glass matrix and thus promotes the crystallization of the desired phases. It is also preferred that the glass ceramic contains 0.5 to 1.7% by weight, preferably 1.1 to 1.5% by weight and particularly preferably 1.2 to 1.4% by weight of K 2 O. In a preferred embodiment, the glass ceramic according to the invention contains 2.0 to 3.8% by weight and preferably 1.6 to 3.6% by weight Al 2 O 3 . In a further preferred embodiment, the glass ceramic contains 4.3 to 6.0, preferably 4.5 to 5.9 and particularly preferably 5.1 to 5.8% by weight of P 2 O 5 . It is believed that the P 2 O 5 acts as a nucleating agent. It is further preferred that the glass ceramic contains 7.2 to 13.0% by weight and preferably 9.0 to 12.0% by weight ZrO 2 . It is also preferred that the glass ceramic contains 1.0 to 8.0, preferably 1.0 to 5.5 and particularly preferably 1.5 to 2.5% by weight of oxide of monovalent elements Me I 2 O selected from the group of Na 2 O, Rb 2 O, Cs 2 O and mixtures thereof. The glass ceramic particularly preferably contains at least one and in particular all of the following oxides of monovalent elements MeI 2 O in the stated amounts: Component % by weight Na 2 O 0 to 2.0 Rb 2 O 0 to 8.0 Cs 2 O 0 bis 7.0. The glass ceramic according to the invention preferably contains 0.05 to 5.0, in particular 0.07 to 1.5, preferably 0.08 to 1.0, particularly preferably 0.09 to 0.4 and very particularly preferably 0.1 to 0 2 wt . It is assumed that oxides of divalent elements Me II O and in particular MgO promote the formation of one or more quartz solid solutions and avoid the formation of undesired crystal phases such as in particular cristobalite, which can have an adverse influence on the thermal expansion coefficient and the optical properties. In a further preferred embodiment, the glass ceramic contains less than 2.0% by weight of BaO. In particular, the glass ceramic is essentially free of BaO. The glass ceramic preferably contains at least one and in particular all of the following oxides of divalent elements Me II O in the stated amounts: Component % by weight CaO 0 to 3.0 MgO 0 to 5.0 SrO 0 to 5.0 ZnO 0 bis 3.0 A glass ceramic is also preferred which contains 0 to 5.0, preferably 1.0 to 4.0 and particularly preferably 2.0 to 3.0% by weight of oxide of trivalent elements Me III 2 O 3 from the group of B 2 O 3 , Y 2 O 3 , La 2 O 3 , Ga 2 O 3 , In 2 O 3 and mixtures thereof. The glass ceramic particularly preferably contains at least one and in particular all of the following oxides of trivalent elements Me III 2 O 3 in the specified amounts: Component % by weight B 2 O 3 0 to 4.0 Y 2 O 3 0 to 5.0 La 2 O 3 0 to 5.0 Ga 2 O 3 0 to 3.0 In 2 O 3 0 to 5.0 Furthermore, preference is given to a glass ceramic which has 0 to 10.0 and particularly preferably 0 to 8.0 wt. % Oxide of tetravalent elements Me IV O 2 selected from the group consisting of TiO 2 , SnO 2 , CeO 2 , GeO 2 and mixtures thereof. The glass ceramic particularly preferably contains at least one and in particular all of the following oxides of tetravalent elements Me IV O 2 in the stated amounts: Component % by weight TiO 2 0 to 4.0 SnO 2 0 to 3.0 GeO 2 0 to 9.0 , especially 0 to 8.0 CeO 2 0 to 4.0. In a further embodiment, the glass ceramic contains 0 to 8.0, preferably 0 to 6.0% by weight oxide of pentavalent elements MeV 2 O 5 selected from the group of V 2 O 5 , Ta 2 O 5 , Nb 2 O 5 and mixtures thereof. The glass ceramic particularly preferably contains at least one and in particular all of the following oxides of pentavalent elements Me V 2 O 5 in the specified amounts: Component % by weight V 2 O 5 0 to 2.0 Ta 2 O 5 0 to 5.0 Nb 2 O 5 0 to 5.0 In a further embodiment, the glass ceramic contains 0 to 5.0, preferably 0 to 4.0% by weight of oxide of the hexavalent element Me VI O 3 selected from the group consisting of WO 3 , MoO 3 and mixtures thereof . The glass ceramic particularly preferably contains at least one and in particular all of the following oxides Me VI O 3 in the stated amounts: Component % by weight WO 3 0 to 3.0 MoO 3 0 to 3.0 In a further embodiment, the glass ceramic according to the invention contains 0 to 1.0% by weight and in particular 0 to 0.5% by weight of fluorine. Particular preference is given to a glass ceramic which contains at least one and preferably all of the following components in the stated amounts: component % by weight SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0, 1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 Me I 2 O 1.0 to 8.0 Me II O 0 to 5.0 Me III 2 O 3 1.0 to 8.0 Me IV O 2 0 to 10.0 Me V 2 O 5 0 to 8.0 Me VI O 3 0 to 5.0 fluorine 0 to 1, 0, where Me I 2 O, Me II O, Me III 2 O 3 , Me IV O 2 , MeV 2 O 5 and Me VI O 3 have the meaning given above. In a further particularly preferred embodiment, the glass-ceramic contains at least one and preferably all of the following components in the specified amounts: Component % by weight SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0 .1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 Na 2 O 0 to 2.0 Rb 2 O 0 to 8.0 Cs 2 O 0 to 7.0 CaO 0 to 3.0 MgO 0 to 5.0 SrO 0 to 5, 0 ZnO 0 to 3.0 B 2 O 3 0 to 4.0 Y 2 O 3 0 to 5.0 La 2 O 3 0 to 5.0 Ga 2 O 3 0 to 3.0 In 2 O 3 0 to 5 .0 TiO 2 0 to 4.0 SnO 2 0 to 3.0 GeO 2 0 to 9.0, in particular 0 to 8.0 CeO 2 0 to 4.0 V 2 O 5 0 to 2.0 Ta 2 O 5 0 to 5.0 Nb 2 O 5 0 to 5.0 WO 3 0 to 3.0 MoO 3 0 to 3.0 Fluorine 0 to 1.0. Some of the above components can serve as colorants and/or fluorescers. In addition, the glass-ceramic according to the invention can also contain other coloring agents and/or fluorescent agents. These can be made, for example, from Bi 2 O 3 or Bi 2 O 5 and in particular from other inorganic pigments and/or oxides of d and f elements, such as the oxides of Mn, Fe, Co, Pr, Nd, Tb, Er, Dy, Eu and Yb can be selected. With the help of these coloring agents and fluorescent agents, the glass ceramic can be easily colored in order to imitate the desired optical properties, in particular of natural tooth material. It is surprising that this is possible without any problems despite the presence of one or more quartz mixed crystal phases. In a preferred embodiment of the glass ceramic, the molar ratio of SiO 2 to Li 2 O is in the range from 1.5 to 6.0, in particular 1.55 to 3.0, preferably 1.6 to 1.8 and particularly preferably 1.65 to 1.75. It is surprising that the production of the glass ceramic according to the invention with a quartz mixed crystal phase is successful within these broad ranges. It is further preferred that the glass ceramic according to the invention contains lithium disilicate or lithium metasilicate as further crystal phases and in particular as the main crystal phase. The glass ceramic according to the invention particularly preferably contains lithium disilicate as a further crystal phase and in particular as the main crystal phase. The term "main crystal phase" refers to the crystal phase that has the highest proportion by weight of all the crystal phases present in the glass ceramic. The determination of the amounts of the crystal phases is carried out in particular using the Rietveld method. A suitable method for the quantitative analysis of the crystal phases using the Rietveld method is, for example, in the dissertation by M. Dittmer "Glasses and glass ceramics in the system MgO-Al 2 O 3 -SiO 2 with ZrO 2 as nucleating agent", University of Jena 2011, described. It is preferred that the glass ceramic according to the invention has at least 20% by weight, preferably 25 to 55% by weight and particularly preferably 30 to 55% by weight of lithium disilicate crystals. It is further preferred that the glass ceramic according to the invention has 0.2 to 28% by weight and preferably 0.2 to 25% by weight of quartz mixed crystals. The glass ceramic according to the invention with a quartz mixed crystal phase is characterized by particularly good mechanical properties and optical properties and it can be formed by heat treating a corresponding starting glass or a corresponding starting glass with nuclei. These materials can therefore serve as precursors for the quartz solid solution glass-ceramic according to the invention. The type and in particular the quantity of the crystal phases formed can be controlled by the composition of the starting glass and the heat treatment used to produce the glass-ceramic from the starting glass. The examples illustrate this by varying the composition of the starting glass and the heat treatment applied. The glass ceramic has a high biaxial breaking strength of preferably at least 200 MPa and particularly preferably 250 to 460 MPa. The biaxial fracture strength was determined according to ISO 6872 (2008) (piston on three balls test). The glass ceramic according to the invention has in particular a thermal expansion coefficient CTE (measured in the range from 100 to 500° C.) of 3.0 to 14.0×10 -6 K -1 , preferably 5.0 to 14.0×10 -6 K -1 and more preferably 7.0 to 14.0 x 10 -6 K -1 . The CTE is determined according to ISO 6872 (2008). The thermal expansion coefficient is adjusted to a desired value in particular by the type and quantity of the crystal phases present in the glass ceramic and the chemical composition of the glass ceramic. The translucency of the glass ceramic was determined in the form of the contrast value (CR value) according to British Standard BS 5612, and this contrast value was preferably 40 to 92. The present glass ceramic according to the invention special combination of properties allows it even as a dental material and to be used in particular as a material for the production of dental restorations. The invention also relates to precursors with a corresponding composition, from which the glass-ceramic according to the invention with a quartz mixed crystal phase can be produced by heat treatment. These precursors are a correspondingly composed starting glass and a correspondingly composed starting glass with nuclei. The term “corresponding composition” means that these precursors contain the same components in the same amounts as the glass ceramic, with the components being calculated as oxides as is usual with glasses and glass ceramics, with the exception of fluorine. The invention therefore also relates to a starting glass which contains the components of the glass-ceramic according to the invention with a quartz mixed crystal phase. The starting glass according to the invention therefore contains, in particular, suitable amounts of SiO 2 , Li 2 O, K 2 O, Al 2 O 3 , P 2 O 5 and ZrO 2 which are required to form the glass ceramic according to the invention with a quartz mixed crystal phase. Furthermore, the starting glass can also contain other components, as specified above for the glass-ceramic with quartz mixed crystal phase according to the invention. All such embodiments for the components of the starting glass are preferred which are also indicated as preferred for the components of the glass ceramic according to the invention with a quartz mixed crystal phase. The starting glass is particularly preferably in the form of a powder, a granulate or a powder compact pressed from a powder or granulate. In contrast to a glass monolith, such as is obtained by pouring a glass melt into a mold, the starting glass in the molds mentioned has a large inner surface on which the later crystallization of one and preferably several quartz mixed crystal phases can take place. This can have the advantage that compared to crystallization of glass monoliths, fewer heat treatment steps are required to form one or more quartz solid solutions. The invention also relates to such a starting glass containing nuclei for the crystallization of quartz mixed crystal phase. The starting glass preferably also contains nuclei for the crystallization of lithium disilicate or lithium metasilicate. The starting glass is produced in particular by melting a mixture of suitable starting materials, such as carbonates and oxides, at temperatures of, in particular, around 1500 to 1700° C. for 0.5 to 4 hours. To achieve a particularly high level of homogeneity, the glass melt obtained can be poured into water to form a glass frit, and the resulting frit is then melted again. The melt can then be poured into molds, eg steel or graphite molds, in order to produce blanks of the starting glass, so-called bulk glass blanks or monolithic blanks. These monolithic blanks are usually first stress-relieved, for example by being held at 800 to 1200° C. for 5 to 60 minutes, and then slowly cooled to room temperature. In a preferred embodiment, the melt is poured into water to make a frit. This glass frit can be processed into a powder or granules by grinding. The powder or granulate obtained in this way can preferably be pressed to give a blank, a so-called powder compact, optionally after the addition of further components such as colorants and fluorescent agents. By using several differently colored powders, multicolored blanks can be obtained in a simple manner, which have several areas with different color properties. As a result, the invention enables the production of highly aesthetic multicolored dental restorations, which can imitate the optical properties of natural tooth material particularly well. The further preliminary stage, starting glass with nuclei, can first be produced by heat treatment of the starting glass. The glass ceramic according to the invention with a quartz mixed crystal phase can then be produced by heat treatment of this further preliminary stage. Alternatively, the quartz solid solution glass-ceramic of the present invention can be formed by heat treating the starting glass. It is preferred to subject the starting glass to a heat treatment at a temperature of 400 to 600° C., in particular 450 to 550° C., for a period of in particular 5 to 120 min, preferably 10 to 60 min, in order to nucleate the starting glass with nuclei for to produce the crystallization of quartz solid solution phase. It is further preferred that the starting glass or the starting glass with nuclei undergoes at least one heat treatment at a temperature of 600 to 1000° C., preferably 650 to 900° C. and particularly preferably 750 to 900° C., for a period of in particular 1 to 240 min, preferably 5 to 120 min, and more preferably 10 to 60 min to produce the quartz solid solution glass-ceramic. In a particularly preferred embodiment, the starting glass or the starting glass with nuclei undergoes a first heat treatment at a temperature of 600 to 800° C., preferably 650 to 750° C. and particularly preferably 650 to 700° C., for a period of in particular 1 to 120 min, preferably 5 to 120 min and more preferably 10 to 60 min, and then a second heat treatment at a temperature of 750 to 950°C, preferably 800 to 900°C and more preferably 800 to 850°C for Duration of in particular 1 to 120 min, preferably 5 to 120 min and more preferably 10 to 60 min subjected. The invention therefore also relates to a method for producing the glass ceramic according to the invention with quartz mixed crystal phase in which the starting glass or the starting glass with nuclei, in particular in particulate form, preferably in the form of a powder and particularly preferably in the form of a powder compact, is subjected to at least one heat treatment in the range from 600 to 1000° C., preferably 650 to 900° C., for a duration of in particular 1 to 240 min, preferably 5 to 120 min and particularly preferably 10 to 60 min, and in particular sintered. The at least one heat treatment carried out in the method according to the invention can also be carried out as part of a hot pressing or sintering of the starting glass according to the invention or the starting glass according to the invention with nuclei. The glass ceramics according to the invention and the glasses according to the invention are present in particular as powders, granules or blanks in any shape and size, for example monolithic blanks such as platelets, cuboids or cylinders, or powder compacts. In these forms they can easily be further processed, eg to form dental restorations. However, they can also be present in the form of dental restorations, such as inlays, onlays, crowns, veneers, shells or abutments. The glass ceramics according to the invention are particularly preferably in the form of multicolored blanks, in particular multicolored presintered or sintered powder compacts. Dental restorations such as bridges, inlays, onlays, crowns, veneers, shells or abutments can be produced from the glass ceramics according to the invention and the glasses according to the invention. The invention therefore also relates to their use for producing dental restorations, in particular multicolored dental restorations. It is preferred that the glass ceramic or the glass is given the shape of the desired dental restoration by pressing or machining. The pressing usually takes place under increased pressure and increased temperature. It is preferable that the pressing is carried out at a temperature of 700 to 1200°C. It is also preferred to carry out the pressing at a pressure of 2 to 10 bar. During compression, the desired shape change is achieved through the viscous flow of the material used. The starting glass according to the invention, the starting glass with nuclei according to the invention and the glass-ceramic with quartz mixed crystal phase according to the invention can be used for the pressing. The glasses and glass ceramics according to the invention can be used in particular in the form of blanks of any shape and size, eg powder compacts, eg in unsintered, partially sintered or densely sintered form. The machining usually takes place by means of material-removing processes and in particular by milling and/or grinding. It is particularly preferred that the machining is carried out as part of a CAD/CAM process. For the machining, the starting glass according to the invention, the starting glass with nuclei according to the invention and the glass-ceramic with quartz mixed crystal phase according to the invention can be used. The glasses and glass ceramics according to the invention can be used in particular in the form of blanks, eg powder compacts, eg in unsintered, partially sintered or densely sintered form. After the desired shaped dental restoration has been produced, eg by pressing or machining, it can still be heat treated in order to reduce the porosity, eg of an inserted porous powder compact. However, the glass ceramics according to the invention and the glasses according to the invention are also suitable as a coating material for ceramics and glass ceramics, for example. The invention is therefore also based on the use of the glasses according to the invention or the invention directed according glass ceramics for coating ceramics and glass ceramics in particular. The invention also relates to a method for coating ceramics, metals, metal alloys and glass ceramics, in which glass ceramic according to the invention or glass according to the invention is applied to the corresponding substrate and exposed to elevated temperature. This can be done in particular by sintering or by joining an overlay produced using CAD-CAM with a suitable glass solder or adhesive and preferably by pressing on. In the case of sintering, the glass ceramic or the glass is applied to the material to be coated, such as ceramic or glass ceramic, in the usual way, for example as a powder, and then sintered at an elevated temperature. In the preferred pressing operation, glass ceramic according to the invention or glass according to the invention, for example in the form of powder compacts, is pressed on at an elevated temperature, for example from 700 to 1200° C., and with the application of pressure, for example from 2 to 10 bar. In particular, the methods described in EP 231773 and the press furnace disclosed there can be used for this purpose. A suitable oven is, for example, the Programat EP 5000 from Ivoclar Vivadent AG, Liechtenstein. Due to the above-described properties of the glass ceramics according to the invention and the glasses according to the invention, these are particularly suitable for use in dentistry. The invention therefore also relates to the use of the glass ceramics according to the invention or the glasses according to the invention as dental material, preferably for coating dental restorations and particularly preferably for producing dental restorations such as bridges, inlays, onlays, veneers, abutments, partial crowns, crowns or shells. The invention therefore also relates to a method for producing a dental restoration, in particular a bridge, inlay, onlay, Veneer, abutment, partial crown, crown or shell, in which the glass ceramic according to the invention or the glass according to the invention is given the shape of the desired dental restoration by pressing or by machining, in particular as part of a CAD/CAM process. It is preferably a multicolored dental restoration. With such a restoration, the optical properties of the natural tooth material can be imitated particularly well. The invention is explained in more detail below on the basis of non-limiting examples. EXAMPLES Examples 1 to 9 Composition and Crystal Phases A total of 9 glasses and glass ceramics according to the invention with the composition given in Table I were produced by melting corresponding starting glasses and subsequent heat treatment for controlled crystallization. The heat treatments used are also given in Table I. Here, T g is the glass transition temperature, determined by DSC T Kb and t Kb Temperature and time used for nucleation of the starting glass T C and t C Temperature and time used for crystallization For this purpose, the starting glasses were first prepared from conventional raw materials in a platinum-rhodium Crucible melted at 1500 to 1700°C. In Examples 1 to 3, the melts of the starting glasses were poured into graphite or steel molds to produce glass monoliths. These glass monoliths were stress relieved and slowly cooled to room temperature. They were then subjected to a first heat treatment at temperature T Kb for a duration t Kb for nucleation and then to a further heat treatment at temperature T C for a duration t C for crystallization. In Examples 4 to 9, glass frits, ie glass granules, were produced by pouring the molten starting glasses into water. The glass frits were ground to a particle size of <45 μm using ball or mortar mills and pressed into powder compacts using powder presses. The powder compacts were optionally subjected to a heat treatment at temperature T Kb for a duration t Kb , a first heat treatment at temperature T C1 for a duration t C1 and a second heat treatment at temperature T C2 for a duration for nucleation and crystallization t subject to C2 . In the following Table I: QMK: quartz mixed crystal phase SP: spodumene (LiAlSi 2 O 6 )
Tabelle I
Tabelle I (Fortsetzung)
Tabelle I (Fortsetzung)
Table I Table I (continued) Table I (continued)
Claims
Patentansprüche 1. Glaskeramik, die die folgenden Komponenten Komponente Gew.-% SiO2 54,1 bis 67,0 Li2O 13,1 bis 18,5 K2O 0,1 bis 2,0 Al2O3 1,6 bis 4,0 P2O5 4,1 bis 6,5 ZrO2 7,0 bis 13,5 und mindestens eine Quarz-Mischkristallphase enthält. Claims 1. Glass-ceramic which has the following components component % by weight SiO 2 54.1 to 67.0 Li 2 O 13.1 to 18.5 K 2 O 0.1 to 2.0 Al 2 O 3 1.6 to 4.0 P 2 O 5 4.1 to 6.5 ZrO 2 7.0 to 13.5 and at least one quartz mixed crystal phase.
2. Glaskeramik nach Anspruch 1, die mindestens zwei unterschied- liche Quarz-Mischkristallphasen enthält. 2. Glass-ceramic according to claim 1, which contains at least two different quartz mixed crystal phases.
3. Glaskeramik nach Anspruch 1 oder 2, die mindestens eine und vorzugsweise mindestens zwei stöchiometrische oder nicht- stöchiometrische Aluminosilikat-Kristallphasen und besonders bevorzugt mindestens eine und vorzugsweise mindestens zwei nicht-stöchiometrische Aluminosilikat-Kristallphasen enthält. 3. Glass-ceramic according to claim 1 or 2, which contains at least one and preferably at least two stoichiometric or non-stoichiometric aluminosilicate crystal phases and particularly preferably at least one and preferably at least two non-stoichiometric aluminosilicate crystal phases.
4. Glaskeramik nach einem der Ansprüche 1 bis 3, die 57,0 bis 66,5, bevorzugt 59,0 bis 66,0 und besonders bevorzugt 62,1 bis 65,5 Gew.-% SiO2 enthält. 5. Glaskeramik nach einem der Ansprüche 1 bis 4, die 13,3 bis 18,0, bevorzugt 16,1 bis 17,5 und besonders bevorzugt 16,4. Glass ceramic according to one of Claims 1 to 3, which contains 57.0 to 66.5% by weight, preferably 59.0 to 66.0% by weight and particularly preferably 62.1 to 65.5% by weight SiO 2 . 5. Glass ceramic according to one of claims 1 to 4, which has 13.3 to 18.0, preferably 16.1 to 17.5 and particularly preferably 16,
5 bis 17,0 Gew.-% Li2O enthält. 5 to 17.0% by weight Li 2 O.
6. Glaskeramik nach einem der Ansprüche 1 bis 5, die 0,5 bis 1,7, bevorzugt 1,1 bis 1,5 und besonders bevorzugt 1,2 bis 1,4 Gew.-% K2O enthält.
6. Glass ceramic according to one of claims 1 to 5, which contains 0.5 to 1.7, preferably 1.1 to 1.5 and particularly preferably 1.2 to 1.4% by weight of K 2 O.
7. Glaskeramik nach einem der Ansprüche 1 bis 6, die 2,0 bis 3,8 und bevorzugt 1,6 bis 3,6 Gew.-% Al2O3 enthält. 8. Glaskeramik nach einem der Ansprüche 1 bis 7, die 4,3 bis 6,0, bevorzugt 4,5 bis 5,9 und besonders bevorzugt 5,1 bis 5,7. Glass ceramic according to one of claims 1 to 6, which contains 2.0 to 3.8 and preferably 1.6 to 3.6% by weight Al 2 O 3 . 8. Glass ceramic according to one of claims 1 to 7, which is 4.3 to 6.0, preferably 4.5 to 5.9 and particularly preferably 5.1 to 5.
8 Gew.-% P2O5 enthält. contains 8% by weight P 2 O 5 .
9. Glaskeramik nach einem der Ansprüche 1 bis 8, die 7,2 bis 13,0, und bevorzugt 9,0 bis 12,0 Gew.-% ZrO2 enthält. 9. Glass ceramic according to one of claims 1 to 8, which contains 7.2 to 13.0, and preferably 9.0 to 12.0% by weight ZrO 2 .
10. Glaskeramik nach einem der Ansprüche 1 bis 9, die 1,0 bis 8,0, bevorzugt 1,0 bis 5,5 und besonders bevorzugt 1,5 bis 2,5 Gew.-% Oxid einwertiger Elemente MeI 2O ausgewählt aus der Gruppe von Na2O, Rb2O, Cs2O und Mischungen davon enthält. 10. Glass ceramic according to one of Claims 1 to 9, which has 1.0 to 8.0, preferably 1.0 to 5.5 and particularly preferably 1.5 to 2.5% by weight of oxide of monovalent elements Me I 2 O selected from the group of Na 2 O, Rb 2 O, Cs 2 O and mixtures thereof.
11. Glaskeramik nach einem der Ansprüche 1 bis 10, die 0,05 bis 5,0, insbesondere 0,07 bis 1,5, bevorzugt 0,08 bis 1,0, be- sonders bevorzugt 0,09 bis 0,4 und ganz besonders bevorzugt 0,1 bis 0,2 Gew.-% Oxid zweiwertiger Elemente MeIIO ausgewählt aus der Gruppe von CaO, MgO, SrO, ZnO und Mischungen davon enthält, wobei das MeIIO vorzugsweise MgO ist. 11. Glass ceramic according to one of claims 1 to 10, which is 0.05 to 5.0, in particular 0.07 to 1.5, preferably 0.08 to 1.0, particularly preferably 0.09 to 0.4 and very particularly preferably 0.1 to 0.2% by weight of oxide of divalent elements Me II O selected from the group consisting of CaO, MgO, SrO, ZnO and mixtures thereof, the Me II O preferably being MgO.
12. Glaskeramik nach einem der Ansprüche 1 bis 11, die 0 bis 5,0, bevorzugt 1,0 bis 4,0 und besonders bevorzugt 2,0 bis 3,0 Gew.-% Oxid dreiwertiger Elemente MeIII 2O3 ausgewählt aus der Gruppe von B2O3, Y2O3, La2O3, Ga2O3, In2O3 und Mischungen davon enthält. 12. Glass ceramic according to one of claims 1 to 11, which is selected from 0 to 5.0, preferably 1.0 to 4.0 and particularly preferably 2.0 to 3.0% by weight oxide of trivalent elements Me III 2 O 3 the group of B 2 O 3 , Y 2 O 3 , La 2 O 3 , Ga 2 O 3 , In 2 O 3 and mixtures thereof.
13. Glaskeramik nach einem der Ansprüche 1 bis 12, die SiO2 und Li2O in einem Molverhältnis im Bereich von 1,5 bis 6,0, ins- besondere 1,55 bis 3,0, bevorzugt 1,6 bis 1,8 und besonders bevorzugt 1,65 bis 1,75 enthält.
13. Glass ceramic according to one of claims 1 to 12, the SiO 2 and Li 2 O in a molar ratio in the range of 1.5 to 6.0, in particular 1.55 to 3.0, preferably 1.6 to 1, 8 and more preferably 1.65 to 1.75.
14. Glaskeramik nach einem der Ansprüche 1 bis 13, die Lithium- disilikat oder Lithiummetasilikat als Hauptkristallphase und bevorzugt Lithiumdisilikat als Hauptkristallphase enthält. 14. Glass ceramic according to one of claims 1 to 13, which contains lithium disilicate or lithium metasilicate as the main crystal phase and preferably lithium disilicate as the main crystal phase.
15. Glaskeramik nach einem der Ansprüche 1 bis 14, die mindes- tens 20 Gew.-%, bevorzugt 25 bis 55 Gew.-% und besonders bevorzugt 30 bis 55 Gew.-% Lithiumdisilikat-Kristalle auf- weist. 15. Glass ceramic according to one of claims 1 to 14, which has at least 20% by weight, preferably 25 to 55% by weight and particularly preferably 30 to 55% by weight of lithium disilicate crystals.
16. Glaskeramik nach einem der Ansprüche 1 bis 15, die 0,2 bis 28 Gew.-% und bevorzugt 0,2 bis 25 Gew.-% Quarz-Mischkris- talle aufweist. 16. Glass-ceramic according to one of Claims 1 to 15, which has 0.2 to 28% by weight and preferably 0.2 to 25% by weight of quartz mixed crystals.
17. Ausgangsglas, das die Komponenten der Glaskeramik nach einem der Ansprüche 1 bis 13 enthält. 17. Starting glass containing the components of the glass ceramic according to any one of claims 1 to 13.
18. Ausgangsglas nach Anspruch 17, das Keime für die Kristallisa- tion von Quarz-Mischkristallphase und vorzugsweise ferner Keime für die Kristallisation von Lithiumdisilikat oder Lithium- metasilikat enthält. 18. Starting glass according to claim 17, which contains nuclei for the crystallization of quartz mixed crystal phase and preferably also nuclei for the crystallization of lithium disilicate or lithium metasilicate.
19. Glaskeramik nach einem der Ansprüche 1 bis 16 oder Aus- gangsglas nach Anspruch 17 oder 18, wobei die Glaskeramik und das Ausgangsglas in Form von einem Pulver, einem Granulat, einem Rohling oder einer dentalen Restauration vorliegen. 19. Glass ceramic according to one of claims 1 to 16 or starting glass according to claim 17 or 18, wherein the glass ceramic and the starting glass are in the form of a powder, granules, a blank or a dental restoration.
20. Verfahren zur Herstellung der Glaskeramik gemäß einem der Ansprüche 1 bis 16, bei dem das Ausgangsglas gemäß Anspruch 17 oder 18, insbesondere in partikulärer Form, bevorzugt in Form eines Pulvers und besonders bevorzugt in Form eines Pul- verpresslings, mindestens einer Wärmebehandlung im Bereich von 600 bis 1000°C, vorzugsweise 650 bis 900°C, unterzogen und insbesondere gesintert wird.
20. A method for producing the glass ceramic according to any one of claims 1 to 16, in which the starting glass according to claim 17 or 18, in particular in particulate form, preferably in the form of a powder and particularly preferably in the form of a powder compact, at least one heat treatment in the area from 600 to 1000°C, preferably 650 to 900°C, and in particular is sintered.
21. Verwendung der Glaskeramik gemäß einem der Ansprüche 1 bis 16 oder 19 oder des Ausgangsglases gemäß einem der Ansprüche 17 bis 19 als Dentalmaterial, bevorzugt zur Beschichtung den- taler Restaurationen und besonders bevorzugt zur Herstellung dentaler Restaurationen. 21. Use of the glass ceramic according to any one of claims 1 to 16 or 19 or of the starting glass according to any one of claims 17 to 19 as a dental material, preferably for coating dental restorations and particularly preferably for producing dental restorations.
22. Verwendung zur Herstellung dentaler Restaurationen nach An- spruch 21, wobei der Glaskeramik oder dem Ausgangsglas durch Verpressen oder maschinelle Bearbeitung die Form der gewünsch- ten dentalen Restauration, insbesondere Brücke, Inlay, Onlay, Veneer, Abutment, Teilkrone, Krone oder Schale, gegeben wird. 22. Use for the production of dental restorations according to claim 21, wherein the glass ceramic or the starting glass has the shape of the desired dental restoration, in particular a bridge, inlay, onlay, veneer, abutment, partial crown, crown or shell, by pressing or machining. is given.
23. Verfahren zur Herstellung einer dentalen Restauration, ins- besondere Brücke, Inlay, Onlay, Veneer, Abutment, Teilkrone, Krone oder Schale, bei dem der Glaskeramik gemäß einem der Ansprüche 1 bis 16 oder 19 oder dem Ausgangsglas gemäß einem der Ansprüche 17 bis 19 durch Verpressen oder maschinelle Bearbeitung die Form der gewünschten dentalen Restauration gegeben wird.
23. A method for producing a dental restoration, in particular a bridge, inlay, onlay, veneer, abutment, partial crown, crown or shell, in which the glass ceramic according to one of claims 1 to 16 or 19 or the starting glass according to one of claims 17 to 19 is pressed or machined into the shape of the desired dental restoration.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP21159118.5A EP4049982A1 (en) | 2021-02-24 | 2021-02-24 | Glass ceramic with quartz mixed crystal phase |
PCT/EP2022/054010 WO2022179936A1 (en) | 2021-02-24 | 2022-02-17 | Glass ceramic comprising a quartz-mixed crystal phase |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4298071A1 true EP4298071A1 (en) | 2024-01-03 |
Family
ID=74758543
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21159118.5A Withdrawn EP4049982A1 (en) | 2021-02-24 | 2021-02-24 | Glass ceramic with quartz mixed crystal phase |
EP22706599.2A Pending EP4298071A1 (en) | 2021-02-24 | 2022-02-17 | Glass ceramic comprising a quartz-mixed crystal phase |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21159118.5A Withdrawn EP4049982A1 (en) | 2021-02-24 | 2021-02-24 | Glass ceramic with quartz mixed crystal phase |
Country Status (6)
Country | Link |
---|---|
US (1) | US20240300851A1 (en) |
EP (2) | EP4049982A1 (en) |
JP (1) | JP2024508246A (en) |
KR (1) | KR20230148339A (en) |
CN (1) | CN116917245A (en) |
WO (1) | WO2022179936A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4368587A1 (en) * | 2022-11-08 | 2024-05-15 | Ivoclar Vivadent AG | Method for producing a multi-coloured glass ceramic blank for dental purposes, multi-coloured glass ceramic blank, and use of the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD110253A1 (en) | 1974-03-21 | 1974-12-12 | ||
GB2172282B (en) | 1985-03-11 | 1988-10-05 | English Electric Co Ltd | Toughened glass-ceramics |
CH668699A5 (en) | 1986-01-17 | 1989-01-31 | Sonja Wohlwend Erne | METHOD FOR PRODUCING DENTAL SPARE PARTS. |
JP2000063144A (en) | 1998-08-11 | 2000-02-29 | Asahi Glass Co Ltd | Glass for information recording medium substrate |
US9260342B2 (en) | 2011-04-20 | 2016-02-16 | Straumann Holding Ag | Process for preparing a glass-ceramic body |
DE102016119108A1 (en) * | 2016-10-07 | 2018-04-12 | Degudent Gmbh | Lithium silicate glass ceramic |
US10857259B2 (en) * | 2017-11-28 | 2020-12-08 | Corning Incorporated | Chemically strengthened bioactive glass-ceramics |
CN112585101B (en) * | 2018-08-20 | 2023-06-02 | 康宁股份有限公司 | Glass ceramic article with improved stress distribution |
-
2021
- 2021-02-24 EP EP21159118.5A patent/EP4049982A1/en not_active Withdrawn
-
2022
- 2022-02-17 KR KR1020237031723A patent/KR20230148339A/en unknown
- 2022-02-17 US US18/547,585 patent/US20240300851A1/en active Pending
- 2022-02-17 JP JP2023548260A patent/JP2024508246A/en active Pending
- 2022-02-17 CN CN202280016330.2A patent/CN116917245A/en active Pending
- 2022-02-17 EP EP22706599.2A patent/EP4298071A1/en active Pending
- 2022-02-17 WO PCT/EP2022/054010 patent/WO2022179936A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
CN116917245A (en) | 2023-10-20 |
KR20230148339A (en) | 2023-10-24 |
JP2024508246A (en) | 2024-02-26 |
WO2022179936A1 (en) | 2022-09-01 |
EP4049982A1 (en) | 2022-08-31 |
US20240300851A1 (en) | 2024-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2765974B1 (en) | Lithium silicate glass ceramic and lithium silicate glass comprising a divalent metal oxide | |
EP2765977B1 (en) | Lithium silicate glass ceramic and lithium silicate glass comprising a monovalent metal oxide | |
EP3135641B1 (en) | Lithium silicate glass ceramic with alpha quartz | |
EP2662343B2 (en) | Lithium silicate glass ceramic and glass with ZrO2 content | |
EP2765976B1 (en) | Lithium silicate glass ceramic and lithium silicate glass comprising a tetravalent metal oxide | |
EP2765975B1 (en) | Lithium silicate glass ceramic and lithium silicate glass comprising a trivalent metal oxide | |
EP2792345B1 (en) | Lithium silicate glass ceramic and glass with caesium oxide content | |
EP2765979B1 (en) | Lithium silicate glass ceramic and lithium silicate glass comprising a pentavalent metal oxide | |
DE602004009510T2 (en) | Translucent radiopaque glass ceramics | |
EP3050856B1 (en) | Lithium silicate diopside glass ceramic | |
WO2015067643A1 (en) | Lithium disilicate-apatite glass-ceramic comprising transition metal oxide | |
EP2765978B1 (en) | Lithium silicate glass ceramic and lithium silicate glass comprising a hexavalent metal oxide | |
WO2015173394A1 (en) | Glass ceramic with sio2 as the main crystalline phase | |
EP3696149A1 (en) | Fluorescent glass ceramics and glasses containing cerium and tin | |
EP3409648A1 (en) | Lithium silicate glass ceramic with scheelite or powellite crystal phase | |
WO2022179935A1 (en) | Glass ceramic comprising quartz-mixed crystal phases | |
EP4298071A1 (en) | Glass ceramic comprising a quartz-mixed crystal phase | |
EP4201900A2 (en) | Lithium silicate glass ceramic containing tin | |
EP4382495A1 (en) | Lithium silicate glass ceramic with easy machinability | |
EP4140962A1 (en) | Lithium silicate glass ceramic which is easy to machine | |
EP4140963A1 (en) | Lithium silicate glass ceramic which is easy to machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230802 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |