[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4291408A1 - Alloy, powder, method and component - Google Patents

Alloy, powder, method and component

Info

Publication number
EP4291408A1
EP4291408A1 EP22722461.5A EP22722461A EP4291408A1 EP 4291408 A1 EP4291408 A1 EP 4291408A1 EP 22722461 A EP22722461 A EP 22722461A EP 4291408 A1 EP4291408 A1 EP 4291408A1
Authority
EP
European Patent Office
Prior art keywords
nickel
weight
tungsten
titanium
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22722461.5A
Other languages
German (de)
French (fr)
Inventor
Timo DEPKA
Phillip DRAA
Birgit Grüger
Anna Kapustina
Oliver Lüsebrink
Kirtan PATEL
Raymond G. Snider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP4291408A1 publication Critical patent/EP4291408A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades

Definitions

  • the invention relates to an alloy, a powder, a method for production using the alloy or the powder, and a component made from them.
  • Nickel-based superalloys are known as materials for high-temperature applications such as heat shields in gas turbines in combustion chambers or for turbine blades in the hot gas path. These super alloys must be resistant to oxidation at high temperatures and have high mechanical strength. In order to increase efficiency, it is advantageous that the weight is kept as low as possible, particularly in the case of rotating components such as turbine blades. It is the object of the invention to solve the above problem. The object is achieved by an alloy according to claim 1, a powder according to claim 2, a method according to claim 3 and a component according to claim 4.
  • the invention uses an improvement in the chemical composition of nickel-based superalloys in terms of improving the specific mechanical properties - by adapting suitable elements, while maintaining crack-free workability and productivity.
  • the invention is described below only by way of example.
  • the function of each element included in the high heat-resistant nickel-based alloy for carrying out the invention described above will now be described.
  • Carbon (C) is added, which, in addition to its function as a deoxidizing element, has other functions of combining with titanium (Ti), niobium (Nb), and tantalum (Ta) to form stable MC-type primary carbides to improve coarsening to suppress formation of austenitic grains during hot deformation and to improve hot lubricity.
  • the desired effect of the carbon (C) is obtained by adding an amount of at least 0.07%, but its addition of more than 0.09% forms the chain structure of the MC-type carbide and causes the generation of hot cracking emanating from this part, reducing tool life. Accordingly, carbon (C) is added in an amount of 0.07% to 0.09% by weight, preferably 0.08% by weight.
  • Chromium (Cr) forms an oxide layer with a highly tight adhesion to the surface during high temperature heating and improves oxidation resistance. In addition, chromium (Cr) can also improve hot workability.
  • the amount of chromium (Cr) ranges above 9.0% by weight but not more than 10% by weight, more preferably 9.5% by weight.
  • Tungsten (W) is an additional element that essentially strengthens the austenitic solid solution up to high temperatures. In order to obtain these effects, tungsten (W) is to be added in an amount of at least 3.0% by weight, but its excessive addition more than 3.4% by weight causes the excessive precipitation of ⁇ -W and a Decreasing both oxidation resistance and tight adhesion of an oxide film.
  • the amount of tungsten (W) is particularly preferably in the range of 3.2% by weight.
  • Molybdenum (Mo) is an element of the same group as tungsten (W), and therefore replacing part of tungsten (W) with molybdenum (Mo) can provide the same function as that of tungsten (W). However, since its effect is lower than that of tungsten (W), molybdenum (Mo) is added in a range of 1.3 wt% to 1.7 wt%, particularly at 1.5 wt%. %.
  • Aluminum (Al) is an additive element essential for forming a stable ⁇ ′ phase after tempering treatment and should be added in an amount of at least 5.0% by weight.
  • titanium (Ti) is in a range of 5.6% to 6.3% by weight, preferably 5.9% by weight.
  • a part of titanium (Ti) is combined with carbon (C) to form a stable MC-type primary carbide and has a strength-enhancing function in non- ⁇ ′-hardened alloys.
  • the balance of titanium (Ti) is in the ⁇ ′ phase in the solid-solution state, thereby strengthening the ⁇ ′ phase, and serves to improve high-temperature strength.
  • titanium (Ti) must be added in an amount of at least 1.5 wt%, but its excessive addition exceeding 3.0 wt% not only lowers the hot workability but also makes the ⁇ ′ phase unstable and causes decreases in strength after long-term use at high temperatures. Accordingly, titanium (Ti) is also preferably in the range of 1.9 wt% to 2.3 wt%. Furthermore, aluminum (Al), tantalum (Ta) and titanium (Ti) also have an important function of improving the resistance to oxidation, especially in the combination of the elements they form stable oxide layer systems.
  • niobium (Nb) and tantalum (Ta) Similar to titanium (Ti), a portion of both niobium (Nb) and tantalum (Ta) is stabilized with carbon (C) to form ler MC-type primary carbides, and they have a strength-increasing function, especially for non- ⁇ ′-hardened alloys.
  • C carbon
  • the balance of both niobium (Nb) and tantalum (Ta) is dissolved in the ⁇ ′ phase, thereby strengthening the ⁇ ′ phase solid solution, and serves to improve high-temperature strength. Accordingly, niobium (Nb) and tantalum (Ta) can be added as needed.
  • niobium (Nb) is in a range of 0.8% by weight to 1.0% by weight at the minimum.
  • Zirconium (Zr) and boron (B) are effective for improving high-temperature strength and ductility by their grain boundary active function, and at least one of them can be added in an appropriate amount to the alloy of the invention. Their effect is maintained with a small additional amount. Amounts of zirconium (Zr) and boron (B) in excess of 0.01 wt% lower the solidus temperature upon heating, thereby deteriorating hot workability. Accordingly, the upper limits of zirconium (Zr) and boron (B) are 0.010% by weight and 0.010% by weight, respectively.
  • Hafnium (Hf) reduces the susceptibility to hot cracking during casting and improves ductility, especially in DS materials with transverse columnar grains. In addition, hafnium (Hf) improves oxidation resistance. On the other hand, hafnium (Hf) lowers the melting temperature and, due to its high reactivity, can lead to reactions with the shell mold during casting. Hafnium (Hf) is therefore used with a maximum concentration of 1.5% by weight.
  • Nickel (Ni) forms a stable austenitic phase and becomes a matrix for both solid solution and ⁇ ′-phase precipitation.
  • Co cobalt
  • the nickel-based alloy therefore has, in particular consisting of (in % by weight): Carbon (C): 0.07%-0.09%, in particular 0.08%-0.09%, very particularly 0.08 %, chromium (Cr): 9.0% - 10.0%, especially 9.3% - 9.7%, very especially 9.5%, cobalt (Co): 9.7% - 10.5%, especially 10.0%, molybdenum (Mo): 1.2% - 1.8%, especially 1.5%, tungsten (W): 2.8% - 3.6%, especially 3.2%, titanium ( Ti): 1.7% - 2.5%, especially 2.1%, Aluminum (Al): 5.6% - 6.3%, especially 5.9%, Boron (B): 0.008% - 0.012%, especially 0.01%, zirconium (Zr): 0.01% -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a nickel-based alloy, comprising or in particular consisting of (in wt.%): carbon (C): 0.07% - 0.09%, in particular 0.08% - 0.09%, most particularly 0.08%, chromium (Cr): 9.0% - 10.0%, in particular 9.3% - 9.7%, most particularly 9.5%, cobalt (Co): 9.6% – 10.4%, in particular 10.0%, molybdenum (Mo): 1.3% – 1.5%, in particular 1.5%, tungsten (W): 3.0% – 3.4%, in particular 3.2%, titanium (Ti): 1.9% – 2.3%, in particular 2.1%, aluminium (Al): 5.6% – 6.3%, in particular, boron (B): 0.008% – 0.012%, in particualr, zirconium (Zr): 0.01% – 0.012%, tantalum (Ta): 1.0% – 1.4%, in particular, niobium (Nb): 0.8% - 1.0%, in particular 0.9%, silicon (Si): up to 0.011%, vanadium (V): 0.8% - 1.0%, in particular 0.9%, hafnium (Hf): 1.2% - 1.4%, in particular 1.3%, no rhenium (Re) and/or no ruthenium (Ru), nickel (Ni), in particular residual nickel (Ni), residual impurities up to 0.1%.

Description

Beschreibung Legierung, Pulver, Verfahren und Bauteil Die Erfindung betrifft eine Legierung, ein Pulver, ein Ver- fahren zur Herstellung mittels der Legierung oder des Pulvers sowie ein Bauteil daraus. Nickelbasierte Superlegierungen sind bekannt als Werkstoffe für Hochtemperaturanwendungen wie bei Gasturbinen für Hitze- schilde in Brennkammern oder auch für Turbinenschaufeln im Heißgaspfad. Diese Superlegierungen müssen bei hohen Temperaturen oxidati- onsbeständig sein sowie eine hohe mechanische Festigkeit auf- weisen. Zur Steigerung der Effizienz ist es von Vorteil, dass insbe- sondere bei rotierenden Bauteilen wie Turbinenschaufeln das Gewicht möglichst geringgehalten wird. Es ist Aufgabe der Erfindung oben genanntes Problem zu lösen. Die Aufgabe wird gelöst durch eine Legierung gemäß Anspruch 1, ein Pulver gemäß Anspruch 2, ein Verfahren gemäß Anspruch 3 und ein Bauteil gemäß Anspruch 4. Die Erfindung nutzt eine Verbesserung der chemischen Zusam- mensetzung von nickelbasierten Superlegierungen im Sinne einer Verbesserung der spezifischen mechanischen Eigenschaf- ten durch Anpassung geeigneter Elemente, dabei wird die riss- freie Verarbeitbarkeit und Produktivität beibehalten. Die Erfindung wird im Folgenden nur exemplarisch beschrieben. Es wird nun die Funktion der einzelnen, in der hochhitzebe- ständigen Nickelbasislegierung enthaltenden Elemente zur Aus- führung der oben beschriebenen Erfindung beschrieben werden. Kohlenstoff (C) wird zugesetzt, der, zusätzlich zu seiner Funktion als desoxidierendes Element, weitere Funktionen zur Verbindung mit Titan (Ti), Niob (Nb) und Tantal (Ta) zwecks Bildung stabiler MC-Typ-Primärkarbide hat, um die Vergröbe- rung austenitischer Körner während einer Heißverformung zu unterdrücken und die Heißgleitfähigkeit zu verbessern. Die gewünschte Wirkung des Kohlenstoffs(C) wird erreicht, indem man eine Menge von wenigstens 0,07% zusetzt, doch bildet des- sen Zusatz von mehr als 0,09% das Kettengefüge des MC-Typ- Karbids und verursacht die Entstehung von Warmrissen, die von diesem Teil ausgehen, so dass die Werkzeugstandzeit verrin- gert wird. Demgemäß wird Kohlenstoff (C) in einer Menge von 0,07 Gew.-% bis 0,09 Gew.-%, vorzugsweise 0,08 Gew.-% zugesetzt. Chrom (Cr) bildet eine Oxidschicht mit einer hochgradig engen Haftung an der Oberfläche während einer Erhitzung auf hohe Temperaturen und verbessert die Oxidationsbeständigkeit. Zu- sätzlich kann Chrom (Cr) auch die Warmumformbarkeit verbes- sern. Diese Wirkung erfordert seinen Zusatz in einer Menge über 9,0 Gew.-%, doch dessen 10,0 Gew.-% überschreitender, übermäßiger Zusatz verursacht die Ausscheidung einer α-Phase, was von einer Verringerung der Duktilität begleitet wird. Demgemäß liegt die Menge an Chrom (Cr) in einem Bereich über 9,0 Gew.-%, jedoch nicht mehr als 10 Gew.-%, ganz vorzugswei- se bei 9,5 Gew.-%. Wolfram (W) ist ein Zusatzelement, das im Wesentlichen den austenitischen Mischkristall bis zu hohen Temperaturen ver- festigt. Um diese Wirkungen zu erzielen ist Wolfram (W) in einer Menge von wenigstens 3,0 Gew.-% zuzusetzen, doch dessen übermäßiger Zusatz von mehr als 3,4 Gew.-% verursacht die übermäßige Aus- scheidung von α-W und eine Senkung sowohl der Oxidationsbe- ständigkeit als auch der engen Haftung eines Oxidfilms. Dementsprechend ist besonders bevorzugt die Menge an Wolfram (W) im Bereich bei 3,2 Gew.-%. Molybdän (Mo) ist ein Element der gleichen Gruppe wie Wolfram (W) und daher kann der Ersatz eines Teils von Wolfram (W) durch Molybdän (Mo) die gleiche Funktion wie die von Wolfram (W) vorsehen. Da jedoch seine Wirkung geringer ist als die von Wolfram (W), setzt man Molybdän (Mo) in einem Bereich von 1,3% Gew.-% bis 1,7 Gew.-% zu, insbesondere bei 1,5 Gew.-%. Aluminium (Al) ist ein Zusatzelement, das zur Bildung einer stabilen γ′-Phase nach einer Anlassbehandlung wesentlich ist und in einer Menge von wenigstens 5,0 Gew.-% zugesetzt werden soll. Dessen 7,0 Gew.-% übersteigender Zusatz verursacht je- doch eine Steigerung der γ′-Phase und senkt die Heißverform- barkeit. Demgemäß liegt Aluminium (Al) in einem Bereich von 5,6 Gew.-% bis 6,3 Gew.-%, vorzugsweise bei 5,9 Gew.-%. Ein Teil des Titans (Ti) wird mit Kohlenstoff (C) zur Bildung eines stabilen MC-Typ-Primärkarbids verbunden und hat eine festigkeitserhöhende Funktion bei nicht γ′-gehärteten Legie- rungen. Der Rest von Titan (Ti) liegt in der γ′-Phase im Festlösungs- zustand vor, wodurch die γ′-Phase verfestigt wird, und dient zur Verbesserung der Hochtemperaturfestigkeit. Demgemäß muss Titan (Ti) in einer Menge von wenigstens 1,5 Gew.-% zugesetzt werden, doch dessen übermäßiger 3,0 Gew.-% übersteigender Zu- satz senkt nicht nur die Heißverformbarkeit, sondern macht auch die γ′-Phase instabil und verursacht Verringerungen der Festigkeit nach langzeitiger Verwendung bei hohen Temperatu- ren. Demgemäß liegt Titan (Ti) vorzugsweise auch im Bereich von 1,9 Gew.-% bis 2,3 Gew.-%. Weiter haben Aluminium (Al), Tantal (Ta) und Titan (Ti) auch eine wichtige Funktion der Verbesserung der Oxidationsbestän- digkeit, vor allem in der Kombination der Elemente bilden sie stabile Oxidschichtsysteme. Gleichartig wie Titan (Ti) wird ein Teil von sowohl Niob (Nb) als auch Tantal (Ta) mit Kohlenstoff (C) unter Bildung stabi- ler MC-Typ-Primärkarbide verbunden, und sie haben festig- keitssteigernde Funktion, vor allem für nicht γ′-gehärtete Legierungen. Der Rest sowohl von Niob (Nb) als auch von Tantal (Ta) liegt gelöst in der γ′-Phase vor, wodurch die γ′-Phase fester Lö- sung verfestigt wird, und dient zur Verbesserung der Hochtem- peraturfestigkeit. Dementsprechend können Niob (Nb) und Tantal (Ta) je nach Be- darf zugesetzt werden. Da jedoch deren übermäßiger Zusatz die Heißverformbarkeit verringert, liegt Niob (Nb) in einem Be- reich von 0,8 Gew.-% bis Minimum 1,0 Gew.-%. Zirkon (Zr) und Bor (B) sind zur Verbesserung der Hochtempe- raturfestigkeit und Duktilität durch ihre korngrenzenaktive Funktion wirksam, und wenigstens eines von ihnen kann der Legierung der Erfindung in einer passenden Menge zugesetzt werden. Ihre Wirkung wird bei einer geringen Zusatzmenge er- halten. Zirkon- (Zr) und Bor- (B)-Mengen von mehr als 0,01 Gew.-% senken den Solidustemperatur beim Erhitzen, wodurch die Heiß- verformbarkeit verschlechtert wird. Demgemäß sind die oberen Grenzen von Zirkon (Zr) und Bor (B) 0,010 Gew.-% bzw. 0,010 Gew.-%. Hafnium (Hf) verringert die Heißrissanfälligkeit beim Gießen und verbessert die Duktilität, insbesondere bei DS Werkstof- fen mit Stängelkörnern in Querrichtung. Außerdem verbessert Hafnium (Hf) die Oxidationsbeständigkeit. Auf der anderen Seite erniedrigt Hafnium (Hf) die Anschmelztemperatur und kann aufgrund seiner hohen Reaktivität zu Reaktionen mit der Formschale beim Gießen führen. Hafnium (Hf) wird daher mit einer Konzentration bis max. 1,5 Gew.-% eingesetzt. Nickel (Ni) bildet eine stabile austenitische Phase und wird eine Matrix für sowohl die feste Lösung als auch die Aus- scheidung der γ′-Phase. Weiter wird, da Nickel (Ni) eine fes- te Lösung mit einer großen Menge von Wolfram (W) bilden kann, eine austenitische Matrix mit einer hohen Festigkeit bei ho- hen Temperaturen erhalten, und daher ist Nickel der Rest der Legierung. Abgesehen von den oben beschriebenen Elementen können bis zu 10,4 Gew.-% Kobalt (Co) der Legierung der Erfindung zugesetzt werden. Kobalt (Co) existiert im Austenit der Matrix im Festlösungs- zustand, wodurch eine gewisse Mischkristallverfestigung er- reicht wird, und hat auch eine Wirkung zur Verbesserung der engen Haftung des Oxidfilms. Da Kobalt (Co) in der Ni-Matrix im Festlösungszustand vorliegt und da Kobalt (Co) die Aus- scheidung der γ′-Phase kaum beeinträchtigt, ist Kobalt (Co) günstig. Da Kobalt (Co) jedoch ein teures Element ist, wird dessen Zusatz in großen Mengen nicht bevorzugt. Mit diesen Anpassungen wird die Verarbeitbarkeit für einen produktiven L-PBF-Prozess mit verbesserten mechanischen Eigenschaften und gesteigerter Oxidationsbeständigkeit ge- währleistet. Die nickelbasierte Legierung weist daher erfindungsgemäß auf, insbesondere bestehend aus (in Gew.-%): Kohlenstoff (C): 0,07% – 0,09%, insbesondere 0,08% – 0,09%, ganz insbesondere 0,08%, Chrom (Cr): 9,0% – 10,0%, insbesondere 9,3% – 9,7%, ganz insbesondere 9,5%, Kobalt (Co): 9,7% - 10,5%, insbesondere 10,0%, Molybdän (Mo): 1,2% – 1,8%, insbesondere 1,5%, Wolfram (W): 2,8% – 3,6%, insbesondere 3,2%, Titan (Ti): 1,7% – 2,5%, insbesondere 2,1%, Aluminium (Al): 5,6% – 6,3%, insbesondere 5,9%, Bor (B): 0,008% – 0,012%, insbesondere 0,01%, Zirkon (Zr): 0,01% – 0,012%, insbesondere 0,01%, Tantal (Ta): 1,0% – 1,4%, insbesondere 1,2%, Niob (Nb): 0,7% – 1,1%, insbesondere 0,9%, Vanadium (V): 0,8% - 1,0%, insbesondere 0,9%, Hafnium (Hf): 1,2% - 1,4%, insbesondere 1,3%, Silizium (Si): bis zu 0,011%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel (Ni), insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. Das Bauteil ist vorzugsweise eine Komponente einer Turbine, insbesondere einer Gasturbine und dort insbesondere im „hei- ßen“ Bereich. Ausführungsbeispiele (EX1, EX2, EX3) sind in folgender Tabel- le gezeigt: Description of alloy, powder, method and component The invention relates to an alloy, a powder, a method for production using the alloy or the powder, and a component made from them. Nickel-based superalloys are known as materials for high-temperature applications such as heat shields in gas turbines in combustion chambers or for turbine blades in the hot gas path. These super alloys must be resistant to oxidation at high temperatures and have high mechanical strength. In order to increase efficiency, it is advantageous that the weight is kept as low as possible, particularly in the case of rotating components such as turbine blades. It is the object of the invention to solve the above problem. The object is achieved by an alloy according to claim 1, a powder according to claim 2, a method according to claim 3 and a component according to claim 4. The invention uses an improvement in the chemical composition of nickel-based superalloys in terms of improving the specific mechanical properties - by adapting suitable elements, while maintaining crack-free workability and productivity. The invention is described below only by way of example. The function of each element included in the high heat-resistant nickel-based alloy for carrying out the invention described above will now be described. Carbon (C) is added, which, in addition to its function as a deoxidizing element, has other functions of combining with titanium (Ti), niobium (Nb), and tantalum (Ta) to form stable MC-type primary carbides to improve coarsening to suppress formation of austenitic grains during hot deformation and to improve hot lubricity. The desired effect of the carbon (C) is obtained by adding an amount of at least 0.07%, but its addition of more than 0.09% forms the chain structure of the MC-type carbide and causes the generation of hot cracking emanating from this part, reducing tool life. Accordingly, carbon (C) is added in an amount of 0.07% to 0.09% by weight, preferably 0.08% by weight. Chromium (Cr) forms an oxide layer with a highly tight adhesion to the surface during high temperature heating and improves oxidation resistance. In addition, chromium (Cr) can also improve hot workability. This effect necessitates its addition in an amount exceeding 9.0 wt%, but its excessive addition exceeding 10.0 wt% causes precipitation of an α-phase, accompanied by a reduction in ductility. Accordingly, the amount of chromium (Cr) ranges above 9.0% by weight but not more than 10% by weight, more preferably 9.5% by weight. Tungsten (W) is an additional element that essentially strengthens the austenitic solid solution up to high temperatures. In order to obtain these effects, tungsten (W) is to be added in an amount of at least 3.0% by weight, but its excessive addition more than 3.4% by weight causes the excessive precipitation of α-W and a Decreasing both oxidation resistance and tight adhesion of an oxide film. Accordingly, the amount of tungsten (W) is particularly preferably in the range of 3.2% by weight. Molybdenum (Mo) is an element of the same group as tungsten (W), and therefore replacing part of tungsten (W) with molybdenum (Mo) can provide the same function as that of tungsten (W). However, since its effect is lower than that of tungsten (W), molybdenum (Mo) is added in a range of 1.3 wt% to 1.7 wt%, particularly at 1.5 wt%. %. Aluminum (Al) is an additive element essential for forming a stable γ′ phase after tempering treatment and should be added in an amount of at least 5.0% by weight. However, adding it in excess of 7.0% by weight causes an increase in the γ′ phase and reduces the hot deformability. Accordingly, aluminum (Al) is in a range of 5.6% to 6.3% by weight, preferably 5.9% by weight. A part of titanium (Ti) is combined with carbon (C) to form a stable MC-type primary carbide and has a strength-enhancing function in non-γ′-hardened alloys. The balance of titanium (Ti) is in the γ′ phase in the solid-solution state, thereby strengthening the γ′ phase, and serves to improve high-temperature strength. Accordingly, titanium (Ti) must be added in an amount of at least 1.5 wt%, but its excessive addition exceeding 3.0 wt% not only lowers the hot workability but also makes the γ′ phase unstable and causes decreases in strength after long-term use at high temperatures. Accordingly, titanium (Ti) is also preferably in the range of 1.9 wt% to 2.3 wt%. Furthermore, aluminum (Al), tantalum (Ta) and titanium (Ti) also have an important function of improving the resistance to oxidation, especially in the combination of the elements they form stable oxide layer systems. Similar to titanium (Ti), a portion of both niobium (Nb) and tantalum (Ta) is stabilized with carbon (C) to form ler MC-type primary carbides, and they have a strength-increasing function, especially for non-γ′-hardened alloys. The balance of both niobium (Nb) and tantalum (Ta) is dissolved in the γ′ phase, thereby strengthening the γ′ phase solid solution, and serves to improve high-temperature strength. Accordingly, niobium (Nb) and tantalum (Ta) can be added as needed. However, since their excessive addition lowers the hot workability, niobium (Nb) is in a range of 0.8% by weight to 1.0% by weight at the minimum. Zirconium (Zr) and boron (B) are effective for improving high-temperature strength and ductility by their grain boundary active function, and at least one of them can be added in an appropriate amount to the alloy of the invention. Their effect is maintained with a small additional amount. Amounts of zirconium (Zr) and boron (B) in excess of 0.01 wt% lower the solidus temperature upon heating, thereby deteriorating hot workability. Accordingly, the upper limits of zirconium (Zr) and boron (B) are 0.010% by weight and 0.010% by weight, respectively. Hafnium (Hf) reduces the susceptibility to hot cracking during casting and improves ductility, especially in DS materials with transverse columnar grains. In addition, hafnium (Hf) improves oxidation resistance. On the other hand, hafnium (Hf) lowers the melting temperature and, due to its high reactivity, can lead to reactions with the shell mold during casting. Hafnium (Hf) is therefore used with a maximum concentration of 1.5% by weight. Nickel (Ni) forms a stable austenitic phase and becomes a matrix for both solid solution and γ′-phase precipitation. Further, since nickel (Ni) can form a solid solution with a large amount of tungsten (W), an austenitic matrix with high strength at high high temperatures, and hence the remainder of the alloy is nickel. Apart from the elements described above, up to 10.4% by weight of cobalt (Co) can be added to the alloy of the invention. Cobalt (Co) exists in the austenite of the matrix in the solid solution state, thereby achieving some solid solution strengthening, and also has an effect of improving the tight adhesion of the oxide film. Since cobalt (Co) is in the solid solution state in the Ni matrix and since cobalt (Co) hardly affects the precipitation of γ′ phase, cobalt (Co) is favorable. However, since cobalt (Co) is an expensive element, its addition in large amounts is not preferred. These adjustments ensure processability for a productive L-PBF process with improved mechanical properties and increased oxidation resistance. According to the invention, the nickel-based alloy therefore has, in particular consisting of (in % by weight): Carbon (C): 0.07%-0.09%, in particular 0.08%-0.09%, very particularly 0.08 %, chromium (Cr): 9.0% - 10.0%, especially 9.3% - 9.7%, very especially 9.5%, cobalt (Co): 9.7% - 10.5%, especially 10.0%, molybdenum (Mo): 1.2% - 1.8%, especially 1.5%, tungsten (W): 2.8% - 3.6%, especially 3.2%, titanium ( Ti): 1.7% - 2.5%, especially 2.1%, Aluminum (Al): 5.6% - 6.3%, especially 5.9%, Boron (B): 0.008% - 0.012%, especially 0.01%, zirconium (Zr): 0.01% - 0.012%, especially 0.01%, tantalum (Ta): 1.0% - 1.4% , especially 1.2%, niobium (Nb): 0.7% - 1.1%, especially 0.9%, vanadium (V): 0.8% - 1.0%, especially 0.9%, hafnium (Hf): 1.2% - 1.4%, especially 1.3%, Silicon (Si): up to 0.011%, no Rhenium (Re) and/or no Ruthenium (Ru), Nickel (Ni), especially remainder nickel (Ni) residual impurities up to 0.1%. The component is preferably a component of a turbine, in particular a gas turbine and there in particular in the “hot” area. Examples (EX1, EX2, EX3) are shown in the following table:

Claims

Patentansprüche 1. Nickelbasierte Legierung, aufweisend (in Gew.-%): Kohlenstoff (C): 0,07% – 0,09%, insbesondere 0,08% – 0,09%, ganz insbesondere 0,08%, Chrom (Cr): 9,0% – 10,0%, insbesondere 9,3% – 9,7%, ganz insbesondere 9,5%, Kobalt (Co): 9,7% - 10,5%, insbesondere 10,0%, Molybdän (Mo): 1,2% – 1,8%, insbesondere 1,5%, Wolfram (W): 2,8% – 3,6%, insbesondere 3,2%, Titan (Ti): 1,7% – 2,5%, insbesondere 2,1%, Aluminium (Al): 5,6% – 6,3%, insbesondere 5,9%, Bor (B): 0,008% – 0,012%, insbesondere 0,01%, Zirkon (Zr): 0,01% – 0,012%, insbesondere 0,01%, Tantal (Ta): 1,0% – 1,4%, insbesondere 1,2%, Niob (Nb): 0,7% – 1,1%, insbesondere 0,9%, Vanadium (V): 0,8% - 1,0%, insbesondere 0,9%, Hafnium (Hf): 1,2% - 1,4%, insbesondere 1,3%, Silizium (Si): bis zu 0,011%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel (Ni), insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. 2. Pulver, aufweisend eine nickelbasierte Legierung, welche enthält (in Gew.-%): Kohlenstoff (C): 0,07% – 0,09%, insbesondere 0,08% – 0,09%, ganz insbesondere 0,08%, Chrom (Cr): 9,0% – 10,0%, insbesondere 9,3% – 9,7%, ganz insbesondere 9,5%, Kobalt (Co): 9,7% - 10,5%, insbesondere 10,0%, Molybdän (Mo): 1,2% – 1,8%, insbesondere 1,5%, Wolfram (W): 2,8% – 3,6%, insbesondere 3,2%, Titan (Ti): 1,7% – 2,5%, insbesondere 2,1%, Aluminium (Al): 5,6% – 6,3%, insbesondere 5,9%, Bor (B): 0,008% – 0,012%, insbesondere 0,01%, Zirkon (Zr): 0,01% – 0,012%, insbesondere 0,01%, Tantal (Ta): 1,0% – 1,4%, insbesondere 1,2%, Niob (Nb): 0,7% – 1,1%, insbesondere 0,9%, Vanadium (V): 0,8% - 1,0%, insbesondere 0,9%, Hafnium (Hf): 1,2% - 1,4%, insbesondere 1,3%, Silizium (Si): bis zu 0,011%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel (Ni), insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1% optional Binder oder Refraktärpartikel. 3. Verfahren, bei dem eine Legierung auf Nickelbasis verwendet wird, insbesondere für ein Gußverfahren oder ein Pulverbettverfahren, die zusammengesetzt ist aus (in Gew.-%): Kohlenstoff (C): 0,07% – 0,09%, insbesondere 0,08% – 0,09%, ganz insbesondere 0,08%, Chrom (Cr): 9,0% – 10,0%, insbesondere 9,3% – 9,7%, ganz insbesondere 9,5%, Kobalt (Co): 9,7% - 10,5%, insbesondere 10,0%, Molybdän (Mo): 1,2% – 1,8%, insbesondere 1,5%, Wolfram (W): 2,8% – 3,6%, insbesondere 3,2%, Titan (Ti): 1,7% – 2,5%, insbesondere 2,1%, Aluminium (Al): 5,6% – 6,3%, insbesondere 5,9%, Bor (B): 0,008% – 0,012%, insbesondere 0,01%, Zirkon (Zr): 0,01% – 0,012%, insbesondere 0,01%, Tantal (Ta): 1,0% – 1,4%, insbesondere 1,2%, Niob (Nb): 0,7% – 1,1%, insbesondere 0,9%, Vanadium (V): 0,8% - 1,0%, insbesondere 0,9%, Hafnium (Hf): 1,2% - 1,4%, insbesondere 1,3%, Silizium (Si): bis zu 0,011%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel (Ni), insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. 4. Bauteil, insbesondere aufweisend ein Substrat, aufweisend eine nickelbasierte Legierung, die zusammengesetzt ist aus (in Gew.-%): Kohlenstoff (C): 0,07% – 0,09%, insbesondere 0,08% – 0,09%, ganz insbesondere 0,08%, Chrom (Cr): 9,0% – 10,0%, insbesondere 9,3% – 9,7%, ganz insbesondere 9,5%, Kobalt (Co): 9,7% - 10,5%, insbesondere 10,0%, Molybdän (Mo): 1,2% – 1,8%, insbesondere 1,5%, Wolfram (W): 2,8% – 3,6%, insbesondere 3,2%, Titan (Ti): 1,7% – 2,5%, insbesondere 2,1%, Aluminium (Al): 5,6% – 6,3%, insbesondere 5,9%, Bor (B): 0,008% – 0,012%, insbesondere 0,01%, Zirkon (Zr): 0,01% – 0,012%, insbesondere 0,01%, Tantal (Ta): 1,0% – 1,4%, insbesondere 1,2%, Niob (Nb): 0,7% – 1,1%, insbesondere 0,9%, Vanadium (V): 0,8% - 1,0%, insbesondere 0,9%, Hafnium (Hf): 1,2% - 1,4%, insbesondere 1,3%, Silizium (Si): bis zu 0,011%, kein Rhenium (Re) und/oder kein Ruthenium (Ru), Nickel (Ni), insbesondere Rest Nickel (Ni) restliche Verunreinigungen bis 0,1%. Claims 1. Nickel-based alloy comprising (in % by weight): carbon (C): 0.07% - 0.09%, in particular 0.08% - 0.09%, particularly 0.08%, chromium ( Cr): 9.0% - 10.0%, especially 9.3% - 9.7%, especially 9.5%, cobalt (Co): 9.7% - 10.5%, especially 10.0 %, Molybdenum (Mo): 1.2% - 1.8%, especially 1.5%, Tungsten (W): 2.8% - 3.6%, especially 3.2%, Titanium (Ti): 1 .7% - 2.5%, especially 2.1%, aluminum (Al): 5.6% - 6.3%, especially 5.9%, boron (B): 0.008% - 0.012%, especially 0, 01%, zircon (Zr): 0.01% - 0.012%, in particular 0.01%, tantalum (Ta): 1.0% - 1.4%, in particular 1.2%, niobium (Nb): 0, 7% - 1.1%, especially 0.9%, Vanadium (V): 0.8% - 1.0%, especially 0.9%, Hafnium (Hf): 1.2% - 1.4%, in particular 1.3%, silicon (Si): up to 0.011%, no rhenium (Re) and/or no ruthenium (Ru), nickel (Ni), in particular the remainder nickel (Ni) remaining impurities up to 0.1%. 2. Powder comprising a nickel-based alloy containing (in % by weight): Carbon (C): 0.07% - 0.09%, in particular 0.08% - 0.09%, very particularly 0.08% %, chromium (Cr): 9.0% - 10.0%, especially 9.3% - 9.7%, very especially 9.5%, cobalt (Co): 9.7% - 10.5%, especially 10.0%, molybdenum (Mo): 1.2% - 1.8%, especially 1.5%, tungsten (W): 2.8% - 3.6%, especially 3.2%, titanium ( Ti): 1.7% - 2.5%, especially 2.1%, Aluminum (Al): 5.6% - 6.3%, especially 5.9%, Boron (B): 0.008% - 0.012% , especially 0.01%, zircon (Zr): 0.01% - 0.012%, especially 0.01%, tantalum (Ta): 1.0% - 1.4%, especially 1.2%, niobium (Nb ): 0.7% - 1.1%, especially 0.9%, Vanadium (V): 0.8% - 1.0%, especially 0.9%, Hafnium (Hf): 1.2% - 1 .4%, in particular 1.3%, silicon (Si): up to 0.011%, no rhenium (Re) and/or no ruthenium (Ru), nickel (Ni), in particular remainder nickel (Ni) residual impurities up to 0.1% optional binder or refractory particles. 3. Process in which a nickel-based alloy is used, in particular for a casting process or a powder bed process, which is composed of (in % by weight): Carbon (C): 0.07% - 0.09%, in particular 0 .08% - 0.09%, especially 0.08% chromium (Cr): 9.0% - 10.0%, especially 9.3% - 9.7%, especially 9.5% cobalt (Co): 9.7% - 10.5%, especially 10.0%, Molybdenum (Mo): 1.2% - 1.8%, especially 1.5%, Tungsten (W): 2.8% - 3.6%, especially 3.2%, titanium (Ti): 1.7% - 2.5%, especially 2.1%, aluminum (Al): 5.6% - 6.3%, especially 5 .9%, boron (B): 0.008% - 0.012%, in particular 0.01%, zirconium (Zr): 0.01% - 0.012%, in particular 0.01%, tantalum (Ta): 1.0% - 1.4%, especially 1.2%, niobium (Nb): 0.7% - 1.1%, especially 0.9%, vanadium (V): 0.8% - 1.0%, especially 0, 9%, Hafnium (Hf): 1.2% - 1.4%, especially 1.3%, Silicon (Si): up to 0.011%, no rhenium (Re) and/or no ruthenium (Ru), nickel (Ni), in particular remainder nickel (Ni), residual impurities up to 0.1%. 4. Component, in particular having a substrate, having a nickel-based alloy composed of (in % by weight): carbon (C): 0.07%-0.09%, in particular 0.08%-0.09% %, especially 0.08%, chromium (Cr): 9.0% - 10.0%, especially 9.3% - 9.7%, especially 9.5%, cobalt (Co): 9.7 % - 10.5%, especially 10.0%, Molybdenum (Mo): 1.2% - 1.8%, especially 1.5%, Tungsten (W): 2.8% - 3.6%, especially 3.2%, Titanium (Ti): 1.7% - 2.5%, especially 2.1%, Aluminum (Al): 5.6% - 6.3%, especially 5.9%, Boron (B ): 0.008% - 0.012%, in particular 0.01%, zirconium (Zr): 0.01% - 0.012%, in particular 0.01%, tantalum (Ta): 1.0% - 1.4%, in particular 1 .2%, niobium (Nb): 0.7% - 1.1%, especially 0.9%, vanadium (V): 0.8% - 1.0%, especially 0.9%, Hafnium (Hf): 1.2% - 1.4%, especially 1.3%, Silicon (Si): up to 0.011%, no rhenium (Re) and/or no ruthenium (Ru), nickel (Ni), in particular remainder nickel (Ni) residual impurities up to 0.1%.
EP22722461.5A 2021-05-11 2022-04-12 Alloy, powder, method and component Pending EP4291408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021204746.7A DE102021204746A1 (en) 2021-05-11 2021-05-11 Alloy, powder, process and component
PCT/EP2022/059718 WO2022238072A1 (en) 2021-05-11 2022-04-12 Alloy, powder, method and component

Publications (1)

Publication Number Publication Date
EP4291408A1 true EP4291408A1 (en) 2023-12-20

Family

ID=81598012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22722461.5A Pending EP4291408A1 (en) 2021-05-11 2022-04-12 Alloy, powder, method and component

Country Status (6)

Country Link
US (1) US20240240288A1 (en)
EP (1) EP4291408A1 (en)
KR (1) KR20240005035A (en)
CN (1) CN117295612A (en)
DE (1) DE102021204746A1 (en)
WO (1) WO2022238072A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167636A (en) * 2000-10-30 2002-06-11 United Technol Corp <Utc> Low density oxidation resistant superalloy material capable of thermal barrier coating retention without bond coat
JP6610846B1 (en) * 2018-03-06 2019-11-27 日立金属株式会社 Manufacturing method of Ni-base superalloy and Ni-base superalloy

Also Published As

Publication number Publication date
KR20240005035A (en) 2024-01-11
CN117295612A (en) 2023-12-26
DE102021204746A1 (en) 2022-11-17
WO2022238072A1 (en) 2022-11-17
US20240240288A1 (en) 2024-07-18

Similar Documents

Publication Publication Date Title
DE602006000160T2 (en) Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy
DE69701268T2 (en) Nickel alloy for turbine engine component
DE2817321C2 (en) Corrosion-resistant nickel alloy
DE3023576A1 (en) HEAT-TREATED SINGLE-CRYSTAL SUPER ALLOY ITEM AND METHOD FOR PRODUCING THE SAME
EP3175008B1 (en) Cobalt based alloy
DE3030962A1 (en) SINGLE AND POLYCRYSTALLINE ALLOY ON NICKEL OR COBALT BASE.
DE102010037046A1 (en) Nickel base superalloys and articles
DE2445462B2 (en) Use of a nickel alloy
EP3512974B1 (en) Superalloy without titanium, powder, method and component
DE2534786A1 (en) NICKEL-CHROME-TUNGSTEN ALLOYS
EP2196550B1 (en) High temperature and oxidation resistant material on the basis of NiAl
DE69205092T2 (en) Cast alloy based on nickel.
DE2420362B2 (en)
EP3091095A1 (en) Low density rhenium-free nickel base superalloy
EP3133178B1 (en) Optimized nickel based superalloy
WO2022167363A1 (en) Alloy, in particular for additive manufacturing, powder, method and product
EP4291408A1 (en) Alloy, powder, method and component
EP3918100A1 (en) Nickel-based alloy for high-temperature applications, and method
EP2788518B1 (en) Rhenium free or low rhenium nickel base superalloy
EP4288575A1 (en) Alloy, powder, method and component
WO2019233692A1 (en) Y, y&#39; hardened cobalt-nickel base alloy, powder, component, and method
DE69705959T2 (en) NICKEL BASED ALLOY AND ITEM PRODUCED WITH IT
DE102021203258A1 (en) Alloy, powder, process and component
WO2022171473A1 (en) Alloy, powder, method and component
WO2019233693A1 (en) Y, y&#39; hardened cobalt-nickel base alloy, powder, component, and method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)