EP4283245A1 - Tool and method for producing a projectile, and projectile - Google Patents
Tool and method for producing a projectile, and projectile Download PDFInfo
- Publication number
- EP4283245A1 EP4283245A1 EP23173741.2A EP23173741A EP4283245A1 EP 4283245 A1 EP4283245 A1 EP 4283245A1 EP 23173741 A EP23173741 A EP 23173741A EP 4283245 A1 EP4283245 A1 EP 4283245A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- projectile
- bullet
- tool
- cavity
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 230000036961 partial effect Effects 0.000 claims abstract description 35
- 239000000700 radioactive tracer Substances 0.000 claims abstract description 15
- 238000001125 extrusion Methods 0.000 claims abstract description 11
- 238000013467 fragmentation Methods 0.000 claims abstract description 10
- 238000006062 fragmentation reaction Methods 0.000 claims abstract description 10
- 238000003825 pressing Methods 0.000 claims description 39
- 239000007787 solid Substances 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 238000007493 shaping process Methods 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 10
- 230000007704 transition Effects 0.000 claims description 10
- 230000004323 axial length Effects 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052793 cadmium Inorganic materials 0.000 claims description 3
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000011133 lead Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 239000011135 tin Substances 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 239000000543 intermediate Substances 0.000 description 147
- 235000019589 hardness Nutrition 0.000 description 68
- 239000000463 material Substances 0.000 description 58
- 229910052751 metal Inorganic materials 0.000 description 26
- 239000002184 metal Substances 0.000 description 26
- 238000007906 compression Methods 0.000 description 19
- 230000006835 compression Effects 0.000 description 18
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 239000011343 solid material Substances 0.000 description 12
- 238000013461 design Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000035515 penetration Effects 0.000 description 10
- 230000008901 benefit Effects 0.000 description 8
- 230000008092 positive effect Effects 0.000 description 7
- 238000000354 decomposition reaction Methods 0.000 description 6
- 239000002360 explosive Substances 0.000 description 6
- 230000000149 penetrating effect Effects 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 3
- 238000007514 turning Methods 0.000 description 3
- 229910000760 Hardened steel Inorganic materials 0.000 description 2
- 229910000994 Tombac Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 238000004154 testing of material Methods 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009931 pascalization Methods 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003716 rejuvenation Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/72—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
- F42B12/74—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21K—MAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
- B21K21/00—Making hollow articles not covered by a single preceding sub-group
- B21K21/06—Shaping thick-walled hollow articles, e.g. projectiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/72—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
- F42B12/76—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
- F42B12/78—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing of jackets for smallarm bullets ; Jacketed bullets or projectiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B33/00—Manufacture of ammunition; Dismantling of ammunition; Apparatus therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B8/00—Practice or training ammunition
- F42B8/12—Projectiles or missiles
- F42B8/14—Projectiles or missiles disintegrating in flight or upon impact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/20—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
- F42B12/22—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/34—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect expanding before or on impact, i.e. of dumdum or mushroom type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B12/00—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
- F42B12/02—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
- F42B12/36—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information
- F42B12/38—Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect for dispensing materials; for producing chemical or physical reaction; for signalling ; for transmitting information of tracer type
Definitions
- the present invention relates to a tool and a method for manufacturing a projectile with a caliber in the range from 4.6 mm to 20 mm, in particular a deformation bullet, partial decomposition bullet, partial or full jacket bullet, hard core bullet or a tracer bullet. Furthermore, the present invention provides a projectile with a caliber in the range of 4.6 mm to 20 mm, in particular a deformation bullet, partial fragmentation bullet, partial or full jacket bullet, hard core bullet or a tracer bullet.
- the intermediate and the projectile according to DE 10 2017 011 359 A1 have generally proven themselves, as they are extremely easy to implement, but Uniform deformation of the blank can be achieved, so that a precise projectile can be provided that is optimized in terms of the deformation properties in wound ballistics, in particular for a specific area of application.
- the intermediate/projectile cold-formed in this way has proven to be advantageous, especially with regard to the desired partial decomposition-deformation behavior in wound ballistics, especially for an often limited speed range.
- the intermediates and projectiles are only partially suitable for bullet types other than deformation bullets.
- the mandrel tools are subjected to very high loads and can be improved, particularly for mass production.
- mandrel tools in particular are made of hard metal or hardened steel, even small tensile stresses can lead to violent breakage of the mandrel, as these materials are very susceptible to violent breakage under tensile stresses.
- the intermediate and the projectile are in accordance with DE 10 2017 011 359 A1 structurally limited in terms of the length-diameter ratio of the cavity.
- the cavity on the ogive side may only be approximately as deep as the diameter of the cavity. This means that a deep cavity results in a thin-walled ogive section. A thick-walled ogive section can therefore only have a minimal cavity depth. Due to these constructive constraints, the projectile is designed in such a way that it is only suitable for a limited speed range and only deforms as desired in a limited speed band.
- a projectile having a caliber in the range of 4.6 mm to 20 mm for ammunition is provided.
- the projectile can be a deformation bullet, a partial decomposition bullet, a partial or full jacket bullet, a hard core bullet or a tracer bullet.
- Caliber is generally referred to as a measure of the outside diameter of projectiles or bullets and the inside diameter of a firearm barrel.
- the core on the nose side of the bullet is not surrounded by jacket material and is exposed.
- the front of the bullet deforms due to the high pressure when it hits and penetrates the target.
- the projectile can deform into a mushroom shape (mushrooming) or at least partially deform.
- the projectile can therefore deliver its energy to the target medium much more effectively than a full-jacket bullet, in which the jacket completely surrounds the core, but has a lower penetrating power.
- Such bullets are used in particular as hunting bullets because, when shot appropriately, they lead to a quicker death of the game being shot at due to the effective energy release in the game's body than full metal jacket bullets.
- Partial decomposition bullets are usually designed in such a way that they disassemble in a controlled manner down to a defined residual body. The suction effect of the remaining body ensures that the fragments of the front, dismantled core part largely leave the target. Deformation bullets expand when they hit the target and remain stable in mass. As a rule, deformation bullets are designed in such a way that they hardly lose any weight at the target. The effect is primarily achieved by increasing the cross-section of the evenly expanding projectile and maintaining the same weight.
- Hard core bullets are also known as penetrators or AP bullets (armor piercing) and are suitable for military use against armored targets, such as armored vehicles or protective vests.
- Hard core bullets consist of usually consists of a bullet jacket and a hard core inserted and/or embedded in it.
- the hard core usually consists of pure tungsten, tungsten carbide or hardened steel with a hardness greater than 550 HV. Tungsten and tungsten carbide are ideal for penetrating ammunition for two reasons. Due to the high specific density, the tungsten core or tungsten carbide core has a high kinetic energy, which promotes penetration. Furthermore, the material is very hard, which means that the abrasive penetration process causes less damage to the core itself.
- the front part is made of hard material and the back part is made of softer material in order to make the projectile's guide band as gentle as possible when running.
- Another hard core bullet construction principle is only two parts, with a hard core being placed in a thick-walled bullet shoe.
- the bullet shoe is made of soft material, which means that the barrel-friendly aspect only comes into play because of the bullet shoe.
- Solid floors are also called solid floors or monolithic floors and are made in particular from one material.
- the bullet material is usually a soft, ductile material, preferably metal with a density of more than 5 g/cm 3 Copper, tombac, brass or even pure lead can be used as solid bullet material.
- the intended use of solid bullets is often found in special applications. For example, to be able to hit targets behind glass panes. The projectile nose is flattened so that penetrating the glass pane does not lead to a change in the trajectory.
- solid bullets can be massively formed or produced by machining. This makes this structure suitable for small and large series.
- Full jacket bullets usually have a bullet jacket made of deformable material, such as tombac, and a bullet core arranged therein, which is manufactured separately from the bullet jacket.
- the bullet core is usually made of a softer material compared to the deformable material of the jacket.
- the core represents the majority of the weight of the projectile and is preferably made of a high-density material.
- the jacket transfers the twist transmitted by the barrel to the core.
- the jacket allows a low-friction Pressing through the firearm barrel must be ensured.
- the jacket also has the task of protecting the core, which is usually made of soft material, from the considerable forces that arise when the projectile is launched and in flight.
- the full frontal enclosing of the core with the jacket prevents the projectile from opening in the wound ballistic medium and ensures a certain penetration ability on hard targets.
- the precision of the projectile as well as the aerodynamics of the full jacket bullet are reduced by the frontal enclosure of the core compared to the partial jacket bullet.
- the bullet core With a partially jacketed bullet, the bullet core is not completely covered by a jacket material, but is exposed in the area of the bullet front, which leads to the desired deformation of the projectile after it has penetrated a target.
- Tracer bullets or tracer bullets are usually used exclusively for military purposes, as they are used to mark a target to be fired at or a direction to be fired at in a training or war zone.
- the basic structure of a tracer bullet corresponds to that of a full jacket bullet.
- a pyrotechnic set is pressed into the rear. This set burns during projectile flight, ignited by the hot propellant powder when fired. This burn serves to visualize the projectile flight.
- the projectile is made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, by means of cold forming, in particular extrusion.
- the pipe section can also make up at least 60%, at least 70%, at least 80% or at least 90% of the intermediate.
- the intermediate is tubular, in particular it consists of the intermediate. It was shown that with such an intermediate with a pipe section of significant length, a particularly precise production of projectiles using much more delicate tools is possible purely through a cold forming process in a technically simple manner, with a significantly lower working pressure being able to be used for the forming process. which improves the possibility of mass production. In addition, the manufacturing tolerances have been significantly improved.
- the initial outside diameter of the intermediate was essentially corresponds to the caliber of the projectile to be manufactured, so that the metal material in the area of the outer diameter, especially near the surface, is hardly solidified or deformed on the finished projectile.
- This makes it possible to achieve a significantly more homogeneous metal structure, which has a positive effect on precision and/or a desired deformation in the case of a deformation bullet.
- the tube section also makes it possible to penetrate very deeply into the intermediate with very delicate tools, whereby very long service lives can be achieved compared to the solid body, since the tools are little affected due to the tube shape of the intermediate, especially in contrast to a solid material intermediate, as has been the case so far.
- the pipe section is particularly characterized by the fact that the outer diameter is based on the permissible tension dimension according to CIP, SAAMI or STANAG.
- the tension dimension defines the intermediate outside diameter in the range from -0.15 mm to +0.05 mm.
- a projectile with a caliber in the range of 4.6 mm to 20 mm is provided.
- the projectile is made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, in particular by means of cold forming, in particular extrusion.
- the pipe section can also make up at least 60%, at least 70%, at least 80% or at least 90% of the intermediate.
- the intermediate is tubular, in particular it consists of the intermediate.
- an inner tube diameter of the intermediate is at most 50% of an outer tube diameter of the intermediate.
- the outside diameter of the tube serves as a reference for the inside diameter of the tube, since this can be chosen so that it essentially corresponds to the caliber of the projectile to be manufactured, so that no further forming is necessary to obtain the desired dimensions.
- the thick wall thickness of the pipe section is crucial, since the pipe section is quite massive and resistant to the pressing forces that occur.
- a projectile with a caliber in the range of 4.6 mm to 20 mm is provided.
- the projectile is made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, in particular by means of cold forming, in particular extrusion.
- the pipe section can also make up at least 60%, at least 70%, at least 80% or at least 90% of the intermediate.
- the intermediate is tubular, in particular it consists of the intermediate.
- an internal cross section of the intermediate is point-symmetrical, deviates from a circular shape and is constant in the longitudinal direction.
- the internal cross section of the intermediate can therefore have any regular or irregular point-symmetrical shape.
- the outer surface of the tube forms a cylindrical surface.
- the internal projectile geometry can be easily and flexibly realized by appropriate design of the internal tube cross section, while otherwise maintaining the projectile geometry, the particular forming manufacturing process and the external shape of the projectile.
- any internal geometries with different deformation properties can be produced in a simple manner.
- a significant advantage of the fact that the defined inner contour of the intermediate is retained even after forming, in particular cold forming, of the intermediate into a projectile is that further cost reduction potential arises since simple, for example purely conical stamps can be used.
- the bullet cavity can be notched either with a segmented mandrel in a round tube-shaped intermediate or with a defined inner contour and a cone-shaped punch.
- Defined inner contours of the tubular intermediate can, for example, be star-shaped, like a non-convex regular polygon and, for example, have 10 to 100 edges of equal length.
- the projectile made from the star-shaped intermediate has a quick response at low impact speeds, due to the strong notch effect.
- Another defined inner contour is a polygon, also called a polygon, which comprises a closed line and in particular whose 5 to 50 edges are all the same length.
- the internally polygonal intermediate described previously leads to a projectile that deforms at increased impact speeds because the notch effect is weaker compared to the star-shaped intermediate.
- a projectile made from an intermediate that has an internal hexagonal shape as a defined inner contour has an even lower notch effect.
- This shape is also called polylobular and consists of 3 to 40 circular elements of equal length connected together.
- Further options for controlling the responsiveness as well as the susceptibility to decomposition are conceivable using tubular intermediates with V-shaped notches.
- the notch depth, the notch angle and/or the number of notches can vary and be adapted to the ballistic requirements. Since the intermediate according to the invention is an extrusion profile, delicate constructions with 5 to 10 deep grooves or 5 to 20 ribs are also conceivable.
- an outer diameter of the intermediate essentially corresponds to the caliber of the projectile.
- a significant advantage of this embodiment is that the external dimensioning of the intermediate is already selected such that the intermediate already has the external dimension of the projectile to be manufactured.
- the dimension-sensitive caliber of the projectile can be adjusted in a simpler and more precise manner during the blank or intermediate production, without the outer skin of the intermediate having to be changed during the subsequent, particularly cold-forming, production of the projectile shape. It has turned out that from a manufacturing perspective it is much easier to preset the outer diameter and not just during the much more complex projectile production or shaping.
- a projectile with a caliber in the range of 4.6 mm to 20 mm is provided.
- the projectile is made from an intermediate with a tube section of essentially constant wall thickness.
- the pipe section can make up at least 50%, in particular at least 60%, at least 70%, at least 80% or at least 90%, of the longitudinal extent of the intermediate.
- the intermediate is tubular, in particular it consists of the intermediate.
- the pipe section has a projectile casing surrounding a central cavity, which has a projectile front that tapers in particular in the manner of an ogive and an adjoining projectile rear with a solid rear area which opens into a floor.
- the pipe section i.e. the bullet casing with the bullet rear, bullet front and bullet base, is made in one piece.
- an average hardness on the floor of the projectile corresponds to at least 103%, in particular at least 105%, of the average hardness if the projectile were made from a solid intermediate, and / or an average hardness in the area of a jacket area of the rear of the projectile surrounding the cavity is at most 90 %, in particular at most 85% or at most 80%, corresponds to the average hardness if the projectile were made from a solid intermediate.
- the average hardness is an average value of the individual hardness values at the corresponding points or sections and is intended to indicate the trend, although it may be that the conditions described do not apply to individual values.
- the hardness values can be determined using the Vickers hardness test (HV).
- the inventors have identified individual characteristics in the hardness curve in order to distinguish a projectile produced according to the invention from previously known projectiles, which reveal numerous advantages of the present invention.
- the softer area in the rear of the bullet has a positive influence on the barrel life of the firearm and results in a longer tool life.
- a soft intermediate area of the projectile is particularly relevant for long tool life. The softer the intermediate area of the final projectile remains due to the previous operations, the The tools had to do less forming work during the operations. This results in a longer tool life.
- the hardness values are values close to the surface. For example, these can be measured a few millimeters below the outer surface of the projectile.
- the casing area of the tail of the projectile surrounding the cavity has a guide band defining a maximum outer diameter of the projectile for engaging in a pull-field profile of a firearm barrel.
- a soft guide band particularly increases the advantages described in terms of barrel life of the firearm and tool life.
- an averaged hardness of the guide band over its entire radial depth, in particular up to the cavity is softer, in particular at least 10%, at least 15% or at least 20%, softer than the averaged hardness when the projectile is made of a solid intermediate would be produced.
- the tail of the bullet in the axial projection of the cavity i.e. at the rear of the cavity, has a solidified core region which extends in the longitudinal direction of the projectile, in particular to the floor of the bullet, with a higher average hardness than the tail of the bullet areas adjacent to the core region, the average hardness of which is at least 140%, in particular at least 150% or at least 160%, corresponds to the average hardness if the projectile were made from a solid intermediate.
- the material of the projectile and/or the intermediate is copper, aluminum, iron, such as soft iron, silver, titanium, tungsten, tin, zinc, magnesium , lead, cadmium or alloys thereof.
- a tool for pressing an intermediate used in a particularly cylindrical die which has a pipe section with a cavity with a substantially constant Diameter in order to produce a projectile designed in particular according to one of the previously described aspects or exemplary embodiments with a caliber in the range of 4.6 mm to 20 mm.
- the tool can in principle be made of a rigid, in particular inelastic, material and can, for example, consist of one piece.
- the tool includes a holding section where an operator or a machine can hold and operate the tool. Furthermore, the tool has a shaping section that tapers in the direction away from the holding section with a tip, an elongated, at least partially curved, in particular concavely shaped, or conical guide part adjoining the tip for guiding the tool within the cavity of the intermediate and a projection-free part thereon subsequent at least partially curved, in particular concavely shaped, or conical pressed part with a different inclination as the guide part to the tool longitudinal axis.
- the guide part of the shaping section arranged adjacent to the tip serves to guide the tool within the cavity of the intermediate. Guiding the tool within the cavity of the intermediate has several advantages.
- the aligned tool movement in the direction of the longitudinal axis of the cavity reliably ensures that an essential aspect of the present invention, namely the ability to use lower pressing forces and more delicate tools, is retained.
- the inclination of the outer surface of the pressing part with respect to the longitudinal axis of the tool is greater than the inclination of the outer surface of the guide part with respect to the longitudinal axis of the tool.
- this makes it possible to produce a particularly delicate tool in which the guide part is thin and very elongated, so that it is possible to reach deep into the cavity of the intermediate.
- the tool according to the invention it can withstand a large number of pressing processes, in particular at least 100, 300, 500, 700 or at least 1000 pressing processes.
- an axial length of the guide part is based on an internal dimension of the intermediate coordinated so that the tool at the transition from the guide part to the pressed part has an external dimension of up to 1.4 times the diameter of the cavity.
- This geometric coordination ensures particularly good guidance of the tool within the cavity of the intermediate.
- an axial length of the guide part and/or the pressing part is at least 80% of a maximum radial distance of the cavity.
- the axial length of the guide part can be at least as large, at least 1.5 times as large or even at least twice as large as the maximum radial distance of the cavity of the intermediate.
- its cross section is point-symmetrical, particularly in the area of the guide part and/or the pressing part, and deviates from a circular shape.
- any regular or irregular point-symmetrical shapes can be considered for the outer cross section of the guide part and/or the pressed part, which can be selected depending on the desired internal geometry of the projectile to be manufactured.
- an intermediate with a tube section of essentially constant wall thickness is inserted into a particularly cylindrical die and the intermediate is cold-formed, in particular by pressing, by means of a tool designed in particular according to one of the previously described and, for example, according to one of the previously mentioned aspects of the invention or exemplary embodiments cold formed, in particular formed by extrusion, so that at least in sections the outer diameter of the intermediate remains essentially constant and determines the projectile caliber.
- a tool designed in particular according to one of the previously described and, for example, according to one of the previously mentioned aspects of the invention or exemplary embodiments cold formed, in particular formed by extrusion, so that at least in sections the outer diameter of the intermediate remains essentially constant and determines the projectile caliber.
- a tubular metallic intermediate is made in particular from copper, aluminum, iron, such as soft iron, silver, titanium, tungsten, tin, zinc, magnesium, lead, cadmium or an alloy thereof for producing a projectile in particular according to the invention, such as a deformation bullet, a partial fragmentation bullet, a partial or full jacket bullet, hard core bullet or a tracer bullet, with a caliber in the range of 4.6 mm to 20 mm for ammunition.
- the basic idea underlying the present invention in particular using a substantially exclusive cold forming process for producing a projectile, is to use a tubular intermediate, that is to say an intermediate which comprises a pipe section which essentially makes up 50% of the longitudinal extent of the intermediate, can be simple in terms of manufacturing technology Way a particularly precisely manufactured projectile that can be produced with delicate tools can be created, with a lower working pressure being required than is the case in the prior art.
- a tool designed according to the invention is used.
- a projectile according to the invention is generally provided with the reference number 1
- a compact according to the invention is generally provided with the reference number 10
- a tool according to the invention is generally provided with the reference number 100.
- an exemplary embodiment of an intermediate 3 or a countersunk intermediate 5 is shown with a pipe section 4 which serves as a bullet blank.
- the starting material for the intermediate 3 is preferably rod or wire material.
- the inner tube surface 39 of the intermediate 3, which has a tube section 4 with a substantially constant wall thickness, is defined in particular by the central cavity 45 of the tube section 4.
- the pipe section 4 is produced in particular by means of shearing, cutting, vibratory grinding or adiabatic separation.
- the resulting, preferably cleanly separated, intermediate flat surfaces 25 limit the intermediate length Longitudinal direction L.
- the intermediate flat surfaces 25 of the intermediate 3 can have different or identically shaped intermediate flat surfaces 25 due to one-sided or double-sided countersinking 19 ( Figure 2 ).
- a basic idea of the present invention is to produce a projectile 1 from a tubular intermediate 3, instead of from a solid wire blank as was previously the case.
- the thick wall thickness of the intermediate 3, which according to the exemplary embodiment consists entirely of a pipe section 4, can be seen, with a pipe section inner diameter making up approximately 1/3 of a pipe section outer diameter and being essentially constant.
- the pipe section represents at least 50% of the longitudinal extension of the intermediate 3.
- the die 7 includes a rotation-shaped die cylinder inner surface 93 with a central front side 101.
- the front side 101 of the cylindrical die 7 and the taper 95 towards the ejector side of the die 99 are responsible for the shape of the pre-press 9 and for closing the inner tube surface 39 of the rear of the projectile 51.
- the compact 10 already has a deformed, in particular convexly shaped, inner wall surface 71, which is produced by means of a tool 100 according to the invention.
- a projectile 1 according to the invention is in Figure 4 shown in a sectional view.
- the projectile 1 comprises a projectile body 13, which is made in one piece and in particular consists of a homogeneous material, for example of iron material or non-ferrous material, in particular a non-ferrous metal, in particular a copper alloy.
- the one-piece structure of the in Figure 4 Visible projectile 1 has a positive effect on the manufacturing tolerances, this has a positive effect on the imbalance and thus on the projectile precision.
- the projectile body 13 comprises a conical projectile tail 51 and a projectile front 53 that tapers like an ogive.
- the projectile front 53 is formed by a circumferential bow wall 41 which encloses a central cavity 45 that is open towards the front of the projectile 1. By bending the ogive-shaped floor front 53, a bow fold 33 is created in the bow wall 41.
- the guide band 63, the design of the cavity 45 and the choice of material and its hardness are of particular interest.
- the choice of material is preferably a material that fits into the tensile field profile of the firearm barrel with little resistance so that the projectile can be accelerated efficiently.
- the guide band 63, which is in contact with the actual tension field profile, is important here.
- the diffusion coefficient of the guide band 63 should also be as impermeable as possible to the partner material of the barrel so that cold welding is prevented.
- the low-resistance penetration of the projectile into the tensile field profile can be achieved not only by the material properties but also by the design of the cavity 45.
- the cavity 45 creates an elastic deflection possibility, which further reduces the press-through resistance.
- the tail 51 and the tail bevel 61 are of particular interest.
- the tail of the projectile can be designed in geometrically narrow tolerances through the manufacturing process in a die 7; reproducible, geometrically narrow tolerances in the tail mean high precision during projectile flight.
- the tail bevel 61 influences the aerodynamic vortex shedding during projectile flight and can thereby influence the aerodynamic resistance.
- the projectile front 53 and the tip 29 also influence the aerodynamics.
- a narrow ogive and a thin tip mean a variant with less aerodynamic drag.
- Projectile 1 shown can include a deformation bullet, a partial decomposition bullet or a partial jacket bullet, which can be designed to meet the application-specific requirements, in particular terminal ballistics.
- the diameter of the opening 35 of the projectile 1 has a significant influence on the hydrostatic pressure inside the cavity 45 of the projectile, which occurs when the projectile 1 penetrates a wound ballistics, also called gelatinous mass.
- This hydrostatic pressure ultimately has an influence on the deformation properties of the projectile 1 and thus on the energy release in the target.
- a large opening diameter means a high hydrostatic pressure and a rapid response in the gelatinous mass, whereas a smaller diameter means a slightly delayed response.
- the wall thickness of the tip 29 counteracts the opening diameter 35; the stronger the wall thickness, the stronger the hydrostatic pressure must be in order to be able to achieve an increased energy release effect in the gelatinous mass.
- the number and shape of the wall slots 43 determines the breaking behavior of the projectile 1, the more acute the wall slots 43 are, the stronger their notch effect, which leads to a radial weakening of the projectile front 53 and to a faster deformation of the projectile 1 in the gelatinous mass.
- the design of the cavity 45 has an influence on the increase in diameter of the projectile 1 after it hits the gelatinous mass.
- a short cavity 45 leads to a smaller deformation on the projectile nose 53, which leads to a reduced energy release in the gelatinous mass.
- With an elongated cavity 45 which, as in Figure 4 As can be seen, extending in the longitudinal direction L from the opening 35 to the rear of the projectile 51, an increased energy release and thus reduced penetration depth in the gelatinous mass is realized.
- an intermediate 3 made of metal is provided, preferably made of a non-ferrous metal or ferrous metal ( Figure 5 ), which is obtained from continuous tube raw material or bar material such as a tube by cutting.
- the intermediate 3 consists in particular of a homogeneous material and is constructed in one piece.
- the intermediate 3 is formed into a pre-press 9 by setting, in particular cold formed, for example by pressing or extrusion ( Figure 6 ).
- Figure 6 As from a comparison of the Figures 5 and 6
- the length of the intermediate 3 expands, with the outer diameter essentially corresponding to the caliber of the projectile 1.
- the increase in length and diameter results from the central tapered cavity section 75 introduced during setting, which extends from an end face 31 of the pre-compression 9 through the pre-compression 9 to the opposite end face 37 of the pre-compression 9.
- the introduction of wall slots 43 A segmented tool 100 causes a material shift, which manifests itself in a longitudinal expansion, in particular in the direction of the end face 31.
- the tapering cavity section 75 which is located on the opposite end face 37, is formed by a particularly convexly shaped inner wall surface 71.
- the setting can take place via a tool-die arrangement, with the external geometry of the tool 100 determining the geometry of the hollow space section 65.
- wall slots 43 oriented in the longitudinal direction L of the pre-press 9 or a pressed part 10 are cold-formed on an inner wall surface 71 of the pre-compression 9, which will be explained in detail later.
- the pre-compression 9 is pre-pressed to form the compact 10 according to the invention ( Figure 7 ).
- the blank is turned. This requires a mechanical turning operation.
- the pre-compression 9 is cold-formed in the direction of the end face 31 of the pre-compression 9, so that an ogive-like projectile front 53 is formed by compressing the front wall 41.
- the bow wall 41 is also cold-formed on the outside, in particular with the formation of bow folds 33, of a bow wall 41 which tapers at least in sections in the shape of an ogive. Due to the bow wall 41 tapering towards the tip 29, the wall thickness of the section forming the later floor front 53 increases compared to the original bow wall 41 of the pre-press 9.
- the compact 10 produced in this way consists of a metal body 113 made of a particularly homogeneous material, preferably made of iron or non-ferrous material, and is then further cold-formed to form an in Figure 8 projectile body 13 shown, which largely already has the complete geometry of the final projectile 1.
- the projectile body 13 is sharpened starting from the compact 10 in the longitudinal direction L, so that the narrowest possible tip 29 of the projectile is created, the internal geometry of the central cavity 45 being changed directly behind the opening 35, in particular widened in the direction of the rear of the projectile 51, in particular being formed into a thin channel becomes.
- a rear cavity 21 is additionally formed, which is delimited in the longitudinal direction of the projectile in the direction of the projectile front 53 by a rear cavity base section 59.
- the material of the hollow cylinder 65 flows along the tool 100 and thus defines the rear cavity wall thickness b in Figure 9 .
- the rear cavity 21 is formed by a hollow cylinder 65 and delimited by a hollow cylinder inner surface 67.
- the rear cavity 21 can be filled with another material.
- This material can include a ferrous metal, a non-ferrous metal, a polymer or a mixture of polymer and metal powder and is used to tare the weight and center of gravity or to increase penetration.
- a pipe intermediate 3 made of metal, preferably made of a non-ferrous metal or ferrous metal, is provided ( Figure 9 ), which is obtained from continuous tube raw material or bar material such as a tube by cutting.
- the intermediate 3 consists in particular of a particularly homogeneous material and is constructed in one piece.
- the intermediate 3 is formed into a pre-press 9 by setting, in particular cold formed, for example by pressing or extrusion ( Figure 10 ).
- Figure 10 As from a comparison of the Figures 9 and 10
- the length of the intermediate 3 expands, with the outer diameter essentially corresponding to the caliber of the projectile 1.
- the increase in length and diameter results from the central, initially cylindrical, then tapering cavity section 75 introduced during setting, which extends from an end face 31 of the pre-compression 9 through the pre-compression 9 to the opposite end face 37 of the pre-compression 9.
- the introduction of the wall slots 43 by the segmented tool 100 causes a material shift, which manifests itself in a longitudinal expansion, in particular in the direction of the end face 31.
- the cavity section 75 which is initially cylindrical in the longitudinal direction L and then tapers, and which extends to the opposite end face 37, is formed by a concavely shaped inner wall surface 71. Setting can be done using a tool-die arrangement, with the external geometry of the tool 100 determining the internal geometry of the hollow cylinder 65.
- the central cavity 45 Figure 10 owns compared to Figure 6 a larger volume, which results in other ballistic properties such as penetration properties similar to full metal jacket bullets.
- wall slots 43 oriented in the longitudinal direction L or in the pressing direction P of the pre-press 9 or the pre-press 10 are cold-formed on the inner wall surface 71 of the pre-press 9, which will be explained in detail later.
- the pre-compression 9 is pre-pressed to form a compact 10 ( Figure 7 ).
- the blank is turned over in a turning operation.
- the pre-compression 9 is cold-formed in the direction of the end face 31 of the pre-compression 9, so that an ogive-like projectile front 53 is formed by compressing the front wall 41.
- the bow wall 41 is also cold-formed on the outside to form a bow wall 41 that tapers at least in sections in the shape of an ogive.
- the wall thickness of the section forming the later floor front 53 increases compared to the original bow wall 41 of the pre-press 9 and the cavity 45 created when setting is due to the concave design of the tapering cavity section of the pre-press 9 constructed in an ellipsoidal manner.
- the compact 10 produced in this way consists of a metal body 113 made of a particularly homogeneous material, preferably of iron or non-ferrous material, and is then further cold-formed to form an in Figure 12 projectile body 13 shown, which largely already has the complete geometry of the final projectile 1.
- the projectile body 13 is sharpened starting from the compact 10 in the longitudinal direction L, so that the rotationally ellipsoidal cavity 45 of the projectile 1 in Figure 12 is narrower than in Figure 11 .
- Rear cavity 21 which is delimited in the longitudinal direction of the floor in the direction of the floor front 53 by a rear cavity base section 59, is formed.
- the rear cavity 21 is formed in the radial direction by a hollow cylinder 65 and delimited by a hollow cylinder inner surface 67.
- the cylindrical rear cavity 21 is delimited from the central cavity 45 by a central constriction 27.
- the rear cavity 21 can be filled with another material.
- This material can include a ferrous metal, a non-ferrous metal, a polymer or a mixture of polymer and metal powder and is used to tare the weight and center of gravity or to increase penetration.
- the increase in length and diameter results from the central cavity section 75, introduced during setting, which tapers in the direction of the opposite end face 37 and which extends from a sharp edge 23 of the pre-compression 9 through the pre-compression 9 to the opposite end face 37 of the pre-compression 9.
- Pressing in the conical tool 100 causes a material shift, which manifests itself in a longitudinal expansion, in particular in the direction of the end face 31.
- the tapered cavity section 75 which is located on the opposite end face 37, is formed by a conically shaped inner wall surface 71.
- the setting can take place via a tool-die arrangement, with the external geometry of the conical tool 100 determining the geometry of the hollow space section 65.
- the blank is turned. This requires a particularly mechanical turning operation.
- the pre-compression 9 is cold-formed in the direction of the sharp edge 23 of the pre-compression 9, so that a preliminary stage of a projectile front 53 is formed by compressing the front wall 41.
- the front wall 41 is also cold-formed on the outside to form a front wall 41 that tapers at least in sections. Due to the preferably symmetrically introduced, front and rear conical cavities, the insertion process of the stamp causes material buildup on the front side of the conical tool 47. A central constriction 27 is created which completely separates the two preferably conical cavities.
- the compact 10 produced in this way consists in particular of a metal body 113 made of homogeneous material, preferably of iron or non-ferrous material, and is then further cold-formed to form an in Figure 15 projectile body 13 shown.
- a material is filled into the cavity sections 75 on the front and rear sides, which is preferably soft and ductile and has a high material density.
- the rear filler 117 can influence the penetration properties of the projectile 1; for example, if a hard rear filler is used, the projectile 1 can penetrate deeper.
- the front filler 119 is preferably made of a ductile metal such as lead or tin and can influence the front deformation mechanism.
- the projectile body 13 is sharpened in the longitudinal direction L starting from the compact 10, so that a tip 29 of the projectile is realized.
- FIG. 17 A schematic representation of a fired, deformed projectile 33, which results from firing a projectile 1 according to the invention and striking the projectile 1 on a target, in particular a standard target, such as a gelatinous mass, is shown in Figures 17 and 18 pictured.
- the deformed projectile 49 differs from the prior art projectiles in particular in the formation of segment vanes 111 which are bent radially outwards upon impact with a target.
- the front wall 41 is torn open along the wall slots 43 and the outer surface 87 is turned outwards, with the cavity base section 57 remaining intact. This creates a Spider-like deformed bullet that is greatly expanded in relation to the longitudinal axis of the bullet, which causes increased resistance when penetrating the gelatinous mass and thus increases the energy release and reduces the penetration depth.
- the deformation behavior results, on the one hand, from the cold forming and the geometry of the central cavity 45 and, on the other hand, from the wall slots 43 made in the inner wall surface 71 of the pre-pressed part 9, which remain as slots on the finished projectile 1 on the inner wall surface 71 of the projectile front 53.
- the cold forming increases the strength of the inner wall surface 71 transversely to the longitudinal direction L compared to the strength of the inner wall surface 71 in the longitudinal direction L and the deformation behavior can be controlled in a targeted manner through the wall slots 43.
- the impact speed at which the projectile 1 begins to deform also called the response behavior, is determined by the diameter of the opening 35. As in Figure 17 can be seen, the projectile points 1 in Fig. 17 bent segment flags 111.
- the front wall 41 When hitting a target, the front wall 41 opens along the wall slots 43, during which only the rear of the projectile 51 with the cavity base section 57 remains largely undeformed.
- the length, number and depth of the wall slots 43 can be used to specifically adjust how wide the bow wall 41 opens and thus how large the expansion and bending of the segment flag 111 is. In this way, the deformation behavior of the projectile 1,33 can be changed independently of the strength of the bow wall 41.
- expensive heat treatment processes, such as annealing, after cold forming can be dispensed with and the projectile 1 according to the invention can therefore be produced particularly easily and cost-effectively.
- the impact speed of the projectile 1 on the gelatinous mass is also responsible for the final shape of the deformed projectile 49.
- Figure 17 For example, shows a deformed bullet that hit at high speed. The segment flags 111 are bent more strongly due to the hydrodynamic pressure.
- a projectile 1 is shown with an impact speed typical of a projectile, which reshapes the segment flags 111 to a smaller mass upon impact. At a different impact speed the Segment flags 111 are deformed more parallel to the longitudinal direction L, which is what the Figure 17 corresponds.
- the distance between the floor 17 and the cavity base section 57 can be designed so that a rupture disk-like pressure relief valve is implemented, with which the excess floor opening pressure can be reduced.
- the resulting hole in the floor of the bullet not only reduces the bullet opening pressure, but also has stabilizing effects in the gelatinous mass.
- Tools 100 according to the invention basically have a holding section 107 for gripping, clamping or the like of the tool 100 and a tapering shaping section 108 adjoining the holding section 107, which can also be referred to as a press head, with a press tip/guide tip 85, one on the press tip/guide tip 85 adjoining elongated, at least partially concave or conical guide part 79 for guiding the tool 100 within the cavity 45 of the pipe section 4 and an adjoining at least partially concave or conical pressed part 80 with a different inclination to the longitudinal axis of the tool.
- the conical pressing part 80 and the conical guide part 79 of the tool 100 have six segment edges 77 on an outer lateral surface 87 which are uniformly distributed in the circumferential direction and are polygonal in the radial direction from the outer lateral surface 87, and are therefore polygonal in cross section.
- the pressing part 80 merges into the guide part 79 without any projections.
- the segment edges 77 extend to the concave shaping section 89 and the convex shaping section 91 along the longitudinal direction L at the plan areas 105 of the press head 108.
- the segment edge 77 of the press head 108 can each According to the design, they have concave shaping section 89 and convex shaping section 91 ( Figures 19 and 20 ), exclusively concave shaping section 89 ( Figure 21 ) or have exclusively convex shaping section 91.
- the tool shank 83 of the tool 100 transitions in the longitudinal direction L from a round area 107 forming a holding section via a transition area 103 into a flat area 105 forming a pressing flank.
- the press head 108 is equipped with a press tip/guide tip 85, which can be segmented analogously to the number of segment edges 77.
- the axial length of the guide part 79 is matched to the inner dimension of the pipe section 4 in such a way that the tool has an outer dimension of up to 1.4 times the diameter of the cavity at the transition from the guide part 79 into the pressed part 80.
- the part of the tool 100 that is in contact with the intermediate 3 is designed such that the axial length of the guide part 79 and/or the pressing part 80 is at least 80% of a maximum radial distance of the cavity.
- Figure 22 shows an unsegmented press head 108 according to the invention, with an unsegmented press tip/guide tip 85.
- a tool 100 can be seen, which has a polygonally shaped end face 97 and rectangularly shaped segment flanks 81.
- a general advantage of the present invention is that the internal shape can be adjusted very flexibly during pipe extrusion.
- any internal geometries with different deformation properties can be produced in a simple manner in conjunction with the press head.
- Metals especially non-ferrous metals, have the property of becoming harder due to deformation. That is, a large deformation leads to a large increase in the hardness of the raw material.
- hardness curves as in Figures 34 and 35 shown, one can indirectly draw conclusions about the degree of forming and the production process.
- Fig. 34a, b and 35a, b is a sectional view of the projectile 1 according to the invention Figure 4 pictured.
- a Vickers hardness distribution is shown on the sectional view surface, and a corresponding color scale with reference values is located between the Fig. 34a, b and 35a, b .
- the Figures 34a and 34b represent a projectile 1, which is made from a solid material intermediate, this solid material can be, for example, a wire section and is cylindrical, the material is also holeless, which is why it is also called a solid intermediate.
- the Figures 35a and 35b represent a projectile 1 made from a tube
- the tubular intermediate 3 preferably consists of a tube section 4 made from the tube, whereby the tube can be either in rod form or wound up and is separated by machining or by cutting, squeezing or grinding.
- the Figures 34a and 35a show the hardness distribution of a projectile 1, manufactured from hard intermediate material.
- the projectile 34a is made of solid intermediate material
- the projectile in Figure 35a is made from a tubular intermediate 3 with wall thickness a.
- the Figures 34b and 35b show the hardness distributions of a projectile made of soft copper.
- the projectile 34b is made of a solid material intermediate manufactured, the projectile in Figure 35b is made from a tubular intermediate 3 with wall thickness a.
- Fig. 34a, b and 35a, b is to be understood as meaning that the absolute material hardness according to Vickers was determined on the finished projectile 1.
- the selected copper hardnesses differ measurably from one another; this can be done with non-destructive material testing, for example ultrasound, or with destructive material testing, for example with indenters. Such differences in hardness can arise due to different alloys, different raw material production or different post-processing, such as annealing.
- the hardness values of the tip 29 and the hardness values of the projectile front 53 of the projectile 1 are increased compared to the rest of the projectile body 13. Due to the reduced deformation during the pressing process, the projectiles 1, which are made from the tubular intermediate 3, are softer in the area of the guide band 63, compared to the projectiles which are made from a solid material intermediate, also called a wire blank. This softer area has a positive influence on the barrel life of the firearm and results in a longer tool life for the die 7 and the tool 100. A soft intermediate area of the projectile 1 is particularly relevant for long tool life. The softer the intermediate area of the final projectile 1 remains due to the previous operations, the less forming work the tools had to do during the operations. This results in a longer tool life. Accordingly, a conclusion can be drawn about the tool life from the hardness curve in the pipe projectile according to the invention.
- the area of the tip 29 marks all projectiles in the Figures 34 and 35 the hardest part due to the high degree of forming.
- hard copper there is a Vickers hardness of approx. 230 HV in the area of tip 29, regardless of the type of intermediate.
- soft copper it is approx. 170 HV, regardless of the intermediate type.
- a second increase in hardness can be seen in the area of the cavity base section 57.
- the projectile 1 which was made from the tubular intermediate 3 ( Figure 35a, b ) an increase in hardness can be seen from the cavity base section 57 through the floor to the rear constriction 11.
- the blank consists of a solid intermediate material ( Figure 34a, b )
- the increase in hardness can be seen particularly on the cavity base section 57.
- the floor 17 of the projectile 1 made from the tubular intermediate 3 has an average hardness which corresponds to at least 103%, in particular at least 105%, of the average hardness if the projectile 1 were made from a solid material and holeless intermediate. This increase in hardness has a positive influence on the ability of the firing shock to withstand, which leads to improved ballistics.
- the average hardness in the area of a jacket area of the tail of the projectile 51 surrounding the cavity 45 corresponds to at most 90%, in particular at most 85% or at most 80%, of the average hardness if the projectile 1 were made from a solid material, i.e. a solid and holeless intermediate. This has a positive effect on the load on the firearm barrel.
- the projectile 1 based on the tubular intermediate 3 has an average hardness at the tail of the projectile 51 of at least 140%, in particular at least 150% or at least 160%, which corresponds to the average hardness if the projectile were made from a solid intermediate.
- the average hardness in particular of the cylindrical region of the guide band 63 of the projectile 1 based on the tubular intermediate 3, is softer over the entire diameter, in particular at least 10%, at least 15% or at least 20%, softer than the average hardness when the projectile 1 would be made from a solid and holeless intermediate.
- the projectiles 1 made from pipe intermediate 3 are hard and inhomogeneous, particularly in the area of the tail constriction 11.
- This inhomogeneity of the hardness curve in the tail of the projectile 51 has the technical effect of stiffening the floor of the projectile 17, which has a positive effect on the internal ballistics during the acceleration process of the projectile 1.
- the hardening of the tail constriction 11 of the tail of the bullet also creates a kind of predetermined breaking point, which reduces excess hydrodynamic pressure when penetrating the gelatinous mass of the wound ballistics and stabilizes the projectile during penetration.
- a subdivision of the hardness levels is in Fig. 34a and Fig. 35a visible.
- the reference symbol w indicates zones with low hardness 120 HV.
- the reference symbol m indicates zones with medium hardness, approx. 190 HV.
- the reference symbol h denotes zones of the projectile 1 with increased hardness, approximately 230 HV.
- the surfaces enclosed by w represent the guide band 63 of the projectile 1 and, due to their soft design, can perform the function of reducing the press-through resistance through the firearm barrel.
- the hard zones on the bow wall 41 and the tail constriction 11 define the projectile according to the invention
- Fig 35a the deformation properties.
- the transition region also called the medium-hard zone m, prevents the segment vanes 111 from tearing off in the projectile 1 according to the invention, made from a tubular intermediate 3.
- the hardness zones in Project 1 made from a solid intermediate material only have limited ballistically optimized properties.
- the medium-hard zone m extends up to the guide band 63.
- the hard zone h extends over the bending point of the segment flags 111.
- the soft zone w is located exclusively in floor 17.
- the projectiles 1, which are made from the tubular intermediate 3 differ from those which are made from solid material intermediates in that the projectile front 53 has a shorter transition phase starting from the hard tip 29 with respect to the soft guide band 63.
- the hard bullet front 53 begins to become softer towards the rear of the bullet after approx. 2/3 of the ogive section and approaches the initial hardness of the intermediate.
- the bullet, made from solid material has an evenly distributed hardness on the projectile front 53; only after the section of the projectile front 53 does the transition phase of the hardness begin, which extends over the entire guide band 63.
- the technical effect of the short hardness transition phase in the floor front 53 according to Figure 35 is that the segment flags 111 can bend to the maximum without cracks occurring in the bent segment flags 111. Unloaded or unhardened material can usually be deformed/bent more without damage than loaded material.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metal Extraction Processes (AREA)
- Powder Metallurgy (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm für Munition, insbesondere Deformationsgeschoss, Teilzerlegungsgeschoss, Teil- oder Vollmantelgeschoss, Hartkerngeschoss oder Leuchtspurgeschoss, wobei das Projektil aus einem Intermediat mit einem Rohrabschnitt im Wesentlichen konstanter Wandstärke, der wenigstens 50% der Längserstreckung des Intermediats ausmacht, mittels Kaltumformen, insbesondere Fließpressen, hergestellt ist.The present invention relates to a projectile with a caliber in the range of 4.6 mm to 20 mm for ammunition, in particular deformation bullet, partial fragmentation bullet, partial or full jacket bullet, hard core bullet or tracer bullet, the projectile being made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, is produced by cold forming, in particular extrusion.
Description
Die vorliegende Erfindung betrifft ein Werkzeug und ein Verfahren zum Fertigen bzw. Herstellen eines Projektils mit einem Kaliber im Bereich von 4,6 mm bis 20 mm, insbesondere eines Deformationsgeschosses, Teilzerlegungsgeschosses, Teil- oder Vollmantelgeschosses, Hartkerngeschosses oder eines Leuchtspurgeschosses. Ferner stellt die vorliegende Erfindung ein Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm, insbesondere ein Deformationsgeschoss, Teilzerlegungsgeschoss, Teil- oder Vollmantelgeschoss, Hartkerngeschoss oder ein Leuchtspurgeschoss, bereit.The present invention relates to a tool and a method for manufacturing a projectile with a caliber in the range from 4.6 mm to 20 mm, in particular a deformation bullet, partial decomposition bullet, partial or full jacket bullet, hard core bullet or a tracer bullet. Furthermore, the present invention provides a projectile with a caliber in the range of 4.6 mm to 20 mm, in particular a deformation bullet, partial fragmentation bullet, partial or full jacket bullet, hard core bullet or a tracer bullet.
Aus der deutschen Patentanmeldung
Das Intermediat und das Projektil gemäß
Die starke und/oder ungünstige Belastung der Dornwerkzeuge kommt insbesondere aufgrund der ungenauen Zentrierung der Werkzeuge und der erhöhten Umformarbeit zustande. Durch die ungenaue Zentrierung können im Dorn nicht nur Druckspannungen, sondern auch Biegemomente entstehen, welche schlussendlich zu Zugspannungen führen können. Da insbesondere Dornwerkzeuge aus Hartmetall oder gehärtetem Stahl gefertigt werden, können auch kleine Zugspannungen zu einem Gewaltbruch des Dorns führen, da diese Materialien bei Zugspannungen sehr Gewaltbruchanfällig sind.The heavy and/or unfavorable load on the mandrel tools comes about in particular due to the inaccurate centering of the tools and the increased forming work. Inaccurate centering can create not only compressive stresses in the mandrel, but also bending moments, which can ultimately lead to tensile stresses. Since mandrel tools in particular are made of hard metal or hardened steel, even small tensile stresses can lead to violent breakage of the mandrel, as these materials are very susceptible to violent breakage under tensile stresses.
Aus fertigungstechnischen Gründen, insbesondere aufgrund der Intermediat-Stempelkombination, ist das Intermediat und das Projektil gemäß
Es ist Aufgabe der vorliegenden Erfindung, die Nachteile aus dem bekannten Stand der Technik zu verbessern, insbesondere ein Verfahren und ein Werkzeug zum Herstellen eines Projektils sowie ein derartiges Projektil bereitzustellen, das einfacher herzustellen ist.It is the object of the present invention to improve the disadvantages of the known prior art, in particular to provide a method and a tool for producing a projectile and such a projectile that is easier to produce.
Diese Aufgabe wird durch die Merkmale der unabhängigen Ansprüche gelöst.This task is solved by the features of the independent claims.
Gemäß einem Aspekt der vorliegenden Erfindung ist ein Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm für Munition bereitgestellt. Das Projektil kann ein Deformationsgeschoss, ein Teilzerlegungsgeschoss, ein Teil- oder Vollmantelgeschoss, ein Hartkerngeschoss oder ein Leuchtspurgeschoss sein. Das Kaliber wird im Allgemeinen als Maß für den Außendurchmesser von Projektilen bzw. Geschossen und den Innendurchmesser eines Schusswaffenlaufs bezeichnet.According to one aspect of the present invention, a projectile having a caliber in the range of 4.6 mm to 20 mm for ammunition is provided. The projectile can be a deformation bullet, a partial decomposition bullet, a partial or full jacket bullet, a hard core bullet or a tracer bullet. Caliber is generally referred to as a measure of the outside diameter of projectiles or bullets and the inside diameter of a firearm barrel.
Bei Teilmantelgeschossen oder Teilzerlegungsgeschossen ist der Kern geschossbugseitig nicht von Mantelmaterial umschlossen und liegt frei. Beim Auftreffen auf ein Ziel deformiert sich die Geschossfront durch den hohen Druck beim Aufschlag und beim Durchdringen des Ziels. Beispielsweise kann sich das Projektil pilzförmig deformieren (Aufpilzen) oder sich wenigstens teilweise deformieren. Das Projektil kann dadurch seine Energie wesentlich effektiver an das Zielmedium abgeben als ein Vollmantelgeschoss, bei dem der Mantel den Kern vollständig umgibt, hat aber eine geringere Durchschlagsleistung. Derartige Geschosse werden insbesondere als Jagdgeschosse verwendet, da diese bei waidgerechtem Schuss durch die effektive Energieabgabe im Wildkörper zuverlässiger zum schnelleren Tod des beschossenen Wildes führen als Vollmantelgeschosse. Teilzerlegungsgeschosse sind in der Regel so konstruiert, dass Sie sich bis auf einen definierten Restkörper kontrolliert zerlegen. Die Sogwirkung des Restkörpers sorgt dafür, dass die Fragmente des vorderen, zerlegten Kernteils das Ziel größtenteils verlassen. Deformationsgeschosse pilzen mit dem Auftreffen auf das Ziel auf und bleiben dabei massestabil. In der Regel sind Deformationsgeschosse so konzipiert, dass sie kaum Gewicht im Ziel verlieren. Die Wirkung wird in erster Linie durch die Querschnittsvergrößerung des sich gleichmäßig aufpilzenden Projektils und des gleichbleibenden Gewichts erzielt.In the case of partial jacket bullets or partial fragmentation bullets, the core on the nose side of the bullet is not surrounded by jacket material and is exposed. When it hits a target, the front of the bullet deforms due to the high pressure when it hits and penetrates the target. For example, the projectile can deform into a mushroom shape (mushrooming) or at least partially deform. The projectile can therefore deliver its energy to the target medium much more effectively than a full-jacket bullet, in which the jacket completely surrounds the core, but has a lower penetrating power. Such bullets are used in particular as hunting bullets because, when shot appropriately, they lead to a quicker death of the game being shot at due to the effective energy release in the game's body than full metal jacket bullets. Partial decomposition bullets are usually designed in such a way that they disassemble in a controlled manner down to a defined residual body. The suction effect of the remaining body ensures that the fragments of the front, dismantled core part largely leave the target. Deformation bullets expand when they hit the target and remain stable in mass. As a rule, deformation bullets are designed in such a way that they hardly lose any weight at the target. The effect is primarily achieved by increasing the cross-section of the evenly expanding projectile and maintaining the same weight.
Hartkerngeschosse werden auch als Penetratoren oder AP-Geschosse (Armour Piercing) bezeichnet und eigenen sich für den militärischen Einsatz gegen gepanzerte Ziele, beispielsweise gepanzerte Fahrzeuge oder Schutzwesten. Hartkerngeschosse bestehen in der Regel aus einem Geschossmantel und einem darin eingeschobenen und/oder eingebetteten harten Kern. Der harte Kern besteht meist aus reinem Wolfram, Wolframcarbid oder gehärteten Stahl mit einer Härte, welche größer als 550 HV ist. Wolfram und Wolframcarbid eignen sich aus zweierlei Hinsicht hervorragend für Penetrationsmunition. Aufgrund der hohen spezifischen Dichte besitzt der Wolframkern oder Wolframcarbidkern eine große kinetische Energie, welche penetrationsförderlich ist. Ferner ist das Material sehr hart, wodurch der abrasive Penetrationsvorgang den Kern selbst weniger schädigt. Aufgrund der Kernhärte ist der Laufverschleiß deutlich erhöht. Deshalb ist das der Kern des Projektils oft zweiteilig aufgebaut. Die vordere Partie besteht aus hartem Material und die hintere Partie ist aus weicherem Material aufgebaut, um das Führungsband des Proj ektils möglichst Laufschonend auszugestalten. Ein weiteres Hartkerngeschoss Aufbauprinzip ist nur zweiteilig, wobei ein Hartkern in einen dickwandigen Geschossschuh hineingesetzt wird. Der Geschossschuh ist aus weichem Material aufgebaut, wodurch der laufschonende Aspekt nur aufgrund des Geschossschuhs zu Tragen kommt.Hard core bullets are also known as penetrators or AP bullets (armor piercing) and are suitable for military use against armored targets, such as armored vehicles or protective vests. Hard core bullets consist of usually consists of a bullet jacket and a hard core inserted and/or embedded in it. The hard core usually consists of pure tungsten, tungsten carbide or hardened steel with a hardness greater than 550 HV. Tungsten and tungsten carbide are ideal for penetrating ammunition for two reasons. Due to the high specific density, the tungsten core or tungsten carbide core has a high kinetic energy, which promotes penetration. Furthermore, the material is very hard, which means that the abrasive penetration process causes less damage to the core itself. Due to the core hardness, barrel wear is significantly increased. That's why the core of the projectile is often constructed in two parts. The front part is made of hard material and the back part is made of softer material in order to make the projectile's guide band as gentle as possible when running. Another hard core bullet construction principle is only two parts, with a hard core being placed in a thick-walled bullet shoe. The bullet shoe is made of soft material, which means that the barrel-friendly aspect only comes into play because of the bullet shoe.
Vollgeschosse werden auch Solidgeschosse oder monolithische Geschosse genannt und sind insbesondere aus einem Material hergestellt. Das Geschossmaterial ist meist ein weiches, duktiles Material, bevorzugt Metall mit einer Dichte von mehr als 5 g/cm3 Kupfer, Tombak, Messing oder auch reines Blei kommen als Vollgeschossmaterial in Frage. Der Verwendungszweck von Vollgeschossen ist häufig bei Spezialanwendungen zu finden. Beispielsweise um Ziele hinter Glasscheiben treffen zu können. Die Projektilnase wird dabei dahingehend abgeplattet, dass ein Penetrieren der Glasscheibe nicht zu einer Abänderung der Trajektorie führt. Produktionstechnisch können Vollgeschosse massivumgeformt oder spanabhebend hergestellt werden. Dadurch ist dieser Aufbau für Kleinserien und Großserien geeignet.Solid floors are also called solid floors or monolithic floors and are made in particular from one material. The bullet material is usually a soft, ductile material, preferably metal with a density of more than 5 g/cm 3 Copper, tombac, brass or even pure lead can be used as solid bullet material. The intended use of solid bullets is often found in special applications. For example, to be able to hit targets behind glass panes. The projectile nose is flattened so that penetrating the glass pane does not lead to a change in the trajectory. In terms of production technology, solid bullets can be massively formed or produced by machining. This makes this structure suitable for small and large series.
Vollmantelgeschosse weisen in der Regel einen Geschossmantel aus verformbarem Material, wie beispielsweise Tombak, und einen darin angeordneten, , Geschosskern auf, welcher separat zu dem Geschossmantel hergestellt ist. Der Geschosskern besteht meist aus einem weicheren Material verglichen mit dem verformbaren Material des Mantels. Der Kern stellt den Hauptgewichtsanteil des Projektils dar und wird bevorzugt aus einem Material mit hoher Dichte gefertigt. Beim Vollmantelgeschoss überträgt der Mantel den vom Lauf übertragenen Drall auf den Kern. Durch den Mantel kann ein reibungsarmes Durchpressen durch den Schusswaffenlauf sichergestellt werden. Der Mantel hat ferner die Aufgabe, den meist aus weichem Material bestehenden Kern vor den erheblichen Kräften, die beim Abschuss und beim Projektilflug entstehen, zu schützen. Durch den vollumfänglichen frontseitigen Umschluss des Kerns mit dem Mantel wird ein Öffnen des Projektils im wundballistischen Medium verhindert und eine gewisse Penetrationsfähigkeit auf harte Ziele gewährleistet. Die Präzision des Projektils, wie auch die Aerodynamik sind beim Vollmantelgeschoss durch die frontseitige Umschließung des Kerns, im Vergleich zum Teilmantelgeschoss, reduziert. Beim Teilmantelgeschoss ist der Geschosskern nicht vollständig von einem Mantelmaterial umhüllt, sondern im Bereich der Geschossfront freiliegend, was nach dem Eindringen in ein Ziel zu einer gewünschten Deformierung des Projektils führt.Full jacket bullets usually have a bullet jacket made of deformable material, such as tombac, and a bullet core arranged therein, which is manufactured separately from the bullet jacket. The bullet core is usually made of a softer material compared to the deformable material of the jacket. The core represents the majority of the weight of the projectile and is preferably made of a high-density material. With a full jacket bullet, the jacket transfers the twist transmitted by the barrel to the core. The jacket allows a low-friction Pressing through the firearm barrel must be ensured. The jacket also has the task of protecting the core, which is usually made of soft material, from the considerable forces that arise when the projectile is launched and in flight. The full frontal enclosing of the core with the jacket prevents the projectile from opening in the wound ballistic medium and ensures a certain penetration ability on hard targets. The precision of the projectile as well as the aerodynamics of the full jacket bullet are reduced by the frontal enclosure of the core compared to the partial jacket bullet. With a partially jacketed bullet, the bullet core is not completely covered by a jacket material, but is exposed in the area of the bullet front, which leads to the desired deformation of the projectile after it has penetrated a target.
Leuchtspurgeschosse oder Tracergeschosse werden i.d.R. ausschließlich für militärische Zwecke verwendet, da diese zur Zielmarkierung eines zu beschießenden Ziels oder auch einer zu beschießenden Richtung im Übung- oder Kriegsgebiet verwendet werden. Der grundsätzliche Aufbau eines Leuchtspurgeschosses entspricht dem eines Vollmantelgeschosses. Im Gegensatz zum Vollmantelgeschosse wird im Heck ein pyrotechnischer Satz eingepresst. Dieser Satz brennt während dem Projektilflug, angezündet durch das heiße Treibladungspulver beim Abschuss, ab. Dieser Abbrand dient der Visualisierung des Projektilfluges.Tracer bullets or tracer bullets are usually used exclusively for military purposes, as they are used to mark a target to be fired at or a direction to be fired at in a training or war zone. The basic structure of a tracer bullet corresponds to that of a full jacket bullet. In contrast to the full jacket bullet, a pyrotechnic set is pressed into the rear. This set burns during projectile flight, ignited by the hot propellant powder when fired. This burn serves to visualize the projectile flight.
Gemäß dem ersten Aspekt der vorliegenden Erfindung ist das Projektil aus einem Intermediat mit einem Rohrabschnitt im Wesentlichen konstanter Wandstärke, der wenigstens 50% der Längserstreckung des Intermediats ausmacht, mittels Kaltumformen, insbesondere Fließpressen, hergestellt. Der Rohrabschnitt kann auch wenigstens 60%, wenigstens 70%, wenigstens 80% oder wenigstens 90% des Intermediats ausmachen. Beispielsweise ist das Intermediat rohrförmig ausgebildet, insbesondere besteht es aus dem Intermediat. Es zeigte sich, dass mit einem derartigen Intermediat mit einem Rohrabschnitt signifikanter Länge rein durch einen Kaltumformprozess auf herstellungstechnisch einfache Art und Weise eine besonders präzise Herstellung von Projektilen unter Einsatz wesentlich filigranerer Werkzeuge möglich ist, wobei ein wesentlich geringerer Arbeitsdruck für den Umformprozess benutzt werden kann, wodurch die Möglichkeit der Massenfertigung verbessert ist. Zudem sind die Fertigungstoleranzen deutlich verbessert. Als besondere Vorteile stellten sich heraus, dass der Ausgangs-Außendurchmesser des Intermediats im Wesentlichen dem Kaliber des zu fertigenden Projektils entspricht, sodass das Metallmaterial im Bereich des Außendurchmessers, insbesondere oberflächennah, kaum verfestigt oder deformiert ist am fertigen Projektil. Dadurch lässt sich eine deutlich homogenere Metallstruktur erreichen, welche sich positiv auf die Präzision und/oder eine gewünschte Deformation im Falle eines Deformationsgeschosses auswirkt. Der Rohrabschnitt ermöglicht es ferner, dass mit sehr filigranen Werkzeugen sehr tief in das Intermediat eingedrungen werden kann, wobei im Vergleich zum Vollkörper sehr hohe Standzeiten erreicht werden können, da die Werkzeuge aufgrund der Rohrform des Intermediats wenig in Mitleidenschaft gezogen werden, insbesondere im Gegensatz zu einem Vollmaterial-Intermediat, wie es bislang üblich ist.According to the first aspect of the present invention, the projectile is made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, by means of cold forming, in particular extrusion. The pipe section can also make up at least 60%, at least 70%, at least 80% or at least 90% of the intermediate. For example, the intermediate is tubular, in particular it consists of the intermediate. It was shown that with such an intermediate with a pipe section of significant length, a particularly precise production of projectiles using much more delicate tools is possible purely through a cold forming process in a technically simple manner, with a significantly lower working pressure being able to be used for the forming process. which improves the possibility of mass production. In addition, the manufacturing tolerances have been significantly improved. A particular advantage that turned out to be that the initial outside diameter of the intermediate was essentially corresponds to the caliber of the projectile to be manufactured, so that the metal material in the area of the outer diameter, especially near the surface, is hardly solidified or deformed on the finished projectile. This makes it possible to achieve a significantly more homogeneous metal structure, which has a positive effect on precision and/or a desired deformation in the case of a deformation bullet. The tube section also makes it possible to penetrate very deeply into the intermediate with very delicate tools, whereby very long service lives can be achieved compared to the solid body, since the tools are little affected due to the tube shape of the intermediate, especially in contrast to a solid material intermediate, as has been the case so far.
Der Rohrabschnitt zeichnet sich insbesondere dadurch aus, dass der Außendurchmesser sich an dem zulässigen Zug-Maß nach CIP, SAAMI oder nach STANAG orientiert. Das Zug-Maß definiert im Bereich von -0,15 mm bis +0,05 mm den Intermediats-Außendurchmesser.The pipe section is particularly characterized by the fact that the outer diameter is based on the permissible tension dimension according to CIP, SAAMI or STANAG. The tension dimension defines the intermediate outside diameter in the range from -0.15 mm to +0.05 mm.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, ist ein Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm bereitgestellt.According to a further aspect of the present invention, which is combinable with the preceding aspects and exemplary embodiments, a projectile with a caliber in the range of 4.6 mm to 20 mm is provided.
Gemäß dem weiteren Aspekt der vorliegenden Erfindung ist das Projektil aus einem Intermediat mit einem Rohrabschnitt im Wesentlichen konstanter Wandstärke, der wenigstens 50% der Längserstreckung des Intermediats ausmacht, insbesondere mittels Kaltumformen, insbesondere Fließpressen, hergestellt. Der Rohrabschnitt kann auch wenigstens 60%, wenigstens 70%, wenigstens 80% oder wenigstens 90% des Intermediats ausmachen. Beispielsweise ist das Intermediat rohrförmig ausgebildet, insbesondere besteht es aus dem Intermediat.According to the further aspect of the present invention, the projectile is made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, in particular by means of cold forming, in particular extrusion. The pipe section can also make up at least 60%, at least 70%, at least 80% or at least 90% of the intermediate. For example, the intermediate is tubular, in particular it consists of the intermediate.
Ferner beträgt gemäß dem weiteren Aspekt der vorliegenden Erfindung ein Rohrinnendurchmesser des Intermediats höchstens 50% eines Rohraußendurchmessers des Intermediats. Als Referenz für den Rohrinnendurchmesser dient der Rohraußendurchmesser, da dieser so gewählt sein kann, dass er bereits dem Kaliber des zu fertigenden Projektils im Wesentlichen entspricht, sodass keine weiteren Umformungen mehr notwendig sind, um die gewünschte Dimensionierung zu erhalten. Dadurch können Arbeitsschritte und damit Materialspannungen erzeugende und Härtezunahmen bewirkende Umformschritte eingespart werden. Gemäß diesem erfindungsgemäßen Aspekt ist die dicke Wandstärke des Rohrabschnitts entscheidend, da der Rohrabschnitt so recht massiv und widerstandsfähig gegen die auftretenden Presskräfte ist.Furthermore, according to the further aspect of the present invention, an inner tube diameter of the intermediate is at most 50% of an outer tube diameter of the intermediate. The outside diameter of the tube serves as a reference for the inside diameter of the tube, since this can be chosen so that it essentially corresponds to the caliber of the projectile to be manufactured, so that no further forming is necessary to obtain the desired dimensions. This means that work steps and thus forming steps that generate material stresses and increase hardness can be saved. According to this According to the aspect of the invention, the thick wall thickness of the pipe section is crucial, since the pipe section is quite massive and resistant to the pressing forces that occur.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, ist ein Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm bereitgestellt.According to a further aspect of the present invention, which is combinable with the preceding aspects and exemplary embodiments, a projectile with a caliber in the range of 4.6 mm to 20 mm is provided.
Gemäß dem weiteren Aspekt der vorliegenden Erfindung ist das Projektil aus einem Intermediat mit einem Rohrabschnitt im Wesentlichen konstanter Wandstärke, der wenigstens 50% der Längserstreckung des Intermediats ausmacht, insbesondere mittels Kaltumformen, insbesondere Fließpressen, hergestellt. Der Rohrabschnitt kann auch wenigstens 60%, wenigstens 70%, wenigstens 80% oder wenigstens 90% des Intermediats ausmachen. Beispielsweise ist das Intermediat rohrförmig ausgebildet, insbesondere besteht es aus dem Intermediat.According to the further aspect of the present invention, the projectile is made from an intermediate with a tube section of essentially constant wall thickness, which makes up at least 50% of the longitudinal extent of the intermediate, in particular by means of cold forming, in particular extrusion. The pipe section can also make up at least 60%, at least 70%, at least 80% or at least 90% of the intermediate. For example, the intermediate is tubular, in particular it consists of the intermediate.
Ferner ist gemäß dem weiteren Aspekt der vorliegenden Erfindung ein Innenquerschnitt des Intermediats punktsymmetrisch, weicht von einer Kreisform ab und ist in Längserstreckungsrichtung konstant. Der Innenquerschnitt des Intermediats kann somit jegliche regelmäßige oder irregelmäßige punktsymmetrische Form aufweisen. Die Rohraußenfläche bildet eine Zylindermantelfläche. Insofern lässt sich auf einfache Weise unter sonstiger Beibehaltung der Projektilgeometrie, des insbesondere umformenden Herstellungsverfahrens und der äußeren Form des Projektils beliebig und flexibel die Projektilinnengeometrie durch entsprechende Ausbildung des Rohrinnenquerschnitts realisieren. Insbesondere lassen sich beliebige Innengeometrien mit unterschiedlichen Deformationseigenschaften auf einfache Weise herstellen.Furthermore, according to the further aspect of the present invention, an internal cross section of the intermediate is point-symmetrical, deviates from a circular shape and is constant in the longitudinal direction. The internal cross section of the intermediate can therefore have any regular or irregular point-symmetrical shape. The outer surface of the tube forms a cylindrical surface. In this respect, the internal projectile geometry can be easily and flexibly realized by appropriate design of the internal tube cross section, while otherwise maintaining the projectile geometry, the particular forming manufacturing process and the external shape of the projectile. In particular, any internal geometries with different deformation properties can be produced in a simple manner.
Ein wesentlicher Vorteil der Tatsache, dass die definierte Innenkontur des Intermediats auch nach der Umformung, insbesondere Kaltumformung des Intermediats zum Projektil erhalten bleibt, besteht darin, dass weitere Kostenreduzierungspotenziale sich ergeben, da auf einfache, zum Beispiel rein kegelförmige Stempel, zurückgegriffen werden kann. Die Einkerbung des Geschossholraumes kann entweder mit einem segmentierten Dorn in ein rundrohrförmiges Intermediat oder mit einer definierten Innenkontur und einem kegelförmigen Stempel geschehen.A significant advantage of the fact that the defined inner contour of the intermediate is retained even after forming, in particular cold forming, of the intermediate into a projectile is that further cost reduction potential arises since simple, for example purely conical stamps can be used. The bullet cavity can be notched either with a segmented mandrel in a round tube-shaped intermediate or with a defined inner contour and a cone-shaped punch.
Definierte Innenkonturen des rohrförmigen Intermediats können beispielsweise sternförmig sein, wie ein nicht konvexes regelmäßiges Polygon und beispielsweise 10 bis 100 gleich lange Kanten aufweisen. Das aus dem sternförmigen Intermediat gefertigte Projektil weist ein schnelles Ansprechverhalten bei niedrigen Aufprallgeschwindigkeiten auf, dies aufgrund der starken Kerbwirkung. Eine andere definierte Innenkontur ist ein Polygon, auch Vieleck genannt, welches einen geschlossenen Streckenzug umfasst und insbesondere dessen 5 bis 50 Kanten alle gleich lang sind. Das vorher beschriebene innenvielkantige Intermediat führt zu einem Projektil, welches sich bei erhöhten Aufprallgeschwindigkeiten deformiert, da die Kerbwirkung verglichen mit dem Sternförmigen Intermediat schwächer ist. Eine nochmals geringere Kerbwirkung weist ein Projektil auf, welches aus einem Intermediat gefertigt wurde, welches eine Innensechsrundform als definierte Innenkontur aufweist, diese Form wird auch polylobulär genannt und bestehen aus 3 bis 40 gleichlangen zusammengeschlossenen Kreiselementen. Weitere Möglichkeiten zum Steuern der Ansprechempfindlichkeit wie auch der Zerlegungsanfälligkeit sind durch rohrförmige Intermediate mit V-förmigen Einkerbungen denkbar. Hierbei kann die Kerbtiefe, der Kerbwinkel und/oder die Kerbanzahl variieren und den ballistischen Anforderungen angepasst werden. Da es sich beim erfindungsgemäßen Intermediat um eine Extrusionsprofil handelt, sind auch filigrane Konstruktionen mit 5 bis 10 tiefen Nuten oder 5 bis 20 Rippen denkbar.Defined inner contours of the tubular intermediate can, for example, be star-shaped, like a non-convex regular polygon and, for example, have 10 to 100 edges of equal length. The projectile made from the star-shaped intermediate has a quick response at low impact speeds, due to the strong notch effect. Another defined inner contour is a polygon, also called a polygon, which comprises a closed line and in particular whose 5 to 50 edges are all the same length. The internally polygonal intermediate described previously leads to a projectile that deforms at increased impact speeds because the notch effect is weaker compared to the star-shaped intermediate. A projectile made from an intermediate that has an internal hexagonal shape as a defined inner contour has an even lower notch effect. This shape is also called polylobular and consists of 3 to 40 circular elements of equal length connected together. Further options for controlling the responsiveness as well as the susceptibility to decomposition are conceivable using tubular intermediates with V-shaped notches. The notch depth, the notch angle and/or the number of notches can vary and be adapted to the ballistic requirements. Since the intermediate according to the invention is an extrusion profile, delicate constructions with 5 to 10 deep grooves or 5 to 20 ribs are also conceivable.
Gemäß einer beispielhaften Weiterbildung des erfindungsgemäßen Projektils entspricht ein Außendurchmesser des Intermediats im Wesentlichen dem Kaliber des Projektils. Ein wesentlicher Vorteil dieser Ausgestaltung besteht darin, dass die Außendimensionierung des Intermediats bereits so gewählt ist, dass das Intermediat bereits die Außendimension des zu fertigenden Projektils aufweist. Insofern lässt sich das dimensionssensible Kaliber des Projektils auf einfacher und präziser herzustellende Art und Weise bereits bei der Rohling- beziehungsweise Intermediatfertigung einstellen, ohne dass bei der darauffolgenden insbesondere kaltumformenden Fertigung der Projektilform die Außenhaut des Intermediats verändert werden muss. Es hat sich herausgestellt, dass es herstellungstechnisch deutlich einfacher ist, den Außendurchmesser bereits voreinzustellen und nicht erst bei der deutlich komplexeren Projektilfertigung beziehungsweise -formung.According to an exemplary development of the projectile according to the invention, an outer diameter of the intermediate essentially corresponds to the caliber of the projectile. A significant advantage of this embodiment is that the external dimensioning of the intermediate is already selected such that the intermediate already has the external dimension of the projectile to be manufactured. In this respect, the dimension-sensitive caliber of the projectile can be adjusted in a simpler and more precise manner during the blank or intermediate production, without the outer skin of the intermediate having to be changed during the subsequent, particularly cold-forming, production of the projectile shape. It has turned out that from a manufacturing perspective it is much easier to preset the outer diameter and not just during the much more complex projectile production or shaping.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, ist ein Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm bereitgestellt.According to a further aspect of the present invention, which is combinable with the preceding aspects and exemplary embodiments, a projectile with a caliber in the range of 4.6 mm to 20 mm is provided.
Gemäß dem weiteren Aspekt der vorliegenden Erfindung ist das Projektil aus einem Intermediat mit einem Rohrabschnitt im Wesentlichen konstanter Wandstärke hergestellt. Der Rohrabschnitt kann wenigstens 50%, insbesondere wenigstens 60%, wenigstens 70%, wenigstens 80% oder wenigstens 90%, der Längserstreckung des Intermediats ausmachen. Beispielsweise ist das Intermediat rohrförmig ausgebildet, insbesondere besteht es aus dem Intermediat.According to the further aspect of the present invention, the projectile is made from an intermediate with a tube section of essentially constant wall thickness. The pipe section can make up at least 50%, in particular at least 60%, at least 70%, at least 80% or at least 90%, of the longitudinal extent of the intermediate. For example, the intermediate is tubular, in particular it consists of the intermediate.
Der Rohrabschnitt weist einen einen zentralen Hohlraum umgebenden Geschossmantel auf, der eine sich insbesondere ogivenartig verjüngende Geschossfront und ein daran anschließendes Geschossheck mit einem massiven Heckbereich aufweist, der in einen Geschossboden mündet. Insbesondere ist der Rohrabschnitt, d.h. der Geschossmantel mit Geschossheck, Geschossfront und Geschossboden, aus einem Stück hergestellt.The pipe section has a projectile casing surrounding a central cavity, which has a projectile front that tapers in particular in the manner of an ogive and an adjoining projectile rear with a solid rear area which opens into a floor. In particular, the pipe section, i.e. the bullet casing with the bullet rear, bullet front and bullet base, is made in one piece.
Gemäß diesem erfindungsgemäßen Aspekt entspricht eine gemittelte Härte am Geschossboden wenigstens 103 %, insbesondere wenigstens 105 %, derjenigen gemittelten Härte, wenn das Projektil aus einem massiven Intermediat hergestellt wäre, und/oder eine gemittelte Härte im Bereich eines den Hohlraum umgebenden Mantelbereichs des Geschosshecks höchstens 90 %, insbesondere höchstens 85 % oder höchstens 80 %, derjenigen gemittelten Härte entspricht, wenn das Projektil aus einem massiven Intermediat hergestellt wäre. Als gemittelte Härte ist ein Durchschnittswert der einzelnen Härtewerte an den entsprechenden Stellen bzw. Abschnitten zu verstehen und soll die Tendenz angeben, wobei es sein kann, dass die beschriebenen Verhältnisse auf einzelne Werte nicht zutreffen. Beispielsweise können die Härtewerte mittels der Härteprüfung nach Vickers (HV) ermittelt werden. Die Erfinder haben individuelle Charakteristika im Härteverlauf festgestellt, um ein erfindungsgemäß hergestelltes Projektil von bislang bekannten Projektilen zu unterscheiden, die zahlreiche Vorteile der vorliegenden Erfindung erkennen lassen. Der weichere Bereich im Geschossheck hat einen positiven Einfluss auf die Lauflebensdauer der Schusswaffe und eine längere Werkzeuglebensadauer zur Folge. Für lange Standzeiten der Werkzeuge ist insbesondere ein weicher Zwischenbereich des Projektils relevant. Je weicher der Zwischenbereich des schlussendlichen Projektils aufgrund der vorhergegangenen Operationen bleibt, desto weniger Umformarbeit mussten die Werkzeuge bei den Operationen leisten. Daraus resultiert eine längere Werkzeuglebensdauer.According to this aspect of the invention, an average hardness on the floor of the projectile corresponds to at least 103%, in particular at least 105%, of the average hardness if the projectile were made from a solid intermediate, and / or an average hardness in the area of a jacket area of the rear of the projectile surrounding the cavity is at most 90 %, in particular at most 85% or at most 80%, corresponds to the average hardness if the projectile were made from a solid intermediate. The average hardness is an average value of the individual hardness values at the corresponding points or sections and is intended to indicate the trend, although it may be that the conditions described do not apply to individual values. For example, the hardness values can be determined using the Vickers hardness test (HV). The inventors have identified individual characteristics in the hardness curve in order to distinguish a projectile produced according to the invention from previously known projectiles, which reveal numerous advantages of the present invention. The softer area in the rear of the bullet has a positive influence on the barrel life of the firearm and results in a longer tool life. A soft intermediate area of the projectile is particularly relevant for long tool life. The softer the intermediate area of the final projectile remains due to the previous operations, the The tools had to do less forming work during the operations. This results in a longer tool life.
In einer beispielhaften Ausführung der vorliegenden Erfindung handelt es sich bei den Härtewerten um oberflächennahe Werte. Beispielsweise können diese wenige Millimeter unterhalb der Außenoberfläche des Projektils gemessen sein.In an exemplary embodiment of the present invention, the hardness values are values close to the surface. For example, these can be measured a few millimeters below the outer surface of the projectile.
In einer weiteren beispielhaften Ausführung der vorliegenden Erfindung weist der den Hohlraum umgebende Mantelbereich des Geschosshecks ein einen maximalen Außendurchmesser des Projektils definierendes Führungsband zum Eingreifen in ein Zug-Feld-Profil eines Schusswaffenlaufs auf. Ein weiches Führungsband verstärkt insbesondere die geschilderten Vorteile bzgl. Lauflebensdauer der Schusswaffe und eine Werkzeuglebensdauer. Gemäß einer beispielhaften Weiterbildung ist eine gemittelte Härte des Führungsbands über dessen gesamte radiale Tiefe, insbesondere bis zum Hohlraum, weicher, insbesondere wenigstens 10 %, wenigstens 15 % oder wenigstens 20 %, weicher ist als diejenige gemittelte Härte, wenn das Projektil aus einem massiven Intermediat hergestellt wäre.In a further exemplary embodiment of the present invention, the casing area of the tail of the projectile surrounding the cavity has a guide band defining a maximum outer diameter of the projectile for engaging in a pull-field profile of a firearm barrel. A soft guide band particularly increases the advantages described in terms of barrel life of the firearm and tool life. According to an exemplary development, an averaged hardness of the guide band over its entire radial depth, in particular up to the cavity, is softer, in particular at least 10%, at least 15% or at least 20%, softer than the averaged hardness when the projectile is made of a solid intermediate would be produced.
In einer weiteren beispielhaften Ausführung der vorliegenden Erfindung weist das Geschossheck in der axialen Projektion des Hohlraums, d.h. heckseitig des Hohlraums, einen sich in Projektillängsrichtung insbesondere bis zum Geschossboden erstreckenden verfestigten Kernbereich mit höherer gemittelter Härte als an den Kernbereich angrenzende Geschossheckbereiche auf, dessen gemittelte Härte wenigstens 140 %, insbesondere wenigstens 150 % oder wenigstens 160%, derjenigen gemittelten Härte entspricht, wenn das Projektil aus einem massiven Intermediat hergestellt wäre.In a further exemplary embodiment of the present invention, the tail of the bullet in the axial projection of the cavity, i.e. at the rear of the cavity, has a solidified core region which extends in the longitudinal direction of the projectile, in particular to the floor of the bullet, with a higher average hardness than the tail of the bullet areas adjacent to the core region, the average hardness of which is at least 140%, in particular at least 150% or at least 160%, corresponds to the average hardness if the projectile were made from a solid intermediate.
In einer weiteren beispielhaften Ausführung der vorliegenden Erfindung, die mit sämtlichen vorangegangenen Aspekten und beispielhaften Ausführungen kombinierbar ist, ist das Material des Projektils und/oder des Intermediats Kupfer, Aluminium, Eisen, wie Weicheisen, Silber, Titan, Wolfram, Zinn, Zink, Magnesium, Blei, Cadmium oder Legierungen davon.In a further exemplary embodiment of the present invention, which can be combined with all of the preceding aspects and exemplary embodiments, the material of the projectile and/or the intermediate is copper, aluminum, iron, such as soft iron, silver, titanium, tungsten, tin, zinc, magnesium , lead, cadmium or alloys thereof.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, ist ein Werkzeug zum Pressen eines in einer insbesondere zylindrischen Matrize eingesetzten Intermediats, das einen Rohrabschnitt mit einem Hohlraum mit im Wesentlichen konstantem Durchmesser aufweist, um ein insbesondere gemäß einem der zuvor beschriebenen Aspekte oder beispielhaften Ausführungen ausgebildetes Projektil mit einem Kaliber im Bereich von 4,6 mm bis 20 mm zu fertigen.According to a further aspect of the present invention, which can be combined with the preceding aspects and exemplary embodiments, there is a tool for pressing an intermediate used in a particularly cylindrical die, which has a pipe section with a cavity with a substantially constant Diameter in order to produce a projectile designed in particular according to one of the previously described aspects or exemplary embodiments with a caliber in the range of 4.6 mm to 20 mm.
Das Werkzeug kann grundsätzlich aus einem starren, insbesondere in-elastischen, Material hergestellt sein und beispielsweise aus einem Stück bestehen.The tool can in principle be made of a rigid, in particular inelastic, material and can, for example, consist of one piece.
Das Werkzeug umfasst einen Halteabschnitt, an dem eine Bedienperson oder eine Maschine das Werkzeug halten und bedienen kann. Des Weiteren weist das Werkzeug einen sich in Richtung weg von dem Halteabschnitt verjüngenden Formgebungsabschnitt mit einer Spitze, einem an die Spitze anschließenden länglichen, wenigstens abschnittsweise gekrümmten, insbesondere konkav geformten, oder kegelförmigen Führungsteil zum Führen des Werkzeugs innerhalb des Hohlraums des Intermediats und einem daran vorsprungsfrei anschließenden wenigstens abschnittsweise gekrümmten, insbesondere konkav geformten, oder kegelförmigen Pressteil unterschiedlicher Neigung als das Führungsteil zur Werkzeuglängsachse auf. Das benachbart der Spitze angeordnete Führungsteil des Formgebungsabschnitts dient dazu, das Werkzeug innerhalb des Hohlraums des Intermediats zu führen. Die Führung des Werkzeugs innerhalb des Hohlraums des Intermediats hat mehrere Vorteile. Zum einen geht eine Art Selbstzentrierung einher, was eine besonders hohe Präzision zur Folge hat. Zum anderen wird durch die ausgerichtete Werkzeugbewegung in Richtung der Längsachse des Hohlraums zuverlässig sichergestellt, dass ein wesentlicher Aspekt der vorliegenden Erfindung, nämlich geringere Presskräfte und filigranere Werkzeuge anwenden zu können, erhalten bleibt.The tool includes a holding section where an operator or a machine can hold and operate the tool. Furthermore, the tool has a shaping section that tapers in the direction away from the holding section with a tip, an elongated, at least partially curved, in particular concavely shaped, or conical guide part adjoining the tip for guiding the tool within the cavity of the intermediate and a projection-free part thereon subsequent at least partially curved, in particular concavely shaped, or conical pressed part with a different inclination as the guide part to the tool longitudinal axis. The guide part of the shaping section arranged adjacent to the tip serves to guide the tool within the cavity of the intermediate. Guiding the tool within the cavity of the intermediate has several advantages. On the one hand, there is a kind of self-centering involved, which results in a particularly high level of precision. On the other hand, the aligned tool movement in the direction of the longitudinal axis of the cavity reliably ensures that an essential aspect of the present invention, namely the ability to use lower pressing forces and more delicate tools, is retained.
Gemäß einer beispielhaften Weiterbildung ist die Neigung der Außenfläche des Pressteils in Bezug auf die Werkzeuglängsachse größer als die Neigung der Außenfläche des Führungsteils in Bezug auf die Werkzeuglängsachse. Insbesondere dadurch ist ein besonders filigranes Werkzeug herzustellen, bei dem das Führungsteil dünn und sehr länglich ausgebildet ist, sodass tief in den Hohlraum des Intermediats hineingegriffen werden kann. Mittels des erfindungsgemäßen Werkzeugs, dass es eine Vielzahl an Pressvorgängen, insbesondere wenigstens 100, 300, 500, 700 oder wenigstens 1000, Pressvorgänge standhält.According to an exemplary development, the inclination of the outer surface of the pressing part with respect to the longitudinal axis of the tool is greater than the inclination of the outer surface of the guide part with respect to the longitudinal axis of the tool. In particular, this makes it possible to produce a particularly delicate tool in which the guide part is thin and very elongated, so that it is possible to reach deep into the cavity of the intermediate. By means of the tool according to the invention, it can withstand a large number of pressing processes, in particular at least 100, 300, 500, 700 or at least 1000 pressing processes.
Gemäß einer weiteren beispielhaften Ausführung des erfindungsgemäßen Werkzeugs ist eine axiale Länge des Führungsteils derart auf eine Innenabmessung des Intermediats abgestimmt, dass das Werkzeug am Übergang vom Führungsteil in das Pressteil eine Außenabmessung von bis zum 1,4-fachen des Durchmessers des Hohlraums aufweist. Bei dieser geometrischen Aufeinanderabstimmung ist eine besonders gute Führung des Werkzeugs innerhalb des Hohlraums des Intermediats gegeben.According to a further exemplary embodiment of the tool according to the invention, an axial length of the guide part is based on an internal dimension of the intermediate coordinated so that the tool at the transition from the guide part to the pressed part has an external dimension of up to 1.4 times the diameter of the cavity. This geometric coordination ensures particularly good guidance of the tool within the cavity of the intermediate.
Gemäß einer weiteren beispielhaften Ausführung des erfindungsgemäßen Werkzeugs beträgt eine axiale Länge des Führungsteils und/oder des Pressteils wenigstens 80% eines maximalen Radialabstandes des Hohlraums. Insbesondere die axiale Länge des Führungsteils kann wenigstens genauso groß, wenigstens 1,5-mal so groß oder sogar wenigstens doppelt so groß sein wie der maximale Radialabstand des Hohlraums des Intermediats.According to a further exemplary embodiment of the tool according to the invention, an axial length of the guide part and/or the pressing part is at least 80% of a maximum radial distance of the cavity. In particular, the axial length of the guide part can be at least as large, at least 1.5 times as large or even at least twice as large as the maximum radial distance of the cavity of the intermediate.
Gemäß einer weiteren beispielhaften Ausführung des erfindungsgemäßen Werkzeugs ist dessen Querschnitt insbesondere im Bereich des Führungsteils und/oder des Pressteils punktsymmetrisch ausgebildet und weicht von einer Kreisform ab. Mit anderen Worten kommen für den Außenquerschnitt des Führungsteils und/oder des Pressteils beliebige reguläre oder irreguläre punktsymmetrische Formen in Betracht, die in Abhängigkeit der gewünschten Innengeometrie des zu fertigenden Projektils gewählt werden können.According to a further exemplary embodiment of the tool according to the invention, its cross section is point-symmetrical, particularly in the area of the guide part and/or the pressing part, and deviates from a circular shape. In other words, any regular or irregular point-symmetrical shapes can be considered for the outer cross section of the guide part and/or the pressed part, which can be selected depending on the desired internal geometry of the projectile to be manufactured.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, ist ein Verfahren zum Fertigen eines insbesondere gemäß einem der zuvor beschriebenen und gemäß einem der erfindungsgemäßen Aspekte oder beispielhaften Ausführungen ausgebildeten Projektils mit einem Kaliber im Bereich von 4,6 mm bis 20 mm bereitgestellt.According to a further aspect of the present invention, which can be combined with the preceding aspects and exemplary embodiments, there is a method for producing a projectile with a caliber in the range of 4, which is designed in particular according to one of the previously described and according to one of the aspects or exemplary embodiments according to the invention. 6mm to 20mm provided.
Gemäß dem erfindungsgemäßen Verfahren wird ein Intermediat mit einem Rohrabschnitt im Wesentlichen konstanter Wandstärke in eine insbesondere zylindrische Matrize eingesetzt und das Intermediat mittels eines insbesondere gemäß einem der zuvor beschriebenen und beispielsweise gemäß einem der zuvor genannten erfindungsgemäßen Aspekte oder beispielhaften Ausführungen ausgebildeten Werkzeugs derart kaltumgeformt, insbesondere pressend kaltumgeformt, insbesondere mittels Fließpressen umgeformt, dass wenigstens abschnittsweise der Außendurchmesser des Intermediats im Wesentlichen konstant bleibt und das Projektilkaliber festlegt. Mittels des erfindungsgemäßen Verfahrens ist es möglich, das Intermediat zum fertigen des Projektils bereits so zu wählen, dass dessen Ausgangs-Außenabmessung im Wesentlichen an das Kaliber des zu fertigenden Projektils herankommt, sodass das Metallmaterial im Bereich des Außendurchmessers, demnach oberflächennah, kaum verfestigt und deformiert ist, sodass sich eine unverfestigte Metallstruktur ergibt, welche die Präzision und/oder die gewünschten Deformations- und/oder Ballistikeigenschaften des Projektils verbessert.According to the method according to the invention, an intermediate with a tube section of essentially constant wall thickness is inserted into a particularly cylindrical die and the intermediate is cold-formed, in particular by pressing, by means of a tool designed in particular according to one of the previously described and, for example, according to one of the previously mentioned aspects of the invention or exemplary embodiments cold formed, in particular formed by extrusion, so that at least in sections the outer diameter of the intermediate remains essentially constant and determines the projectile caliber. By means of the method according to the invention, it is possible to select the intermediate for producing the projectile in such a way that its initial external dimension essentially corresponds to the caliber of the projectile to be produced comes so that the metal material in the area of the outer diameter, i.e. close to the surface, is hardly solidified and deformed, so that an unsolidified metal structure results, which improves the precision and / or the desired deformation and / or ballistic properties of the projectile.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, ist ein Verfahren bereitgestellt, das dazu eingerichtet ist, ein erfindungsgemäßes Projektil herzustellen.According to a further aspect of the present invention, which can be combined with the preceding aspects and exemplary embodiments, a method is provided which is designed to produce a projectile according to the invention.
Gemäß einem weiteren Aspekt der vorliegenden Erfindung, der mit den vorhergehenden Aspekten und beispielhaften Ausführungen kombinierbar ist, wird ein rohrförmiges metallisches Intermediat insbesondere aus Kupfer, Aluminium, Eisen, wie Weicheisen, Silber, Titan, Wolfram, Zinn, Zink, Magnesium, Blei, Cadmium oder eine Legierung davon zum Herstellen eines insbesondere erfindungsgemäßen Projektils, wie eines Deformationsgeschosses, eines Teilzerlegungsgeschosses, eines Teil- oder Vollmantelgeschosses, Hartkerngeschosses oder eines Leuchtspurgeschosses, mit einem Kaliber im Bereich von 4,6 mm bis 20 mm für Munition verwendet.According to a further aspect of the present invention, which can be combined with the preceding aspects and exemplary embodiments, a tubular metallic intermediate is made in particular from copper, aluminum, iron, such as soft iron, silver, titanium, tungsten, tin, zinc, magnesium, lead, cadmium or an alloy thereof for producing a projectile in particular according to the invention, such as a deformation bullet, a partial fragmentation bullet, a partial or full jacket bullet, hard core bullet or a tracer bullet, with a caliber in the range of 4.6 mm to 20 mm for ammunition.
Der der vorliegenden Erfindung zugrundeliegende Grundsatzgedanke, insbesondere unter Heranziehung eines im Wesentlichen ausschließlichen Kaltumformprozesses zur Herstellung für ein Projektil ein rohrförmiges Intermediat heranzuziehen, das heißt ein Intermediat, welches einen Rohrabschnitt der im Wesentlichen 50% der Längserstreckung des Intermediats ausmacht, heranzuziehen, kann auf herstellungstechnische einfache Art und Weise ein besonders präzis hergestelltes und mit filigranen Werkzeugen herstellbares Projektil geschaffen werden, wobei ein geringerer Arbeitsdruck erforderlich ist, als es im Stand der Technik der Fall ist.The basic idea underlying the present invention, in particular using a substantially exclusive cold forming process for producing a projectile, is to use a tubular intermediate, that is to say an intermediate which comprises a pipe section which essentially makes up 50% of the longitudinal extent of the intermediate, can be simple in terms of manufacturing technology Way a particularly precisely manufactured projectile that can be produced with delicate tools can be created, with a lower working pressure being required than is the case in the prior art.
In einer bespielhaften Ausführung wir ein erfindungsgemäß ausgebildetes Werkzeug eingesetzt.In an exemplary embodiment, a tool designed according to the invention is used.
Bevorzugte Ausführungen sind in den Unteransprüchen angegeben.Preferred embodiments are specified in the subclaims.
Im Folgenden werden weitere Eigenschaften, Merkmale und Vorteile der Erfindung mittels Beschreibung bevorzugter Ausführungen der Erfindung anhand der beiliegenden beispielhaften Zeichnungen deutlich, in denen zeigen:
Figur 1- eine Schnittansicht eines rohrförmigen Intermediats zur Herstellung einer beispielhaften Ausführung eines erfindungsgemäßen Projektils;
- Figur 2
- eine Schnittansicht eines angesenkten rohrförmigen Intermediats zur Herstellung einer beispielhaften Ausführung eines erfindungsgemäßen Projektils;
Figur 3- eine Schnittansicht einer beispielhaften Ausführung eines erfindungsgemäßen Presslings in einer erfindungsgemäßen Matrize;
Figur 4- eine Schnittansicht eines erfindungsgemäßen Projektils in der Ausführung als Deformationsgeschoss;
- Figur 5 - 8
- ein schematischer Stadienplan zur Herstellung eines erfindungsgemäßen Projektils in der Ausführung als Vollmantelgeschoss ausgehend von einem rohrförmigen Intermediat;
- Figur 9 - 12
- ein schematischer Stadienplan zur Herstellung eines erfindungsgemäßen Projektils in der Ausführung als Teilmantelgeschoss ausgehend von einem rohrförmigen Intermediat;
- Figur 13 - 16
- ein schematischer Stadienplan zur Herstellung eines erfindungsgemäßen Projektils in der Ausführung als Teilzerlegungsgeschoss ausgehend von einem rohrförmigen Intermediat;
Figur 17- eine schematische Ansicht einer beispielhaften Ausführung eines erfindungsgemäßen Projektils in einem deformierten Zustand nach dem Auftreffen auf ein Ziel mit parallel zur Geschosslängsrichtung ausgebildeter Segmentfahnenausbreitung;
- Figur 18
- eine schematische Ansicht einer beispielhaften Ausführung eines erfindungsgemäßen Projektils in einem deformierten Zustand nach dem Auftreffen auf ein Ziel mit rechtwinklig zur Geschosslängsrichtung ausgebildeter Segmentfahnenausbreitung;
Figur 19- eine schematische Ansicht einer beispielhaften Ausführung eines erfindungsgemäßen Werkzeugs mit einem polygonalen Querschnitt und einem konkaven, kegelförmigen und konvexen Formgebungsabschnitt;
Figur 20- eine Seitenansicht des Werkzeugs gemäß der
Figur 19 ; Figur 21- eine schematische Ansicht einer beispielhaften Ausführung eines erfindungsgemäßen Werkzeugs mit einem polygonalen Querschnitt und einem konvexen Formgebungsabschnitt;
- Figur 22
- eine Seitenansicht einer weiteren beispielhaften Ausführung eines erfindungsgemäßen Werkzeugs mit einem runden Querschnitt und einem konvexen Formgebungsabschnitt;
Figur 23- eine perspektivische Ansicht einer weiteren beispielhaften Ausführung eines erfindungsgemäßen Werkzeugs mit einem hexagonalen Querschitt und einem konvexen Formgebungsabschnitt;
- Figuren 24-33
- perspektivische Ansichten von rohrförmigen Intermediaten mit einem punktsymmetrischen Innenquerschnitt;
- Figur 34a, b
- Härteverlauf eines Projektils ausgehend von einem Draht-Intermediat gemäß Stand der Technik;
- Figur 35a, b
- Härteverlauf eines erfindungsgemäßen Projektils ausgehend von einem Rohrintermediat mit im Wesentlichen konstanter Wandstärke.
- Figure 1
- a sectional view of a tubular intermediate for producing an exemplary embodiment of a projectile according to the invention;
- Figure 2
- a sectional view of a countersunk tubular intermediate for producing an exemplary embodiment of a projectile according to the invention;
- Figure 3
- a sectional view of an exemplary embodiment of a compact according to the invention in a die according to the invention;
- Figure 4
- a sectional view of a projectile according to the invention in the design as a deformation bullet;
- Figures 5 - 8
- a schematic stage plan for the production of a projectile according to the invention in the design as a full jacket bullet starting from a tubular intermediate;
- Figures 9 - 12
- a schematic stage plan for the production of a projectile according to the invention in the design as a partial jacket projectile starting from a tubular intermediate;
- Figures 13 - 16
- a schematic stage plan for the production of a projectile according to the invention in the design as a partial fragmentation bullet starting from a tubular intermediate;
- Figure 17
- a schematic view of an exemplary embodiment of a projectile according to the invention in a deformed state after hitting a target with segment vane spread parallel to the longitudinal direction of the projectile;
- Figure 18
- a schematic view of an exemplary embodiment of a projectile according to the invention in a deformed state after hitting a target with segment vane spread perpendicular to the longitudinal direction of the projectile;
- Figure 19
- a schematic view of an exemplary embodiment of a tool according to the invention with a polygonal cross section and a concave, conical and convex shaping section;
- Figure 20
- a side view of the tool according to
Figure 19 ; - Figure 21
- a schematic view of an exemplary embodiment of a tool according to the invention with a polygonal cross section and a convex shaping section;
- Figure 22
- a side view of a further exemplary embodiment of a tool according to the invention with a round cross section and a convex shaping section;
- Figure 23
- a perspective view of a further exemplary embodiment of a tool according to the invention with a hexagonal cross section and a convex shaping section;
- Figures 24-33
- perspective views of tubular intermediates with a point-symmetrical internal cross section;
- Figure 34a, b
- Hardness curve of a projectile based on a wire intermediate according to the prior art;
- Figure 35a, b
- Hardness curve of a projectile according to the invention starting from a pipe intermediate with essentially constant wall thickness.
In der folgenden Beschreibung beispielhafter Ausführungen der vorliegenden Erfindung sind ein erfindungsgemäßes Projektil im Allgemeinen mit der Bezugsziffer 1, ein erfindungsgemäßer Pressling im Allgemeinen mit der Bezugsziffer 10 und ein erfindungsgemäßes Werkzeug im Allgemeinen mit der Bezugsziffer 100 versehen.In the following description of exemplary embodiments of the present invention, a projectile according to the invention is generally provided with the
Bezugnehmend auf die
Bezugnehmend auf die
Die Matrize 7 umfasst eine rotationsförmige Matrizenzylinderinnenfläche 93 mit einer zentralen Frontseite 101. Wie aus
Ein erfindungsgemäßes Projektil 1 ist in
Im Hinblick auf die Innenballistik sind insbesondere das Führungsband 63, die Ausgestaltung des Hohlraums 45 und die Materialwahl und deren Härte von Interesse. Die Materialwahl ist bevorzugt ein Material, welches sich widerstandsarm in das Zug-Feld-Profil des Schusswaffenlaufes einschmiegt, damit das Projektil effizient beschleunigt werden kann. Hierbei ist das Führungsband 63, welches mit dem eigentlichen Zug-Feld-Profil in der Berührung steht, wichtig. Neben den offensichtlichen Materialparametern wie Härte und Temperaturbeständigkeit sollte auch der Diffusionskoeffizient des Führungsbands 63 gegenüber dem Partnermaterial des Laufs möglichst undurchlässig sein, damit ein Kaltverschweißen verhindert wird. Das widerstandsarme Eindringen des Projektils in das Zug-Feld-Profil kann neben den Materialeigenschaften auch durch die Ausgestaltung des Hohlraumes 45 realisiert werden. Durch den Hohlraum 45 wird eine elastische Einfederungsmöglichkeit geschaffen, welche den Durchpresswiderstand weiter reduziert.With regard to internal ballistics, the
Hinsichtlich der Außenballistik von dem in
Das in
Unter Bezugnahme auf die
Zunächst wird ein Intermediat 3 aus Metall bevorzugt aus einem Nichteisenmetall oder Eisenmetall bereitgestellt (
In einem ersten Herstellungsschritt wird das Intermediat 3 durch Setzen zu einem Vorpressling 9 umgeformt, insbesondere kaltumgeformt, beispielsweise durch Pressen oder Fließpressen (
Nach dem Setzen erfolgt ein Vorpressen des Vorpresslings 9 zur Bildung des erfindungsgemäßen Presslings 10 (
Der auf diese Weise hergestellte Pressling 10 besteht aus einem Metallkörper 113 aus insbesondere homogenem Material, bevorzugt aus Eisen- oder Nichteisenmaterial und wird anschließend weiter kaltumgeformt zur Bildung eines in
Unter Bezugnahme auf die
Zunächst wird ein Rohr-Intermediat 3 aus Metall, bevorzugt aus einem Nichteisenmetall oder Eisenmetall, bereitgestellt (
In einem ersten Herstellungsschritt wird das Intermediat 3 durch Setzen zu einem Vorpressling 9 umgeformt, insbesondere Kaltumgeformt, beispielsweise durch Pressen oder Fließpressen (
Nach dem Setzen erfolgt ein Vorpressen des Vorpresslings 9 zur Bildung eines Presslings 10 (
Der auf diese Weise hergestellte Pressling 10 besteht aus einem Metallkörper 113 aus insbesondere homogenem Material, vorzugsweise aus Eisen- oder Nichteisenmaterial und wird anschließend weiter kaltumgeformt zur Bildung eines in
Unter Bezugnahme auf die
Die Längen- und Durchmesservergrößerung resultiert aus der beim Setzen eingebrachten zentralen in Richtung der gegenüberliegenden Stirnfläche 37 verjüngenden Hohlraumabschnitt 75, der sich von einer scharfen Kante 23 des Vorpresslings 9 durch den Vorpressling 9 hindurch, bis zu der gegenüberliegenden Stirnfläche 37 des Vorpresslings 9 erstreckt. Das Einpressen des konischen Werkzeugs 100 bewirkt eine Materialverschiebung, die sich in einer Längenausdehnung, insbesondere in Richtung der Stirnfläche 31 äußert. Der verjüngenden Hohlraumabschnitts 75, der sich an der gegenüberliegenden Stirnfläche 37 befindet, ist durch eine konisch geformte Wandinnenfläche 71 gebildet. Das Setzen kann über eine Werkzeug-Matrizen-Anordnung erfolgen, wobei die Außengeometrie des konischen Werkzeugs 100 die Geometrie des Holraumabschnitts 65 bestimmt.The increase in length and diameter results from the
Zwischen der Stufe des Vorpresslings 9 und des Presslings 10, das heißt nach dem Setzen und vor dem Vorpressen wird der Rohling gewendet, Hierbei ist eine insbesondere maschinelle Wendeoperation nötig. Der Vorpressling 9 wird zur Bildung des Presslings 10 in Richtung der scharfen Kante 23 des Vorpresslings 9 kaltumgeformt, sodass durch Zusammendrücken der Bugwand 41 eine Vorstufe einer Geschossfront 53 gebildet wird. Die Bugwand 41 wird beim Vorpressen außerdem außenseitig zu einer wenigstens abschnittsweise sich verjüngenden Bugwand 41 kaltumgeformt. Aufgrund der bevorzugt symmetrisch eingebrachten, frontseitigen und heckseitigen konischen Hohlräume wird durch den Einbringprozess des Stempels meterial an der Frontseite des konischen Werkzeugs 47 aufgestaut. Es entsteht eine zentrale Einschnürung 27 welche die beiden konischen bevorzugt Hohlräumen vollständig abtrennt.Between the stage of the
Der auf diese Weise hergestellte Pressling 10 besteht insbesondere aus einem Metallkörper 113 aus homogenem Material, bevorzugt aus Eisen- oder Nichteisenmaterial und wird anschließend weiter kaltumgeformt zur Bildung eines in
Eine schematische Darstellung eines abgeschossenen, deformierten Projektils 33, das durch Abschießen eines erfindungsgemäßen Projektils 1 und Auftreffen des Projektils 1 auf ein Ziel, insbesondere ein Standardziel, wie eine Gallert-Masse resultiert, ist in
Das deformierte Projektil 49 unterscheidet sich vom den Stand der Technik-Geschossen insbesondere durch die Ausbildung von Segmentfahnen 111 die beim Aufprall auf ein Ziel radial nach außen gebogen werden. Wie in
Das Deformationsverhalten resultiert zum einen aus der Kaltumformung und der Geometrie des zentralen Hohlraums 45 und zum anderen aus den in die Wandinnenfläche 71 des Vorpresslings 9 eingebrachten Wandschlitze 43, die am fertigen Projektil 1 an der Wandinnenfläche 71 der Geschossfront 53 als Schlitze bestehen bleiben. Durch die Kaltumformung erhöht sich die Festigkeit der Wandinnenfläche 71 quer zur Längsrichtung L im Vergleich zur Festigkeit der Wandinnenfläche 71 in Längsrichtung L und durch die Wandschlitze 43 lässt sich das Deformationsverhalten gezielt steuern. Die Auftreffgeschwindigkeit, bei welcher das Projektil 1 zu deformieren beginn, auch Ansprechverhalten genannt, wird durch den Durchmesser der Öffnung 35 bestimmt. Wie in
Neben den geometrischen Effekten, welche ein unterschiedliches Deformationsverhalten beim Durchdringen der Gallert-Masse hervorrufen, ist auch die Auftreffgeschwindigkeit des Projektils 1 auf die Gallert-Masse für die schlussendliche Form des deformierten Projektils 49 verantwortlich.
Beim Aufprall des Projektils auf die Gallert-Masse entsteht ein großer hydrodynamischer Geschossöffnungsdruck, der zur Deformation des Projektils in der Gallert-Masse führt. Bleibt dieser Geschossöffnungsdruck über längere Strecken erhalten, kann dies zum Abreißen einer oder mehrerer Segmentfahnen 111 führen. Um dies zu verhindern, kann die Distanz zwischen Geschossboden 17 und Hohlraumgrundabschnitt 57 so ausgestaltet werden, dass ein berstscheibenartiges Überdruckventil realisert wird, mit welchem sich der überschüssige Geschossöffnungsdruck abbauen lässt. Das daraus resultierende Loch im Geschossboden vermindert nicht nur den Geschossöffnungsdruck, sondern weist auch Stabilisierungseffekte in der Gallert-Masse auf.When the projectile impacts the gelatinous mass, a large hydrodynamic projectile opening pressure is created, which leads to the deformation of the projectile in the gelatinous mass. If this projectile opening pressure is maintained over longer distances, this can lead to one or
Bezugnehmend auf die
In der Seitenansicht in
In
In den
In den
In den
In den
In den
In den
Ein allgemeiner Vorteil der vorliegenden Erfindung besteht darin, dass bei der Rohrextrusion die Innenform sehr flexibel angepasst werden kann. Insbesondere lassen sich in Verbindung mit dem Presskopf beliebige Innengeometrien mit unterschiedlichen Deformationseigenschaften auf einfache Weise herstellen.A general advantage of the present invention is that the internal shape can be adjusted very flexibly during pipe extrusion. In particular, any internal geometries with different deformation properties can be produced in a simple manner in conjunction with the press head.
Metalle, insbesondere Buntmetalle, haben die Eigenschaft, aufgrund der Verformung härter zu werden. Das heißt, eine große Verformung führt zu einer großen Härtesteigerung des Rohmaterials. Anhand von Härteverlaufsfiguren, wie in
In
Die
Die
Die Abbildung gemäß
Die Härtewerte der Spitze 29 und die Härtewerte der Geschossfront 53 des Projektils 1 sind gegenüber dem Rest des Geschosskörpers 13 erhöht. Aufgrund der beim Pressvorgang verringerten Deformation sind die Projektile 1, welche aus dem rohrförmigen Intermediat 3 hergestellt sind, im Bereich des Führungsbandes 63 weicher, verglichen zu den Geschossen, welche aus einem Vollmaterial Intermediat, auch Drahtrohling genannt, hergestellt sind. Dieser weichere Bereich hat einen positiven Einfluss auf die Lauflebensdauer der Schusswaffe und eine längere Werkzeuglebensdauer der Matrize 7 und des Werkzeugs 100 zur Folge. Für lange Standzeiten der Werkzeuge ist insbesondere ein weicher Zwischenbereich des Projektils 1 relevant. Je weicher der Zwischenbereich des schlussendlichen Projektils 1 aufgrund der vorhergegangenen Operationen bleibt, desto weniger Umformarbeit mussten die Werkzeuge bei den Operationen leisten. Daraus resultiert eine längere Werkzeuglebensdauer. Dementsprechend kann von dem Härteverlauf beim erfindungsgemäßen Rohrprojektil ein Rückschluss auf die Werkzeuglebensdauer geschlossen werden.The hardness values of the
Der Bereich der Spitze 29 markiert bei allen Projektilen in den
Besteht der Rohling jedoch aus einem Vollmaterial Intermediat (
Ganz besonders vorteilhaft bei Projektilen 1, hergestellt aus einem Intermediat 3 gemäß der vorliegenden Erfindung ist, dass im Bereich des Führungsbands 63, nur geringe Härtesteigerungen vorliegen. sodass im Bereich des Zug-Feld-Maßes des Projektils 1 sowie im mittleren Bereich des Eingriffs des Pressteils 80 eine im Wesentlichen geringe Härte nach Vickers vorliegt, es handelt sich bei den Härtewerten um oberflächennahe Werte. Erfindungsgemäß wurde herausgefunden, dass sich die derart gebildete homogene Härteverteilung positiv auf die Ballistik und Präzision des Projektils 1 auswirkt und insbesondere positiv auf die Werkzeuglebensdauer des filigranen Pressteils 80 auswirkt.It is particularly advantageous for
Die Projektile 1, gefertigt aus Vollmaterial Intermediat 3, gezeigt in
Eine Unterteilung der Härtestufen ist in
Die Härtezonen beim Proj ektil 1 gefertigt aus einem Vollmaterial Intermediat weisen nur begrenzt Ballistisch optimierte Eigenschaften auf. Die mittelharte Zone m erstreckt sich bis in das Führungsband 63 hinein. Die harte Zone h erstreckt sich über die Abknickstelle der Segmentfahnen 111 hinweg. Die weiche Zone w ist ausschließlich im Geschossboden 17 verortet.The hardness zones in
Geschossfrontseitig unterscheiden sich die Projektile 1, welche aus dem rohrförmigen Intermediat 3 hergestellt werden von denen die aus Vollmaterial Intermediaten hergestellt werden dahingehend, dass die Geschossfront 53 eine kürzere Transitionsphase ausgehend von der Harten Spitze 29 hinsichtlich dem weichen Führungsband 63 aufweisen. In
Die in der vorstehenden Beschreibung, den Figuren und den Ansprüchen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung der Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein.The features disclosed in the above description, the figures and the claims can be important both individually and in any combination for the implementation of the invention in the various embodiments.
- 11
- Projektilprojectile
- 33
- IntermediatIntermediate
- 44
- Rohrabschnittpipe section
- 55
- angesenktes Intermediatcountersunk intermediate
- 77
- Matrizedie
- 99
- VorpresslingPre-compression
- 1010
- PresslingPressling
- 1111
- HeckeinschnürungRear constriction
- 1313
- Geschosskörperbullet body
- 1717
- Geschossbodenfloor
- 1919
- Ansenkungsinking
- 2121
- HeckhohlraumRear cavity
- 2323
- KanteEdge
- 2525
- IntermediatsplanflächeIntermediate plan area
- 2727
- zentrale Einschnürungcentral constriction
- 2929
- SpitzeGreat
- 3131
- Stirnflächeface
- 3333
- BugfaltungBow fold
- 3535
- Öffnungopening
- 3737
- gegenüberliegenden Stirnflächeopposite end face
- 3939
- Innenrohrflächeinner tube surface
- 4141
- Bugwandbow wall
- 4343
- WandschlitzeWall slots
- 4545
- Hohlraumcavity
- 4747
- konisches Werkzeugconical tool
- 4949
- abgeschossenes, deformiertes Geschossfired, deformed bullet
- 5151
- Geschossheckbullet tail
- 5353
- Geschossfrontfloor front
- 5555
- Rohrhohlraumpipe cavity
- 5757
- HohlraumgrundabschnittCavity base section
- 5959
- HeckhohlraumgrundabschnittTail cavity base section
- 6161
- HeckfaseRear bevel
- 6363
- FührungsbandGuide band
- 6565
- HohlzylinderHollow cylinder
- 6767
- HohlzylinderinnenflächeHollow cylinder inner surface
- 7171
- Wandinnenflächeinner wall surface
- 7373
- TeilsegmentSub-segment
- 7575
- verjüngender Hohlraumabschnitttapered cavity section
- 7777
- SegmentkanteSegment edge
- 7979
- Führungsteilleadership part
- 8080
- PressteilPressed part
- 8181
- SegmentflankeSegment edge
- 8383
- Werkzeugschafttool shank
- 8585
- Pressspitze/FührungsspitzePress tip/guide tip
- 8787
- Außenmantelflächeouter surface
- 8989
- konkaver Formgebungsabschnittconcave shaping section
- 9191
- konvexer Formgebungsabschnittconvex shaping section
- 9393
- MatrizenzylinderinnenflächeDie cylinder inner surface
- 9595
- Verjüngungrejuvenation
- 9797
- Stirnseitefront side
- 9999
- Auswerferseite MatrizeEjector side die
- 101101
- FrontseiteFront
- 103103
- TransitionsbereichTransition area
- 105105
- PlanbereichPlan area
- 107107
- Halteabschnitt/RundbereichHolding section/circular area
- 108108
- FormgebungsabschnittShaping section
- 100100
- WerkzeugTool
- 111111
- SegmentfahneSegment flag
- 113113
- MetallkörperMetal body
- 117117
- HeckfüllstoffRear filler
- 119119
- FrontfüllstoffFront filler
- LL
- LängsrichtungLongitudinal direction
- PP
- PressrichtungPressing direction
- aa
- RohlingwandstärkeBlank wall thickness
- bb
- HeckhohlraumwandstärkeRear cavity wall thickness
- hH
- harte Zonehard zone
- mm
- mittlere Zonemiddle zone
- ww
- weiche Zonesoft zone
Claims (16)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022113108.4A DE102022113108A1 (en) | 2022-05-24 | 2022-05-24 | Tool and method for making a projectile and projectile |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4283245A1 true EP4283245A1 (en) | 2023-11-29 |
Family
ID=86387098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP23173741.2A Pending EP4283245A1 (en) | 2022-05-24 | 2023-05-16 | Tool and method for producing a projectile, and projectile |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240200918A1 (en) |
EP (1) | EP4283245A1 (en) |
DE (1) | DE102022113108A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240102780A1 (en) * | 2022-09-26 | 2024-03-28 | Federal Cartridge Company | Bullet forming process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990005891A1 (en) * | 1988-11-14 | 1990-05-31 | Karl Klaus Mayer | Deformable projectile, munition equipped therewith, and process for manufacturing said projectile |
US5131123A (en) * | 1989-06-29 | 1992-07-21 | Barnes Bullets, Inc. | Methods of manufacturing a bullet |
DE102016015790A1 (en) * | 2016-08-05 | 2018-03-29 | Ruag Ammotec Gmbh | Metallic solid floor, tool arrangement and method for producing metallic solid floors |
DE102017011359A1 (en) | 2017-12-08 | 2019-06-13 | Ruag Ammotec Gmbh | Intermediate for the production of projectiles of a deformation projectile, projectile, deformed projectile, tool for the production of the intermediate and method for the production of the intermediate |
DE102019135875A1 (en) * | 2019-12-30 | 2021-07-01 | Ruag Ammotec Ag | Full storey, intermediate for the production of a full storey and process for the production of a full storey |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2045964A (en) | 1934-12-13 | 1936-06-30 | Berlin Karlsruher Ind Werke Ag | Casing projectile |
US5259320A (en) * | 1989-06-29 | 1993-11-09 | Barnes Bullets, Inc. | Intermediate article used to form a bullet projectile or component and a finally formed bullet |
US5943749A (en) | 1997-11-04 | 1999-08-31 | The Nippert Company | Method of manufacturing a hollow point bullet |
US6070532A (en) * | 1998-04-28 | 2000-06-06 | Olin Corporation | High accuracy projectile |
US6776101B1 (en) * | 2003-03-21 | 2004-08-17 | Richard K. Pickard | Fragmenting bullet |
EP1718920A1 (en) | 2004-02-06 | 2006-11-08 | CBC Companhia Brasileira de Cartuchos | Lead free monobloc expansion projectile and manufacturing process |
US8186277B1 (en) * | 2007-04-11 | 2012-05-29 | Nosler, Inc. | Lead-free bullet for use in a wide range of impact velocities |
SE533168C2 (en) * | 2008-06-11 | 2010-07-13 | Norma Prec Ab | Firearm projectile |
DE102019116125A1 (en) * | 2019-06-13 | 2020-12-17 | Ruag Ammotec Gmbh | Projectile, in particular deformation and / or partially fragmentation projectile, and method for producing a projectile |
DE102020105266B4 (en) | 2020-02-28 | 2021-09-30 | Ruag Ammotec Gmbh | Projectile, diabolo, ammunition and methods of making a projectile |
DE102021104760A1 (en) * | 2021-02-26 | 2022-09-01 | Ruag Ammotec Ag | Deformation projectile for police and authority ammunition |
DE102021104757A1 (en) | 2021-02-26 | 2022-09-01 | Ruag Ammotec Ag | Metallic practice cartridge bullet |
-
2022
- 2022-05-24 DE DE102022113108.4A patent/DE102022113108A1/en active Pending
-
2023
- 2023-05-16 EP EP23173741.2A patent/EP4283245A1/en active Pending
- 2023-05-24 US US18/322,830 patent/US20240200918A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990005891A1 (en) * | 1988-11-14 | 1990-05-31 | Karl Klaus Mayer | Deformable projectile, munition equipped therewith, and process for manufacturing said projectile |
US5131123A (en) * | 1989-06-29 | 1992-07-21 | Barnes Bullets, Inc. | Methods of manufacturing a bullet |
DE102016015790A1 (en) * | 2016-08-05 | 2018-03-29 | Ruag Ammotec Gmbh | Metallic solid floor, tool arrangement and method for producing metallic solid floors |
DE102017011359A1 (en) | 2017-12-08 | 2019-06-13 | Ruag Ammotec Gmbh | Intermediate for the production of projectiles of a deformation projectile, projectile, deformed projectile, tool for the production of the intermediate and method for the production of the intermediate |
DE102019135875A1 (en) * | 2019-12-30 | 2021-07-01 | Ruag Ammotec Ag | Full storey, intermediate for the production of a full storey and process for the production of a full storey |
Also Published As
Publication number | Publication date |
---|---|
DE102022113108A1 (en) | 2023-11-30 |
US20240200918A1 (en) | 2024-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1502074B1 (en) | Partial fragmentation and deformation bullets having an identical point of impact and proces for the manufacture of such a bullet | |
DE60010884T2 (en) | EXPANSION FLOOR | |
EP0143775B1 (en) | Sub-calibre penetrator and method of making the same | |
EP3679315B1 (en) | Full metal jacket safety bullet, in particular for multi-purpose applications | |
EP3601938B1 (en) | Projectile, in particular in the medium caliber range | |
DE10309975A1 (en) | Cartridge, e.g. for pistol, comprises sleeve with powder charge, and bullet with penetrating core | |
EP4085229A1 (en) | Solid bullet, intermediate product for manufacturing a solid bullet, and method for producing a solid bullet | |
DE202022102887U1 (en) | Bullet for a hard core handgun cartridge | |
EP4283245A1 (en) | Tool and method for producing a projectile, and projectile | |
EP2719993A2 (en) | Expanding hunting projectile | |
DE102014224715B4 (en) | Unterschallpatrone with a projectile as well as projectile for such a | |
EP4298396A1 (en) | Metal training cartridge bullet | |
DE19930475A1 (en) | Partial decomposition floor | |
DE19930473A1 (en) | Deformation floor | |
EP3312546B1 (en) | Multi-purpose projectile | |
EP3742106B1 (en) | Penetrator, use of a penetrator and projectile | |
EP3983749A1 (en) | Projectile, in particular deformation and/or partial fragmentation projectile, and method for producing a projectile | |
WO2022180245A1 (en) | Deformation bullet for ammunition for police and other ruling bodies | |
DE102015110097B4 (en) | Bullet made of tin bronze material | |
DE2506776C2 (en) | Bullet | |
DE102022104617A1 (en) | Intermediate, tool and method for producing a deformation bullet with defined terminal ballistics | |
EP4283244B1 (en) | Projectile for a cartridge for hard-core hand firearms, and method for producing same | |
DE102023102296A1 (en) | Deformation bullet and method for its manufacture | |
AT334787B (en) | SEMI-COAT HUNTING FLOOR | |
EP3845853B1 (en) | Projectile and ammunition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20240205 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |