[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4274736A1 - Method for improving the airtightness of buildings using a biopolymer-based membrane - Google Patents

Method for improving the airtightness of buildings using a biopolymer-based membrane

Info

Publication number
EP4274736A1
EP4274736A1 EP22702749.7A EP22702749A EP4274736A1 EP 4274736 A1 EP4274736 A1 EP 4274736A1 EP 22702749 A EP22702749 A EP 22702749A EP 4274736 A1 EP4274736 A1 EP 4274736A1
Authority
EP
European Patent Office
Prior art keywords
membrane
poly
building
relative humidity
barrers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22702749.7A
Other languages
German (de)
French (fr)
Inventor
Marion CHENAL
Joël AZEVEDO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover SA France
Original Assignee
Saint Gobain Isover SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2100107A external-priority patent/FR3118636A1/en
Application filed by Saint Gobain Isover SA France filed Critical Saint Gobain Isover SA France
Publication of EP4274736A1 publication Critical patent/EP4274736A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/301Polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B19/00Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica
    • B32B19/04Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material
    • B32B19/045Layered products comprising a layer of natural mineral fibres or particles, e.g. asbestos, mica next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/028Net structure, e.g. spaced apart filaments bonded at the crossing points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/04Cellulosic plastic fibres, e.g. rayon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/04Tiles for floors or walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • B32B2607/02Wall papers, wall coverings

Definitions

  • the present invention relates to a method for improving the airtightness of buildings or parts of buildings using a vapor barrier membrane, comprising a hydrophilic middle layer based on biopolymer and two outer layers relatively more hydrophobic than the layer median.
  • Hygroregulating vapor barrier membranes or hygroregulating membranes, whose permeability to water vapor varies according to the humidity of the air, have been known for many years. For the reasons explained, for example, in application W096/33321, it is sought to obtain membranes which allow water vapor to pass easily when the relative humidity (RH) is high (70% to 100% RH) and which block effectively at low relative humidity (50% RH and below).
  • RH relative humidity
  • Such membranes when laid on the internal face of a thermal insulation material (face facing the interior of a building or a room), prevent as much as possible during the cold and dry season the water vapor to penetrate from inside the building into the space between the membrane and the wall and to condense on the latter (cold wall).
  • the high permeability of the membrane allows any moisture present in the structural elements of the building to evacuate towards the interior of the building. This property is particularly important in the case of new constructions where, during installation, certain elements may have a very high water content due to storage conditions, but also in the case of water infiltration in existing structures. . In both cases, it is important to be able to let the entire structure dry efficiently in the summer, both outside and inside the building. This need is crucial especially if the elements making up the system are conducive to the proliferation of microorganisms.
  • Such vapor barrier membranes having a differentiated behavior as a function of the relative humidity conditions which surround it are frequently qualified as “intelligent” (in English Smart vapor retarder (SVR)).
  • intelligent in English Smart vapor retarder (SVR)
  • the adjectives “moisture regulator”, “moisture regulator” and “intelligent” are used as synonyms when they describe the variation of the water vapor permeability of vapor barrier membranes.
  • a humidity-regulating vapor barrier membrane is generally considered to be all the more interesting and efficient when its equivalent air thickness is high at low relative humidity and low at high relative humidity.
  • the moisture-regulating vapor barrier membranes available on the market and described in the state of the art are generally based on synthetic organic polymers made from petroleum-based monomers.
  • the most frequently described and used polymers are polyamides, in particular polycaprolactam, poly(vinyl alcohol) (PVOH), copolymers of ethylene and vinyl acetate and/or vinyl alcohol (EVA and EVOH).
  • the most hydrophilic polymers can be associated, in multi-layer structures, with thin more hydrophobic layers, in particular based on polyolefins, such as polyethylene, polypropylene and copolymers of ethylene and propylene .
  • Examples of documents describing such “smart” vapor barrier membranes include documents W02007/010388, W02006/034381, W02005/110892, US7008890, US 6808772 and US 6878455.
  • biopolymers are preferably biobased, that is to say based on materials of biological origin that are renewable in the short term.
  • the biopolymers used in the membranes of the present application are both biobased and biodegradable.
  • Bio-based biopolymers encompass both natural organic polymers, present as such in biomass, organic polymers obtained by physical and/or chemical modification of these natural polymers, and synthetic organic polymers obtained by polymerization of bio-based ingredients.
  • Membranes based on such biopolymers for example based on cellulose, chitosan or even based on poly(3-hydroxybutyrate) (PHB) are known and have been used, replacing films based on petroleum-based synthetic polymers, in particular in the field of food packaging where membranes are generally required to have water vapor permeability that is relatively independent of humidity and temperature conditions.
  • the lifespan of packaging films is quite limited and generally ranges from a few days to a few weeks, at most a few months.
  • a long service life of at least several years, or even several decades, is sought.
  • Membranes based on biopolymers are most often quite hydrophilic and their permeability to water vapor is high.
  • the equivalent air thickness of these membranes is generally less than 1m and its absolute value varies only slightly with the relative humidity of the atmosphere surrounding them. These membranes therefore remain extremely permeable to water vapor whatever the surrounding conditions.
  • hydrophilic membranes based on biopolymers used in the field of food packaging remain too permeable to water vapor under conditions of low relative humidity (cold season). They are therefore not “intelligent” enough to be able to function correctly as vapor barriers in the field of thermal insulation of buildings, in particular in improving airtightness and managing the flow of water vapor in buildings.
  • the present invention is based on the surprising discovery that it is possible to very significantly increase the "intelligence" of membranes based on biopolymers and thus to make them compatible with use as a vapor barrier membrane in the field of building, by applying on each of their two faces a very thin layer of hydrophobic polymer, very little permeable to water vapour.
  • the subject of the present application is thus a method for improving the airtightness of a building or of a room of a building comprising the application of a vapor barrier membrane on the internal face of the walls or walls of said building or of said room of a building, characterized in that the vapor barrier membrane is a moisture-regulating vapor barrier membrane comprising an active part comprising
  • a middle layer with a thickness of between 2 prrn and 200 miti, preferably between 4 prrn and 100 miti, in particular between 5 and 50 miti, consisting of a biopolymer having a water vapor permeability coefficient Pi which increases with the average relative humidity and which, when determined at 23°C and an average relative humidity of 25.5%, is at least equal to 300 Barrers, and, on either side of the middle layer and preferably in contact with it,
  • the active part of the membrane is preferably a three-layer structure consisting of a middle layer and two outer layers as defined above.
  • the middle layer and the two outer layers are of course continuous, non-perforated layers. They are therefore impermeable to fluids, whether liquid or gaseous.
  • the permeability coefficients Pi and P2 are those of the polymers respectively forming the middle layer and the outer layers. They correspond to the ratio of the mass flux of water vapor (Q) which crosses a zone (A) of a membrane of the polymer to be tested having a given thickness (E), under the effect of a difference in vapor pressure of water (dP) existing on either side of the membrane.
  • the membrane of the present invention therefore comprises a relatively thick layer based on a hydrophilic biopolymer (middle layer), coated on both sides with a continuous layer of a hydrophobic polymer (outer layers).
  • the two outer layers are generally less thick than the middle layer.
  • the ratio of the thickness of the middle layer to the thickness of each of the outer layers is advantageously between 1.5/1 and 1000/1, preferably between 2/1 and 500/1, in particular between 3/1 and 200/1.
  • the two outer layers are preferably directly in contact with the middle layer, i.e. the interface between the layers is preferably free of adhesive.
  • the outer layers are fixed to the middle layer by means of an adhesive
  • the latter would preferably have a permeability coefficient P3 greater than Pi and P2.
  • the adhesive should not oppose to the diffusion of water vapor a resistance greater than that of each of the layers constituting the membrane.
  • the layers defined above form the “active part” of the membranes of the present invention.
  • This part is preferably a membrane obtained in known manner by co-extrusion of thermoplastic polymers forming the different layers, by thermal bonding of films (outer layers) on the middle layer, or by depositing a coating on both sides of the layer median.
  • the active part has in principle a mechanical strength allowing it to be used alone, that is to say without a support layer, it can be interesting, in particular for thin active layers (less than 50 ⁇ m ), to reinforce it with a mechanical structure that is permeable to air and whose resistance to the diffusion of water vapor is therefore negligible compared to that of the active layer, which is impermeable to air.
  • the vapor barrier membrane therefore also comprises an air-permeable reinforcement or protection layer, directly in contact with the active part, that is to say with one of the layers external.
  • This support layer can be a grid, a perforated plate, an open-pored foam or a woven or non-woven fabric, permeable to air. It is preferably a breathable textile, preferably a nonwoven. Mention may be made, as examples of particularly preferred support layers, of nonwovens made of polypropylene or polyester fibers or of glass fibers.
  • the support layer or layers are preferably fixed to the active membrane, or active layer, by bonding using a polyurethane glue.
  • the present invention also encompasses membranes where a reinforcing structure, such as a grid or a nonwoven, is incorporated into the active part of the membrane and more particularly into the middle layer.
  • the water vapor permeability coefficient P2 of the organic polymer constituting the outer layers does not vary significantly with the average relative humidity.
  • the P2wet/P2dry ratio is generally between 1.0 and 1.10, preferably between 1.0 and 1.05.
  • the biopolymers forming the middle layer are biosourced and/or biodegradable organic polymers. They are preferably biobased.
  • biobased biopolymers are preferably chosen from the group consisting of
  • the osides include the glycosides, the hydrolysis of which produces monosaccharides and non-carbohydrate compounds, and the holosides which are polymers exclusively of monosaccharides.
  • osides which can be used to form the middle layer of the vapor barrier membrane of the present invention, those chosen from the group consisting of alginate, carrageenan, cellulose, in particular regenerated cellulose (cellulose hydrate) , chitin, chitosan, pectin, dextrin, starch, curdlan, FucoPol, gellan gum, pullulan and xanthan.
  • the proteins are advantageously selected from the group consisting of gluten, soy protein isolate, zein, whey protein, casein, collagen and gelatin.
  • bio-based polymers extracted from biomass, have a high affinity for water and dissolve or swell in water to form hydrogels. It may therefore be interesting, or even necessary, to modify them chemically in order to reduce their hydrophilic nature, in particular to crosslink them in order to make them insoluble in water.
  • Examples of chemically modified biobased biopolymers include cellulose esters, in particular cellulose acetate, cellulose ethers (in particular ethylcellulose, hydroxyethylcellulose), nitrocellulose, starch esters and ethers .
  • the third category of biobased biopolymers is formed by polymers synthesized from biobased monomers.
  • These polymers can be linear or branched, and therefore thermoplastic, or thermoset.
  • PHA polyhydroxyalkanoates
  • PHB polyhydroxybutyrate
  • PHBV poly(hydroxybutyrate-co-hydroxyvalerate)
  • PLA poly(lactic acid)
  • PGA poly(glycolic acid)
  • PLGA poly(lactide-co-glycolide)
  • thermoset polymers obtained by reaction monosaccharides, disaccharides, oligosaccharides and/or alditols with a polycarboxylic acid and/or a polyaldehyde.
  • thermoset polymers obtained by reaction of monosaccharides, disaccharides, oligosaccharides and/or alditols with a polycarboxylic acid and/or a polyaldehyde are well known in the field of binders for mineral wools and are described in detail, for example, in international applications WO2009/080938 , WO2010/029266, WO2013/014399,
  • the biodegradable biopolymers can advantageously be chosen from the group consisting of aliphatic polyester homopolymers such as poly(caprolactone) (PCL) and poly(butylene succinate) (PBS), aliphatic copolyesters such as and poly(butylene succinate-co- adipate), aromatic copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT) and polyesteramides.
  • PCL poly(caprolactone)
  • PBS poly(butylene succinate)
  • aliphatic copolyesters such as and poly(butylene succinate-co- adipate)
  • aromatic copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT) and polyesteramides.
  • All the biopolymers constituting the middle layer have a permeability coefficient Pi, determined at 23°C under dry conditions (approximately 25% average relative humidity), greater than or equal to 300 Barrers, preferably between 300 and 50,000 Barrers, in particular between 400 and 30,000 Barrers, and ideally between 500 and 20,000 Barrers.
  • This permeability coefficient is determined as follows:
  • the hydrophilic middle layer of the vapor barrier membrane of the present invention is covered on both sides with a continuous layer of an organic polymer that is more hydrophobic and less permeable to water vapor than the middle layer.
  • continuous here means that each of the outer layers totally covers one of the sides of the middle membrane so that the latter is not in contact with the atmosphere.
  • the two continuous layers can be of the same chemical nature and of the same thickness, or else of chemical nature and/or of different thickness from one another. Each of them is directly in contact with the middle layer.
  • the permeability coefficient P2 of each of the outer layers is at most equal to 250 Barrers, preferably between 0.05 and 100 Barrers, in particular between 1.0 and 20 Barrers.
  • the permeability coefficient is determined in the same way as the Pi coefficient.
  • the organic polymer constituting the outer layers is advantageously chosen from the group consisting of polypropylene, polyethylene, poly(ethylene-co-propylene), homopolymers and copolymers of vinyl monomers chosen from vinyl chloride, vinylidene chloride, vinyl fluoride, fluoride vinylidene, tetrafluoroethylene and acrylonitrile.
  • a vapor barrier membrane with a middle layer consisting of cellulose, in particular regenerated cellulose, and two outer layers consisting of polyethylene, polypropylene, an ethylene-propylene copolymer or poly(vinylidene chloride), preferably poly (chloride of vinylidene), is a particularly preferred embodiment of the vapor barrier membrane used in the process of the present invention.
  • the active part of the vapor barrier membrane used in the process of the present invention advantageously has a thickness comprised between 5.0 mm and 240 mm, preferably between 10 mm and 120 mm, in particular between 15 and 80 mm, these values corresponding to the active part (trilayer) of the membrane but do not include any reinforcement and/or protection structure.
  • the wall or the wall of the room or the wall of the building whose airtightness is to be improved are insulated, that is to say covered, by a thermally insulating material and the vapor barrier membrane is attached to the thermal insulation material or incorporated into the thermal insulation material.
  • the vapor barrier membrane of the present invention is therefore applied in an internal position by relative to the thermal insulation material, preferably in direct contact with it. Fixing can be done by any appropriate means that does not significantly affect the airtightness of the membrane. It can be done for example by gluing, stapling or by means of a mechanical fastening system using textile hooks and loops (in English hook and loop fastener) of the scratch/ Velcro® type.
  • the vapor barrier membrane is integrated into the insulating material and attached to the wall of the room or building at the same time as the latter.
  • the membrane is then oriented parallel to the two main surfaces of the insulation material and is preferably located closer to the main surface facing the interior of the room or building than to the main surface facing the wall.
  • the thermal insulating material can be any insulating material that is permeable to water vapor and includes in particular foams and fiber-based materials. It is preferably made of mineral fibers (mineral wool) or natural organic fibers (lignocellulosic fibers, cellulose wadding, animal wool), synthetic (polyester fibers) or artificial. It is preferably made of mineral wool. Examples
  • each membrane was positioned so as to close an aluminum cup using as a joint product melted paraffin wax (mixture of 60% microcrystalline wax and 40% refined crystalline paraffin) to ensure the tightness.
  • melted paraffin wax mixture of 60% microcrystalline wax and 40% refined crystalline paraffin
  • calcium chloride is introduced into the cup before sealing it with the membrane in order to impose a relative humidity of approximately 1% inside.
  • the cup/membrane assembly is then introduced into a climatic chamber in which the relative humidity is set at 50% and the temperature at 23°C, so as to create a difference in water vapor pressure (dP) from and sides of the membrane.
  • the permeability coefficient Pi thus calculated corresponds to an average relative humidity of 25.5% ((1%+50%)/2).
  • the procedure is analogous, except that liquid water is introduced into the dish in order to fix the relative humidity. at 100%, and the relative humidity in the climate chamber is set at 80%.
  • the equivalent air thickness (Sd) is also determined for each membrane in accordance with standard EN IS012572.
  • the first membrane is a vapor barrier membrane according to the invention. It consists of a middle layer of cellulose with a thickness of 17.5 ⁇ m sandwiched between two layers of poly(vinylidene chloride) (PVDC) with a thickness of 750 nm each.
  • the permeability coefficient Pi of the cellulose middle layer is 5600 Barrers at a relative humidity of 25.5% (23°C) and 34600 Barrers at a relative humidity of 90% (23°C); the P2 permeability coefficient of the PVDC layers is 5 Barrers (23°C). It does not vary with relative humidity.
  • the second and third membranes consist solely of cellulose and have the same permeability coefficients Pi as the middle layer of the first membrane.
  • the fourth membrane is a membrane consisting of a single active layer of polyamide 6 with a thickness of 40 ⁇ m attached to a polypropylene nonwoven. It is available on the market under the name Vario KM Duplex® (Saint-Gobain Isover)
  • the fifth membrane is a three-layer membrane according to the state of the art, with an active part consisting of a middle layer of ethylene copolymer and of vinyl alcohol (EVOH) sandwiched between two layers of polyamide 6, attached to a non-woven polypropylene. This membrane is available on the market under the name Vario Xtra® (Saint-Gobain Isover).
  • the difference between the equivalent air thickness in dry and wet conditions of the three-layer vapor barrier membrane according to the invention is significantly greater than that of all the comparative membranes (membranes 2 to 5).
  • the two cellulose membranes (membranes 2 and 3) have an equivalent air thickness (Sd) of less than 1 m, whether under the conditions wet or dry. They are not suitable as vapor barrier membranes because their hygroregulating power is insufficient. During the dry and cold season these membranes would allow too much water to pass through the space between the membrane and the wall of the building. This insufficiently intelligent behavior is corrected in a spectacularly effective manner by the presence of the two thin layers of PVDC.
  • the membrane according to the invention has a total thickness (19 ⁇ m) much lower than those of the active parts of the two membranes marketed by the Applicant which are respectively equal to 40 ⁇ m (Vario KM Duplex®) and 30 ⁇ m (Vario Xtra®).
  • the excellent performance of the membrane according to the invention therefore allows a reduction in raw materials and consequently in costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)

Abstract

The invention relates to a method for improving the airtightness of a building or a room in a building, comprising the use of a vapour barrier membrane on the inner face of the walls of the building or the room in the building, characterised in that the vapour barrier membrane is a humidity-regulating membrane comprising an active portion which comprises: - a middle layer having a thickness of 2 μm to 200 μm, preferably 4 μm to 100 μm, and consisting of a biopolymer having a water vapour permeability coefficient P1 which increases with average relative humidity and which, when it is determined at 23°C and at an average relative humidity of 25.5%, is at least equal to 300 Barrers, and, on either side of the middle layer and preferably in contact with the latter, - two outer layers having a thickness of 100 nm to 20 μpm, preferably 200 nm to 2.5 μm, and consisting, independently of each other, of an organic polymer having both a water vapour permeability coefficient P2, determined at 23°C and at an average relative humidity of 25.5%, of at most equal to 250 Barrers, preferably 0.05 to 100 Barrers, in particular 1.0 to 20 Barrers.

Description

Description Description
Titre : Procédé d’amélioration de l’étanchéité à l’air de bâtiments utilisant une membrane à base de biopolymères Title: Process for improving the airtightness of buildings using a membrane based on biopolymers
La présente invention concerne un procédé d’amélioration de l’étanchéité à l’air de bâtiments ou de pièces de bâtiments utilisant une membrane pare- vapeur, comportant une couche médiane hydrophile à base de biopolymère et deux couches extérieures relativement plus hydrophobes que la couche médiane. The present invention relates to a method for improving the airtightness of buildings or parts of buildings using a vapor barrier membrane, comprising a hydrophilic middle layer based on biopolymer and two outer layers relatively more hydrophobic than the layer median.
On connaît depuis de nombreuses années des membranes pare-vapeur hygrorégulatrices, ou hygrorégulantes, dont la perméabilité à la vapeur d’eau varie en fonction de l’humidité de l’air. Pour les raisons expliquées par exemple dans la demande W096/33321 , on cherche à obtenir des membranes qui laissent passer facilement la vapeur d’eau lorsque l’humidité relative (HR) est élevée (70% à 100 % de HR) et qui la bloquent efficacement à faible humidité relative (50 % de HR et moins). Hygroregulating vapor barrier membranes, or hygroregulating membranes, whose permeability to water vapor varies according to the humidity of the air, have been known for many years. For the reasons explained, for example, in application W096/33321, it is sought to obtain membranes which allow water vapor to pass easily when the relative humidity (RH) is high (70% to 100% RH) and which block effectively at low relative humidity (50% RH and below).
De telles membranes, lorsqu’elles sont disposées sur la face interne d’un matériau d’isolation thermique (face tournée vers l’intérieur d’un bâtiment ou d’une pièce), empêchent le plus possible pendant la saison froide et sèche la vapeur d’eau de pénétrer depuis l’intérieur du bâtiment dans l’espace entre la membrane et le mur et de se condenser sur ce dernier (paroi froide). A l’inverse, à la saison chaude, la perméabilité élevée de la membrane permet à l’humidité éventuellement présente dans les éléments structurels du bâti de s’évacuer vers l’intérieur du bâtiment. Cette propriété est particulièrement importante dans le cas des constructions neuves où, lors de l’installation, certains éléments peuvent avoir une teneur en eau très élevée due aux conditions de stockage, mais également dans le cas d’infiltrations d’eau dans des structures existantes. Dans les deux cas, il est important de pouvoir laisser l’ensemble de la structure sécher de manière efficace en été, vers l’extérieur et l’intérieur du bâtiment. Ce besoin est crucial notamment si les éléments composant le système sont propices à la prolifération de microorganismes. Such membranes, when laid on the internal face of a thermal insulation material (face facing the interior of a building or a room), prevent as much as possible during the cold and dry season the water vapor to penetrate from inside the building into the space between the membrane and the wall and to condense on the latter (cold wall). Conversely, in the hot season, the high permeability of the membrane allows any moisture present in the structural elements of the building to evacuate towards the interior of the building. This property is particularly important in the case of new constructions where, during installation, certain elements may have a very high water content due to storage conditions, but also in the case of water infiltration in existing structures. . In both cases, it is important to be able to let the entire structure dry efficiently in the summer, both outside and inside the building. This need is crucial especially if the elements making up the system are conducive to the proliferation of microorganisms.
De telles membranes pare-vapeur ayant un comportement différencié en fonction des conditions d’humidité relative qui l’entourent sont fréquemment qualifiées d’« intelligentes» (en anglais Smart vapor retarder (SVR)). Dans la présente demande les adjectifs « hygrorégulateur », « hygrorégulant » et « intelligent » sont utilisés comme des synonymes lorsqu’ils décrivent la variation de la perméabilité à la vapeur d’eau des membranes pare-vapeur. Such vapor barrier membranes having a differentiated behavior as a function of the relative humidity conditions which surround it are frequently qualified as “intelligent” (in English Smart vapor retarder (SVR)). In the present application the adjectives “moisture regulator”, “moisture regulator” and “intelligent” are used as synonyms when they describe the variation of the water vapor permeability of vapor barrier membranes.
Il est courant d’exprimer la perméabilité à la vapeur d’eau d’une membrane en termes d’« épaisseur d’air équivalente » pour la diffusion de vapeur d’eau (Sd). Cette épaisseur est exprimée en mètres et correspond à l’épaisseur de la couche d’air qui opposerait une résistance équivalente à la diffusion de la vapeur d’eau. Par conséquent, plus l’épaisseur d’air équivalente est importante, moins la membrane est perméable à la vapeur d’eau. L’épaisseur d’air équivalente (Sd) peut être déterminée conformément aux normes EN 1931 et EN IS012572. It is common to express the water vapor permeability of a membrane in terms of the “equivalent air thickness” for water vapor diffusion (Sd). This thickness is expressed in meters and corresponds to the thickness of the layer of air which would oppose an equivalent resistance to the diffusion of water vapour. Therefore, the greater the equivalent air thickness, the less the membrane is permeable to water vapour. The equivalent air thickness (Sd) can be determined in accordance with EN 1931 and EN IS012572 standards.
Une membrane pare-vapeur hygrorégulante est généralement considérée comme étant d’autant plus intéressante et performante que son épaisseur d’air équivalente est élevée à faible humidité relative et faible à forte humidité relative. A humidity-regulating vapor barrier membrane is generally considered to be all the more interesting and efficient when its equivalent air thickness is high at low relative humidity and low at high relative humidity.
Les membranes pare-vapeur hygrorégulantes disponibles sur le marché et décrites dans l’état de la technique sont généralement à base de polymères organiques synthétiques fabriqués à partir de monomères pétrosourcés. The moisture-regulating vapor barrier membranes available on the market and described in the state of the art are generally based on synthetic organic polymers made from petroleum-based monomers.
Les polymères les plus fréquemment décrits et utilisés sont les polyamides, notamment le polycaprolactame, le poly(alcool vinylique) (PVOH), les copolymères d’éthylène et d’acétate de vinyle et/ou d’alcool vinylique (EVA et EVOH). Les polymères les plus hydrophiles (PVOH, EVOH) peuvent être associés, dans des structures multi-couches, à de minces couches plus hydrophobes, notamment à base de polyoléfines, tels que le polyéthylène, le polypropylène et des copolymères d’éthylène et de propylène. The most frequently described and used polymers are polyamides, in particular polycaprolactam, poly(vinyl alcohol) (PVOH), copolymers of ethylene and vinyl acetate and/or vinyl alcohol (EVA and EVOH). The most hydrophilic polymers (PVOH, EVOH) can be associated, in multi-layer structures, with thin more hydrophobic layers, in particular based on polyolefins, such as polyethylene, polypropylene and copolymers of ethylene and propylene .
On peut citer à titre d’exemples de documents décrivant de telles membranes pare-vapeur « intelligentes » les documents W02007/010388, W02006/034381 , W02005/110892, US7008890, US 6808772 et US 6878455. Examples of documents describing such “smart” vapor barrier membranes include documents W02007/010388, W02006/034381, W02005/110892, US7008890, US 6808772 and US 6878455.
Les recherches qui ont abouti à la présente invention avaient pour but de remplacer les membranes pare-vapeur hygrorégulantes de l’état de la technique à base de polymères pétrosourcés, généralement non biodégradables, par des membranes pare-vapeur hygrorégulantes à base de polymères biosourcés et/ou biodégradables. Ces polymères biosourcés et/ou biodégradables seront appelés ci-après « biopolymères ». Les biopolymères sont de préférence biosourcés, c’est-à-dire à base de matériaux d’origine biologique renouvelables à court terme. Dans un mode de réalisation particulièrement préféré, les biopolymères utilisés dans les membranes de la présente demande sont à la fois biosourcés et biodégradables. The research which led to the present invention aimed to replace the moisture-regulating vapor barrier membranes of the state of the art based on petro-based polymers, generally non-biodegradable, by moisture-regulating vapor barrier membranes based on bio-based polymers and /or biodegradable. These biobased polymers and/or biodegradable will be referred to hereinafter as “biopolymers”. The biopolymers are preferably biobased, that is to say based on materials of biological origin that are renewable in the short term. In a particularly preferred embodiment, the biopolymers used in the membranes of the present application are both biobased and biodegradable.
Les biopolymères biosourcés englobent à la fois les polymères organiques naturels, présents en tant que tels dans la biomasse, les polymères organiques obtenus par modification physique et/ou chimique de ces polymères naturels, et les polymères organiques synthétiques obtenus par polymérisation d’ingrédients biosourcés. Bio-based biopolymers encompass both natural organic polymers, present as such in biomass, organic polymers obtained by physical and/or chemical modification of these natural polymers, and synthetic organic polymers obtained by polymerization of bio-based ingredients.
Des membranes à base de tels biopolymères, par exemple à base de cellulose, de chitosane ou encore à base de poly(3-hydroxybutyrate) (PHB) sont connues et ont été utilisées, en remplacement de films à base de polymères synthétiques pétrosourcés, notamment dans le domaine de l’emballage alimentaire où l’on demande généralement aux membranes une perméabilité à la vapeur d’eau relativement indépendante des conditions d’humidité et de température. Par ailleurs, dans le domaine de l’emballage alimentaire, la durée de vie des films d’emballage est assez limitée et va généralement de quelques jours à quelques semaines, tout au plus à quelques mois. Dans le domaine des membranes pare-vapeur, au contraire, on recherche une durée de vie longue d’au moins plusieurs années, voire de plusieurs dizaines d’années. Membranes based on such biopolymers, for example based on cellulose, chitosan or even based on poly(3-hydroxybutyrate) (PHB) are known and have been used, replacing films based on petroleum-based synthetic polymers, in particular in the field of food packaging where membranes are generally required to have water vapor permeability that is relatively independent of humidity and temperature conditions. Moreover, in the field of food packaging, the lifespan of packaging films is quite limited and generally ranges from a few days to a few weeks, at most a few months. In the field of vapor barrier membranes, on the contrary, a long service life of at least several years, or even several decades, is sought.
Les membranes à base de biopolymères sont le plus souvent assez hydrophiles et leur perméabilité à la vapeur d’eau est élevée. L’épaisseur d’air équivalente de ces membranes est généralement inférieure à 1m et sa valeur absolue ne varie que peu avec l’humidité relative de l’atmosphère qui les entoure. Ces membranes restent donc extrêmement perméables à la vapeur d’eau quelles que soient les conditions environnantes. Membranes based on biopolymers are most often quite hydrophilic and their permeability to water vapor is high. The equivalent air thickness of these membranes is generally less than 1m and its absolute value varies only slightly with the relative humidity of the atmosphere surrounding them. These membranes therefore remain extremely permeable to water vapor whatever the surrounding conditions.
Sans vouloir être lié par une quelconque théorie, on pense que la faible variation de la perméabilité à la vapeur d’eau de ces membranes assez hydrophiles peut être attribuée à l’effet plastifiant de l’eau qui se « dissout » dans la membrane, même à faible humidité. Plus l’humidité ambiante est élevée, plus le matériau de la membrane est plastifié par l’eau et plus la diffusion des molécules d’eau au sein de la membrane est aisée. Without wishing to be bound by any theory, it is believed that the small variation in the water vapor permeability of these rather hydrophilic membranes can be attributed to the plasticizing effect of the water which "dissolves" in the membrane, even at low humidity. The higher the ambient humidity high, the more the material of the membrane is plasticized by water and the easier the diffusion of water molecules within the membrane.
Le principal inconvénient de ces membranes constituées de biopolymères, en vue d’une possible utilisation en tant que pare-vapeurs hygrorégulants, réside donc dans le fait que leur perméabilité à la vapeur d’eau reste globalement trop élevée à faible humidité relative pour qu’elles puissent fonctionner de manière satisfaisante pendant la saison froide et sèche. Une membrane constituée uniquement de cellulose ne formerait ainsi pas une barrière suffisante à la vapeur d’eau provenant de l’intérieur du bâtiment et n’empêcherait pas assez efficacement la vapeur d’eau de pénétrer dans l’espace entre la membrane et le mur et de se condenser dans le matériau isolant et sur la face interne du mur extérieur. The main drawback of these membranes made of biopolymers, with a view to possible use as moisture-regulating vapor barriers, therefore lies in the fact that their permeability to water vapor remains globally too high at low relative humidity for they can function satisfactorily during the cold and dry season. A membrane made solely of cellulose would thus not form a sufficient barrier to water vapor coming from inside the building and would not prevent water vapor from entering the space between the membrane and the wall effectively enough. and to condense in the insulating material and on the internal face of the external wall.
En résumé, les membranes hydrophiles à base de biopolymères utilisées dans le domaine de l’emballage alimentaire restent trop perméables à la vapeur d’eau dans des conditions de faible humidité relative (saison froide). Elles ne sont donc pas assez « intelligentes » pour pouvoir fonctionner correctement en tant que pare-vapeur dans le domaine de l’isolation thermique des bâtiments, en particulier dans l’amélioration de l’étanchéité à l’air et la gestion des flux de vapeur d’eau dans les bâtiments. In summary, the hydrophilic membranes based on biopolymers used in the field of food packaging remain too permeable to water vapor under conditions of low relative humidity (cold season). They are therefore not "intelligent" enough to be able to function correctly as vapor barriers in the field of thermal insulation of buildings, in particular in improving airtightness and managing the flow of water vapor in buildings.
La présente invention est basée sur la découverte surprenante qu’il est possible d’accroître très significativement « l’intelligence » de membranes à base de biopolymères et de les rendre ainsi compatibles avec une utilisation en tant que membrane pare-vapeur dans le domaine du bâtiment, en appliquant sur chacune de leurs deux faces une très mince couche de polymère hydrophobe, très peu perméable à la vapeur d’eau. The present invention is based on the surprising discovery that it is possible to very significantly increase the "intelligence" of membranes based on biopolymers and thus to make them compatible with use as a vapor barrier membrane in the field of building, by applying on each of their two faces a very thin layer of hydrophobic polymer, very little permeable to water vapour.
Cette découverte était d’autant plus surprenante que les polymères hydrophobes déposés sur les deux faces de la membrane en biopolymère, ont une perméabilité à la vapeur d’eau qui est indépendante de l’humidité relative ambiante. Autrement dit des membranes constituées uniquement de ces polymères hydrophobes n’auraient aucun caractère hygrorégulant. Il était donc impossible de prévoir que le dépôt de ces mêmes polymères hydrophobes sur les faces d’une membrane en biopolymère(s) hydrophile(s) accroîtrait de manière spectaculaire l’intelligence de cette dernière en lui permettant d’être extrêmement peu perméable à la vapeur d’eau pendant la saison sèche et très perméable à la vapeur d’eau pendant la saison humide. This discovery was all the more surprising since the hydrophobic polymers deposited on both sides of the biopolymer membrane have a permeability to water vapor which is independent of the ambient relative humidity. In other words, membranes made up solely of these hydrophobic polymers would have no hygroregulating character. It was therefore impossible to predict that the deposition of these same hydrophobic polymers on the faces of a membrane made of hydrophilic biopolymer(s) would dramatically increase the intelligence of the latter by allowing it to be extremely low permeability to water vapor during the dry season and very permeable to water vapor during the wet season.
La présente demande a ainsi pour objet un procédé d’amélioration de l’étanchéité à l’air d’un bâtiment ou d’une pièce d’un bâtiment comprenant l’application d’une membrane pare-vapeur sur la face interne des parois ou murs dudit bâtiment ou de ladite pièce d’un bâtiment, caractérisé par le fait que la membrane pare-vapeur est une membrane pare-vapeur hygrorégulante comprenant une partie active comprenant The subject of the present application is thus a method for improving the airtightness of a building or of a room of a building comprising the application of a vapor barrier membrane on the internal face of the walls or walls of said building or of said room of a building, characterized in that the vapor barrier membrane is a moisture-regulating vapor barrier membrane comprising an active part comprising
- une couche médiane d’une épaisseur comprise entre 2 prrn et 200 miti, de préférence entre 4 prrn et 100 miti, en particulier entre 5 et 50 miti, constituée d’un biopolymère ayant un coefficient de perméabilité à la vapeur d’eau Pi qui augmente avec l’humidité relative moyenne et qui, lorsqu’il est déterminé à 23 °C et à une humidité relative moyenne de 25,5%, est au moins égal à 300 Barrers, et, de part et d’autre de la couche médiane et de préférence en contact avec celle-ci, - a middle layer with a thickness of between 2 prrn and 200 miti, preferably between 4 prrn and 100 miti, in particular between 5 and 50 miti, consisting of a biopolymer having a water vapor permeability coefficient Pi which increases with the average relative humidity and which, when determined at 23°C and an average relative humidity of 25.5%, is at least equal to 300 Barrers, and, on either side of the middle layer and preferably in contact with it,
- deux couches externes d’une épaisseur comprise entre 100 nm et 20 miti, de préférence entre 200 nm et 2,5 miti, constituées indépendamment l’une de l’autre d’un polymère organique présentant un coefficient de perméabilité à la vapeur d’eau P2, déterminé à 23 °C et à une humidité relative moyenne de 25,5 %, au plus égal à 250 Barrers, de préférence compris entre 0,05 et 100 Barrers, en particulier entre 1 ,0 et 20 Barrers. - two outer layers with a thickness of between 100 nm and 20 miti, preferably between 200 nm and 2.5 miti, consisting independently of each other of an organic polymer having a vapor permeability coefficient of water P2, determined at 23° C. and at an average relative humidity of 25.5%, at most equal to 250 Barrers, preferably between 0.05 and 100 Barrers, in particular between 1.0 and 20 Barrers.
La partie active de la membrane est de préférence une structure tri- couche constituée d’une couche médiane et de deux couches externes telles que définies ci-dessus. The active part of the membrane is preferably a three-layer structure consisting of a middle layer and two outer layers as defined above.
La couche médiane et les deux couches externes sont bien entendu des couches continues, non perforées. Elles sont de ce fait imperméables aux fluides, qu’ils soient liquides ou gazeux. The middle layer and the two outer layers are of course continuous, non-perforated layers. They are therefore impermeable to fluids, whether liquid or gaseous.
Les coefficients de perméabilités Pi et P2 sont ceux des polymères formant respectivement la couche médiane et les couches externes. Ils correspondent au rapport du flux massique de vapeur d’eau (Q) qui traverse une zone (A) d’une membrane du polymère à tester ayant une épaisseur (E) donnée, sous l’effet d’une différence de pression de vapeur d’eau (dP) existant de part et d’autre de la membrane. The permeability coefficients Pi and P2 are those of the polymers respectively forming the middle layer and the outer layers. They correspond to the ratio of the mass flux of water vapor (Q) which crosses a zone (A) of a membrane of the polymer to be tested having a given thickness (E), under the effect of a difference in vapor pressure of water (dP) existing on either side of the membrane.
P = (Q x E)/(A x dP) P = (Q x E)/(A x dP)
Ils sont déterminés selon le protocole expérimental décrit en détail ci- dessous et sont exprimés en « Barrer », c’est-à-dire que le flux massique Q est exprimé en cm3 (pression et température normales) par seconde, l’épaisseur E est exprimée en cm, l’aire A de la zone traversée est exprimée en cm2, et la différence de pression de vapeur d’eau (dP) est exprimée en cm Hg (voir notamment S.A. Stern, Journal of Polymer Science : PartA-2, vol. 6 (1968), pages 1933-1934). La membrane de la présente invention comporte donc une couche, relativement épaisse, à base d’un biopolymère hydrophile (couche médiane), revêtue sur ses deux faces d’une couche continue d’un polymère hydrophobe (couches externes). They are determined according to the experimental protocol described in detail below and are expressed in "Barrer", that is to say that the mass flow Q is expressed in cm 3 (normal pressure and temperature) per second, the thickness E is expressed in cm, the area A of the zone crossed is expressed in cm 2 , and the difference in water vapor pressure (dP) is expressed in cm Hg (see in particular SA Stern, Journal of Polymer Science: PartA -2, vol.6 (1968), pages 1933-1934). The membrane of the present invention therefore comprises a relatively thick layer based on a hydrophilic biopolymer (middle layer), coated on both sides with a continuous layer of a hydrophobic polymer (outer layers).
Les deux couches externes ont généralement une épaisseur inférieure à celle de la couche médiane. Le rapport de l’épaisseur de la couche médiane à l’épaisseur de chacune des couches externes est avantageusement compris entre 1 ,5/1 et 1000/1 , de préférence entre 2/1 et 500/1 , en particulier entre 3/1 et 200/1. The two outer layers are generally less thick than the middle layer. The ratio of the thickness of the middle layer to the thickness of each of the outer layers is advantageously between 1.5/1 and 1000/1, preferably between 2/1 and 500/1, in particular between 3/1 and 200/1.
Les deux couches externes sont de préférence directement en contact avec la couche médiane, c’est-à-dire l’interface entre les couches est de préférence exempte d’adhésif. The two outer layers are preferably directly in contact with the middle layer, i.e. the interface between the layers is preferably free of adhesive.
Dans le cas, moins préféré, où les couches externes seraient fixées sur la couche médiane au moyen d’un adhésif, ce dernier aurait de préférence un coefficient de perméabilité P3 supérieur à Pi et P2. Autrement dit, l’adhésif ne devrait pas opposer à la diffusion de la vapeur d’eau une résistance supérieure à celle de chacune des couches constituant la membrane. In the less preferred case where the outer layers are fixed to the middle layer by means of an adhesive, the latter would preferably have a permeability coefficient P3 greater than Pi and P2. In other words, the adhesive should not oppose to the diffusion of water vapor a resistance greater than that of each of the layers constituting the membrane.
Les couches définies ci-dessus forment la « partie active » des membranes de la présente invention. Cette partie est de préférence une membrane obtenue de manière connue par co-extrusion de polymères thermoplastiques formant les différentes couches, par thermocollage de films (couches externes) sur la couche médiane, ou par dépôt d’un revêtement sur les deux faces de la couche médiane. Bien que la partie active présente en principe une tenue mécanique lui permettant d’être utilisée seule, c’est-à-dire sans couche de support, il peut être intéressant, en particulier pour des couches actives de faible épaisseur (inférieure à 50 prm), de la renforcer par une structure mécanique perméable à l’air et dont la résistance à la diffusion de la vapeur d’eau est donc négligeable par rapport à celle de la couche active, imperméable à l’air. The layers defined above form the “active part” of the membranes of the present invention. This part is preferably a membrane obtained in known manner by co-extrusion of thermoplastic polymers forming the different layers, by thermal bonding of films (outer layers) on the middle layer, or by depositing a coating on both sides of the layer median. Although the active part has in principle a mechanical strength allowing it to be used alone, that is to say without a support layer, it can be interesting, in particular for thin active layers (less than 50 μm ), to reinforce it with a mechanical structure that is permeable to air and whose resistance to the diffusion of water vapor is therefore negligible compared to that of the active layer, which is impermeable to air.
Dans un mode de réalisation avantageux, la membrane pare-vapeur comprend donc en outre une couche de renfort ou de protection perméable à l’air, directement en contact avec la partie active, c’est-à-dire avec l’une des couches externes. Cette couche support peut être une grille, une plaque perforée, une mousse à porosité ouverte ou un textile tissé ou non tissé, perméable à l’air. Il s’agit de préférence d’un textile perméable à l’air, de préférence d’un non-tissé. On peut citer à titre d’exemples de couches de support particulièrement préférées les non-tissés en fibres de polypropylène ou de polyester ou en fibres de verre. La ou les couches de support sont de préférence fixées sur la membrane active, ou couche active, par collage au moyen d’une colle polyuréthane. La présente invention englobe également des membranes où une structure de renfort, telle qu’une grille ou un non-tissé, est incorporée dans la partie active de la membrane et plus particulièrement dans la couche médiane. In an advantageous embodiment, the vapor barrier membrane therefore also comprises an air-permeable reinforcement or protection layer, directly in contact with the active part, that is to say with one of the layers external. This support layer can be a grid, a perforated plate, an open-pored foam or a woven or non-woven fabric, permeable to air. It is preferably a breathable textile, preferably a nonwoven. Mention may be made, as examples of particularly preferred support layers, of nonwovens made of polypropylene or polyester fibers or of glass fibers. The support layer or layers are preferably fixed to the active membrane, or active layer, by bonding using a polyurethane glue. The present invention also encompasses membranes where a reinforcing structure, such as a grid or a nonwoven, is incorporated into the active part of the membrane and more particularly into the middle layer.
Le coefficient de perméabilité à la vapeur d’eau P2 du polymère organique constituant les couches externes ne varie pas significativement avec l’humidité relative moyenne. Le rapport P2humide/P2sec est généralement compris entre 1 ,0 et 1 ,10, de préférence entre 1 ,0 et 1 ,05. The water vapor permeability coefficient P2 of the organic polymer constituting the outer layers does not vary significantly with the average relative humidity. The P2wet/P2dry ratio is generally between 1.0 and 1.10, preferably between 1.0 and 1.05.
Comme expliqué en introduction, les biopolymères formant la couche médiane sont des polymères organiques biosourcés et/ou biodégradables. Ils sont de préférence biosourcés. As explained in the introduction, the biopolymers forming the middle layer are biosourced and/or biodegradable organic polymers. They are preferably biobased.
Les biopolymères biosourcés sont de préférence choisis dans le groupe constitué The biobased biopolymers are preferably chosen from the group consisting of
- des osides, - osids,
- des protéines et - proteins and
- des polymères synthétiques obtenus à partir de monomères biosourcés. Les osides englobent les hétérosides dont l'hydrolyse produit des oses et des composés non glucidiques et les holosides qui sont des polymères exclusivement d'oses. - synthetic polymers obtained from biosourced monomers. The osides include the glycosides, the hydrolysis of which produces monosaccharides and non-carbohydrate compounds, and the holosides which are polymers exclusively of monosaccharides.
On peut citer à titre d’exemples d’osides utilisables pour former la couche médiane de la membrane pare-vapeur de la présente invention ceux choisis dans le groupe constitué d’alginate, carraghénane, cellulose, en particulier cellulose régénérée (hydrate de cellulose), chitine, chitosane, pectine, dextrine, amidon, curdlane, FucoPol, gomme gellane, pullulane et xanthane. Mention may be made, as examples of osides which can be used to form the middle layer of the vapor barrier membrane of the present invention, those chosen from the group consisting of alginate, carrageenan, cellulose, in particular regenerated cellulose (cellulose hydrate) , chitin, chitosan, pectin, dextrin, starch, curdlan, FucoPol, gellan gum, pullulan and xanthan.
Les protéines sont choisies avantageusement dans le groupe constitué de gluten, isolat de protéine de soja, zéine, protéines du lactosérum, caséine, collagène et gélatine. The proteins are advantageously selected from the group consisting of gluten, soy protein isolate, zein, whey protein, casein, collagen and gelatin.
La plupart de ces polymères biosourcés, extraits de la biomasse, ont une grande affinité pour l’eau et se dissolvent ou gonflent dans l’eau pour former des hydrogels. II peut par conséquent être intéressant, voire nécessaire, de les modifier chimiquement afin de réduire leur caractère hydrophile, en particulier de les réticuler afin de les rendre insolubles dans l’eau. Most of these bio-based polymers, extracted from biomass, have a high affinity for water and dissolve or swell in water to form hydrogels. It may therefore be interesting, or even necessary, to modify them chemically in order to reduce their hydrophilic nature, in particular to crosslink them in order to make them insoluble in water.
On peut citer à titre d’exemples de biopolymères biosourcés modifiés chimiquement les esters de cellulose, en particulier l’acétate de cellulose, les éthers de cellulose (en particulier l’éthylcellulose, hydroxyéthylcellulose), la nitrocellulose, les esters et éthers d’amidon. Examples of chemically modified biobased biopolymers include cellulose esters, in particular cellulose acetate, cellulose ethers (in particular ethylcellulose, hydroxyethylcellulose), nitrocellulose, starch esters and ethers .
La troisième catégorie de biopolymères biosourcés est formée par les polymères synthétisés à partir de monomères biosourcés. The third category of biobased biopolymers is formed by polymers synthesized from biobased monomers.
Ces polymères peuvent être linéaires ou ramifiés, et donc thermoplastiques, ou thermodurcis. These polymers can be linear or branched, and therefore thermoplastic, or thermoset.
On peut citer à titre d’exemples de polymères synthétiques obtenus à partir de monomères biosourcés ceux choisis dans le groupe constitué par les polyhydroxyalkanoates (PHA), en particulier le polyhydroxybutyrate (PHB) et le poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV), le poly(acide lactique) (PLA), le poly(acide glycolique) (PGA), les poly(lactide-co-glycolide) (PLGA), les polymères obtenus par polymérisation de monomères lipidiques, et les polymères thermodurcis obtenus par réaction de monosaccharides, disaccharides, oligosaccharides et/ou alditols avec un acide polycarboxylique et/ou un polyaldéhyde. Mention may be made, as examples of synthetic polymers obtained from biobased monomers, of those chosen from the group consisting of polyhydroxyalkanoates (PHA), in particular polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) , poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactide-co-glycolide) (PLGA), polymers obtained by polymerization of lipid monomers, and thermoset polymers obtained by reaction monosaccharides, disaccharides, oligosaccharides and/or alditols with a polycarboxylic acid and/or a polyaldehyde.
Les polymères thermodurcis obtenus par réaction de monosaccharides, disaccharides, oligosaccharides et/ou alditols avec un acide polycarboxylique et/ou un polyaldéhyde sont bien connus dans le domaine des liants pour laines minérales et sont décrits en détail par exemple dans les demandes internationales W02009/080938, WO2010/029266, WO2013/014399,The thermoset polymers obtained by reaction of monosaccharides, disaccharides, oligosaccharides and/or alditols with a polycarboxylic acid and/or a polyaldehyde are well known in the field of binders for mineral wools and are described in detail, for example, in international applications WO2009/080938 , WO2010/029266, WO2013/014399,
WO201 3/021112 et WO2015/132518 au nom de la Demanderesse. WO201 3/021112 and WO2015/132518 in the name of the Applicant.
Comme expliqué en introduction, il est également possible d’utiliser des polymères d’origine pétrochimique pour former la couche médiane des membranes de la présente invention du moment où ils sont biodégradables au sens de la norme NF EN 13432. As explained in the introduction, it is also possible to use polymers of petrochemical origin to form the middle layer of the membranes of the present invention as long as they are biodegradable within the meaning of standard NF EN 13432.
Les biopolymères biodégradables peuvent être choisis avantageusement dans le groupe constitué des polyesters aliphatiques homopolymères tels que la poly(caprolactone) (PCL) et le poly(butylène succinate) (PBS), des copolyesters aliphatiques tels que et le poly(butylène succinate-co-adipate), des copolyesters aromatiques tels que le poly(butylène adipate-co-téréphtalate) (PBAT) et des polyesteramides. The biodegradable biopolymers can advantageously be chosen from the group consisting of aliphatic polyester homopolymers such as poly(caprolactone) (PCL) and poly(butylene succinate) (PBS), aliphatic copolyesters such as and poly(butylene succinate-co- adipate), aromatic copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT) and polyesteramides.
Tous les biopolymères constituant la couche médiane présentent un coefficient de perméabilité Pi, déterminé à 23 °C dans des conditions sèches (environ 25 % d’humidité relative moyenne), supérieur ou égal à 300 Barrers, de préférence compris entre 300 et 50000 Barrers, en particulier compris entre 400 et 30000 Barrers, et idéalement entre 500 et 20000 Barrers. All the biopolymers constituting the middle layer have a permeability coefficient Pi, determined at 23°C under dry conditions (approximately 25% average relative humidity), greater than or equal to 300 Barrers, preferably between 300 and 50,000 Barrers, in particular between 400 and 30,000 Barrers, and ideally between 500 and 20,000 Barrers.
Ce coefficient de perméabilité est déterminé de la manière suivante :This permeability coefficient is determined as follows:
Cinq échantillons d’une même membrane d’épaisseur (E) sont scellés au moyen d’un produit de jointement au-dessus de coupelles d’essai contenant un dessicant (poudre de CaCL imposant une humidité relative dans la coupelle d’environ 1 %). Un gabarit est disposé sur la surface des films préalablement à l’application du produit de jointement, afin de créer une zone d’échange, libre de tout produit de jointement et d’une aire définie (A). Différents produits de jointement peuvent être utilisés. Le produit de jointement est par exemple un mélange de 60 % de cire microcristalline et de 40 % de paraffine cristalline raffinée. Les coupelles ainsi réalisées sont placées dans une chambre d’essai régulée en température (23 °C) et en humidité relative (50 %), également appelée enceinte climatique. Five samples of the same membrane of thickness (E) are sealed using a sealant above test cups containing a desiccant (CaCL powder imposing a relative humidity in the cup of approximately 1% ). A template is placed on the surface of the films prior to the application of the grouting product, in order to create an exchange zone, free of any grouting product and of a defined area (A). Different grouting products can be used. The jointing product is for example a mixture of 60% microcrystalline wax and 40% refined crystalline paraffin. The cups thus produced are placed in a test chamber regulated in temperature (23°C) and relative humidity (50%), also called a climatic chamber.
Du fait de la différence de pression partielle de vapeur (dP) régnant à l’intérieur des coupelles d’essai et dans la chambre, de la vapeur d’eau migre à travers la zone d’échange des membranes. Des pesées périodiques des coupelles sont effectuées afin de déterminer les débits de transmission de vapeur d’eau (Q) en régime stationnaire, puis, par calcul, le coefficient de perméabilité à la vapeur d’eau des films considérés, exprimé en Barrer. La moyenne des perméabilités mesurées sur les différents assemblages est alors calculée et correspond au coefficient de perméabilité Pi susmentionné. Due to the difference in vapor partial pressure (dP) prevailing inside the test cups and in the chamber, water vapor migrates through the exchange zone of the membranes. Periodic weighing of the cups is carried out in order to determine the water vapor transmission rates (Q) in steady state, then, by calculation, the water vapor permeability coefficient of the films considered, expressed in Barrer. The average of the permeabilities measured on the different assemblies is then calculated and corresponds to the aforementioned permeability coefficient Pi.
La couche médiane hydrophile de la membrane pare-vapeur de la présente invention est couverte sur ses deux faces d’une couche continue d’un polymère organique plus hydrophobe et moins perméable à la vapeur d’eau que la couche médiane. Le terme « continu » signifie ici que chacune des couches externes couvre totalement l’une des faces de la membrane médiane de manière à ce que cette dernière ne soit pas en contact avec l’atmosphère. Les deux couches continues peuvent être de même nature chimique et de même épaisseur, ou bien de nature chimique et/ou d’épaisseur différentes l’une de l’autre. Chacune d’elles est directement en contact avec la couche médiane. The hydrophilic middle layer of the vapor barrier membrane of the present invention is covered on both sides with a continuous layer of an organic polymer that is more hydrophobic and less permeable to water vapor than the middle layer. The term “continuous” here means that each of the outer layers totally covers one of the sides of the middle membrane so that the latter is not in contact with the atmosphere. The two continuous layers can be of the same chemical nature and of the same thickness, or else of chemical nature and/or of different thickness from one another. Each of them is directly in contact with the middle layer.
Le coefficient de perméabilité P2 de chacune des couches externes est au plus égal à 250 Barrers, de préférence compris entre 0,05 et 100 Barrers, en particulier entre 1 ,0 et 20 Barrers. Le coefficient de perméabilité est déterminé de la même manière que le coefficient Pi. The permeability coefficient P2 of each of the outer layers is at most equal to 250 Barrers, preferably between 0.05 and 100 Barrers, in particular between 1.0 and 20 Barrers. The permeability coefficient is determined in the same way as the Pi coefficient.
Le polymère organique constituant les couches externes est choisi avantageusement dans le groupe constitué de polypropylène, polyéthylène, poly(éthylène-co-propylène), homopolymères et copolymères de monomères vinyliques choisis parmi le chlorure de vinyle, chlorure de vinylidène, fluorure de vinyle, fluorure de vinylidène, tétrafluoroéthylène et acrylonitrile. The organic polymer constituting the outer layers is advantageously chosen from the group consisting of polypropylene, polyethylene, poly(ethylene-co-propylene), homopolymers and copolymers of vinyl monomers chosen from vinyl chloride, vinylidene chloride, vinyl fluoride, fluoride vinylidene, tetrafluoroethylene and acrylonitrile.
Une membrane pare-vapeur avec une couche médiane constituée de cellulose, en particulier de cellulose régénérée, et deux couches externes constituées de polyéthylène, de polypropylène, d’un copolymère éthylène- propylène ou de poly(chlorure de vinylidène), de préférence de poly(chlorure de vinylidène), est un mode de réalisation particulièrement préféré de la membrane pare-vapeur utilisée dans le procédé de la présente invention. A vapor barrier membrane with a middle layer consisting of cellulose, in particular regenerated cellulose, and two outer layers consisting of polyethylene, polypropylene, an ethylene-propylene copolymer or poly(vinylidene chloride), preferably poly (chloride of vinylidene), is a particularly preferred embodiment of the vapor barrier membrane used in the process of the present invention.
La partie active de la membrane pare-vapeur utilisée dans le procédé de la présente invention a avantageusement une épaisseur comprise entre 5,0 prrn et 240 miti, de préférence entre 10 prrn et 120 miti, en particulier entre 15 et 80 miti, ces valeurs correspondant à la partie active (tricouche) de la membrane mais n’englobent pas une éventuelle structure de renfort et/ou de protection. The active part of the vapor barrier membrane used in the process of the present invention advantageously has a thickness comprised between 5.0 mm and 240 mm, preferably between 10 mm and 120 mm, in particular between 15 and 80 mm, these values corresponding to the active part (trilayer) of the membrane but do not include any reinforcement and/or protection structure.
De préférence, le mur ou la paroi de la pièce ou le mur du bâtiment dont il s’agit d’améliorer l’étanchéité à l’air sont isolés, c’est-à-dire recouverts, par un matériau isolant thermique et la membrane pare-vapeur est fixée sur le matériau isolant thermique ou incorporée dans le matériau isolant thermique. Dans un mode de réalisation du procédé d’amélioration de l’étanchéité à l’air d’un bâtiment ou d’une pièce d’un bâtiment, on applique par conséquent la membrane pare-vapeur de la présente invention en une position interne par rapport au matériau d’isolation thermique, de préférence en contact direct avec celui-ci. La fixation peut se faire par n’importe quel moyen approprié n’entamant pas significativement l’étanchéité à l’air de la membrane. Elle peut se faire par exemple par collage, agrafage ou au moyen d’un système de fixation mécanique par crochets et boucles textiles (en anglais hookand loop fastener) de type scratch/Velcro®. Preferably, the wall or the wall of the room or the wall of the building whose airtightness is to be improved are insulated, that is to say covered, by a thermally insulating material and the vapor barrier membrane is attached to the thermal insulation material or incorporated into the thermal insulation material. In one embodiment of the method for improving the airtightness of a building or a room of a building, the vapor barrier membrane of the present invention is therefore applied in an internal position by relative to the thermal insulation material, preferably in direct contact with it. Fixing can be done by any appropriate means that does not significantly affect the airtightness of the membrane. It can be done for example by gluing, stapling or by means of a mechanical fastening system using textile hooks and loops (in English hook and loop fastener) of the scratch/ Velcro® type.
Dans un autre mode de réalisation du procédé de la présente invention, la membrane pare-vapeur est intégrée dans le matériau isolant et fixée au mur de la pièce ou du bâtiment en même temps que celui-ci. La membrane est alors orientée parallèlement aux deux surfaces principales du matériau d’isolation et est située de préférence plus proche de la surface principale tournée vers l’intérieur de la pièce ou du bâtiment que de la surface principale tournée vers le mur. In another embodiment of the method of the present invention, the vapor barrier membrane is integrated into the insulating material and attached to the wall of the room or building at the same time as the latter. The membrane is then oriented parallel to the two main surfaces of the insulation material and is preferably located closer to the main surface facing the interior of the room or building than to the main surface facing the wall.
Le matériau isolant thermique peut être n’importe quel matériau isolant perméable à la vapeur d’eau et englobe notamment les mousses et les matériaux à base de fibres. Il est de préférence en fibres minérales (laine minérale) ou en fibres organiques naturelles (fibres lignocellulosiques, ouate de cellulose, laine animale), synthétiques (fibres de polyester) ou artificiels. Il est de préférence en laine minérale. Exemples The thermal insulating material can be any insulating material that is permeable to water vapor and includes in particular foams and fiber-based materials. It is preferably made of mineral fibers (mineral wool) or natural organic fibers (lignocellulosic fibers, cellulose wadding, animal wool), synthetic (polyester fibers) or artificial. It is preferably made of mineral wool. Examples
Cinq membranes pare-vapeur ont été soumises à une évaluation de leur perméabilité à la vapeur d’eau dans des conditions humides et sèches. Five vapor barrier membranes were evaluated for their water vapor permeability in wet and dry conditions.
Pour cela, chaque membrane a été positionnée de manière à fermer une coupelle en aluminium en utilisant en tant que produit de conjointement de la cire de paraffine fondue (mélange de 60 % de cire microcristalline et de 40 % de paraffine cristalline raffinée) pour assurer l’étanchéité. Pour mesurer la perméabilité à la vapeur d’eau en condition sèche, du chlorure de calcium est introduit dans la coupelle avant de la sceller avec la membrane afin d’imposer une humidité relative d’environ 1% à l’intérieur. L’assemblage coupelle/membrane est ensuite introduit dans une enceinte climatique dans laquelle l’humidité relative est fixée à 50% et la température à 23°C, de manière à créer une différence de pression de vapeur d’eau (dP) de part et d’autre de la membrane. On détermine par pesée des coupelles au cours du temps le flux de vapeur d’eau (Q) qui passe au travers de la zone (A) de la membrane d’épaisseur (E) et on calcule le coefficient de perméabilité (exprimé en Barrers) selon la formule P = (Q x E)/(A x dP) For this, each membrane was positioned so as to close an aluminum cup using as a joint product melted paraffin wax (mixture of 60% microcrystalline wax and 40% refined crystalline paraffin) to ensure the tightness. To measure water vapor permeability in dry conditions, calcium chloride is introduced into the cup before sealing it with the membrane in order to impose a relative humidity of approximately 1% inside. The cup/membrane assembly is then introduced into a climatic chamber in which the relative humidity is set at 50% and the temperature at 23°C, so as to create a difference in water vapor pressure (dP) from and sides of the membrane. We determine by weighing the cups over time the flow of water vapor (Q) which passes through the zone (A) of the membrane of thickness (E) and we calculate the coefficient of permeability (expressed in Barrers ) according to the formula P = (Q x E)/(A x dP)
Le coefficient de perméabilité Pi ainsi calculé correspond à une humidité relative moyenne de 25,5% ((1%+50 %)/2). The permeability coefficient Pi thus calculated corresponds to an average relative humidity of 25.5% ((1%+50%)/2).
Pour mesurer la perméabilité à la vapeur d’eau en condition humide (90% d’humidité relative moyenne), on procède de manière analogue, à ceci près que de l’eau liquide est introduite dans la coupelle afin de fixer l’humidité relative à 100%, et l’humidité relative dans l’enceinte climatique est fixée à 80%. To measure the permeability to water vapor in humid conditions (90% average relative humidity), the procedure is analogous, except that liquid water is introduced into the dish in order to fix the relative humidity. at 100%, and the relative humidity in the climate chamber is set at 80%.
On détermine également pour chaque membrane l’épaisseur équivalente d’air (Sd) conformément à la norme EN IS012572. The equivalent air thickness (Sd) is also determined for each membrane in accordance with standard EN IS012572.
La première membrane est une membrane pare-vapeur selon l’invention. Elle est constituée d’une couche médiane en cellulose d’une épaisseur de 17,5 pm prise en sandwich entre deux couches de poly(chlorure de vinylidène) (PVDC) d’une épaisseur de 750 nm chacune. Le coefficient de perméabilité Pi de la couche médiane en cellulose est de 5600 Barrers à une humidité relative de 25,5% (23 °C) et de 34600 Barrers à une humidité relative de 90 % (23 °C); le coefficient de perméabilité P2 des couches de PVDC est de 5 Barrers (23 °C). Il ne varie pas en fonction de l’humidité relative. The first membrane is a vapor barrier membrane according to the invention. It consists of a middle layer of cellulose with a thickness of 17.5 µm sandwiched between two layers of poly(vinylidene chloride) (PVDC) with a thickness of 750 nm each. The permeability coefficient Pi of the cellulose middle layer is 5600 Barrers at a relative humidity of 25.5% (23°C) and 34600 Barrers at a relative humidity of 90% (23°C); the P2 permeability coefficient of the PVDC layers is 5 Barrers (23°C). It does not vary with relative humidity.
Les deuxième et troisième membranes sont constituées uniquement de cellulose et présentent les mêmes coefficients de perméabilité Pi que la couche médiane de la première membrane. The second and third membranes consist solely of cellulose and have the same permeability coefficients Pi as the middle layer of the first membrane.
La quatrième membrane est une membrane constituée d’une seule couche active de polyamide 6 d’une épaisseur de 40 pm fixée sur un non-tissé en polypropylène. Elle est disponible sur le marché sous la dénomination Vario KM Duplex® (Saint-Gobain Isover) La cinquième membrane est une membrane tricouche selon l’état de la technique, avec une partie active constituée d’une couche médiane en copolymère d’éthylène et d’alcool vinylique (EVOH) pris en sandwich entre deux couches de polyamide 6, fixée sur un non-tissé de polypropylène. Cette membrane est disponible sur le marché sous la dénomination Vario Xtra® (Saint-Gobain Isover). The fourth membrane is a membrane consisting of a single active layer of polyamide 6 with a thickness of 40 μm attached to a polypropylene nonwoven. It is available on the market under the name Vario KM Duplex® (Saint-Gobain Isover) The fifth membrane is a three-layer membrane according to the state of the art, with an active part consisting of a middle layer of ethylene copolymer and of vinyl alcohol (EVOH) sandwiched between two layers of polyamide 6, attached to a non-woven polypropylene. This membrane is available on the market under the name Vario Xtra® (Saint-Gobain Isover).
Les caractéristiques techniques des membranes (composition des couches, épaisseur, épaisseur d’air équivalente dans les conditions sèches et humides) sont rassemblées dans le Tableau 1 ci-dessous. The technical characteristics of the membranes (composition of the layers, thickness, equivalent air thickness in dry and wet conditions) are gathered in Table 1 below.
[Tableau 1] [Table 1]
On peut constater que la différence entre l’épaisseur d’air équivalente dans les conditions sèches et humides de la membrane pare-vapeur tricouche selon l’invention (membrane 1) est significativement plus forte que celle de toutes les membranes comparatives (membranes 2 à 5). Les deux membranes de cellulose (membranes 2 et 3), ont une épaisseur d’air équivalente (Sd) inférieure à 1 m, que ce soit dans les conditions humides ou sèches. Elles ne sont pas appropriées en tant que membranes pare-vapeur car leur pouvoir hygrorégulant est insuffisant. Pendant la saison sèche et froide ces membranes laisseraient passer trop d’eau dans l’espace situé entre la membrane et le mur du bâtiment. Ce comportement insuffisamment intelligent est corrigé de manière spectaculairement efficace par la présence des deux minces couches de PVDC. It can be seen that the difference between the equivalent air thickness in dry and wet conditions of the three-layer vapor barrier membrane according to the invention (membrane 1) is significantly greater than that of all the comparative membranes (membranes 2 to 5). The two cellulose membranes (membranes 2 and 3) have an equivalent air thickness (Sd) of less than 1 m, whether under the conditions wet or dry. They are not suitable as vapor barrier membranes because their hygroregulating power is insufficient. During the dry and cold season these membranes would allow too much water to pass through the space between the membrane and the wall of the building. This insufficiently intelligent behavior is corrected in a spectacularly effective manner by the presence of the two thin layers of PVDC.
On peut également noter que la membrane selon l’invention (membrane 1) présente une épaisseur totale (19 pm) bien inférieure à celles des parties actives des deux membranes commercialisées par la Demanderesse qui sont respectivement égales à 40 pm (Vario KM Duplex®) et 30 pm (Vario Xtra®). L’excellente performance de la membrane selon l’invention permet par conséquent une réduction des matières premières et par conséquent des coûts. It can also be noted that the membrane according to the invention (membrane 1) has a total thickness (19 μm) much lower than those of the active parts of the two membranes marketed by the Applicant which are respectively equal to 40 μm (Vario KM Duplex®) and 30 µm (Vario Xtra®). The excellent performance of the membrane according to the invention therefore allows a reduction in raw materials and consequently in costs.

Claims

REVENDICATIONS
1. Procédé d’amélioration de l’étanchéité à l’air d’un bâtiment ou d’une pièce d’un bâtiment comprenant l’application d’une membrane pare-vapeur sur la face interne des murs dudit bâtiment ou de ladite pièce d’un bâtiment, caractérisé par le fait que la membrane pare-vapeur est une membrane hygrorégulante comprenant une partie active comprenant 1. Method for improving the airtightness of a building or a room of a building comprising the application of a vapor barrier membrane on the internal face of the walls of said building or of said room of a building, characterized in that the vapor barrier membrane is a hygroregulating membrane comprising an active part comprising
- une couche médiane d’une épaisseur comprise entre 2 pm et 200 miti, de préférence entre 4 pm et 100 pm, constituée d’un biopolymère ayant un coefficient de perméabilité à la vapeur d’eau Pi qui augmente avec l’humidité relative moyenne et qui, lorsqu’il est déterminé à 23 °C et à une humidité relative moyenne de 25,5%, est au moins égal à 300 Barrers, et, de part et d’autre de la couche médiane et de préférence en contact avec celle-ci, - a middle layer with a thickness of between 2 μm and 200 miti, preferably between 4 μm and 100 μm, consisting of a biopolymer having a water vapor permeability coefficient Pi which increases with the average relative humidity and which, when determined at 23°C and an average relative humidity of 25.5%, is at least equal to 300 Barrers, and, on either side of the middle layer and preferably in contact with this one,
- deux couches externes d’une épaisseur comprise entre 100 nm et 20 pm, de préférence entre 200 nm et 2,5 pm, constituées indépendamment l’une de l’autre d’un polymère organique présentant un coefficient de perméabilité à la vapeur d’eau P2, déterminé à 23 °C et à une humidité relative moyenne de 25,5%, au plus égal à 250 Barrers, de préférence compris entre 0,05 et 100 Barrers, en particulier entre 1 ,0 et 20 Barrers. - two outer layers with a thickness of between 100 nm and 20 μm, preferably between 200 nm and 2.5 μm, consisting independently of each other of an organic polymer having a vapor permeability coefficient of water P2, determined at 23° C. and at an average relative humidity of 25.5%, at most equal to 250 Barrers, preferably between 0.05 and 100 Barrers, in particular between 1.0 and 20 Barrers.
2. Procédé selon la revendication 1 , caractérisé par le fait que le coefficient de perméabilité à la vapeur d’eau P2 du polymère organique constituant les couches externes ne varie pas significativement avec l’humidité relative moyenne. 2. Method according to claim 1, characterized in that the water vapor permeability coefficient P2 of the organic polymer constituting the outer layers does not vary significantly with the average relative humidity.
3. Procédé selon la revendication 1 ou 2, caractérisé par le fait que le biopolymère formant la couche médiane est un biopolymère biosourcé choisi dans le groupe constitué des osides, des protéines et des polymères synthétiques obtenus à partir de monomères biosourcés. 3. Method according to claim 1 or 2, characterized in that the biopolymer forming the middle layer is a biosourced biopolymer chosen from the group consisting of osides, proteins and synthetic polymers obtained from biosourced monomers.
4. Procédé selon la revendication 3, caractérisé par le fait que les osides sont choisis dans le groupe constitué d’alginate, carraghénane, cellulose, en particulier cellulose régénérée, chitine, chitosane, pectine, dextrine, amidon, curdlane, FucoPol, gomme gellane, pullulane et xanthane. 4. Method according to claim 3, characterized in that the osides are chosen from the group consisting of alginate, carrageenan, cellulose, in particular regenerated cellulose, chitin, chitosan, pectin, dextrin, starch, curdlan, FucoPol, gellan gum , pullulan and xanthan.
5. Procédé selon la revendication 3, caractérisé par le fait que les protéines sont choisies dans le groupe constitué de gluten, isolat de protéine de soja, zéine, protéines du lactosérum, caséine, collagène et gélatine. 5. Method according to claim 3, characterized in that the proteins are chosen from the group consisting of gluten, soy protein isolate, zein, whey proteins, casein, collagen and gelatin.
6. Procédé selon la revendication 4 ou 5, caractérisé par le fait que les osides et protéines sont chimiquement modifiés. 6. Method according to claim 4 or 5, characterized in that the osides and proteins are chemically modified.
7. Procédé selon la revendication 3, caractérisé par le fait que les polymères synthétiques obtenus à partir de monomères biosourcés sont choisis dans le groupe constitué par les polyhydroxyalkanoates (PHA), le poly(acide lactique) (PLA), le poly(acide glycolique) (PGA), les poly(lactide-co-glycolide) (PLGA), les polymères obtenus par polymérisation de monomères lipidiques, les polymères thermodurcis obtenus par réaction de monosaccharides, disaccharides, oligosaccharides et/ou alditols avec un acide polycarboxylique et/ou un polyaldéhyde. 7. Process according to claim 3, characterized in that the synthetic polymers obtained from biosourced monomers are chosen from the group consisting of polyhydroxyalkanoates (PHA), poly(lactic acid) (PLA), poly(glycolic acid) ) (PGA), poly(lactide-co-glycolide) (PLGA), polymers obtained by polymerization of lipid monomers, thermoset polymers obtained by reaction of monosaccharides, disaccharides, oligosaccharides and/or alditols with a polycarboxylic acid and/or a polyaldehyde.
8. Procédé selon la revendication 1 ou 2, caractérisé par le fait que les biopolymères sont des polymères biodégradables choisis dans le groupe constitué des polyesters aliphatiques, copolyesters aliphatiques, copolyesters aromatiques et polyesteramides. 8. Method according to claim 1 or 2, characterized in that the biopolymers are biodegradable polymers chosen from the group consisting of aliphatic polyesters, aliphatic copolyesters, aromatic copolyesters and polyesteramides.
9. Procédé selon la revendication 8, caractérisé par le fait que les biopolymères biodégradables sont choisis dans le groupe constitué de poly(caprolactone) (PCL), poly(butylène succinate) (PBS), poly(butylène succinate-co-adipate) et poly(butylène adipate-co-téréphtalate) (PBAT). 9. Process according to claim 8, characterized in that the biodegradable biopolymers are chosen from the group consisting of poly(caprolactone) (PCL), poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) and poly(butylene adipate-co-terephthalate) (PBAT).
10. Procédé selon l’une quelconque des revendications précédentes, caractérisé par le fait que le polymère organique constituant les couches externes est choisi dans le groupe constitué de polypropylène, polyéthylène, poly(éthylène-co-propylène), homopolymères et copolymères de monomères vinyliques choisis parmi le chlorure de vinyle, chlorure de vinylidène, fluorure de vinyle, fluorure de vinylidène, tétrafluoroéthylène et acrylonitrile. 10. Method according to any one of the preceding claims, characterized in that the organic polymer constituting the outer layers is chosen from the group consisting of polypropylene, polyethylene, poly (ethylene-co-propylene), homopolymers and copolymers of vinyl monomers selected from vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene and acrylonitrile.
11. Procédé selon la revendication 1 , caractérisé par le fait que la couche médiane est constituée de cellulose et que les deux couches externes sont constituées de polyéthylène, de polypropylène, d’un copolymère éthylène- propylène ou de poly(chlorure de vinylidène), de préférence de poly(chlorure de vinylidène). 11. Method according to claim 1, characterized in that the middle layer consists of cellulose and that the two outer layers consist of polyethylene, polypropylene, an ethylene-propylene copolymer or poly (vinylidene chloride), preferably poly(vinylidene chloride).
12. Procédé selon l’une quelconque des revendications précédentes, caractérisé par le fait que la partie active de la membrane a une épaisseur comprise entre 5,0 pm et 240 miti, de préférence entre 10 pm et 120 pm. 12. Method according to any one of the preceding claims, characterized in that the active part of the membrane has a thickness of between 5.0 μm and 240 μm, preferably between 10 μm and 120 μm.
13. Procédé selon l’une quelconque des revendications précédentes, caractérisé par le fait que la membrane pare-vapeur comporte en outre une couche de renfort ou de protection qui est en contact avec l’une des couches externes de la partie active. 13. Method according to any one of the preceding claims, characterized in that the vapor barrier membrane further comprises a reinforcing or protective layer which is in contact with one of the outer layers of the active part.
14. Procédé selon l’une quelconque des revendications précédentes, caractérisé par le fait que le mur du bâtiment ou de la pièce du bâtiment est recouvert par un matériau isolant thermique et que l’on applique la membrane pare-vapeur en une position interne par rapport au matériau isolant thermique ou que la membrane est intégrée dans le matériau isolant thermique. 14. Method according to any one of the preceding claims, characterized in that the wall of the building or of the room of the building is covered with a thermally insulating material and that the vapor barrier membrane is applied in an internal position by relative to the thermal insulation material or that the membrane is integrated into the thermal insulation material.
15. Procédé selon la revendication 14, caractérisé par le fait que le matériau isolant thermique est en fibres minérales ou organiques, naturelles, synthétiques ou artificielles. 15. Method according to claim 14, characterized in that the thermal insulating material is made of mineral or organic fibers, natural, synthetic or artificial.
EP22702749.7A 2021-01-07 2022-01-04 Method for improving the airtightness of buildings using a biopolymer-based membrane Pending EP4274736A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR2100107A FR3118636A1 (en) 2021-01-07 2021-01-07 Process for improving the airtightness of buildings using a membrane based on biopolymers
FR2100377A FR3118637B1 (en) 2021-01-07 2021-01-15 Process for improving the airtightness of buildings using a membrane based on biopolymers
PCT/FR2022/050009 WO2022148925A1 (en) 2021-01-07 2022-01-04 Method for improving the airtightness of buildings using a biopolymer-based membrane

Publications (1)

Publication Number Publication Date
EP4274736A1 true EP4274736A1 (en) 2023-11-15

Family

ID=80218457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22702749.7A Pending EP4274736A1 (en) 2021-01-07 2022-01-04 Method for improving the airtightness of buildings using a biopolymer-based membrane

Country Status (6)

Country Link
US (1) US20240058766A1 (en)
EP (1) EP4274736A1 (en)
JP (1) JP2024503640A (en)
KR (1) KR20230129990A (en)
CA (1) CA3202601A1 (en)
WO (1) WO2022148925A1 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008890B1 (en) 1995-04-19 2006-03-07 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Vapor barrier for use in the thermal insulation of buildings
DE19514420C1 (en) 1995-04-19 1997-03-06 Fraunhofer Ges Forschung Vapor barrier for use in the thermal insulation of buildings
JP2002533592A (en) * 1998-12-21 2002-10-08 イーコパル アクティーゼルスカブ Water vapor barrier and method of manufacturing the same
US20060059852A1 (en) 2004-09-23 2006-03-23 Certainteed Corporation Laminated building materials
US20070015424A1 (en) 2005-07-15 2007-01-18 Certainteed Corporation Building material having adaptive vapor retarder
US20050260368A1 (en) 2004-05-18 2005-11-24 Ruid John O Packaging for insulation products
FR2924719B1 (en) 2007-12-05 2010-09-10 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL WOOL COMPRISING MONOSACCHARIDE AND / OR POLYSACCHARIDE AND POLYCARBOXYLIC ORGANIC ACID, AND INSULATING PRODUCTS OBTAINED
FR2935707B1 (en) 2008-09-11 2012-07-20 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL WOOL BASED ON HYDROGEN SUGAR AND INSULATING PRODUCTS OBTAINED
FR2978446B1 (en) 2011-07-27 2015-06-05 Saint Gobain Isover SIZING COMPOSITION FOR MINERAL WOOL BASED ON MALTITOL AND INSULATING PRODUCTS OBTAINED
FR2978768B1 (en) 2011-08-05 2014-11-28 Saint Gobain Isover SINKING COMPOSITION FOR MINERAL WOOL BASED ON SUCROSE REDUCER AND HYDROGEN SACCHARIDE, AND INSULATING PRODUCTS OBTAINED
FR2997649B1 (en) * 2012-11-08 2015-06-26 Saint Gobain Isover PA / EVOH / PA TRICOUCHE VAPOR MEMBRANE
AU2014368964B2 (en) * 2013-12-19 2017-09-28 Certainteed Llc Coating compositions for building materials and coated building material substrates
FR3018281B1 (en) 2014-03-06 2016-02-19 Saint Gobain Isover BINDER COMPOSITION FOR MINERAL WOOL

Also Published As

Publication number Publication date
US20240058766A1 (en) 2024-02-22
JP2024503640A (en) 2024-01-26
CA3202601A1 (en) 2022-07-14
WO2022148925A1 (en) 2022-07-14
KR20230129990A (en) 2023-09-11

Similar Documents

Publication Publication Date Title
FR2843524A1 (en) Biodegradable fibrous support for soil mulching comprises aqueous solution coating based on biodegradable natural latex from rubber tree and including stabilizing and preservative agents
EP3233471B1 (en) High-performance thermal insulation products
EP2820086B1 (en) Vapour-barrier membrane based on a pa666/evoh blend
FR2956671A1 (en) CELLULOSIC FIBER SUPPORT CONTAINING MODIFIED PVA LAYER - PROCESS FOR THE PRODUCTION AND USE THEREOF
Fernández-Santos et al. Improving filmogenic and barrier properties of nanocellulose films by addition of biodegradable plasticizers
EP2116753B1 (en) Thermal insulation product
FR2997649A1 (en) Membrane vapor barrier, useful for increasing airtightness of a building or a room, comprises active layer formed by sub-layer of random copolymer of ethylene and vinyl alcohol, and outer sub-layers made of polyamide
FR3039539A1 (en) MONOLITHIC AEROGEL REINFORCED WITH DISPERSE FIBERS
EP3113875A1 (en) Process for producing aerogels by dielectric heating
EP4274736A1 (en) Method for improving the airtightness of buildings using a biopolymer-based membrane
EP4319978A1 (en) Method for improving the airtightness of buildings using a biopolymer-based membrane
FR3118637A1 (en) Process for improving the airtightness of buildings using a membrane based on biopolymers
EP3328633B1 (en) Self-adhesive pervious membrane and method for manufacturing such a self-adhesive pervious membrane
WO2023237841A1 (en) Method for improving the airtightness of buildings using a biopolymer-based membrane
EP3827144A1 (en) Non-combustible, breathable membrane
FR2843523A1 (en) Biodegradable fibrous support for soil mulching comprises reinforcement grid made of biodegradable polymers and maintained on support face or incorporated into support mass
FR2608652A1 (en) DRAINING SHEET FOR CONSTRUCTION WORKS
FR2843525A1 (en) Biodegradable fibrous support for soil mulching for use in e.g. horticulture comprises biodegradable thermobonding fibers distributed in mass of support
FR3033732A1 (en) MULTILAYER COMPOSITE MATERIALS
FR2988640A1 (en) Acoustically and thermally insulated composite material for use in structural element of building e.g. naval building, has core in form of web including bamboo filaments, fibers of product, and bonding agents, and bonded face bonded to core
US20240376707A1 (en) Method for improving the airtightness of buildings using a biopolymer-based membrane
FR2884843A1 (en) Vapor-barrier membrane for e.g. building construction, has thin polymer film and thin metallic layer covered with corrosion protection layer, where membrane has variable water vapor permeability and normal emissivity lower than five percent
FR3138137A1 (en) Thermal and/or acoustic insulating material based on sugar cane bagasse, thermal and/or acoustic insulating panel, and structural element
WO2022097083A1 (en) Use of a universal corrective coating, covering structure comprising such a coating and corresponding application method
FR3112796A1 (en) Process for functionalizing a substrate based on a polymer by chemical deposition of a thin layer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)