[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4262574A1 - Chirurgische systeme mit vorrichtungen für intraluminalen und extraluminalen zugang - Google Patents

Chirurgische systeme mit vorrichtungen für intraluminalen und extraluminalen zugang

Info

Publication number
EP4262574A1
EP4262574A1 EP22786489.9A EP22786489A EP4262574A1 EP 4262574 A1 EP4262574 A1 EP 4262574A1 EP 22786489 A EP22786489 A EP 22786489A EP 4262574 A1 EP4262574 A1 EP 4262574A1
Authority
EP
European Patent Office
Prior art keywords
surgical
instrument
anatomical space
intraluminal
extraluminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22786489.9A
Other languages
English (en)
French (fr)
Inventor
Iv Frederick E. Shelton
Charles J. Scheib
Jason L. Harris
Alexander Tarek Hassan
Travis Michael Schuh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Original Assignee
Cilag GmbH International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/493,526 external-priority patent/US20230094881A1/en
Application filed by Cilag GmbH International filed Critical Cilag GmbH International
Publication of EP4262574A1 publication Critical patent/EP4262574A1/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/00234Surgical instruments, devices or methods for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00269Type of minimally invasive operation endoscopic mucosal resection EMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/00234Surgical instruments, devices or methods for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/0034Surgical instruments, devices or methods for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means adapted to be inserted through a working channel of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2906Multiple forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • A61B2090/365Correlation of different images or relation of image positions in respect to the body augmented reality, i.e. correlating a live optical image with another image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Leader-follower robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Definitions

  • Figure 12 is a graph depicting illustrative hyperspectral identifying signatures to differentiate a ureter from obscurants
  • a surgical visualization system is configured to leverage “digital surgery” to obtain additional information about a patient’s anatomy and/or a surgical procedure.
  • the surgical visualization system is further configured to convey data to one or more medical practitioners in a helpful manner.
  • Various aspects of the present disclosure provide improved visualization of the patient’s anatomy and/or the surgical procedure, and/or use visualization to provide improved control of a surgical tool (also referred to herein as a “surgical device” or a “surgical instrument”).
  • the tissue identification subsystem can be achieved with a spectral imaging system.
  • the spectral imaging system can rely on imaging such as hyperspectral imaging, multispectral imaging, or selective spectral imaging.
  • Embodiments of hyperspectral imaging of tissue are further described in U.S. Pat. No. 9,274,047 entitled “System And Method For Gross Anatomic Pathology Using Hyperspectral Imaging” issued March 1, 2016, which is hereby incorporated by reference in its entirety.
  • the surgical visualization system 100 includes a control system configured to control various aspects of the surgical visualization system 100.
  • Figure 4 illustrates one embodiment of a control system 133 that can be utilized as the control system of the surgical visualization system 100 (or other surgical visualization system described herein).
  • the control system 133 includes a control circuit 132 configured to be in signal communication with a memory 134.
  • the memory 134 is configured to store instructions executable by the control circuit 132, such as instructions to determine and/or recognize critical structures (e.g., the critical structure 101 of Figure 1), instructions to determine and/or compute one or more distances and/or three- dimensional digital representations, and instructions to communicate information to a medical practitioner.
  • the image sensor 135 is a solid-state electronic device containing up to millions of discrete photodetector sites called pixels.
  • the image sensor 135 technology falls into one of two categories: Charge-Coupled Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS) imagers and more recently, short-wave infrared (SWIR) is an emerging technology in imaging.
  • CCD Charge-Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • SWIR short-wave infrared
  • Another type of the image sensor 135 employs a hybrid CCD/CMOS architecture (sold under the name “sCMOS”) and consists of CMOS readout integrated circuits (ROICs) that are bump bonded to a CCD imaging substrate.
  • sCMOS hybrid CCD/CMOS architecture
  • ROICs CMOS readout integrated circuits
  • Figure 10 shows a graph 300 depicting how the absorption coefficient of various biological materials varies across the EMR wavelength spectrum.
  • the vertical axis 302 represents absorption coefficient of the biological material in cm' 1
  • the horizontal axis 304 represents EMR wavelength in pm.
  • a first line 306 in the graph 300 represents the absorption coefficient of water at various EMR wavelengths
  • a second line 308 represents the absorption coefficient of protein at various EMR wavelengths
  • a third line 310 represents the absorption coefficient of melanin at various EMR wavelengths
  • a fourth line 312 represents the absorption coefficient of deoxygenated hemoglobin at various EMR wavelengths
  • a fifth line 314 represents the absorption coefficient of oxygenated hemoglobin at various EMR wavelengths
  • a sixth line 316 represents the absorption coefficient of collagen at various EMR wavelengths.
  • Different tissue types have different combinations of constituent materials and, therefore, the tissue type(s) being visualized by a surgical visualization system can be identified and differentiated between according to the particular combination of detected constituent materials.
  • Tissues and/or structures can also be imaged or characterized according to their reflective characteristics, in addition to or in lieu of their absorptive characteristics described above with respect to Figure 10 and Figure 11, across the EMR wavelength spectrum.
  • Figure 12, Figure 13, and Figure 14 illustrate various graphs of reflectance of different types of tissues or structures across different EMR wavelengths.
  • Figure 12 is a graphical representation 340 of an illustrative ureter signature versus obscurants.
  • Figure 13 is a graphical representation 342 of an illustrative artery signature versus obscurants.
  • Figure 14 is a graphical representation 344 of an illustrative nerve signature versus obscurants.
  • Figure 17 illustrates another embodiment of a time-of-flight sensor system 504 utilizing waves 524a, 524b, 524c, 525a, 525b, 525c is shown.
  • the surgical system 702 can include an M number of hubs 706, an N number of visualization systems 708, an O number of robotic systems 710, and a P number of intelligent surgical instruments 712, where M, N, O, and P are integers greater than or equal to one that may or may not be equal to any one or more of each other.
  • M, N, O, and P are integers greater than or equal to one that may or may not be equal to any one or more of each other.
  • the surgical hub can be configured to cause visualization of the received data to be provided in the surgical setting on a display so that a medical practitioner in the surgical setting can view the data and thereby receive an understanding of the operation of the imaging device(s) in use in the surgical setting.
  • information provided via visualization can include text and/or images.
  • the algorithm is stored in the form of one or more sets of pluralities of data points defining and/or representing instructions, notifications, signals, etc. to control functions of the intelligent surgical device.
  • data gathered by the intelligent surgical device can be used by the intelligent surgical device, e.g., by a processor of the intelligent surgical device, to change at least one variable parameter of the algorithm.
  • a surgical hub can be in communication with an intelligent surgical device, so data gathered by the intelligent surgical device can be communicated to the surgical hub and/or data gathered by another device in communication with the surgical hub can be communicated to the surgical hub, and data can be communicated from the surgical hub to the intelligent surgical device.
  • the surgical instrument 900 also includes a communications interface 908, e.g., a wireless transceiver or other wired or wireless communications interface, configured to communicate with another device, such as a surgical hub 910.
  • the communications interface 908 can be configured to allow one-way communication, such as providing data to a remote server (e.g., a cloud server or other server) and/or to a local, surgical hub server, and/or receiving instructions or commands from a remote server and/or a local, surgical hub server, or two-way communication, such as providing information, messages, data, etc. regarding the surgical instrument 900 and/or data stored thereon and receiving instructions, such as from a doctor; a remote server regarding updates to software; a local, surgical hub server regarding updates to software; etc.
  • a remote server e.g., a cloud server or other server
  • two-way communication such as providing information, messages, data, etc. regarding the surgical instrument 900 and/or data stored thereon and receiving instructions, such as from a doctor; a remote server regarding
  • Another benefit includes proactively and automatically controlling modular devices according to the particular step of the surgical procedure that is being performed to reduce the number of times that medical practitioners are required to interact with or control the surgical system during the course of a surgical procedure, such as by a situationally aware surgical hub proactively activating a generator to which an RF electrosurgical instrument is connected if it determines that a subsequent step of the procedure requires the use of the instrument. Proactively activating the energy source allows the instrument to be ready for use a soon as the preceding step of the procedure is completed.
  • the laparoscope 10414 includes the second optical sensor 10458.
  • the second optical sensor 10458 is configured to transmit image data of a second scene within a field of view of the laparoscope 10414 to the controller 10470.
  • the surgical instrument 10462 is arranged within the field of view of the laparoscope 10414.
  • the controller 10470 based on the transmitted image data, can determine the relative distance between the surgical instrument 10462 and the surgical instrument 10432.
  • Figure 26a illustrates an exemplary embodiment of a merged image.
  • the first scope device 10512 is further inserted through a lumen of a sealing port 10540, with the sealing port 10540 being arranged within a wall 10506 of the colon 10502, and into a colon cavity 10507 (e.g., intraluminal anatomical space).
  • the first scope device 10512 can be inserted into and through the first trocar 10536 and sealing port 10540 such that a first portion 10512a of the first scope device 10512 is present in the abdominal cavity 10505 (e.g., an extraluminal anatomical space), and a second portion 10512b of the first scope device 10512 that is distal to the first portion 10512a is positioned in the colon cavity 10507 (e.g., an intraluminal anatomical space).
  • the first and second imaging systems 10528, 10558 are connected to one or more displays that provide a snapshot and/or a live video feed of the surgical site(s).
  • the snapshot and/or live video feed on the displays can permit a medical practitioner to observe a surgical site from multiple angles and approaches, for example.
  • the first and second imaging systems 10528, 10558 can provide information to the medical practitioner that can be used in determining effective working volume spaces for the first and second instruments for a particular surgical task or step or throughout the entire surgical procedure and what, if any, adjustments need to be made to the first insufflated space, the second insufflated space, or both.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Remote Sensing (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radiology & Medical Imaging (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Endoscopes (AREA)
EP22786489.9A 2021-09-29 2022-09-26 Chirurgische systeme mit vorrichtungen für intraluminalen und extraluminalen zugang Pending EP4262574A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163249980P 2021-09-29 2021-09-29
US17/493,526 US20230094881A1 (en) 2021-09-29 2021-10-04 Surgical systems with devices for both intraluminal and extraluminal access
PCT/IB2022/059079 WO2023052930A1 (en) 2021-09-29 2022-09-26 Surgical systems with devices for both intraluminal and extraluminal access

Publications (1)

Publication Number Publication Date
EP4262574A1 true EP4262574A1 (de) 2023-10-25

Family

ID=83689164

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22786489.9A Pending EP4262574A1 (de) 2021-09-29 2022-09-26 Chirurgische systeme mit vorrichtungen für intraluminalen und extraluminalen zugang

Country Status (3)

Country Link
EP (1) EP4262574A1 (de)
JP (1) JP2024536154A (de)
WO (1) WO2023052930A1 (de)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8727967B2 (en) * 2008-07-18 2014-05-20 Boston Scientific Scimed, Inc. Endoscope with guide
US8521331B2 (en) 2009-11-13 2013-08-27 Intuitive Surgical Operations, Inc. Patient-side surgeon interface for a minimally invasive, teleoperated surgical instrument
EP2967521B1 (de) 2013-03-15 2019-12-25 SRI International Elektromechanisches chirurgisches system
US9274047B2 (en) 2013-05-24 2016-03-01 Massachusetts Institute Of Technology Methods and apparatus for imaging of occluded objects
CN106028930B (zh) 2014-02-21 2021-10-22 3D集成公司 包括手术器械的套件
EP3202344B1 (de) * 2014-09-30 2019-03-27 FUJIFILM Corporation Endoskopische chirurgische vorrichtung
WO2016187054A1 (en) 2015-05-15 2016-11-24 Auris Surgical Robotics, Inc. Surgical robotics system
DK178899B1 (en) 2015-10-09 2017-05-08 3Dintegrated Aps A depiction system
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
KR20200042468A (ko) * 2017-07-13 2020-04-23 엠아이티알엑스, 인크. 심장 시술을 위해 좌심방으로 접근하기 위한 디바이스들 및 방법들
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
US20190206555A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Cloud-based medical analytics for customization and recommendations to a user
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US20190201140A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Surgical hub situational awareness
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US10667875B2 (en) 2018-06-27 2020-06-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
US20200015899A1 (en) 2018-07-16 2020-01-16 Ethicon Llc Surgical visualization with proximity tracking features
EP3813715A4 (de) 2018-09-17 2022-04-13 Auris Health, Inc. Systeme und verfahren für begleitende medizinische verfahren

Also Published As

Publication number Publication date
JP2024536154A (ja) 2024-10-04
WO2023052930A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
US20230101757A1 (en) Surgical Systems with Intraluminal and Extraluminal Cooperative Instruments
US20230101192A1 (en) Methods and Systems for Controlling Cooperative Surgical Instruments with Variable Surgical Site Access Trajectories
EP4240255A1 (de) Verfahren und systeme zur steuerung kooperativer chirurgischer instrumente
US20230100989A1 (en) Surgical devices, systems, and methods using fiducial identification and tracking
WO2023052942A1 (en) Surgical devices, systems, methods using fiducial identification and tracking
WO2023052936A1 (en) Systems for controlling cooperative surgical instruments with variable surgical site access trajectories
EP4221629B1 (de) Chirurgische vorrichtungen und systeme mit bildgebung aus mehreren quellen
US12137872B2 (en) Surgical devices, systems, and methods using multi-source imaging
US20230116781A1 (en) Surgical devices, systems, and methods using multi-source imaging
EP4262574A1 (de) Chirurgische systeme mit vorrichtungen für intraluminalen und extraluminalen zugang
WO2023052951A1 (en) Surgical systems with intraluminal and extraluminal cooperative instruments
EP4216845A1 (de) Chirurgische systeme zur unabhängigen insufflation von zwei separaten anatomischen räumen
WO2023052960A1 (en) Surgical devices, systems, and methods using fiducial identification and tracking
WO2023052929A1 (en) Surgical devices, systems, and methods using multi-source imaging
WO2023052939A1 (en) Surgical devices, systems, and methods using multi-source imaging
WO2023052949A1 (en) Surgical devices, systems, and methods using fiducial identification and tracking
EP4221602A1 (de) Verfahren und systeme zur steuerung kooperativer chirurgischer instrumente
WO2023052962A1 (en) Methods and systems for controlling cooperative surgical instruments
WO2023052938A1 (en) Methods and systems for controlling cooperative surgical instruments
WO2023052953A1 (en) Surgical systems and methods for selectively pressurizing a natural body lumen
WO2023052961A1 (en) Surgical systems with port devices for instrument control
EP4221630A1 (de) Chirurgische vorrichtungen, systeme und verfahren mit bildgebung aus mehreren quellen
CN118302122A (zh) 用于独立地对两个单独的解剖空间吹气的外科系统

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR