[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4193103A1 - Method and system for producing a liquefied natural gas product - Google Patents

Method and system for producing a liquefied natural gas product

Info

Publication number
EP4193103A1
EP4193103A1 EP21737565.8A EP21737565A EP4193103A1 EP 4193103 A1 EP4193103 A1 EP 4193103A1 EP 21737565 A EP21737565 A EP 21737565A EP 4193103 A1 EP4193103 A1 EP 4193103A1
Authority
EP
European Patent Office
Prior art keywords
fractionation
propane
natural gas
product
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21737565.8A
Other languages
German (de)
French (fr)
Inventor
Heinz Bauer
Andreas KOSSMANN
Rebecca HOFFMANN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP4193103A1 publication Critical patent/EP4193103A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/62Ethane or ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Definitions

  • the invention relates to a method and a plant for the production of a liquefied natural gas product according to the preamble of the respective independent patent claim.
  • natural gas For liquefaction and depressurized storage, natural gas must be cooled to low temperatures of around -160 °C. In this state, the liquefied natural gas can be transported economically by barge or truck because it is only 1/600th the volume of the gaseous substance at atmospheric pressure.
  • Natural gas typically contains a mixture of methane and higher hydrocarbons, as well as nitrogen, carbon dioxide and other undesirable components. Before liquefaction, these components must be partially removed to avoid solidification during liquefaction or to meet customer requirements.
  • the processes used for this, such as adsorption, absorption and cryogenic rectification, are generally known.
  • mixed refrigerants made from different hydrocarbon components and nitrogen are used in natural gas liquefaction.
  • Methods are known, for example, in which two mixed refrigerant circuits are used (Dual Mixed Refrigerant, DMR).
  • DMR Dual Mixed Refrigerant
  • natural gas which, in addition to methane, contains higher hydrocarbons such as ethane, propane, butane, etc., but which has previously been suitably freed from acid gases and dried, can be subjected to separation of the higher hydrocarbons and subsequent liquefaction.
  • the Deposition of the Higher Hydrocarbons are accompanied by a deposition of benzene which is undesirable in the remaining LNG. Benzene is used as a key or marker component in corresponding processes and can also be used as an indicator component for the separation.
  • the present invention therefore sets itself the task of improving natural gas liquefaction using two mixed refrigerant circuits.
  • the present invention proposes a method for producing liquefied natural gas and a corresponding system according to the preambles of the respective independent patent claims.
  • Configurations are the subject matter of the dependent patent claims and the following description.
  • pressure level and “temperature level” to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values.
  • pressures and temperatures typically range within certain ranges, for example ⁇ 10% around an average value.
  • Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another. In particular, for example, pressure levels include unavoidable or expected pressure losses. The same applies to temperature levels.
  • the pressure levels given here in bar are absolute pressures. If “expansion machines” are mentioned here, this typically means known turboexpanders that have radial impellers or impellers arranged on a shaft.
  • a corresponding expansion machine can, for example, be braked mechanically or hydraulically or coupled to a device such as a compressor or a generator.
  • An expansion of a mixture refrigerant in the context of the present invention is typically not performed using an expansion machine but using an expansion valve.
  • a "heat exchanger” for use in the context of the present invention can be of any type which is conventional in the art. It is used for the indirect transfer of heat between at least two fluid flows, e.g. in countercurrent to one another, here in particular a comparatively warm input natural gas flow or a gaseous fraction formed therefrom and one or more cold mixed refrigerant flows.
  • a corresponding heat exchanger can be formed from a single or several heat exchanger sections connected in parallel and/or in series, e.g. from one or more coiled heat exchangers or corresponding sections. In addition to coiled heat exchangers of the type already mentioned, other types of heat exchangers can also be used within the scope of the present invention.
  • the relative spatial terms "above,”"below,””above,””below,””above,””below,””beside,””side-by-side,””vertical,””horizontal,” etc. refer to the mutual arrangement of components in normal operation.
  • An arrangement of two components "on top of each other” is understood here to mean that the upper end of the lower of the two components is at a lower or the same geodetic height as the lower end of the upper of the two components and the vertical projections of the two components intersect.
  • the two components are arranged exactly one above the other, ie the central axes of the two components run on the same vertical straight line.
  • a countercurrent absorber is used within the scope of the present invention. Reference is made to relevant textbooks for the design and configuration of corresponding apparatus (see, for example, K. Sattler: Thermal separation processes. Fundamentals, design, apparatus. Weinheim: Wiley-VCH, 3rd edition 2001).
  • a liquid fraction (“bottom liquid”) and a gaseous fraction (“top gas”) can typically be removed from a countercurrent absorber from a lower region ("bottom”) and from an upper region (“top”), respectively.
  • Countercurrent absorbers are generally known from the field of separation technology. They are used for absorption in phase countercurrent and are therefore also referred to as countercurrent columns.
  • the exit gas phase flows upward through an absorption column.
  • the absorbing solution phase fed in from above and drawn off below, flows in the opposite direction to the gas phase.
  • the gas phase is "washed” with the solution phase.
  • internals are typically provided which ensure phase contact in stages (trays, spray zones, rotating disks, etc.) or continuously (random beds of random packings, packings, etc.).
  • a liquid stream also referred to as "absorption liquid" is fed into an upper region of a countercurrent absorber, with which components are washed out of a gaseous stream that is fed in lower.
  • feed natural gas is referred to below, this means natural gas that has been subjected in particular to acid gas removal and optional further processing, so that it is suitable for liquefaction, ie no components that solidify (“freeze out") in the proposed process having.
  • heavy hydrocarbons such as butane(s) and/or pentane(s) as well as hydrocarbons with six or more carbon atoms can already have been partially separated from the corresponding feed gas.
  • the feed natural gas is in particular anhydrous and has a content of, for example, more than 85% methane and contains the remainder in particular ethane and propane, but also butane and pentane and possibly heavier hydrocarbons.
  • the proportions may be lower than in a (raw) natural gas used to form the input natural gas, for example taken from a borehole. Nitrogen, helium and other light components can also still be present.
  • the terms "butane” and “pentane” are intended to be representative of all butane and pentane isomers, but are indicative in particular n-butane and isobutane and n-pentane and isopentane.
  • saturated compounds mentioned in each case ethane, propane, butane, pentane
  • the respective unsaturated derivatives and their isomers can also be present, which are usually in the specified separations or fractionation into the fraction of the corresponding compounds of the same chain length pass over
  • liquefied natural gas or a “liquefied natural gas product” is mentioned below, this means a cryogenic liquid at or below the atmospheric boiling point of methane, in particular at -160 to -164 °C, which is more than 85%, in particular has more than 90% methane, and whose methane content is in any case higher than that of the feed gas used.
  • the liquefied natural gas contains significantly less benzene than the natural gas used and only contains benzene in the specified maximum content.
  • methane it can also contain smaller amounts of other aliphatic hydrocarbons, in particular ethane, propane and butane and their unsaturated derivatives, in particular in deviation from the usual composition of liquefied natural gas (LNG). It is nevertheless referred to below with the abbreviation "LNG”.
  • a method for producing a liquefied natural gas (LNG) product comprises providing feed natural gas which contains methane and at least ethane, propane and butane as higher hydrocarbons.
  • the feed natural gas can also contain other higher hydrocarbons, in particular benzene.
  • the feed natural gas is subjected to a cooling in a first cooling step using a first mixed refrigerant (warm mixed refrigerant, WMR) to a first temperature level.
  • WMR warm mixed refrigerant
  • the natural gas feedstock cooled in the first cooling step is at least partially subjected to countercurrent absorption to form a gas fraction depleted in the higher hydrocarbons using an absorption liquid.
  • a portion of the gas fraction is subjected to cooling and liquefaction in a second cooling step using a second cold mixed refrigerant (CMR) to a second temperature level to form the liquefied natural gas (LNG) product.
  • CMR cold mixed refrigerant
  • LNG liquefied natural gas
  • the feed natural gas can be provided in particular using drying, acid gas removal, partial removal of heavier hydrocarbons, compression and the like, as is known per se.
  • the absorption liquid is formed from a further part of the gas fraction, which is condensed and returned to the countercurrent absorption. The condensation can take place in particular above the countercurrent absorption, so that pump-free recirculation is possible. However, a return pump can also be used.
  • the first and second mixture refrigerants are low in propane or non-propane.
  • the invention features the further treatment of a bottoms liquid formed in countercurrent absorption and containing ethane, propane, butane and pentane.
  • the bottoms liquid formed in the countercurrent absorption is at least partially subjected to a first fractionation, forming a bottoms product which is low in propane and contains butane and pentane, as well as an overhead product.
  • the bottom product formed in the first fractionation is at least partially subjected to a second fractionation, with a propane-lean and butane-containing overhead product and a bottom product being formed.
  • the overhead product formed in the second fractionation is partially added to the first mixture refrigerant on demand (make-up).
  • the first fractionation is in particular in the form of a known C3/C4 separation (C3 separation, depropanization), the second fractionation in particular in the form of a known C4/C5 separation (C4 separation, debutanization).
  • the present invention offers the advantage that the components of the mixed refrigerant circuits, in particular butane, can be obtained easily and with comparatively little effort from the sump of the countercurrent absorber, ie within the process.
  • a fractionation sequence that can be used as an alternative to the present invention with four fractionations in which methane, ethane, propane and butane are separated off one after the other, i.e. a C1/C2 separation (demethanization) followed by a C2/C3 separation (deethanization), a C3/C4 - Separation (depropanization) and a C4/C5 separation (debutanization) takes place is less advantageous than the separation sequence proposed here, as has been recognized according to the invention.
  • the process according to the invention offers a cost advantage in terms of investment and operating costs, since at least one separating column can be saved completely and another one is only switched on if there is an additional need for C2 refrigerant, as explained below, but is usually not operated must become.
  • the bottom product of the countercurrent absorption is in particular fed directly to the depropanization and its bottom product is subjected to the debutanization.
  • a makeup stream that is low in propane and contains butane can be provided for the first mixed refrigerant in two separation steps.
  • the depropanization overhead i.e., the first fractionation, containing ethane and propane may be subjected to deethanization to produce refrigerant intermittently. However, as mentioned, this is operated as an option.
  • the bottom product of the absorption column is in particular fed directly to the first fractionation, ie the depropanization, which is carried out, for example, at a pressure level of 10 to 25 bar, preferably between 15 and 20 bar.
  • the low-propane bottom product from the first fractionation which in particular has less than 2 mol% of propane and preferably less than 0.5 mol% of propane, is fed directly to the second fractionation, i.e. the debutanization, which is carried out, for example, at a pressure level of 3 to 10 bar, preferably between 4 and 7 bar.
  • the butane obtained in this way can at least partially be fed into the first or warm mixed refrigerant circuit be used.
  • mixed refrigerants are used in respective refrigerant circuits in both the first and second cooling steps of the present invention.
  • the first mixed refrigerant is subjected to gaseous compression in the sequence specified below, condensed by cooling, supercooled, expanded, heated in a first heat exchanger, in particular completely evaporated, and then subjected to compression again.
  • the supercooling of the first mixture refrigerant can take place in particular in the first heat exchanger, the previous cooling in a further heat exchanger.
  • the second mixed refrigerant is subjected to compression, in particular in gaseous form, condensed by cooling, supercooled, expanded, heated in a second heat exchanger, in particular completely evaporated in the process, and then subjected to compression again.
  • the sub-cooling of the second mixture refrigerant can take place in particular in the second heat exchanger, the previous cooling in the first and the second heat exchanger.
  • the cooling of the overhead product from the countercurrent absorption can be carried out at least partially using the second mixture refrigerant which was previously used in the second cooling step. It becomes one in the taken from the heat exchanger used in the second cooling step and passed through a separate heat exchanger which serves to cool the overhead product from the countercurrent absorption, or a corresponding part.
  • the first and second heat exchangers are designed in particular as coil wound heat exchangers (CWHE) of a type known per se, the heating of the mixed refrigerants taking place after they have expanded, in particular on the shell side, i.e. in a shell space containing or surrounding the heat exchanger tubes. into which the mixed refrigerant is expanded.
  • the media to be cooled are routed on the tube side, i.e. through the appropriately provided heat exchanger tubes.
  • the heat exchanger tubes are provided in bundles in corresponding heat exchangers, so that the term “tube side” or “(tube) bundle side” is used here for a corresponding flow control.
  • the first cooling step to which the feed natural gas is subjected is carried out using the first heat exchanger
  • the second cooling step to which the gas fraction from the countercurrent absorber is subjected is carried out in particular using the second heat exchanger.
  • Natural gas liquefaction processes must be flexible and adaptable to different plant capacities and operating conditions.
  • the methods explained using two mixed refrigerant circuits are preferably used when large ambient temperature fluctuations lead to significantly different refrigerant condensation conditions. These can be addressed more efficiently if a mixture of refrigerant components is used instead of a single pure component such as propane.
  • Propane is considered a hazardous refrigerant due to its combination of high volatility and high molecular weight as it can collect at low levels and potentially cause an explosion. Therefore, methods using two mixed refrigerant circuits and correspondingly reduced propane content therein, as used according to the invention, are a preferred solution for system layouts with limited installation space, eg modularized systems and/or floating systems, in which the floor space is limited.
  • a compact plant layout eg mandatory for offshore installations
  • Plant components known to be hazardous include liquid hydrocarbon pumps (risk of leakage and spillage) and all types of equipment containing significant amounts of liquid propane.
  • the overhead formed in the first fractionation advantageously contains ethane and propane, at least part of the overhead formed in the first fractionation being partially condensed to give a condensate, and the condensate being used partly or entirely as reflux in the countercurrent absorption.
  • the particular advantage is that countercurrent absorption can be supported in this way if no further product is to be obtained from the top product formed in the first fractionation.
  • Partial condensation can in particular include cooling using the first mixed refrigerant, which can be used for this purpose in the form of a partial flow in a further heat exchanger or head condenser.
  • the condensate obtained in the partial condensation of at least part of the top product formed in the first fractionation can be used in a different embodiment or in a first mode of operation for a first portion as reflux in the countercurrent absorption and for a second portion of a third fractionation wherein a propane-lean ethane overhead and a ethane-lean propane bottoms are formed.
  • a refrigerant containing ethane, in particular the first and second mixed refrigerants mentioned can be provided.
  • a partial flow of the first mixture refrigerant can be used for head cooling in the third fractionation.
  • the first and second mixture refrigerants may be compressed using a common drive or separate drives of any type, and the first cooling step may use a first Heat exchanger and the second cooling step include the use of a second heat exchanger.
  • the first mixed refrigerant comprises ethane and butane or their saturated and unsaturated derivatives to a far predominant proportion
  • the second mixed refrigerant to a far predominant proportion nitrogen, methane and ethane and their derivatives. Traces of other compounds, in particular lighter and/or heavier hydrocarbons, may be present.
  • a gas mixture containing 75 to 98 mole percent methane, 2 to 20 mole percent ethane, 0.5 to 5 mole percent propane, 0.3 to 3 mole percent butane and 0.1 to 2 mole percent pentane can be used as feed gas in the context of the present invention and higher hydrocarbons.
  • the countercurrent absorption can take place in particular at a pressure level of 40 to 70 bar and/or a temperature level at the top of -30 to -60° C.
  • the second fractionation at a pressure level of 3 to 7 bar and/or a temperature level at the top of 20 to 60 °C and/or the third fractionation at a pressure level of 20 to 30 bar and/or a temperature level be carried out at the head from -20 to -50 °C.
  • there is only an increase in pressure between the third and the first fractionation which must be overcome by compression or pumping.
  • pumps and compressors can be dispensed with, since relaxation occurs in each case.
  • Figure 1 shows a system not according to the invention to illustrate the background of the invention.
  • FIG. 2 shows an advantageous embodiment of a system according to the invention in a schematic representation.
  • a first partial flow is cooled in a first heat exchanger E01, which can be designed in particular as a coiled heat exchanger, in a first cooling step to a first temperature level of, for example, -20 °C to -70 °C and then fed approximately centrally into a countercurrent absorber T01.
  • a first heat exchanger E01 which can be designed in particular as a coiled heat exchanger, in a first cooling step to a first temperature level of, for example, -20 °C to -70 °C and then fed approximately centrally into a countercurrent absorber T01.
  • the second partial flow of the feed natural gas NG which is expanded via a valve V6, is fed into a lower region of the countercurrent absorber T01, where it essentially rises in gaseous form.
  • Gas is withdrawn from an upper area of the countercurrent absorber T01, which is cooled in a head condenser E02, which can be designed as a plate heat exchanger, for example, and is fed into a headspace of the countercurrent absorber T01. Liquid that separates out here is fed back to the countercurrent absorber T01 as return flow and washes out heavier components from the feed natural gas, which pass into a bottom liquid of the countercurrent absorber T01.
  • the sump liquid of the countercurrent absorber T01 can be expanded via a valve V05 and carried out from the plant 100 as a heavy fraction HHC (heavy hydrocarbons).
  • a top gas of the countercurrent absorber T01 i.e. a methane-rich gas fraction, is cooled to a condensing temperature in a second heat exchanger E04, which can also be designed as a coiled heat exchanger, and, after expansion, is discharged from the plant 100 as liquefied natural gas LNG via a valve.
  • the system 100 includes two mixed refrigerant circuits.
  • a first (“warm”) mixed refrigerant WMR is subjected in gaseous form to a single-stage compression in a compressor C1 and post-cooled in an air cooler and/or water cooler E3 and thereby condensed.
  • Condensate can be recovered in a separator tank D1. This is initially further cooled on the tube bundle side in the first heat exchanger E01, then expanded via a valve V1 and fed into the shell space of the first heat exchanger E1, where it is heated, completely evaporated and then subjected to compression again.
  • the compression of the first mixture refrigerant takes place in particular in the single-stage compressor C1 without intermediate cooling in order to reduce the risk of partial condensation and to avoid the need to convey the condensate to the high-pressure side of the compressor.
  • a second (“cold") mixed refrigerant CMR in a second mixed refrigerant circuit CMRC is subjected to gaseous compression in compressors LP C2 and HP C2 in stages and after-cooled, for example in air coolers and/or water coolers E5 and E6. Further cooling takes place on the tube bundle side in the first heat exchanger E01 and then in the second heat exchanger E04. After a subsequent relaxation in a valve takes place a feed into a buffer tank D2. Condensate drawn off from this is expanded via a valve and fed into the second heat exchanger E04 on the jacket side, where it is heated and completely evaporated.
  • the gaseous second mixture refrigerant CMR is used as a refrigerant in the above-mentioned top condenser E02 before it is subjected to compression again.
  • a return pump can be dispensed with.
  • the return flow formed from the gas from the countercurrent absorber T01 is fed back to the countercurrent absorber T01 purely by the effect of gravity.
  • the mixed refrigerant is obtained within the process.
  • at least one separating column is dispensed with here, which considerably reduces the installation space required.
  • propane is largely dispensed with in the mixed refrigerants.
  • FIG. 1 An advantageous embodiment of the system according to the invention is shown in simplified form in FIG. 1
  • plant 200 has three separating columns T11, T12, T13, each of which is set up to carry out a fractional distillation of at least part of the bottom product drawn off from countercurrent absorber T01.
  • the two mixed refrigerants CMR and WMR are routed in circuits WMRC and CMRC that are separate from one another and are each combined into a block in FIG are shown.
  • the specific configuration of these circuits can deviate from the configuration explained with reference to FIG.
  • the first mixed refrigerant WMR is at a working temperature level in the range from -30° C. to -60° C., preferably from -40° C.
  • the first Heat exchanger E01 is fed and the second mixed refrigerant is fed into the second heat exchanger E04 at a working temperature level in the range from -140 °C to -165 °C, preferably from -150 °C to -160 °C.
  • a working temperature level in the range from -140 °C to -165 °C, preferably from -150 °C to -160 °C.
  • all known methods can be used to provide the respective mixed refrigerant CMR, WMR, for example a combination of compression, cooling and expansion, in particular in the form of a conventional refrigerating machine.
  • a buffer that functionally corresponds to the buffer tank D2, as was described with reference to FIG. 1, for storing the second mixed refrigerant can be designed as a low-pressure buffer tank D05 or as a high-pressure buffer tank D05'.
  • the high-pressure buffer tank D05′ has the advantage of taking up less space, while the low-pressure buffer tank D05 can be less resistant and therefore possibly lighter, but has to be installed above the heat exchanger E04 to avoid a pump.
  • the feed natural gas NG which here explicitly contains methane and at least ethane, propane, butane and pentane as higher hydrocarbons, is as before, but in the example shown completely, ie without being divided into partial flows, in a first cooling step in the first heat exchanger E01 using a first mixture refrigerant WMR cooled to a first temperature level substantially as before.
  • the feed natural gas NG is at least partially subjected to countercurrent absorption in the countercurrent absorber T01 using an absorption liquid provided essentially as before, with a gas fraction depleted in the higher hydrocarbons being formed.
  • the absorption liquid is formed from a further part of the gas fraction formed in the countercurrent absorber T01. This is condensed above countercurrent absorber T01 and returned to countercurrent absorber T01. Part of the in the formed in the countercurrent absorber T01
  • the gas fraction is cooled to a second temperature level in the heat exchanger E04 using the second mixed refrigerant CMR and liquefied to form the liquefied natural gas LNG.
  • the bottom stream of the countercurrent absorber T01 is at least partially first subjected to a first fractionation T11 (depropaniser), in which a top mixture enriched in propane and lighter components and a bottom mixture enriched in components that boil higher than propane, in particular butane, are enriched is formed.
  • a first fractionation T11 depropaniser
  • the separating column T11 like all other separating columns T01, T12, T13 of the plant 200, is equipped with suitable internals and is preferably operated at a pressure level in the range from 10 to 25 bar, preferably 15 to 20 bar.
  • the bottom product formed in the countercurrent absorption T01 has ethane, propane, butane and pentane and possibly higher hydrocarbons and is at least partially subjected to a first fractionation in the separating column T11, in which a propane-poor and butane and pentane-containing Bottom product and a top product are formed.
  • a fraction containing propane and ethane and possibly lower-boiling hydrocarbons is advantageously removed in gaseous form from a return collector D11, into which at least the top product of the first fractionation T11 is fed, cooled in the first heat exchanger E01 against evaporating first mixed refrigerant WMR and thereby partially condensed.
  • the liquid formed in this way is advantageously separated off in a separator D13 and, in normal operation, in particular completely, is fed to the countercurrent absorption T01 as reflux.
  • the bottom product of the first fractionation T11 is at least partially subjected to a second fractionation in the second separating column T12, in which a low-propane and butane-containing top product and a bottom product are formed, and the top product formed in the second fractionation in the second separating column T12 is at least partially added to the first mixture refrigerant WMR. More precisely, the top product of the second separating column T12 is condensed in the top condenser of the second separating column T12 and this is at least partly fed in as reflux.
  • the condensed overhead product can be collected in a condensate collector D12, e.g. for use as makeup C4 MA for the first mixture refrigerant WMR or for recycling to the countercurrent absorber T01.
  • a subset for example 10-80%, preferably 30-50%) of the liquid collected in the separator D13 subjected to a third fractionation T13 (deethanizer).
  • a low-propane, ethane-containing fluid can be removed from this below the head condenser. Since the third fractionation T13 is operated at a higher pressure than the first fractionation T11, it is fed in via a pump and material streams can be fed back directly into the first fractionation T11 or mixed with the partially condensed top product of the first fractionation T11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The invention relates to a method for producing liquefied natural gas (LNG), wherein a feed natural gas (NG) containing methane and higher hydrocarbons, including benzene, is cooled to a first temperature level in a first cooling step (E01) using a first mixed refrigerant (WMR) and is subsequently subjected to counter-current absorption (T01) using an absorption liquid, wherein a gas fraction depleted in the higher hydrocarbons is formed, at least a portion of the gas fraction is cooled to a second temperature level in a second cooling step (E04) using a second mixed refrigerant (CMR) and is liquefied to form the liquefied natural gas (LNG), characterised in that the absorption liquid is formed from another portion of the gas fraction, which portion preferably condenses above the counter-current absorption (T01) and is returned to the counter-current absorption (T01), in particular without a pump, a sump liquid containing at least propane and hydrocarbons having four and five carbon atoms is formed in the counter-current absorption (T01), the sump liquid formed in the counter-current absorption (T01) is subjected at least in part to a first fractionation (T11), wherein a sump product which is low in propane and contains hydrocarbons having four and five carbon atoms, as well as an overhead product which is rich in propane are formed, the sump product formed in the first fractionation (T11) is at least partially subjected to a second fractionation, wherein a sump product poor in hydrocarbons having four carbon atoms and containing hydrocarbons having five carbon atoms, as well as an overhead product rich in hydrocarbons having four carbon atoms are formed, and the overhead product formed in the second fractionation (T12) is at least partially added to the first and/or second mixed refrigerant. Furthermore, the invention relates to a system which is designed to carry out such a method.

Description

Beschreibung description
Verfahren und Anlage zur Herstellung eines Flüssiqerdqasprodukts Process and plant for the production of a liquid product
Die Erfindung betrifft ein Verfahren und eine Anlage zur Herstellung eines Flüssigerdgasprodukts gemäß dem Oberbegriff des jeweiligen unabhängigen Patentanspruchs. The invention relates to a method and a plant for the production of a liquefied natural gas product according to the preamble of the respective independent patent claim.
Hintergrund background
Zur Verflüssigung und drucklosen Lagerung muss Erdgas auf Tieftemperaturen von etwa -160 °C heruntergekühlt werden. In diesem Zustand kann das Flüssigerdgas wirtschaftlich per Frachtschiff oder Lkw transportiert werden, da es nur 1/600 des Volumens der gasförmigen Substanz bei atmosphärischem Druck aufweist. For liquefaction and depressurized storage, natural gas must be cooled to low temperatures of around -160 °C. In this state, the liquefied natural gas can be transported economically by barge or truck because it is only 1/600th the volume of the gaseous substance at atmospheric pressure.
Erdgas enthält in der Regel eine Mischung aus Methan und höheren Kohlenwasserstoffen sowie Stickstoff, Kohlendioxid und weitere unerwünschte Bestandteile. Vor der Verflüssigung müssen diese Komponenten teilweise entfernt werden, um eine Verfestigung während der Verflüssigung zu vermeiden oder um Kundenanforderungen zu erfüllen. Die dazu eingesetzten Verfahren wie Adsorption, Absorption und kryogene Rektifikation sind allgemein bekannt. Natural gas typically contains a mixture of methane and higher hydrocarbons, as well as nitrogen, carbon dioxide and other undesirable components. Before liquefaction, these components must be partially removed to avoid solidification during liquefaction or to meet customer requirements. The processes used for this, such as adsorption, absorption and cryogenic rectification, are generally known.
Zu Details bezüglich bei der Erdgasverflüssigung eingesetzter Verfahren sei auf Fachliteratur wie den Artikel "Natural Gas" in Ullmann's Encyclopedia of Industrial Chemistry, Onlinepublikation 15. Juli 2006, DOI: 10.1002/14356007.a17_073.pub2, insbesondere Abschnitt 3, "Liquefaction", verwiesen. For details regarding processes used in natural gas liquefaction, reference is made to specialist literature such as the article "Natural Gas" in Ullmann's Encyclopedia of Industrial Chemistry, online publication July 15, 2006, DOI: 10.1002/14356007.a17_073.pub2, in particular section 3, "Liquefaction". .
Insbesondere kommen bei der Erdgasverflüssigung Gemischkältemittel aus unterschiedlichen Kohlenwasserstoffbestandteilen und Stickstoff zum Einsatz. Bekannt sind beispielsweise Verfahren, in denen zwei Gemischkältemittelkreisläufe eingesetzt werden (engl. Dual Mixed Refrigerant, DMR). Auf diese Weise kann beispielsweise Erdgas, das zusätzlich zu Methan noch höhere Kohlenwasserstoffe wie Ethan, Propan, Butan usw. enthält, aber zuvor bereits in geeigneter Weise von Sauergasen befreit und getrocknet wurde, einer Abscheidung der höheren Kohlenwasserstoffe und einer anschließenden Verflüssigung unterworfen werden. Die Abscheidung der höheren Kohlenwasserstoffe geht mit einer Abscheidung von Benzol einher, die in dem verbleibenden Flüssigerdgas unerwünscht ist. Benzol wird in entsprechenden Verfahren als Schlüssel- bzw. Markerkomponente verwendet und kann auch als Indikatorkomponente für die Abtrennung verwendet werden. In particular, mixed refrigerants made from different hydrocarbon components and nitrogen are used in natural gas liquefaction. Methods are known, for example, in which two mixed refrigerant circuits are used (Dual Mixed Refrigerant, DMR). In this way, for example, natural gas which, in addition to methane, contains higher hydrocarbons such as ethane, propane, butane, etc., but which has previously been suitably freed from acid gases and dried, can be subjected to separation of the higher hydrocarbons and subsequent liquefaction. The Deposition of the Higher Hydrocarbons are accompanied by a deposition of benzene which is undesirable in the remaining LNG. Benzene is used as a key or marker component in corresponding processes and can also be used as an indicator component for the separation.
Aus dem Stand der Technik bekannte Verfahren zur Erdgasverflüssigung unter Verwendung entsprechender Gemischkältemittelkreisläufe erweisen sich häufig in der Praxis aus den nachfolgend erläuterten Gründen als verbesserungsbedürftig. Methods known from the prior art for natural gas liquefaction using corresponding mixed refrigerant circuits often prove in practice to be in need of improvement for the reasons explained below.
Die vorliegende Erfindung stellt sich daher die Aufgabe, die Erdgasverflüssigung unter Verwendung von zwei Gemischkältemittelkreisläufen zu verbessern. The present invention therefore sets itself the task of improving natural gas liquefaction using two mixed refrigerant circuits.
Offenbarung der Erfindung Disclosure of Invention
Vor diesem Hintergrund schlägt die vorliegende Erfindung ein Verfahren zur Herstellung von Flüssigerdgas und eine entsprechende Anlage gemäß den Oberbegriffen der jeweiligen unabhängigen Patentansprüche vor. Ausgestaltungen sind jeweils Gegenstand der abhängigen Patentansprüche und der nachfolgenden Beschreibung. Against this background, the present invention proposes a method for producing liquefied natural gas and a corresponding system according to the preambles of the respective independent patent claims. Configurations are the subject matter of the dependent patent claims and the following description.
Vor der Erläuterung der Merkmale und Vorteile der vorliegenden Erfindung werden einige Grundlagen der vorliegenden Erfindung näher erläutert und nachfolgend verwendete Begriffe definiert. Before the features and advantages of the present invention are explained, some basic principles of the present invention are explained in more detail and terms used in the following are defined.
Die vorliegende Anmeldung verwendet zur Charakterisierung von Drücken und Temperaturen die Begriffe "Druckniveau" und "Temperaturniveau", wodurch zum Ausdruck gebracht werden soll, dass entsprechende Drücke und Temperaturen in einer entsprechenden Anlage nicht in Form exakter Druck- bzw. Temperaturwerte verwendet werden müssen. Jedoch bewegen sich derartige Drücke und Temperaturen typischerweise in bestimmten Bereichen, die beispielsweise ± 10% um einen Mittelwert liegen. Entsprechende Druckniveaus und Temperaturniveaus können dabei in disjunkten Bereichen liegen oder in Bereichen, die einander überlappen. Insbesondere schließen beispielsweise Druckniveaus unvermeidliche oder zu erwartende Druckverluste ein. Entsprechendes gilt für Temperaturniveaus. Bei den hier in bar angegebenen Druckniveaus handelt es sich um Absolutdrücke. Ist hier von "Entspannungsmaschinen" die Rede, seien darunter typischerweise bekannte Turboexpander verstanden, die auf einer Welle angeordnete radiale Laufräder bzw. Impeller aufweisen. Eine entsprechende Entspannungsmaschine kann beispielsweise mechanisch bzw. hydraulisch gebremst oder mit einer Einrichtung wie einem Verdichter oder einem Generator gekoppelt sein. Eine Entspannung eines Gemischkältemittels im Rahmen der vorliegenden Erfindung wird typischerweise nicht unter Verwendung einer Entspannungsmaschine, sondern unter Verwendung eines Entspannungsventils durchgeführt. The present application uses the terms “pressure level” and “temperature level” to characterize pressures and temperatures, which is intended to express that corresponding pressures and temperatures in a corresponding system do not have to be used in the form of exact pressure or temperature values. However, such pressures and temperatures typically range within certain ranges, for example ±10% around an average value. Corresponding pressure levels and temperature levels can be in disjoint areas or in areas that overlap one another. In particular, for example, pressure levels include unavoidable or expected pressure losses. The same applies to temperature levels. The pressure levels given here in bar are absolute pressures. If "expansion machines" are mentioned here, this typically means known turboexpanders that have radial impellers or impellers arranged on a shaft. A corresponding expansion machine can, for example, be braked mechanically or hydraulically or coupled to a device such as a compressor or a generator. An expansion of a mixture refrigerant in the context of the present invention is typically not performed using an expansion machine but using an expansion valve.
Ein "Wärmetauscher" zum Einsatz im Rahmen der vorliegenden Erfindung kann in jeglicher fachüblichen Art ausgebildet sein. Er dient zur indirekten Übertragung von Wärme zwischen zumindest zwei z.B. im Gegenstrom zueinander geführten Fluidströmen, hier insbesondere einem vergleichsweise warmen Einsatzerdgasstrom oder einer hieraus gebildeten gasförmigen Fraktion und einem oder mehreren kalten Gemischkältemittelströmen. Ein entsprechender Wärmetauscher kann aus einem einzelnen oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, z.B. aus einem oder mehreren gewickelten Wärmetauschern oder entsprechenden Abschnitten. Neben gewickelten Wärmetauschern der bereits angesprochenen Art können im Rahmen der vorliegenden Erfindung auch andere Typen von Wärmetauschern eingesetzt werden. A "heat exchanger" for use in the context of the present invention can be of any type which is conventional in the art. It is used for the indirect transfer of heat between at least two fluid flows, e.g. in countercurrent to one another, here in particular a comparatively warm input natural gas flow or a gaseous fraction formed therefrom and one or more cold mixed refrigerant flows. A corresponding heat exchanger can be formed from a single or several heat exchanger sections connected in parallel and/or in series, e.g. from one or more coiled heat exchangers or corresponding sections. In addition to coiled heat exchangers of the type already mentioned, other types of heat exchangers can also be used within the scope of the present invention.
Die relativen räumlichen Begriffe "oben", "unten", "über", "unter", "oberhalb", "unterhalb", "neben", "nebeneinander", "vertikal", "horizontal" etc. beziehen sich hier auf die wechselseitige Anordnung von Komponenten im Normalbetrieb. Unter einer Anordnung zweier Komponenten "übereinander" wird hier verstanden, dass das sich obere Ende der unteren der beiden Komponenten auf niedrigerer oder gleicher geodätischer Höhe befindet wie das untere Ende der oberen der beiden Komponenten und sich die vertikalen Projektionen der beiden Komponenten überschneiden. Insbesondere sind die beiden Komponenten genau übereinander angeordnet, d.h. die Mittelachsen der beiden Komponenten verlaufen auf derselben vertikalen Geraden. Die Achsen der beiden Komponenten müssen jedoch nicht genau senkrecht übereinander liegen, sondern können auch gegeneinander versetzt sein. Im Rahmen der vorliegenden Erfindung kommt ein Gegenstromabsorber zum Einsatz. Zur Auslegung und Ausgestaltung entsprechender Apparate sei auf einschlägige Lehrbücher verwiesen (siehe beispielsweise K. Sattler: Thermische Trennverfahren. Grundlagen, Auslegung, Apparate. Weinheim: Wiley-VCH, 3. Auflage 2001). Einem Gegenstromabsorber sind typischerweise eine flüssige Fraktion ("Sumpfflüssigkeit") und eine gasförmige Fraktion ("Kopfgas") aus einem unteren Bereich ("Sumpf') bzw. aus einem oberen Bereich ("Kopf') entnehmbar. Gegenstromabsorber sind aus dem Bereich der Trenntechnik allgemein bekannt. Sie werden zur Absorption im Phasengegenstrom verwendet und daher auch als Gegenstromkolonnen bezeichnet. Bei der Absorption im Gegenstrom strömt die abgebende Gasphase aufwärts durch eine Absorptionskolonne. Die aufnehmende Lösungsphase fließt, von oben aufgegeben und unten abgezogen, der Gasphase entgegen. Die Gasphase wird mit der Lösungsphase "gewaschen". In einer entsprechenden Absorptionskolonne sind typischerweise Einbauten vorgesehen, die für einen stufenweisen (Böden, Sprühzonen, rotierende Teller usw.) oder stetigen (regellose Schüttungen von Füllkörpern, Packungen usw.) Phasenkontakt sorgen. In einen oberen Bereich eines Gegenstromabsorbers wird ein flüssiger Strom, auch als "Absorptionsflüssigkeit" bezeichnet, eingespeist, womit Komponenten aus einem gasförmigen Strom, der tiefer eingespeist wird, ausgewaschen werden. As used herein, the relative spatial terms "above,""below,""above,""below,""above,""below,""beside,""side-by-side,""vertical,""horizontal," etc. refer to the mutual arrangement of components in normal operation. An arrangement of two components "on top of each other" is understood here to mean that the upper end of the lower of the two components is at a lower or the same geodetic height as the lower end of the upper of the two components and the vertical projections of the two components intersect. In particular, the two components are arranged exactly one above the other, ie the central axes of the two components run on the same vertical straight line. However, the axes of the two components do not have to be exactly perpendicular to one another, but can also be offset from one another. A countercurrent absorber is used within the scope of the present invention. Reference is made to relevant textbooks for the design and configuration of corresponding apparatus (see, for example, K. Sattler: Thermal separation processes. Fundamentals, design, apparatus. Weinheim: Wiley-VCH, 3rd edition 2001). A liquid fraction ("bottom liquid") and a gaseous fraction ("top gas") can typically be removed from a countercurrent absorber from a lower region ("bottom") and from an upper region ("top"), respectively. Countercurrent absorbers are generally known from the field of separation technology. They are used for absorption in phase countercurrent and are therefore also referred to as countercurrent columns. In countercurrent absorption, the exit gas phase flows upward through an absorption column. The absorbing solution phase, fed in from above and drawn off below, flows in the opposite direction to the gas phase. The gas phase is "washed" with the solution phase. In a corresponding absorption column, internals are typically provided which ensure phase contact in stages (trays, spray zones, rotating disks, etc.) or continuously (random beds of random packings, packings, etc.). A liquid stream, also referred to as "absorption liquid", is fed into an upper region of a countercurrent absorber, with which components are washed out of a gaseous stream that is fed in lower.
Ist nachfolgend von einem "Einsatzerdgas" die Rede, sei hierunter Erdgas verstanden, das insbesondere einer Sauergasentfernung und optionalen weiteren Aufbereitung unterworfen worden ist, so dass es sich für eine Verflüssigung eignet, d.h. keine sich in dem vorgeschlagenen Verfahren verfestigende ("ausfrierende") Komponenten aufweist. Insbesondere können aus entsprechendem Einsatzerdgas auch bereits schwere Kohlenwasserstoffe wie Butan(e) und/oder Pentan(e) sowie Kohlenwasserstoffe mit sechs und mehr Kohlenstoffatomen teilweise abgeschieden worden sein. Das Einsatzerdgas ist insbesondere wasserfrei und weist einen Gehalt von beispielsweise mehr als 85% Methan auf und enthält im verbleibenden Rest insbesondere Ethan und Propan, jedoch auch Butan und Pentan sowie ggf. schwerere Kohlenwasserstoffe. Es kann sich dabei ggf. um geringere Anteile handeln als in einem zur Bildung des Einsatzerdgas verwendeten, beispielsweise einem Bohrloch entnommenen (Roh-)Erdgas. Auch Stickstoff, Helium und andere leichte Komponenten können noch enthalten sein. Die Begriffe "Butan" und "Pentan" sollen hier stellvertretend für alle Butan- und Pentanisomere stehen, bezeichnen jedoch insbesondere n-Butan und iso-Butan sowie n-Pentan und iso-Pentan. Wenngleich hier nicht erwähnt, können neben den jeweils genannten gesättigten Verbindungen (Ethan, Propan, Butan, Pentan) auch die jeweils ungesättigten Derivate und ihre Isomere enthalten sein, die in der Regel in den angegebenen Trennungen bzw. Fraktionierung in die Fraktion der entsprechenden kettenlängengleichen Verbindungen übergehen. If "feed natural gas" is referred to below, this means natural gas that has been subjected in particular to acid gas removal and optional further processing, so that it is suitable for liquefaction, ie no components that solidify ("freeze out") in the proposed process having. In particular, heavy hydrocarbons such as butane(s) and/or pentane(s) as well as hydrocarbons with six or more carbon atoms can already have been partially separated from the corresponding feed gas. The feed natural gas is in particular anhydrous and has a content of, for example, more than 85% methane and contains the remainder in particular ethane and propane, but also butane and pentane and possibly heavier hydrocarbons. The proportions may be lower than in a (raw) natural gas used to form the input natural gas, for example taken from a borehole. Nitrogen, helium and other light components can also still be present. As used herein, the terms "butane" and "pentane" are intended to be representative of all butane and pentane isomers, but are indicative in particular n-butane and isobutane and n-pentane and isopentane. Although not mentioned here, in addition to the saturated compounds mentioned in each case (ethane, propane, butane, pentane), the respective unsaturated derivatives and their isomers can also be present, which are usually in the specified separations or fractionation into the fraction of the corresponding compounds of the same chain length pass over
Ist nachfolgend von "Flüssigerdgas" bzw. einem "Flüssigerdgasprodukt" die Rede, wird hierunter eine auf dem atmosphärischen Siedepunkt von Methan oder darunter, insbesondere bei -160 bis -164 °C, vorliegende tiefkalte Flüssigkeit verstanden, die zu mehr als 85%, insbesondere zu mehr als 90% Methan aufweist, und deren Methangehalt in jedem Fall höher ist als der des verwendeten Einsatzerdgases. Das Flüssigerdgas ist insbesondere deutlich benzolärmer als das Einsatzerdgas und weist Benzol nur in vorgegebenen Maximalgehalt auf. Es kann neben Methan, insbesondere abweichend zur üblichen Zusammensetzung von Flüssigerdgas (engl. Liquefied Natural Gas, LNG), auch geringere Anteile von anderen aliphatischen Kohlenwasserstoffen, insbesondere Ethan, Propan und Butan sowie deren ungesättigte Derivate, aufweisen. Es wird dennoch nachfolgend mit der Kurzbezeichnung "LNG" bezeichnet. If "liquefied natural gas" or a "liquefied natural gas product" is mentioned below, this means a cryogenic liquid at or below the atmospheric boiling point of methane, in particular at -160 to -164 °C, which is more than 85%, in particular has more than 90% methane, and whose methane content is in any case higher than that of the feed gas used. In particular, the liquefied natural gas contains significantly less benzene than the natural gas used and only contains benzene in the specified maximum content. In addition to methane, it can also contain smaller amounts of other aliphatic hydrocarbons, in particular ethane, propane and butane and their unsaturated derivatives, in particular in deviation from the usual composition of liquefied natural gas (LNG). It is nevertheless referred to below with the abbreviation "LNG".
Merkmale und Vorteile der Erfindung Features and advantages of the invention
Ein erfindungsgemäßes Verfahren zur Herstellung eines Flüssigerdgasprodukts (LNG) umfasst ein Bereitstellen von Einsatzerdgas, das Methan sowie zumindest Ethan, Propan und Butan als höhere Kohlenwasserstoffe enthält. Das Einsatzerdgas kann auch weitere höhere Kohlenwasserstoffe, insbesondere Benzol, enthalten. Das Einsatzerdgas wird einer Abkühlung in einem ersten Abkühlschritt unter Verwendung eines ersten Gemischkältemittels (engl. warm mixed refrigerant, WMR) auf ein erstes Temperaturniveau unterworfen. Das in dem ersten Abkühlschritt abgekühlte Einsatzerdgas wird nach dem ersten Abkühlschritt zumindest zum Teil einer Gegenstromabsorption unter Bildung einer an den höheren Kohlenwasserstoffen abgereicherten Gasfraktion unter Verwendung einer Absorptionsflüssigkeit unterworfen. Ein Teil der Gasfraktion wird einer Abkühlung und Verflüssigung in einem zweiten Abkühlschritt unter Verwendung eines zweiten Gemischkältemittels (engl. cold mixed refrigerant, CMR) auf ein zweites Temperaturniveau zu dem Flüssigerdgasprodukt (LNG) unterworfen. Die Bereitstellung des Einsatzerdgases kann insbesondere unter Verwendung einer Trocknung, einer Sauergasentfernung, einer teilweisen Entfernung schwererer Kohlenwasserstoffe, einer Verdichtung und dergleichen erfolgen, wie an sich bekannt. Erfindungsgemäß wird die Absorptionsflüssigkeit aus einem weiteren Teil der Gasfraktion gebildet, der kondensiert und in die Gegenstromabsorption zurückgeführt wird. Die Kondensation kann insbesondere oberhalb der Gegenstromabsorption erfolgen, so dass eine pumpenfreie Rückführung möglich ist. Es kann jedoch auch eine Rücklaufpumpe verwendet werden. Vorzugsweise sind das erste und das zweite Gemischkältemittel propanarm oder propanfrei. A method according to the invention for producing a liquefied natural gas (LNG) product comprises providing feed natural gas which contains methane and at least ethane, propane and butane as higher hydrocarbons. The feed natural gas can also contain other higher hydrocarbons, in particular benzene. The feed natural gas is subjected to a cooling in a first cooling step using a first mixed refrigerant (warm mixed refrigerant, WMR) to a first temperature level. After the first cooling step, the natural gas feedstock cooled in the first cooling step is at least partially subjected to countercurrent absorption to form a gas fraction depleted in the higher hydrocarbons using an absorption liquid. A portion of the gas fraction is subjected to cooling and liquefaction in a second cooling step using a second cold mixed refrigerant (CMR) to a second temperature level to form the liquefied natural gas (LNG) product. The feed natural gas can be provided in particular using drying, acid gas removal, partial removal of heavier hydrocarbons, compression and the like, as is known per se. According to the invention, the absorption liquid is formed from a further part of the gas fraction, which is condensed and returned to the countercurrent absorption. The condensation can take place in particular above the countercurrent absorption, so that pump-free recirculation is possible. However, a return pump can also be used. Preferably, the first and second mixture refrigerants are low in propane or non-propane.
Die Erfindung zeichnet sich aus durch die weitere Behandlung einer in der Gegenstromabsorption gebildeten, Ethan, Propan, Butan und Pentan enthaltenden Sumpfflüssigkeit. Die in der Gegenstromabsorption gebildete Sumpfflüssigkeit wird zumindest zum Teil einer ersten Fraktionierung unterworfen, wobei ein an Propan armes und Butan und Pentan enthaltendes Sumpfprodukt sowie ein Kopfprodukt gebildet werden. Das in der ersten Fraktionierung gebildete Sumpfprodukt wird zumindest zum Teil einer zweiten Fraktionierung unterworfen, wobei ein an Propan armes und Butan enthaltendes Kopfprodukt sowie ein Sumpfprodukt gebildet werden. Das in der zweiten Fraktionierung gebildete Kopfprodukt wird bei Bedarf (Make-up) teilweise zu dem ersten Gemischkältemittel zugegeben. Die erste Fraktionierung ist insbesondere in Form einer bekannten C3/C4-Trennung (C3-Abtrennung, Depropanisierung), die zweite Fraktionierung insbesondere in Form einer bekannten C4/C5-Trennung (C4-Abtrennung, Debutanisierung) ausgebildet. The invention features the further treatment of a bottoms liquid formed in countercurrent absorption and containing ethane, propane, butane and pentane. The bottoms liquid formed in the countercurrent absorption is at least partially subjected to a first fractionation, forming a bottoms product which is low in propane and contains butane and pentane, as well as an overhead product. The bottom product formed in the first fractionation is at least partially subjected to a second fractionation, with a propane-lean and butane-containing overhead product and a bottom product being formed. The overhead product formed in the second fractionation is partially added to the first mixture refrigerant on demand (make-up). The first fractionation is in particular in the form of a known C3/C4 separation (C3 separation, depropanization), the second fractionation in particular in the form of a known C4/C5 separation (C4 separation, debutanization).
Die vorliegende Erfindung bietet den Vorteil, dass die Komponenten der Gemischkältemittelkreisläufe, insbesondere Butan, einfach und mit vergleichsweise geringem Aufwand aus dem Sumpf des Gegenstromabsorbers, also verfahrensintern, gewonnen werden können. Eine alternativ zur vorliegenden Erfindung einsetzbare Fraktionierungssequenz mit vier Fraktionierungen, in denen Methan, Ethan, Propan und Butan nacheinander abgetrennt werden, also eine C1/C2-Trennung (Demethanisierung) gefolgt von einer C2/C3-Trennung (Deethanisierung), einer C3/C4- Trennung (Depropanisierung) und einer C4/C5-Trennung (Debutanisierung) erfolgt, ist gegenüber der hier vorgeschlagenen Trennsequenz, wie erfindungsgemäß erkannt wurde, weniger vorteilhaft. In einer solchen alternativen Fraktionierungssequenz werden vier Trennkolonnen benötigt, die permanent betrieben werden müssen und teilweise unerwünschte Produkte (insbesondere eine Propanfraktion) abgeben, welche, wenn sie für sich betrachtet nicht benötigt werden, wieder rückgeführt werden müssen. Der für eine entsprechende Fraktion erforderliche Trennaufwand ist damit in Teilen vergebens. Entsprechendes gilt auch für Verfahren, in denen die Reihenfolge der C1/C2-Trennung (Demethanisierung) und der C2/C3-Trennung vertauscht sind. The present invention offers the advantage that the components of the mixed refrigerant circuits, in particular butane, can be obtained easily and with comparatively little effort from the sump of the countercurrent absorber, ie within the process. A fractionation sequence that can be used as an alternative to the present invention with four fractionations in which methane, ethane, propane and butane are separated off one after the other, i.e. a C1/C2 separation (demethanization) followed by a C2/C3 separation (deethanization), a C3/C4 - Separation (depropanization) and a C4/C5 separation (debutanization) takes place is less advantageous than the separation sequence proposed here, as has been recognized according to the invention. In such an alternative fractionation sequence four separating columns are required, which have to be operated continuously and sometimes give off undesired products (especially a propane fraction) which, if they are not required individually, have to be recycled. The separation effort required for a corresponding fraction is therefore partly in vain. The same also applies to processes in which the order of the C1/C2 separation (demethanization) and the C2/C3 separation are reversed.
Das erfindungsgemäße Verfahren bietet demgegenüber einen Kostenvorteil in Bezug auf Investitions- und Betriebskosten, da zumindest eine Trennkolonne komplett eingespart werden kann und eine weitere nur im Falle eines zusätzlichen Bedarfs an C2-Kältemittel zugeschaltet wird, wie weiter unten erläutert, in der Regel jedoch nicht betrieben werden muss. Im Rahmen der Erfindung wird das Sumpfprodukt der Gegenstromabsorption im Gegensatz zu herkömmlichen Trennsequenzen insbesondere direkt der Depropanisierung zugeführt und deren Sumpfprodukt der Debutanisierung unterworfen. So kann in zwei Trennschritten ein an Propan armer und Butan enthaltender Makeupstrom für das erste Gemischkältemittel bereitgestellt werden. Bei Bedarf kann das Kopfprodukt der Depropanisierung, also der ersten Fraktionierung, das Ethan und Propan enthält, einer Deethanisierung zur intermittierenden Erzeugung von Kältemittel unterworfen werden. Diese wird jedoch, wie erwähnt, optional betrieben. In contrast, the process according to the invention offers a cost advantage in terms of investment and operating costs, since at least one separating column can be saved completely and another one is only switched on if there is an additional need for C2 refrigerant, as explained below, but is usually not operated must become. In the context of the invention, in contrast to conventional separation sequences, the bottom product of the countercurrent absorption is in particular fed directly to the depropanization and its bottom product is subjected to the debutanization. In this way, a makeup stream that is low in propane and contains butane can be provided for the first mixed refrigerant in two separation steps. If necessary, the depropanization overhead, i.e., the first fractionation, containing ethane and propane may be subjected to deethanization to produce refrigerant intermittently. However, as mentioned, this is operated as an option.
Das Sumpfprodukt der Absorptionskolonne wird im Rahmen der vorliegenden Erfindung insbesondere direkt der ersten Fraktionierung, also der Depropanisierung, zugeführt, die beispielsweise bei einem Druckniveau von 10 bis 25 bar, vorzugsweise zwischen 15 und 20 bar durchgeführt wird. Das propanarme Sumpfprodukt der ersten Fraktionierung, das insbesondere weniger als 2 mol% an Propan und vorzugsweise weniger als 0,5 mol% an Propan aufweist, wird insbesondere direkt der zweiten Fraktionierung, also der Debutanisierung, zugeführt, die beispielsweise bei einem Druckniveau von 3 bis 10 bar, vorzugsweise zwischen 4 und 7 bar durchgeführt wird. Aus der zweiten Fraktionierung wird aufgrund der vorigen ersten Fraktionierung propanarmes, d.h. insbesondere weniger als 5 mol% an Propan und vorzugsweise weniger als 2 mol% an Propan enthaltendes Butan über Kopf abgezogen. In diesem sind insbesondere auch weniger als 1 mol% an Pentan und vorzugsweise weniger als 0,2 mol% Pentan enthalten. Das auf diese Weise gewonnene Butan kann zumindest teilweise zur Einspeisung in den ersten bzw. warmen Gemischkältemittelkreislauf verwendet werden. Aus der zweiten Fraktionierung wird ferner ein butanarmes, d.h. insbesondere weniger als 2 mol% an Butan und vorzugsweise weniger als 0,5 mol% an Butan, enthaltendes Sumpfprodukt abgezogen. Dieses enthält Pentan und ggf. nochmals längerkettige Kohlenwasserstoffe. Wie erwähnt, können in allen Fällen auch ungesättigte Kohlenwasserstoffe in die Fraktionierungen eingespeist und entsprechend getrennt werden, wobei diese insbesondere in die entsprechenden Fraktionen mit den jeweiligen kettenlängengleichen gesättigten Kohlenwasserstoffen übergehen. In the context of the present invention, the bottom product of the absorption column is in particular fed directly to the first fractionation, ie the depropanization, which is carried out, for example, at a pressure level of 10 to 25 bar, preferably between 15 and 20 bar. The low-propane bottom product from the first fractionation, which in particular has less than 2 mol% of propane and preferably less than 0.5 mol% of propane, is fed directly to the second fractionation, i.e. the debutanization, which is carried out, for example, at a pressure level of 3 to 10 bar, preferably between 4 and 7 bar. Due to the previous first fractionation, butane which is low in propane, ie in particular less than 5 mol % of propane and preferably less than 2 mol % of propane, is taken off overhead from the second fractionation. This also contains in particular less than 1 mol% of pentane and preferably less than 0.2 mol% of pentane. The butane obtained in this way can at least partially be fed into the first or warm mixed refrigerant circuit be used. A low-butane bottoms product, ie containing in particular less than 2 mol % of butane and preferably less than 0.5 mol % of butane, is also taken off from the second fractionation. This contains pentane and possibly even longer-chain hydrocarbons. As mentioned, in all cases unsaturated hydrocarbons can also be fed into the fractionations and separated accordingly, with these going over in particular into the corresponding fractions with the respective saturated hydrocarbons of the same chain length.
Ein ähnliches Verfahren zur Herstellung von Flüssigerdgas unter Verwendung zweier Gemischkältemittel, bei dem jedoch die erfindungsgemäß vorgeschlagene Fraktionierungssequenz nicht verwendet wird, ist beispielsweise in der US 6,119,479 A offenbart. In diesem Verfahren können die im Einsatzerdgas enthaltenen höheren Kohlenwasserstoffe je nach Bedarf in einem Gegenstromabsorber aus diesem abgeschieden werden. Verfahren und Anlagen ähnlicher Art sind beispielsweise auch in der US 6,370,910 A und der AU 2005224308 B2 offenbart. A similar method for producing liquefied natural gas using two mixed refrigerants, but in which the fractionation sequence proposed according to the invention is not used, is disclosed in US Pat. No. 6,119,479 A, for example. In this process, the higher hydrocarbons contained in the feed gas can be separated from it in a countercurrent absorber as required. Methods and systems of a similar type are also disclosed, for example, in US Pat. No. 6,370,910 A and AU 2005224308 B2.
Sowohl in dem ersten als auch in dem zweiten Abkühlschritt der vorliegenden Erfindung werden, wie erwähnt, Gemischkältemittel in entsprechenden Kältemittelkreisläufen eingesetzt. Insbesondere wird dabei das erste Gemischkältemittel in der nachfolgend angegebenen Reihenfolge gasförmig einer Verdichtung unterworfen, durch Abkühlen kondensiert, unterkühlt, entspannt, in einem ersten Wärmetauscher erwärmt, dabei insbesondere vollständig verdampft, und anschließend erneut der Verdichtung unterworfen. Die Unterkühlung des ersten Gemischkältemittels kann insbesondere in dem ersten Wärmetauscher erfolgen, die vorige Abkühlung in einem weiteren Wärmetauscher. Ferner wird das zweite Gemischkältemittel insbesondere gasförmig einer Verdichtung unterworfen, durch Abkühlen kondensiert unterkühlt, entspannt, in einem zweiten Wärmetauscher erwärmt, dabei insbesondere vollständig verdampft, und anschließend erneut der Verdichtung unterworfen. Die Unterkühlung des zweiten Gemischkältemittels kann insbesondere in dem zweiten Wärmetauscher erfolgen, die vorige Abkühlung in dem ersten und dem zweiten Wärmetauscher. As mentioned, mixed refrigerants are used in respective refrigerant circuits in both the first and second cooling steps of the present invention. In particular, the first mixed refrigerant is subjected to gaseous compression in the sequence specified below, condensed by cooling, supercooled, expanded, heated in a first heat exchanger, in particular completely evaporated, and then subjected to compression again. The supercooling of the first mixture refrigerant can take place in particular in the first heat exchanger, the previous cooling in a further heat exchanger. Furthermore, the second mixed refrigerant is subjected to compression, in particular in gaseous form, condensed by cooling, supercooled, expanded, heated in a second heat exchanger, in particular completely evaporated in the process, and then subjected to compression again. The sub-cooling of the second mixture refrigerant can take place in particular in the second heat exchanger, the previous cooling in the first and the second heat exchanger.
Die Abkühlung des Kopfprodukts aus der Gegenstromabsorption kann insbesondere zumindest teilweise unter Verwendung des zweiten Gemischkältemittels erfolgen, das zuvor in dem zweiten Abkühlschritt eingesetzt wurde. Es wird dazu aus einem in dem zweiten Abkühlschritt verwendeten Wärmetauscher entnommen und durch einen separaten Wärmetauscher geführt, der zur Abkühlung des Kopfprodukts aus der Gegenstromabsorption, oder eines entsprechenden Teils, dient. In particular, the cooling of the overhead product from the countercurrent absorption can be carried out at least partially using the second mixture refrigerant which was previously used in the second cooling step. It becomes one in the taken from the heat exchanger used in the second cooling step and passed through a separate heat exchanger which serves to cool the overhead product from the countercurrent absorption, or a corresponding part.
Der erste und der zweite Wärmetauscher sind insbesondere als gewickelte Wärmetauscher (engl. Coil Wound Heat Exchanger, CWHE) an sich bekannter Art ausgeführt, wobei die Erwärmung der Gemischkältemittel nach deren Entspannung insbesondere mantelseitig, d.h. in einem die Wärmetauscherrohre enthaltenden bzw. umgebenden Mantelraum erfolgt, in den das Gemischkältemittel entspannt wird. Die abzukühlenden Medien werden rohrseitig, d.h. durch die entsprechend bereitgestellten Wärmetauscherrohre, geführt. Die Wärmetauscherrohre sind in entsprechenden Wärmetauschern in Bündeln bereitgestellt, so dass für eine entsprechende Stromführung hier der Begriff "rohrseitig" bzw. "(rohr)bündelseitig" verwendet wird. Der erste Abkühlschritt, dem das Einsatzerdgas unterworfen wird, wird insbesondere unter Verwendung des ersten Wärmetauschers vorgenommen, der zweite Abkühlschritt, dem die Gasfraktion aus dem Gegenstromabsorber unterworfen wird, wird insbesondere unter Verwendung des zweiten Wärmetauschers vorgenommen. The first and second heat exchangers are designed in particular as coil wound heat exchangers (CWHE) of a type known per se, the heating of the mixed refrigerants taking place after they have expanded, in particular on the shell side, i.e. in a shell space containing or surrounding the heat exchanger tubes. into which the mixed refrigerant is expanded. The media to be cooled are routed on the tube side, i.e. through the appropriately provided heat exchanger tubes. The heat exchanger tubes are provided in bundles in corresponding heat exchangers, so that the term “tube side” or “(tube) bundle side” is used here for a corresponding flow control. In particular, the first cooling step to which the feed natural gas is subjected is carried out using the first heat exchanger, the second cooling step to which the gas fraction from the countercurrent absorber is subjected is carried out in particular using the second heat exchanger.
Verfahren zur Erdgasverflüssigung müssen flexibel an unterschiedliche Anlagenkapazitäten und Betriebsbedingungen anpassbar sein. Die erläuterten Verfahren unter Verwendung von zwei Gemischkältemittelkreisläufen werden vorzugsweise eingesetzt, wenn große Umgebungstemperaturschwankungen zu deutlich unterschiedlichen Kältemittelkondensationsbedingungen führen. Diese können effizienter berücksichtigt werden, wenn ein Gemisch aus Kältemittelkomponenten anstelle einer einzigen reinen Komponente wie Propan verwendet wird. Natural gas liquefaction processes must be flexible and adaptable to different plant capacities and operating conditions. The methods explained using two mixed refrigerant circuits are preferably used when large ambient temperature fluctuations lead to significantly different refrigerant condensation conditions. These can be addressed more efficiently if a mixture of refrigerant components is used instead of a single pure component such as propane.
Propan gilt aufgrund der Kombination aus hoher Flüchtigkeit und hohem Molekulargewicht als ein gefährliches Kältemittel, da es sich sich in tiefergelegenen Bereichen sammeln und ggf. zu Explosionen führen kann. Daher sind Verfahren unter Verwendung von zwei Gemischkältemittelkreisläufen und entsprechend reduziertem Propananteil darin, wie sie erfindungsgemäß zum Einsatz kommen, eine bevorzugte Lösung für Anlagenlayouts mit beschränktem Bauraum, z.B. modularisierte Anlagen und/oder schwimmende Anlagen, bei denen die Grundfläche begrenzt ist. Ein kompaktes Anlagenlayout (z.B. obligatorisch für Offshore-Installationen) kann durch Minimierung der Anzahl von Anlagenkomponenten und durch Reduzierung des Raums zwischen den Anlagen erreicht werden, der durch Sicherheitsaspekte bestimmt sein kann. Zu den bekanntermaßen gefährlichen Anlagenkomponenten gehören Pumpen für flüssige Kohlenwasserstoffe (Gefahr von Leckage und Flüssigkeitsaustritt) und alle Arten von Geräten, die erhebliche Mengen an flüssigem Propan enthalten. Propane is considered a hazardous refrigerant due to its combination of high volatility and high molecular weight as it can collect at low levels and potentially cause an explosion. Therefore, methods using two mixed refrigerant circuits and correspondingly reduced propane content therein, as used according to the invention, are a preferred solution for system layouts with limited installation space, eg modularized systems and/or floating systems, in which the floor space is limited. A compact plant layout (eg mandatory for offshore installations) can be achieved by minimizing the number of plant components and by reducing the space between plants, which may be determined by safety considerations. Plant components known to be hazardous include liquid hydrocarbon pumps (risk of leakage and spillage) and all types of equipment containing significant amounts of liquid propane.
Die bereits kurz angesprochenen Aspekte der vorliegenden Erfindung werden nachfolgend nochmals mit anderen Worten zusammengefasst. The aspects of the present invention that have already been briefly discussed are summarized again in the following in other words.
Das in der ersten Fraktionierung gebildete Kopfprodukt enthält vorteilhafterweise Ethan und Propan, wobei zumindest ein Teil des in der ersten Fraktionierung gebildeten Kopfprodukts unter Erhalt eines Kondensats teilkondensiert wird, und wobei das Kondensat teilweise oder vollständig als Rücklauf in der Gegenstromabsorption verwendet wird. Der Vorteil besteht insbesondere darin, dass auf diese Weise die Gegenstromabsorption unterstützt werden kann, wenn kein weiteres Produkt aus dem in der ersten Fraktionierung gebildeten Kopfprodukt gewonnen werden soll. Die Teilkondensation kann insbesondere eine Abkühlung unter Verwendung des ersten Gemischkältemittels umfassen, das hierzu in Form eines Teilstroms in einem weiteren Wärmetauscher bzw. Kopfkondensator eingesetzt werden kann. The overhead formed in the first fractionation advantageously contains ethane and propane, at least part of the overhead formed in the first fractionation being partially condensed to give a condensate, and the condensate being used partly or entirely as reflux in the countercurrent absorption. The particular advantage is that countercurrent absorption can be supported in this way if no further product is to be obtained from the top product formed in the first fractionation. Partial condensation can in particular include cooling using the first mixed refrigerant, which can be used for this purpose in the form of a partial flow in a further heat exchanger or head condenser.
Das Kondensat, das bei der Teikondensation zumindest eines Teils des in der ersten Fraktionierung gebildeten Kopfprodukts erhalten wird, kann in einer abweichenden Ausgestaltung oder in einem ersten Betriebsmodus zu einem ersten Anteil als Rücklauf in der Gegenstromabsorption verwendet und zu einem zweiten Anteil einer dritten Fraktionierung unterworfen werden, in der ein an Propan armes und Ethan enthaltendes Kopfprodukt und ein an Ethan armes und Propan enthaltendes Sumpfprodukt gebildet werden. Auf diese Weise lässt sich bei Bedarf ein Ethan enthaltendes Kältemittel, insbesondere die erwähnten ersten und zweiten Gemischkältemittel, bereitstellen. Insbesondere kann ein Teilstrom des ersten Gemischkältemittels zur Kopfkühlung in der dritten Fraktionierung verwendet werden. The condensate obtained in the partial condensation of at least part of the top product formed in the first fractionation can be used in a different embodiment or in a first mode of operation for a first portion as reflux in the countercurrent absorption and for a second portion of a third fractionation wherein a propane-lean ethane overhead and a ethane-lean propane bottoms are formed. In this way, if required, a refrigerant containing ethane, in particular the first and second mixed refrigerants mentioned, can be provided. In particular, a partial flow of the first mixture refrigerant can be used for head cooling in the third fractionation.
Das erste und das zweite Gemischkältemittel können insbesondere unter Verwendung eines gemeinsamen Antriebs oder von getrennten Antrieben beliebiger Art verdichtet werden, und der erste Abkühlschritt kann die Verwendung eines ersten Wärmetauschers und der zweite Abkühlschritt die Verwendung eines zweiten Wärmetauschers umfassen. Insbesondere umfasst das erste Gemischkältemittel zu einem weit überwiegenden Anteil Ethan und Butan bzw. deren gesättigte und ungesättigte Derivate, das zweite Gemischkältemittel zu einem weit überwiegenden Anteil Stickstoff, Methan und Ethan sowie deren Derivate. Es können jeweils Spuren von anderen Verbindungen, insbesondere leichteren und/oder schwereren Kohlenwasserstoffen enthalten sein. In particular, the first and second mixture refrigerants may be compressed using a common drive or separate drives of any type, and the first cooling step may use a first Heat exchanger and the second cooling step include the use of a second heat exchanger. In particular, the first mixed refrigerant comprises ethane and butane or their saturated and unsaturated derivatives to a far predominant proportion, the second mixed refrigerant to a far predominant proportion nitrogen, methane and ethane and their derivatives. Traces of other compounds, in particular lighter and/or heavier hydrocarbons, may be present.
Als Einsatzerdgas kann im Rahmen der vorliegenden Erfindung insbesondere ein Gasgemisch verwendet werden, das 75 bis 98 Molprozent Methan, 2 bis 20 Molprozent Ethan, 0,5 bis 5 Molprozent Propan, 0,3 bis 3 Molprozent Butan und 0,1 bis 2 Molprozent Pentan und höhere Kohlenwasserstoffe aufweist. A gas mixture containing 75 to 98 mole percent methane, 2 to 20 mole percent ethane, 0.5 to 5 mole percent propane, 0.3 to 3 mole percent butane and 0.1 to 2 mole percent pentane can be used as feed gas in the context of the present invention and higher hydrocarbons.
Die Gegenstromabsorption kann im Rahmen der Erfindung insbesondere auf einem Druckniveau von 40 bis 70 bar und/oder einem Temperaturniveau am Kopf von -30 bis -60 °C, die erste Fraktionierung auf einem Druckniveau von 10 bis 25 bar und/oder einem Temperaturniveau am Kopf von 20 bis 60 °C, die zweite Fraktionierung auf einem Druckniveau von 3 bis 7 bar und/oder einem Temperaturniveau am Kopf von 20 bis 60 °C und/oder die dritte Fraktionierung auf einem Druckniveau von 20 bis 30 bar und/oder einem Temperaturniveau am Kopf von -20 bis -50 °C durchgeführt werden. Dadurch ergibt sich lediglich zwischen der dritten und der ersten Fraktionierung eine Drucksteigerung, die entsprechend durch Verdichtung bzw. Pumpen überwunden werden muss. Bei allen übrigen Überführungen zwischen den einzelnen Anlagenkomponenten kann auf Pumpen und Verdichter verzichtet werden, da jeweils eine Entspannung erfolgt. In the context of the invention, the countercurrent absorption can take place in particular at a pressure level of 40 to 70 bar and/or a temperature level at the top of -30 to -60° C., the first fractionation at a pressure level of 10 to 25 bar and/or a temperature level at the top from 20 to 60 °C, the second fractionation at a pressure level of 3 to 7 bar and/or a temperature level at the top of 20 to 60 °C and/or the third fractionation at a pressure level of 20 to 30 bar and/or a temperature level be carried out at the head from -20 to -50 °C. As a result, there is only an increase in pressure between the third and the first fractionation, which must be overcome by compression or pumping. For all other transfers between the individual system components, pumps and compressors can be dispensed with, since relaxation occurs in each case.
Zu der erfindungsgemäß bereitgestellten Vorrichtung und ihren Merkmalen sei auf den entsprechenden unabhängigen Vorrichtungsanspruch und die obigen Erläuterungen bezüglich des erfindungsgemäßen Verfahrens ausdrücklich verwiesen, da diese eine entsprechende Vorrichtung in gleicher weise betreffen. Entsprechendes gilt insbesondere für eine Ausgestaltung einer entsprechenden Vorrichtung, die vorteilhafterweise zur Ausführung eines entsprechenden Verfahrens in einer beliebigen Ausgestaltung eingerichtet ist. Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren, die eine Ausgestaltung der vorliegenden Erfindung gegenüber dem Stand der Technik veranschaulichen, weiter erläutert. With regard to the device provided according to the invention and its features, reference is expressly made to the corresponding independent device claim and the above explanations with regard to the method according to the invention, since these relate to a corresponding device in the same way. The same applies in particular to a configuration of a corresponding device which is advantageously set up to carry out a corresponding method in any configuration. The invention is explained further below with reference to the figures, which illustrate an embodiment of the present invention over the prior art.
Kurze Beschreibung der Figuren Brief description of the figures
Figur 1 zeigt eine nicht erfindungsgemäße Anlage zur Veranschaulichung des Hintergrunds der Erfindung. Figure 1 shows a system not according to the invention to illustrate the background of the invention.
Figur 2 zeigt eine vorteilhafte Ausgestaltung einer erfindungsgemäßen Anlage in schematischer Darstellung. FIG. 2 shows an advantageous embodiment of a system according to the invention in a schematic representation.
In der folgenden weiteren Beschreibung werden nicht erfindungsgemäße und gemäß Ausgestaltungen der Erfindung ausgebildete Anlagen und anhand dieser entsprechende Verfahrensschritte beschrieben. Der Einfachheit halber, und zur Vermeidung von Wiederholungen, werden hier für Verfahrensschritte und Anlagenkomponenten (beispielsweise einen Abkühlschritt und einen hierzu verwendeten Wärmetauscher) dieselben Bezugszeichen und Erläuterungen verwendet. In the further description that follows, systems that are not according to the invention and are designed according to configurations of the invention and corresponding method steps are described on the basis of these. For the sake of simplicity and to avoid repetition, the same reference numbers and explanations are used here for process steps and system components (for example a cooling step and a heat exchanger used for this purpose).
Ausführliche Beschreibung der Figuren Detailed description of the figures
Einer nicht erfindungsgemäßen Ausgestaltung einer Anlage zur Erdgasverflüssigung, wie sie in Figur 1 dargestellt und insgesamt mit 100 bezeichnet ist, wird Einsatzerdgas NG zugeführt, welches zunächst in zwei Teilströme aufgeteilt wird. Ein erster Teilstrom wird in einem ersten Wärmetauscher E01 , der insbesondere als gewickelter Wärmetauscher ausgebildet sein kann, in einem ersten Abkühlschritt auf ein erstes Temperaturniveau von beispielsweise -20 °C bis -70 °C abgekühlt und anschließend in etwa mittig in einen Gegenstromabsorber T01 eingespeist. An embodiment of a plant for natural gas liquefaction that is not according to the invention, as shown in FIG. A first partial flow is cooled in a first heat exchanger E01, which can be designed in particular as a coiled heat exchanger, in a first cooling step to a first temperature level of, for example, -20 °C to -70 °C and then fed approximately centrally into a countercurrent absorber T01.
In einen unteren Bereich des Gegenstromabsorbers T01 wird ferner der zweite Teilstrom des Einsatzerdgases NG, der über ein Ventil V6 entspannt wird, eingespeist, welcher dort im Wesentlichen gasförmig aufsteigt. Aus einem oberen Bereich des Gegenstromabsorbers T01 wird Gas abgezogen, das in einem Kopfkondensator E02, der beispielsweise als Plattenwärmetauscher ausgebildet sein kann, abgekühlt und in einen Kopfraum des Gegenstromabsorbers T01 eingespeist wird. Sich hier abscheidende Flüssigkeit wird als Rücklauf auf den Gegenstromabsorber T01 zurückgeführt und wäscht schwerere Komponenten aus dem Einsatzerdgas aus, die in eine Sumpfflüssigkeit des Gegenstromabsorbers T01 übergehen. In addition, the second partial flow of the feed natural gas NG, which is expanded via a valve V6, is fed into a lower region of the countercurrent absorber T01, where it essentially rises in gaseous form. Gas is withdrawn from an upper area of the countercurrent absorber T01, which is cooled in a head condenser E02, which can be designed as a plate heat exchanger, for example, and is fed into a headspace of the countercurrent absorber T01. Liquid that separates out here is fed back to the countercurrent absorber T01 as return flow and washes out heavier components from the feed natural gas, which pass into a bottom liquid of the countercurrent absorber T01.
Die Sumpfflüssigkeit des Gegenstromabsorbers T01 kann über ein Ventil V05 entspannt und als Schwerfraktion HHC (engl. heavy hydrocarbons) aus der Anlage 100 ausgeführt werden. Ein Kopfgas des Gegenstromabsorbers T01 , also eine methanreiche Gasfraktion, wird hingegen in einen zweiten Wärmetauscher E04, der ebenfalls als gewickelter Wärmetauscher ausgebildet sein kann, auf eine Verflüssigungstemperatur abgekühlt und nach Entspannung über ein Ventil als Flüssigerdgas LNG aus der Anlage 100 ausgeführt. The sump liquid of the countercurrent absorber T01 can be expanded via a valve V05 and carried out from the plant 100 as a heavy fraction HHC (heavy hydrocarbons). A top gas of the countercurrent absorber T01, i.e. a methane-rich gas fraction, is cooled to a condensing temperature in a second heat exchanger E04, which can also be designed as a coiled heat exchanger, and, after expansion, is discharged from the plant 100 as liquefied natural gas LNG via a valve.
Die Anlage 100 umfasst zwei Gemischkältemittelkreisläufe. In einem ersten Gemischkältemittelkreislauf WMRC wird ein erstes ("warmes") Gemischkältemittel WMR gasförmig einer einstufigen Verdichtung in einem Verdichter C1 unterworfen und in einem Luftkühler und/oder Wasserkühler E3 nachgekühlt und dadurch kondensiert. Kondensat kann in einem Abscheidebehälter D1 gewonnen werden. Dieses wird in dem ersten Wärmetauscher E01 zunächst rohrbündelseitig weiter abgekühlt, dann über ein Ventil V1 entspannt und in den Mantelraum des ersten Wärmetauschers E1 eingespeist, wo es erwärmt, vollständig verdampft und anschließend erneut der Verdichtung unterworfen wird. The system 100 includes two mixed refrigerant circuits. In a first mixed refrigerant circuit WMRC, a first ("warm") mixed refrigerant WMR is subjected in gaseous form to a single-stage compression in a compressor C1 and post-cooled in an air cooler and/or water cooler E3 and thereby condensed. Condensate can be recovered in a separator tank D1. This is initially further cooled on the tube bundle side in the first heat exchanger E01, then expanded via a valve V1 and fed into the shell space of the first heat exchanger E1, where it is heated, completely evaporated and then subjected to compression again.
In diesem nicht erfindungsgemäßen Verfahren erfolgt die Verdichtung des ersten Gemischkältemittels insbesondere in dem einstufigen Verdichter C1 ohne Zwischenkühlung, um ein Risiko einer teilweisen Kondensation zu senken und eine Notwendigkeit der Förderung des Kondensats auf die Hochdruckseite des Verdichters zu vermeiden. In this method, which is not according to the invention, the compression of the first mixture refrigerant takes place in particular in the single-stage compressor C1 without intermediate cooling in order to reduce the risk of partial condensation and to avoid the need to convey the condensate to the high-pressure side of the compressor.
Ferner wird in der Anlage 100 ein zweites ("kaltes") Gemischkältemittel CMR in einem zweiten Gemischkältemittelkreislauf CMRC gasförmig einer stufenweisen Verdichtung in Verdichtern LP C2 und HP C2 unterworfen und jeweils, beispielsweise in Luftkühlern und/oder Wasserkühlern E5 und E6, nachgekühlt. Eine weitere Abkühlung erfolgt rohrbündelseitig in dem ersten Wärmetauscher E01 und danach in dem zweiten Wärmetauscher E04. Nach einer anschließenden Entspannung in einem Ventil erfolgt eine Einspeisung in einen Pufferbehälter D2. Hieraus abgezogenes Kondensat wird über ein Ventil entspannt und mantelseitig in den zweiten Wärmetauscher E04 eingespeist und dort erwärmt und vollständig verdampft. Das gasförmige zweite Gemischkältemittel CMR wird, bevor es erneut der Verdichtung unterworfen wird, als Kältemittel in dem bereits erwähnten Kopfkondensator E02 eingesetzt. Furthermore, in the system 100, a second ("cold") mixed refrigerant CMR in a second mixed refrigerant circuit CMRC is subjected to gaseous compression in compressors LP C2 and HP C2 in stages and after-cooled, for example in air coolers and/or water coolers E5 and E6. Further cooling takes place on the tube bundle side in the first heat exchanger E01 and then in the second heat exchanger E04. After a subsequent relaxation in a valve takes place a feed into a buffer tank D2. Condensate drawn off from this is expanded via a valve and fed into the second heat exchanger E04 on the jacket side, where it is heated and completely evaporated. The gaseous second mixture refrigerant CMR is used as a refrigerant in the above-mentioned top condenser E02 before it is subjected to compression again.
Durch eine Installation des Kopfkondensators E02, der unter Verwendung von Kälte des zweiten Gemischkältemittels CMR betrieben wird, welches den zweiten Wärmetauscher E04 dampfförmig verlässt, oberhalb des Gegenstromabsorbers T01 kann auf eine Rücklaufpumpe verzichtet werden. Der aus dem Gas aus dem Gegenstromabsorber T01 gebildete Rücklauf wird hingegen rein durch Schwerkraftwirkung auf den Gegenstromabsorber T01 zurückgeführt. By installing the top condenser E02, which is operated using cold from the second mixed refrigerant CMR, which leaves the second heat exchanger E04 in vapor form, above the countercurrent absorber T01, a return pump can be dispensed with. The return flow formed from the gas from the countercurrent absorber T01, on the other hand, is fed back to the countercurrent absorber T01 purely by the effect of gravity.
Entgegen dem soeben erläuterten nicht erfindungsgemäßen Verfahren wird in dem erfindungsgemäßen Verfahren das Gemischkältemittel verfahrensintern gewonnen. Hierbei wird jedoch im Vergleich zu aus dem Stand der Technik bekannten Verfahren auf zumindest eine Trennsäule verzichtet, was den erforderlichen Bauraum erheblich reduziert. Auf Propan in den Gemischkältemitteln wird aus den eingangs erläuterten Gründen weitgehend verzichtet. Diese Vorteile werden durch die vorgeschlagenen erfindungsgemäßen Maßnahmen und entsprechende vorteilhafte Ausgestaltungen erzielt. In dem Einsatzerdgas NG vorhandenes Propan kann insbesondere in das Flüssigerdgas LNG überführt werden, ohne dafür speziell abgetrennt zu werden. In contrast to the method just explained, which is not according to the invention, in the method according to the invention the mixed refrigerant is obtained within the process. In comparison to the methods known from the prior art, however, at least one separating column is dispensed with here, which considerably reduces the installation space required. For the reasons explained at the outset, propane is largely dispensed with in the mixed refrigerants. These advantages are achieved through the proposed measures according to the invention and corresponding advantageous configurations. Propane present in the feed natural gas NG can in particular be converted into the liquefied natural gas LNG without being specially separated for this purpose.
In Figur 2 ist eine vorteilhafte Ausgestaltung der erfindungsgemäßen Anlage vereinfacht dargestellt und insgesamt mit 200 bezeichnet. An advantageous embodiment of the system according to the invention is shown in simplified form in FIG.
Zusätzlich zu den in Bezug auf Figur 1 beschriebenen Komponenten der Anlage 100 weist die Anlage 200 drei Trennkolonnen T11 , T12, T13 auf, die jeweils zur Durchführung einer fraktionierten Destillation zumindest eines Teils der aus dem Gegenstromabsorber T01 abgezogenen Sumpfprodukts eingerichtet sind. In addition to the components of plant 100 described with reference to FIG. 1, plant 200 has three separating columns T11, T12, T13, each of which is set up to carry out a fractional distillation of at least part of the bottom product drawn off from countercurrent absorber T01.
Die bereits beschriebenen Komponenten werden hier aus Gründen der Übersichtlichkeit nicht mehr näher erläutert. Es ist dabei anzumerken, dass die beiden Gemischkältemittel CMR und WMR in voneinander getrennten Kreisläufen WMRC und CMRC geführt werden, die in Figur 2 jeweils zu einem Block zusammengefasst dargestellt sind. Die konkrete Ausgestaltung dieser Kreisläufe kann von der in Bezug auf Figur 1 erläuterten Ausgestaltung abweichen. Entscheidend ist hierbei jedoch insbesondere, wie auch in der Anlage 100, dass das erste Gemischkältemittel WMR auf einem Arbeits-Temperaturniveau im Bereich von -30 °C bis -60 °C bevorzugt von -40 °C bis -50 °C, in den ersten Wärmetauscher E01 eingespeist wird und das zweite Gemischkältemittel auf einem Arbeits-Temperaturniveau im Bereich von -140 °C bis -165 °C, bevorzugt von -150 °C bis -160 °C, in den zweiten Wärmetauscher E04 eingespeist wird. Zur Bereitstellung des jeweiligen Gemischkältemittels CMR, WMR kommen prinzipiell alle bekannten Verfahren in Betracht, beispielsweise eine Kombination aus Verdichtung, Kühlung und Entspannung, insbesondere in Form einer herkömmlichen Kältemaschine. The components already described are not explained in more detail here for reasons of clarity. It should be noted here that the two mixed refrigerants CMR and WMR are routed in circuits WMRC and CMRC that are separate from one another and are each combined into a block in FIG are shown. The specific configuration of these circuits can deviate from the configuration explained with reference to FIG. However, it is particularly important here, as in system 100, that the first mixed refrigerant WMR is at a working temperature level in the range from -30° C. to -60° C., preferably from -40° C. to -50° C., in the first Heat exchanger E01 is fed and the second mixed refrigerant is fed into the second heat exchanger E04 at a working temperature level in the range from -140 °C to -165 °C, preferably from -150 °C to -160 °C. In principle, all known methods can be used to provide the respective mixed refrigerant CMR, WMR, for example a combination of compression, cooling and expansion, in particular in the form of a conventional refrigerating machine.
Ein funktional dem Pufferbehälter D2, wie er in Bezug auf Fig. 1 beschrieben wurde, entsprechender Puffer zur Vorhaltung des zweiten Gemischkältemittels kann als Niederdruck-Pufferbehälter D05 oder als Hochdruck-Pufferbehälter D05' ausgebildet sein. Der Hochdruck-Pufferbehälter D05' hat dabei den Vorteil, weniger Bauraum einzunehmen, während der Niederdruck-Pufferbehälter D05 weniger widerstandsfähig und daher gegebenenfalls leichter ausgeführt sein kann, allerdings zur Vermeidung einer Pumpe über dem Wärmetauscher E04 installiert werden muss. A buffer that functionally corresponds to the buffer tank D2, as was described with reference to FIG. 1, for storing the second mixed refrigerant can be designed as a low-pressure buffer tank D05 or as a high-pressure buffer tank D05'. The high-pressure buffer tank D05′ has the advantage of taking up less space, while the low-pressure buffer tank D05 can be less resistant and therefore possibly lighter, but has to be installed above the heat exchanger E04 to avoid a pump.
Das Einsatzerdgas NG, das hier explizit Methan und zumindest Ethan, Propan, Butan und Pentan als höhere Kohlenwasserstoffe enthält, wird wie zuvor, jedoch im dargestellten Beispiel vollständig, d.h. ohne Aufteilung in Teilströme, in einem ersten Abkühlschritt in dem ersten Wärmetauscher E01 unter Verwendung eines ersten Gemischkältemittels WMR im Wesentlichen wie zuvor auf ein erstes Temperaturniveau abgekühlt. Das Einsatzerdgas NG wird nach dem ersten Abkühlschritt in dem ersten Wärmetauscher E01 zumindest zum Teil unter Verwendung einer im Wesentlichen wie zuvor bereitgestellten Absorptionsflüssigkeit einer Gegenstromabsorption in dem Gegenstromabsorber T01 unterworfen, wobei eine an den höheren Kohlenwasserstoffen abgereicherte Gasfraktion gebildet wird. The feed natural gas NG, which here explicitly contains methane and at least ethane, propane, butane and pentane as higher hydrocarbons, is as before, but in the example shown completely, ie without being divided into partial flows, in a first cooling step in the first heat exchanger E01 using a first mixture refrigerant WMR cooled to a first temperature level substantially as before. After the first cooling step in the first heat exchanger E01, the feed natural gas NG is at least partially subjected to countercurrent absorption in the countercurrent absorber T01 using an absorption liquid provided essentially as before, with a gas fraction depleted in the higher hydrocarbons being formed.
Die Absorptionsflüssigkeit wird also auch hier aus einem weiteren Teil der in dem Gegenstromabsorber T01 gebildeten Gasfraktion gebildet. Diese wird oberhalb des Gegenstromabsorbers T01 kondensiert und in den Gegenstromabsorber T01 zurückgeführt. Ein Teil der in der in dem Gegenstromabsorber T01 gebildeten Gasfraktion wird in einem zweiten Abkühlschritt in dem Wärmetauscher E04 unter Verwendung des zweiten Gemischkältemittels CMR auf ein zweites Temperaturniveau abgekühlt und zu dem Flüssigerdgas LNG verflüssigt. Here, too, the absorption liquid is formed from a further part of the gas fraction formed in the countercurrent absorber T01. This is condensed above countercurrent absorber T01 and returned to countercurrent absorber T01. Part of the in the formed in the countercurrent absorber T01 In a second cooling step, the gas fraction is cooled to a second temperature level in the heat exchanger E04 using the second mixed refrigerant CMR and liquefied to form the liquefied natural gas LNG.
Im Betrieb der Anlage 200 wird der Sumpfstrom des Gegenstromabsorbers T01 zumindest teilweise zunächst einer ersten Fraktionierung T11 (Depropaniser) unterworfen, in der ein an Propan und leichteren Komponenten angereichertes Kopfgemisch und ein an Komponenten, die höher als Propan sieden, insbesondere an Butan, angereichertes Sumpfgemisch gebildet wird. Dazu ist die Trennkolonne T11 , wie auch alle anderen Trennkolonnen T01 , T12, T13 der Anlage 200, mit geeigneten Einbauten ausgestattet und wird vorzugsweise bei einem Druckniveau im Bereich von 10 bis 25 bar, bevorzugt 15 bis 20 bar, betrieben. During operation of the plant 200, the bottom stream of the countercurrent absorber T01 is at least partially first subjected to a first fractionation T11 (depropaniser), in which a top mixture enriched in propane and lighter components and a bottom mixture enriched in components that boil higher than propane, in particular butane, are enriched is formed. For this purpose, the separating column T11, like all other separating columns T01, T12, T13 of the plant 200, is equipped with suitable internals and is preferably operated at a pressure level in the range from 10 to 25 bar, preferably 15 to 20 bar.
Unter den genannten Voraussetzungen weist das in der Gegenstromabsorption T01 gebildete Sumpfprodukt Ethan, Propan, Butan und Pentan sowie ggf. höhere Kohlenwasserstoffe auf und wird zumindest zum Teil einer ersten Fraktionierung in der Trennkolonne T11 unterworfen, in der ein an Propan armes und Butan und Pentan enthaltendes Sumpfprodukt sowie ein Kopfprodukt gebildet werden. Under the conditions mentioned, the bottom product formed in the countercurrent absorption T01 has ethane, propane, butane and pentane and possibly higher hydrocarbons and is at least partially subjected to a first fractionation in the separating column T11, in which a propane-poor and butane and pentane-containing Bottom product and a top product are formed.
Aus einem Rücklaufsammler D11 , in den zumindest das Kopfprodukt der ersten Fraktionierung T11 eingespeist wird, wird vorteilhafterweise eine Propan und Ethan sowie ggf. leichter siedende Kohlenwasserstoffe enthaltende Fraktion gasförmig entnommen, in dem ersten Wärmetauscher E01 gegen verdampfendes erstes Gemischkältemittel WMR abgekühlt und dabei teilkondensiert. Die dabei gebildete Flüssigkeit wird vorteilhafterweise in einem Abscheider D13 abgetrennt und in einem Normalbetrieb, insbesondere vollständig, der Gegenstromabsorption T01 als Rücklauf aufgegeben. A fraction containing propane and ethane and possibly lower-boiling hydrocarbons is advantageously removed in gaseous form from a return collector D11, into which at least the top product of the first fractionation T11 is fed, cooled in the first heat exchanger E01 against evaporating first mixed refrigerant WMR and thereby partially condensed. The liquid formed in this way is advantageously separated off in a separator D13 and, in normal operation, in particular completely, is fed to the countercurrent absorption T01 as reflux.
Das Sumpfprodukt der ersten Fraktionierung T 11 wird zumindest zum Teil einer zweiten Fraktionierung in der zweiten Trennkolonne T12 unterworfen, in der ein an Propan armes und Butan enthaltendes Kopfprodukt sowie ein Sumpfprodukt gebildet werden, und das in der zweiten Fraktionierung in der zweiten Trennkolonne T12 gebildete Kopfprodukt wird zumindest zum Teil zu dem ersten Gemischkältemittel WMR zugegeben. Genauer wird das Kopfprodukt der zweiten Trennkolonne T12 in dem Kopfkondensator der zweiten T rennkolonne T 12 kondensiert und dieser zumindest teilweise als Rücklauf aufgegeben werden. Das kondensierte Kopfprodukt kann in einem Kondensatsammler D12, beispielsweise zur Verwendung als Makeup C4 MA für das erste Gemischkältemittel WMR oder zur Rückführung in den Gegenstromabsorber T01 , gesammelt werden. The bottom product of the first fractionation T11 is at least partially subjected to a second fractionation in the second separating column T12, in which a low-propane and butane-containing top product and a bottom product are formed, and the top product formed in the second fractionation in the second separating column T12 is at least partially added to the first mixture refrigerant WMR. More precisely, the top product of the second separating column T12 is condensed in the top condenser of the second separating column T12 and this is at least partly fed in as reflux. The condensed overhead product can be collected in a condensate collector D12, e.g. for use as makeup C4 MA for the first mixture refrigerant WMR or for recycling to the countercurrent absorber T01.
Um zusätzlich Ethan, beispielsweise als Makeup C2 MA für einen weiteren Kältemittelkreislauf, zu gewinnen, wird bei Bedarf, d.h in einem entsprechenden Betriebsmodus, vorteilhafterweise eine Teilmenge (beispielsweise 10-80%, vorzugsweise 30-50%) der in dem Abscheider D13 gesammelten Flüssigkeit einer dritten Fraktionierung T13 (Deethaniser) unterworfen. Aus dieser kann unterhalb des Kopfkondensators ein propanarmes, Ethan enthaltendes Fluid entnommen werden. Da die dritte Fraktionierung T13 bei einem gegenüber der ersten Fraktionierung T11 höheren Druck betrieben wird, erfolgt die Einspeisung über eine Pumpe und Stoffströme können direkt in die erste Fraktionierung T 11 zurückgespeist bzw. dem teilkondensierten Kopfprodukt der ersten Fraktionierung T 11 zugemischt werden. In order to gain additional ethane, for example as makeup C2 MA for another refrigerant cycle, if required, ie in a corresponding operating mode, advantageously a subset (for example 10-80%, preferably 30-50%) of the liquid collected in the separator D13 subjected to a third fractionation T13 (deethanizer). A low-propane, ethane-containing fluid can be removed from this below the head condenser. Since the third fractionation T13 is operated at a higher pressure than the first fractionation T11, it is fed in via a pump and material streams can be fed back directly into the first fractionation T11 or mixed with the partially condensed top product of the first fractionation T11.
Letztlich wird dementsprechend ein Großteil des in dem Einsatzerdgas NG enthaltenen Methans, Ethans und Propans in das Flüssigerdgas LNG überführt, wobei ein Teil des Ethans als Kältemittel gewonnen werden kann. Schwerere Komponenten des Einsatzerdgases NG werden gesondert abgetrennt, wobei wiederum Butan als Ausgangsstoff für das erste Gemischkältemittel WMR gewonnen werden kann. Insgesamt ist festzuhalten, dass entgegen Verfahren, die aus dem Stand der Technik bekannt sind, zumindest eine Trennkolonne eingespart werden kann, die herkömmlicherweise zur Abtrennung eines methanreichen Stroms aus dem teilweise verflüssigten Einsatzerdgas NG verwendet wird. Ultimately, accordingly, a large part of the methane, ethane and propane contained in the feed natural gas NG is converted into the liquefied natural gas LNG, with part of the ethane being able to be recovered as a refrigerant. Heavier components of the feed natural gas NG are separated off separately, with butane again being able to be obtained as the starting material for the first mixed refrigerant WMR. Overall, it can be stated that, contrary to methods that are known from the prior art, at least one separation column can be saved, which is conventionally used for separating a methane-rich stream from the partially liquefied feed natural gas NG.

Claims

Patentansprüche Verfahren zur Herstellung eines Flüssigerdgasprodukts (LNG), bei dem ein Einsatzerdgas (NG), das Methan und zumindest Ethan, Propan, Butan und Pentan als höhere Kohlenwasserstoffe enthält, bereitgestellt wird, das Einsatzerdgas (NG) in einem ersten Abkühlschritt (E01) unter Verwendung eines ersten Gemischkältemittels (WMR) auf ein erstes Temperaturniveau abgekühlt wird, das Einsatzerdgas (NG) nach dem ersten Abkühlschritt (E01) zumindest zum Teil unter Verwendung einer Absorptionsflüssigkeit einer Gegenstromabsorption (T01) unterworfen wird, in der eine an den höheren Kohlenwasserstoffen abgereicherte Gasfraktion gebildet wird, und zumindest ein Teil der in der Gegenstromabsorption (T01) gebildeten Gasfraktion in einem zweiten Abkühlschritt (E04) unter Verwendung eines zweiten Gemischkältemittels (CMR) auf ein zweites Temperaturniveau abgekühlt und zu dem Flüssigerdgasprodukt (LNG) verflüssigt wird, dadurch gekennzeichnet, dass die Absorptionsflüssigkeit aus einem weiteren Teil der in der Gegenstromabsorption (T01) gebildeten Gasfraktion gebildet wird, der kondensiert und in die Gegenstromabsorption (T01) zurückgeführt wird, in der Gegenstromabsorption (T01) ein zumindest Ethan, Propan Butan und Pentan enthaltendes Sumpfprodukt gebildet wird, das in der Gegenstromabsorption (T01) gebildete Sumpfprodukt zumindest zum Teil einer ersten Fraktionierung (T11) unterworfen wird, in der ein an Propan armes und Butan und Pentan enthaltendes Sumpfprodukt sowie ein Kopfprodukt gebildet werden, das in der ersten Fraktionierung (T 11) gebildete Sumpfprodukt zumindest zum Teil einer zweiten Fraktionierung unterworfen wird, in der ein an Propan armes und Butan enthaltendes Kopfprodukt sowie ein Sumpfprodukt gebildet werden, und das in der zweiten Fraktionierung (T12) gebildete Kopfprodukt zumindest zum Teil zu dem ersten Gemischkältemittel (WMR) zugegeben wird. Claims Method for producing a liquefied natural gas product (LNG), in which a feed natural gas (NG) containing methane and at least ethane, propane, butane and pentane as higher hydrocarbons is provided, the feed natural gas (NG) in a first cooling step (E01) under Using a first mixture refrigerant (WMR) is cooled to a first temperature level, the feed natural gas (NG) after the first cooling step (E01) is at least partially subjected to countercurrent absorption (T01) using an absorption liquid, in which a gas fraction depleted in the higher hydrocarbons is formed, and at least part of the gas fraction formed in the countercurrent absorption (T01) is cooled to a second temperature level in a second cooling step (E04) using a second mixture refrigerant (CMR) and is liquefied to form the liquefied natural gas product (LNG), characterized in that the absorption liquid from afar ren part of the gas fraction formed in the countercurrent absorption (T01), which is condensed and returned to the countercurrent absorption (T01), in the countercurrent absorption (T01) a bottom product containing at least ethane, propane, butane and pentane is formed, which in the countercurrent absorption ( T01) the bottom product formed is at least partially subjected to a first fractionation (T11), in which a bottom product low in propane and containing butane and pentane and a top product are formed, the bottom product formed in the first fractionation (T11) is at least partially subjected to a second fractionation, in which a low-propane and butane-containing top product and a bottom product are formed, and the top product formed in the second fractionation (T12) is at least partially subjected is added to the first mixture refrigerant (WMR).
2. Verfahren nach Anspruch 1 , bei dem das in der ersten Fraktionierung (T 11) gebildete Kopfprodukt Ethan und Propan enthält, bei dem zumindest ein Teil des in der ersten Fraktionierung (T11) gebildeten Kopfprodukts unter Erhalt eines Kondensats teilkondensiert wird, und bei dem das Kondensat teilweise oder vollständig als Rücklauf in der Gegenstromabsorption (T01) verwendet wird. 2. The method of claim 1, in which the top product formed in the first fractionation (T11) contains ethane and propane, in which at least part of the top product formed in the first fractionation (T11) is partially condensed to obtain a condensate, and in which the condensate is partially or fully used as reflux in countercurrent absorption (T01).
3. Verfahren nach Anspruch 2, bei dem die Teilkondensation eine Abkühlung unter Verwendung des ersten Gemischkältemittels (WMR) umfasst. 3. The method according to claim 2, wherein the partial condensation comprises a cooling using the first mixture refrigerant (WMR).
4. Verfahren nach Anspruch 2 oder 3, bei dem das Kondensat, das bei der Teikondensation zumindest eines Teils des in der ersten Fraktionierung (T11) gebildeten Kopfprodukts erhalten wird, in einem ersten Betriebsmodus zu einem ersten Anteil als Rücklauf in der Gegenstromabsorption (T01) verwendet und zu einem zweiten Anteil einer dritten Fraktionierung (T13) unterworfen wird, in der ein an Propan armes und Ethan enthaltendes Kopfprodukt und ein an Ethan armes und Propan enthaltendes Sumpfprodukt gebildet werden. 4. Process according to claim 2 or 3, in which the condensate obtained in the partial condensation of at least a part of the overhead product formed in the first fractionation (T11) is returned in a first operating mode to a first proportion as reflux in the countercurrent absorption (T01) is used and is subjected to a second portion of a third fractionation (T13) in which a low-propane and ethane-containing overhead product and a low-ethane and propane-containing bottom product are formed.
5. Verfahren nach Anspruch 4, wobei ein Teilstrom des ersten Gemischkältemittels zur Kopfkühlung in der dritten Fraktionierung (T13) verwendet wird. 5. The method according to claim 4, wherein a partial flow of the first mixture refrigerant is used for head cooling in the third fractionation (T13).
6. Verfahren nach Anspruch 4 oder 5, wobei das in der dritten Fraktionierung (T13) gebildete Kopfprodukt zumindest zum Teil verflüssigt als Kältemittel verwendet wird. 6. The method according to claim 4 or 5, wherein the top product formed in the third fractionation (T13) is at least partially liquefied and used as refrigerant.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei das erste (WMR) und das zweite (CMR) Gemischkältemittel unter Verwendung eines gemeinsamen Antriebs oder von getrennten Antrieben verdichtet werden. Verfahren nach einem der vorstehenden Ansprüche, bei dem der erste Abkühlschritt (E01) die Verwendung eines ersten Wärmetauschers und der zweite Abkühlschritt (E02) die Verwendung eines zweiten Wärmetauschers umfasst. Verfahren nach einem der vorstehenden Ansprüche, bei dem das Einsatzerdgas (NG) 75 bis 98 Molprozent Methan, 2 bis 20 Molprozent Ethan, 0,5 bis 5 Molprozent Propan, 0,3 bis 3 Molprozent Butan und 0,1 bis 2 Molprozent Pentan und höhere Kohlenwasserstoffe aufweist. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Gegenstromabsorption (T01) auf einem Druckniveau von 40 bis 70 bar und/oder einem Temperaturniveau am Kopf von -30 bis -60 °C, die erste Fraktionierung auf einem Druckniveau von 10 bis 25 bar und/oder einem Temperaturniveau am Kopf von 20 bis 60 °C, die zweite Fraktionierung auf einem Druckniveau von 3 bis 7 bar und/oder einem T emperaturniveau am Kopf von 20 bis 60 °C und/oder die dritte Fraktionierung auf einem Druckniveau von 20 bis 30 bar und/oder einem Temperaturniveau am Kopf von -20 bis -50 °C durchgeführt werden. Anlage zur Herstellung eines Flüssigerdgasprodukts (LNG) mit Mitteln, die dafür eingerichtet sind, ein Einsatzerdgas (NG), das Methan und zumindest Ethan, Propan, Butan und Pentan als höhere Kohlenwasserstoffe enthält, bereitzustellen, das Einsatzerdgas (NG) in einem ersten Abkühlschritt (E01) unter Verwendung eines ersten Gemischkältemittels (WMR) auf ein erstes Temperaturniveau abzukühlen, das Einsatzerdgas (NG) nach dem ersten Abkühlschritt (E01) zumindest zum Teil unter Verwendung einer Absorptionsflüssigkeit einer Gegenstromabsorption (T01) zu unterwerfen, in der eine an den höheren Kohlenwasserstoffen abgereicherte Gasfraktion gebildet wird, und 21 einen Teil der in der Gegenstromabsorption (T01) gebildeten Gasfraktion in einem zweiten Abkühlschritt (E04) unter Verwendung eines zweiten Gemischkältemittels (CMR) auf ein zweites Temperaturniveau abzukühlen und zu dem Flüssigerdgas (LNG) zu verflüssigen, gekennzeichnet durch Mittel, die dafür eingerichtet sind, die Absorptionsflüssigkeit aus einem weiteren Teil der in der Gegenstromabsorption (T01) gebildeten Gasfraktion zu bilden, der kondensiert und in die Gegenstromabsorption (T01) zurückgeführt wird, in der Gegenstromabsorption (T01) ein zumindest Ethan, Propan Butan und Pentan enthaltendes Sumpfprodukt zu bilden, das in der Gegenstromabsorption (T01) gebildete Sumpfprodukt zumindest zum Teil einer ersten Fraktionierung (T11) zu unterwerfen, in der ein an Propan armes und Butan und Pentan enthaltendes Sumpfprodukt sowie ein Kopfprodukt gebildet werden, das in der ersten Fraktionierung (T 11) gebildete Sumpfprodukt zumindest zum Teil einer zweiten Fraktionierung zu unterwerfen, in der ein an Propan armes und Butan enthaltendes Kopfprodukt sowie ein Sumpfprodukt gebildet werden, und das in der zweiten Fraktionierung (T12) gebildete Kopfprodukt zumindest zum Teil zu dem ersten Gemischkältemittel und/oder zu dem zweiten Gemischkältemittel (WMR, CMR) zuzugeben. Anlage nach Anspruch 11 , die zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 10 eingerichtet ist. 7. The method of any preceding claim, wherein the first (WMR) and second (CMR) mixture refrigerants are compressed using a common drive or separate drives. Method according to one of the preceding claims, in which the first cooling step (E01) comprises the use of a first heat exchanger and the second cooling step (E02) comprises the use of a second heat exchanger. Process according to any one of the preceding claims, in which the feed natural gas (NG) contains 75 to 98 mole percent methane, 2 to 20 mole percent ethane, 0.5 to 5 mole percent propane, 0.3 to 3 mole percent butane and 0.1 to 2 mole percent pentane and has higher hydrocarbons. Process according to one of the preceding claims, in which the countercurrent absorption (T01) takes place at a pressure level of 40 to 70 bar and/or a temperature level at the top of -30 to -60 °C, the first fractionation at a pressure level of 10 to 25 bar and /or a temperature level at the top of 20 to 60 °C, the second fractionation at a pressure level of 3 to 7 bar and/or a temperature level at the top of 20 to 60 °C and/or the third fractionation at a pressure level of 20 to 30 bar and/or a temperature level at the top of -20 to -50 °C. Plant for the production of a liquefied natural gas (LNG) product with means arranged to provide a feed natural gas (NG) containing methane and at least ethane, propane, butane and pentane as higher hydrocarbons, the feed natural gas (NG) in a first cooling step ( E01) using a first mixture refrigerant (WMR) to cool down to a first temperature level, to subject the feed natural gas (NG) after the first cooling step (E01) at least in part using an absorption liquid to countercurrent absorption (T01) in which one of the higher hydrocarbons depleted gas fraction is formed, and 21 to cool part of the gas fraction formed in the countercurrent absorption (T01) in a second cooling step (E04) using a second mixture refrigerant (CMR) to a second temperature level and to liquefy it to form the liquefied natural gas (LNG), characterized by means that are set up for this to form the absorption liquid from a further part of the gas fraction formed in the countercurrent absorption (T01), which is condensed and returned to the countercurrent absorption (T01), to form a bottom product containing at least ethane, propane, butane and pentane in the countercurrent absorption (T01), to subject the bottom product formed in the countercurrent absorption (T01) at least in part to a first fractionation (T11), in which a bottom product low in propane and containing butane and pentane and a top product are formed, the bottom product formed in the first fractionation (T11). subject at least in part to a second fractionation , in which a low-propane and butane-containing top product and a bottom product are formed, and the top product formed in the second fractionation (T12) is at least partially added to the first mixture refrigerant and/or to the second mixture refrigerant (WMR, CMR). Plant according to Claim 11, which is set up for carrying out a method according to one of Claims 1 to 10.
EP21737565.8A 2020-08-07 2021-06-23 Method and system for producing a liquefied natural gas product Pending EP4193103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020004821.8A DE102020004821A1 (en) 2020-08-07 2020-08-07 Process and plant for the production of a liquefied natural gas product
PCT/EP2021/025229 WO2022028729A1 (en) 2020-08-07 2021-06-23 Method and system for producing a liquefied natural gas product

Publications (1)

Publication Number Publication Date
EP4193103A1 true EP4193103A1 (en) 2023-06-14

Family

ID=76796919

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21737565.8A Pending EP4193103A1 (en) 2020-08-07 2021-06-23 Method and system for producing a liquefied natural gas product

Country Status (4)

Country Link
US (1) US20230288137A1 (en)
EP (1) EP4193103A1 (en)
DE (1) DE102020004821A1 (en)
WO (1) WO2022028729A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2681859B1 (en) * 1991-09-30 1994-02-11 Technip Cie Fse Etudes Const NATURAL GAS LIQUEFACTION PROCESS.
TW477890B (en) 1998-05-21 2002-03-01 Shell Int Research Method of liquefying a stream enriched in methane
US6119479A (en) 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
DE10205366A1 (en) 2002-02-08 2003-08-21 Linde Ag Liquefaction of hydrocarbon stream, such as natural gas, with simultaneous recovery of liquid natural gas fraction comprises rectification and absorption process
DE10337517A1 (en) 2003-08-14 2005-03-10 Linde Ag A process for liquefying a hydrocarbon-rich stream while recovering a C¶¶¶¶ + ¶ -rich fraction in high yield
DE102004011483A1 (en) 2004-03-09 2005-09-29 Linde Ag Process for liquefying a hydrocarbon-rich stream
US20070157663A1 (en) * 2005-07-07 2007-07-12 Fluor Technologies Corporation Configurations and methods of integrated NGL recovery and LNG liquefaction
US20130061632A1 (en) * 2006-07-21 2013-03-14 Air Products And Chemicals, Inc. Integrated NGL Recovery In the Production Of Liquefied Natural Gas
FR2923000B1 (en) * 2007-10-26 2015-12-11 Inst Francais Du Petrole METHOD FOR LIQUEFACTING NATURAL GAS WITH IMPROVED RECOVERY OF PROPANE
FR2965608B1 (en) * 2010-09-30 2014-10-17 IFP Energies Nouvelles METHOD FOR LIQUEFACTING A NATURAL GAS WITH CONTINUOUS CHANGE OF THE COMPOSITION OF AT LEAST ONE REFRIGERANT MIXTURE
DE102016200565A1 (en) 2016-01-18 2017-07-20 Linde Aktiengesellschaft Process for the separation process of a gas mixture
EP4007881A1 (en) 2019-08-02 2022-06-08 Linde GmbH Process and plant for producing liquefied natural gas

Also Published As

Publication number Publication date
WO2022028729A1 (en) 2022-02-10
DE102020004821A1 (en) 2022-02-10
US20230288137A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
EP3029019B1 (en) Method for the production of hydrocarbons
DE60102174T2 (en) Process for the recovery of C2 + hydrocarbon
DE69402589T2 (en) Pretreatment process for liquefying natural gas
DE69415454T2 (en) METHOD AND SYSTEM FOR COOLING A FLUID, ESPECIALLY FOR THE LIQUIDATION OF NATURAL GAS
DE69920147T2 (en) Natural gas liquefaction with the help of two coolant mixture cycles
DE69806815T2 (en) COOLING SYSTEM FOR ETHYL SEPARATION
DE3781556T2 (en) METHOD FOR RECOVERY AND PURIFICATION OF C3-C4 + HYDROCARBONS BY PHASE SEPARATION AND DEPHLEGIATION.
DE2023614B2 (en) Process for liquefying and subcooling a methane-rich gas stream
DE1122560B (en) Process for the decomposition of a natural gas consisting of methane and higher-boiling hydrocarbons
DE102015001858A1 (en) Combined separation of heavy and light ends from natural gas
WO2009083227A2 (en) Method and device for separating off low-boiling components from hydrocarbon mixtures
DE2405971C2 (en) Process for cooling and / or liquefying a fluid
DE102013013883A1 (en) Combined separation of heavy and light ends from natural gas
DE102016005632A1 (en) Mixing column for processes with a single mixed refrigerant
DE69205526T2 (en) Process for the recovery of C2 + and C3 + hydrocarbons.
WO2003106906A1 (en) Method for liquefying a stream enriched with hydrocarbons and the simultaneous recovery of a high-yield fraction enriched with c<sb>3+</sb>
EP4179269A1 (en) Method and system for separating a feed flow
DE69500473T2 (en) Process for the recovery of ethylene with mixed coolant circulation
EP4007881A1 (en) Process and plant for producing liquefied natural gas
DE1960301B2 (en) PROCESS AND EQUIPMENT FOR LIQUIDIFYING AND COOLING A METHANE-RICH CONSUMPTION GAS FLOW
DE69501043T2 (en) Process for the recovery of open circulation ethylene from a mixed coolant
EP4193103A1 (en) Method and system for producing a liquefied natural gas product
WO2007020252A2 (en) Method and arrangement for liquefying a stream rich in hydrocarbons
DE102014011226B4 (en) Xenon recovery from ethane-rich liquids and gases
EP2369279A1 (en) Method for cooling or liquefying a hydrocarbon-rich flow and assembly for carrying out the method

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)