EP4163436A1 - Composition comprising a polyelectrolyte system and method of making - Google Patents
Composition comprising a polyelectrolyte system and method of making Download PDFInfo
- Publication number
- EP4163436A1 EP4163436A1 EP22200002.8A EP22200002A EP4163436A1 EP 4163436 A1 EP4163436 A1 EP 4163436A1 EP 22200002 A EP22200002 A EP 22200002A EP 4163436 A1 EP4163436 A1 EP 4163436A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cationic
- weight
- suspension
- composition
- anionic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/18—Highly hydrated, swollen or fibrillatable fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H11/00—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
- D21H11/16—Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
- D21H11/20—Chemically or biochemically modified fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/28—Starch
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/28—Starch
- D21H17/29—Starch cationic
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/21—Macromolecular organic compounds of natural origin; Derivatives thereof
- D21H17/24—Polysaccharides
- D21H17/31—Gums
- D21H17/32—Guar or other polygalactomannan gum
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/34—Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/37—Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
- D21H17/375—Poly(meth)acrylamide
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/675—Oxides, hydroxides or carbonates
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H21/00—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
- D21H21/14—Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
- D21H21/18—Reinforcing agents
- D21H21/20—Wet strength agents
Definitions
- the invention relates to a composition with a polyelectrolyte system, the production of such a composition, and paper produced from such a composition.
- Wet paper runnability can be increased by increasing the strength of the wet web.
- a number of solutions are known for increasing the strength of the wet paper web, such as increasing the degree of beating of the pulp, varying the overall stock composition or web tension in the process.
- wet strength additives used to increase the wet strength of the final dried paper web do not increase the strength of the wet paper web, ie the strength of never dried wet webs. This is because wet strength additives typically must be heated and cured before they exhibit strength enhancing properties.
- a size press step has to be added due to the nature of the paper, which has a significant impact on production efficiency.
- the size press process requires rewetting and drying of the material.
- polyelectrolyte complexes can increase the bursting strength of paper.
- WO 2018/229333 A1 a process for increasing the strength properties of paper using polyelectrolyte complexes.
- the use of complexes leads to a locally concentrated charge density, which can lead to different strengths within the paper.
- a first aspect of the invention relates to a polyelectrolyte system comprising cellulose fibers.
- the pulp fibers are preferably suspended in water.
- the pulp fibers can be beaten and/or unbeaten.
- At least some of the individual cellulose fibers are at least partially encased alternately with at least one first cationic electrolyte layer and at least one first anionic electrolyte layer.
- Pulp fibers usually have an anionic surface, therefore the first layer of electrolyte directly attached to this surface of the pulp fibers is always cationic. This cationic electrolyte layer is then followed by an anionic electrolyte layer.
- the cellulose fibers can be covered only partially or completely by the layers. Complete encapsulation is preferred.
- the pulp fibers can be eucalyptus, hardwood, softwood, cotton, bamboo, virgin pulp or recycled pulp.
- the cellulose fibers can be secondary fibers from waste paper or waste cardboard. The production of pulp is known to the person skilled in the art from the prior art.
- the polyelectrolyte system is characterized by the fact that the individual electrolyte layers are evenly distributed over the fibers and an even distribution of the charge density is ensured.
- the cellulose fibers are coated with at least one second cationic electrolyte layer.
- the fibers have an evenly distributed charge density and, on the other hand, the negatively charged surface of the pulp fibers can be changed into a positively charged surface, which expands the possibilities for further surface modification.
- the outer layer can be cationic or anionic. The selection of the charge of the outer layer is geared in particular to the desired application.
- the first and/or second cationic electrolyte layer comprises cationic starch.
- the starch can be potato starch with DS 0.065 and a charge density of 0.38 meq/g or DS 0.065 and a charge density of 0.525 meq/g.
- cationic electrolytes can include cationized microfibrillated cellulose, polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), polyvinylamine (PVAm), polyamidamine-epichlorohydrin resin (PAAE), chitosan, hydroxyethylcellulose ethoxylate (HECE), cationic polyacrylamides, polyacrylamide-co-diallyldimethylammonium chloride (PAM -DADMAC), polyacrylamide-co-[3-(2-methylpropionamido)propyl]-trimethylammonium chloride (PAM-MAPTAC), or combinations thereof.
- PAH polyallylamine hydrochloride
- PEI polyethyleneimine
- PVAm polyvinylamine
- PAAE polyamidamine-epichlorohydrin resin
- HECE hydroxyethylcellulose ethoxylate
- cationic polyacrylamides polyacrylamide-co-diallyldimethylammonium
- cationic electrolyte layers if several cationic electrolyte layers are present, it is conceivable that all of these layers comprise cationic starch. However, it is also possible for the layers to be different cationic electrolyte layers.
- the first anionic electrolyte layer preferably comprises anionic starch, preferably aldehyde potato starch.
- anionic starch preferably aldehyde potato starch.
- anionic synthetic polymers such as polyacrylic acid (PAA).
- PAA polyacrylic acid
- CMC carboxymethyl cellulose
- PAAE polyacrylic acid
- heparin or other anionic polysaccharides or combinations thereof, for example TEMPO-oxidized microfibrillated cellulose is possible.
- TEMPO tetramethylpiperidinyloxyl
- these anionic electrolyte layers these can each comprise the same anionic electrolyte or have different anionic electrolytes.
- anionic starch is that it is a product based on a natural raw material and is therefore more environmentally friendly than fully synthetic electrolytes on the one hand and easily accessible on the other.
- the use of synthetic anionic electrolytes is nevertheless possible.
- a further aspect of the invention relates to a composition for the production of paper comprising a polyelectrolyte system as described above and subsequent addition of microfibrillated cellulose.
- Microfibrillated cellulose has a large surface area, so a higher saturation of the polyelectrolyte system is required. Subsequent addition of the microfibrillated cellulose enables faster saturation of the polyelectrolyte system with less addition of cationic and anionic substances to form the electrolyte layers, and the later addition of the microfibrillated cellulose does not affect the saturation of the polyelectrolyte system.
- microfibrillated cellulose relates here to the essential proportion of 1 to 10% by weight, based on the total dry mass of the suspension. At least some of the individual cellulose fibers of the polyelectrolyte system are at least partially encased alternately with at least one first cationic electrolyte layer and at least one first anionic electrolyte layer. Complete encapsulation is preferred, as explained above.
- the cellulose fibers of the polyelectrolyte system of the composition can be alternately surrounded by further electrolyte layers, as previously described.
- the concentration of the microfibrillated cellulose in the composition is preferably in the range from 1 to 10% by weight, more preferably 2 to 7% by weight and particularly preferably 5% by weight, based on the dry mass of the pulp.
- Microfibrillated cellulose in this concentration range gives particularly good results in terms of paper structure strength (Scott Bond).
- the composition preferably comprises other mineral fillers and/or pigments.
- the fillers and/or pigments are preferably selected from the group: aluminum, aluminum oxide, aluminum silicate, calcium, calcium carbonate, chromium, clay, iron, iron oxides, kaolin, corundum, magnesium, magnesium carbonate, magnesium silicate, silicon, silicon dioxide, talc, titanium dioxide, zinc , zinc sulfide, tin oxide or mixtures thereof.
- inorganic substances such as diatomite. Titanium dioxide is particularly preferred.
- the addition of titanium dioxide is particularly advantageous in the production of decorative paper for the production of pressed material panels from fiber materials for the flooring and furniture industry. It has come as a surprise demonstrated that retention can be improved up to 90% with titanium dioxide. This is a significant increase over the 30 to 40% known in the prior art. It is also possible to use modified titanium dioxide pigment, for example titanium dioxide pigment doped with aluminum, antimony, niobium, zinc or silicon.
- the composition may include other additives.
- the additives are preferably selected from the group consisting of: microfibrillated cellulose, wet strength agents, guar, starch, alginate, polyacrylamide, organic substances such as melamine-formaldehyde resin, urea-formaldehyde resin, acrylates, polyvinyl alcohols, modified polyvinyl alcohol, polyvinyl acrylates, polyacrylates, synthetic binders, natural binders Origin such as starch, modified starch, carboxymethyl cellulose or mixtures thereof.
- suitable wet strength agents are polyamide/polyamine-epichlorohydrin resins, other polyamine derivatives or polyamide derivatives, cationic polyacrylate, modified melamine-formaldehyde resin, or cationic starch.
- the paper properties or the properties of the paper can be adjusted for different applications.
- the air permeability is reduced in the order MFC > guar > starch > alginate > PAM, which means that the air permeability can be adjusted, especially with paper.
- the process can be carried out as a continuous process or as a batch process, step d) taking place only after the suspension of the polyelectrolyte system has been prepared.
- this method enables the polyelectrolyte system to be formed layer by layer and thus counteracts the disadvantageous formation of a polyelectrolyte complex. This enables an even distribution of the charges over the pulp fibers.
- the addition of the microfibrillated cellulose makes it possible to provide a composition for making paper stock having a high internal papermaking strength.
- a rinsing step can be inserted between step b) and c). Excess material can be removed by the rinsing step and additional formation of polyelectrolyte complexes is avoided. It is conceivable that the surplus material will be processed in order to be used again.
- the processing steps are known to those skilled in the art from the prior art.
- the polyelectrolyte system from step c) is mixed with at least one second cationic electrolyte solution to form a third suspension.
- At least some of the cellulose fibers in the third suspension can thus be at least partially, preferably completely, encased by a second cationic electrolyte layer.
- the suspension is alternately brought into contact with at least two cationic and at least two anionic electrolyte solutions. More than two electrolyte solutions are also conceivable.
- the suspension is preferably rinsed with the electrolyte solutions between the respective contacts.
- the cationic or anionic electrolyte solutions can be the same electrolyte solution or different electrolyte solutions.
- the final electrolyte solution can be cationic or anionic depending on the intended application.
- the mixing time is preferably up to 30 minutes, particularly preferably between 1 and 30 minutes, very particularly preferably between 5 and 20 minutes and even more preferably 10 minutes take place at room temperature.
- the temperature should not exceed 60 °C.
- the first and/or the second cationic electrolyte solution may comprise a cationic starch. It is possible that both electrolyte solutions comprise cationic starch.
- the first and/or second cationic electrolyte solution consists of a suspension of cationic starch and water.
- the cationic electrolyte solutions include different electrolytes.
- the first cationic electrolyte solution comprises cationic starch and the second cationic electrolyte solution comprises cationic microfibrillated cellulose.
- the first cationic electrolyte of the electrolyte solution from step b) has a concentration of 1-6% by weight, preferably 1-3% by weight
- the first anionic electrolyte of the electrolyte solution from step c) has a concentration of 0.1-3% by weight. ., preferably from 0.3 to 1.5% by weight.
- the concentration always refers to the dry amount of pulp in the suspension.
- the second cationic electrolyte preferably has a concentration of 0.1-3% by weight, preferably 0.1-1% by weight, based on the dry amount of pulp in the suspension.
- the concentrations of successively decreasing electrolytes relative to the dry amount of pulp in the suspension.
- the concentration of the first cationic electrolyte can be 1.25% by weight, the first anionic electrolyte 0.4% by weight and the second cationic electrolyte 0.2% by weight.
- Another conceivable concentration series would be 2.5% by weight: 1.0% by weight: 0.75% by weight.
- the anionic electrolyte solution may include an anionic starch.
- Other, for example fully synthetic, electrolyte solutions are also conceivable. If multiple anionic electrolyte solutions are used, they can all include anionic starch, or optionally only one or two. If there are several electrolyte solutions, this can have a different composition.
- cationic or anionic starch has the advantage that it is based on a natural raw material and is easily accessible are.
- a method using such electrolytes is also environmentally friendly and resource-friendly.
- the pulp is suspended in water and the starch is dissolved in water.
- the concentration of the microfibrillated cellulose added later can be in the range of 1 to 10% by weight, based on the total dry mass of the suspension, preferably 2 to 7% by weight, particularly preferably 3 to 6% by weight and in particular 5% by weight.
- additives can be added to the composition.
- the additives are preferably selected from the group consisting of: mineral fillers and/or pigments as previously described, wet strength agents as previously described; guar; Strength; alginate; polyacrylamide or mixtures thereof.
- the addition of additives has the advantage that the properties of the paper can be adjusted according to the application.
- the invention further relates to paper made from a composition as previously described.
- the paper can, for example, be a decorative paper, in particular foil base paper; Paper for packaging of all kinds, such as food; printing paper; be insulating paper or sanitary paper.
- the insulating paper can be, for example, paper with acoustic insulating properties and/or heat insulating properties.
- the paper can consist of a composition of 5% by weight of microfibrillated cellulose, based on the total dry matter in the suspension, and 30% by weight of TiO 2 and 65 % by weight of pulp.
- a paper is particularly suitable as decorative paper.
- figure 1 shows schematically the gradual coating of a cellulose fiber with polyelectrolyte.
- the surface of the pulp fiber carries negative charges (A).
- A After applying a first cationic electrolyte layer to the negatively charged surface of the cellulose fiber, the cellulose fiber is coated with a cationic electrolyte layer (B).
- An anionic electrolyte layer is then applied to the fiber (C), followed by another cationic electrolyte layer.
- FIG 2 shows schematically a method 1 for producing a polyelectrolyte system according to the invention on a laboratory scale.
- Pulp fibers 2 and a cationic electrolyte solution 3 are mixed together to form a suspension 4 .
- the fibers 5 covered by a cationic electrolyte layer are separated from the electrolyte solution 3 .
- the fibers 5 are mixed with an anionic electrolyte solution 6 to form a second suspension 7 mixed together.
- the fibers 8 which are now surrounded by an anionic electrolyte layer, are then separated from the electrolyte solution 6 .
- a further cationic electrolyte solution 12 can now be added to the fibers 8 .
- FIG 3 shows schematically the industrial production of a polyelectrolyte system.
- a cationic electrolyte is added to a pulp suspension in a first device 21 .
- the suspension is stirred for 10 minutes and then pumped into a second device 23 via a first line 22 .
- An anionic electrolyte is added to this suspension and the mixture is again stirred for 10 minutes.
- the suspension formed in this way is pumped again via a second line 24 into a third device 25 .
- the second cationic electrolyte is added.
- the suspension is stirred again for 10 min and pumped into a device that allows the addition of MFC (not shown).
- a eucalyptus pulp was used. Sheets were made from unrefined pulp and pulp with a drainage resistance of 25 and 35 SR°, respectively. Solbond PC60 (cationic starch from potatoes) and Soljet P500 as anionic starch (derivative of potato starch) from Solam GmbH were used as the cationic starch.
- Pulp with SR° 35 was diluted to a consistency of 0.3% by weight. Then, in a first step, 1.25% by weight of cationic starch was added. The suspension was stirred for 10 minutes. Then 0.4 Wt% anionic starch added. The resulting suspension was again stirred for 10 min. Then another 0.2% by weight of cationic starch was added. The starch solutions used all had a concentration of 1% by weight of cationic or anionic starch. 5% by weight of microfibrillated cellulose, based on the dry mass of cellulose in the suspension, was then added to the suspension. The final concentration of pulp in the suspension was 0.24% by weight. Sheets with a weight of approx.
- Example Pulp - PES MFC TiO 2 /Kaolin wet strength agent additive 1 65% 5% + 2 70% 30% + 3 65% 5% 30% + 4 65% 5% 30% + 5% MFC 5 65% 5% 30% + 1% guar 6 65% 5% 30% + 5% strength 7 65% 5% 30% + 1% alginates 8th 65% 5% 30% + 0.15% PAM
- the characterization was carried out according to ISO 1924-22:1994.
- figure 4 shows the increase in Scott Bond compared to paper made from pure pulp.
- the Scott Bond of paper made from a polyelectrolyte system shows an increase of approximately 130%, while the Scott Bond for paper made from a composition (1) of polyelectrolyte system and microfibrillated cellulose according to the invention increases by a further 40% and thus a 170% improved Scott Bond over paper made from pure pulp.
- figure 5 shows, however, that a polyelectrolyte system with TiO 2 (2) shows a significant drop in Scott Bond, which is generally due to the TiO 2 .
- TiO 2 is necessary for the production of decorative paper.
- the Scott Bond is significantly improved again (3).
- the retention of TiO 2 increases up to 90% when MFC is present. This makes it possible to reduce the excess TiO 2 that is normally required in the production of decorative paper.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Paper (AREA)
Abstract
Die Erfindung betrifft eine Zusammensetzung zur Herstellung von Papier, umfassend ein Polyelektrolytsystem und mikrofibrillierte Zellulose, wobei das Polyelektrolytsystem Zellstofffasern umfasst und zumindest ein Teil der einzelnen Zellstofffasern abwechselnd mit mindestens einer ersten kationischen Elektrolytschicht und mindestens einer ersten anionischen Elektrolytschicht zumindest teilweise umhüllt sind. Durch die kationische und anionische Elektrolytschicht werden die mechanischen Eigenschaften verbessert und die Zellstofffaser mechanisch widerstandsfähiger. Durch die Zugabe von mikrofibrillierter Zellulose wird zusätzlich die Spaltfestigkeit (Scott Bond) erhöht.The invention relates to a composition for the production of paper, comprising a polyelectrolyte system and microfibrillated cellulose, wherein the polyelectrolyte system comprises cellulose fibers and at least some of the individual cellulose fibers are at least partially coated alternately with at least one first cationic electrolyte layer and at least one first anionic electrolyte layer. The mechanical properties are improved by the cationic and anionic electrolyte layer and the cellulose fibers are mechanically more resistant. The addition of microfibrillated cellulose also increases the splitting strength (Scott Bond).
Description
Die Erfindung betrifft eine Zusammensetzung mit einem Polyelektrolytsystem, die Herstellung einer solchen Zusammensetzung sowie Papier hergestellt aus einer solchen Zusammensetzung.The invention relates to a composition with a polyelectrolyte system, the production of such a composition, and paper produced from such a composition.
Die wirtschaftliche Herstellung von Papier erfordert eine gute Lauffähigkeit einer Papiermaschine. Um eine gute Lauffähigkeit zu erreichen, muss das Papier in jedem Teilprozess entlang der gesamten Papiermaschinenlinie mit einer geringen Anzahl von Bahnrissen gut laufen. Es wurde festgestellt, dass viele der Lauffähigkeitsprobleme auftreten, wenn sich die Papierbahn noch im nassen Zustand befindet. Für eine hohe Produktionseffizienz der gesamten Papierherstellungslinie ist eine gute Lauffähigkeit am Anfang der Papiermaschine, wenn das Papier also noch nass ist, von Vorteil.The economic production of paper requires good runnability of a paper machine. In order to achieve good runnability, the paper must run well with a low number of web breaks in every sub-process along the entire paper machine line. It has been found that many of the runnability problems occur when the paper web is still wet. Good runnability at the beginning of the paper machine, i.e. when the paper is still wet, is an advantage for high production efficiency of the entire paper manufacturing line.
Die Lauffähigkeit von nassem Papier kann durch Erhöhung der Festigkeit der nassen Bahn erhöht werden. Eine Reihe von Lösungen sind für die Erhöhung der Festigkeit der nassen Papierbahn bekannt, wie z.B. die Erhöhung des Schlaggrades der Pulpe, Variation in der gesamten Stoffzusammensetzung oder der Bahnspannung im Prozess.Wet paper runnability can be increased by increasing the strength of the wet web. A number of solutions are known for increasing the strength of the wet paper web, such as increasing the degree of beating of the pulp, varying the overall stock composition or web tension in the process.
Viele dieser Lösungen führen jedoch gleichzeitig zu einer Verschlechterung der Eigenschaften des fertig produzierten Papiers oder zu einer erheblichen Erhöhung der Produktionskosten. So kann beispielsweise eine Erhöhung des Schlaggrades die Rollneigung erhöhen und die Eigenschaften des Endpapiers negativ beeinflussen.At the same time, however, many of these solutions lead to a deterioration in the properties of the finished paper produced or to a significant increase in production costs. For example, an increase in the degree of beating can increase the tendency to curl and have a negative impact on the properties of the final paper.
Traditionelle Nassfestigkeitsadditive, die zur Erhöhung der Nassfestigkeit der getrockneten Endpapierbahn verwendet werden, erhöhen nicht die Festigkeit der Nasspapierbahn, d.h. die Festigkeit von nie getrockneten Nassbahnen. Dies liegt daran, dass Nassfestigkeitsadditive typischerweise erwärmt und ausgehärtet werden müssen, bevor sie festigkeitsverbessernde Eigenschaften zeigen.Traditional wet strength additives used to increase the wet strength of the final dried paper web do not increase the strength of the wet paper web, ie the strength of never dried wet webs. This is because wet strength additives typically must be heated and cured before they exhibit strength enhancing properties.
Des Weiteren können je nach hergestelltem Papier weitere Produktionsschritte notwendig sein, die einen limitierenden Faktor in der Produktionskapazität darstellen. Beispielsweise muss bei der Herstellung von Folienrohpapier aufgrund der Beschaffenheit des Papiers ein Leimpressschritt eingefügt werden, was einen wesentlichen Einfluss auf die Produktionseffizienz ausübt. Das Verfahren mit der Leimpresse erfordert ein Wiederbefeuchten und Trocknen des Materials.Furthermore, depending on the paper produced, additional production steps may be necessary, which represent a limiting factor in production capacity. For example, in the production of foil base paper, a size press step has to be added due to the nature of the paper, which has a significant impact on production efficiency. The size press process requires rewetting and drying of the material.
Aus dem Stand der Technik ist bekannt, dass Polyelekrolytkomplexe die Berstfestigkeit von Papier erhöhen können. So beschreibt beispielsweise
Es ist daher eine Aufgabe der Erfindung die Nachteile des Stands der Technik zu überwinden. Es ist insbesondere eine Aufgabe der Erfindung eine Zusammensetzung für die Herstellung von Papier bereitzustellen, die eine effiziente Herstellung von mechanischem festem Papier ermöglicht und ein Verfahren aufzuzeigen, um die Zusammensetzung herzustellen. Es ist weiter eine Aufgabe der Erfindung Papier, hergestellt aus einer solchen Zusammensetzung, bereitzustellen.It is therefore an object of the invention to overcome the disadvantages of the prior art. In particular, it is an object of the invention to provide a composition for the manufacture of paper which enables efficient manufacture of mechanical strength paper and a method for preparing the composition. It is a further object of the invention to provide paper made from such a composition.
Zumindest ein Teil der Aufgaben werden durch die Gegenstände der unabhängigen Ansprüche gelöst. Weitere bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen genannt.At least some of the objects are solved by the subject matter of the independent claims. Further preferred embodiments are specified in the dependent claims.
Ein erster Aspekt der Erfindung betrifft ein Polyelektrolytsystem umfassend Zellstofffasern. Die Zellstofffasern sind vorzugsweise in Wasser suspendiert. Die Zellstofffasern können gemahlen und/oder ungemahlen vorliegen. Zumindest ein Teil der einzelnen Zellstofffasern sind abwechselnd mit mindestens einer ersten kationischen Elektrolytschicht und mindestens einer ersten anionischen Elektrolytschicht zumindest teilweise umhüllt. Zellstofffasern haben üblicherweise eine anionische Oberfläche, weshalb die erste Elektrolytschicht, die direkt an diese Oberfläche der Zellstofffasern anheftet, immer kationisch ist. Auf diese kationische Elektrolytschicht folgt dann eine anionische Elektrolytschicht. Die Zellstofffasern können dabei nur teilweise oder vollständig von den Schichten umhüllt sein. Bevorzugt ist eine vollständige Umhüllung.A first aspect of the invention relates to a polyelectrolyte system comprising cellulose fibers. The pulp fibers are preferably suspended in water. The pulp fibers can be beaten and/or unbeaten. At least some of the individual cellulose fibers are at least partially encased alternately with at least one first cationic electrolyte layer and at least one first anionic electrolyte layer. Pulp fibers usually have an anionic surface, therefore the first layer of electrolyte directly attached to this surface of the pulp fibers is always cationic. This cationic electrolyte layer is then followed by an anionic electrolyte layer. The cellulose fibers can be covered only partially or completely by the layers. Complete encapsulation is preferred.
Bei den Zellstofffasern kann es sich um Eukalyptus, Laubholz, Nadelholz, Baumwolle, Bambus, neuen Zellstoff oder recyceltem Zellstoff handeln. Beispielsweise kann es sich bei den Zellstofffasern um Sekundärfasern aus Altpapier oder Altpappe handeln. Die Herstellung von Zellstoff ist dem Fachmann aus dem Stand der Technik bekannt.The pulp fibers can be eucalyptus, hardwood, softwood, cotton, bamboo, virgin pulp or recycled pulp. For example, the cellulose fibers can be secondary fibers from waste paper or waste cardboard. The production of pulp is known to the person skilled in the art from the prior art.
Das Polyelektrolytsystem zeichnet sich dadurch aus, dass die einzelnen Elektrolytschichten gleichmäßig über die Fasern verteilt sind und eine gleichmäßige Verteilung der Ladungsdichte gewährleistet ist.The polyelectrolyte system is characterized by the fact that the individual electrolyte layers are evenly distributed over the fibers and an even distribution of the charge density is ensured.
Vorzugsweise ist zumindest der eine Teil der Zellstofffasern mit mindestens einer zweiten kationischen Elektrolytschicht umhüllt. Somit verfügen die Fasern einerseits über eine gleichmäßig verteilte Ladungsdichte und andererseits kann die negativ geladene Oberfläche der Zellstofffasern in eine positiv geladene Oberfläche geändert werden, was die Möglichkeiten weiterer Oberflächenmodifikation erweitert.Preferably, at least some of the cellulose fibers are coated with at least one second cationic electrolyte layer. Thus, on the one hand, the fibers have an evenly distributed charge density and, on the other hand, the negatively charged surface of the pulp fibers can be changed into a positively charged surface, which expands the possibilities for further surface modification.
Grundsätzlich ist es möglich mehrere kationische Elektrolytschichten und anionische Elektrolytschichten alternierend auf die einzelnen Zellstofffasern zu bringen, so dass je nach Anwendung eine unterschiedlich hohe Ladungsdichte auf die Fasern bringbar ist. Es ist also möglich, dass die einzelnen Zellstofffasern über zwei oder mehrere kationische und anionische Elektrolytschichten verfügen. Dabei kann die äußere Schicht kationisch oder anionisch sein. Die Wahl der Ladung der äußeren Schicht richtet sich dabei insbesondere an die gewünschte Applikation.In principle, it is possible for several cationic electrolyte layers and anionic electrolyte layers to approach the individual pulp fibers in alternation bring, so that depending on the application, a different charge density can be brought to the fibers. It is therefore possible that the individual pulp fibers have two or more cationic and anionic electrolyte layers. The outer layer can be cationic or anionic. The selection of the charge of the outer layer is geared in particular to the desired application.
Bevorzugt umfasst die erste und/oder zweite kationische Elektrolytschicht kationische Stärke. Die Stärke kann Kartoffelstärke mit DS von 0.065 und einer Ladungsdichte von 0.38 meq/g oder DS 0.065 und einer Ladungsdichte von 0.525 meq/g sein. Weitere kationische Elektrolyte können kationisierte mikrofibrillierte Zellulose, Polyallylamin-Hydrochlorid (PAH), Polyethylenimin (PEI), Polyvinylamin (PVAm), Polyamidamin-Epichlorhydrinharz (PAAE), Chitosan, Hydroxyethylcellulose Ethoxylat (HECE), kationische Polyacrylamide, Polyacrylamid-co-diallyldimethylammoniumchlorid (PAM-DADMAC), Polyacrylamid-co-[3-(2-methylpropionamido)propyl]-trimethylammoniumchlorid (PAM-MAPTAC) oder Kombinationen davon sein. Der Vorteil von kationische Stärke liegt darin, dass es sich dabei um ein Produkt handelt, dass auf einen natürlichen Rohstoff basiert und somit einerseits umweltfreundlicher als vollständig synthetische Elektrolyte ist und andererseits einfach zugänglich ist. Der Einsatz von synthetischen kationischen Elektrolyten ist ebenso möglich.Preferably, the first and/or second cationic electrolyte layer comprises cationic starch. The starch can be potato starch with DS 0.065 and a charge density of 0.38 meq/g or DS 0.065 and a charge density of 0.525 meq/g. Other cationic electrolytes can include cationized microfibrillated cellulose, polyallylamine hydrochloride (PAH), polyethyleneimine (PEI), polyvinylamine (PVAm), polyamidamine-epichlorohydrin resin (PAAE), chitosan, hydroxyethylcellulose ethoxylate (HECE), cationic polyacrylamides, polyacrylamide-co-diallyldimethylammonium chloride (PAM -DADMAC), polyacrylamide-co-[3-(2-methylpropionamido)propyl]-trimethylammonium chloride (PAM-MAPTAC), or combinations thereof. The advantage of cationic starch is that it is a product based on a natural raw material and is therefore more environmentally friendly than fully synthetic electrolytes on the one hand and easily accessible on the other. The use of synthetic cationic electrolytes is also possible.
Insbesondere ist es beim Vorliegen mehrerer kationischen Elektrolytschichten denkbar, dass alle diese Schichten kationische Stärke umfassen. Es ist aber auch möglich, dass die Schichten unterschiedliche kationische Elektrolytschichten sind.In particular, if several cationic electrolyte layers are present, it is conceivable that all of these layers comprise cationic starch. However, it is also possible for the layers to be different cationic electrolyte layers.
Die erste anionische Elektrolytschicht umfasst vorzugsweise anionische Stärke, bevorzugt Aldehyd-Kartoffelstärke Es sind aber auch andere anionische Elektrolytschichten denkbar, beispielsweise anionische synthetische Polymere wie Polyacrylsäure (PAA). Auch die Verwendung von Carboxymethylcellulose (CMC), PAAE, Heparin oder weitere anionische Polysaccharide oder Kombinationen davon, beispielsweise TEMPO-oxidierte mikrofibrillierte Zellulose, ist möglich. TEMPO (Tetramethylpiperidinyloxyl) wird beispielsweise als Oxidationsmittel eingesetzt. Bei mehreren anionischen Elektrolytschichten können diese jeweils den gleichen anionischen Elektrolyt umfassen oder aber unterschiedliche anionische Elektrolyte aufweisen.The first anionic electrolyte layer preferably comprises anionic starch, preferably aldehyde potato starch. However, other anionic electrolyte layers are also conceivable, for example anionic synthetic polymers such as polyacrylic acid (PAA). Also the use of carboxymethyl cellulose (CMC), PAAE, heparin or other anionic polysaccharides or combinations thereof, for example TEMPO-oxidized microfibrillated cellulose is possible. For example, TEMPO (tetramethylpiperidinyloxyl) is used as an oxidizing agent. In the case of several anionic electrolyte layers, these can each comprise the same anionic electrolyte or have different anionic electrolytes.
Der Vorteil von anionischer Stärke liegt darin, dass es sich dabei um ein Produkt handelt, dass auf einen natürlichen Rohstoff basiert und somit einerseits umweltfreundlicher als vollständig synthetische Elektrolyte ist und andererseits einfach zugänglich ist. Der Einsatz von synthetischen anionischen Elektrolyten ist dennoch möglich.The advantage of anionic starch is that it is a product based on a natural raw material and is therefore more environmentally friendly than fully synthetic electrolytes on the one hand and easily accessible on the other. The use of synthetic anionic electrolytes is nevertheless possible.
Ein weiterer Aspekt der Erfindung betrifft eine Zusammensetzung zur Herstellung von Papier umfassend ein Polyelektrolytsystem wie vorhergehend beschrieben und späterer Zugabe von mikrofibrillierte Zellulose. Mikrofibrillierte Zellulose besitzt eine große Oberfläche, sodass eine höhere Absättigung des Polyelektrolytsystems erforderlich ist. Durch die nachträgliche Zugabe der mikrofibrillierten Zellulose ist eine schnellere Absättigung des Polyelektrolytsystems mit geringerer Zugabe von kationischen und anionischen Substanzen zur Ausbildung der Elektrolytschichten möglich und die spätere Zugabe der mikrofibrillierten Zellulose beeinflusst nicht die Absättigung des Polyelektrolytsystems. Eine spätere Zugabe der mikrofibrillierten Zellulose bezieht sich hierbei auf den wesentlichen Anteil von 1 bis 10 Gew.%, bezogen auf die Gesamttrockenmasse der Suspension. Zumindest ein Teil der einzelnen Zellstofffasern des Polyelektrolytsystems ist abwechselnd mit mindestens einer ersten kationischen Elektrolytschicht und mindestens einer ersten anionischen Elektrolytschicht zumindest teilweise umhüllt. Bevorzugt ist eine vollständige Umhüllung, wie vorhergehend dargelegt.A further aspect of the invention relates to a composition for the production of paper comprising a polyelectrolyte system as described above and subsequent addition of microfibrillated cellulose. Microfibrillated cellulose has a large surface area, so a higher saturation of the polyelectrolyte system is required. Subsequent addition of the microfibrillated cellulose enables faster saturation of the polyelectrolyte system with less addition of cationic and anionic substances to form the electrolyte layers, and the later addition of the microfibrillated cellulose does not affect the saturation of the polyelectrolyte system. Subsequent addition of the microfibrillated cellulose relates here to the essential proportion of 1 to 10% by weight, based on the total dry mass of the suspension. At least some of the individual cellulose fibers of the polyelectrolyte system are at least partially encased alternately with at least one first cationic electrolyte layer and at least one first anionic electrolyte layer. Complete encapsulation is preferred, as explained above.
Es hat sich überraschend gezeigt, dass eine solche Zusammensetzung die Papiergefügefestigkeit, den sogenannten Scott Bond, von Papier erhöht, was dieses wiederum mechanisch widerstandsfähiger macht. Hierbei steht insbesondere die Spaltfestigkeit bzw. Lagenfestigkeit der Zellstofffasern in Z-Richtung zur Längserstreckung der Zellstofffasern im Vordergrund, um unter gleichzeitiger Beibehaltung der Porosität und Imprägnierfähigkeit eine Aufspaltung von Faserschichten zu vermeiden. Aber auch andere mechanische Eigenschaften, wie beispielsweise die Zugspannung, werden verbessert.Surprisingly, it has been shown that such a composition increases the paper structure strength, the so-called Scott Bond, of paper, which in turn makes the paper more mechanically resistant. In particular, the splitting strength or layer strength of the cellulose fibers in the Z-direction to the longitudinal extension of the cellulose fibers is in the foreground in order to avoid splitting of fiber layers while maintaining the porosity and impregnation capability. But other mechanical properties, such as tensile stress, are also improved.
Die Zellstofffasern des Polyelektrolytsystems der Zusammensetzung können alternierend mit weiteren Elektrolytschichten umgeben sein, wie vorhergehend beschrieben.The cellulose fibers of the polyelectrolyte system of the composition can be alternately surrounded by further electrolyte layers, as previously described.
Die mikrofibrillierte Zellulose weist in der Zusammensetzung vorzugsweise eine Konzentration im Bereich von 1 bis 10 Gew.%, weiter bevorzugt 2 bis 7 Gew.% und besonders bevorzugt 5 Gew.% bezogen auf die Trockenmasse Zellstoff auf.The concentration of the microfibrillated cellulose in the composition is preferably in the range from 1 to 10% by weight, more preferably 2 to 7% by weight and particularly preferably 5% by weight, based on the dry mass of the pulp.
Mikrofibrillierte Zellulose in diesem Konzentrationsbereich liefert besonders gute Ergebnisse in Bezug auf die Papiergefügefestigkeit (Scott Bond).Microfibrillated cellulose in this concentration range gives particularly good results in terms of paper structure strength (Scott Bond).
Vorzugsweise umfasst die Zusammensetzung weitere mineralische Füllstoffe und/oder Pigmente. Die Füllstoffe und/oder Pigmente sind vorzugsweise ausgewählt aus der Gruppe: Aluminium, Aluminiumoxid, Aluminiumsilikat, Calcium, Calciumcarbonat, Chrom, Clay, Eisen, Eisenoxide, Kaolin, Korund, Magnesium, Magnesiumcarbonat, Magnesiumsilikat, Silizium, Siliziumdioxid, Talkum, Titandioxid, Zink, Zinksulfid, Zinnoxid oder deren Gemische. Weiter denkbar sind auch anorganische Stoffe wie Diatomit. Besonders bevorzugt ist Titandioxid. Die Zugabe von Titandioxid ist insbesondere bei der Fertigung von Dekorpapier zur Herstellung von gepressten Werkstoffplatten aus Fasermaterialien für die Fußboden- und Möbelindustrie vorteilhaft. Es hat sich überraschend gezeigt, dass die Retention mit Titandioxid auf bis zu 90 % verbessert werden kann. Dies ist eine deutliche Steigerung gegenüber dem im Stand der Technik bekannten 30 bis 40 %. Möglich ist auch der Einsatz von modifiziertem Titandioxidpigment, beispielsweise mit Aluminium, Antimon, Niob, Zink oder Silizium dotiertes Titandioxidpigment.The composition preferably comprises other mineral fillers and/or pigments. The fillers and/or pigments are preferably selected from the group: aluminum, aluminum oxide, aluminum silicate, calcium, calcium carbonate, chromium, clay, iron, iron oxides, kaolin, corundum, magnesium, magnesium carbonate, magnesium silicate, silicon, silicon dioxide, talc, titanium dioxide, zinc , zinc sulfide, tin oxide or mixtures thereof. Also conceivable are inorganic substances such as diatomite. Titanium dioxide is particularly preferred. The addition of titanium dioxide is particularly advantageous in the production of decorative paper for the production of pressed material panels from fiber materials for the flooring and furniture industry. It has come as a surprise demonstrated that retention can be improved up to 90% with titanium dioxide. This is a significant increase over the 30 to 40% known in the prior art. It is also possible to use modified titanium dioxide pigment, for example titanium dioxide pigment doped with aluminum, antimony, niobium, zinc or silicon.
Die Zusammensetzung kann weitere Additive umfassen. Die Additive sind vorzugsweise ausgewählt aus der Gruppe bestehend aus: mikrofibrillierter Zellulose, Nassfestmittel, Guar, Stärke, Alginat, Polyacrylamid organische Stoffe wie Melamin-Formaldehydharz, Harnstoff-Formaldehydharz, Acrylate, Polyvinylalkohole, modifizierter Polyvinylalkohol, Polyvinylacrylate, Polyacrylate, synthetische Bindemittel, Bindemittel natürlichen Ursprungs wie Stärke, modifizierte Stärke, Carboxymethylcellulose oder Mischungen davon. Als Nassfestmittel kommen beispielsweise Polyamid/Polyamin-Epichlorhydrin-Harze, andere Polyaminderivate oder Polyamidderivate, kationisches Polyacrylat, modifiziertes Melamin-Formaldehyd-Harz, oder kationische Stärke in Frage.The composition may include other additives. The additives are preferably selected from the group consisting of: microfibrillated cellulose, wet strength agents, guar, starch, alginate, polyacrylamide, organic substances such as melamine-formaldehyde resin, urea-formaldehyde resin, acrylates, polyvinyl alcohols, modified polyvinyl alcohol, polyvinyl acrylates, polyacrylates, synthetic binders, natural binders Origin such as starch, modified starch, carboxymethyl cellulose or mixtures thereof. Examples of suitable wet strength agents are polyamide/polyamine-epichlorohydrin resins, other polyamine derivatives or polyamide derivatives, cationic polyacrylate, modified melamine-formaldehyde resin, or cationic starch.
Durch Zugabe weiterer Additive können die Papiereigenschaften oder die Eigenschaften des Papiers für verschiedene Anwendungen eingestellt werden. So wird beispielsweise die Luftdurchlässigkeit in der Reihenfolge MFC > Guar > Stärke > Alginat > PAM verringert, wodurch sich die Luftdurchlässigkeit insbesondere bei Papier einstellen lässt.By adding other additives, the paper properties or the properties of the paper can be adjusted for different applications. For example, the air permeability is reduced in the order MFC > guar > starch > alginate > PAM, which means that the air permeability can be adjusted, especially with paper.
Die Erfindung betrifft weiter ein Verfahren zur Herstellung einer Zusammensetzung wie vorhergehend beschrieben. Das Verfahren umfasst die Schritte:
- a) Bereitstellen einer ersten Suspension aus Zellstofffasern,
- b) Vermischen der ersten Suspension mit einer ersten kationischen Elektrolytlösung zur Bildung einer zweiten Suspension, wobei zumindest ein Teil der Zellstofffasern in der zweiten Suspension von einer ersten kationischen Elektrolytschicht zumindest teilweise, bevorzugt vollständig, umhüllt werden,
- c) Vermischen der zweiten Suspension aus Schritt b) mit einer ersten anionischen Elektrolytlösung zur Bildung eines Polyelektrolytsystems,
- d) Hinzufügen von mikrofibrillierte Zellulose zu dem Polyelektrolytsystem.
- a) providing a first suspension of cellulose fibers,
- b) mixing the first suspension with a first cationic electrolyte solution to form a second suspension, wherein at least a portion of the pulp fibers in the second suspension of a first cationic electrolyte layer are at least partially, preferably completely, covered,
- c) mixing the second suspension from step b) with a first anionic electrolyte solution to form a polyelectrolyte system,
- d) adding microfibrillated cellulose to the polyelectrolyte system.
Das Verfahren kann als kontinuierliches Verfahren oder als Batch-Prozess durchgeführt werden, wobei Schritt d) erst nach Herstellung der Suspension des Polyelektrolytsystems erfolgt.The process can be carried out as a continuous process or as a batch process, step d) taking place only after the suspension of the polyelectrolyte system has been prepared.
Es hat sich überraschend gezeigt, dass dieses Verfahren eine Schichten-für-Schichten-Bildung des Polyelektrolytsystems ermöglicht und so der nachteiligen Polyelektrolytkomplex-Bildung entgegen wirkt. Somit wird eine gleichmäßige Verteilung der Ladungen über die Zellstofffasern ermöglicht. Das Hinzufügen der mikrofibrillierten Zellulose ermöglicht die Bereitstellung einer Zusammensetzung zur Herstellung von Papiermaterial mit einer hohen inneren Papiergefügefestigkeit.Surprisingly, it has been shown that this method enables the polyelectrolyte system to be formed layer by layer and thus counteracts the disadvantageous formation of a polyelectrolyte complex. This enables an even distribution of the charges over the pulp fibers. The addition of the microfibrillated cellulose makes it possible to provide a composition for making paper stock having a high internal papermaking strength.
Wahlweise kann zwischen Schritt b) und c) ein Spülschritt eingefügt werden. Durch den Spülschritt kann überschüssiges Material entfernt werden und eine zusätzliche Bildung von Polyelektrolytkomplexen wird vermieden. Es ist denkbar, dass das überschüssige Material aufbereitet wird, um erneut eingesetzt zu werden. Die Schritte der Aufbereitung sind dem Fachmann aus dem Stand der Technik bekannt.Optionally, a rinsing step can be inserted between step b) and c). Excess material can be removed by the rinsing step and additional formation of polyelectrolyte complexes is avoided. It is conceivable that the surplus material will be processed in order to be used again. The processing steps are known to those skilled in the art from the prior art.
Vorzugsweise wird das Polyelektrolytsystem aus Schritt c) mit mindestens einer zweiten kationischen Elektrolytlösung zur Bildung einer dritten Suspension vermischt. Zumindest ein Teil der Zellstofffasern in der dritten Suspension können somit von einer zweiten kationischen Elektrolytschicht zumindest teilweise, bevorzugt vollständig, umhüllt werden.Preferably, the polyelectrolyte system from step c) is mixed with at least one second cationic electrolyte solution to form a third suspension. At least some of the cellulose fibers in the third suspension can thus be at least partially, preferably completely, encased by a second cationic electrolyte layer.
Alternativ ist es auch denkbar, dass die Suspension abwechselnd mit mindestens zwei kationischen und mindestens zwei anionischen Elektrolytlösungen in Kontakt gebracht wird. Auch mehr als jeweils zwei Elektrolytlösungen sind denkbar. Vorzugsweise wird die Suspension zwischen den jeweiligen Kontakten mit den Elektrolytlösungen gespült. Bei den kationischen bzw. anionischen Elektrolytlösungen kann es sich um dieselbe Elektrolytlösung handeln oder aber um unterschiedliche Elektrolytlösungen. Wahlweise kann die letzte Elektrolytlösung kationisch oder anionisch sein, je nach geplanter Anwendung.Alternatively, it is also conceivable that the suspension is alternately brought into contact with at least two cationic and at least two anionic electrolyte solutions. More than two electrolyte solutions are also conceivable. The suspension is preferably rinsed with the electrolyte solutions between the respective contacts. The cationic or anionic electrolyte solutions can be the same electrolyte solution or different electrolyte solutions. Optionally, the final electrolyte solution can be cationic or anionic depending on the intended application.
Je mehr Elektrolytlösungen verwendet werden und damit Elektrolytschichten auf den Fasern vorhanden sind, desto höher ist der Scott Bond des Papiers.The more electrolyte solutions that are used, and thus the layers of electrolyte on the fibers, the higher the Scott Bond of the paper.
Um der Adsorption der Elektrolyte beim Vermischen genügend Zeit zu geben, beträgt die Mischzeit vorzugsweise bis 30 min, besonders bevorzugt zwischen 1 und 30 min, ganz besonders bevorzugt zwischen 5 und 20 min und noch mehr bevorzugt 10 min. Das Mischen und/oder Rühren kann bei Raumtemperatur erfolgen. Es ist aber auch möglich, bei erhöhter Temperatur zu arbeiten. Die Temperatur sollte jedoch 60 °C nicht überschreiten.In order to allow sufficient time for the adsorption of the electrolytes during mixing, the mixing time is preferably up to 30 minutes, particularly preferably between 1 and 30 minutes, very particularly preferably between 5 and 20 minutes and even more preferably 10 minutes take place at room temperature. However, it is also possible to work at elevated temperature. However, the temperature should not exceed 60 °C.
Die erste und/oder die zweite kationische Elektrolytlösung kann eine kationische Stärke umfassen. Es ist möglich, dass beide Elektrolytlösungen kationische Stärke umfassen. Vorzugsweise bestehen die erste und/oder zweite kationische Elektrolytlösung aus einer Suspension aus kationischer Stärke und Wasser. Es ist aber auch denkbar, dass die kationischen Elektrolytlösungen unterschiedliche Elektrolyte umfassen. Beispielsweise umfasst die erste kationische Elektrolytlösung kationische Stärke und die zweite kationische Elektrolytlösung kationische mikrofibrillierte Zellulose.The first and/or the second cationic electrolyte solution may comprise a cationic starch. It is possible that both electrolyte solutions comprise cationic starch. Preferably, the first and/or second cationic electrolyte solution consists of a suspension of cationic starch and water. However, it is also conceivable that the cationic electrolyte solutions include different electrolytes. For example, the first cationic electrolyte solution comprises cationic starch and the second cationic electrolyte solution comprises cationic microfibrillated cellulose.
Vorteilhafterweise weist der erste kationische Elektrolyt der Elektrolytlösung aus Schritt b) eine Konzentration von 1 - 6 Gew.%, vorzugsweise von 1 - 3 Gew.% und der erste anionische Elektrolyt der Elektrolytlösung aus Schritt c) eine Konzentration von 0.1 - 3 Gew.%., vorzugsweise von 0.3 - 1.5 Gew.% auf. Die Konzentration bezieht sich dabei jeweils auf die Trockenmenge Zellstoffs in der Suspension.Advantageously, the first cationic electrolyte of the electrolyte solution from step b) has a concentration of 1-6% by weight, preferably 1-3% by weight, and the first anionic electrolyte of the electrolyte solution from step c) has a concentration of 0.1-3% by weight. ., preferably from 0.3 to 1.5% by weight. The concentration always refers to the dry amount of pulp in the suspension.
Der zweite kationische Elektrolyt weist vorzugsweise eine Konzentration von 0.1 - 3 Gew.%, vorzugsweise von 0.1 - 1 Gew.% auf, bezogen auf die Trockenmenge Zellstoff in der Suspension.The second cationic electrolyte preferably has a concentration of 0.1-3% by weight, preferably 0.1-1% by weight, based on the dry amount of pulp in the suspension.
Es hat sich überraschend gezeigt, dass die Elektrolyte bei diesen Konzentrationsverhältnissen besonders gut adsorbiert werden. Die Verwendung von überdosierten Elektrolytlösungen kann somit vermieden werden.Surprisingly, it has been shown that the electrolytes are particularly well adsorbed at these concentration ratios. The use of overdosed electrolyte solutions can thus be avoided.
Vorzugsweise verringert sich die Konzentrationen aufeinanderfolgender Elektrolyte, bezogen auf die Trockenmenge Zellstoff in der Suspension. Beispielsweise kann die Konzentration des ersten kationischen Elektrolyten 1.25 Gew.% betragen, des ersten anionischen Elektrolyten 0.4 Gew.% betragen und des zweiten kationischen Elektrolyten 0.2 Gew.% betragen. Eine weitere denkbare Konzentrationsreihe wäre 2.5 Gew.% : 1.0 Gew.% : 0.75 Gew.%.Preferably, the concentrations of successively decreasing electrolytes relative to the dry amount of pulp in the suspension. For example, the concentration of the first cationic electrolyte can be 1.25% by weight, the first anionic electrolyte 0.4% by weight and the second cationic electrolyte 0.2% by weight. Another conceivable concentration series would be 2.5% by weight: 1.0% by weight: 0.75% by weight.
Die anionische Elektrolytlösung kann eine anionische Stärke umfassen. Es sind auch andere, beispielsweise vollsynthetische Elektrolytlösungen denkbar. Werden mehrere anionische Elektrolytlösungen verwendet, können alle anionische Stärke umfassen oder wahlweise nur eine oder zwei. Bei mehreren Elektrolytlösungen kann dies eine unterschiedliche Zusammensetzung aufweisen.The anionic electrolyte solution may include an anionic starch. Other, for example fully synthetic, electrolyte solutions are also conceivable. If multiple anionic electrolyte solutions are used, they can all include anionic starch, or optionally only one or two. If there are several electrolyte solutions, this can have a different composition.
Die Verwendung von kationischer, respektive anionischer Stärke hat den Vorteil, dass diese auf einen natürlichen Rohstoff basieren und leicht zugänglich sind. Ein Verfahren unter Einsatz solcher Elektrolyte ist zudem umwelt- und ressourcenschonend.The use of cationic or anionic starch has the advantage that it is based on a natural raw material and is easily accessible are. A method using such electrolytes is also environmentally friendly and resource-friendly.
Vorzugsweise ist der Zellstoff in Wasser suspendiert und die Stärke in Wasser gelöst.Preferably the pulp is suspended in water and the starch is dissolved in water.
Die Konzentration der später hinzugefügten mikrofibrillierten Zellulose kann im Bereich von 1 bis 10 Gew.%, bezogen auf die Gesamttrockenmasse der Suspension, liegen, bevorzugt 2 bis 7 Gew.%, besonders bevorzugt 3 bis 6 Gew.% und insbesondere 5 Gew.%.The concentration of the microfibrillated cellulose added later can be in the range of 1 to 10% by weight, based on the total dry mass of the suspension, preferably 2 to 7% by weight, particularly preferably 3 to 6% by weight and in particular 5% by weight.
Der Zusammensetzung können weitere Additive hinzugefügt werden. Die Additive sind vorzugsweise ausgewählt aus der Gruppe bestehend aus: mineralische Füllstoffe und/oder Pigmente wie vorhergehend beschrieben, Nassfestmittel wie vorhergehend beschrieben; Guar; Stärke; Alginat; Polyacrylamid oder Mischungen davon.Other additives can be added to the composition. The additives are preferably selected from the group consisting of: mineral fillers and/or pigments as previously described, wet strength agents as previously described; guar; Strength; alginate; polyacrylamide or mixtures thereof.
Die Zuführung von Additiven hat den Vorteil, dass sich die Eigenschaften von Papier entsprechend der Anwendung einstellen lassen.The addition of additives has the advantage that the properties of the paper can be adjusted according to the application.
Die Erfindung betrifft weiter Papier, hergestellt aus einer Zusammensetzung wie vorhergehend beschrieben. Das Papier kann dabei beispielsweise ein Dekorpapier, insbesondere Folienrohpapier; Papier für Verpackungen jeglicher Art, beispielsweise Lebensmittel; Druckpapier; Isolierpapier oder Hygienepapier sein. Bei dem Isolierpapier kann es sich zum Beispiel um Papier mit akustischen Isoliereigenschaften und/oder wärmeisolierenden Eigenschaften handeln.The invention further relates to paper made from a composition as previously described. The paper can, for example, be a decorative paper, in particular foil base paper; Paper for packaging of all kinds, such as food; printing paper; be insulating paper or sanitary paper. The insulating paper can be, for example, paper with acoustic insulating properties and/or heat insulating properties.
Beispielsweise kann in einer konkreten Ausführung das Papier aus einer Zusammensetzung aus 5 Gew.% mikrofibrillierte Zellulose, bezogen auf die gesamte Trockenmasse in der Suspension, sowie 30 Gew.% TiO2 und 65 Gew.% Zellstoff hergestellt sein. Ein solches Papier eignet sich besonders als Dekorpapier. Zudem wurde überraschend gefunden, dass sich die Retention maßgeblich um bis zu 90 % im Vergleich zu im Stand der Technik bekannten Zusammensetzungen und Verfahren, die eine Retention von 30 bis 40 % liefern, verbessert.For example, in a specific embodiment, the paper can consist of a composition of 5% by weight of microfibrillated cellulose, based on the total dry matter in the suspension, and 30% by weight of TiO 2 and 65 % by weight of pulp. Such a paper is particularly suitable as decorative paper. In addition, it has surprisingly been found that the retention is significantly improved by up to 90% compared to compositions and methods known in the prior art, which provide a retention of 30 to 40%.
Nachfolgend wird die Erfindung an Figuren und Ausführungsbeispielen näher erläutert. Die Erfindung ist nicht auf diese Beispiele limitiert. Es zeigen:
- Figur 1:
- Entstehung eines Polyelektrolytsystems.
- Figur 2:
- Schematische Darstellung eines Verfahrens zur Herstellung eines Polyelektrolytsystems im Labor.
- Figur 3:
- Schematische Darstellung eines industriellen Verfahrens zur Herstellung eines Polyelektrolytsystems.
- Figuren 4 - 6:
- Steigerung des Scott Bonds im Vergleich zu Zellstoff.
- Figur 7:
- Steigerung der Luftdurchlässigkeit und Rauigkeit.
- Figure 1:
- Formation of a polyelectrolyte system.
- Figure 2:
- Schematic representation of a process for the production of a polyelectrolyte system in the laboratory.
- Figure 3:
- Schematic representation of an industrial process for the production of a polyelectrolyte system.
- Figures 4 - 6:
- Increase in Scott Bond compared to pulp.
- Figure 7:
- Increase in air permeability and roughness.
Es wurde ein Eukalyptuszellstoff verwendet. Es wurden Blätter aus ungemahlenen Zellstoff und Zellstoff mit einem Entwässerungswiderstand von 25 respektive 35 SR° hergestellt. Als kationische Stärke wurde Solbond PC60 (kationische Stärke aus Kartoffeln) sowie Soljet P500 als anionische Stärke (Derivat der Kartoffelstärke) der Firma Solam GmbH verwendet.A eucalyptus pulp was used. Sheets were made from unrefined pulp and pulp with a drainage resistance of 25 and 35 SR°, respectively. Solbond PC60 (cationic starch from potatoes) and Soljet P500 as anionic starch (derivative of potato starch) from Solam GmbH were used as the cationic starch.
Zellstoff mit SR° 35 wurde auf eine Stoffdichte von 0.3 Gew.% verdünnt. Anschließend wurden in einem ersten Schritt 1.25 Gew.% kationische Stärke beigemischt. Die Suspension wurde 10 min gerührt. Anschließend wurden 0.4 Gew.% anionische Stärke hinzugefügt. Die resultierende Suspension wurde erneut 10 min gerührt. Anschließend wurden erneut 0.2 Gew.% kationische Stärke hinzugefügt. Die verwendeten Stärkelösungen wiesen alle eine Konzentration von 1 Gew.% kationischer respektive anionischer Stärke auf. Der Suspension wurde nun 5 Gew.% mikrofibrillierte Zellulose, bezogen auf die Trockenmasse Zellstoff in der Suspension, hinzugefügt. Die finale Konzentration an Zellstoff in der Suspension betrug 0.24 Gew.%. Anschließend wurden Blätter mit einem Gewicht von ca. 2.4 g otro (Flächengewicht 80 g/m2) mit dem Rapid-Köthen-Verfahren (ISO 5269-2:2004) hergestellt. Nach einer ausreichend langen Klimatisierung (23 °C, bis Papierfeuchte einer Luftfeuchtigkeit von 50 % entspricht), wurden die Blätter charakterisiert.Pulp with SR° 35 was diluted to a consistency of 0.3% by weight. Then, in a first step, 1.25% by weight of cationic starch was added. The suspension was stirred for 10 minutes. Then 0.4 Wt% anionic starch added. The resulting suspension was again stirred for 10 min. Then another 0.2% by weight of cationic starch was added. The starch solutions used all had a concentration of 1% by weight of cationic or anionic starch. 5% by weight of microfibrillated cellulose, based on the dry mass of cellulose in the suspension, was then added to the suspension. The final concentration of pulp in the suspension was 0.24% by weight. Sheets with a weight of approx. 2.4 g otro (area weight 80 g/m 2 ) were then produced using the Rapid-Kothen process (ISO 5269-2:2004). After a sufficiently long period of conditioning (23° C. until paper moisture content corresponds to an atmospheric humidity of 50%), the sheets were characterized.
Die Herstellung erfolgte gemäß der Beschreibung zum Beispiel 1. Im Fall von Beispiel 2 wurde keine mikrofibrillierte Zellulose hinzugefügt. Für die Beispiele 3 bis 8 wurden die zusätzlichen Additive nach Zugabe der mikrofibrillierten Zellulose (MFC) beigefügt. Die Angaben beziehen sich dabei auf die Gesamttrockenmenge Feststoff in der Suspension.
Die Charakterisierung erfolgte nach ISO 1924-22:1994.The characterization was carried out according to ISO 1924-22:1994.
Zunächst wurde der Scott Bond von Blättern bestimmt, die nur aus einem Polyelektrolytsystem hergestellt wurden und mit Blättern, die aus einer erfindungsgemäßen Zusammensetzung hergestellt wurden verglichen. Die Ziffern in den
Aus der
Aus
- 11
- VerfahrenProceedings
- 22
- Zellstofffaserpulp fiber
- 33
- Elektrolytlösungelectrolyte solution
- 44
- Suspensionsuspension
- 55
- Fasernfibers
- 66
- Elektrolytlösungelectrolyte solution
- 77
- Suspensionsuspension
- 88th
- Fasernfibers
- 1212
- Elektrolytlösungelectrolyte solution
- 2121
- Vorrichtungcontraption
- 2222
- LeitungManagement
- 2323
- Vorrichtungcontraption
- 2424
- LeitungManagement
- 2525
- Vorrichtungcontraption
Claims (15)
dadurch gekennzeichnet,
dass zu dem Polyelektrolytsystem nachträglich eine Zugabe von mikrofibrillierter Zellulose (MFC) erfolgt.Composition for the production of paper, comprising a polyelectrolyte system consisting of cellulose fibers, wherein at least some of the individual cellulose fibers are at least partially coated alternately with at least one first cationic electrolyte layer and at least one first anionic electrolyte layer,
characterized,
that microfibrillated cellulose (MFC) is subsequently added to the polyelectrolyte system.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021005047.9A DE102021005047A1 (en) | 2021-10-08 | 2021-10-08 | Polyelectrolyte system, composition having a polyelectrolyte system and method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4163436A1 true EP4163436A1 (en) | 2023-04-12 |
Family
ID=83689056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22200002.8A Pending EP4163436A1 (en) | 2021-10-08 | 2022-10-06 | Composition comprising a polyelectrolyte system and method of making |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4163436A1 (en) |
DE (1) | DE102021005047A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080023164A1 (en) * | 2004-10-15 | 2008-01-31 | Mats Fredlund | Process for Producing a Paper or Board and a Paper or Board Produced According to the Process |
US20130180680A1 (en) * | 2010-09-22 | 2013-07-18 | Stora Enso Oyj | Paper or paperboard product and a process for production of a paper or paperboard product |
WO2018229333A1 (en) | 2017-06-14 | 2018-12-20 | Kemira Oyj | Method for increasing the strength properties of a paper or board product |
EP3080354B1 (en) * | 2013-12-13 | 2019-08-07 | Stora Enso Oyj | Multiply paperboard |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE521591C2 (en) | 1998-11-30 | 2003-11-18 | Sca Res Ab | Method of preparing a particle having coating of interacting polymers and paper or nonwoven product containing the particles |
PT1885954E (en) | 2005-05-11 | 2011-03-17 | Stora Enso Ab | Process for the production of a paper and a paper produced according to the process |
US20160273165A1 (en) | 2011-01-20 | 2016-09-22 | Upm-Kymmene Corporation | Method for improving strength and retention, and paper product |
-
2021
- 2021-10-08 DE DE102021005047.9A patent/DE102021005047A1/en active Pending
-
2022
- 2022-10-06 EP EP22200002.8A patent/EP4163436A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080023164A1 (en) * | 2004-10-15 | 2008-01-31 | Mats Fredlund | Process for Producing a Paper or Board and a Paper or Board Produced According to the Process |
US20130180680A1 (en) * | 2010-09-22 | 2013-07-18 | Stora Enso Oyj | Paper or paperboard product and a process for production of a paper or paperboard product |
EP3080354B1 (en) * | 2013-12-13 | 2019-08-07 | Stora Enso Oyj | Multiply paperboard |
WO2018229333A1 (en) | 2017-06-14 | 2018-12-20 | Kemira Oyj | Method for increasing the strength properties of a paper or board product |
Non-Patent Citations (2)
Title |
---|
ANKERFORS MIKAEL ET AL: "Multilayer assembly onto pulp fibres using oppositely charged microfibrillated celluloses, starches, and wet strength resins ; Effect on mechanical properties of CTMP-sheets", NORDIC PULP & PAPER RESEARCH JOURNAL, vol. 31, no. 1, 1 January 2016 (2016-01-01), SE, pages 135 - 141, XP055774638, ISSN: 0283-2631, Retrieved from the Internet <URL:http://dx.doi.org/10.3183/npprj-2016-31-01-p135-141> DOI: 10.3183/npprj-2016-31-01-p135-141 * |
KLAUS ERHARD ET AL: "Einsparung von Prozessenergie und Steuerung von Papiereigenschaften durch gezielte chemische Fasermodifizierung", HOLZ ALS ROHUND WERKSTOFF ; EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, SPRINGER, BERLIN, DE, vol. 68, no. 3, 11 July 2010 (2010-07-11), pages 271 - 280, XP019818424, ISSN: 1436-736X * |
Also Published As
Publication number | Publication date |
---|---|
DE102021005047A1 (en) | 2023-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE845311C (en) | Process for applying or introducing water-insoluble coating or impregnating agents onto or in cellulose fiber materials | |
EP2158096B1 (en) | Pre-impregnated product | |
DE68917069T2 (en) | Dry strength additive for paper. | |
DE2516097B2 (en) | ||
DE2230985B2 (en) | Process for the production of plastic-filled papers | |
EP0416427A1 (en) | Neutral sizing agent for rough paper masses using cationic polymer dispersions | |
DE2348571A1 (en) | LAMINATES AND METHODS FOR THEIR PRODUCTION | |
DE2741627A1 (en) | SEMI-SYNTHETIC PAPER AND METHOD OF MANUFACTURING THEREOF | |
DE2820171A1 (en) | Process for the production of corrugated cardboard | |
EP1036881A1 (en) | Base paper for decoration having improved dry strength | |
DE10307966B4 (en) | Preimpregnate and process for its preparation | |
EP4163436A1 (en) | Composition comprising a polyelectrolyte system and method of making | |
DE2540069C2 (en) | Transparent paper and process for its manufacture | |
DE2759986C1 (en) | Process for embedding water-insoluble additives in pulp | |
EP1360209B1 (en) | Fragmented starch, its production and use | |
EP3121332B1 (en) | Multi-layer cardboard material and method for the manufacture of a multilayer cardboard material | |
DE3786335T2 (en) | Pressboard with low dielectric constant for oil-impregnated insulation. | |
DE68909810T2 (en) | Mainly inorganic fibers and processes for their production. | |
DE2810299A1 (en) | PAPER PRODUCTS | |
DE615400C (en) | Process for the preparation of curable condensation products from thiourea or mixtures of thiourea and urea with formaldehyde | |
DE102008025269A1 (en) | Process for producing resinous papers | |
DE1796240A1 (en) | Material made of cellulose fibers, in particular paper and polyvinyl chloride, and method for the production thereof | |
EP4509656A1 (en) | Paper for decorative coating materials containing pigment-containing synthetic fibres | |
DE19946151B4 (en) | Process for the preparation of a prepreg, the prepreg prepared therefrom and its use | |
WO2025036919A1 (en) | Paper for decorative coating materials containing pigment-bearing synthetic fibres |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230830 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |