EP4010596B1 - Rotor and pump comprising such rotor - Google Patents
Rotor and pump comprising such rotor Download PDFInfo
- Publication number
- EP4010596B1 EP4010596B1 EP20750667.6A EP20750667A EP4010596B1 EP 4010596 B1 EP4010596 B1 EP 4010596B1 EP 20750667 A EP20750667 A EP 20750667A EP 4010596 B1 EP4010596 B1 EP 4010596B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vane carrier
- thrust
- seat
- transmission coupling
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 claims description 73
- 238000010168 coupling process Methods 0.000 claims description 73
- 238000005859 coupling reaction Methods 0.000 claims description 73
- 230000005540 biological transmission Effects 0.000 claims description 69
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 7
- 229910000639 Spring steel Inorganic materials 0.000 claims description 5
- 239000012815 thermoplastic material Substances 0.000 claims description 5
- 230000000284 resting effect Effects 0.000 claims description 2
- 239000007769 metal material Substances 0.000 description 4
- 230000010349 pulsation Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3441—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00Â -Â F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00Â -Â F04C14/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00Â -Â F04C14/00
- F04C15/0057—Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
- F04C15/0061—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C15/0073—Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C2/3441—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00Â -Â F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C29/0071—Couplings between rotors and input or output shafts acting by interengaging or mating parts, i.e. positive coupling of rotor and shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2220/00—Application
- F04C2220/10—Vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/20—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2225/00—Synthetic polymers, e.g. plastics; Rubber
- F05C2225/08—Thermoplastics
Definitions
- the present invention relates to a rotor and a pump comprising such rotor. More particularly, the rotor is of the vane type comprising a vane carrier made of a thermoplastic material and a transmission coupling made of a metal material, connected to the vane carrier and adapted to receive a drive torque from a drive member.
- the pump which is the subject matter of the present invention finds particular application in the automotive industry, in particular as a vacuum pump capable of providing an air vacuum to brake assist devices or as a combined pump, used both as a vacuum pump and to supply fuel to an internal combustion engine.
- vane pumps comprising a rotor capable of driving at least one vane and connected to a drive member, such as an engine camshaft.
- the rotor comprises a vane carrier, in which at least one vane is mounted in a movable manner, and a transmission coupling connected to the vane carrier and arranged to receive a drive torque provided by the camshaft and to transmit said torque to the vane carrier so as to create an air vacuum.
- the transmission of the drive torque from the transmission coupling to the vane carrier takes place by means of thrust surfaces of the transmission coupling that are parallel to a longitudinal axis of rotation of the rotor and exert a thrust against corresponding abutment surfaces of the vane carrier, said abutment surfaces, too, being substantially parallel to the axis of rotation of the rotor.
- the vane carrier is made of a thermoplastic material
- the transmission coupling having to be capable of receiving the drive torque provided by the camshaft
- the vane carrier is made of steel.
- problems of reliability may arise, as the contact between the transmission coupling and the vane carrier can lead to wear of the vane carrier: this is due to the fact that the contact between the transmission coupling and the vane carrier always consists of a combination of compression and rubbing, or sliding friction, in a direction perpendicular to the axis of rotation of the rotor.
- this combination of compression and rubbing will simply be referred to as contact wear.
- document WO 02/097274 A2 in the name of the Applicant, describes a rotor comprising a support element having two wings arranged between thrust surfaces of the transmission coupling and corresponding abutment surfaces of the vane carrier as described above, respectively.
- An object of the present invention is to overcome the problems and limitations of prior art by providing a rotor less susceptible to wear and therefore having a longer service life.
- a further object of the present invention is to provide a pump that comprises said rotor and is reliable, with reduced weight and reduced cost.
- the rotor according to the present invention comprises a vane carrier, a transmission coupling configured for transmitting a drive torque to the vane carrier, and at least one vane movably inserted in a suitable slot of the vane carrier.
- the van carrier comprises a seat having a blind bottom, preferably substantially perpendicular to a longitudinal axis of the rotor, and the transmission coupling comprises an engaging end configured for being inserted into the seat of the vane carrier.
- the engaging end of the transmission coupling comprises, in particular, a first face that is substantially parallel to the bottom of the seat, is oriented towards said bottom and is proximal thereto, and a second face oriented in a direction opposite to that of the first face.
- the vane carrier is preferably made of a thermoplastic material and the transmission coupling is preferably made of metal.
- the rotor further comprises a first support element.
- Said first support element comprises a base resting on the second face of the engaging end of the transmission coupling, and at least one first wing.
- the at least one first wing extends preferably substantially perpendicular to the base of the first support element and is arranged between a respective first thrust surface of the engaging end of the transmission coupling and a corresponding first abutment surface of the seat of the vane carrier, said first abutment surface facing the first thrust surface.
- the at least one wing of the first support element allows limiting the wear due to the contact between the respective first thrust surface of the engaging end of the transmission coupling and the corresponding first abutment surface of the seat of the vane carrier.
- the contact takes place between two metal elements (namely, the first support element and the transmission coupling), preventing occurrence of the sliding friction component on the vane carrier.
- the rotor comprises a second support element comprising a base arranged between the bottom of the seat of the vane carrier and the first face of the engaging end of the transmission coupling.
- the base of the second support element allows limiting the wear of the bottom of the seat of the vane carrier due to the first face of the engaging end of the transmission coupling because of axial pulsations of the transmission coupling.
- the second support element further comprises, preferably, at least one wing.
- the at least one wing preferably extends substantially perpendicular to the base of the second support element and is arranged between a respective second thrust surface of the engaging end of the transmission coupling and a corresponding second abutment surface of the seat of the vane carrier, said second abutment surface facing the second thrust surface.
- the at least one wing of the second support element allows limiting the wear of the vane carrier due to the contact between the respective second thrust surface of the engaging end of the transmission coupling and the corresponding second abutment surface of the seat of the vane carrier.
- the contact takes place between two metal elements (namely, the second support element and the transmission coupling), preventing occurrence of the sliding friction component on the vane carrier.
- the base of the first support element comprises at least one radial portion in which a radial slot is provided dividing the at least one radial portion into a first and a second sub-branch.
- a first and second wing extend respectively from said sub-branches, substantially perpendicularly to said sub-branches.
- Each first wing is arranged between a respective first thrust surface of the engaging end of the transmission coupling and a corresponding first abutment surface of the seat of the vane carrier, said first abutment surface facing the first thrust surface.
- Each second wing is arranged between a respective second thrust surface of the engaging end of the transmission coupling and a corresponding second abutment surface of the seat of the vane carrier, said second abutment surface facing the second thrust surface.
- each first wing of the first support element allows limiting the wear of the vane carrier due to the contact between the respective first thrust surface of the engaging end of the transmission coupling and the corresponding first abutment surface of the vane carrier.
- each second wing of the first support element allows limiting the wear due to the contact between the respective second thrust surface of the engaging end of the transmission coupling and the corresponding second abutment surface of the vane carrier. In this case too, indeed, the contact takes place between two metal elements (namely, the first support element and the transmission coupling), preventing occurrence of the sliding friction component on the vane carrier.
- the first thrust surface is a rotational thrust surface configured for exerting a thrust onto said first abutment surface so as to transmit the driving torque to the vane carrier during normal operation of the pump.
- the said second thrust surface is a counter-rotational thrust surface configured for exerting a thrust onto said second abutment surface at the time when a reversal of the driving torque occurs.
- the functions of the first and second thrust surface are inverted, i.e. the first thrust surface is a counter-rotational thrust surface and the second thrust surface is a rotational thrust surface.
- the seat of the vane carrier and the engaging end of the transmission coupling have each a four-arm cross-shaped cross-section.
- the first and second support elements are made as thin metal plates.
- the first and second support elements are made of spring-steel.
- a further object of the present invention is a pump comprising a rotor according to any of the features mentioned above.
- a pump according to the present invention is a vane pump 10 comprising a rotor 20 mounted within the pump 10 and configured for being driven by a drive member (not shown), such as, for example, a camshaft of a vehicle engine.
- a drive member such as, for example, a camshaft of a vehicle engine.
- the rotor 20 according to a first embodiment, shown in Figures 2 , 3 e 4 , comprises a vane carrier 21, a transmission coupling 40, intended to transmit a driving torque provided by the drive member to the vane carrier 21, a vane (not shown), a first support element 70 and a second support element 60.
- the vane carrier 21 preferably made of a thermoplastic material, comprises a first cylindrical end 22 oriented towards the transmission coupling 40 and having a longitudinal axis Y, i.e. the axis of rotation of the rotor 20, and a second cylindrical end 23, coaxial to the first end 22 and preferably having an outer diameter larger than the outer diameter of the first end 22.
- the second end 23 of the vane carrier 21 is radially crossed by a slot 24 in which the vane is movably mounted.
- a seat 25 having a blind bottom 26 and an open end 27 opposite to the blind bottom 26.
- the seat 25 has a cross-section shaped like a four-arm cross comprising a first, a second, a third and a fourth radial portion 29a-d.
- said radial portions 29a-d diametrically opposed two by two, develop along two directions preferably orthogonal to each other.
- each of the above four radial portions 29a-d is preferably connected to two neighboring radial portions by means of arc-shaped portions 30.
- the blind bottom 26 of the seat 25 is substantially perpendicular to the longitudinal axis Y, whereas a plurality of walls of the seat 25 extend in a direction substantially parallel to the longitudinal axis Y.
- the first and the second radial portion 29a and 29b, diametrically opposite to each other, of the seat 25, have respective first walls 32 and second walls 33 extending from corresponding arc-shaped portions 30 to a respective peripheral wall 31 of said radial portions; these walls 32, 33 act as first abutment surfaces 32 and second abutment surfaces 33, respectively, against which the transmission coupling 40 exerts a thrust, as will be better illustrated below, so as to rotate the vane carrier 21.
- the second end 23 of the vane carrier 21 further comprises a pin 34 arranged at the center of the seat 25 and extending from the bottom 26 of the seat 25 along the longitudinal axis Y.
- the pin 34 preferably has two portions with different diameters, i.e. a first portion 34a, proximal to the bottom 26 of the seat 25 and having a larger diameter, and a second portion 34b, distal to the bottom 26 of the seat 25 and having a smaller diameter.
- the transmission coupling 40 preferably made of steel or other material harder than that of the vane carrier, comprises an engaging end 41 configured for being inserted into the seat 25 of the vane carrier 21, and a coupling end 42, comprising coupling means 52 between the transmission coupling 40 and a camshaft end (not shown).
- the engaging end 41 of the transmission coupling 40 has a four-arm cross-shaped cross-section, substantially equal to the cross-section of the seat 25 of the second end 23 of the vane carrier 21 and thus comprising a first, a second, a third and a fourth radial portion 44a-d.
- the radial portions 44a-d of the transmission coupling 40 are arranged diametrically opposed two by two, develop along two directions preferably orthogonal to each other and each radial portion 44a-d is connected to two neighboring radial portions by means of arc-shaped portions 45.
- the engaging end 41 further comprises a first face 46, substantially perpendicular to the longitudinal axis Y and oriented towards the bottom 26 of the seat 25 of the vane carrier 21 and proximal thereto, and a second face 47, also perpendicular to the longitudinal axis Y, said second face being opposite to the first face 46 and distal to the bottom 26 of the seat 25 of the vane carrier 21.
- the engaging end 41 further comprises walls extending between the first face 46 and the second face 47, substantially perpendicularly to said faces.
- the first and the second radial portion 44a and 44b, diametrically opposed to each other have respective first walls 49 and second walls 50, extending from corresponding arc-shaped portions 45 to a respective peripheral wall 48 of said radial portions.
- first walls 49 abutting against said first abutment surfaces 32 facing said first walls, exert, onto said first abutment surfaces, thrusts that cause rotation of the vane carrier 21; similarly, the second walls 50, abutting against said second abutment surfaces 33 facing said second walls, exert, onto said second abutment surfaces, thrusts that cause rotation of the vane carrier 21 in a direction opposite to the that of the rotation caused by the first thrust walls 49.
- first walls 49 will be referred to as first thrust surfaces 49 and the second walls 50 will be referred to as second thrust surfaces 50.
- each first thrust surface 49 is a rotation thrust surface configured for exerting a thrust onto the respective first abutment surface 32 so as to transmit the driving torque to the vane carrier 21 during normal operation of the pump;
- each second thrust surface 50 is, instead, a counter-rotational thrust surface configured for exerting a thrust onto the respective second abutment surface 33 at the time when a reversal of the driving torque occurs.
- each first thrust surface 49 and each second thrust surface 50 are inverted, i.e. each first thrust surface 49 is a counter-rotational thrust surface and each second thrust surface 50 is a rotational thrust surface.
- the engaging end 41 of the transmission coupling 40 further comprises a central opening 51 extending from the first face 46 to the second face 47 of the engaging end 41, along the longitudinal axis Y.
- the pin 34 of the vane carrier 21 is inserted through said opening 51.
- said opening 51 is non-circular and it rather has an elongated shape.
- the opening 51 has a greater extension along a direction of development of the first radial portion 44a and the second radial portion 44b, diametrically opposed to each other, of the engaging end 41 of the transmission coupling 40.
- said elongated shape of the opening 51 allows some clearance between the transmission coupling 40 and the vane carrier 21, such as to compensate for any non-coaxiality between them.
- the coupling means preferably have the shape of two teeth 52.
- Said teeth 52 extend parallel to the longitudinal axis Y, from the second face 47 of the engaging end 41 of the transmission coupling 40, at the third radial portion 44c and the fourth radial portion 44d of the engaging end 41.
- said third and fourth radial portions 44c, 44d are diametrically opposite radial portions of the engaging end 41 that are arranged transversely relative to the direction along which the opening 51 with elongated shape of the transmission coupling 40 has a greater extension.
- the teeth 52 are preferably configured for sliding in a corresponding slot (not shown) located at the end of the camshaft, thus forming an Oldham joint.
- the first support element 70 made of a metal material, preferably spring-steel, and made as a thin metal plate, comprises a base 71 having a central bore 74 configured for being fitted with interference onto the second portion 34b of the pin 34 of the seat 25 of the vane carrier 21.
- the base 71 has a first radial portion 73a and a second radial portion 73b which are diametrically opposite to each other relative to the central bore 74 and rest on the second face 47 of the transmission coupling 40, in particular on the first radial portion 44a and on the second radial portion 44b of the engaging end 41, respectively.
- the central bore 74 being made by deep drawing, has a longitudinal extension greater than the thickness of the first support element 70: such extension allows to obtain a large area of interference with the pin 34 in order to withstand axial and radial stresses transmitted by the transmission coupling 40.
- the interference fitting between the first support element 170 and the second portion 34b of the pin 34 of the vane carrier 21 allows to prevent the transmission coupling 40 from slipping out of the vane carrier 21.
- the first support element 70 further comprises a first wing 75 and a second wing 76, which are made as a single piece with the base 71.
- Said first wing 75 and second wing 76 extend from the first and second radial portion 73a, 73b of the base 71, respectively, in a direction substantially perpendicular to the base 71 and on the same side relative to a plane on which the base itself lies.
- the first and second wing 75, 76 are arranged between the first thrust surfaces 49 of the first radial portion 44a and of the second radial portion 44b, respectively, of the engaging end 41 of the transmission coupling 40 and the corresponding first abutment surfaces 32 of the seat 25 of the vane carrier 21.
- the two wings 75, 76 are thus arranged in diametrically opposite directions relative to the longitudinal axis Y.
- the wings 75, 76 of the first support element 70 allow limiting the wear due to the contact between the first thrust surfaces 49 of the transmission coupling 40 and the corresponding first abutment surfaces 32 of the vane carrier 21, which first abutment surfaces face said first thrust surfaces.
- the second support element 60 made of a metal material, preferably spring-steel, and being in the form of a thin metal plate, comprises a base 61 having the shape of a four-arm cross substantially equal to the shape of the cross-section of the seat 25 of the vane carrier 21.
- This base 61 therefore comprises a first, a second, a third and a fourth radial portion 163a-d, diametrically opposite two by two.
- the base 61 further has a central bore 64 configured for being fitted with interference onto the first portion 34a of the pin 34 of the vane carrier 21. Thanks to the fact that the second portion 34b of the pin 34 has a diameter smaller than that of the first portion, the insertion of the second support element 60 into the pin 34 is made easier.
- the central bore 64 being made by deep drawing, has a longitudinal extension greater than the thickness of the second support element 60: such extension allows obtaining a large area of interference with the pin 34 in order to withstand the axial and radial stresses transmitted by the transmission coupling 40.
- the base 61 of the second support element 60 allows to limit the wear of the bottom 26 of the seat 25 of the vane carrier 21 due to the first face 46 of the engaging end 41 of the transmission coupling 40 because of axial pulsations of the transmission coupling 40.
- the second support element 60 further comprises a first wing 65 and a second wing 66, which are made as a single piece with the base 61.
- Said first wing 65 and second wing 66 preferably extend from the first and second radial portion 63a, 63b of the base 61, respectively, in a direction substantially perpendicular to the base 61 and on the same side relative to a plane on which the base itself lies.
- the first and second wing 65, 66 are arranged between the second thrust surfaces 50 of the first radial portion 44a and of the second radial portion 44b, respectively, of the engaging end 41 of the transmission coupling 40 and the corresponding second abutment surfaces 33 of the seat 25 of the vane carrier 21.
- the two wings 65, 66 are arranged in diametrically opposite directions relative to the longitudinal axis Y.
- the wings 65, 66 of the second support element 60 allow limiting the wear of the vane carrier 21 due to the contact between the second thrust surfaces 50 of the transmission coupling 40 and the corresponding second abutment surfaces 33 of the vane carrier 21, which second abutment surfaces face said second thrust surfaces.
- the first support element 170 shown in Figure 9 , made of a metal material, preferably spring-steel, and made as a thin metal plate, comprises a base 171 having a central bore 174 configured for being fitted with interference onto the second portion 34b of the pin 34 of the vane carrier 21.
- the base 171 has a first radial portion 173a and a second radial portion 173b which are diametrically opposite to each other relative to the central bore 174 and rest on the second face 47 of the transmission coupling 40, in particular on the first radial portion 44a and on the second radial portion 44b of the transmission coupling, respectively.
- the central bore 174 being made by deep drawing, has a longitudinal extension greater than the thickness of the first support element 170: such extension allows to obtain a large area of interference with the pin 34 in order to withstand axial and radial stresses transmitted by the transmission coupling 40.
- the first support element 170 further comprises four wings 175, 176, 177, 178, made as a single piece with the base 171.
- a first wing 175 and a third wing 177 extend from the first radial portion 173a and a second wing 176 and a fourth wing 178 extend from the second radial portion 173b of the base 171.
- All the wings 175, 176, 177, 178 extend in a direction substantially perpendicular to the base 171 and on the same side relative to a plane on which the base itself lies.
- the first and the second wing 175, 176 are arranged between the first thrust surfaces 49 of the first radial portion 44a and of the second radial portion 44b, respectively, of the engaging end 41 of the transmission coupling 40 and the corresponding first abutment surfaces 32 of the seat 25 of the vane carrier 21, which first abutment surfaces face said first thrust surfaces, and thus lie in diametrically opposite directions relative to the longitudinal axis Y.
- the third and fourth wing 177, 178 are arranged between the second thrust surfaces 50 of the first radial portion 44a and of the second radial portion 44b, respectively, of the engaging end 41 of the transmission coupling 40 and the corresponding second abutment surfaces 33 of the seat 25 of the vane carrier 21, which second abutment surfaces face said second thrust surfaces, and thus lie in diametrically opposite directions relative to the longitudinal axis Y.
- the first and the second wing 175, 176 of the first support element 170 allow limiting the wear of the vane carrier 21 due to the contact between the first thrust surfaces 49 of the transmission coupling 40 and the corresponding first abutment surfaces 32 of the vane carrier 21, which first abutment surfaces face said first thrust surfaces.
- the third and fourth wing 177, 178 of the first support element 170 allow limiting the wear due to the contact between the second thrust surfaces 50 of the transmission coupling 40 and the corresponding second abutment surfaces 33 of the vane carrier 21, which second abutment surfaces face said second thrust surfaces.
- each slot 179 In each of the two radial portions 173a, 173b of the first support element 170 there is further provided a radial slot 179 extending from a first closed end 184 proximal to the central bore 174 to an end 180 of the radial portion 173a, 173b distal to the central bore 174.
- Each slot 179 divides the respective radial portion 173a, 173b into a first sub-branch 181 and a second sub-branch 182, whereby each of the four wings 175, 176, 177, 178 extends from a respective sub-branch 181, 182.
- each slot 179 has, at its closed end 184, a widened portion 185.
- the sub-branches 181, 182 are elastic along the plane on which the base 171 lies, in a direction transverse to the corresponding wings (i.e. in the direction indicated by the arrow in Figure 9 for one of the sub-branches) and, furthermore, they are advantageously pre-loaded transversely outwards, so that the respective wings 175, 176, 177, 178 remain adhering against the corresponding first and second abutment surfaces 32, 33 of the vane carrier 21 rather than against the first and second thrust surfaces 49, 50 of the transmission coupling 40.
- the elastic radial slots 179 combined with a width, under rest conditions, of the radial portions 173a, 173b of the support element 170 greater than the width of the corresponding radial portions 29a, 29b of the seat 25 of the vane carrier 21, allow inserting the first support element 170 and the transmission coupling 40 into the seat 25 of the vane carrier 21, ensuring that the wings 175, 176, 177, 178 of the first support element 170 are always in contact with the respective abutment surfaces 32, 33 of the vane carrier 21.
- the second support element (not shown) comprises, like the second support element of the first embodiment, a four-arm cross-shaped base arranged between the bottom of the seat of the vane carrier and the first face of the engaging end of the transmission coupling, and a central bore configured for being fitted with interference onto the first portion of the pin of the vane carrier.
- the second support element of the second embodiment differs from the first embodiment in that it does not have the wings perpendicular to the base.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
- Valve Device For Special Equipments (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Lubricants (AREA)
Description
- The present invention relates to a rotor and a pump comprising such rotor. More particularly, the rotor is of the vane type comprising a vane carrier made of a thermoplastic material and a transmission coupling made of a metal material, connected to the vane carrier and adapted to receive a drive torque from a drive member.
- The pump which is the subject matter of the present invention finds particular application in the automotive industry, in particular as a vacuum pump capable of providing an air vacuum to brake assist devices or as a combined pump, used both as a vacuum pump and to supply fuel to an internal combustion engine.
- Among the known types of pumps, particularly vacuum pumps, there are vane pumps comprising a rotor capable of driving at least one vane and connected to a drive member, such as an engine camshaft. The rotor comprises a vane carrier, in which at least one vane is mounted in a movable manner, and a transmission coupling connected to the vane carrier and arranged to receive a drive torque provided by the camshaft and to transmit said torque to the vane carrier so as to create an air vacuum. More particularly, the transmission of the drive torque from the transmission coupling to the vane carrier takes place by means of thrust surfaces of the transmission coupling that are parallel to a longitudinal axis of rotation of the rotor and exert a thrust against corresponding abutment surfaces of the vane carrier, said abutment surfaces, too, being substantially parallel to the axis of rotation of the rotor.
- Among the pumps like those described above, there are pumps in which, for the purpose of reducing the weight and cost thereof, the vane carrier is made of a thermoplastic material, whereas the transmission coupling, having to be capable of receiving the drive torque provided by the camshaft, is made of steel. In such cases, problems of reliability may arise, as the contact between the transmission coupling and the vane carrier can lead to wear of the vane carrier: this is due to the fact that the contact between the transmission coupling and the vane carrier always consists of a combination of compression and rubbing, or sliding friction, in a direction perpendicular to the axis of rotation of the rotor. Here below, for ease of discussion, this combination of compression and rubbing will simply be referred to as contact wear.
- In order to limit the problem of the wear of the vane carrier, document
WO 02/097274 A2 - The Applicant has noticed that the known rotor described above does not adequately solve the problem of vane carrier wear, particularly in the case of the most recent applications, where the camshaft, due to the use of an additional cam that drives a high-pressure fuel injection pump, or other auxiliary parts of the vehicle, can generate, under certain conditions, an important and impulsive reversal of the drive torque, with consequent radial and axial pulsation of the transmission coupling. As a result of this, there is generated further transverse and/or axial wear of the vane carrier as well as wear on surfaces of the vane carrier opposite to those surfaces on which the coupling usually exerts a thrust for transmitting the driving torque.
- An object of the present invention is to overcome the problems and limitations of prior art by providing a rotor less susceptible to wear and therefore having a longer service life. A further object of the present invention is to provide a pump that comprises said rotor and is reliable, with reduced weight and reduced cost.
- These and other objects are achieved with the rotor and the pump comprising such rotor as claimed in the appended claims.
- The rotor according to the present invention comprises a vane carrier, a transmission coupling configured for transmitting a drive torque to the vane carrier, and at least one vane movably inserted in a suitable slot of the vane carrier. The van carrier comprises a seat having a blind bottom, preferably substantially perpendicular to a longitudinal axis of the rotor, and the transmission coupling comprises an engaging end configured for being inserted into the seat of the vane carrier. The engaging end of the transmission coupling comprises, in particular, a first face that is substantially parallel to the bottom of the seat, is oriented towards said bottom and is proximal thereto, and a second face oriented in a direction opposite to that of the first face.
- According to the present invention, the vane carrier is preferably made of a thermoplastic material and the transmission coupling is preferably made of metal.
- According to the present invention, the rotor further comprises a first support element. Said first support element comprises a base resting on the second face of the engaging end of the transmission coupling, and at least one first wing. The at least one first wing extends preferably substantially perpendicular to the base of the first support element and is arranged between a respective first thrust surface of the engaging end of the transmission coupling and a corresponding first abutment surface of the seat of the vane carrier, said first abutment surface facing the first thrust surface.
- Advantageously, the at least one wing of the first support element allows limiting the wear due to the contact between the respective first thrust surface of the engaging end of the transmission coupling and the corresponding first abutment surface of the seat of the vane carrier. In this case, indeed, the contact takes place between two metal elements (namely, the first support element and the transmission coupling), preventing occurrence of the sliding friction component on the vane carrier.
- According to the present invention, the rotor comprises a second support element comprising a base arranged between the bottom of the seat of the vane carrier and the first face of the engaging end of the transmission coupling.
- Advantageously, the base of the second support element allows limiting the wear of the bottom of the seat of the vane carrier due to the first face of the engaging end of the transmission coupling because of axial pulsations of the transmission coupling.
- According to a first embodiment of the invention, the second support element further comprises, preferably, at least one wing. The at least one wing preferably extends substantially perpendicular to the base of the second support element and is arranged between a respective second thrust surface of the engaging end of the transmission coupling and a corresponding second abutment surface of the seat of the vane carrier, said second abutment surface facing the second thrust surface.
- Advantageously, the at least one wing of the second support element allows limiting the wear of the vane carrier due to the contact between the respective second thrust surface of the engaging end of the transmission coupling and the corresponding second abutment surface of the seat of the vane carrier. In this case too, indeed, the contact takes place between two metal elements (namely, the second support element and the transmission coupling), preventing occurrence of the sliding friction component on the vane carrier.
- According to a second embodiment of the invention, the base of the first support element comprises at least one radial portion in which a radial slot is provided dividing the at least one radial portion into a first and a second sub-branch. A first and second wing extend respectively from said sub-branches, substantially perpendicularly to said sub-branches. Each first wing is arranged between a respective first thrust surface of the engaging end of the transmission coupling and a corresponding first abutment surface of the seat of the vane carrier, said first abutment surface facing the first thrust surface. Each second wing is arranged between a respective second thrust surface of the engaging end of the transmission coupling and a corresponding second abutment surface of the seat of the vane carrier, said second abutment surface facing the second thrust surface.
- Advantageously, each first wing of the first support element according to the second embodiment allows limiting the wear of the vane carrier due to the contact between the respective first thrust surface of the engaging end of the transmission coupling and the corresponding first abutment surface of the vane carrier. In addition, advantageously, each second wing of the first support element allows limiting the wear due to the contact between the respective second thrust surface of the engaging end of the transmission coupling and the corresponding second abutment surface of the vane carrier. In this case too, indeed, the contact takes place between two metal elements (namely, the first support element and the transmission coupling), preventing occurrence of the sliding friction component on the vane carrier.
- According to the invention, the first thrust surface is a rotational thrust surface configured for exerting a thrust onto said first abutment surface so as to transmit the driving torque to the vane carrier during normal operation of the pump. The said second thrust surface is a counter-rotational thrust surface configured for exerting a thrust onto said second abutment surface at the time when a reversal of the driving torque occurs.
- According to a further embodiment, the functions of the first and second thrust surface are inverted, i.e. the first thrust surface is a counter-rotational thrust surface and the second thrust surface is a rotational thrust surface.
- According to a further aspect of the present invention, the seat of the vane carrier and the engaging end of the transmission coupling have each a four-arm cross-shaped cross-section.
- According to a further aspect of the present invention, the first and second support elements are made as thin metal plates.
- According to a further aspect of the present invention, the first and second support elements are made of spring-steel.
- A further object of the present invention is a pump comprising a rotor according to any of the features mentioned above.
- These and other features and advantages of the present invention will become more apparent from the ensuing description of some preferred embodiments given by way of non-limiting examples with reference to the annexed figures, in which elements designated by the same or similar reference numerals indicate elements having the same or similar function and construction, and in which:
-
Figure 1 is a perspective view of a pump according to the present invention; -
Figure 2 is an exploded perspective view of a rotor according to a first embodiment of the present invention; -
Figure 3 is a top view of the rotor ofFigure 2 ; -
Figure 4 is a cross-sectional view of the rotor ofFigure 3 , taken along the line AA; -
Figure 5 is a perspective view of a vane carrier of the rotor ofFigure 2 ; -
Figure 6 is a perspective view of a transmission coupling of the rotor ofFigure 2 ; -
Figure 7 is a perspective view of a first support element of the rotor ofFigure 2 ; -
Figure 8 is a perspective view of a second support element of the rotor ofFigure 2 ; -
Figure 9 is a perspective view of a first support element of a rotor according to a second embodiment of the present invention. - Referring to
Figure 1 , a pump according to the present invention is avane pump 10 comprising arotor 20 mounted within thepump 10 and configured for being driven by a drive member (not shown), such as, for example, a camshaft of a vehicle engine. - The
rotor 20 according to a first embodiment, shown inFigures 2 ,3 e 4 , comprises avane carrier 21, atransmission coupling 40, intended to transmit a driving torque provided by the drive member to thevane carrier 21, a vane (not shown), afirst support element 70 and asecond support element 60. - Referring in particular to
Figures 2 and5 , thevane carrier 21, preferably made of a thermoplastic material, comprises a firstcylindrical end 22 oriented towards thetransmission coupling 40 and having a longitudinal axis Y, i.e. the axis of rotation of therotor 20, and a secondcylindrical end 23, coaxial to thefirst end 22 and preferably having an outer diameter larger than the outer diameter of thefirst end 22. - The
second end 23 of thevane carrier 21 is radially crossed by aslot 24 in which the vane is movably mounted. - In the
first end 22 of thevane carrier 21 there is provided aseat 25 having ablind bottom 26 and anopen end 27 opposite to theblind bottom 26. Theseat 25 has a cross-section shaped like a four-arm cross comprising a first, a second, a third and a fourthradial portion 29a-d. In particular, saidradial portions 29a-d, diametrically opposed two by two, develop along two directions preferably orthogonal to each other. In addition, each of the above fourradial portions 29a-d is preferably connected to two neighboring radial portions by means of arc-shapedportions 30. Theblind bottom 26 of theseat 25 is substantially perpendicular to the longitudinal axis Y, whereas a plurality of walls of theseat 25 extend in a direction substantially parallel to the longitudinal axis Y. In particular, the first and the secondradial portion seat 25, have respectivefirst walls 32 andsecond walls 33 extending from corresponding arc-shapedportions 30 to a respectiveperipheral wall 31 of said radial portions; thesewalls transmission coupling 40 exerts a thrust, as will be better illustrated below, so as to rotate thevane carrier 21. - The
second end 23 of thevane carrier 21 further comprises apin 34 arranged at the center of theseat 25 and extending from the bottom 26 of theseat 25 along the longitudinal axis Y. Thepin 34 preferably has two portions with different diameters, i.e. afirst portion 34a, proximal to the bottom 26 of theseat 25 and having a larger diameter, and asecond portion 34b, distal to the bottom 26 of theseat 25 and having a smaller diameter. - Referring in particular to
Figures 2 and6 , thetransmission coupling 40, preferably made of steel or other material harder than that of the vane carrier, comprises anengaging end 41 configured for being inserted into theseat 25 of thevane carrier 21, and acoupling end 42, comprising coupling means 52 between thetransmission coupling 40 and a camshaft end (not shown). - The
engaging end 41 of thetransmission coupling 40 has a four-arm cross-shaped cross-section, substantially equal to the cross-section of theseat 25 of thesecond end 23 of thevane carrier 21 and thus comprising a first, a second, a third and a fourthradial portion 44a-d. Similarly to what is provided for theradial portions 29a-d of theseat 25 of thevane carrier 21, theradial portions 44a-d of thetransmission coupling 40 are arranged diametrically opposed two by two, develop along two directions preferably orthogonal to each other and eachradial portion 44a-d is connected to two neighboring radial portions by means of arc-shapedportions 45. - The
engaging end 41 further comprises afirst face 46, substantially perpendicular to the longitudinal axis Y and oriented towards the bottom 26 of theseat 25 of thevane carrier 21 and proximal thereto, and asecond face 47, also perpendicular to the longitudinal axis Y, said second face being opposite to thefirst face 46 and distal to the bottom 26 of theseat 25 of thevane carrier 21. Theengaging end 41 further comprises walls extending between thefirst face 46 and thesecond face 47, substantially perpendicularly to said faces. In particular, the first and the secondradial portion first walls 49 andsecond walls 50, extending from corresponding arc-shapedportions 45 to a respectiveperipheral wall 48 of said radial portions. Thefirst walls 49, abutting against said first abutment surfaces 32 facing said first walls, exert, onto said first abutment surfaces, thrusts that cause rotation of thevane carrier 21; similarly, thesecond walls 50, abutting against said second abutment surfaces 33 facing said second walls, exert, onto said second abutment surfaces, thrusts that cause rotation of thevane carrier 21 in a direction opposite to the that of the rotation caused by thefirst thrust walls 49. In the following description, thefirst walls 49 will be referred to as first thrust surfaces 49 and thesecond walls 50 will be referred to as second thrust surfaces 50. - According to the illustrated embodiment, each
first thrust surface 49 is a rotation thrust surface configured for exerting a thrust onto the respectivefirst abutment surface 32 so as to transmit the driving torque to thevane carrier 21 during normal operation of the pump; eachsecond thrust surface 50 is, instead, a counter-rotational thrust surface configured for exerting a thrust onto the respectivesecond abutment surface 33 at the time when a reversal of the driving torque occurs. - According to a further embodiment, the functions of each
first thrust surface 49 and eachsecond thrust surface 50 are inverted, i.e. eachfirst thrust surface 49 is a counter-rotational thrust surface and eachsecond thrust surface 50 is a rotational thrust surface. - The
engaging end 41 of thetransmission coupling 40 further comprises acentral opening 51 extending from thefirst face 46 to thesecond face 47 of theengaging end 41, along the longitudinal axis Y. Thepin 34 of thevane carrier 21 is inserted through saidopening 51. Preferably, saidopening 51 is non-circular and it rather has an elongated shape. In particular, theopening 51 has a greater extension along a direction of development of the firstradial portion 44a and the secondradial portion 44b, diametrically opposed to each other, of theengaging end 41 of thetransmission coupling 40. Advantageously, said elongated shape of theopening 51 allows some clearance between thetransmission coupling 40 and thevane carrier 21, such as to compensate for any non-coaxiality between them. - In the
coupling end 42 of thetransmission coupling 40, the coupling means preferably have the shape of twoteeth 52. Saidteeth 52 extend parallel to the longitudinal axis Y, from thesecond face 47 of theengaging end 41 of thetransmission coupling 40, at the thirdradial portion 44c and the fourthradial portion 44d of theengaging end 41. In particular, said third and fourthradial portions engaging end 41 that are arranged transversely relative to the direction along which theopening 51 with elongated shape of thetransmission coupling 40 has a greater extension. In a known manner, theteeth 52 are preferably configured for sliding in a corresponding slot (not shown) located at the end of the camshaft, thus forming an Oldham joint. - Referring in particular to
Figures 2 and7 , according to the first embodiment of the invention, thefirst support element 70, made of a metal material, preferably spring-steel, and made as a thin metal plate, comprises a base 71 having acentral bore 74 configured for being fitted with interference onto thesecond portion 34b of thepin 34 of theseat 25 of thevane carrier 21. Thebase 71 has a firstradial portion 73a and a secondradial portion 73b which are diametrically opposite to each other relative to thecentral bore 74 and rest on thesecond face 47 of thetransmission coupling 40, in particular on the firstradial portion 44a and on the secondradial portion 44b of theengaging end 41, respectively. - Advantageously, the
central bore 74, being made by deep drawing, has a longitudinal extension greater than the thickness of the first support element 70: such extension allows to obtain a large area of interference with thepin 34 in order to withstand axial and radial stresses transmitted by thetransmission coupling 40. - Advantageously, the interference fitting between the
first support element 170 and thesecond portion 34b of thepin 34 of thevane carrier 21 allows to prevent thetransmission coupling 40 from slipping out of thevane carrier 21. - The
first support element 70 further comprises afirst wing 75 and asecond wing 76, which are made as a single piece with thebase 71. Saidfirst wing 75 andsecond wing 76 extend from the first and secondradial portion base 71, respectively, in a direction substantially perpendicular to thebase 71 and on the same side relative to a plane on which the base itself lies. The first andsecond wing radial portion 44a and of the secondradial portion 44b, respectively, of theengaging end 41 of thetransmission coupling 40 and the corresponding first abutment surfaces 32 of theseat 25 of thevane carrier 21. The twowings - Advantageously, the
wings first support element 70 allow limiting the wear due to the contact between the first thrust surfaces 49 of thetransmission coupling 40 and the corresponding first abutment surfaces 32 of thevane carrier 21, which first abutment surfaces face said first thrust surfaces. - Referring in particular to
Figures 2 and8 , according to the first embodiment of the invention, thesecond support element 60, made of a metal material, preferably spring-steel, and being in the form of a thin metal plate, comprises a base 61 having the shape of a four-arm cross substantially equal to the shape of the cross-section of theseat 25 of thevane carrier 21. This base 61 therefore comprises a first, a second, a third and a fourth radial portion 163a-d, diametrically opposite two by two. The base 61 further has acentral bore 64 configured for being fitted with interference onto thefirst portion 34a of thepin 34 of thevane carrier 21. Thanks to the fact that thesecond portion 34b of thepin 34 has a diameter smaller than that of the first portion, the insertion of thesecond support element 60 into thepin 34 is made easier. - Advantageously, the
central bore 64, being made by deep drawing, has a longitudinal extension greater than the thickness of the second support element 60: such extension allows obtaining a large area of interference with thepin 34 in order to withstand the axial and radial stresses transmitted by thetransmission coupling 40. - Advantageously, the
base 61 of thesecond support element 60 allows to limit the wear of the bottom 26 of theseat 25 of thevane carrier 21 due to thefirst face 46 of theengaging end 41 of thetransmission coupling 40 because of axial pulsations of thetransmission coupling 40. - Preferably, the
second support element 60 further comprises afirst wing 65 and asecond wing 66, which are made as a single piece with thebase 61. Saidfirst wing 65 andsecond wing 66 preferably extend from the first and secondradial portion base 61, respectively, in a direction substantially perpendicular to thebase 61 and on the same side relative to a plane on which the base itself lies. The first andsecond wing radial portion 44a and of the secondradial portion 44b, respectively, of theengaging end 41 of thetransmission coupling 40 and the corresponding second abutment surfaces 33 of theseat 25 of thevane carrier 21. As the first and secondradial portion wings base 61, the twowings - Advantageously, the
wings second support element 60 allow limiting the wear of thevane carrier 21 due to the contact between the second thrust surfaces 50 of thetransmission coupling 40 and the corresponding second abutment surfaces 33 of thevane carrier 21, which second abutment surfaces face said second thrust surfaces. - According to a second embodiment of the invention, the
first support element 170, shown inFigure 9 , made of a metal material, preferably spring-steel, and made as a thin metal plate, comprises a base 171 having acentral bore 174 configured for being fitted with interference onto thesecond portion 34b of thepin 34 of thevane carrier 21. Thebase 171 has a firstradial portion 173a and a secondradial portion 173b which are diametrically opposite to each other relative to thecentral bore 174 and rest on thesecond face 47 of thetransmission coupling 40, in particular on the firstradial portion 44a and on the secondradial portion 44b of the transmission coupling, respectively. - Advantageously, the
central bore 174, being made by deep drawing, has a longitudinal extension greater than the thickness of the first support element 170: such extension allows to obtain a large area of interference with thepin 34 in order to withstand axial and radial stresses transmitted by thetransmission coupling 40. - The
first support element 170 further comprises fourwings base 171. In particular, afirst wing 175 and athird wing 177 extend from the firstradial portion 173a and asecond wing 176 and afourth wing 178 extend from the secondradial portion 173b of thebase 171. All thewings base 171 and on the same side relative to a plane on which the base itself lies. The first and thesecond wing radial portion 44a and of the secondradial portion 44b, respectively, of theengaging end 41 of thetransmission coupling 40 and the corresponding first abutment surfaces 32 of theseat 25 of thevane carrier 21, which first abutment surfaces face said first thrust surfaces, and thus lie in diametrically opposite directions relative to the longitudinal axis Y. The third andfourth wing radial portion 44a and of the secondradial portion 44b, respectively, of theengaging end 41 of thetransmission coupling 40 and the corresponding second abutment surfaces 33 of theseat 25 of thevane carrier 21, which second abutment surfaces face said second thrust surfaces, and thus lie in diametrically opposite directions relative to the longitudinal axis Y. - Advantageously, the first and the
second wing first support element 170 allow limiting the wear of thevane carrier 21 due to the contact between the first thrust surfaces 49 of thetransmission coupling 40 and the corresponding first abutment surfaces 32 of thevane carrier 21, which first abutment surfaces face said first thrust surfaces. In addition, advantageously, the third andfourth wing first support element 170 allow limiting the wear due to the contact between the second thrust surfaces 50 of thetransmission coupling 40 and the corresponding second abutment surfaces 33 of thevane carrier 21, which second abutment surfaces face said second thrust surfaces. - In each of the two
radial portions first support element 170 there is further provided aradial slot 179 extending from a firstclosed end 184 proximal to thecentral bore 174 to anend 180 of theradial portion central bore 174. Eachslot 179 divides the respectiveradial portion first sub-branch 181 and asecond sub-branch 182, whereby each of the fourwings respective sub-branch slot 179 has, at itsclosed end 184, a widenedportion 185. - Owing to the
slots 179, thesub-branches base 171 lies, in a direction transverse to the corresponding wings (i.e. in the direction indicated by the arrow inFigure 9 for one of the sub-branches) and, furthermore, they are advantageously pre-loaded transversely outwards, so that therespective wings vane carrier 21 rather than against the first and second thrust surfaces 49, 50 of thetransmission coupling 40. - In other words, the elastic
radial slots 179, combined with a width, under rest conditions, of theradial portions support element 170 greater than the width of the correspondingradial portions seat 25 of thevane carrier 21, allow inserting thefirst support element 170 and thetransmission coupling 40 into theseat 25 of thevane carrier 21, ensuring that thewings first support element 170 are always in contact with the respective abutment surfaces 32, 33 of thevane carrier 21. - According to the second embodiment, the second support element (not shown) comprises, like the second support element of the first embodiment, a four-arm cross-shaped base arranged between the bottom of the seat of the vane carrier and the first face of the engaging end of the transmission coupling, and a central bore configured for being fitted with interference onto the first portion of the pin of the vane carrier. The second support element of the second embodiment differs from the first embodiment in that it does not have the wings perpendicular to the base.
Claims (9)
- Rotor comprising a vane carrier (21), a transmission coupling (40), configured for transmitting a driving torque to the vane carrier (21), and at least one vane; wherein the vane carrier (21) comprises a seat (25) having a blind bottom (26), and wherein the transmission coupling (40) comprises an engaging end (41) configured for being inserted into the seat (25) of the vane carrier (21) and having a first face (46) oriented towards the bottom (26) of the seat (25) of the vane carrier (21) and proximal thereto, and a second face (47) oriented in a direction opposite to that of the first face (46),the rotor further comprising a first support element (70; 170) comprising a base (71; 171) resting on the second face (47) of said engaging end (41), and at least a first wing (75, 76; 175, 176) arranged between a respective first thrust surface (49) of the engaging end (41) and a corresponding first abutment surface (32) of the seat (25), said first abutment surface (32) facing the first thrust surface (49),the rotor being characterized in that it comprises a second support element (60) comprising a base (61) arranged between the bottom (26) of the seat (25) of the vane carrier (21) and the first face (46) of the engaging end (41) of the transmission coupling (40).
- Rotor according to claim 1, wherein the second supporting element (60) comprises at least one wing (65, 66) arranged between a respective second thrust surface (50) of said engaging end (41) and a corresponding second abutment surface (33) of said seat (25), said second abutment surface (33) facing the second thrust surface (50).
- Rotor according to claim 1, wherein the base (171) of the first supporting element (170) comprises at least one radial portion (173a, 173b) in which a radial slot (179) is provided dividing said at least one radial portion (173a, 173b) into a first and a second sub-branch (181, 182), from which said first wing (175, 176) and a second wing (177, 178) extend, respectively, said second wing (177, 178) being arranged between a respective second thrust surface (50) of said engaging end (41) and a corresponding second abutment surface (33) of said seat (25), said second abutment surface (33) facing the second thrust surface (50).
- Rotor according to claim 2 or 3, wherein:said first thrust surface (49) is a rotational thrust surface configured for exerting a thrust onto said first abutment surface (32) so as to transmit the driving torque to the vane carrier (21), and said second thrust surface (50) is a counter-rotational thrust surface configured for exerting a thrust onto said second abutment surface (33) at the time when a reversal of the driving torque occurs; orsaid second thrust surface (50) is a rotational thrust surface configured for exerting a thrust onto said second abutment surface (33) so as to transmit the driving torque to the vane carrier (21), and said first thrust surface (49) is a counter-rotational thrust surface configured for exerting a thrust onto said first abutment surface (32) at the time when a reversal of the driving torque occurs.
- Rotor according to any of the preceding claims, wherein the seat (25) of the vane carrier (21) and the engaging end (41) of the transmission coupling (40) have each a four-arm cross-shaped cross-section.
- Rotor according to any of the preceding claims, wherein said first and second supporting elements (60, 70; 170) are made as thin metal plates.
- Rotor according to any of the preceding claims, wherein said first and second supporting elements (60, 70; 170) are made of spring-steel.
- Rotor according to any of the preceding claims, wherein the vane carrier (21) is made of thermoplastic material and the transmission coupling (40) is made of metal.
- Pump comprising a rotor according to any of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IT102019000014601A IT201900014601A1 (en) | 2019-08-09 | 2019-08-09 | Low-wear rotor |
PCT/EP2020/072053 WO2021028291A1 (en) | 2019-08-09 | 2020-08-05 | Rotor and pump comprising such rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
EP4010596A1 EP4010596A1 (en) | 2022-06-15 |
EP4010596B1 true EP4010596B1 (en) | 2023-07-26 |
Family
ID=69106028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20750667.6A Active EP4010596B1 (en) | 2019-08-09 | 2020-08-05 | Rotor and pump comprising such rotor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4010596B1 (en) |
CN (1) | CN114514378A (en) |
IT (1) | IT201900014601A1 (en) |
WO (1) | WO2021028291A1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19844904C1 (en) * | 1998-09-30 | 2000-02-17 | Luk Automobiltech Gmbh & Co Kg | Vacuum pump for brake amplifier |
ITTO20010101A1 (en) * | 2001-02-02 | 2002-08-02 | Agusta Spa | ROTOR WITH HOMOCINETIC TRANSMISSION UNIT FOR AN AIRCRAFT. |
ITTO20010521A1 (en) * | 2001-06-01 | 2002-12-01 | Vhit Spa | ROTOR SUBJECT TO REDUCED WEAR, AND PUMP INCLUDING SUCH ROTOR. |
ATE423908T1 (en) * | 2004-10-22 | 2009-03-15 | Ixetic Hueckeswagen Gmbh | PUMP |
-
2019
- 2019-08-09 IT IT102019000014601A patent/IT201900014601A1/en unknown
-
2020
- 2020-08-05 EP EP20750667.6A patent/EP4010596B1/en active Active
- 2020-08-05 CN CN202080056560.2A patent/CN114514378A/en active Pending
- 2020-08-05 WO PCT/EP2020/072053 patent/WO2021028291A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
IT201900014601A1 (en) | 2021-02-09 |
WO2021028291A1 (en) | 2021-02-18 |
CN114514378A (en) | 2022-05-17 |
EP4010596A1 (en) | 2022-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2951455B1 (en) | Decoupler | |
GB2430715A (en) | Ratcheting One-Way Clutch | |
GB2430716A (en) | An overrunning clutch with contact and cam surfaces connected by an undercut | |
GB2430714A (en) | Ratcheting One-way Clutch | |
US4171939A (en) | Arrangement for mounting a gear on a shaft | |
GB2446491A (en) | An over running one-way clutch | |
US7985140B2 (en) | Zero-lash Oldham coupling | |
EP1930590A1 (en) | Oscillation plate type compressor | |
KR20050095549A (en) | Flexible shaft coupling | |
US5848565A (en) | Radial piston machines | |
EP4010596B1 (en) | Rotor and pump comprising such rotor | |
US11644088B2 (en) | Reducer | |
EP4010595B1 (en) | Rotor and pump comprising such rotor | |
EP3889465B1 (en) | Friction roller-type reduction gear | |
WO2016013504A1 (en) | Uniaxial eccentric screw pump | |
US6494127B1 (en) | Radial piston engine with guide rollers | |
JP4771168B2 (en) | Valve timing adjustment device | |
US20170204824A1 (en) | Roller Tappet Device and Method for Producing a Roller Tappet Device | |
CN212272985U (en) | Friction transmission device and gear motor | |
WO2021081273A1 (en) | Coupling between a pump cam shaft and a gear | |
JP6498157B2 (en) | Vane pump | |
US11060578B2 (en) | Conical spring washer, transmission system, and method of assembly thereof | |
CN213684505U (en) | Oil pump shaft and rotor connection structure and variable displacement oil pump | |
KR102261825B1 (en) | Torque converter and oil pump connecting device for automatic transmission | |
CN114008342B (en) | Double-stage torsion coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220309 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602020014535 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F04C0002344000 Ipc: F04C0018340000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: F04C0002344000 Ipc: F04C0018340000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04C 29/00 20060101ALI20230214BHEP Ipc: F04C 18/344 20060101ALI20230214BHEP Ipc: F04C 18/34 20060101AFI20230214BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230228 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230601 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020014535 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230726 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1592205 Country of ref document: AT Kind code of ref document: T Effective date: 20230726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231027 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231026 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231126 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231027 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602020014535 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230805 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230831 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230805 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230726 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240528 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240529 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240826 Year of fee payment: 5 |