[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4090723B1 - Lithiumkomplexhybridfett - Google Patents

Lithiumkomplexhybridfett Download PDF

Info

Publication number
EP4090723B1
EP4090723B1 EP21704440.3A EP21704440A EP4090723B1 EP 4090723 B1 EP4090723 B1 EP 4090723B1 EP 21704440 A EP21704440 A EP 21704440A EP 4090723 B1 EP4090723 B1 EP 4090723B1
Authority
EP
European Patent Office
Prior art keywords
weight
lithium complex
hydrogenated
bearings
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21704440.3A
Other languages
English (en)
French (fr)
Other versions
EP4090723A1 (de
Inventor
Stefan Grundei
Daniel CHALL
Stefan Seemeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klueber Lubrication Muenchen GmbH and Co KG
Original Assignee
Klueber Lubrication Muenchen SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Klueber Lubrication Muenchen SE and Co KG filed Critical Klueber Lubrication Muenchen SE and Co KG
Publication of EP4090723A1 publication Critical patent/EP4090723A1/de
Application granted granted Critical
Publication of EP4090723B1 publication Critical patent/EP4090723B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/02Mixtures of base-materials and thickeners
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/18Ethers, e.g. epoxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/36Esters of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/08Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/38Lubricating compositions characterised by the base-material being a macromolecular compound containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M117/00Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof
    • C10M117/06Lubricating compositions characterised by the thickener being a non-macromolecular carboxylic acid or salt thereof having more than one carboxyl group bound to an acyclic carbon atom or cycloaliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • C10M2205/0265Butene used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • C10M2205/063Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/1256Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • C10M2207/1276Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/128Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof
    • C10M2207/1285Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids containing hydroxy groups; Ethers thereof used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/285Esters of aromatic polycarboxylic acids
    • C10M2207/2855Esters of aromatic polycarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • C10M2207/2865Esters of polymerised unsaturated acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/0606Perfluoro polymers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2213/00Organic macromolecular compounds containing halogen as ingredients in lubricant compositions
    • C10M2213/06Perfluoro polymers
    • C10M2213/062Polytetrafluoroethylene [PTFE]
    • C10M2213/0623Polytetrafluoroethylene [PTFE] used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to the provision of a new lithium complex hybrid grease based on a lithium complex grease in combination with a PFPE grease, which can be used at high temperatures, does not varnish and shows a low tendency to hardening.
  • the invention further relates to the use of the new lithium complex hybrid greases in components in the vehicle sector.
  • Hybrid fats are mixtures that consist of at least two base oils that cannot be mixed with each other.
  • Hybrid fats which contain urea or urea/PTFE mixtures as thickeners and ester/PFPE as immiscible base oil components, represent an important group of these fats. With these fats it is possible to create a temperature gap between approx. 180°C, as in fluorine-free greases can be achieved up to 270°C, which is possible with pure PTPE/PFPE greases. These products can also be adapted to specific requirements more easily than is possible with pure PFPE/PTFE greases.
  • PFPE oils there are very few soluble additives known for PFPE oils, so that, for example, the corrosion protection properties of PFPE oils can only be improved to a limited extent.
  • solid substances such as sodium nitrite or magnesium oxide are used as corrosion protection.
  • the uniform distribution of a solid on the surface of a component is much more difficult to ensure than wetting the surface of a component with an oil that contains a dissolved corrosion protection additive. Therefore, the additives contained in the non-fluorine-containing liquid phase of a hybrid grease can have properties such as Provide better corrosion protection than is possible with pure PFPE/PTFE grease.
  • the reduction in the content of PFPE oils in the hybrid grease and the lower density of the hybrid grease also result in significant cost advantages.
  • ester/PFPE/PTFE/urea fats for example in the EP0902828 B1 are described or the ester/PTFE/urea fats, such as those described in US 6,063,743 described have the disadvantage that these greases tend to harden at high temperatures and have very low oil separations. In addition, they can sometimes be critical when used with certain elastomers, so that they cannot be used in a wide range, such as roller bearings, in corrugating plants. In addition, the fluorinated fats are very expensive, so that there is also a need for hybrid fats that can be produced inexpensively with the same or even better properties than the fluorinated fats.
  • EP3372660 A1 describes high-temperature greases that contain an ester oil (estolide, trimellitic acid ester), a hydrogenated or fully hydrogenated polyisobutylene and a thickener.
  • ester oil estolide, trimellitic acid ester
  • polyisobutylene a hydrogenated or fully hydrogenated polyisobutylene
  • Lithium complex greases have higher oil separation and a lower tendency to harden at high temperatures compared to ester/urea greases.
  • the upper operating temperature is significantly lower than with urea hybrid greases, which is often associated with excessive oil separation or can be attributed to the use of base oils such as poly-alpha-olefins or mineral oils, which are less thermally stable.
  • An object of the present invention was therefore to provide a lithium complex hybrid grease which overcomes the above-mentioned disadvantages and which has adequate oil separation and low hardening even at high temperatures.
  • a method for lubricating or greasing components in particular in rolling bearings, plain bearings, transport and control chains in vehicle technology, is provided, which comprises applying the lubricant composition according to the invention.
  • a method for lubricating or greasing roller bearings in continuous casting plants, transport roller bearings in continuous furnaces, open gear rings in rotary kilns, tube mills, drums and mixers, bearings in corrugated cardboard plants or film stretching plants, bearings in plants for the production and transport of foodstuffs is provided Applying the lubricant composition according to the invention includes.
  • the lubricants according to the invention can contain additives and (H) solid lubricants as further components.
  • Component (A) is contained in the lubricant composition according to the invention in an amount of 70 to 7% by weight, preferably 60 to 15% by weight.
  • Component (A) is an ester or a mixture of esters, the ester being selected from the group consisting of trimellitic acid esters which have linear or branched alkyl groups as alkoxy groups which contain 6 to 18 carbon atoms, preferably 8 to 14 carbon atoms, where the Alkoxy groups can be the same or different, pyromellitic acid esters, preferably tetrakis (2-ethylhexyl) pyromellitate, hydrogenated or unhydrogenated dimer acid esters, preferably bis (2-ethylhexyl) dimerate, estolides.
  • trimellitic acid esters which have linear or branched alkyl groups as alkoxy groups which contain 6 to 18 carbon atoms, preferably 8 to 14 carbon atoms, where the Alkoxy groups can be the same or different
  • pyromellitic acid esters preferably tetrakis (2-ethylhexyl) pyromellitate
  • Estolides are esters that contain oligomeric units made up of homopolymers of hydroxycarboxylic acids, for example 12-hydroxystearic acid, or unsaturated carboxylic acids, for example such as oleic acid. Suitable estolides are, for example, in the US 6,018,063 , US 6,316,649 , WO 2018/177588 A1 and the US 2013/0261325 A1 described.
  • Component (B) is a polyisobutylene or polybutene and is present in the composition according to the invention in an amount of 0.5 to 20% by weight; 1.5 to 15% by weight is preferably used.
  • Component (B) is a polymer, such as that in Synthetics, Mineral Oils And Bio Based Lubricants Chemistry And Technology, Second Edition, Editor Leslie R. Rudnik, authors M. Casserino, J. Corthouts, CRC Press 2013, Pages 273 - 300, (ISBN 978-1-4398-5537-9 ) is described.
  • the properties of the fat according to the invention can be adjusted can be influenced in a desired way.
  • the polyisobutylene can be used in non-hydrogenated, hydrogenated or fully hydrogenated form, and a mixture of non-hydrogenated, hydrogenated and fully hydrogenated polyisobutylene can also be used.
  • Fully hydrogenated polyisobutylenes are preferably used. Due to the production process, the non-hydrogenated polyisobutylenes contain an unsaturated end group.
  • Polyisobutylenes are polymers whose bromine number is at least 20% lower than unhydrogenated polyisobutylene of the same number-average molecular weight.
  • the bromine number for a non-hydrogenated polyisobutylene with Mn of 1300 g/mol is 14 g bromine per 100 g polyisobutylene.
  • the bromine number is fully hydrogenated polyisobutylene is less than 7 g bromine per 100 g polyisobutylene.
  • the bromine number is determined according to ASTM D2170-09 (reaproved 2018).
  • the polyisobutylene has a number-average molecular weight of 115 to 10,000 g/mol, preferably 500 to 5,000 g/mol.
  • the number-average molecular weight is determined using gel permeation chromatography according to ISO 16014-1, edition 2019-05.
  • Component (C) is contained in the lubricant composition according to the invention in an amount of 1 to 18% by weight, preferably 4 to 14% by weight.
  • Component (C) is a lithium complex soap.
  • Lithium complex soaps are understood to mean mixtures of lithium salts of monofunctional carboxylic acids, preferably carboxylic acids that contain 8 to 22 carbon atoms, particularly preferably carboxylic acids that contain 14 to 20 carbon atoms, particularly preferably 12-hydroxystearic acid and / or stearic acid with the lithium salts of higher-functional carboxylic acids, preferably dicarboxylic acids with 6 to 14 carbon atoms, particularly preferably azelaic acid, sebacic acid and dodecanedioic acid.
  • Lithium complex soaps can additionally contain short-chain carboxylic acids such as acetic acid and lactic acid and / or phosphonic acids and / or boric acid as a further acid component.
  • Component (D) is a perfluoropolyether (PFPE) according to the formula (I): R 1 -(O-CF 2 ) v -(OC 2 F 4 ) w -(O- C 3 F 6 ) x -(O- CFCF 3 ) y - (O- CF 2 CF(CF 3 )) z - OR 2 (I) where R 1 and R 2 are identical or different and are selected from -CF 3 , -C 2 F 5 , or -C 3 F 7 , v, w, x, y, z are integers from ⁇ 0 to 500.
  • PFPE oils are sold, for example, under the brand names Aflunox ® , Krytox ® , Fomblin ® and Demnum ® .
  • the PFPE oils are contained in amounts of 15 to 50% by weight in the lubricant composition according to the invention.
  • the lithium complex hybrid grease according to the invention can comprise further thickeners (E) in addition to the lithium complex thickener.
  • the further thickeners (E) are contained in the lubricant composition according to the invention in amounts of 1 to 30% by weight, preferably 3 to 20% by weight.
  • the further thickeners (E) in the hybrid grease according to the invention are selected from the group consisting of Al complex soaps, metal simple soaps of the elements of the first and second main groups of the periodic table without lithium, metal complex soaps of the elements of the first and second main groups of the periodic table without lithium , bentonites, sulfonates, silicates, aerosil, polyimides or PTFE or a mixture of the aforementioned thickeners.
  • a particularly preferred further thickener is PTFE.
  • the preferred PTFE is as Micropowder is used, which is produced thermally or by irradiating high molecular weight PTFE to reduce the molecular weight.
  • the hybrid greases according to the invention can contain further oils (F), which are contained in the lubricant composition according to the invention in amounts of 0 to 20% by weight, preferably 2 to 20% by weight.
  • Component (F) is selected from the group consisting of mineral oil, alkylated benzenes, alkylated naphthalenes, aliphatic carboxylic acid and dicarboxylic acid esters, fatty acid triglycerides, alkylated diphenyl ethers, phloroglucin esters, estolides and/or poly-alpha-olefins, alpha-olefin copolymers, metallocene catalyzed poly-alfa-olefins.
  • Preferred further oils are alkylated diphenyl ether oils.
  • Alkylated diphenyl ether oils are sold, for example, by Moresco under the brand name Hilube® .
  • the alkyl groups contain between 10 and 20 carbon atoms. On average, between one and three alkyl groups are bound to the diphenyl ether basic unit.
  • the lubricant composition according to the invention further comprises from 0 to 10% by weight, preferably from 0.1 to 10% by weight, of additives (G), which are used individually or in combination.
  • the component (G) will be selected from the group consisting of corrosion protection additives, antioxidants, wear protection additives, UV stabilizers. Both additives that are soluble in component (A) and additives that are soluble in the PFPE oils of component (D) or insoluble in both oil phases can be used.
  • antioxidants are styrenated diphenylamines, diaromatic amines, phenolic resins, thiophenolic resins, phosphites, butylated hydroxytoluene, butylated hydroxyanisole, phenyl-alpha-naphthylamine, phenyl-beta-naphthylamine, octylated/butylated diphenylamine, di-alpha-tocopherol, di-tert-butyl-phenol or di-tert-butyl-4-methylphenol, benzenepropanoic acid, sulfur-containing phenolic compounds, phenolic compounds and mixtures of these components.
  • Suitable anti-corrosion additives include triazoles, imidazolines, N-methylglycine (sarcosine), benzotriazole derivatives, N,N-bis(2-ethylhexyl)-ar-methyl-1 H-benzotriazole-1-methanamine; n-Methyl-N(1-oxo-9-octadecenyl)glycine, mixture of phosphoric acid and mono- and di-isooctyl esters reacted with (C 11-14 )-alkylamines, mixture of phosphoric acid and mono- and di-isooctyl esters reacted with tert-alkylamine and primary (C 12-14 ) amines, dodecanoic acid, triphenylphosphorothionate and amine phosphates.
  • IRGAMET ® 39 IRGACOR ® DSS G, Amin O; SARKOSYL ® O (Ciba), COBRATEC ® 122, CUVAN ® 303, VANLUBE ® 9123, CI-426, CI-426EP, CI-429 and CI-498.
  • wear protection additives are amines, amine phosphates, phosphates, thiophosphates, and mixtures of these components. Most of the compounds mentioned have organic groups.
  • Commercially available anti-wear additives include IRGALUBE ® TPPT, URGALUBE ® 232, IRGALUBE ® 349, IRGALUBE ® 211 and ADDITIN ® RC3760 Liq 3960, FIRC-SHUN ® FG 1505 and FG 1506, NA-LUBE ® KR-015FG, LUBEBOND ® , F LUORO ® FG, SYNALOX ® 40-D, ACHESON ® FGA 1820 and ACHESON ® FGA 1810.
  • PFPE derivatives can also be included as additives.
  • Other suitable substances are, for example, WO01/72759A1 , WO 01/27916A1 , EP1070074B1 , EP1659165B1 and US2015011446A1 described.
  • the lubricant compositions according to the invention can contain solid lubricants (H) which are selected from the group consisting of BN, pyrophosphate, Zn oxide, Mg oxide, pyrophosphates, thiosulfates, Mg carbonate, Ca carbonate, Ca stearate, Zn sulfide, Mo sulfide, W sulfide, Sn sulfide, graphite, graphene, nanotubes, SiO 2 modifications or a mixture thereof.
  • the solid lubricants (H) are contained in the lubricant composition according to the invention in amounts of 0 to 10% by weight, preferably 2 to 5% by weight.
  • the lubricant composition according to the invention is used in the area of components, in particular in rolling bearings, plain bearings, transport and control chains in vehicle technology, in rail vehicles, conveyor technology, in film stretching systems, in corrugated cardboard systems, in roller bearings, fan bearings, bearings in traction motors, for the lubrication of bevel gear and Helical gears, springs, screws and compressors, pneumatic components, fittings, and machine components and in systems where occasional, unintentional contact with food occurs.
  • the production of the lubricant composition according to the invention is not restricted and can be carried out using any suitable process.
  • the production of the lubricant according to the invention can be carried out, for example, by producing a base oil mixture with components (A) and/or (B) and/or (F).
  • the acids required for the lithium complex thickener (C) and an aqueous lithium hydroxide solution are melted into this base oil mixture, which is placed completely or only partially in a suitable reaction vessel containing heating, cooling and stirring devices admitted.
  • the acids can be added and neutralized individually or the monocarboxylic acid is added and neutralized first and in a second step the higher functional carboxylic acid is added and neutralized.
  • the brew is heated to 130°C to drive off water.
  • the swelling of the thickener is carried out by thermal treatment at 150°C to 210°C.
  • the thermally treated brew is then cooled, and part of the base oil mixture can also be used.
  • the components (D), (E), (G), (H) and any components not used for the base oil mixture (A), (B) and (F) are added at a suitable temperature and pre-homogenized by stirring.
  • Solid lubricant additives that are soluble in the base oil mixture are added, for example, at temperatures above their melting point.
  • Liquid additives or non-melting additives/solid lubricants/thickener components are added at temperatures below 80°C.
  • the lithium complex hybrid grease produced in this way can be homogenized using suitable equipment such as three-roll mills, colloid mills or Gaulin.
  • the lubricant composition according to the invention is produced in one process.
  • the addition of the PFPE oil (D) and the optional thickener component (E) can be omitted in the process described above, so that a lithium complex grease is formed.
  • Components (D) and (E) can be combined to form a PFPE fat by stirring and homogenizing as described above.
  • Lithium complex grease and PFPE grease can be combined in a second process step and the lubricant composition according to the invention can be produced therefrom while stirring and homogenizing.
  • the production can also be carried out using continuous processes, whereby ready-made Li complex soap in powder form can also be used.
  • Lithium complex soap grease (fat A) and a PFPE/PTFE grease (fat B) are produced separately and the two fats A and B are mixed in different ratios, stirred and homogenized by rolling.
  • a lithium complex grease consisting of 77% of a mixture of an alkyl diphenyl ether (100 mm “/sec/40 ° C) and trimellitic acid ester as well as fully hydrogenated polyisobutylene (fully hydrogenated, Mn approx. 1300 g / mol) is used as a base oil, with a viscosity at 40 ° C of 220 mm 2 /sec, then 15% lithium complex from azelaic acid and 12-hydroxystearic acid, as well as 8% of an additive package consisting of amine antioxidants, phosphates, thiadiazoles, triazoles and amine phosphates are added. The full penetration is 270 1/10 mm (see Table 1)
  • a PFPE/PTFE grease is used, containing 70% of a mixture of linear and branched PFPE, kinematic viscosity 200 mm 2 /sec at 40°C, 26% PTFE micropowder, average particle size d 50 (laser diffraction, DIN ISO 9277) approx. 5 ⁇ m, specific surface area (DIN ISO 9277) approx. 5 m 2 /g, and 4% disodium sebacate as a corrosion protection additive.
  • the full penetration is 286 1/10 mm (see Table 1)
  • a urea hybrid fat is produced consisting of 50% by weight of fat B and 50% by weight of a urea fat.
  • the urea fat consists of a mixture of a trimellitic acid ester and a reaction product of octylamine and oleylamine with an MDI/TDI mixture as a urea thickener, as well as additives.
  • the base oil viscosity is approx. 80 mm 2 /sec.
  • the working penetration is 265 mm 2 /sec (see Table 2)
  • a urea hybrid fat consisting of a complex ester, dimer acid based, V 40 apr. 400 mm"/sec at 40°C and branched PFPE oil with a kinematic viscosity of approx. 400 mm 2 /sec in a mass ratio of 2:1.
  • the urea thickener is contained at 10% and is a reaction product of octylamine and oleylamine with a MDI/TDI mixture. In addition, it contains 8% by weight of PTFE powder (as in grease B) and 5% by weight of soluble additives (antioxidants, amine phosphates). The working penetration is 290 mm 2 /sec (see Table 2 )
  • Table 1 shows the general characteristics of the lithium complex hybrid greases according to the invention of Examples B2-B4, Reference Examples B1 and B5 and Fats A and B, ⁇ b> ⁇ u>Table 1 ⁇ /u> ⁇ /b> Parameters/Grease fat (B) B1 B2 B3 B4 B5 fat (A) Work penetration 60 dT [1/10 mm] (DIN ISO 2137) 286 279 254 253 262 273 270 Delta work penetration after 100,000 dT 15 28 31 45 44 39 45 [1/10 mm] (DIN ISO 2137) Dropping point [°C] (DIN ISO 2176) >300 >300 >300 >300 >300 294 >300 Flow pressure [mbar] (-40°C) (DIN 51805) 200 375 575 850 875 875 925 Flow pressure [mbar] (-50°C) (DIN 51805) 325 575 1025 >1400 >1400 >1400 >1400 Shear viscosity, at 25°C, shear rate 300 1/
  • Table 2 shows the data of comparative examples VG1 to 2.
  • ⁇ b> ⁇ u>Table 2 ⁇ /u> ⁇ /b> Parameters/Grease VG1 VG2 Work penetration 60 dT [1/10 mm] (DIN ISO 2137) 262 290 Delta work penetration after 100,000 dT [1/10 mm] (DIN ISO 2137) 47 43 Dropping point [°C] (DIN ISO 2176) 285 285 Flow pressure [mbar] (-40°C) (DIN 51805) 725 625 Flow pressure [mbar] (-50°C) (DIN 51805) 1200 1375 Shear viscosity, at 25°C, shear rate 300 1/s (DIN 53019 -1, -3) 5913 11880 Evaporation loss, 22h/100°C [% by weight] (DIN 58397) 0.37 0.42 Oil separation, 24h/150°C [wt%], (ASTM D 6184) 0.42 0.11 Oil separation, 72h/150°C [
  • the data also suggests that a desired oil separation behavior can be adjusted by choosing the amount of fats A and B.
  • the lubricant compositions according to the invention were tested for their thermal stability and the results were compared, in particular, with those of the urea hybrid greases. For this purpose, studies were carried out regarding the evaporation and viscosity under temperature stress of 5 g of fat in a stainless steel bowl at 200 ° C. The results are shown in Tables 3 and 4.
  • the evaporation loss is determined according to DIN standard 58397. Three evaporation loss dishes made of stainless steel are required for each fat sample. The geometry of the shells is described in the standard for determining evaporation loss (DIN 58397). At the beginning, the respective empty weight of the shells is determined. The three evaporation loss dishes are then filled with the fat sample. It is important to ensure that the grease is applied without any air bubbles. The surface is smoothed using a scraper and any excess fat that has found its way into the edge recess of the bowl is removed. The trays are then stored in a standard laboratory drying cabinet with convection with the flap closed at the appropriate test temperature (here 200°C).
  • the shear viscosity is determined according to DIN standard 53019 part 1 and part 3.
  • the fat samples are each transferred to three evaporation loss dishes made of stainless steel.
  • the geometry of the shells is described in the standard for determining evaporation loss (DIN 58397).
  • the trays are then stored in a standard laboratory drying cabinet with circulation at the appropriate test temperature (here 200°C). After the specified time period (48h, 96h, 144h and 168h), the bowls are removed from the drying cabinet and allowed to cool.
  • the starting value for the shear viscosity is determined for each grease before thermal loading.
  • Shear viscosity is measured using a device that is standardly used to determine the rheological parameters of lubricants (e.g. Rheometer MCR 302 from Anton Paar).
  • a cone-plate system (DIN EN ISO 3219 and DIN 53019) is used, preferably with a measuring cone that has a diameter of 25 mm.
  • the amount of fat sample required is based on typical amounts required for rheological measurements.
  • the measuring time is 120 s, of which 60 s is the tempering or holding time.
  • the measurements are taken at a constant shear rate of 300 1/s and a temperature of 25°C.
  • the value, which can be read after 90 s, represents the shear viscosity for the respective fat sample.
  • the average value is calculated from the three individual values determined and finally stated.
  • VG2 shows a shear viscosity of 100,000 mPas after just 96 hours and is no longer lubricable. After 168 hours of testing, VG1 shows a shear viscosity that is twice as high as all compositions B1 to B5 according to the invention, see Table 4.
  • the hardening behavior of the lubricants according to the invention at high temperatures is more favorable than that of urea hybrid greases.
  • the oil separation behavior of the lubricants according to the invention can be adjusted by choosing a specific mixing ratio of the fats A (lithium complex fat) and B (PTFE/PFPE fat) and can therefore be adapted to different requirements.
  • the lubricants according to the invention can be produced in various ways.
  • a lithium complex fat (fat C) and a PFPE/PTFE fat (fat D) are produced separately and then mixed in a kettle in a ratio of 40 to 60% by weight with stirring.
  • the resulting lithium complex hybrid grease B6 is then homogenized using a three-roll mill.
  • the lithium complex grease is produced identically to grease C, but when it cools down, the components of grease D are also added, so that the lubricant composition according to the invention is produced in one operation.
  • the lubricant composition B6 according to the invention is also finally rolled.
  • a lithium complex fat consisting of 80% by weight of a mixture of an alkyl diphenyl ether (100 mm 2 /sec at 40 ° C) and a trimellitic acid ester and fully hydrogenated polyisobutylene (fully hydrogenated, Mn approx. 1300 g / mol) is produced as a base oil, whereby a viscosity at 40°C of 100 mm 2 /sec. 15% by weight of a lithium complex made from azelaic acid and 12-hydroxystearic acid, as well as 5% by weight of an additive package consisting of aminic antioxidants and phosphates are provided. The full penetration is 327 1/10 mm.
  • the full penetration is 286 1/10 mm ⁇ b> ⁇ u>Table 7 ⁇ /u> ⁇ /b> Data from Example B6 according to the invention according to Example 2 Parameters / Grease Mixed in the kettle Cooked in situ Work penetration 60dT [1/10 mm] (DIN ISO 2137) 298 265 Dropping point [°C] (DIN ISO 2176) > 300 277 Delta work penetration to 100,000dT [1/10 mm] (DIN ISO 2137) 25 36 Flow pressure -40°C [mbar] (DIN 51805) 550 725 Flow pressure -50°C [mbar] (DIN 51805) 1025 1250 Shear viscosity, at 25°C, shear rate 300 1/s, [mPa*s] (DIN 53019-1, -3) 4392 5378 Evaporation loss, 24h/150°C [% by weight] (DIN 58397) 0.46 0.50 Oil separation, 30h/150°C [wt.-%] (ASTM D 6184) 0.44
  • B6 according to production example 1 and production example 2, can be used as a lubricant with both production variants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Description

  • Die vorliegende Erfindung betrifft die Bereitstellung eines neuen Lithiumkomplexhybridfettes auf der Basis eines Lithiumkomplexfettes in Kombination mit einem PFPE-Fett, das bei hoher Temperatur eingesetzt werden kann, dabei nicht verlackt, und eine geringe Verhärtungstendenz zeigt. Des Weiteren betrifft die Erfindung die Verwendung der neuen Lithiumkomplexhybridfette in Bauteilen im Fahrzeugbereich.
  • Hybridfette sind Mischungen, die mindestens aus zwei Basisölen bestehen, die nicht miteinander mischbar sind. So stellen Hybridfette, die als Verdicker Harnstoff oder Harnstoff/PTFE-Gemische und Ester/PFPE als nicht mischbare Grundölkomponenten enthalten, eine wichtige Gruppe dieser Fette dar. Mit diesen Fetten ist es möglich, eine Temperaturlücke zwischen ca. 180°C, wie sie bei fluorfreien Fetten erreicht werden, bis zu 270°C, die mit reinen PTPE/PFPE-Fetten möglich sind, zu schließen. Auch können diese Produkte an bestimmte Anforderungen leichter angepasst werden, als dies mit reinen PFPE/PTFE-Fetten möglich ist. Für PFPE Öle sind nämlich nur sehr wenige lösliche Additive bekannt, sodass beispielsweise die Korrosionsschutzeigenschaften von PFPE Ölen nur bedingt verbessert werden können. Bei PFPE/PTFE Fetten werden daher feste Stoffe wie Natriumnitrit oder Magnesiumoxid als Korrosionsschutz eingesetzt. Die gleichmäßige Verteilung eines Feststoffes auf der Oberfläche eines Bauteiles ist aber viel schwieriger zu gewährleisten als die Benetzung der Oberfläche eines Bauteiles mit einem Öl, das ein gelöstes Korrosionsschutzadditiv enthält. Daher können die in der nicht fluorhaltigen flüssigen Phase enthaltenen Additive eines Hybridfettes Eigenschaften wie Korrosionsschutz besser bewerkstelligen als es bei einem reinen PFPE/PTFE Fett möglich ist. Durch die Reduktion des Gehaltes an PFPE Ölen im Hybridfett und die geringere Dichte des Hybridfettes ergeben sich zudem signifikante Kostenvorteile. Die Ester/PFPE/PTFE/Harnstoff-Fette, die beispielsweise in der EP0902828 B1 beschrieben sind oder die Ester/PTFE/Harnstoff-Fette, wie sie beispielsweise in der US 6,063,743 beschrieben sind, haben den Nachteil, dass diese Fette bei hohen Temperaturen zur Nachhärtung neigen und sehr geringe Ölabscheidungen haben. Darüber hinaus können sie teilweise kritisch beim Einsatz mit bestimmten Elastomeren sein, so dass sie nicht in einem weiten Spektrum, wie z.B. Rollenlagern, in Wellpappenanlagen eingesetzt werden können. Darüber hinaus sind die fluorierten Fette sehr teuer, so dass auch ein Bedarf an Hybridfetten besteht, die kostengünstig mit den gleichen oder noch besseren Eigenschaften als die fluorierten Fette hergestellt werden können.
  • EP3372660 A1 beschreibt Hochtemperaturfette, die ein Esteröl (Estolide, Trimellitsäureester), ein hydriertes oder vollhydriertes Polyisobutylen und ein Verdickungsmittel enthalten.
  • Lithiumkomplexfette weisen eine höhere Ölabscheidung und eine geringere Verhärtungstendenz bei hohen Temperaturen verglichen mit Ester/Harnstoff-Fetten auf. Allerdings ist die obere Gebrauchstemperatur deutlich niedriger als bei Harnstoffhybridfetten, was oft mit einer zu hohen Ölabscheidung in Zusammenhang gebracht wird oder aber auf die Verwendung von Grundölen wie Poly-alpha-olefinen oder Mineralölen, die thermisch weniger beständig sind, zurückzuführen ist.
  • Eine Aufgabe der vorliegenden Erfindung bestand daher darin, ein Lithiumkomplexhybridfett bereitzustellen, mit dem die vorstehend genannten Nachteile überwunden werden und das eine entsprechend ausreichende Ölabscheidung und eine geringe Verhärtung selbst bei hohen Temperaturen aufweist.
  • Diese Aufgabe konnte überraschenderweise dadurch gelöst werden, dass Lithiumkomplexfette, die Polyisobutylen und Ester enthalten mit PFPE-Ölen oder PFPE-Fetten, insbesondere PFPE/PTFE-Fetten kombiniert werden und so eine Hochtemperaturperformance erreicht werden kann, die an die Ester/Harnstoff/PFPE-Hybridfette heranreicht, aber nicht deren Nachteile aufweist. Überraschenderweise kann die Ölabscheidung durch Auswahl der Mengenanteile der beiden Fette so eingestellt werden, dass die Ölabscheidung niedriger als bei den beiden zur Mischung verwendeten Fetten liegt.
  • Des Weiteren wird ein Verfahren zur Schmierung oder zum Fetten von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik bereitgestellt, dass das Auftragen der erfindungsgemäßen Schmiermittelzusammensetzung umfasst.
  • Außerdem wird ein Verfahren zur Schmierung oder zum Fetten von Laufrollenlagern in Stranggießanlagen, Transportrollenlagern in Durchlauföfen, von offenen Zahnkränzen in Drehrohröfen, Rohrmühlen, Trommeln und Mischern, von Lagern in Wellpappanlagen oder Folienreckanlagen, Lagern zur Anlagen zur Herstellung und Transport von Lebensmitteln bereitgestellt, dass das Auftragen der erfindungsgemäßen Schmiermittelzusammensetzung umfasst.
  • Die erfindungsgemäße Schmierstoffzusammensetzung umfasst
    1. (A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
    2. (B) Polyisobutylenen,
    3. (C) Lithiumkomplexseifen und
    4. (D) PFPE-Öle.
  • Eine bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
    1. (A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
    2. (B) Polyisobutylenen,
    3. (C) Lithiumkomplexseifen,
    4. (D) PFPE-Öle und
    5. (E) ein weiteres Verdickungsmittel.
  • Eine besonders bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
    1. (A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
    2. (B) Polyisobutylenen,
    3. (C) Lithiumkomplexseifen,
    4. (D) PFPE-Öle und
    5. (E) PTFE als weiteres Verdickungsmittel.
  • Eine insbesonders bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
    • (A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
    • (B) Polyisobutylenen,
    • (C) Lithiumkomplexseifen,
    • (D) PFPE-Öle und
    • (F) ein weiteres Grundöl, wobei akylierte Diphenylether bevorzugt sind.
  • Eine weitere bevorzugte erfindungsgemäße Schmierstoffzusammensetzung umfasst
    1. (A) einen Ester oder Mischung von Estern, die insbesondere ausgewählt werden aus der Gruppe bestehend aus Trimellithsäureestern, Pyromellithsäureestern, Dimersäureestern, Estoliden,
    2. (B) Polyisobutylenen,
    3. (C) Lithiumkomplexseifen,
    4. (D) PFPE-Öle,
    5. (E) ein weiteres Verdickungsmittel und
    6. (F) alkylierte Diphenylether.
  • Die erfindungsgemäßen Schmierstoffe können als weitere Komponente (G) Additive und (H) Festschmierstoffe enthalten.
  • Komponente (A)
  • Die Komponente (A) ist in einer Menge von 70 bis 7 Gew.-%, bevorzugt 60 bis 15 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
  • Die Komponente (A) ist ein Ester oder ein Gemisch von Estern, wobei der Ester ausgewählt wird aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppen lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppen gleich oder verschieden sein können, Pyromellithsäureestern, bevorzugt Tetrakis(2-ethylhexyl)pyromellitat, hydrierte oder unhydrierte Dimersäureester, bevorzugt Bis(2-ethylhexyl)dimerat, Estolide.
  • Unter Estoliden versteht man Ester, die oligomere Einheiten aufgebaut aus Homopolymeren von Hydroxycarbonsäuren, beispielsweise von 12-Hydroxystearinsäure oder ungesättigten Carbonsäuren, beispielsweise wie Ölsäure enthalten. Geeignete Estolide sind beispielsweise in der US 6,018,063 , US 6,316,649 , WO 2018/177588 A1 und der US 2013/0261325 A1 beschrieben.
  • Komponente (B)
  • Die Komponente (B) ist ein Polyisobutylen oder Polybuten und in einer Menge von 0,5 bis 20 Gew.-% in der erfindungsgemäßen Zusammensetzung vorhanden, bevorzugt werden 1,5 bis 15 Gew.-% eingesetzt.
  • Bei Komponente (B) handelt es sich um ein Polymer, wie es beispielsweise in Synthetics, Mineral Oils And Bio Based Lubricants Chemistry And Technology, Second Edition, Editor Leslie R. Rudnik, Autoren M. Casserino, J. Corthouts, CRC Press 2013, Pages 273 - 300, (ISBN 978-1-4398-5537-9) beschrieben wird.
  • Durch geeignete Wahl des Polyisobutylens, insbesondere im Hinblick auf Hydrierungsgrad und Molekulargewicht, können die Eigenschaften des erfindungsgemäßen Fetts, beispielsweise deren kinematische Viskosität, in erwünschter Weise beeinflusst werden. Das Polyisobutylen kann in nicht hydrierter" hydrierter oder vollhydrierter Form eingesetzt werden, ebenso kann eine Mischung aus nicht hydriertem, hydriertem und vollhydriertem Polyisobutylen verwendet werden. Bevorzugt werden vollhydrierte Polyisobutylene eingesetzt. Die nicht hydrierten Polyisobutylene enthalten herstellungsbedingt eine ungesättigte Endgruppe. Unter hydrierten bzw. teilhydrierten Polyisobutylenen werden solche Polymere verstanden, deren Bromzahl im Vergleich zum unhydrierten Polyisobutylen gleicher zahlengemittelten Molekularmasse um mindestens 20% geringer ist. So beträgt die Bromzahl für ein nicht hydriertes Polyisobutylen mit Mn von 1300 g/mol 14 g Brom pro 100 g Polyisobutylen. Die Bromzahl bei vollhydrierten Polyisobutylenen liegt unter 7 g Brom pro 100 g Polyisobutylen. Die Bromzahl wird gemäß ASTM D2170-09 (reaproved 2018) bestimmt.
  • Gemäß einer weiteren bevorzugten Ausführungsform weist das Polyisobutylen ein zahlenmittleres Molekulargewicht von 115 bis 10000 g/mol, vorzugsweise von 500 bis 5000 g/mol auf. Das Zahlenmittlere Molekulargewicht wird nach ISO 16014-1, Ausgabe 2019-05 mittels Gelpermeationschromatographie bestimmt.
  • Komponente (C)
  • Die Komponente (C) ist in einer Menge von 1 bis 18 Gew.-%, bevorzugt 4 bis 14 Gew.% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
  • Bei der Komponente (C) handelt es sich um eine Lithiumkomplexseife. Unter Lithiumkomplexseifen versteht man Gemische von Lithiumsalzen aus monofunktionellen Carbonsäuren, bevorzugt Carbonsäuren die 8 bis 22 Kohlenstoffatome enthalten, insbesondere bevorzugt Carbonsäuren die 14 bis 20 Kohlenstoffatome enthalten, insbesondere bevorzugt 12-Hydroxystearinsäure und/oder Stearinsäure mit den Lithiumsalzen höherfunktionellen Carbonsäuren, bevorzugt Dicarbonsäuren mit 6 bis 14 Kohlenstoffatomen, insbesondere bevorzugt Azelainsäure, Sebacinsäure und Dodecandisäure. Lithiumkomplexseifen können zusätzlich kurzkettige Carbonsäuren wie Essigsäure und Milchsäure und/oder Phosphonsäuren und/oder Borsäure als weiter Säurekomponente enthalten.
  • Komponente (D)
  • Die Komponente (D) ist ein Perfluorpolyether (PFPE) gemäß der Formel (I):

            R1-(O-CF2)v-(O-C2F4)w-(O- C3F6)x-(O- CFCF3)y- (O- CF2CF(CF3)) z -O-R2     (I)

    wobei R1 und R2 identisch oder verschieden sind und ausgewählt werden aus -CF3, -C2F5, oder -C3F7 , v, w, x, y, z sind ganze Zahlen von ≥ 0 bis 500. PFPE-Öle werden beispielsweise unter dem Markennamen Aflunox®, Krytox®, Fomblin® und Demnum® vertrieben.
  • Die PFPE Öle sind in Mengen von 15 bis 50 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
  • Komponente (E)
  • Das erfindungsgemäße Lithiumkomplexhybridfett kann neben dem Lithiumkomplexverdicker weitere Verdickungsmittel (E) umfassen.
  • Die weiteren Verdickungsmittel (E) sind in Mengen von 1 bis 30 Gew.-%, bevorzugt 3 bis 20 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten. Die weiteren Verdickungsmittel (E) in dem erfindungsgemäßen Hybridfett werden ausgewählt aus der Gruppe bestehend aus Al-Komplexseifen, Metall-Einfachseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Metall-Komplexseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Bentonite, Sulfonate, Silikate, Aerosil, Polyimide oder PTFE oder einer Mischung der vorgenannten Verdickungsmittel. Ein besonders bevorzugtes weiteres Verdickungsmittel ist PTFE. Das bevorzugte PTFE wird als Mikropulver eingesetzt, das thermisch oder durch Bestrahlen von hochmolekularem PTFE unter Abbau des Molekulargewichtes hergestellt wird.
  • Komponente (F)
  • Die erfindungsgemäßen Hybridfette können weitere Öle (F) enthalten, die in Mengen von 0 bis 20 Gew.-%, bevorzugt zu 2 bis 20 Gew.-% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten sind.
  • Die Komponente (F) wird ausgewählt aus der Gruppe bestehend aus Mineralöl, alkylierten Benzolen, alkylierte Naphthaline, aliphatischen Carbonsäure- und Dicarbonsäureestern, Fettsäuretriglyceriden, alkylierte Diphenylether, Phloroglucinester, Estolide und/oder Poly-alpha-olefinen, alpha-Olefin-Copolymere, Metallocen katalysierte Poly-alfa-olefine. Bevorzugte weitere Öle sind alkylierte Diphenyletheröle. Alkylierte Diphenyletheröle werden beispielsweise unter dem Markennamen Hilube® von der Fa. Moresco vertrieben. Die Alkylgruppen enthalten zwischen 10 und 20 Kohlenstoffatome. Im Mittel sind zwischen einer und drei Alkylgruppen an die Diphenylether-Grundeinheit gebunden.
  • Komponente (G)
  • Das erfindungsgemäße Schmierstoffzusammensetzung umfasst des Weiteren von 0 bis 10 Gew.%, bevorzugt von 0,1 bis 10 Gew.-% Additive (G), die einzeln oder in Kombination eingesetzt werden.
  • Die Komponente (G) wird ausgewählt aus der Gruppe bestehend aus Korrosionsschutzadditiven, Antioxidantien, Verschleißschutzadditiven, UV-Stabilisatoren, ausgewählt werden. Es können sowohl Additive verwendet werden, die in der Komponente (A) löslich als auch Additive, die in den PFPE-Ölen der Komponente (D) löslich oder aber auch in beiden Ölphasen unlöslich sind.
  • Beispiele für Antioxidantien sind styrolisierte Diphenylamine, diaromatische Amine, Phenolharze, Thiophenolharze, Phosphite, butyliertes Hydroxytoluol, butyliertes Hydroxyanisol, Phenyl-alpha-naphthylamin, Phenyl-beta-naphthylamin, octyliertes/butyliertes Diphenylamin, di-alpha-Tocopherol, di-tert.-butyl-Phenol oder ditert.butyl-4-methylphenol, Benzolpropansäure, schwefelhaltige Phenolverbindungen, Phenolverbindungen und Mischungen dieser Komponenten.
  • Beispiele für geeignete Korrosionsschutzadditive, Metalldesaktivatoren oder lonen-Komplexbildner enthalten. Hierzu zählen Triazole, Imidazoline, N-Methylglycin (Sarcosin), Benzotriazolderivate, N,N-Bis(2-ethylhexyl)-ar-methyl-1 H-benzotriazol-1-methanamin; n-Methyl-N(1-oxo-9-octadecenyl)glycin, Gemisch aus Phosphorsäure und Mono-und Diisooctylester umgesetzt mit (C11-14)-Alkylaminen, Gemisch aus Phosphorsäure und Mono-und Diisooctylester umgesetzt mit tert.-Alkylamin und primären (C12-14)-Aminen, Dodekansäure, Triphenylphosphorthionat und Aminphosphate. Kommerziell erhältliche Additive sind die folgenden: IRGAMET® 39, IRGACOR® DSS G, Amin O; SARKOSYL® O (Ciba), COBRATEC® 122, CUVAN® 303, VANLUBE® 9123, CI-426, CI-426EP, CI-429 und CI-498.
  • Weitere Verschleißschutzadditive sind Amine, Aminphosphate, Phosphate, Thiophosphate, und Mischungen dieser Komponenten. Meistens weisen die genannten Verbindungen organische Gruppen auf. Zu den kommerziell erhältlichen Verschleißschutzadditiven gehören IRGALUBE® TPPT, URGALUBE® 232, IRGALUBE® 349, IRGALUBE® 211 und ADDITIN® RC3760 Liq 3960, FIRC-SHUN® FG 1505 und FG 1506, NA-LUBE® KR-015FG, LUBEBOND®, FLUORO® FG, SYNALOX® 40-D, ACHESON® FGA 1820 und ACHESON® FGA 1810.
  • Als Additive können auch PFPE-Derivate enthalten sein. Beispielsweise PFPE-Carbonsäuren, deren Metall- und Ammoniumsalze, deren Ester- und Amid-Derivate. Weitere geeignete Substanzen sind beispielsweise in WO01/72759A1 , WO 01/27916A1 , EP1070074B1 , EP1659165B1 und US2015011446A1 beschrieben.
  • Komponente (H)
  • Des Weiteren können die erfindungsgemäßen Schmierstoffzusammensetzungen Festschmierstoffe (H) enthalten, die ausgewählt werden aus der Gruppe bestehend aus BN, Pyrophosphat, Zn-Oxid, Mg-Oxid, Pyrophosphate, Thiosulfate, Mg-Carbonat, Ca-Carbonat, Ca-Stearat, Zn-Sulfid, Mo-sulfid, W-sulfid, Sn-Sulfid, Graphite, Graphen, Nano-Tubes, SiO2-Modifikationen oder eine Mischung daraus enthalten. Die Festschmierstoffe (H) sind in Mengen von 0 bis 10 Gew.-%, bevorzugt 2 bis 5 Gew.% in der erfindungsgemäßen Schmierstoffzusammensetzung enthalten.
  • Die erfindungsgemäße Schmierstoffzusammensetzung wird im Bereich von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik, bei Schienenfahrzeugen, der Fördertechnik, bei Folienreckanlagen, bei Wellpappanlagen, von Laufrollenlagern, Lüfterlagern, Lagern von Traktionsmotoren, zur Schmierung von Kegelrad- und Stirnradgetrieben, Federn, Schrauben und Kompressoren, Pneumatikkomponenten, Armaturen, und von Maschinenbauteilen und in Anlagen, bei denen es zum gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommt, eingesetzt.
  • Die beigefügten Figuren zeigen die Vorteile der erfindungsgemäßen Lithiumhybridkomplexfette:
    • Fig. 1 zeigt die Walkpenetration 60dT,
    • Fig. 2 zeigt die Ölabscheidung, d.h. den Verlust des Öls aus dem Schmierfett.
  • Die Erfindung nun anhand der folgenden Beispiele näher erläutert.
  • Herstellung der erfindungsgemäßen Schmierstoffzusammensetzungen
  • Die Herstellung der erfindungsgemäßen Schmierstoffzusammensetzung ist nicht eingeschränkt und kann nach allen geeigneten Verfahren durchgeführt werden.
  • Die Herstellung der erfindungsgemäßen Schmierstoffherstellung kann beispielsweise so erfolgen, dass mit den Komponenten (A) und/oder (B) und/oder (F) ein Grundölgemisch hergestellt wird. In diesem Grundölgemisch, das komplett oder nur teilweise in einem geeigneten Reaktionsbehälter, der Heiz-, Kühl- und Rühreinrichtungen enthält, vorgelegt wird, werden die für den Lithiumkomplexverdicker (C) erforderlichen Säuren eingeschmolzen und eine wässrige Lithiumhydroxidlösung zugegeben. Dadurch bildet sich ein Sud, der die Lithiumseifen der Carbonsäuren enthält. Die Säuren können einzeln zugegeben und neutralisiert werden oder aber es wird erst die Monocarbonsäure zugegeben und neutralisiert und in einem zweiten Schritt die höherfunktionelle Carbonsäure zugegeben und neutralisiert. Der Sud wird auf 130°C erhitzt um Wasser auszutreiben. Die Quellung des Verdickers (Lithiumkomplexseife) wird durch thermische Behandlung bei 150°C bis 210°C durchgeführt. Der thermisch behandelte Sud wird dann abgekühlt, wobei auch ein Teil des Grundölgemisches verwendet werden kann. Die Komponenten (D), (E), (G), (H) und eventuell nicht für das Grundölgemisch verwendeten (A), (B) und (F) werden bei einer geeigneten Temperatur zugegeben und durch Rühren vorhomogenisiert.
  • Feste Schmierstoffadditive, die im Grundölgemisch löslich sind, werden beispielsweise bei Temperaturen oberhalb ihres Schmelzpunktes zugegeben. Flüssige Additive oder nicht schmelzende Additive/Festschmierstoffe/Verdickerkomponenten werden bei Temperaturen unter 80°C zugegeben. Das so hergestellte Lithiumkomplexhybridfett kann durch geeignete Geräte wie Dreiwalzwerke, Kolloidmühlen oder Gaulin homogenisiert werden.
  • in dem so beschriebenen Verfahren wird die erfindungsgemäße Schmierstoffzusammensetzung in einem Prozess hergestellt. Alternativ kann die Zugabe des PFPE-Öles (D) und der optionalen Verdickerkomponente (E) in dem oben beschriebenen Verfahren unterbleiben, so dass ein Lithiumkomplexfett entsteht. Die Komponenten (D) und (E) können durch Rühren, Homogenisieren wie oben beschrieben zu einem PFPE-Fett vereinigt werden. Lithiumkomplexfett und PFPE-Fett können in einem zweiten Verfahrensschritt vereinigt werden und daraus unter Rühren und Homogenisieren die erfindungsgemäße Schmierstoffzusammensetzung hergestellt werden.
  • Die Herstellung kann auch mit kontinuierlichen Verfahren erfolgen, wobei auch Li-Komplex-Fertigseife in Pulverform verwendet werden kann.
  • Beispiel 1
  • Herstellung mehrerer erfindungsgemäßer Schmierstoffzusammensetzungen, Vergleich mit den zur Herstellung verwendeten Lithiumkomplexfett bzw. PFPE/PTFE-Fett, Vergleich mit Harnstoff Hybridfetten
  • Herstellung
  • Lithiumkomplexseifenfett (Fett A) und ein PFPE/PTFE-Fett (Fett B) werden separat hergestellt und die beiden Fette A und B in unterschiedlichen Verhältnissen vermischt, gerührt und durch Walzen homogenisiert.
  • Fett A
  • Es wird ein Lithiumkomplexfett bestehend aus 77 % einer Mischung eines Alkyldiphenylether (100 mm"/sec/40°C) und Trimellithsäureester sowie vollhydriertem Polyisobutylen (vollhydriert, Mn ca. 1300 g/mol) als Grundöl, wobei sich eine Viskosität bei 40°C von 220 mm2/sec ergibt, hergestellt, dann werden 15 % Lithiumkomplex aus Azelainsäure und 12-Hydroxystearinsäure, sowie 8 % eines Additivpackages bestehend aus aminischen Antioxidantien, Phosphaten, Thiadiazolen, Triazolen und Aminphosphaten zugegeben. Die Walkpenetration liegt bei 270 1/10 mm (siehe Tabelle 1)
  • Fett B
  • Es wird ein PFPE/PTFE-Fett, enthaltend zu 70 % eine Mischung aus linearem und verzweigtem PFPE, kinematische Viskosität 200 mm2/sec bei 40°C, 26 % PTFE-Mikropulver, durchschnittliche Teilchengröße d 50 (Laserbeugung, DIN ISO 9277) ca. 5 µm, spezifische Oberfläche (DIN ISO 9277) ca. 5 m2/g, und 4 % Dinatriumsebacat als Korrosionschutzadditiv hergestellt. Die Walkpenetration liegt bei 286 1/10 mm (siehe Tabelle 1)
  • Beispiel 1 (B1) (Referenzbeispiel)
  • Mischung aus Fett A und Fett B im Verhältnis 10 Gew.-% zu 90 Gew.-%.
  • Beispiel 2 (B2)
  • Mischung aus Fett A und Fett B im Verhältnis 30 Gew.-% zu 70 Gew.-%.
  • Beispiel 3 (B3)
  • Mischung aus Fett A und Fett B im Verhältnis 50 Gew.-% zu 50 Gew.-%.
  • Beispiel 4 (B4)
  • Mischung aus Fett A und Fett B im Verhältnis 70 Gew.-% zu 30 Gew.-%.
  • Beispiel 5 (B5) (Referenzbeispiel)
  • Mischung aus Fett A und Fett B im Verhältnis 90 Gew.-% zu 10 Gew.-%.
  • Vergleichsbeispiel 1 (VG1)
  • Es wird ein Harnstoffhybridfett bestehend zu 50 Gew.-% aus Fett B und zu 50 Gew.% aus einem Harnstofffett hergestellt. Das Harnstofffett besteht aus einer Mischung eines Trimellitsäureesters und einem Reaktionsprodukt aus Octylamin und Oleylamin mit einem MDI/TDI-Gemisch als Harnstoffverdicker, sowie Additiven. Die Grundölviskosität liegt bei ca. 80 mm2/sec. Die Walkpenetration liegt bei 265 mm2/sec (siehe Tabelle 2)
  • Vergleichsbeispiel 2 (VG2)
  • Es wird ein Harnstoffhybridfett bestehend aus einem Komplexester, Dimersäure basiert, V 40 apr. 400 mm"/sec bei 40°C und verzweigtem PFPE-ÖI mit einer kinematischen Viskosität von ca. 400 mm2/sec im Massenverhältnis 2:1 hergestellt. Der Harnstoffverdicker ist zu 10 % enthalten und ist ein Reaktionsprodukt aus Octylamin und Oleylamin mit einem MDI/TDI-Gemisch. Darüber hinaus sind 8 Gew.% PTFE-Pulver (wie bei Fett B) und 5 Gew.-% lösliche Additive (Antioxidantien, Aminphosphate) enthalten. Die Walkpenetration liegt bei 290 mm2/sec (siehe Tabelle 2)
  • Tabelle 1 zeigt die allgemeinen Kenndaten der erfindungsgemäßen Lithumkomplexhybridfette der Beispiele B2-B4, der Referenzbeispiele B1 und B5 und der Fette A und B, Tabelle 1
    Parameter/Schmierfett Fett (B) B1 B2 B3 B4 B5 Fett (A)
    Walkpenetration 60 dT [1/10 mm] (DIN ISO 2137) 286 279 254 253 262 273 270
    Delta Walkpenetration nach 100000 dT 15 28 31 45 44 39 45
    [1/10 mm] (DIN ISO 2137) Tropfpunkt [°C] (DIN ISO 2176) >300 >300 >300 >300 >300 294 >300
    Fließdruck [mbar] (-40°C) (DIN 51805) 200 375 575 850 875 875 925
    Fließdruck [mbar] (-50°C) (DIN 51805) 325 575 1025 >1400 >1400 >1400 >1400
    Scherviskosität, bei 25°C, Scherrate 300 1/s (DIN 53019 -1, -3) 6095 7557 7253 7210 6849 6106 5966
    Verdampfungsverlust, 22h/100°C [Gew %] (DIN 58397) 0,12 0,19 0,24 0,36 0,36 0,45 0,46
    Ölabscheidung, 24h/150°C [Gew %], (ASTM D 6184) 6,93 7,42 2,05 0,57 1,49 3,95 5,18
    Ölabscheidung, 72h/150°C [Gew %], (ASTM D 6184) 7,24 7,75 2,81 0,73 3,01 7,12 7,84
    Ölabscheidung, 168h/40°C [Gew %], (DIN 51817) 2,88 2,89 1,28 0,22 0,76 1,29 1,41
    Wasserbeständigkeit statisch, 3h/90°C (DIN 51807) 0 0 1 1 1 1 1
    Kupferkorrosion, 24h/120°C (DIN 51811) 2 1 - 2 1 1 1 1 1
  • Tabelle 2 zeigt die Daten der Vergleichsbeispiele VG1 bis 2. Tabelle 2
    Parameter/Schmierfett VG1 VG2
    Walkpenetration 60 dT [1/10 mm] (DIN ISO 2137) 262 290
    Delta Walkpenetration nach 100000 dT [1/10 mm] (DIN ISO 2137) 47 43
    Tropfpunkt [°C] (DIN ISO 2176) 285 285
    Fließdruck [mbar] (-40°C) (DIN 51805) 725 625
    Fließdruck [mbar] (-50°C) (DIN 51805) 1200 1375
    Scherviskosität, bei 25°C, Scherrate 300 1/s (DIN 53019 -1, -3) 5913 11880
    Verdampfungsverlust, 22h/100°C [Gew %] (DIN 58397) 0,37 0,42
    Ölabscheidung, 24h/150°C [Gew %], (ASTM D 6184) 0,42 0,11
    Ölabscheidung, 72h/150°C [Gew %], (ASTM D 6184) 0,52 0,21
    Ölabscheidung, 168h/40°C [Gew %], (DIN 51817) 0,82 0,39
    Wasserbeständigkeit statisch, 3h/90°C (DIN 51807) 0 0
    Kupferkorrosion, 24h/120°C (DIN 51811) 1 1
  • Wie in Figur 1 (Walkpenetration der erfindungsgemäßen Zusammensetzungen) zu erkennen ist, ergibt sich für die Zusammensetzungen B2, B3 und B4 eine niedrigere Walkpenetration als für die beiden eingesetzten Fette A und B. Dies zeigt einen unerwarteten synergistischen Effekt durch die Kombination der beiden Fetttypen zu den erfindungsgemäßen Zusammensetzungen.
  • Wie in Figur 2 (Ölabscheidung der erfindungsgemäßen Zusammensetzungen im Vergleich) zu erkennen ist, zeigen die erfindungsgemäßen Zusammensetzungen eine niedrigere Ölabscheidung als die Fette A und B, aus denen sie hergestellt wurden. Dieses Verhalten zeigt den unerwarteten synergistischen Effekt, der durch die erfindungsgemäße Zusammensetzung hervorgerufen wird. Die Ölabscheidung erreicht nahezu die niedrigen Werte der beiden Vergleichsprodukte VG1 und VG2. Die Reduktion der Ölabscheidung im Vergleich Fett B zeigt den Vorteil gegenüber den reinen PFPE/PTFE Fetten auf.
  • Auch legen die Daten nahe, dass ein gewünschtes Ölabscheidungsverhalten durch Wahl der Menge an Fetten A und B eingestellt werden kann.
  • Bestimmung des Verdampfungsverlustes
  • Die erfindungsgemäßen Schmierstoffzusammensetzungen wurden auf ihre thermische Beständigkeit überprüft und die Ergebnisse vor allem mit denen der Harnstoff-Hybridfette verglichen. Dazu wurden Untersuchungen hinsichtlich der Verdampfung und Viskosität unter Temperaturbelastung von 5 g Fett Einwaage in einem Edelstahl-Schälchen bei 200°C durchgeführt. Die Ergebnisse sind in den Tabellen 3 und 4 gezeigt.
  • Der Verdampfungsverlust wird nach der DIN-Norm 58397 bestimmt. Für jede Fettprobe werden jeweils drei Verdampfungsverlustschalen aus nicht-rostendem Stahl benötigt. Die Geometrie der Schalen ist in der Norm zur Bestimmung des Verdampfungsverlustes (DIN 58397) beschrieben. Zu Beginn wird das jeweilige Leergewicht der Schalen ermittelt. Im Anschluss werden die drei Verdampfungsverlustschalen mit der Fettprobe gefüllt. Dabei ist darauf zu achten, das Fett luftblasenfrei aufzubringen. Mit einem Abstreifer wird die Oberfläche glattgestrichen und überschüssiges Fett, das in die Randvertiefung der Schale gelangt ist, wird entfernt. Die Schalen werden anschließend in einem gängigen Labor-Trockenschrank mit Konvektion bei geschlossener Klappe bei entsprechender Prüftemperatur (hier 200°C) eingelagert. Nach der jeweils vorgegebenen Zeitdauer (48h, 96h, 144h und 168h) entnimmt man die Schalen aus dem Trockenschrank und lässt diese erkalten. Anschließend werden die Schalen gewogen. Der Verdampfungsverlust wird aus der Differenz von Einwaage zu gemessenem Wert ermittelt. Aus den drei Einzelwerten wird ein Mittelwert bestimmt (VM) Zusammen mit dem Mittelwert der drei Einwaagen (AM) lässt sich der Verdampfungsverlust berechnen. V = (VM / AM)*100 [% ]. Nach dem Auswiegen werden die Schalen bis zum nächsten Zeitpunkt in den Trockenschrank gestellt. Dies wird solange wiederholt, bis 168h vergangen sind. Tabelle 3
    Verdampfungsverlust-Test 200°C B1 B2 B3 B4 B5
    Verdampfungsverlust 48h/200°C DIN 58397 Gew % 3,97 6,60 11,28 14,51 16,44
    Verdampfungsverlust 96h/200°C DIN 58397 Gew % 5,27 8,75 15,22 19,69 22,17
    Verdampfungsverlust 144h/200°C DIN 58397 Gew % 6,33 10,63 18,42 24,71 27,91
    Verdampfungsverlust 168h/200°C DIN 58397 Gew % 7,15 12,35 21,15 28,98 33,11
  • Bestimmung der Scherviskosität
  • Die Scherviskosität wird nach der DIN-Norm 53019 Teil 1 und Teil 3 bestimmt. Die Fettproben werden in jeweils drei Verdampfungsverlustschalen aus nicht-rostendem Stahl überführt. Die Geometrie der Schalen ist in der Norm zur Bestimmung des Verdampfungsverlustes (DIN 58397) beschrieben. Die Schalen werden anschließend in einem gängigen Labor-Trockenschrank mit Umwälzung bei entsprechender Prüftemperatur (hier 200°C) eingelagert. Nach der jeweils vorgegebenen Zeitdauer (48h, 96h, 144h und 168h) entnimmt man die Schalen aus dem Trockenschrank und lässt diese erkalten. Der Startwert für die Scherviskosität wird von jedem Fett vor der thermischen Belastung bestimmt.
  • Die Messung der Scherviskosität erfolgt mit einem Gerät, das standardmäßig zur Bestimmung rheologischer Parameter von Schmierstoffen verwendet wird (z.B. Rheometer MCR 302 von Anton Paar).
  • Eingesetzt wird dabei ein Kegel-Platte-System (DIN EN ISO 3219 und DIN 53019), bevorzugt mit einem Messkegel, der einen Durchmesser von 25 mm aufweist. Die benötigte Menge an Fettprobe orientiert sich an typischen Mengen, die für rheologische Messungen erforderlich sind. Die Messdauer beträgt 120 s, wovon 60 s Temperier- bzw. Haltezeit sind. Gemessen wird bei einer konstanten Scherrate von 300 1/s und einer Temperatur von 25°C. Der Wert, der nach 90 s abgelesen werden kann, stellt die Scherviskosität für die jeweilige Fettprobe dar. Aus den drei ermittelten Einzelwerten wird der Mittelwert gebildet und final angegeben. Tabelle 4
    B1 B2 B3 B4 B5
    Scherviskosität Startwert DIN 53019-1, -3 mPas 7557 7253 7210 6849 6106
    Scherviskosität 48h/200°C DIN 53019-1, -3 mPas 6848 9857 9210 8651 5091
    Scherviskosität 96h/200°C DIN 53019-1, -3 mPas 7671 10479 10292 9624 6587
    Scherviskosität 144h/200°C DIN 53019-1, -3 mPas 6800 11764 11112 9986 8917
    Scherviskosität 168h/200°C DIN 53019-1, -3 mPas 7494 10994 15452 9340 13623
  • Die Fette der Beispiele 1 bis 5 wurden nun mit den Fetten der Vergleichsbeispiele 1 und 2 und den beiden Einzelfetten (A) und (B) hinsichtlich ihrer thermischen Beständigkeit verglichen. Die Ergebnisse sind in den Tabellen 5 und 6 gezeigt. Tabelle 5
    Verdampfungsverlust-Test 200°C VG1 VG2 Fett A Fett B
    Verdampfungsverlust 48h/200°C DIN 58397 Gew % 10,43 11,98 17,87 0,88
    Verdampfungsverlust 96h/200°C DIN 58397 Gew % 13,47 14,17 24,75 1,11
    Verdampfungsverlust 144h/200°C DIN 58397 Gew % 17,03 16,70 31,39 1,30
    Verdampfungsverlust 168h/200°C DIN 58397 Gew % 20,67 19,18 37,66 1,45
    Tabelle 6
    VG1 VG2 Fett A Fett B
    Scherviskosität Startwert DIN 53019-1, -3 mPas 5913 11880 6095 5966
    Scherviskosität 48h/200°C DIN 53019-1, -3 mPas 9400 45976 7801 5800
    Scherviskosität 96h/200°C DIN 53019-1, -3 mPas 12844 100000 8317 7104
    Scherviskosität 144h/200°C DIN 53019-1, -3 mPas 18286 100000 7737 12093
    Scherviskosität 168h/200°C DIN 53019-1, -3 mPas 35172 100000 8365 16025
  • Die obigen Ergebnisse zeigen, dass mit den erfindungsgemäßen Lithiumkomplexhybridfetten der Anstieg der Scherviskosität deutlich niedriger ausfällt als bei den Vergleichsprodukten VG1 und VG2. VG2 zeigt bereits nach 96 h eine Scherviskosität von 100.000 mPas und ist nicht mehr schmierfähig. VG1 zeigt nach 168 h Prüfzeit eine doppelt so hohe Scherviskosität als alle erfindungsgemäßen Zusammensetzungen B1 bis B5, siehe Tabelle 4.
  • Das PFPE/PTFE-Fett (Fett B) zeigt in dem Test erwartungsgemäß die geringsten Verdampfungsverluste. Überraschenderweise liegt die Scherviskosität der erfindungsgemäßen Beispiele B1, B2 und B4 nach 168 h Prüfzeit niedriger als bei Fett B und zeigt damit günstigeres Verhärtungsverhalten.
  • Insgesamt zeigt sich, dass das Verhärtungsverhalten der erfindungsgemäßen Schmierstoffe bei hohen Temperaturen günstiger ist als bei Harnstoff-Hybridfetten. Überraschenderweise wurde sogar gefunden, dass bei manchen der erfindungsgemäßen Zusammensetzungen sogar eine geringere Verhärtung auftritt als bei einem PFPE/PTFE-Fett. Überraschenderweise wurde auch gefunden, dass das Ölabscheidungsverhalten der erfindungsgemäßen Schmierstoffe durch Wahl von bestimmten Mischungsverhältnisses der Fette A (Lithiumkomplexfett) und B (PTFE/PFPE-Fett) eingestellt und somit auf unterschiedliche Anforderungen angepasst werden kann.
  • Beispiel 2
  • Herstellung eines erfindungsgemäßen Schmierstoffes mit unterschiedlichen Herstellverfahren
  • Wie bereits beschrieben, können die erfindungsgemäßen Schmierstoffe auf verschiedene Weise hergestellt werden. Bei der Variante "im Kessel gemischt" werden ein Lithiumkomplexfett (Fett C) und ein PFPE/PTFE-Fett (Fett D) getrennt hergestellt und dann in einem Kessel im Verhältnis 40 zu 60 Gew.-% unter Rühren gemischt. Das so entstehende Lithiumkomplexhybridfett B6 wird mit einem Dreiwalzwerk abschließend homogenisiert.
  • Bei der "in situ" Herstellung wird das Lithiumkomplexfett identisch zum Fett C hergestellt, beim Abkühlen werden dann aber, abweichend auch die Bestandteile des Fettes D, zugegeben, sodass die erfindungsgemäße Schmierstoffzusammensetzung in einem Arbeitsgang hergestellt wird. Die erfindungsgemäße Schmierstoffzusammensetzung B6 wird ebenfalls abschließend gewalzt.
  • Fett C
  • Es wird ein Lithiumkomplexfett bestehend aus 80 Gew.-%% einer Mischung eines Alkyldiphenylether (100 mm2/sec bei 40°C) und eines Trimellitsäureesters sowie vollhydriertem Polyisobutylen (vollhydriert, Mn ca. 1300 g/mol) als Grundöl hergestellt, wobei sich eine Viskosität bei 40°C von 100 mm2/sec ergibt. 15 Gew.-% eines Lithiumkomplexes aus Azelainsäure und 12-Hydroxystearinsäure, sowie 5 Gew.-% eines Additivpackages bestehend aus aminischen Antioxidantien, Phosphaten werden bereitgestellt. Die Walkpenetration liegt bei 327 1/10 mm.
  • Fett D
  • Es wird ein PFPE/PTFE-Fett, enthaltend zu 65 Gew.-% eine Mischung aus linearem und verzweigtem PFPE, einer kinematischen Viskosität von 145 mm2/sec bei 40°C, 33 Gew.-% PTFE-Mikropulver, durchschnittliche Teilchengröße d 50 (Laserbeugung, DIN ISO 9277) ca. 5 µm, spezifische Oberfläche (DIN ISO 9277) ca. 5 m2/g, und 2 Gew.% Dinatriumsebacat als Korrosionschutzadditiv hergestellt. Die Walkpenetration liegt bei 286 1/10 mm Tabelle 7
    Daten des erfindungsgemäßen Beispiels B6 nach Beispiel 2
    Parameter / Schmierfett Im Kessel gemischt In-situ gekocht
    Walkpenetration 60dT [1/10 mm] (DIN ISO 2137) 298 265
    Tropfpunkt [°C] (DIN ISO 2176) > 300 277
    Delta Walkpenetration nach 100000dT [1/10 mm] (DIN ISO 2137) 25 36
    Fließdruck -40°C [mbar] (DIN 51805) 550 725
    Fließdruck -50°C [mbar] (DIN 51805) 1025 1250
    Scherviskosität, bei 25°C, Scherrate 300 1/s, [mPa*s] (DIN 53019-1, -3) 4392 5378
    Verdampfungsverlust, 24h/150°C [Gew.-%] (DIN 58397) 0,46 0,50
    Ölabscheidung, 30h/150°C [Gew.-%] (ASTM D 6184) 0,44 1,47
    Ölabscheidung, 72h/150°C [Gew.-%] (ASTM D 6184) 0,53 2,11
    Ölabscheidung, 168h/40°C [Gew.-%] (DIN 51817) 1,15 0,84
    Wasserbeständigkeit statisch, 3h/90°C (DIN 51807) 0 0
    Kupferkorrosion 24h/150°C (DIN 51811) 1 1
    Tabelle 8
    Verdampfungsverlust-Test 220°C Im Kessel gemischt In-situ gekocht
    Verdampfungsverlust 48h/220°C DIN 58397 Gew % 11,37 10,67
    Verdampfungsverlust 96h/220°C DIN 58397 Gew % 15,84 15,15
    Verdampfungsverlust 144h/220°C DIN 58397 Gew % 20,65 19,48
    Verdampfungsverlust 168h/220°C DIN 58397 Gew % 23,02 21,65
    Tabelle 9
    Im Kessel gemischt In-situ gekocht
    Scherviskosität Startwert DIN 53019-1, -3 mPas 4392 5378
    Scherviskosität 48h/220°C DIN 53019-1, -3 mPas 6848 5823
    Scherviskosität 96h/220°C DIN 53019-1, -3 mPas 6449 7732
    Scherviskosität 144h/220°C DIN 53019-1, -3 mPas 10892 9342
    Scherviskosität 168h/220°C DIN 53019-1, -3 mPas 10927 11753
  • Beide Herstellungsvarianten liefern im Rahmen der Messgenauigkeit gleiche Werte.
  • Aufgrund der vorliegenden Daten kann B6, nach Herstellungsbeispiel 1 und Herstellungsbeispiel 2, mit beiden Herstellvarianten als Schmierstoff eingesetzt werden.
  • Somit ist gezeigt, dass die erfindungsgemäßen Schmierstoffzusammensetzungen mit unterschiedlichen Verfahren hergestellt werden können.

Claims (14)

  1. Lithiumkomplexhybridfett enthaltend
    (A) 60 bis 15 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
    (B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes Polyisobutylen oder deren Mischungen,
    (C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
    (D) 15 bis 50 Gew.-% Perfluorpolyether (PFPE).
  2. Lithiumkomplexhybridfett nach Anspruch 1 des Weiteren enthaltend (E) 1 bis 30 Gew.-% eines weiteren Verdickungsmittels.
  3. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche des Weiteren enthaltend
    (F) 0 bis 20 Gew.-%, vorzugsweise 2 bis 20 Gew.-% einer weiteren Ölkomponente.
  4. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche des Weiteren enthaltend
    (G) 0 bis 10 Gew.-%, vorzugsweise 0,1 bis 10 Gew.-% Additive.
  5. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche des Weiteren enthaltend
    (H) 0 bis 10 Gew.-%, vorzugsweise 2 bis 5 Gew.-% Festschmierstoff.
  6. Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Pyromellithsäureester der Komponente (A) Tetrakis(2-ethylhexyl)pyromellitat und die Dimersäure Bis(2-ethylhexyl)dimerat ist.
  7. Lithiumkomplexhybridfett nach Anspruch 2, dadurch gekennzeichnet, dass die Komponente (E) ausgewählt wird aus der Gruppe bestehend aus Al-Komplexseifen, Metall-Einfachseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Metall-Komplexseifen der Elemente der ersten und zweiten Hauptgruppe des Periodensystems ohne Lithium, Bentonite, Sulfonate, Silikate, Aerosil, Polyimide, PTFE oder einer Mischung daraus.
  8. Lithiumkomplexhybridfett nach Anspruch 3, dadurch gekennzeichnet, dass die Komponente (F) wird ausgewählt aus der Gruppe bestehend aus Mineralöl, alkylierten Benzolen, alkylierte Naphthaline, aliphatischen Carbonsäure- und Dicarbonsäureestern, Fettsäuretriglyceriden, alkylierte Diphenylether, Phloroglucinester, und/oder Poly-alpha-olefinen, alpha-Olefin-Copolymere, Metallocen katalysierte Poly-alfa-olefine.
  9. Lithiumkomplexhybridfett nach Anspruch 4, dadurch gekennzeichnet, dass die Komponente (G) ausgewählt wird aus der Gruppe bestehend aus Korrosionsschutzadditiven, Antioxidantien, Verschleißschutzadditiven, UV-Stabilisatoren.
  10. Lithiumkomplexhybridfett nach Anspruch 5, dadurch gekennzeichnet, dass die Komponente (H) ausgewählt wird aus der Gruppe bestehend aus BN, Pyrophosphat, Zn-Oxid, Mg-Oxid, Pyrophosphate, Thiosulfate, Mg-Carbonat, Ca-Carbonat, Ca-Stearat, Zn-Sulfid, Mo-sulfid, W-sulfid, Sn-Sulfid, Graphite, Graphen, Nano-Tubes, SiO2-Modifikationen oder einer Mischung daraus.
  11. Verwendung des Lithiumkomplexhybridfett nach einem der vorherigen Ansprüche zur Schmierung von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik, bei Schienenfahrzeugen, der Fördertechnik, bei Folienreckanlagen, bei Wellpappanlagen, von Laufrollenlagern, Lüfterlagern, Lagern von Traktionsmotoren, zur Schmierung von Kegelrad- und Stirnradgetrieben, Federn, Schrauben und Kompressoren, Pneumatikkomponenten, Amaturen, und von Maschinenbauteilen und in Anlagen, bei denen es zum gelegentlichen, unbeabsichtigten Kontakt mit Lebensmitteln kommt.
  12. Verfahren zur Schmierung oder zum Fetten von Bauteilen, insbesondere in Wälzlagern, Gleitlagern, Transport- und Steuerketten in der Fahrzeugtechnik und bei Schienenfahrzeugen, das Verfahren umfasst:
    Auftragen einer Schmiermittelzusammensetzung auf die Oberfläche des Bauteils, das Schmiermittel umfasst:
    (A) 60-15 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
    (B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes Polyisobutylen oder deren Mischungen,
    (C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
    (D) 15 bis 50 Gew.-% Perfluorpolyether (PFPE).
  13. Verfahren zur Schmierung oder zum Fetten von Laufrollenlagern in Stranggießanlagen, Transportrollenlagern in Durchlauföfen, von offenen Zahnkränzen in Drehrohröfen, Rohrmühlen, Trommeln und Mischern, Lagern in Wellpappanlagen und Folienreckanlagen, Lagern in Anlagen zur Herstellung und Transport von Lebensmitteln, das Verfahren umfasst:
    Auftragen einer Schmiermittelzusammensetzung auf die Oberfläche des Bauteils, das Schmiermittel umfasst:
    (A) 60 bis 15 Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
    (B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes
    Polyisobutylen oder deren Mischungen,
    (C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
    (D) 15 bis 50 Gew.-% Perfluorpolyether (PFPE).
  14. Verfahren zur Reduktion der Verhärtung von Schmierfetten bei 200°C und/oder zur Reduktion der Ölabscheidung von Schmierfetten auf Laufrollenlagern in Stranggießanlagen, Transportrollenlagern in Durchlauföfen, von offenen Zahnkränzen in Drehrohröfen, Rohrmühlen, Trommeln und Mischern, Lagern in Wellpappanlagen und Folienreckanlagen, Lagern in Anlagen zur Herstellung und Transport von Lebensmitteln, das Verfahren umfasst:
    Auftragen einer Schmiermittelzusammensetzung auf die Oberfläche des Bauteils, das Schmiermittel umfasst:
    (A) 60-15
    Gew.-% eines Esters oder eines Estergemisches, ausgewählt aus der Gruppe bestehend aus Trimellithsäureestern, die als Alkoxygruppe lineare oder verzweigte Alkylgruppen aufweisen, die 6 bis 18 Kohlenstoffatome enthalten, bevorzugt 8 bis 14 Kohlenstoffatome, wobei die Alkoxygruppe gleich oder verschieden sein können, Pyromellithsäureestern, hydrierte oder unhydrierte Dimersäuren, Estoliden,
    (B) 0,5 bis 20 Gew.-% nicht hydriertes, hydriertes oder vollhydriertes
    Polyisobutylen oder deren Mischungen,
    (C) 1 bis 18 Gew.-% Lithiumkomplexseifen und
    (D) 15 bis 50 Gew.-% Perfluorpolyether (PFPE).
EP21704440.3A 2020-05-13 2021-02-03 Lithiumkomplexhybridfett Active EP4090723B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020112993.9A DE102020112993A1 (de) 2020-05-13 2020-05-13 Lithiumkomplexhybridfett
PCT/EP2021/052523 WO2021228442A1 (de) 2020-05-13 2021-02-03 Lithiumkomplexhybridfett

Publications (2)

Publication Number Publication Date
EP4090723A1 EP4090723A1 (de) 2022-11-23
EP4090723B1 true EP4090723B1 (de) 2023-11-29

Family

ID=74586988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21704440.3A Active EP4090723B1 (de) 2020-05-13 2021-02-03 Lithiumkomplexhybridfett

Country Status (5)

Country Link
US (1) US20230138681A1 (de)
EP (1) EP4090723B1 (de)
CN (1) CN115461434B (de)
DE (1) DE102020112993A1 (de)
WO (1) WO2021228442A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150525B (zh) * 2021-11-26 2022-12-27 上海东升新材料有限公司 一种纳米改性造纸用润滑剂
CN114574273B (zh) * 2022-03-18 2022-08-12 中国科学院兰州化学物理研究所 一种托轮轴瓦润滑油及其制备方法和应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3918107A1 (de) 1989-06-02 1990-12-06 Klueber Lubrication Schmierfettzusammensetzung
DE19622906A1 (de) 1996-06-07 1997-12-11 Klueber Lubrication Schmierfettzusammensetzungen
US6018063A (en) 1998-11-13 2000-01-25 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable oleic estolide ester base stocks and lubricants
US6184187B1 (en) 1998-04-07 2001-02-06 E. I. Dupont De Nemours And Company Phosphorus compounds and their use as corrosion inhibitors for perfluoropolyethers
US6316649B1 (en) 1998-11-13 2001-11-13 The United States Of America As Represented By The Secretary Of Agriculture Biodegradable oleic estolide ester having saturated fatty acid end group useful as lubricant base stock
AU1201201A (en) 1999-10-14 2001-04-23 Burmah Castrol Trading Ltd. Phosphorous and fluorine containing compounds as magnetic media lubricants
US6541430B1 (en) 2000-03-24 2003-04-01 E. I. Du Pont De Nemours And Company Fluorinated lubricant additives
JP5386803B2 (ja) * 2007-07-31 2014-01-15 Nokクリューバー株式会社 グリース組成物
ITMI20042238A1 (it) 2004-11-19 2005-02-19 Solvay Solexis Spa Composti per fluoropolirterei
JP2007099944A (ja) * 2005-10-05 2007-04-19 Nsk Ltd 転動装置用グリース組成物及び転動装置
JP5310732B2 (ja) * 2008-10-17 2013-10-09 Nokクリューバー株式会社 潤滑グリース組成物およびその製造法
WO2013120827A2 (en) 2012-02-17 2013-08-22 Solvay Specialty Polymers Italy S.P.A. (PER)FLUOROPOLYETHERS WITH bi- OR ter-PHENYL END GROUPS
US9018406B2 (en) 2012-03-27 2015-04-28 Biosynthetic Technologies, Llc Dicarboxylate-capped estolide compounds and methods of making and using the same
US20150175931A1 (en) * 2013-12-19 2015-06-25 Hyundai Motor Company Grease composition for engine bearing
DE102014018719A1 (de) * 2014-12-17 2016-06-23 Klüber Lubrication München Se & Co. Kg Hochtemperaturschmierstoff für die Lebensmittelindustrie
DE102014018718A1 (de) * 2014-12-17 2016-06-23 Klüber Lubrication München Se & Co. Kg Hochtemperaturschmierstoffe
JP6155414B1 (ja) * 2015-12-04 2017-06-28 Nokクリューバー株式会社 潤滑剤組成物
DE102018002041A1 (de) 2017-03-29 2018-10-04 Klüber Lubrication München Se & Co. Kg Neue Esterverbindungen, Verfahren zu ihrer Herstellung sowie ihre Verwendung
JP6755905B2 (ja) * 2018-07-27 2020-09-16 ミネベアミツミ株式会社 樹脂潤滑用グリース組成物および樹脂摺動部材

Also Published As

Publication number Publication date
CN115461434A (zh) 2022-12-09
EP4090723A1 (de) 2022-11-23
DE102020112993A1 (de) 2021-11-18
US20230138681A1 (en) 2023-05-04
WO2021228442A1 (de) 2021-11-18
CN115461434B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
EP2164935B1 (de) Schmierfettzusammensetzung
EP3372660B1 (de) Hochtemperaturschmierstoffe
EP3375850B1 (de) Hochtemperaturschmierstoff für die lebensmittelindustrie
DE19538658C2 (de) Schmierfettzusammensetzung
EP2714872A1 (de) Hochtemperaturöl
EP4090723B1 (de) Lithiumkomplexhybridfett
DE112013005199T5 (de) Schmierfettzusammensetzung für Nabenlagereinheit
DE69528100T2 (de) Verwendung von organischen Bismuthverbindungen in Hochdruckschmierfettzusammensetzungen für Wälzlager mit erhöhter Lebensdauer
DE112016007278T5 (de) Schmiermittelzusammensetzung und Nabeneinheit
DE10108343B4 (de) Verwendung einer Schmierfettzusammensetzung für ein Wälzlager
DE112010005707B4 (de) Schmiermittelzusammensetzung und dessen Verwendung
DE112013000604B4 (de) Schmiermittelzusammensetzung und dessen Verwendung für Lager
EP4073213B1 (de) Verwendung einer schmierfettzusammensetzung mit hoher oberer gebrauchstemperatur
DE112018004265T5 (de) Schmierfettzusammensetzung
EP3841190B1 (de) Verwendung einer schmiermittelzusammensetzung
EP4384589A1 (de) Verwendung von hemimellitsäureester als basisöl für schmierstoffzusammensetzungen
WO2023179897A1 (de) Verwendung einer schmierstoffzusammensetzung zum schmieren von arbeitsgeräten
WO2024200526A1 (de) Herstellung polyharnstoffverdickter schmierfette mit verbesserten schmierungseigenschaften und alterungsstabilität
CN114058424A (zh) 非蔓延性润滑脂组合物
DD237183A1 (de) Pastenfoermige festschmierstoffkombination, vorzugsweise fuer den hochtemperaturbereich

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230829

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002082

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502021002082

Country of ref document: DE

Representative=s name: PUSCHMANN BORCHERT KAISER KLETTNER PATENTANWAE, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231204

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240229

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021002082

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240203

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229

26N No opposition filed

Effective date: 20240830