EP4069802A1 - Procede de traitement d'huiles de pyrolyse de plastiques en vue de leur valorisation dans une unite de vapocraquage - Google Patents
Procede de traitement d'huiles de pyrolyse de plastiques en vue de leur valorisation dans une unite de vapocraquageInfo
- Publication number
- EP4069802A1 EP4069802A1 EP20804555.9A EP20804555A EP4069802A1 EP 4069802 A1 EP4069802 A1 EP 4069802A1 EP 20804555 A EP20804555 A EP 20804555A EP 4069802 A1 EP4069802 A1 EP 4069802A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- effluent
- hydrogen
- weight
- hydrotreatment
- feed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/06—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G3/00—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
- C10G3/50—Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/002—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/10—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G25/00—Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
- C10G45/34—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
- C10G45/36—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/38—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/002—Apparatus for fixed bed hydrotreatment processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
- C10G49/04—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G69/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
- C10G69/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
- C10G69/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G9/00—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G9/34—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
- C10G9/36—Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1003—Waste materials
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4006—Temperature
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4012—Pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a process for treating an oil from the pyrolysis of plastics in order to obtain a hydrocarbon effluent whose composition is compatible with a feed supplying a steam cracking unit. More particularly, the present invention relates to a process for treating a feedstock resulting from the pyrolysis of plastic waste, in order to at least partially remove impurities, in particular olefins (mono-, diolefins), metals, in in particular silicon, and halogens, in particular chlorine, which said feed can contain in relatively large quantities, and so as to hydrogenate the feed in order to be able to upgrade it in a steam cracking unit with increased yields of light olefins.
- impurities in particular olefins (mono-, diolefins)
- metals in in particular silicon
- halogens in particular chlorine
- Plastics from collection and sorting channels can undergo a pyrolysis step in order to obtain, among other things, pyrolysis oils. These plastic pyrolysis oils are typically burned to generate electricity and / or used as fuel in industrial or district heating boilers.
- plastic waste is generally mixtures of several polymers, for example mixtures of polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride, polystyrene.
- plastics may contain, in addition to polymers, other compounds, such as plasticizers, pigments, dyes or even polymerization catalyst residues.
- Plastic waste can also contain, in a minor way, biomass, for example from household waste.
- the oils obtained from the pyrolysis of plastic waste contain many impurities, in particular diolefins, metals, in particular silicon, or halogenated compounds, in particular chlorine-based compounds, heteroelements such as sulfur. , oxygen and nitrogen, insolubles, at levels often high and incompatible with steam cracking units or units located downstream of steam cracking units, in particular polymerization processes and hydrogenation processes selective.
- impurities can generate problems of operability and in particular problems of corrosion, coking or catalytic deactivation, or even problems of incompatibility in the uses of the target polymers.
- the presence of diolefins can also lead to problems of instability of the pyrolysis oil characterized by the formation of gums. This phenomenon is generally limited by proper storage of the charge. The gums and the insolubles possibly present in the pyrolysis oil can generate clogging problems in the processes.
- the yields of light olefins desired for the petrochemical industry in particular ethylene and propylene, strongly depend on the quality of the feeds sent to the steam cracking.
- the BMCI Boau of Mines Correlation Index
- the yields of light olefins increase when the paraffin content increases and / or when the BMCI decreases.
- the yields of unwanted heavy compounds and / or coke increase with increasing BMCI.
- Document WO 2018/055555 proposes an overall and very general plastic waste recycling process, ranging from the actual stage of pyrolysis of plastic waste to the steam cracking stage.
- the process of application WO 2018/055555 comprises, inter alia, a step of hydrotreating the liquid phase resulting directly from pyrolysis, preferably under fairly severe conditions, particularly in terms of temperature, for example at a temperature between 260 and 300 ° C, a stage of separation of the hydrotreatment effluent then a stage of hydrodelakylation of the heavy effluent separated at a preferably high temperature, for example between 260 and 400 ° C.
- the present invention aims to overcome these drawbacks and participate in the recycling of plastics, by proposing a process for treating an oil resulting from the pyrolysis of plastics in order to purify it and hydrotreat it in order to obtain a hydrocarbon effluent with a reduced content of impurities.
- the composition of which is compatible with a feed supplying a steam cracking unit leads to improved yields of light olefins during the steam cracking stage, while in particular reducing the risks of clogging during stages of treatment of carbon oils.
- pyrolysis of plastics such as those described in the prior art, and the formation of coke in large quantities and / or the risks of corrosion encountered during the steam cracking stage of oils for pyrolysis of plastics.
- the invention relates to a process for treating a feed comprising an oil for pyrolysis of plastics, comprising at least the following steps: a) a selective hydrogenation step carried out in a reaction section supplied with said feed and a gas stream comprising hydrogen, in the presence of at least one selective hydrogenation catalyst, at a temperature between 100 and 250 ° C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs.
- a hydrotreatment step implemented in a hydrotreatment reaction section, comprising a fixed bed reactor having n catalytic beds, n being an integer greater than or equal to 1, arranged in series and each comprising at least one catalyst hydrotreatment, said hydrotreatment reaction section being fed at the level of the first catalytic bed with said hydrogenated effluent from step a) and a gas stream comprising hydrogen and carried out at a temperature between 250 and 430 ° C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs.
- step c) a separation step, fed with the hydrotreatment effluent from step b) and an aqueous solution, said step being carried out at a temperature between 50 and 370 ° C, to obtain at least one gaseous effluent, a aqueous effluent and a hydrocarbon effluent.
- the advantage of the process of the invention is to provide a precise sequence of operations which makes it possible to rid an oil obtained from the pyrolysis of plastic waste of at least part of its impurities, to hydrogenate it in order to make it in particular compatible with treatment in a steam cracking unit in order to be able to recreate light olefins with increased yields which can be used as monomers in the manufacture of polymers.
- the invention also makes it possible to prevent risks of clogging and / or corrosion of the treatment unit in which the process of the invention is implemented, the risks being exacerbated by the presence, often in large quantities, of diolefins. , metals and halogen compounds in oil from the pyrolysis of plastics.
- the process of the invention thus makes it possible to obtain an effluent obtained from an oil for the pyrolysis of plastics freed at least in part from the impurities of the oil from the pyrolysis of the starting plastics, thus limiting the problems of operability, such as corrosion, coking or catalytic deactivation problems, which can be caused by these impurities, in the steam cracking units and / or in the units located downstream from the steam cracking units, in particular the polymerization and selective hydrogenation units.
- the elimination of at least part of the impurities from the oils obtained from the pyrolysis of plastic waste will also make it possible to increase the range of applications of the target polymers, the incompatibilities of uses being reduced.
- Another advantage of the invention is that it participates in the recycling of plastics and in the preservation of fossil resources, by allowing the recovery of the oils resulting from their pyrolysis in a steam cracking unit. It allows, in fact, the purification and the hydrotreatment of these oils which can then be introduced into a steam cracker to obtain olefins and thus to re-manufacture polymers.
- the process also makes it possible to obtain naphtha and / or diesel cuts from feed comprising oils from the pyrolysis of plastics, cuts that the refiner could directly integrate respectively into the naphtha pool and / or the diesel pool obtained by refining crude oil.
- a "plastic pyrolysis oil” is an oil, advantageously in liquid form at room temperature, obtained from the pyrolysis of plastics, preferably of plastic waste originating in particular from collection and sorting channels. It comprises in particular a mixture of hydrocarbon compounds, in particular paraffins, mono- and / or di-olefins, or also optionally naphthenes and aromatics, these hydrocarbon compounds preferably having a boiling point of less than 700 ° C and preferably less than 550 ° C.
- the oil from the pyrolysis of plastics can comprise, and most often comprises, in addition, impurities such as metals, in particular silicon and iron, halogen compounds, in particular chlorine compounds.
- impurities can be present in the pyrolysis oil of plastics at high levels, for example up to 350 ppm by weight or even 700 ppm by weight or even 1000 ppm by weight of halogen elements supplied by halogenated compounds, up to 100 ppm weight, or even 200 ppm weight of metallic or semi-metallic elements.
- Alkali metals, alkaline earths, transition metals, poor metals and metalloids can be likened to contaminants of a metallic nature, called metals or metallic or semi-metallic elements.
- the metals or metallic or semi-metallic elements, optionally contained in the oils obtained from the pyrolysis of plastic waste comprise silicon, iron or these two elements.
- the oil from the pyrolysis of plastics can also comprise other impurities such as heteroelements provided in particular by sulfur compounds, oxygen compounds and / or nitrogen compounds, at contents generally less than 10,000 ppm by weight of heteroelements and preferably less. at 4000 ppm weight of heteroelements.
- the pressures are absolute pressures, also denoted abs., And are given in absolute MPa (or abs. MPa).
- the expressions "between ... and ! and “between .... and " are equivalent and mean that the limit values of the interval are included in the range of values described. . If this was not the case and the limit values were not included in the range described, such precision will be provided by the present invention.
- the different parameter ranges for a given step such as the pressure ranges and the temperature ranges can be used alone or in combination.
- a preferred pressure value range can be combined with a more preferred temperature value range.
- the invention relates to a process for treating a feed comprising an oil for pyrolysis of plastics, comprising the following stages: a) a selective hydrogenation stage advantageously carried out in a fixed bed in which the feed and hydrogen are placed in contact in the presence of at least one selective hydrogenation catalyst, said selective hydrogenation being carried out at a temperature between 100 and 250 ° C, preferably between 110 and 200 ° C, preferably between 130 and 180 ° C, a pressure partial hydrogen between 1.0 and 10.0 MPa abs., and an hourly volume speed between 1.0 and 10.0 h-1, advantageously in at least one reactor, preferably in at least two reactors and so preferred in two reactors in series permutable PRS (Permutable Reactor System) type, to obtain at least one effluent with a reduced diolefin content, also called hydrogenated effluent; b) a hydrotreatment step carried out in a fixed bed in which the hydrogenated effluent from selective hydrogenation step a) is brought into contact with hydrogen in the
- an additional gas stream comprising hydrogen being advantageously introduced at the inlet of each catalytic bed from the second catalytic bed, to obtain at least one hydrotreatment effluent.
- step b) a step of separating the hydrotreatment effluent from step b), comprising a washing / separation section supplied with the hydrotreatment effluent from step b) and advantageously an aqueous stream, said separation step being carried out at a temperature between 50 and 370 ° C, preferably between 100 and 340 ° C, preferably between 200 and 300 ° C, to obtain at least one gaseous effluent, an aqueous effluent and an effluent hydrocarbon.
- the feed for the process according to the invention comprises at least one oil for the pyrolysis of plastics.
- Said charge may consist solely of oil (s) from the pyrolysis of plastics.
- said filler comprises at least 50% by weight, preferably between 75 and 100% by weight, of plastic pyrolysis oil, that is to say preferably between 50 and 100% by weight, preferably between 70% and 100% by weight of oil from the pyrolysis of plastics.
- the feed for the process according to the invention may comprise, among other things, one or more oil (s) from the pyrolysis of plastics, a conventional petroleum feed, which is then co-treated with the pyrolysis oil of plastics from the feed.
- the oil for pyrolysis of plastics of said feed comprises hydrocarbon compounds, advantageously paraffinic, and impurities such as in particular mono- and / or diolefins, metals, in particular silicon and iron, halogenated compounds, in particular chlorinated compounds, heteroelements provided by sulfur compounds, oxygenates and / or nitrogen compounds.
- impurities are often present in often high contents, for example up to 350 ppm by weight or even 700 ppm by weight or even 1000 ppm by weight of halogen elements supplied by halogenated compounds, up to 100 ppm by weight, or even 200 ppm by weight of 'metallic or semi-metallic elements.
- Said feed comprising a plastic pyrolysis oil can advantageously be pretreated in a pretreatment stage ao), prior to selective hydrogenation stage a) of selective hydrogenation, to obtain a pretreated feed which feeds stage a).
- This pretreatment step ao) makes it possible to reduce the quantity of contaminants, in particular the quantity of silicon, optionally present in the load comprising an oil for pyrolysis of plastics.
- a step ao) of pretreatment of the feed comprising an oil for pyrolysis of plastics is advantageously carried out in particular when said feed comprises more than 50 ppm by weight, in particular more than 20 ppm by weight, more particularly more than 10 ppm by weight, or even more.
- Said pretreatment step ao) is carried out prior to selective hydrogenation step a), in an adsorption section supplied by said feed comprising a plastic pyrolysis oil and operating at a temperature between 0 and 150 ° C.
- adsorbent preferably alumina type, having a specific surface greater than or equal to 100 m2 / g, preferably greater than or equal to 200 m2 / g.
- the specific surface of said at least adsorbent is advantageously less than or equal to 600 m2 / g, in particular less than or equal to 400 m2 / g.
- the specific surface of the adsorbent is a surface measured by the BET method, that is to say the specific surface determined by adsorption of nitrogen in accordance with standard ASTM D 3663-78 established using the BRUNAUER-EMMETT method -TELLER described in the periodical 'The Journal of the American Chemical Society ", 6Q, 309 (1938).
- said adsorbent comprises less than 1% by weight of metallic elements, preferably is free of metallic elements. of the adsorbent means the elements of groups 6 to 10 of the periodic table of the elements.
- Said adsorption section comprises at least one adsorption column, preferably comprises two adsorption columns, containing said adsorbent.
- one operating mode can be an operation called "in swing", according to the English term, in which one of the columns is in line while the other. column is in reserve.
- the absorbent in the in-line column is used up, that column is isolated while the reserve column is placed in-line.
- the spent absorbent can then be regenerated in-situ and / or replaced with fresh absorbent to be put back on line once the other column has been isolated.
- Another mode of operation is to have the two columns operating in series, when the absorbent from the overhead column is used up, this first column is isolated and the spent absorbent is either regenerated in-situ or replaced with absorbent fresh. The column is then brought back to line in the second position and so on.
- This operation is called "lead and lag", according to the English term.
- the association of two adsorption columns makes it possible to overcome the possible and possibly rapid poisoning and / or clogging of the adsorbent under the joint action of metal contaminants, diolefins, gums derived from diolefins. and insolubles optionally present in the pyrolysis oil of plastics to be treated.
- the method comprises a step a) of selective hydrogenation is carried out in the presence of hydrogen, under conditions of hydrogen pressure and temperature such as to maintain the liquid phase and with a quantity of soluble hydrogen just necessary for the selective hydrogenation of the diolefins present in the oil from the pyrolysis of plastics.
- the selective hydrogenation of the diolefins in the liquid phase thus makes it possible to avoid or at least limit the formation of “gums”, that is to say the polymerization of the diolefins and therefore the formation of oligomers and polymers, which can stopper the reaction section of the next hydrotreatment step.
- Said selective hydrogenation step a) makes it possible to obtain a hydrogenated effluent, that is to say an effluent with a reduced content of diolefins, or even free of diolefins.
- said step a) of selective hydrogenation is implemented a reaction section supplied with said feed comprising an oil for pyrolysis of plastics, or by the pretreated feed resulting from the optional pretreatment step ao), and a gas stream comprising hydrogen (H2).
- Said reaction section implements a selective hydrogenation, preferably in a fixed bed, in the presence of at least one selective hydrogenation catalyst, advantageously at a temperature between 100 and 250 ° C, preferably between 110 and 200 ° C, of preferably between 130 and 180 ° C, a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and at an hourly volume velocity (WH) between 1.0 and 10.0 h-1.
- the hourly volume speed (WH) is defined as the ratio between the hourly volume flow rate of the feed comprising the plastic pyrolysis oil, optionally pretreated, by the volume of catalyst (s).
- the quantity of the gas stream feeding said reaction section of step a) is advantageously such that the hydrogen coverage is between 1 and 50 Nm3 of hydrogen per m3 of feed (Nm3 / m3), preferably between 5 and 20 Nm3 of hydrogen per m3 of load (Nm3 / m3).
- the hydrogen coverage is defined as the ratio of the volume flow of hydrogen taken under normal conditions of temperature and pressure compared to the volume flow rate of charge at 15 ° C (in normal m3, noted Nm3, of H2 per m3 of charge) .
- the gas stream comprising hydrogen, which feeds the reaction section of step a), can consist of additional hydrogen and / or recycled hydrogen, in particular from step c) of separation.
- the reaction section of said step a) comprises at least one reactor.
- the reaction section comprises at least 2 reactors and, in a preferred manner, comprises two reactors which operate in a switchable system also called according to the English term “PRS” for Permutable Reactor System.
- PRS Permutable Reactor System
- reactor internals for example of the filter plate type, can be used to prevent clogging of the reactor (s).
- An example of a filter plate is described in patent FR3051375.
- said at least selective hydrogenation catalyst comprises a support, preferably inorganic, and a hydro-dehydrogenating function.
- the hydro-dehydrogenating function comprises in particular at least one element from group VIII, preferably chosen from the group consisting of nickel and cobalt, and / or at least one element from group VIB, preferably chosen from the group consisting of molybdenum and tungsten.
- the total content of oxides of the metal elements of groups VIB and VIII (that is to say the sum of the metal elements of groups VIB and VIII) is preferably between 1% and 40% by weight, preferably from 5% to 30% by weight relative to the total weight of the catalyst.
- the weight ratio expressed in metal oxide between the metal (or metals) of group VIB relative to the metal (or metals) of group VIII is preferably between 1 and 20, and preferably between 2 and 10.
- the reaction section of said step a) comprises a selective hydrogenation catalyst comprising between 0.5% and 10% by weight of nickel, preferably between 1% and 5% by weight of nickel (expressed as nickel oxide NiO by relative to the weight of said catalyst), and between 1% and 30% by weight of molybdenum, preferably between 3% and 20% by weight of molybdenum (expressed as molybdenum oxide Mo03 relative to the weight of said catalyst) on a support preferably mineral.
- the support of said at least selective hydrogenation catalyst is preferably chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and their mixtures.
- Said support may also contain doping compounds, in particular oxides chosen from the group consisting of boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphorus pentoxide and a mixture of these oxides.
- said at least selective hydrogenation catalyst comprises an alumina support, preferably doped with phosphorus and optionally boron.
- phosphorus pentoxide P205 When phosphorus pentoxide P205 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% by weight relative to the total weight of the alumina. When boron trioxide B205 is present, its concentration is less than 10% by weight relative to the weight of the alumina and advantageously at least 0.001% relative to the total weight of the alumina.
- the alumina used can be a g (gamma) or h (eta) alumina.
- Said selective hydrogenation catalyst is for example in the form of extrudates.
- At least one selective hydrogenation catalyst used in step a) comprises less than 1% by weight of nickel and at least 0.1% by weight of nickel, preferably 0.5% by weight of nickel, expressed as nickel oxide NiO relative to the weight of said catalyst, and less than 5% by weight of molybdenum and at least 0.1% by weight of molybdenum, preferably 0.5% by weight of molybdenum, expressed as molybdenum oxide Mo03 by relative to the weight of said catalyst, on an alumina support, in order to hydrogenate the diolefins as selectively as possible.
- the feed which comprises an oil from the pyrolysis of plastics, optionally pretreated can be mixed with the gas stream comprising hydrogen, prior to the reaction section.
- Said feed optionally mixed with the gas stream, can also be heated, for example by heat exchange in particular with the hydrotreatment effluent, before the reaction section to reach a temperature close to the temperature used in the reaction section. that it feeds.
- Step a) converts at least 90% and preferably at least 99% of the diolefins contained in the initial charge. Step a) also allows the removal, at least in part, of other contaminants, such as, for example, silicon.
- the hydrogenated effluent is preferably sent directly to stage b) of hydrotreatment.
- the treatment process comprises a stage b) of hydrotreatment, advantageously in a fixed bed, of said hydrogenated effluent resulting from stage a) in the presence of hydrogen and of at least one hydrotreatment catalyst, for obtain a hydrotreatment effluent.
- said step b) is carried out in a hydrotreatment reaction section comprising a fixed bed reactor having n catalytic beds, n being an integer greater than or equal to 1, preferably between 2 and 10, so preferred between 2 and 5, arranged in series and each comprising at least one hydrotreatment catalyst.
- Said reaction section is fed, advantageously at the level of the first catalytic bed, with said hydrogenated effluent resulting from step a) and a gas stream comprising hydrogen.
- said hydrotreatment reaction section is carried out at a pressure equivalent to that used in the reaction section of step a) of selective hydrogenation, but at a higher temperature than that of the reaction section of step a) selective hydrogenation.
- said hydrotreatment reaction section is advantageously carried out at a temperature between 250 and 430 ° C, preferably between 280 and 380 ° C, at a partial pressure of hydrogen between 1.0 and 10.0 MPa abs. and at an hourly volume speed (WH) between 0.1 and 10.0 h-1, preferably between 0.1 and 5.0 h-1, preferably between 0.2 and 2.0 h-1, so preferred between 0.2 and 0.8 h-1.
- the hourly volume speed (WH) is defined as the ratio between the hourly volume flow rate of the hydrogenated effluent from step a) per volume of catalyst (s).
- the hydrogen coverage in step b) is advantageously between 50 and 1000 Nm3 of hydrogen per m3 of hydrogenated effluent from step a), and preferably between 50 and 500 Nm3 of hydrogen per m3 of hydrogenated effluent resulting from stage a) of selective hydrogenation, preferably between 100 and 300 Nm 3 of hydrogen per m3 of hydrogenated effluent resulting from stage a) of selective hydrogenation.
- the hydrogen coverage is defined here as the ratio of the volume flow rate of hydrogen taken under normal temperature and pressure conditions compared to the volume flow rate of hydrogenated effluent from step a) (in normal m3, noted Nm3, from H2 per m3 of hydrogenated effluent from step a)).
- the hydrogen can be made up of make-up and / or recycled hydrogen, in particular from step c) of separation.
- an additional gas stream comprising hydrogen is advantageously introduced at the inlet of each catalytic bed from the second catalytic bed.
- These additional gas streams are also called cooling streams. They make it possible to control the temperature in the hydrotreatment reactor in which the reactions carried out are generally very exothermic.
- said at least hydrotreatment catalyst used in said step b) can be chosen from known hydrodemetallation, hydrotreatment and silicon capture catalysts, used in particular for the treatment of petroleum fractions, and their combinations.
- Known hydrodemetallation catalysts are for example those described in patents EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 and US 5089463.
- Known hydrotreatment catalysts are for example those described in patents EP 0113297, EP 0113284, US 6589908, US 4818743 or US 6332976.
- Known silicon capture catalysts are for example those described in patent applications CN 102051202, US 2007/080099.
- said at least hydrotreatment catalyst comprises a support, preferably inorganic, and at least one metallic element having a hydro-dehydrogenating function.
- Said at least metallic element having a hydro-dehydrogenating function advantageously comprises at least one element from group VIII, preferably chosen from the group consisting of nickel and cobalt, and / or at least one element from group VI B, preferably chosen in the group consisting of molybdenum and tungsten.
- the total content of oxides of the metal elements of groups VI B and VIII is preferably between 1% and 40% by weight, preferably from 5% to 30% by weight, relative to the total weight of the catalyst.
- the weight ratio expressed in metal oxide between the metal (or metals) of group VI B relative to the metal (or metals) of group VIII is preferably between 1.0 and 20, more preferably between 2.0 and 10.
- the hydrotreatment reaction section of step b) of the process comprises a hydrotreatment catalyst comprising between 0.5% and 10% by weight of nickel, preferably between 1% and 5% by weight of nickel, expressed as nickel oxide NiO relative to the total weight of the hydrotreating catalyst, and between 1.0% and 30% by weight of molybdenum, preferably between 3.0% and 20% by weight of molybdenum, expressed as molybdenum oxide Mo03 relative to the total weight of the hydrotreatment catalyst, on an inorganic support.
- the support for said at least hydrotreating catalyst is advantageously chosen from the group consisting of alumina, silica, silica-aluminas, magnesia, clays and their mixtures.
- Said support may also contain doping compounds, in particular oxides chosen from the group consisting of boron oxide, in particular boron trioxide, zirconia, ceria, titanium oxide, phosphorus pentoxide and a mixture of these oxides.
- said at least hydrotreating catalyst comprises an alumina support, more preferably an alumina support doped with phosphorus and optionally boron.
- phosphorus pentoxide P205 When phosphorus pentoxide P205 is present, its concentration is less than 10% by weight based on the weight of the alumina and preferably at least 0.001% by weight based on the total weight of the alumina. When boron trioxide B205 is present, its concentration is less than 10% by weight relative to the weight of the alumina and preferably at least 0.001% relative to the total weight of the alumina.
- the alumina used can be y (gamma) or h (eta) alumina.
- Said hydrotreatment catalyst is, for example, in the form of extrudates.
- said at least hydrotreatment catalyst used in step b) of the process has a specific surface area greater than or equal to 250 m2 / g, preferably greater than or equal to 300 m2 / g.
- the specific surface of said hydrotreatment catalyst is advantageously less than or equal to 800 m2 / g, preferably less than or equal to 600 m2 / g, in particular less than or equal to 400 m2 / g.
- the specific surface of the hydrotreatment catalyst is measured by the BET method, that is to say the specific surface determined by nitrogen adsorption in accordance with standard ASTM D 3663-78 established using the BRUNAUER-EMMETT method. TELLER described in the periodical 'The Journal of the American Chemical Society', 6Q, 309 (1938). Such a specific surface makes it possible to further improve the removal of contaminants, in particular metals such as silicon.
- step b) can implement a heating section located upstream of the hydrotreatment reaction section and in which the hydrogenated effluent from step a) is heated to reach a temperature suitable for hydrotreatment. , that is to say a temperature between 250 and 370 ° C.
- Said optional heating section can thus comprise one or more exchangers, preferably allowing heat exchange between the hydrogenated effluent and the hydrotreatment effluent, and / or a preheating furnace.
- the hydrotreatment step b) allows the total hydrogenation of the olefins present in the initial feed and those optionally obtained after the selective hydrogenation step a), but also the conversion at least in part of other impurities present.
- the charge such as aromatic compounds, metal compounds, sulfur compounds, nitrogen compounds, halogen compounds (in particular chlorine compounds), oxygenates ...
- Step b) can also make it possible to further reduce the content of contaminants, such as that of metals, especially the silicon content.
- the treatment process comprises a separation step c), advantageously carried out in at least one washing / separation section, supplied at least with the hydrotreatment effluent from step b), for obtain at least one gaseous effluent, one aqueous effluent and one hydrocarbon effluent.
- the gaseous effluent advantageously comprises hydrogen, preferably comprises essentially hydrogen, that is to say comprises at least 90% by volume, preferably at least 95% by volume, preferably at least 99% by volume , hydrogen.
- said gaseous effluent which preferably contains essentially the hydrogen can at least in part be recycled to stages a) of selective hydrogenation and / or b) of hydrotreatment, the recycling system possibly comprising a purification section.
- the aqueous effluent advantageously comprises ammonium salts and / or hydrochloric acid.
- Said hydrocarbon effluent comprises hydrocarbon compounds and advantageously corresponds to the pyrolysis oil of plastics of the feed, or to the pyrolysis oil of plastics and of the conventional petroleum feed fraction co-treated with the pyrolysis oil, freed from at least in part of its impurities, in particular of its olefinic (di- and mono-olefin), metallic, halogenated impurities.
- This separation step c) makes it possible in particular to eliminate the ammonium chloride salts, which are formed by reaction between the chloride ions, released by the hydrogenation of the chlorinated compounds during step b), and the ammonium ions. , generated by the hydrogenation of the nitrogen compounds during step b) and / or provided by injection of an amine, and thus limit the risk of clogging, in particular in the transfer lines and / or in the sections of the process of the invention and / or the transfer lines to the steam cracker, due to the precipitation of ammonium chloride salts. It also removes hydrochloric acid formed by the reaction of hydrogen ions and chloride ions.
- a stream of amines can be injected upstream of stage a) of selective hydrogenation, between stage a) of selective hydrogenation and stage b) hydrotreatment and / or between hydrotreatment step b) and separation step c), preferably upstream of selective hydrogenation step a), in order to ensure a sufficient quantity of ions ammonium to combine the chloride ions formed during the hydrotreatment step, thus making it possible to limit the formation of hydrochloric acid and thus to limit corrosion downstream of the separation section.
- the separation step c) comprises an injection of an aqueous solution into the hydrotreatment effluent from step b), upstream of the washing / separation section, so as to dissolve at least in part ammonium chloride salts and / or hydrochloric acid and thus improve the elimination of chlorinated impurities and reduce the risk of blockages due to an accumulation of ammonium chloride salts.
- Step c) of separation is advantageously carried out between 50 and 370 ° C, preferably between 100 and 340 ° C, preferably between 200 and 300 ° C.
- step c) separation is carried out at a pressure close to that used in steps a) and / or b), so as to facilitate the recycling of hydrogen.
- the washing / separation section of step c) can at least partly be carried out in common or separate washing and separation equipment, this equipment being well known (separator flasks which can be operated at different pressures and temperatures, pumps, exchangers heat, washing columns, etc.).
- the separation step c) comprises the injection of an aqueous solution into the effluent of hydrotreatment resulting from step b) followed by the washing / separation section advantageously comprising a separation phase making it possible to obtain at least one aqueous stream loaded with ammonium salts, a washed liquid hydrocarbon stream and a partially washed gaseous stream.
- the aqueous stream loaded with ammonium salts and the washed liquid hydrocarbon stream can then be separated in a settling flask in order to obtain said hydrocarbon effluent and said aqueous effluent.
- Said partially washed gaseous flow can in parallel be introduced into a washing column where it circulates countercurrently to an aqueous flow, preferably of the same nature as the aqueous solution injected into the hydrotreatment effluent, which makes it possible to eliminate less in part, preferably in full, the hydrochloric acid contained in the partially washed gas stream and thus obtain said gaseous effluent, preferably comprising essentially hydrogen, and an acidic aqueous stream.
- Said aqueous effluent from the settling flask can optionally be mixed with said acidic aqueous stream, and be used, optionally mixed with said acidic aqueous stream in a water recycling circuit to supply stage c) of separation with said aqueous solution upstream of the washing / separation section and / or in said aqueous flow in the washing column.
- Said water recycling circuit may include a make-up of water and / or a basic solution and / or a purge allowing the dissolved salts to be removed.
- the separation step c) can advantageously comprise a “high pressure” washing / separation section. which operates at a pressure close to the pressure of step a) of selective hydrogenation and / or of step b) of hydrotreatment, in order to facilitate the recycling of hydrogen.
- This optional “high pressure” section of step c) can be completed by a “low pressure” section, in order to obtain a liquid hydrocarbon fraction devoid of part of the gases dissolved at high pressure and intended to be treated directly in the gas. a steam cracking process or optionally be sent to fractionation step d).
- the hydrocarbon effluent resulting from separation step c) is sent either directly to the inlet of a steam cracking unit, or to an optional fractionation step d).
- the liquid hydrocarbon effluent is sent to a fractionation step d).
- the method according to the invention can comprise, preferably comprises, a step of fractionation of the hydrocarbon effluent, to obtain at least one gas stream and at least two hydrocarbon streams having different boiling points from one another.
- Said fractionation step d) can for example make it possible to obtain a naphtha cut with a boiling point of less than 150 ° C, in particular between 80 and 150 ° C, and a hydrocarbon cut with a boiling point of greater than 150 ° C.
- step d) makes it possible, in particular under the action of a flow of water vapor, in particular to eliminate the gases dissolved in the hydrocarbon-based liquid effluent, such as for example ammonia , hydrogen sulfide and light hydrocarbons having 1 to 4 carbon atoms.
- gases dissolved in the hydrocarbon-based liquid effluent such as for example ammonia , hydrogen sulfide and light hydrocarbons having 1 to 4 carbon atoms.
- the optional fractionation step d) is advantageously carried out at a pressure less than or equal to 1.0 MPa abs., Preferably between 0.1 and 1.0 MPa abs.
- Step d) can be carried out in a section comprising a stripping column equipped with a reflux circuit comprising a reflux flask. Said stripping column is fed with the liquid hydrocarbon effluent from step c) and by a stream of water vapor.
- the liquid hydrocarbon effluent from step c) can optionally be reheated before entering the stripping column.
- the lightest compounds are entrained at the top of the column and in the reflux circuit comprising a reflux flask in which gas / liquid separation takes place.
- the gas phase which comprises the light hydrocarbons, is withdrawn from the reflux flask, in a gas stream.
- At least a fraction of the liquid phase is advantageously withdrawn from the reflux flask, in a hydrocarbon stream with a relatively low boiling point, for example a naphtha cut with a boiling point of less than 150 ° C.
- fractionation step d) can implement a stripping column followed by a distillation column or only a distillation column.
- Said hydrocarbon streams for example the naphtha cut with a boiling point below 150 ° C and the cut with a boiling point above 150 ° C, optionally mixed, can be sent to a steam cracking unit, at the end of which olefins can be (re) formed to participate in the formation of polymers.
- the naphtha stream for example with a boiling point of less than 150 ° C, can, according to another method, be sent to a naphtha pool, that is to say to the naphtha effluents, resulting from more conventional petroleum feedstocks, produced in the same refinery in which the process according to the invention is implemented, the hydrocarbon stream with a boiling point above 150 ° C., for its part, being sent to a steam cracking unit.
- step d) leads to obtaining a naphtha cut (in particular with a boiling point below 150 ° C), a diesel cut (in particular with a boiling point between 150 ° C and 385 ° C) and a heavy cut (especially with a boiling point above 385 ° C), the naphtha cut can be sent to the naphtha pool produced in the same refinery and the diesel cut can also either be sent to a steam cracking unit with the heavy cut, or to a diesel pool produced in the refinery.
- a naphtha cut in particular with a boiling point below 150 ° C
- a diesel cut in particular with a boiling point between 150 ° C and 385 ° C
- a heavy cut especially with a boiling point above 385 ° C
- the process for treating a feed comprising an oil for pyrolysis of plastics preferably comprises: sequence of the steps described above, and preferably in the order given, that is to say: the pretreatment step ao), the selective hydrogenation step a), the step b) of hydrotreatment, step c) of separation and optionally step d) of fractionation, to produce a treated plastic pyrolysis oil of composition compatible with the input of a steam cracking unit.
- the composition of the hydrocarbon effluent or of said hydrocarbon streams is preferably such that: the total content of metallic elements is less than or equal to 5.0 ppm by weight, preferably less than or equal to 2.0 ppm by weight, preferably less than or equal to
- 1.0 ppm by weight and preferably less than or equal to 0.5 ppm by weight with: a silicon (Si) element content less than or equal to 1.0 ppm by weight, preferably less than or equal to 0.6 ppm by weight, and an iron element (Fe) content less than or equal to 100 ppb by weight, the content of sulfur is less than or equal to 500 ppm by weight, preferably less than or equal to 200 ppm by weight, the nitrogen content is less than or equal to 500 ppm by weight, preferably less than or equal to 200 ppm by weight, the asphaltenes content is less or equal to 5.0 ppm by weight, the total content of chlorine element is less than or equal to 50 ppb by weight, the content of olefinic compounds (mono- and di-olefins) is less than or equal to 5.0% by weight, preferably less or equal to 2.0% by weight, preferably less than or equal to 0.5% by weight.
- Si silicon
- Fe iron element
- the contents are given in relative weight concentrations, percentage (%) weight, part (s) per million (ppm) weight or part (s) per billion (ppb) weight, relative to the total weight of the stream considered.
- the process according to the invention therefore makes it possible to treat the oils from the pyrolysis of plastics to obtain an effluent which can be injected into a steam cracking unit.
- the process according to the invention thus makes it possible to recover the oils from the pyrolysis of plastics, while at the same time reducing the formation of coke and thus the risks of clogging and / or of premature loss of activity of the catalyst (s) used in the processing unit. steam cracking, and reducing the risk of corrosion.
- the hydrocarbon effluent from step c) of separation, or at least one of the two hydrocarbon streams from step d) optional, can be sent to a step e) of steam cracking.
- Said steam cracking step e) is advantageously carried out in at least one pyrolysis furnace at a temperature between 700 and 900 ° C, preferably between 750 and 850 ° C, and at a pressure between 0.05 and 0.3 MPa relative.
- the residence time of the hydrocarbon compounds is generally less than or equal to 1.0 second (noted s), preferably between 0.1 and 0.5 s.
- water vapor is introduced upstream of optional steam cracking step e) and after separation (or fractionation).
- the quantity of water introduced, advantageously in the form of water vapor is between 0.3 and 3.0 kg of water per kg of hydrocarbon compounds at the inlet of step e).
- optional step e) is carried out in several pyrolysis ovens in parallel.
- a furnace comprises one or more tubes arranged in parallel.
- a furnace can also refer to a group of furnaces operating in parallel. For example, a furnace can be dedicated to cracking a hydrocarbon stream comprising compounds having a boiling point lower than 150 ° C, in particular between 80 and 150 ° C, and another furnace dedicated to the hydrocarbon stream comprising compounds having a boiling point greater than 150 ° C.
- This step of e) of steam cracking makes it possible to obtain at least one effluent, in particular an effluent by hydrocarbon stream sent to step e) of steam cracking, containing olefins comprising 2, 3 and / or 4 carbon atoms (c ' ie C2, C3 and / or C4 olefins), in satisfactory contents, in particular greater than or equal to 30% by weight, in particular greater than or equal to 40% by weight, or even greater than or equal to 50% by weight of olefins total comprising 2, 3 and 4 carbon atoms relative to the weight of the steam cracking effluent considered.
- Said C2, C3 and C4 olefins can then be advantageously used as polyolefin monomers.
- the process for treating a feed comprising an oil for pyrolysis of plastics preferably comprises: sequence of the steps described above, and preferably in the order given, that is to say: the pretreatment step ao), the selective hydrogenation step a), the step b) of hydrotreatment, step c) of separation, optionally step d) of fractionation, and step e) of steam cracking.
- FIG. 1 represents the diagram of an embodiment of the process of the present invention, comprising: a stage a) of selective hydrogenation of a hydrocarbon feed resulting from the pyrolysis of plastics 1, in the presence of a rich gas in hydrogen 2 and optionally of an amine supplied by stream 3, produced in at least one fixed bed reactor comprising at least one selective hydrogenation catalyst, to obtain an effluent 4; a step b) of hydrotreating the effluent 4 from step a), in the presence of hydrogen 5, carried out in at least one fixed bed reactor comprising at least one hydrotreatment catalyst, to obtain a hydrotreated effluent 6; a step c) of separating the effluent 6 carried out in the presence of an aqueous washing solution 7 and making it possible to obtain at least one fraction 8 comprising hydrogen, an aqueous fraction 9 containing dissolved salts, and a fraction hydrocarbon liquid 10.
- FIG. 2 shows a variant of the implementation of the process according to the invention shown in Figure 1.
- the liquid hydrocarbon fraction 10, obtained at the end of step c ) is sent to a fractionation step d) making it possible to obtain at least one gaseous fraction 11, a fraction comprising naphtha 12 and a hydrocarbon fraction 13.
- Figure 3 shows a variant of the implementation of the process according to the invention shown in Figure 2.
- the hydrocarbon feed resulting from the pyrolysis of plastics 1 undergoes a step ao) of pretreatment, prior to step a) of selective hydrogenation.
- the then pretreated feed 14 feeds step a) of selective hydrogenation.
- step d) the fraction comprising naphtha 12 and / or the hydrocarbon fraction 13 is / are sent to a steam cracking process.
- the feed treated in the process is a plastic pyrolysis oil (that is to say comprising 100% by weight of said plastic pyrolysis oil) having the characteristics indicated in Table 2.
- Table 2 load characteristics
- Load 1 is subjected to a step a) of selective hydrogenation carried out in a fixed bed reactor and in the presence of hydrogen 2 and of a selective hydrogenation catalyst of the NiMo type on alumina under the conditions indicated in Table 3. .
- Table 3 conditions of step a) of selective hydrogenation
- step a) of selective hydrogenation all of the diolefins initially present in the feed were converted.
- stage a) of selective hydrogenation is subjected directly, without separation, to a stage b) of hydrotreatment carried out in a fixed bed and in the presence of hydrogen 5 and of a hydrotreatment catalyst of NiMo type on alumina under the conditions presented in Table 4.
- the effluent 6 from hydrotreatment step b) is subjected to a separation step c): a stream of water is injected into the effluent from hydrotreatment step b); the mixture is then treated in an acid gas washing column, separator flasks. Then the liquid effluent obtained is sent to a fractionation step d) which comprises a stripping column.
- a separation step c) a stream of water is injected into the effluent from hydrotreatment step b); the mixture is then treated in an acid gas washing column, separator flasks. Then the liquid effluent obtained is sent to a fractionation step d) which comprises a stripping column.
- Table 5 The yields of the various fractions obtained after separation and fractionation are shown in Table 5 (the yields corresponding to the ratios of the mass quantities of the various products obtained relative to the mass of feedstock upstream of step a), expressed as a percentage and noted% m / m).
- the PI-150 ° C and 150 ° C + liquid fractions both exhibit compositions compatible with a steam cracking unit since: - they do not contain olefins (mono- and di-olefins); they have very low chlorine element contents (respectively an undetected content and a content of 25 ppb by weight) and below the limit required for a steam cracker charge (£ 50 ppb by weight); the metal contents, in particular iron (Fe), are also very low (metal contents not detected for the PI-150 ° C fraction and ⁇ 1 ppm by weight for the 150 ° C + fraction; Fe contents not detected for the PI-150 ° C fraction and 50 ppb weight for the 150 ° C + fraction) and below the limits required for a steam cracker charge (£ 5.0 ppm by weight, very preferably £ 1 ppm by weight for metals; £ 100 ppb weight for Fe); - finally they contain sulfur ( ⁇ 2 ppm by weight for the PI-150 ° C fraction and
- the mixture of the two liquid fractions also has very low contents of olefins and of contaminants (in particular of metals, chlorine, sulfur, nitrogen) making the composition compatible with a steam cracking unit.
- the PI-150 ° C and 150 ° C + liquid fractions obtained are therefore then sent to a steam cracking step where the liquid fractions are cracked under different conditions (see Table 7).
- the PI + mixture can also be sent directly to a steam cracking step according to the conditions mentioned in Table 7.
- the process according to the invention makes it possible to achieve overall mass yields of ethylene and propylene respectively of 34.7% and 18.9% relative to the mass quantity of initial plastic pyrolysis oil type charge.
- the specific sequence of steps upstream of the steam cracking step makes it possible to limit the formation of coke and to avoid the corrosion problems that would have arisen if the chlorine had not been removed.
- the fractionation step includes in addition to a stripping column a distillation section so as to obtain a diesel cut that can be integrated directly into a diesel pool, that is to say meeting the specifications requested for a diesel and in particular the specification of the T90 D86 at 360 ° C.
- the load to be treated is identical to that described in Example 1 (see Table 2).
- Table 11 gives the characteristics of the cuts 150-385 ° C and 385 ° C +, and the commercial specifications EN-590 of a diesel. Table 11: characteristics of cuts 150-385 ° C and 385 ° C + and commercial specifications EN-590
- Table 11 shows that the 150-385 ° C cut qualifies to be sent directly to the diesel pool.
- the hydrocarbon feed of pyrolysis oil type identical to that used in Example 1 is sent directly to a steam cracking step.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
La présente invention concerne un procédé de traitement d'une huile de pyrolyse de plastiques, comprenant : a) une étape d'hydrogénation sélective de ladite charge en présence d'hydrogène et d'au moins un catalyseur d'hydrogénation sélective, à une température entre 100 et 150°C, une pression partielle d'hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 1,0 et 10,0 h-1, pour obtenir un effluent hydrogéné; b) une étape d'hydrotraitement dudit effluent hydrogéné en présence d'hydrogène et d'au moins un catalyseur d'hydrotraitement, à une température entre 250 et 370°C, une pression partielle d'hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h-1, pour obtenir un effluent d'hydrotraitement; c) une étape de séparation de l'effluent d'hydrotraitement issu de l'étape b) en présence d'un flux aqueux, ladite étape étant opérée à une température entre 50 et 370°C, pour obtenir au moins un effluent gazeux, un effluent liquide aqueux et un effluent liquide hydrocarboné.
Description
PROCEDE DE TRAITEMENT D’HUILES DE PYROLYSE DE PLASTIQUES EN VUE DE LEUR VALORISATION DANS UNE UNITE DE VAPOCRAQUAGE
DOMAINE TECHNIQUE
La présente invention concerne un procédé de traitement d’une huile de pyrolyse de plastiques afin d’obtenir un effluent hydrocarboné dont la composition est compatible avec une charge alimentant une unité de vapocraquage. Plus particulièrement, la présente invention concerne un procédé de traitement d’une charge issue de la pyrolyse des déchets plastiques, afin d’éliminer au moins en partie des impuretés, notamment les oléfines (mono-, di- oléfines), les métaux, en particulier le silicium, et les halogènes, en particulier le chlore, que ladite charge peut contenir en quantités relativement importantes, et de manière à hydrogéner la charge pour pouvoir la valoriser dans une unité de vapocraquage avec des rendements accrue en oléfines légères.
TECHNIQUE ANTERIEURE
Les plastiques issus des filières de collecte et de tri peuvent subir une étape de pyrolyse afin d’obtenir entre autres des huiles de pyrolyse. Ces huiles de pyrolyse de plastiques sont généralement brûlées pour générer de l’électricité et/ou utilisées en tant que combustible dans des chaudières industrielles ou de chauffage urbain.
Une autre voie de valorisation des huiles de pyrolyse de plastiques pourrait être l’utilisation de ces huiles de pyrolyse de plastiques en tant que charge d’une unité de vapocraquage afin de (re)créer des oléfines, ces dernières étant des monomères constitutifs de certains polymères. Cependant, les déchets plastiques sont généralement des mélanges de plusieurs polymères, par exemple des mélanges de polyéthylène, de polypropylène, de polyéthylène téréphtalate, de polychlorure de vinyle, de polystyrène. De plus, en fonction des usages, les plastiques peuvent contenir, en plus des polymères, d’autres composés, comme des plastifiants, des pigments, des colorants ou encore des résidus de catalyseurs de polymérisation. Les déchets plastiques peuvent en outre contenir, de manière minoritaire, de la biomasse provenant par exemple des ordures ménagères. Il en résulte que les huiles issues de la pyrolyse des déchets plastiques comprennent beaucoup d’impuretés, en particulier des dioléfines, des métaux, notamment le silicium, ou encore des composés halogénés, notamment des composés à base de chlore, des hétéroéléments comme du soufre, de l’oxygène et de l’azote, des insolubles, à des teneurs souvent élevées et incompatibles avec les unités de vapocraquage ou les unités situées en aval des unités de vapocraquage, notamment les procédés de polymérisation et les procédés d’hydrogénation
sélective. Ces impuretés peuvent générer des problèmes d’opérabilité et notamment des problèmes de corrosion, de cokage ou de désactivation catalytique, ou encore des problèmes d’incompatibilité dans les usages des polymères cibles. La présence de dioléfines peut également conduire à des problèmes d’instabilité de l’huile de pyrolyse se caractérisant par la formation de gommes. Ce phénomène est généralement limité par un stockage approprié de la charge. Les gommes et les insolubles éventuellement présents dans l’huile de pyrolyse peuvent générer des problèmes de colmatage dans les procédés.
De plus, lors de l’étape de vapocraquage, les rendements en oléfines légères recherchées pour la pétrochimie, notamment l’éthylène et le propylène, dépendent fortement de la qualité des charges envoyées au vapocraquage. Le BMCI (Bureau of Mines Corrélation Index) est souvent utilisé pour caractériser les coupes hydrocarbonées. Globalement, les rendements en oléfines légères augmentent quand la teneur en paraffines augmente et/ou quand le BMCI diminue. A l’inverse, les rendements en composés lourds non recherchés et/ou en coke augmentent quand le BMCI augmente.
Le document WO 2018/055555 propose un procédé de recyclage des déchets plastiques global et très général, allant de l’étape même de pyrolyse des déchets plastiques jusqu’à l’étape de vapocraquage. Le procédé de la demande WO 2018/055555 comprend, entre autres, une étape d’hydrotraitement de la phase liquide issue directement de la pyrolyse, de préférence dans des conditions assez poussées notamment en terme de température, par exemple à une température comprise entre 260 et 300°C, une étape de séparation de l’effluent d’hydrotraitement puis une étape d’hydrodélakylation de l’effluent lourd séparé à une température de préférence élevée, par exemple comprise entre 260 et 400°C.
La présente invention vise à pallier ces inconvénients et participer au recyclage des plastiques, en proposant un procédé de traitement d’une huile issue de la pyrolyse de plastiques pour la purifier et l’hydrotraiter afin d’obtenir un effluent hydrocarboné à teneur réduite en impuretés, dont la composition est compatible avec une charge alimentant une unité de vapocraquage, conduit à des rendements améliorés en oléfines légères lors de l’étape de vapocraquage, tout en réduisant en particulier les risques de bouchage lors d’étapes de traitement d’huiles de pyrolyse des plastiques, comme celles décrites dans l’art antérieur, et la formation de coke en quantités importantes et/ou les risques de corrosion rencontrés lors d’étape de vapocraquage des huiles de pyrolyse des plastiques.
RESUME DE L’INVENTION
L’invention concerne un procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques, comprenant au moins les étapes suivantes :
a) une étape d’hydrogénation sélective mise en œuvre dans une section réactionnelle alimentée par ladite charge et un flux gazeux comprenant de l’hydrogène, en présence d’au moins un catalyseur d’hydrogénation sélective, à une température entre 100 et 250°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 1,0 et 10,0 h-1, pour obtenir un effluent hydrogéné; b) une étape d’hydrotraitement mise en œuvre dans une section réactionnelle d’hydrotraitement, comprenant un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, disposés en série et comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au niveau du premier lit catalytique par ledit effluent hydrogéné issu de l’étape a) et un flux gazeux comprenant de l’hydrogène et mise en œuvre à une température entre 250 et 430°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h-1, pour obtenir un effluent d’hydrotraitement ; c) une étape de séparation, alimentée par l’effluent d’hydrotraitement issu de l’étape b) et une solution aqueuse, ladite étape étant opérée à une température entre 50 et 370°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné.
L’avantage du procédé de l’invention est de proposer un enchaînement précis d’opérations qui permet de débarrasser une huile issue de la pyrolyse de déchets plastiques d’au moins une partie de ses impuretés, de l’hydrogéner pour la rendre en particulier compatible à un traitement dans une unité de vapocraquage afin de pouvoir recréer des oléfines légères avec des rendements accrus qui pourront servir de monomères dans la fabrication de polymères. L’invention permet également de prévenir des risques de bouchage et/ou de corrosion de l’unité de traitement dans laquelle le procédé de l’invention est mis en œuvre, les risques étant exacerbés par la présence, souvent en quantités importantes, de dioléfines, de métaux et de composés halogénés dans l’huile de pyrolyse de plastiques.
Le procédé de l’invention permet ainsi d’obtenir un effluent issu d’une huile de pyrolyse de plastiques débarrassé au moins en partie des impuretés de l’huile de pyrolyse de plastiques de départ, limitant ainsi les problèmes d’opérabilité, comme les problèmes de corrosion, de cokage ou de désactivation catalytique, que peuvent engendrer ces impuretés, dans les unités vapocraquage et/ou dans les unités situées en aval des unités de vapocraquage, notamment les unités de polymérisation et d’hydrogénation sélective. L’élimination d’au moins une partie des impuretés des huiles issues de la pyrolyse des déchets plastiques permettra aussi d’augmenter la gamme des applications des polymères cibles, les incompatibilités d’usages étant réduites.
L’invention a comme avantage encore de participer au recyclage des plastiques et à la préservation des ressources fossiles, en permettant la valorisation des huiles issues de leur pyrolyse dans une unité de vapocraquage. Elle permet, en effet, la purification et l’hydrotraitement de ces huiles qui peuvent alors être introduites dans un vapocraqueur pour obtenir des oléfines et ainsi de re-fabriquer des polymères.
Le procédé permet aussi d’obtenir des coupes naphtha et/ou diesel à partir de charge comprenant des huiles de pyrolyse de plastiques, coupes que le raffineur pourrait directement intégrer respectivement au pool naphtha et/ou au pool diesel obtenus par raffinage du pétrole brut.
DESCRIPTION DES MODES DE REALISATION
Selon l’invention, une « huile de pyrolyse de plastiques » est une huile, avantageusement sous forme liquide à température ambiante, issue de la pyrolyse de plastiques, de préférence de déchets plastiques provenant notamment de filières de collecte et de tri. Elle comprend en particulier un mélange de composés hydrocarbonés, notamment des paraffines, des mono- et/ou di-oléfines, ou encore éventuellement des naphtènes et des aromatiques, ces composés hydrocarbonés ayant de préférence un point d’ébullition inférieur à 700°C et de manière préférée inférieur à 550°C. L’huile de pyrolyse de plastiques peut comprendre, et le plus souvent comprend, en outre des impuretés comme des métaux, notamment du silicium et du fer, des composés halogénés, notamment des composés chlorés. Ces impuretés peuvent être présentes dans l’huile de pyrolyse de plastiques à des teneurs élevées, par exemple jusqu’à 350 ppm poids ou encore 700 ppm poids voire 1000 ppm poids d’éléments halogène apportés par des composés halogénés, jusqu’à 100 ppm poids, voire 200 ppm poids d’éléments métalliques ou semi-métalliques. Les métaux alcalins, les alcalino terreux, les métaux de transition, les métaux pauvres et les métalloïdes peuvent être assimilés aux contaminants de nature métallique, appelés métaux ou éléments métalliques ou semi métalliques. De manière particulière, les métaux ou éléments métalliques ou semi métalliques, éventuellement contenus dans les huiles issues de la pyrolyse des déchets plastiques, comprennent du silicium, du fer ou ces deux éléments. L’huile de pyrolyse de plastiques peut également comprendre d’autres impuretés comme des hétéroéléments apportés notamment par des composés soufrés, des composés oxygénés et/ou des composés azotés, à des teneurs généralement inférieures à 10000 ppm poids d’hétéroéléments et de préférence inférieures à 4000 ppm poids d’hétéroéléments.
Selon la présente invention, les pressions sont des pressions absolues, encore notées abs., et sont données en MPa absolus (ou MPa abs.).
Selon la présente invention, les expressions « compris entre ... et ... » et « entre .... et ... » sont équivalentes et signifient que les valeurs limites de l’intervalle sont incluses dans la gamme de valeurs décrite. Si tel n’était pas le cas et que les valeurs limites n’étaient pas incluses dans la gamme décrite, une telle précision sera apportée par la présente invention.
Dans le sens de la présente invention, les différents plages de paramètre pour une étape donnée tels que les plages de pression et les plages température peuvent être utilisés seul ou en combinaison. Par exemple, dans le sens de la présente invention, une plage de valeur préférée de pression peut être combinée avec une plage de valeur de température plus préférée.
Dans la suite, des modes de réalisation particuliers de l’invention peuvent être décrits. Ils pourront être mis en œuvre séparément ou combinés entre eux, sans limitation de combinaison lorsque c’est techniquement réalisable.
L’invention concerne un procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques, comprenant les étapes suivantes : a) une étape d’hydrogénation sélective réalisée avantageusement en lit fixe dans laquelle la charge et de l’hydrogène sont mis en contact en présence d’au moins un catalyseur d’hydrogénation sélective, ladite hydrogénation sélective étant réalisée à une température entre 100 et 250°C, de préférence entre 110 et 200°C, de manière préférée entre 130 et 180°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs., et une vitesse volumique horaire entre 1,0 et 10,0 h-1, avantageusement dans au moins un réacteur, de préférence dans au moins deux réacteurs et de manière préférée dans deux réacteurs en série permutables de type PRS (Permutable Reactor System), pour obtenir au moins un effluent à teneur réduite en dioléfines, appelé encore effluent hydrogéné ; b) une étape d’hydrotraitement réalisée en lit fixe dans laquelle l’effluent hydrogéné issu de l’étape a) d’hydrogénation sélective est mis en contact avec de l’hydrogène en présence d’au moins un catalyseur d’hydrotraitement, ladite étape étant mise en œuvre dans au moins un réacteur en lit fixe, comprenant avantageusement n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, de préférence compris entre 2 et 10, de manière préférée entre 2 et 5, disposés en série, à une température entre 250 et 430°C, de préférence entre 280 et 380°C, à une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h-1, de préférence entre 0,1 et 5,0 h-1, préférentiellement entre 0,2 et 2,0 h-1, de manière préférée entre 0,2 et 0,8 h-1, un flux gazeux supplémentaire comprenant de l’hydrogène étant avantageusement introduit en entrée de chaque lit catalytique à partir du second lit catalytique, pour obtenir au moins un effluent d’hydrotraitement.
c) une étape de séparation de l’effluent d’hydrotraitement issu de l’étape b), comprenant une section de lavage/séparation alimentée par l’effluent d’hydrotraitement issu de l’étape b) et avantageusement un flux aqueux, ladite étape de séparation étant mise en œuvre à une température comprise entre 50 et 370°C, préférentiellement entre 100 et 340°C, de manière préférée entre 200 et 300°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné.
La charge
La charge du procédé selon l’invention comprend au moins une huile de pyrolyse de plastiques. Ladite charge peut être constituée uniquement d’huile(s) de pyrolyse de plastiques. De préférence, ladite charge comprend au moins 50% poids, de manière préférée entre 75 et 100% poids, d’huile de pyrolyse de plastiques, c’est-à-dire de préférence entre 50 et 100% poids, de manière préférée entre 70% et 100% poids de d’huile de pyrolyse de plastiques. La charge du procédé selon l’invention peut comprendre, entre autre une ou des huile(s) de pyrolyse de plastiques, une charge pétrolière conventionnelle, qui est alors co-traitée avec l’huile de pyrolyse de plastiques de la charge.
L’huile de pyrolyse de plastiques de ladite charge comprend des composés hydrocarbonés, avantageusement paraffiniques, et des impuretés comme en particulier des mono- et/ou di- oléfines, des métaux, notamment du silicium et du fer, des composés halogénés, notamment des composés chlorés, des hétéroéléments apportés par des composés soufrés, des composés oxygénés et/ou des composés azotés. Ces impuretés sont souvent présentes à des teneurs souvent élevées, par exemple jusqu’à 350 ppm poids ou encore 700 ppm poids voire 1000 ppm poids d’éléments halogène apportés par des composés halogénés, jusqu’à 100 ppm poids, voire 200 ppm poids d’éléments métalliques ou semi-métalliques.
Ladite charge comprenant une huile de pyrolyse de plastiques peut avantageusement être prétraitée dans une étape de prétraitement ao), préalablement à l’étape a) d’hydrogénation sélective d’hydrogénation sélective, pour obtenir une charge prétraitée qui alimente l’étape a). Cette étape de prétraitement ao) permet de diminuer la quantité de contaminants, en particulier la quantité de silicium, éventuellement présents dans la charge comprenant une huile de pyrolyse de plastiques. Ainsi, une étape ao) de prétraitement de la charge comprenant une huile de pyrolyse de plastiques est avantageusement réalisée en particulier lorsque ladite charge comprend plus de 50 ppm poids, notamment plus de 20 ppm poids, plus particulièrement plus de 10 ppm poids, voire plus de 5 ppm poids d’éléments métalliques, et en particulier lorsque ladite charge comprend plus de plus de 20 ppm poids, plus particulièrement plus de 10 ppm poids, voire plus de 5 ppm poids d’éléments et encore plus particulièrement plus de 1,0 ppm poids de silicium.
Ladite étape ao) de prétraitement est mise en œuvre préalablement à l’étape a) d’hydrogénation sélective, dans une section d’adsorption alimentée par ladite charge comprenant une huile de pyrolyse de plastiques et fonctionnant à une température entre 0 et 150°C, de préférence entre 5 et 100°C, et à une pression entre 0,15 et 10,0 MPa abs, de préférence entre 0,2 et 1,0 MPa abs, en présence d’au moins un adsorbant, de préférence de type alumine, ayant une surface spécifique supérieure ou égale à 100 m2/g, de préférence supérieure ou égale à 200 m2/g. La surface spécifique dudit au moins adsorbant est avantageusement inférieure ou égale à 600 m2/g, en particulier inférieure ou égale à 400 m2/g. La surface spécifique de l’adsorbant est une surface mesurée par la méthode BET, c’est-à-dire la surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique 'The Journal of the American Chemical Society", 6Q, 309 (1938). Avantageusement, ledit adsorbant comprend moins de 1% poids d’éléments métalliques, de préférence est exempt d’éléments métalliques. Par éléments métalliques de l’adsorbant, il faut entendre les éléments des groupes 6 à 10 du tableau périodique des éléments.
Ladite section d’adsorption comprend au moins une colonne d’adsorption, de préférence comprend deux colonnes d’adsorption, contenant ledit adsorbant. Lorsque la section d’adsorption comprend deux colonnes d’adsorption, un mode de fonctionnement peut être un fonctionnement appelé « en swing », selon le terme anglo-saxon consacré, dans lequel l’une des colonnes est en ligne tandis que l’autre colonne est en réserve. Lorsque l’absorbant de la colonne en ligne est usé, cette colonne est isolée tandis que la colonne en réserve est mise en ligne. L’absorbant usé peut être ensuite régénéré in-situ et/ou remplacé par de l’absorbant frais pour à nouveau être remis en ligne une fois que l’autre colonne a été isolée. Un autre mode de fonctionnement est d’avoir les deux colonnes fonctionnant en série, lorsque l’absorbant de la colonne en tête est usé, cette première colonne est isolée et l’absorbant usée est soit régénéré in-situ ou remplacé par de l’absorbant frais. La colonne est ensuite remise en ligne en deuxième position et ainsi de suite. Ce fonctionnement est appelé « en lead and lag », selon le terme anglo-saxon consacré. L’association de deux colonnes d’adsorption permet de palier à l’empoisonnement et/ou au colmatage possible(s) et éventuellement rapide de l’adsorbant sous l’action conjointe des contaminants métalliques, des di oléfines, des gommes issues des dioléfines et des insolubles éventuellement présents dans l’huile de pyrolyse de plastiques à traiter. La présence de deux colonnes d’adsorption facilite en effet le remplacement et/ou la régénération de l’adsorbant, avantageusement sans arrêt de l’unité de prétraitement, voire du procédé, permettant ainsi de diminuer les risques de colmatage et donc d’éviter l’arrêt de l’unité dû au colmatage, de maîtriser les coûts et de limiter la consommation d’adsorbant.
Etape a) d’hydrogénation sélective
Selon l’invention, le procédé comprend une étape a) d’hydrogénation sélective est réalisée en présence d’hydrogène, dans des conditions de pression en hydrogène et de température telles qu’elles permettent de maintenir la phase liquide et avec une quantité d’hydrogène soluble juste nécessaire à une hydrogénation sélective des di-oléfines présentes dans l’huile de pyrolyse de plastiques. L’hydrogénation sélective des di-oléfines en phase liquide permet ainsi d’éviter ou au moins de limiter la formation de « gommes », c’est-à-dire la polymérisation des dioléfines et donc la formation d’oligomères et polymères, pouvant boucher la section réactionnelle de l’étape suivante d’hydrotraitement. Ladite étape a) d’hydrogénation sélective permet d’obtenir un effluent hydrogéné, c’est-à-dire un effluent à teneur réduite en dioléfines, voire exempt de dioléfines.
Selon l’invention, ladite étape a) d’hydrogénation sélective est mise en œuvre une section réactionnelle alimentée par ladite charge comprenant une huile de pyrolyse de plastiques, ou par la charge prétraitée issue de l’éventuelle étape ao) de prétraitement, et un flux gazeux comprenant de l’hydrogène (H2). Ladite section réactionnelle met en œuvre une hydrogénation sélective, de préférence en lit fixe, en présence d’au moins un catalyseur d’hydrogénation sélective, avantageusement à une température entre 100 et 250°C, de préférence entre 110 et 200°C, de manière préférée entre 130 et 180°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et à une vitesse volumique horaire (WH) entre 1,0 et 10,0 h-1. Selon l’étape a) du procédé de l’invention, la vitesse volumique horaire (WH) est définie comme le ratio entre le débit volumique horaire de la charge comprenant l’huile de pyrolyse de plastiques, éventuellement prétraitée, par le volume de catalyseur(s). La quantité du flux gazeux alimentant ladite section réactionnelle de l’étape a) est avantageusement telle que la couverture en hydrogène est comprise entre 1 et 50 Nm3 d’hydrogène par m3 de charge (Nm3/m3), de préférence entre 5 et 20 Nm3 d’hydrogène par m3 de charge (Nm3/m3). La couverture en hydrogène est définie comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique de charge à 15°C ( en normaux m3 , noté Nm3, de H2 par m3 de charge). Le flux gazeux comprenant de l’hydrogène, qui alimente la section réactionnelle de l’étape a), peut être constitué d’un appoint en hydrogène et/ou d’hydrogène recyclé issu en particulier de l’étape c) de séparation.
Avantageusement, la section réactionnelle de ladite étape a) comprend au moins un réacteur. De préférence, la section réactionnelle comprend au moins 2 réacteurs et, de manière préférée, comprend deux réacteurs qui fonctionnent en système permutable appelé encore selon le terme anglais « PRS » pour Permutable Reactor System. L’association de
deux réacteurs dits en PRS permet d’isoler un réacteur, de décharger le catalyseur usé, de recharger le réacteur en catalyseur frais et remettre en service ledit réacteur sans arrêt du procédé. La technologie PRS est décrite, en particulier, dans le brevet FR2681871.
Avantageusement, des internes de réacteurs, par exemple de type plateaux filtrants, peuvent être utilisés pour prévenir le bouchage du(des) réacteur(s). Un exemple de plateau filtrant est décrit dans le brevet FR3051375.
Avantageusement, ledit au moins catalyseur d’hydrogénation sélective comprend un support, de préférence minéral, et une fonction hydro-déshydrogénante.
La fonction hydro-déshydrogénante comprend en particulier au moins un élément du groupe VIII, de préférence choisi dans le groupe constitué par le nickel et le cobalt, et/ou au moins un élément du groupe VIB, de préférence choisi dans le groupe constitué par le molybdène et le tungstène. La teneur totale en oxydes des éléments métalliques des groupes VIB et VIII (c’est-à-dire la somme des éléments métalliques des groupes VIB et VIII) est de préférence comprise entre 1% et 40% en poids, préférentiellement de 5% à 30% en poids par rapport au poids total du catalyseur. Le rapport pondéral exprimé en oxyde métallique entre le métal (ou les métaux) du groupe VIB par rapport au métal (ou aux métaux) du groupe VIII est de préférence compris entre 1 et 20, et de manière préférée entre 2 et 10. Par exemple, la section réactionnelle de ladite étape a) comprend un catalyseur d’hydrogénation sélective comprenant entre 0,5% et 10% en poids de nickel, de préférence entre 1% et 5% en poids de nickel (exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur), et entre 1% et 30% en poids de molybdène, de préférence entre 3% et 20% en poids de molybdène (exprimé en oxyde de molybdène Mo03 par rapport au poids dudit catalyseur) sur un support de préférence minéral.
Le support dudit au moins catalyseur d’hydrogénation sélective est de préférence choisi dans le groupe constitué par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges. Ledit support peut en outre renfermer des composés dopants, notamment des oxydes choisis dans le groupe constitué par l’oxyde de bore, en particulier le trioxyde de bore, la zircone, la cérine, l’oxyde de titane, l’anhydride phosphorique et un mélange de ces oxydes. De préférence, ledit au moins catalyseur d’hydrogénation sélective comprend un support d’alumine, de manière préférée dopé avec du phosphore et éventuellement du bore. Lorsque l’anhydride phosphorique P205 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % poids par rapport au poids total de l’alumine. Lorsque le trioxyde de bore B205, est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et
avantageusement d’au moins 0,001 % par rapport au poids total de l’alumine. L’alumine utilisée peut être une alumine g (gamma) ou h (êta).
Ledit catalyseur d’hydrogénation sélective est par exemple sous forme d’extrudés.
De manière très préférée, au moins un catalyseur d’hydrogénation sélective utilisé dans l’étape a) comprend moins de 1% en poids de nickel et au moins 0,1 % poids de nickel, de préférence 0,5% poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur, et moins de 5% en poids de molybdène et au moins 0,1 % poids de molybdène, de préférence 0,5% poids de molybdène, exprimé en oxyde de molybdène Mo03 par rapport au poids dudit catalyseur, sur un support d’alumine, ceci afin d’hydrogéner les dioléfines le plus sélectivement possible.
Eventuellement, la charge qui comprend une huile de pyrolyse de plastiques, éventuellement prétraitée, peut être mélangée avec le flux gazeux comprenant de l’hydrogène, préalablement à la section réactionnelle.
Ladite charge, éventuellement en mélange avec le flux gazeux, peut également être chauffée, par exemple par échange de chaleur notamment avec l’effluent d’hydrotraitement, avant la section réactionnelle pour atteindre une température proche de la température mise en œuvre dans la section réactionnelle qu’elle alimente.
La teneur en impuretés, en particulier en dioléfines, de l’effluent hydrogéné obtenu à l’issue de l’étape a) est réduite par rapport à celle de certaines impuretés, en particulier à celle des dioléfines, comprises dans la charge du procédé. L’étape a) permet de convertir au moins 90% et de préférence au moins 99% des di-oléfines contenues dans la charge initiale. L’étape a) permet également l’élimination, au moins en partie, d’autres contaminants, comme par exemple le silicium. L’effluent hydrogéné est de préférence directement envoyé vers l’étape b) d’hydrotraitement.
Etape b) d’hydrotraitement
Selon l’invention, le procédé de traitement comprend une étape b) d’hydrotraitement, avantageusement en lit fixe, dudit effluent hydrogéné issu de l’étape a) en présence d’hydrogène et d’au moins un catalyseur d’hydrotraitement, pour obtenir un effluent d’hydrotraitement.
Avantageusement, ladite étape b) est mise en œuvre dans une section réactionnelle d’hydrotraitement comprenant un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, de préférence compris entre 2 et 10, de manière
préférée compris entre 2 et 5, disposés en série et comprenant chacun au moins un catalyseur d'hydrotraitement. Ladite section réactionnelle est alimentée, avantageusement au niveau du premier lit catalytique, par ledit effluent hydrogéné issu de l’étape a) et un flux gazeux comprenant de l’hydrogène.
Avantageusement, ladite section réactionnelle d’hydrotraitement est mise en œuvre à une pression équivalente à celle utilisée dans la section réactionnelle de l’étape a) d’hydrogénation sélective, mais à une plus haute température que celle de la section réactionnelle de l’étape a) d’hydrogénation sélective. Ainsi, ladite section réactionnelle d’hydrotraitement est avantageusement mise en œuvre à une température entre 250 et 430°C, de préférence entre 280 et 380°C, à une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et à une vitesse volumique horaire (WH) entre 0,1 et 10,0 h-1, de préférence entre 0,1 et 5,0 h-1, préférentiellement entre 0,2 et 2,0 h-1, de manière préférée entre 0,2 et 0,8 h-1. Selon l’étape b) du procédé de l’invention, la vitesse volumique horaire (WH) est définie comme le ratio entre le débit volumique horaire de l’effluent hydrogéné issu de l’étape a) par volume de catalyseur(s). La couverture en hydrogène dans l’étape b) est avantageusement comprise entre 50 et 1000 Nm3 d’hydrogène par m3 d’effluent hydrogéné issu de l’étape a), et de préférence entre 50 et 500 Nm3 d’hydrogène par m3 d’effluent hydrogéné issu de l’étape a) d’hydrogénation sélective, de manière préférée entre 100 et 300 Nm3 d’hydrogène par m3 d’effluent hydrogéné issu de l’étape a) d’hydrogénation sélective. La couverture en hydrogène est définie ici comme le rapport du débit volumique d’hydrogène pris dans les conditions normales de température et pression par rapport au débit volumique d’effluent hydrogéné issu de l’étape a) (en normaux m3 , noté Nm3, de H2 par m3 d’effluent hydrogéné issu de l’étape a)). L’hydrogène peut être constitué d’un appoint et/ou d’hydrogène recyclé issu en particulier de l’étape c) de séparation.
De préférence, un flux gazeux supplémentaire comprenant de l’hydrogène est avantageusement introduit, en entrée de chaque lit catalytique à partir du second lit catalytique. Ces flux gazeux supplémentaires sont appelés encore flux de refroidissement . Ils permettent de contrôler la température dans le réacteur d’hydrotraitement dans lequel les réactions mises en œuvre sont généralement très exothermiques.
Avantageusement, ledit au moins catalyseur d'hydrotraitement utilisé dans ladite étape b) peut être choisi parmi des catalyseurs connus d’hydrodémétallation, d’hydrotraitement, de captation du silicium, utilisés notamment pour le traitement des coupes pétrolières, et leurs combinaisons. Des catalyseurs d’hydrodémétallation connus sont par exemple ceux décrits dans les brevets EP 0113297, EP 0113284, US 5221656, US 5827421, US 7119045, US 5622616 et US 5089463. Des catalyseurs d’hydrotraitement connus sont par exemple
ceux décrits dans les brevets EP 0113297, EP 0113284, US 6589908, US 4818743 ou US 6332976. Des catalyseurs de captation du silicium connus sont par exemple ceux décrits dans les demandes de brevets CN 102051202, US 2007/080099.
En particulier, ledit au moins catalyseur d’hydrotraitement comprend un support, de préférence minéral, et au moins un élément métallique ayant une fonction hydro- déshydrogénante. Ledit au moins élément métallique ayant une fonction hydro- déshydrogénante comprend avantageusement au moins un élément du groupe VIII, de préférence choisi dans le groupe constitué par le nickel et le cobalt, et/ou au moins un élément du groupe VI B, de préférence choisi dans le groupe constitué par le molybdène et le tungstène. La teneur totale en oxydes des éléments métalliques des groupes VI B et VIII est de préférence entre 1% et 40% en poids, préférentiellement de 5% à 30% en poids, par rapport au poids total du catalyseur. Le rapport pondéral exprimé en oxyde métallique entre le métal (ou les métaux) du groupe VI B par rapport au métal (ou aux métaux) du groupe VIII est de préférence compris entre 1,0 et 20, de manière préférée entre 2,0 et 10. Par exemple, la section réactionnelle d’hydrotraitement de l’étape b) du procédé comprend un catalyseur d’hydrotraitement comprenant entre 0,5% et 10% en poids de nickel, de préférence entre 1% et 5% en poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids total du catalyseur d’hydrotraitement, et entre 1,0% et 30% en poids de molybdène, de préférence entre 3,0% et 20% en poids de molybdène, exprimé en oxyde de molybdène Mo03 par rapport au poids total du catalyseur d’hydrotraitement, sur un support minéral.
Le support dudit au moins catalyseur d’hydrotraitement est avantageusement choisi dans le groupe constitué par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges. Ledit support peut en outre renfermer des composés dopants, notamment des oxydes choisis dans le groupe constitué par l’oxyde de bore, en particulier le trioxyde de bore, la zircone, la cérine, l’oxyde de titane, l’anhydride phosphorique et un mélange de ces oxydes. De préférence, ledit au moins catalyseur d’hydrotraitement comprend un support d’alumine, de manière préférée un support d’alumine dopé avec du phosphore et éventuellement du bore. Lorsque l’anhydride phosphorique P205 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % poids par rapport au poids total de l’alumine. Lorsque le trioxyde de bore B205 est présent, sa concentration est inférieure à 10% en poids par rapport au poids de l’alumine et avantageusement d’au moins 0,001 % par rapport au poids total de l’alumine. L’alumine. L’alumine utilisée peut être une alumine y (gamma) ou h (êta).
Ledit catalyseur d’hydrotraitement est par exemple sous forme d’extrudés.
Avantageusement, ledit au moins catalyseur d’hydrotraitement utilisé dans l’étape b) du procédé présente une surface spécifique supérieure ou égale à 250 m2/g, de préférence supérieure ou égale à 300 m2/g. La surface spécifique dudit catalyseur d’hydrotraitement est avantageusement inférieure ou égale à 800 m2/g, de préférence inférieure ou égale à 600 m2/g, en particulier inférieure ou égale à 400 m2/g. La surface spécifique du catalyseur d’hydrotraitement est mesurée par la méthode BET, c’est-à-dire la surface spécifique déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER-EMMETT-TELLER décrite dans le périodique 'The Journal of the American Chemical Society", 6Q, 309 (1938). Une telle surface spécifique permet d’améliorer encore l’élimination des contaminants, en particulier des métaux comme le silicium.
Eventuellement, l’étape b) peut mettre en œuvre une section de chauffe située en amont de la section réactionnelle d’hydrotraitement et dans laquelle l’effluent hydrogéné issu de l’étape a) est chauffé pour atteindre une température adaptée pour l’hydrotraitement, c’est-à-dire une température comprise entre 250 et 370°C. Ladite éventuelle section de chauffe peut ainsi comprendre un ou plusieurs échangeurs, permettant de préférence un échange de chaleur entre l’effluent hydrogéné et l’effluent d’hydrotraitement, et/ou un four de préchauffe.
Avantageusement, l’étape b) d’hydrotraitement permet l’hydrogénation totale des oléfines présentes dans la charge initiale et celles éventuellement obtenues après l’étape a) d’hydrogénation sélective, mais aussi la conversion au moins en partie d’autres impuretés présentes dans la charge, comme les composés aromatiques, les composés métalliques, les composés soufrés, les composés azotés, les composés halogénés (notamment les composés chlorés), les composés oxygénés.. L’étape b) peut également permettre de réduire encore la teneur en contaminants, comme celle des métaux, en particulier la teneur en silicium.
Etape c) de séparation
Selon l’invention, le procédé de traitement comprend une étape c) de séparation, avantageusement mise en œuvre dans au moins une section de lavage/séparation, alimentée au moins par l’effluent d’hydrotraitement issu de l’étape b), pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné.
L’effluent gazeux comprend avantageusement de l’hydrogène, de préférence comprend essentiellement de l’hydrogène, c’est-à-dire comprend au moins 90% volume, de préférence au moins 95% volume, de manière préférée au moins 99% volume, d’hydrogène. Avantageusement, ledit effluent gazeux qui contient de préférence essentiellement de
l’hydrogène, peut au moins en partie être recyclé vers les étapes a) d’hydrogénation sélective et/ou b) d’hydrotraitement, le système de recyclage pouvant comprendre une section de purification. L’effluent aqueux comprend avantageusement des sels d’ammonium et/ou de l’acide chlorhydrique. Ledit effluent hydrocarboné comprend des composés hydrocarbonés et correspond avantageusement à l’huile de pyrolyse de plastiques de la charge, ou à l’huile de pyrolyse de plastiques et de la fraction de charge pétrolière conventionnelle co-traitée avec l’huile de pyrolyse, débarrassées au moins en partie de ses impuretés, en particulier de ses impuretés oléfiniques (di- et mono-oléfines), métalliques, halogénées.
Cette étape c) de séparation permet en particulier d’éliminer les sels de chlorure d’ammonium, qui se forment par réaction entre les ions chlorure, libérés par l’hydrogénation des composés chlorés lors de l’étape b), et les ions ammonium, générés par l’hydrogénation des composés azotés lors de l’étape b) et/ou apportés par injection d’une amine, et ainsi de limiter les risques de bouchage, en particulier dans les lignes de transfert et/ou dans les sections du procédé de l’invention et/ou les lignes de transfert vers le vapocraqueur, dû à la précipitation des sels de chlorure d’ammonium. Il permet aussi d’éliminer l’acide chlorhydrique formé par la réaction des ions hydrogène et des ions chlorures.
En fonction de la teneur en composés chlorés dans la charge initiale à traiter, un flux d’amines peut être injecté en amont de l’étape a) d’hydrogénation sélective, entre l’étape a) d’hydrogénation sélective et l’étape b) d’hydrotraitement et/ou entre l’étape b) d’hydrotraitement et l’étape c) de séparation, de préférence en amont de l’étape a) d’hydrogénation sélective, afin d’assurer une quantité suffisante en ions ammonium pour combiner les ions chlorure formés lors de l’étape d’hydrotraitement, permettant ainsi de limiter la formation d’acide chlorhydrique et ainsi de limiter la corrosion en aval de la section de séparation.
Avantageusement, l’étape c) de séparation comprend une injection d’une solution aqueuse dans l’effluent d’hydrotraitement issu de l’étape b), en amont de la section de lavage/séparation, de manière à dissoudre au moins en partie des sels de chlorure d’ammonium et/ou de l’acide chlorhydrique et améliorer ainsi l’élimination des impuretés chlorées et réduire les risques de bouchages dus à une accumulation des sels de chlorure d’ammonium.
L’étape c) de séparation est avantageusement opérée entre 50 et 370°C, préférentiellement entre 100 et 340°C, de manière préférée entre 200 et 300°C. Avantageusement, l’étape c)
de séparation est opérée à une pression proche de celle mise en œuvre dans les étapes a) et/ou b), de manière à faciliter le recyclage d’hydrogène.
La section de lavage/séparation de l’étape c) peut au moins en partie être réalisée dans des équipements de lavage et de séparation communs ou distincts, ces équipements étant bien connus (ballons séparateurs pouvant opérés à différentes pressions et températures, pompes, échangeurs de chaleurs, colonnes de lavage, etc.).
Dans un mode de réalisation éventuel de l’invention, pris en complément ou isolément d’autres modes de réalisation de l’invention décrits, l’étape c) de séparation comprend l’injection d’une solution aqueuse dans l’effluent d’hydrotraitement issu de l’étape b) suivi de la section de lavage/séparation comprenant avantageusement une phase de séparation permettant d’obtenir au moins un flux aqueux chargé en sels d’ammonium, un flux hydrocarboné liquide lavé et un flux gazeux partiellement lavé. Le flux aqueux chargé en sels d’ammonium et le flux hydrocarboné liquide lavé peuvent ensuite être séparés dans un ballon décanteur afin d’obtenir ledit effluent hydrocarboné et ledit effluent aqueux. Ledit flux gazeux partiellement lavé peut parallèlement être introduit dans une colonne de lavage où il circule à contrecourant d’un flux aqueux, de préférence de même nature que la solution aqueuse injectée dans l’effluent d’hydrotraitement, ce qui permet d’éliminer au moins en partie, de préférence en totalité , l’acide chlorhydrique contenu dans le flux gazeux partiellement lavé et d’obtenir ainsi ledit effluent gazeux, comprenant de préférence essentiellement de l’hydrogène, et un flux aqueux acide. Ledit effluent aqueux issue du ballon décanteur peut éventuellement être mélangé avec ledit flux aqueux acide, et être utilisé, éventuellement en mélange avec ledit flux aqueux acide dans un circuit de recyclage d’eau pour alimenter l’étape c) de séparation en ladite solution aqueuse en amont de la section de lavage/séparation et/ou en ledit flux aqueux dans la colonne de lavage. Ledit circuit de recyclage d’eau peut comporter un appoint d’eau et/ou d’une solution basique et/ou une purge permettant d’évacuer les sels dissous.
Dans un autre mode de réalisation éventuel de l’invention, pris séparément ou en combinaison d’autres modes de réalisation de l’invention décrits, l’étape c) de séparation peut comprendre avantageusement une section de lavage/séparation à « haute pression » qui opère à une pression proche de la pression de l’étape a) d’hydrogénation sélective et/ou de l’étape b) d’hydrotraitement, afin de faciliter le recyclage d’hydrogène. Cette éventuelle section « haute pression » de l’étape c) peut être complétée par une section « basse pression », afin d’obtenir une fraction liquide hydrocarbonée dépourvue d’une partie des gaz dissous à haute pression et destinée à être traitée directement dans un procédé de vapocraquage ou optionnellement être envoyée dans l’étape d) de fractionnement.
L’effluent hydrocarboné issu de l’étape c) de séparation est envoyé soit directement en entrée d’une unité de vapocraquage, soit vers une étape d) optionnelle de fractionnement. De préférence, l’effluent liquide hydrocarboné est envoyé vers une étape d) de fractionnement.
Etape d) (optionnelle) de fractionnement
Le procédé selon l’invention peut comprendre, de préférence comprend, une étape de fractionnement de l’effluent hydrocarboné, pour obtenir au moins un flux gazeux et au moins deux flux hydrocarbonés ayant des points d’ébullition différents l’un de l’autre. Ladite étape d) de fractionnement peut par exemple permettre d’obtenir une coupe naphta de point d’ébullition inférieur à 150°C, en particulier entre 80 et 150°C, et une coupe hydrocarbonée de point d’ébullition supérieur à 150°C, ou une coupe naphta de point d’ébullition inférieur à 150°C, en particulier entre 80 et 150°C, une coupe diesel de point d’ébullition entre 150°C et 385°C, et une coupe hydrocarbonée de point d’ébullition supérieur à 385°C dite coupe hydrocarbonée lourde.
Lorsqu’elle est présente, l’étape d) permet, notamment sous l’action d’un flux de vapeur d’eau, en particulier d’éliminer les gaz dissous dans l’effluent liquide hydrocarboné, comme par exemple de l’ammoniac, de l’hydrogène sulfuré et des hydrocarbures légers ayant 1 à 4 atomes de carbone.
L’étape d) optionnelle de fractionnement est avantageusement opérée à une pression inférieure ou égale à 1,0 MPa abs., de préférence entre 0,1 et 1,0 MPa abs. L’étape d) peut être opérée dans une section comprenant une colonne de stripage équipée d’un circuit de reflux comprenant un ballon de reflux. Ladite colonne de stripage est alimentée par l’effluent liquide hydrocarboné issu de l’étape c) et par un flux de vapeur d’eau. L’effluent liquide hydrocarboné issu de l’étape c) peut être éventuellement réchauffé avant l’entrée dans la colonne de stripage. Ainsi, les composés les plus légers sont entraînés en tête de colonne et dans le circuit de reflux comprenant un ballon de reflux dans lequel s’opère une séparation gaz/liquide. La phase gazeuse qui comprend les hydrocarbure légers, est soutiré du ballon de reflux, en un flux gazeux. Au moins une fraction de la phase liquide est avantageusement soutiré du ballon de reflux, en un flux hydrocarboné de point d’ébullition relativement bas, par exemple une coupe naphta de point d’ébullition inférieur à 150°C. Un flux hydrocarboné, avantageusement liquide, de point d’ébullition supérieur au flux hydrocarboné soutiré en tête de colonne, par exemple supérieur à 150°C, est soutiré en fond de colonne de stripage.
Selon d’autres modes de réalisation, l’étape d) de fractionnement peut mettre en œuvre une colonne de stripage suivi d’une colonne de distillation ou uniquement une colonne de distillation.
Lesdits flux hydrocarbonés, par exemple la coupe naphta de point d’ébullition inférieur à 150°C et la coupe de point d’ébullition supérieur à 150°C, éventuellement mélangés, peuvent être envoyés vers une unité de vapocraquage, à l’issue de laquelle des oléfines pourront être (re)formées pour participer à la formation de polymères. Le flux naphta par exemple de point d’ébullition inférieur à 150°C, peut, selon un autre mode, être envoyé vers un pool naphta, c’est-à-dire vers les effluents naphta, issus de charges pétrolières plus conventionnelles, produits dans la même raffinerie dans laquelle le procédé selon l’invention est mis en œuvre, le flux hydrocarboné de point d’ébullition supérieur à 150°C étant quant à lui envoyé vers une unité de vapocraquage. Si l’étape d) optionnelle conduit à l’obtention d’une coupe naphta (en particulier de point d’ébullition inférieur à 150°C), d’une coupe diesel (en particulier de point d’ébullition entre 150°C et 385°C) et d’une coupe lourde (en particulier de point d’ébullition supérieur à 385°C), la coupe naphta peut être envoyée vers le pool naphta produit dans la même raffinerie et la coupe diesel peut également être soit envoyée vers une unité de vapocraquage avec la coupe lourd, soit vers un pool diesel produit dans la raffinerie.
Selon un ou plusieurs mode(s) de réalisation préféré(s) de l’invention, pris séparément ou combinés entre eux, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes décrites ci-dessus, et de préférence dans l’ordre donné, c’est-à-dire : l’étape ao) de prétraitement, l’étape a) d’hydrogénation sélective, l’étape b) d’hydrotraitement, l’étape c) de séparation et optionnellement l’étape d) de fractionnement, pour produire une huile de pyrolyse de plastiques traitée et de composition compatible avec l’entrée d’une unité de vapocraquage.
Ledit effluent hydrocarboné ou, lorsque le procédé selon l’invention comprend une étape de fractionnement, lesdits flux hydrocarbonés flux hydrocarbonés ayant des points d’ébullition différents l’un de l’autre, ainsi obtenu(s) par traitement selon le procédé de l’invention d’une huile de pyrolyse de plastiques, présente(nt) une composition compatible avec les spécifications d’une charge en entrée d’une unité de vapocraquage. En particulier, la composition de l’effluent hydrocarboné ou desdits flux hydrocarbonés est de préférence telle que : la teneur totale en éléments métalliques est inférieure ou égale à 5,0 ppm poids, de préférence inférieure ou égale à 2,0 ppm poids, préférentiellement inférieure ou égale à
1,0 ppm poids et de manière préférée inférieure ou égale à 0,5 ppm poids, avec :
une teneur en élément silicium (Si) inférieure ou égale à 1,0 ppm poids, de préférence inférieure ou égale à 0,6 ppm poids, et une teneur en élément fer (Fe) inférieure ou égale à 100 ppb poids, la teneur en soufre est inférieure ou égale à 500 ppm poids, de préférence inférieure ou égale à 200 ppm poids, la teneur en azote est inférieure ou égale à 500 ppm poids, de préférence inférieure ou égale à 200 ppm poids, la teneur en asphaltènes est inférieure ou égale à 5,0 ppm poids, la teneur totale en élément chlore est inférieure ou égale à 50 ppb poids, la teneur en composés oléfiniques (mono- et di-oléfines) est inférieure ou égale à 5,0% poids, de préférence inférieure ou égale à 2,0% poids, de manière préférée inférieure ou égale à 0,5% poids.
Les teneurs sont données en concentrations pondérales relatives, pourcentage (%) poids, partie(s) par million (ppm) poids ou partie(s) par milliard (ppb) poids, par rapport au poids total du flux considéré.
Le procédé selon l’invention permet donc de traiter les huiles de pyrolyse de plastiques pour obtenir un effluent qui peut être injecté dans une unité de vapocraquage. Le procédé selon l’invention permet ainsi de valoriser les huiles de pyrolyse de plastiques, tout en en réduisant la formation de coke et ainsi les risques de bouchage et/ou de pertes prématurées d’activité du/des catalyseurs utilisés dans l’unité de vapocraquage, et en diminuant les risques de corrosion.
Etape e) de vapocraquage (optionnelle)
L’effluent hydrocarboné issu de l’étape c) de séparation, ou au moins l’un des deux flux hydrocarbonés issus de l’étape d) optionnelle, peut être envoyé vers une étape e) de vapocraquage.
Ladite étape e) de vapocraquage est avantageusement réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C, de préférence entre 750 et 850°C, et à une pression comprise entre 0,05 et 0,3 MPa relatif. Le temps de séjour des composés hydrocarbonés est généralement inférieur ou égale à 1,0 seconde (noté s), de préférence compris entre 0,1 et 0,5 s. Avantageusement, de la vapeur d’eau est introduite en amont de l’étape e) de vapocraquage optionnelle et après la séparation (ou le fractionnement). La quantité d’eau introduite, avantageusement sous forme de vapeur d’eau, est comprise entre 0,3 et 3,0 kg d’eau par kg de composés hydrocarbonés en entrée de l’étape e). De préférence, l’étape e) optionnelle est réalisée dans plusieurs fours de pyrolyse en parallèle
de manière à adapter les conditions opératoires aux différents flux alimentant l’étape e) notamment issus de l’étape d), et aussi à gérer les temps de décodage des tubes. Un four comprend un ou plusieurs tubes disposés en parallèle. Un four peut également désigner un groupe de fours opérant en parallèle. Par exemple, un four peut être dédié au craquage d’un flux hydrocarboné comprenant des composés ayant une température d’ébullition inférieure à 150°C, en particulier entre 80 et 150°C, et un autre four dédié au flux hydrocarboné comprenant des composés ayant une température d’ébullition supérieure à 150°C.
Cette étape de e) de vapocraquage permet d’obtenir au moins un effluent, en particulier un effluent par flux hydrocarboné envoyé vers l’étape e) de vapocraquage, contenant des oléfines comprenant 2, 3 et/ou 4 atomes de carbone (c’est-à-dire des oléfines en C2, C3 et/ou C4), à des teneurs satisfaisantes, en particulier supérieures ou égales à 30% poids, notamment supérieures ou égales 40% poids, voire supérieures ou égales 50% poids d’oléfines totales comprenant 2, 3 et 4 atomes de carbone par rapport au poids de l’effluent de vapocraquage considéré. Lesdites oléfines en C2, C3 et C4 peuvent ensuite être avantageusement utilisées comme monomères de polyoléfines.
Selon un ou plusieurs mode(s) de réalisation préféré(s) de l’invention, pris séparément ou combinés entre eux, le procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques comprend, de préférence consiste en, l’enchaînement des étapes décrites ci-dessus, et de préférence dans l’ordre donné, c’est-à-dire : l’étape ao) de prétraitement, l’étape a) d’hydrogénation sélective, l’étape b) d’hydrotraitement, l’étape c) de séparation, optionnellement l’étape d) de fractionnement, et l’étape e) de vapocraquage.
Le procédé selon l’invention, lorsqu’il comprend cette étape e) de vapocraquage, permet ainsi d’obtenir à partir d’huiles de pyrolyse de plastiques, par exemple de déchets plastiques, des oléfines pouvant servir de monomères à la synthèse de nouveaux polymères, à des rendements relativement satisfaisants, sans bouchage ni corrosion des unités.
Les figures et exemples suivants illustrent l'invention sans en limiter la portée.
Méthodes d’analyse utilisées
Les méthodes d’analyses et/ou normes utilisées pour déterminer les caractéristiques des différents flux en particuliers de la charge à traiter et des effluents, sont connues de l’Homme du métier. Elles sont en particulier listées ci-dessous :
LISTE DES FIGURES
La mention des éléments référencés dans les Figures 1 à 3 permet une meilleure compréhension de l’invention, sans que celle-ci ne se limite aux modes de réalisation particuliers illustrés dans les Figures 1 à 3. Les différents modes de réalisation présentés peuvent être utilisés seul ou en combinaison les uns avec les autres, sans limitation de combinaison.
La Figure 1 représente le schéma d’un mode de réalisation du procédé de la présente invention, comprenant : - une étape a) d’hydrogénation sélective d’une charge hydrocarbonée issue de la pyrolyse de plastiques 1, en présence d’un gaz riche en hydrogène 2 et éventuellement d’une amine apporté par le flux 3, réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrogénation sélective, pour obtenir un effluent 4 ; une étape b) d’hydrotraitement de l’effluent 4 issu de l’étape a), en présence d’hydrogène 5, réalisée dans au moins un réacteur en lit fixe comportant au moins un catalyseur d’hydrotraitement, pour obtenir un effluent hydrotraité 6 ;
une étape c) de séparation de l’effluent 6 réalisée en présence d’une solution aqueuse de lavage 7 et permettant d’obtenir au moins une fraction 8 comprenant de l’hydrogène, une fraction aqueuse 9 contenant des sels dissous, et une fraction liquide hydrocarbonée 10.
Au lieu d’injecter le flux d’amine 3 en entrée de l’étape a) d’hydrogénation sélective, il est possible de l’injecter en entrée de l’étape b) d’hydrotraitement, en entrée de l’étape c) de séparation ou encore de ne pas l’injecter, en fonction des caractéristiques de la charge.
La Figure 2 représente une variante de la mise en œuvre du procédé selon l’invention représenté à la Figure 1. Dans le mode de réalisation montré sur la Figure 2, la fraction liquide hydrocarbonée 10, obtenue à l’issue de l’étape c) est envoyée à une étape d) de fractionnement permettant d’obtenir au moins une fraction gazeuse 11, une fraction comprenant du naphta 12 et une fraction hydrocarbonée 13.
La Figure 3 représente une variante de la mise en œuvre du procédé selon l’invention représenté à la Figure 2. Dans le mode de réalisation montré sur la Figure 3, la charge hydrocarbonée issue de la pyrolyse de plastiques 1 subit une étape ao) de prétraitement, préalablement à l’étape a) d’hydrogénation sélective. La charge alors prétraitée 14 alimente l’étape a) d’hydrogénation sélective.
Seules les principales étapes, avec les flux principaux, sont représentées sur les Figures 1 à 3, afin de permettre une meilleure compréhension de l’invention. Il est bien entendu que tous les équipements nécessaires au fonctionnement sont présents (ballons, pompes, échangeurs, fours, colonnes, etc.), même si non représentés. Il est également entendu que des flux de gaz riche en hydrogène (appoint ou recycle), comme décrit ci-dessus, peuvent être injectés en entrée de chaque réacteur ou lit catalytique ou entre deux réacteurs ou deux lits catalytiques. Des moyens bien connus de l’homme du métier de purification et de recyclage d’hydrogène peuvent être également mis en œuvre.
A l’issue de l’étape d), la fraction comprenant du naphta 12 et/ou la fraction hydrocarbonée 13 est/sont envoyée(s) vers un procédé de vapocraquage.
EXEMPLES
Exemple 1 (conforme à l’invention)
La charge traitée dans le procédé est une huile de pyrolyse de plastiques (c’est-à-dire comprenant 100% poids de ladite huile de pyrolyse de plastiques) présentant les caractéristiques indiquées dans le tableau 2.
Tableau 2 : caractéristiques de la charge
(1) Méthode MAV décrite dans l’article : C. Lépez-Garcia et al., Near Infrared Monitoring of Low Conjugated Diolefins Content in Hydrotreated FCC Gasoline Streams, Oil & Gas Science and Technology - Rev. IFP, Vol. 62 (2007), No. 1, pp. 57-68
La charge 1 est soumise à une étape a) d’hydrogénation sélective réalisée dans un réacteur en lit fixe et en présence d’hydrogène 2 et d’un catalyseur d’hydrogénation sélective de type NiMo sur Alumine dans les conditions indiquées dans le tableau 3.
Tableau 3 : conditions de l’étape a) d’hydrogénation sélective
A l’issue de l’étape a) d’hydrogénation sélective, la totalité des dioléfines initialement présentes dans la charge ont été converties.
L’effluent 4 issu de l’étape a) d’hydrogénation sélective est soumis directement, sans séparation, à une étape b) d’hydrotraitement réalisée en lit fixe et en présence d’hydrogène 5 et d’un catalyseur d’hydrotraitement de type NiMo sur Alumine dans les conditions présentées dans le tableau 4.
Tableau 4 : conditions de l’étape b) d’hydrotraitement
L’effluent 6 issu de l’étape b) d’hydrotraitement est soumis à une étape c) de séparation : un flux d’eau est injecté dans l’effluent issu de l’étape b) d’hydrotraitement ; le mélange est ensuite traité dans une colonne de lavage des gaz acides, des ballons séparateurs. Puis l’effluent liquide obtenu est envoyé dans une étape d) de fractionnement qui comprend une colonne de stripage. Les rendements des différentes fractions obtenues après séparation et fractionnement sont indiqués dans le tableau 5 (les rendements étant correspondant aux rapports des quantités massiques des différents produits obtenus par rapport à la masse de charge en amont de l’étape a), exprimés en pourcentage et notés % m/m).
Tableau 5 : rendements des différents produits obtenus après séparation et fractionnement
Les caractéristiques des fractions liquides PI-150°C et 150°C+(ainsi que la fraction PI+ qui est la somme des fractions PI-150°C et 150°C+) obtenues après l’étape c) de séparation et une étape de fractionnement sont présentés tableau 6 :
Tableau 6 : caractéristiques des fraction PI-150°C, 150°C+ et PI+
□
Les fractions liquides PI-150°C et 150°C+ présentent toutes les deux des compositions compatibles avec une unité de vapocraquage puisque : - elles ne contiennent pas d’oléfines (mono- et di-oléfines) ; elles présentent des teneurs en élément chlore très faibles (respectivement une teneur non détectée et une teneur de 25 ppb poids) et inférieures à la limite requise pour une charge de vapocraqueur (£ 50 ppb poids) ; les teneurs en métaux, en particulier en fer (Fe), sont elles aussi très faibles (teneurs en métaux non détectée pour la fraction PI-150°C et < 1 ppm poids pour la fraction 150°C+ ; teneurs en Fe non détectée pour la fraction PI-150°C et 50 ppb poids pour la fraction 150°C+) et inférieures aux limites requises pour une charge de vapocraqueur (£ 5,0 ppm poids, de manière très préférée £ 1 ppm poids pour les métaux ; £ 100 ppb poids pour le Fe) ; - enfin elles contiennent du soufre (< 2 ppm poids pour la fraction PI-150°C et < 10 ppm poids pour la fraction 150°C+) et de l’azote (< 0,5 ppm poids pour la fraction PI-150°C et < 5 ppm poids pour la fraction 150°C+) à des teneurs très inférieures aux limites requises pour une charge de vapocraqueur (£ 500 ppm poids, de préférence £ 200 ppm poids pour S et N).
Il apparait également que le mélange des deux fractions liquide, nommé PI+, présente également des teneurs très faibles en oléfines et en contaminants (en particulier en métaux, chlore, soufre, azote) rendant la composition compatible avec une unité de vapocraquage. Les fractions liquides PI-150°C et 150°C+ obtenues sont donc ensuite envoyées vers une étape de vapocraquage où les fractions liquides sont craquée dans des conditions différentes (cf. tableau 7). Le mélange PI+ peut aussi être envoyé directement vers une étape de vapocraquage selon les conditions mentionnées dans le tableau 7.
Tableau 7 : conditions de l’étape de vapocraquage
Les effluents des différents fours de vapocraquage sont soumis à une étape de séparation permettant de recycler les composés saturés vers les fours de vapocraquage et d’obtenir les rendements présentés dans le tableau 8 (rendement = % de masse de produit par rapport à la masse de chacune des fractions en amont de l’étape de vapocraquage, noté % m/m).
Tableau 8 : rendements de l’étape de vapocraquage
En considérant les rendements obtenus pour les différentes fractions liquides PI-150°C et 150°C+ (et leur mélange PI+) lors du procédé de traitement de l’huile de pyrolyse (cf. tableau
5), il est possible de déterminer les rendements globaux des produits issus de l’étape de vapocraquage par rapport à la charge initiale de type huile de pyrolyse de plastiques introduite à l’étape a) :
Tableau 9 : rendements globaux du procédé suivi de l’étape de vapocraquage
Lorsque la fraction liquide PI+ est soumise à une étape de vapocraquage, le procédé selon l’invention permet d’atteindre des rendements massiques globaux en éthylène et en propylène respectivement de 34,7 % et 18,9 % par rapport à la quantité massique de charge de type huile de pyrolyse de plastiques initiale. Lorsque les fractions PI-150°C et 150°C+ sont envoyées à l’unité de vapocraquage séparément, le procédé selon l’invention permet d’atteindre des rendements massiques globaux en éthylène et en propylène respectivement de 33,9 % (= 9,5 + 24,4) et 18,5 % (= 5,2 + 13,3) par rapport à la quantité massique de charge de type huile de pyrolyse de plastiques initiale. De plus, l’enchaînement spécifique d’étapes en amont de l’étape de vapocraquage permet de limiter la formation de coke et d’éviter les problèmes de corrosion qui seraient apparus si le chlore n’avait pas été éliminé.
Exemple 2 (conforme à l’invention)
Dans cet exemple, l’étape de fractionnement inclut en plus d’une colonne de stripage une section de distillation de manière à obtenir une coupe diesel pouvant être intégrée directement à un pool diesel, c’est-à-dire répondant aux spécifications demandées pour un diesel et en particulier la spécification du T90 D86 à 360°C.
La charge à traiter est identique à celle décrite dans l’Exemple 1 (cf. tableau 2).
Elle subit les étapes a) d’hydrogénation sélective, b) d’hydrotraitement et c) de séparation, opérées dans les mêmes conditions que celles décrites dans l’Exemple 1. L’effluent liquide obtenu à l’issue de l’étape c) de séparation est envoyée vers une colonne de stripage, comme dans l’Exemple 1. A l’issue de la colonne de stripage, les deux fractions PI-150°C et 150°C+ sont obtenues, comme dans l’Exemple 1. Elles ont les mêmes caractéristiques que celles de l’Exemple 1 (cf. tableau 6). La fraction 150°C+ est envoyée vers une colonne de distillation où elle est distillée en deux coupes : une coupe 150-385°C et une coupe 385°C+. Le tableau 10 donne les rendements globaux des différentes fractions obtenues à l’issue des étapes c) de séparation et d) de fractionnement (qui comprend une colonne de stripage et une colonne de distillation).
Tableau 10 : rendements des différents produits obtenus après séparation et fractionnement
Le tableau 11 donne les caractéristiques des coupes 150-385°C et 385°C+, et les spécifications commerciales EN-590 d’un diesel. Tableau 11 : caractéristiques des coupes 150-385°C et 385°C+ et spécifications commerciales EN-590
H
Le tableau 11 montre que la coupe 150-385°C a les qualités requises pour être envoyées directement au pool diesel.
Exemple 3 (non conforme à l’invention)
Dans cet exemple, la charge hydrocarbonée de type huile de pyrolyse identique à celle utilisée dans l’exemple 1 est directement envoyée vers une étape de vapocraquage.
Les rendements massiques des différents produits obtenus sont calculés par rapport à la charge initiale (cf. Tableau 12)
Tableau 12 : rendements de l’étape de vapocraquage
Les rendements en éthylène et en propylène, obtenus après vapocraquage direct de l’huile de pyrolyse (procédé non conforme à l’invention) et présentés dans la tableau 12, sont inférieurs à ceux obtenus après vapocraquage d’une charge issue du traitement selon le procédé de l’invention de la même huile de pyrolyse de plastiques de l’Exemple 1 (cf. tableau 8), ce qui démontre l’intérêt du procédé selon l’invention. De plus, le traitement d’huile de pyrolyse directement dans un four de vapocraquage (Exemple 2) s’est traduit par une formation de coke accrue nécessitant un arrêt prématuré du four.
Claims
1. Procédé de traitement d’une charge comprenant une huile de pyrolyse de plastiques, comprenant au moins les étapes suivantes : a) une étape d’hydrogénation sélective mise en œuvre dans une section réactionnelle alimentée par ladite charge et un flux gazeux comprenant de l’hydrogène, en présence d’au moins un catalyseur d’hydrogénation sélective, à une température entre 100 et 250°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 1,0 et 10,0 h-1, pour obtenir un effluent hydrogéné; b) une étape d’hydrotraitement mise en œuvre dans une section réactionnelle d’hydrotraitement, comprenant un réacteur à lit fixe ayant n lits catalytiques, n étant un nombre entier supérieur ou égal à 1, disposés en série et comprenant chacun au moins un catalyseur d'hydrotraitement, ladite section réactionnelle d’hydrotraitement étant alimentée au niveau du premier lit catalytique par ledit effluent hydrogéné issu de l’étape a) et un flux gazeux comprenant de l’hydrogène et mise en œuvre à une température entre 250 et 430°C, une pression partielle d’hydrogène entre 1,0 et 10,0 MPa abs. et une vitesse volumique horaire entre 0,1 et 10,0 h-1, pour obtenir un effluent d’hydrotraitement ; c) une étape de séparation, alimentée par l’effluent d’hydrotraitement issu de l’étape b) et une solution aqueuse, ladite étape étant opérée à une température entre 50 et 370°C, pour obtenir au moins un effluent gazeux, un effluent aqueux et un effluent hydrocarboné.
2. Procédé selon la revendication 1 , comprenant une étape ao) de prétraitement de la charge comprenant une huile de pyrolyse de plastiques, ladite étape de prétraitement étant mise en œuvre préalablement à l’étape a) d’hydrogénation sélective dans une section d’adsorption alimentée par ladite charge et fonctionnant à une température entre 0 et 150°C, de préférence entre 5 et 100°C, et à une pression entre 0,15 et 10,0 MPa abs., de préférence entre 0,2 et 1,0 MPa abs., en présence d’au moins un adsorbant ayant une surface spécifique supérieure ou égale à 100 m2/g, de préférence supérieure ou égale à 200 m2/g, pour obtenir une charge prétraitée qui alimente la section de mélange de l’étape a).
3. Procédé selon l’une des revendications précédentes dans lequel l’étape a) d’hydrogénation sélective est réalisée à une température entre 110 et 200°C, de manière préférée entre 130 et 180°C, à l’étape a).
4. Procédé selon l’une des revendications précédentes dans lequel la quantité du flux gazeux alimentant la section réactionnelle de l’étape a) est telle que la couverture en hydrogène est comprise entre 1 et 50 Nm3 d’hydrogène par m3 de charge, de préférence entre 5 et 20 Nm3 d’hydrogène par m3 de charge.
5. Procédé selon l’une des revendications précédentes dans lequel la section réactionnelle de l’étape a) met en œuvre deux réacteurs qui fonctionnent en système permutable.
6. Procédé selon l’une des revendications précédentes dans lequel ledit au moins catalyseur d’hydrogénation sélective comprend un support, de préférence choisi dans le groupe constitué par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges, et une fonction hydro-déshydrogénante comprenant au moins un élément du groupe VIII, de préférence choisi dans le groupe constitué par le nickel et le cobalt, et/ou au moins un élément du groupe VIB, de préférence choisi dans le groupe constitué par le molybdène et le tungstène.
7. Procédé selon la revendication 6 dans lequel ledit au moins catalyseur d’hydrogénation sélective comprend moins de 1% en poids de nickel, exprimé en oxyde de nickel NiO par rapport au poids dudit catalyseur, et moins de 5% en poids de molybdène, exprimé en oxyde de molybdène Mo03 par rapport au poids dudit catalyseur, sur un support d’alumine.
8. Procédé selon l’une des revendications précédentes, dans lequel un flux gazeux supplémentaire comprenant de l’hydrogène est introduit en entrée de chaque lit catalytique à partir du second lit catalytique, de la section réactionnelle d’hydrotraitement de l’étape b).
9. Procédé selon l’une des revendications précédentes dans lequel la quantité du flux gazeux alimentant la section réactionnelle d’hydrotraitement de l’étape b) est telle que la couverture en hydrogène est comprise entre 50 et 500 Nm3 d’hydrogène par m3 d’effluent hydrogéné issu de l’étape a), de préférence entre 50 et 500 Nm3 d’hydrogène par m3 d’effluent hydrogéné issu de l’étape a), de manière préférée entre 100 et 300 Nm3 d’hydrogène par m3 d’effluent hydrogéné issu de l’étape a).
10. Procédé selon l’une des revendications précédentes dans lequel ledit au moins catalyseur d’hydrotraitement comprend un support, de préférence choisi dans le groupe constitué par l’alumine, la silice, les silices-alumines, la magnésie, les argiles et leurs mélanges, et une fonction hydro-déshydrogénante comprenant au moins un élément du groupe VIII, de préférence choisi dans le groupe constitué par le nickel et le cobalt, et/ou au moins un élément du groupe VI B, de préférence choisi dans le groupe constitué par le molybdène et le tungstène.
11. Procédé selon l’une des revendications précédentes dans lequel ledit au moins catalyseur d’hydrotraitement présente une surface spécifique supérieure ou égale à 250 m2/g, de préférence supérieure ou égale à 300 m2/g.
12. Procédé selon l’une des revendications précédentes, comprenant en outre une étape d) de fractionnement.
13. Procédé selon l’une des revendications précédentes, comprenant en outre une étape e) de vapocraquage, réalisée dans au moins un four de pyrolyse à une température comprise entre 700 et 900°C et à une pression comprise entre 0,05 et 0,3 MPa relatif.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1913625A FR3103822B1 (fr) | 2019-12-02 | 2019-12-02 | Procede de traitement d’huiles de pyrolyse de plastiques en vue de leur valorisation dans une unite de vapocraquage |
PCT/EP2020/082213 WO2021110395A1 (fr) | 2019-12-02 | 2020-11-16 | Procede de traitement d'huiles de pyrolyse de plastiques en vue de leur valorisation dans une unite de vapocraquage |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4069802A1 true EP4069802A1 (fr) | 2022-10-12 |
Family
ID=69700116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20804555.9A Pending EP4069802A1 (fr) | 2019-12-02 | 2020-11-16 | Procede de traitement d'huiles de pyrolyse de plastiques en vue de leur valorisation dans une unite de vapocraquage |
Country Status (10)
Country | Link |
---|---|
US (1) | US20230002688A1 (fr) |
EP (1) | EP4069802A1 (fr) |
JP (1) | JP2023503687A (fr) |
KR (1) | KR20220106135A (fr) |
CN (1) | CN114729264A (fr) |
AU (1) | AU2020395451A1 (fr) |
BR (1) | BR112022008255A2 (fr) |
CA (1) | CA3155475A1 (fr) |
FR (1) | FR3103822B1 (fr) |
WO (1) | WO2021110395A1 (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AR110493A1 (es) | 2016-12-08 | 2019-04-03 | Shell Int Research | Un método para pretratar y convertir hidrocarburos |
US11891574B2 (en) | 2019-04-18 | 2024-02-06 | Shell Usa, Inc. | Recovery of aliphatic hydrocarbons |
CA3194184A1 (fr) | 2020-09-28 | 2022-03-31 | Chevron Phillips Chemical Company Lp | Produits chimiques ou polymeres circulaires a partir de dechets plastiques pyrolyses et utilisation de bilan massique pour permettre de crediter les produits resultants sous forme circulaire |
KR20230037842A (ko) * | 2021-09-10 | 2023-03-17 | 에스케이이노베이션 주식회사 | 폐플라스틱 열분해유로부터 고부가 가치 오일을 생산하는 방법과 장치 |
KR20230037832A (ko) * | 2021-09-10 | 2023-03-17 | 에스케이이노베이션 주식회사 | 폐플라스틱 열분해유로부터 고부가 가치 오일을 생산하는 방법 및 장치 |
FR3128225A1 (fr) * | 2021-10-19 | 2023-04-21 | IFP Energies Nouvelles | Procede de traitement d’huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes |
KR20240093858A (ko) | 2021-10-27 | 2024-06-24 | 바스프 에스이 | 열분해 오일의 정제 방법 |
EP4174150B1 (fr) | 2021-10-29 | 2024-09-25 | Neste Oyj | Procédé de traitement de déchets de plastique |
MX2024004679A (es) | 2021-10-29 | 2024-05-03 | Neste Oyj | Metodo de tratamiento de residuos de plastico. |
FR3129945A1 (fr) * | 2021-12-03 | 2023-06-09 | IFP Energies Nouvelles | Procede de traitement d’huiles de pyrolyse de plastiques incluant une etape d’hydrogenation et une separation a chaud |
FI130130B (en) | 2021-12-03 | 2023-03-09 | Neste Oyj | WASTE PLASTIC BASED THERMAL CRACKING FEED AND METHOD FOR PROCESSING IT |
FR3133618A1 (fr) * | 2022-03-17 | 2023-09-22 | IFP Energies Nouvelles | Hydroconversion en lit bouillonnant ou hybride bouillonnant-entraîné d’une charge comportant une fraction d’huile de pyrolyse de plastiques et/ou de combustibles solides de recuperation |
KR20230146210A (ko) * | 2022-04-12 | 2023-10-19 | 에스케이이노베이션 주식회사 | 폐플라스틱 열분해유의 처리 방법 |
FR3144154A1 (fr) | 2022-12-21 | 2024-06-28 | IFP Energies Nouvelles | Pour valorisation dans une unite de craquage catalytique ou des unites d’hydroraffinage |
FR3144152A1 (fr) * | 2022-12-21 | 2024-06-28 | IFP Energies Nouvelles | Procede de traitement d’huiles de pyrolyse pour valorisation dans une unite de vapocraquage |
FR3144153A1 (fr) * | 2022-12-21 | 2024-06-28 | IFP Energies Nouvelles | Procede de traitement d’huiles de pyrolyse de plastiques et/ou de pneus incluant l’elimination des halogenures par lavage avant une etape d’hydrotraitement |
WO2024165222A1 (fr) | 2023-02-08 | 2024-08-15 | Topsoe A/S | Stabilisation à basse température d'huiles liquides |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3492220A (en) * | 1962-06-27 | 1970-01-27 | Pullman Inc | Hydrotreating pyrolysis gasoline |
FR2538814B1 (fr) | 1982-12-30 | 1986-06-27 | Inst Francais Du Petrole | Procede de traitement d'une huile lourde ou d'une fraction d'huile lourde pour les convertir en fractions plus legeres |
FR2538813A1 (fr) | 1982-12-31 | 1984-07-06 | Inst Francais Du Petrole | Procede d'hydrotraitement convertissant en au moins deux etapes une fraction lourde d'hydrocarbures contenant des impuretes soufrees et des impuretes metalliques |
US4818743A (en) | 1983-04-07 | 1989-04-04 | Union Oil Company Of California | Desulfurization catalyst and the catalyst prepared by a method |
US5089463A (en) | 1988-10-04 | 1992-02-18 | Chevron Research And Technology Company | Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity |
US5622616A (en) | 1991-05-02 | 1997-04-22 | Texaco Development Corporation | Hydroconversion process and catalyst |
FR2681871B1 (fr) | 1991-09-26 | 1993-12-24 | Institut Francais Petrole | Procede d'hydrotraitement d'une fraction lourde d'hydrocarbures en vue de la raffiner et de la convertir en fractions plus legeres. |
US5221656A (en) | 1992-03-25 | 1993-06-22 | Amoco Corporation | Hydroprocessing catalyst |
US5827421A (en) | 1992-04-20 | 1998-10-27 | Texaco Inc | Hydroconversion process employing catalyst with specified pore size distribution and no added silica |
JPH0985046A (ja) * | 1995-09-28 | 1997-03-31 | Nippon Steel Corp | 廃プラスチック材の熱分解ガスに含まれる塩化水素の除去方法及びこの方法を用いる廃プラスチック材の油化処理設備 |
US6332976B1 (en) | 1996-11-13 | 2001-12-25 | Institut Francais Du Petrole | Catalyst containing phosphorous and a process hydrotreatment of petroleum feeds using the catalyst |
US5904838A (en) * | 1998-04-17 | 1999-05-18 | Uop Llc | Process for the simultaneous conversion of waste lubricating oil and pyrolysis oil derived from organic waste to produce a synthetic crude oil |
US6589908B1 (en) | 2000-11-28 | 2003-07-08 | Shell Oil Company | Method of making alumina having bimodal pore structure, and catalysts made therefrom |
FR2839902B1 (fr) | 2002-05-24 | 2007-06-29 | Inst Francais Du Petrole | Catalyseur d'hydroraffinage et/ou d'hydroconversion et son utilisation dans des procedes d'hydrotraitement de charges hydrocarbonees |
US20070080099A1 (en) | 2003-05-16 | 2007-04-12 | Reid Terry A | Process and catalyst for removal arsenic and one or more other metal compounds from a hydrocarbon feedstock |
FR2908781B1 (fr) * | 2006-11-16 | 2012-10-19 | Inst Francais Du Petrole | Procede de desulfuration profonde des essences de craquage avec une faible perte en indice d'octane |
FR2913692B1 (fr) * | 2007-03-14 | 2010-10-15 | Inst Francais Du Petrole | Procede de desulfuration de fractions hydrocarbonees issues d'effluents de vapocraquage |
CN102803443B (zh) * | 2009-06-11 | 2015-02-11 | 国际壳牌研究有限公司 | 裂解汽油原料的选择性氢化和加氢脱硫的方法 |
CN102051202B (zh) | 2009-10-27 | 2015-01-14 | 中国石油化工股份有限公司 | 一种焦化石脑油捕硅剂及其应用 |
SG184443A1 (en) * | 2010-05-14 | 2012-11-29 | Exxonmobil Res & Eng Co | Hydroprocessing of pyrolysis oil and its use as a fuel |
US9476000B2 (en) * | 2013-07-10 | 2016-10-25 | Uop Llc | Hydrotreating process and apparatus |
CN106661463B (zh) * | 2014-07-01 | 2019-04-16 | 阿内洛技术股份有限公司 | 经由催化快速热解工艺将生物质转化成具有低硫、氮和烯烃含量的btx的工艺 |
WO2016142809A1 (fr) * | 2015-03-10 | 2016-09-15 | Sabic Global Technologies, B.V. | Procédé robuste intégré pour la conversion de déchets de matières plastiques en produits pétrochimiques finis |
CN106147839B (zh) * | 2015-04-03 | 2018-06-19 | 中国石油化工股份有限公司 | 一种降低汽油硫含量的方法 |
CN105001910B (zh) * | 2015-06-30 | 2016-09-28 | 洛阳瑞泽石化工程有限公司 | 一种组合式加氢处理轮胎裂解油的方法 |
FR3051375B1 (fr) | 2016-05-18 | 2018-06-01 | IFP Energies Nouvelles | Dispositif de filtration et de distribution pour reacteur catalytique. |
FR3054557A1 (fr) * | 2016-07-27 | 2018-02-02 | Ifp Energies Now | Procede multi-lits en un seul reacteur a lit fixe pour l'hydrogenation selective et l'hydrodesulfuration d'essence de pyrolyse avec separation en amont d'une coupe c5- |
WO2018025104A1 (fr) * | 2016-08-01 | 2018-02-08 | Sabic Global Technologies, B.V. | Procédé catalytique de pyrolyse de matières plastiques mixtes et de déchloration simultanée de l'huile de pyrolyse |
WO2018025103A1 (fr) * | 2016-08-01 | 2018-02-08 | Sabic Global Technologies, B.V. | Déchloration d'huiles de pyrolyse de plastiques mélangées à l'aide d'une extrudeuse de dégazage et de pièges à chlorure |
CN109642164B (zh) | 2016-09-22 | 2021-06-08 | 沙特基础工业全球技术公司 | 包括热解、加氢裂化、加氢脱烷基化和蒸汽裂解步骤的集成工艺配置 |
US10472574B2 (en) * | 2016-11-21 | 2019-11-12 | Saudi Arabian Oil Company | Process and system for conversion of crude oil to petrochemicals and fuel products integrating delayed coking of vacuum residue |
EP3565799B1 (fr) * | 2017-01-05 | 2020-10-07 | SABIC Global Technologies B.V. | Conversion de déchets plastiques en propylène et cumène |
CN109694727B (zh) * | 2019-02-21 | 2024-01-16 | 上海米素环保科技有限公司 | 一种加氢装置分馏系统在线工艺防腐的方法 |
CN113966379A (zh) * | 2019-06-13 | 2022-01-21 | 埃克森美孚化学专利公司 | 从废塑料热解回收轻质烯烃 |
-
2019
- 2019-12-02 FR FR1913625A patent/FR3103822B1/fr active Active
-
2020
- 2020-11-16 CA CA3155475A patent/CA3155475A1/fr active Pending
- 2020-11-16 BR BR112022008255A patent/BR112022008255A2/pt unknown
- 2020-11-16 KR KR1020227017930A patent/KR20220106135A/ko unknown
- 2020-11-16 WO PCT/EP2020/082213 patent/WO2021110395A1/fr active Application Filing
- 2020-11-16 EP EP20804555.9A patent/EP4069802A1/fr active Pending
- 2020-11-16 AU AU2020395451A patent/AU2020395451A1/en active Pending
- 2020-11-16 CN CN202080083763.0A patent/CN114729264A/zh active Pending
- 2020-11-16 US US17/781,078 patent/US20230002688A1/en active Pending
- 2020-11-16 JP JP2022532599A patent/JP2023503687A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
KR20220106135A (ko) | 2022-07-28 |
WO2021110395A1 (fr) | 2021-06-10 |
CA3155475A1 (fr) | 2021-06-10 |
AU2020395451A1 (en) | 2022-06-02 |
BR112022008255A2 (pt) | 2022-07-12 |
FR3103822B1 (fr) | 2022-07-01 |
CN114729264A (zh) | 2022-07-08 |
JP2023503687A (ja) | 2023-01-31 |
FR3103822A1 (fr) | 2021-06-04 |
US20230002688A1 (en) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4069802A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques en vue de leur valorisation dans une unite de vapocraquage | |
EP4107233A1 (fr) | Procede optimise de traitement d'huiles de pyrolyse de plastiques en vue de leur valorisation | |
EP4189037B1 (fr) | Procédé de traitement d'huiles de pyrolyse de plastiques incluant un hydrocraquage en une étape | |
EP4189038B1 (fr) | Procédé de traitement d'huiles de pyrolyse de plastiques incluant un hydrocraquage en deux étapes | |
EP4217443B1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes | |
WO2022144235A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques incluant une etape d'hydrogenation | |
EP4334410A1 (fr) | Procede de traitement simultane d'huiles de pyrolyse de plastiques et d'une charge issue de sources renouvelables | |
WO2024132435A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de pneus incluant l'elimination des halogenures par lavage avant une etape d'hydrotraitement | |
WO2023099304A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques incluant une etape d'hydrogenation et une separation a chaud | |
WO2023208636A1 (fr) | Procede de traitement d'huile de pyrolyse de plastiques incluant une etape de recyclage d'h2s | |
WO2022233687A1 (fr) | Procede integre de traitement d'huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes | |
WO2024132437A1 (fr) | Procede de traitement d'huiles de pyrolyse pour valorisation dans une unite de vapocraquage | |
WO2024088793A1 (fr) | Procede de traitement en lit fixe d'une charge lourde d'origine fossile comportant une fraction d'huile de pyrolyse de plastiques | |
WO2024132436A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de pneus incluant l'elimination des halogenures avant une etape d'hydrotraitement | |
EP4419627A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes | |
WO2023066694A1 (fr) | Procede de traitement d'huiles de pyrolyse de plastiques et/ou de combustibles solides de recuperation chargees en impuretes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |