[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP4061710A1 - Drone - Google Patents

Drone

Info

Publication number
EP4061710A1
EP4061710A1 EP20804577.3A EP20804577A EP4061710A1 EP 4061710 A1 EP4061710 A1 EP 4061710A1 EP 20804577 A EP20804577 A EP 20804577A EP 4061710 A1 EP4061710 A1 EP 4061710A1
Authority
EP
European Patent Office
Prior art keywords
rotor
drone
front part
relative
launcher
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20804577.3A
Other languages
German (de)
English (en)
Inventor
Dimitry BREGA
Sylvain ROLDAN DE PERERA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP4061710A1 publication Critical patent/EP4061710A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/24Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with rotor blades fixed in flight to act as lifting surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/56Folding or collapsing to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/12Canard-type aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D35/00Transmitting power from power plants to propellers or rotors; Arrangements of transmissions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/21Rotary wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/70Launching or landing using catapults, tracks or rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers
    • B64U50/14Propulsion using external fans or propellers ducted or shrouded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements

Definitions

  • the present invention relates to a drone having a scalable wing, and a corresponding launcher.
  • Application WO 2018/024567 discloses an evolving wing drone, comprising two wings connected to a rotor, the wing being able to evolve between a fast flight configuration where the rotor is stationary relative to the fuselage and a rotary wing flight configuration, where the rotor is driven in rotation relative to the fuselage.
  • the invention aims to meet this need, according to a first of its aspects.
  • the subject of the invention is thus a drone comprising a front part, an airfoil carried by a rotor situated behind the front part, and a propulsion propeller at the rear, the airfoil comprising two wings rotating with the rotor, the airfoil.
  • a flight configuration where the rotor is stationary relative to the front part and the propulsion is provided by the propeller, and a flight configuration with rotary wing, where the rotor is rotated relatively to the front part, the rotor being connected to the front part with a possibility of orientation of its axis of rotation relative to the latter in order to be able to steer the drone in rotary wing configuration, playing on said orientation
  • the drone With the ability to orient the rotor in forward flight in a rotary airfoil configuration, the drone can be steered horizontally, without having to provide complex cyclic pitch control at the link between the wings and the rotor.
  • the drone comprising a stator carrying the rotor, the stator can be connected by at least one actuator to the front part, the actuator being arranged to modify the orientation of the stator relative to the front part when it is actuated.
  • the drone comprises several actuators connecting the front part to the stator and making it possible, when actuated, to modify the orientation of the stator relative to the front part around at least two geometric axes. More preferably, the drone comprises three actuators connecting the front part to the stator, arranged at 120 ° to each other around the longitudinal axis of the stator. These actuators are preferably linear actuators, and are preferably each connected by a ball joint to the stator.
  • the drone according to the invention can have a collective pitch control and a cyclic pitch control.
  • Collective pitch control can be provided by actuators located in the wings. Cyclic pitch control is achieved by tilting the stator.
  • the wings can pivot relative to the rotor to change their incidence, which makes it possible to change the collective pitch in the rotary airfoil configuration.
  • the drone has a ball joint between the front part and the stator.
  • a connection advantageously makes it possible to take up part of the mechanical forces between the front part and the stator.
  • a deflector advantageously covers this connection, to make it possible to maintain continuity of the fuselage at the transition between the front part and the stator, despite changes in orientation of the latter.
  • the drone has a motor to rotate the propeller propeller.
  • This engine is preferably housed in the front part, a transmission line connecting the engine to the propulsion propeller, this transmission line comprising a transmission joint making it possible to transmit the drive from the engine to the propulsion propeller despite the orientation changes of the axis of rotation of the rotor relative to the front part.
  • the drone is arranged such that the orienting movements of the axis of rotation of the rotor take place around a center of rotation on which the transmission joint is centered.
  • the propeller and the rotor are driven by the same engine.
  • the rotor can be driven via a planetary gear reducer.
  • the drone may have a rear part carrying the propeller, the rotor rotating between the front and rear parts.
  • each wing is connected to the rotor by a mast comprising an articulation allowing the wing to be folded over the fuselage during a launch phase of the drone, when the latter is contained in a launcher.
  • the drone comprises a mechanism which makes it possible to block the hinge once the wing has been deployed.
  • This locking mechanism may include a locking ring which comes in the locking position to cover the hinge and thus immobilize the mast in a configuration where it is coaxial with the ring.
  • An actuator housed in the wing can generate a relative movement between the mast and the locking ring making it possible to bring the latter into its locking configuration.
  • the variation of the incidence of the wing relative to the rotor can be obtained by a mechanism which transforms a rotational movement of an actuator into an axial displacement of the mast.
  • the latter may include a first lug close to the actuator and a second lug close to the rotor. The two pins move together under the action of the actuator.
  • the latter rotates a drive ring which has an axial slot in which the first lug is engaged.
  • the first lug is also engaged in a helical slot of a tubular part fixed with the wing, integral with the locking ring.
  • the second lug is engaged in a slot made on a tubular part which is fixed to the rotor, and which rotates with it.
  • This slot has a first portion, which is linear and extends radially, and a second portion which is helical.
  • a launcher that can be used to launch a drone as defined above, comprising a cover capable of housing the drone, and four boosters with vectorial thrust, to orient the launcher.
  • the drone has folding wings, which can be folded back against the fuselage when the drone is contained in the launcher.
  • the fairing comprises two articulated parts which are kept closed by the aerodynamic thrust during the evolution of the launcher at high speed.
  • the drone has folding wings, which can be folded back against the fuselage when the drone is contained in the fairing.
  • each booster comprises a deflector comprising a body which can pivot about a first axis of rotation, this body enclosing an element which can pivot about a second axis perpendicular to the first.
  • the body may in particular be formed of two blocks which are assembled around a toroidal section constituting said element.
  • a redundant actuator system controls the pivoting of the deflector along these two axes of rotation.
  • FIG. 1 represents an example of a drone in fast flight configuration with fixed wing
  • FIG. 2 represents the drone of FIG. 1 in a rotary wing configuration
  • Figure 3 is a partial and schematic longitudinal section of the drone of Figures 1 and
  • Figure 4 shows a detail of the connection between the stator and the front part of the drone, for a given orientation of the axis of rotation of the rotor
  • Figure 5 is a view similar to Figure 4 for a different orientation of the axis of rotation of the rotor
  • FIG 6 is a schematic exploded perspective view of the connection between the stator and the front part
  • Figure 7 is a partial and schematic view of the rotor drive mechanism
  • Figure 8 is a partial and schematic view, with longitudinal section, of the mechanism of Figure 7,
  • FIG. 9 partially and schematically represents the connection between the wings and the rotor
  • Figure 10 shows a detail of the connection between a wing and the rotor
  • FIG 11 is a view similar to Figure 10 of another embodiment detail
  • Figure 12 illustrates the folding of the wings along the fuselage, for launch
  • FIG. 13 represents an example of a launcher in front view
  • Figure 14 shows the launcher of Figure 13 in side view
  • Figure 15 shows the launcher of Figure 13 in bottom view
  • Figure 16 shows the launcher of Figure 13 in top view
  • Figure 17 shows a detail of the assembly of a deflector
  • FIG 18 Figure 18 partially and schematically illustrates the deflector orientation mechanism
  • Figure 19 illustrates the opening of the launcher
  • Figure 20 shows a connector allowing the drone to exchange information with the launcher, when present within it,
  • Figure 21 is a longitudinal section, schematic and partial, of the mechanism integrated into the root of a wing
  • FIG 22 represents the wing at the level of its root
  • FIG 23 represents the mechanism of figure 21, from another angle of view
  • FIG 24 is a view similar to Figure 23, from another viewing angle
  • FIG 25 shows the mechanism of Figures 23 and 24, with the drive ring removed.
  • the drone 1 according to the invention shown in Figures 1 and 2 comprises two movable wings 10 relative to the fuselage 2 between a configuration with fixed wing, corresponding to Figure 1, and a configuration with rotary wing, illustrated in Figure 2.
  • the drone 1 has, at the rear, a propeller 3 shown schematically in Figure 2 and, at the front, ailerons 3 of duck plane.
  • the rear part 5 of the drone 1 can carry ailerons and / or control surfaces 6.
  • the wings 10 are fixed relative to the fuselage, with an inverted sweep configuration, which allows the drone to evolve like an airplane, in rapid flight.
  • the reverse boom configuration offers a combination of advantages, including fuel efficiency with low drag, optimized lift and payload, improved maneuverability and greater tolerance to stall at very low engine speeds.
  • the drone's fuselage has a central bay, with a prism section, which contributes to its lift.
  • the wings 10 rotate with a rotor relative to the front part 4 of the drone, with opposite incidences.
  • the wings 10 act like helicopter blades.
  • the propeller 3 can then turn in the opposite direction of the wings 10, to serve as an anti-torque.
  • the dorsal ridge of the prism section of the central bay is preferably placed facing the relative wind.
  • the axis of rotation of the rotor is orientable relative to the front part 4, which makes it possible to control the progress of the drone in the rotary wing configuration.
  • the drone 1 comprises a main electric motor 20, preferably of the brushless type, housed in the front part 4, and connected to the propeller 3 by a transmission line 30 comprising a shaft 31.
  • the front part 4 houses three actuators 40 arranged at 120 ° to each other around the axis of rotation of the motor 20.
  • These actuators 40 are linear actuators in the example considered, and each comprise a rod 41 movable axially relative to the shaft. body 42 of the actuator.
  • the rods 41 are connected at their end by a ball joint 43 to a stator 50, and make it possible to control the orientation of the latter relative to the front part 4.
  • the stator 50 comprises a peripheral skirt 51 in the form of a portion of a sphere, which forms a ball joint with an internal skirt 60 of corresponding shape of the front part 4.
  • a deflector 61 mounted on the fuselage of the front part 4 partially covers the peripheral skirt 51 and ensures a certain continuity of the outer surface of the drone 1, for better aerodynamic performance.
  • the wings 10 are carried by a rotor 70 which can rotate relative to the stator 50.
  • the motor 20 preferably incorporates an electromagnetic eddy current brake and a rotor positioning sensor such as an optical encoder.
  • the electromagnetic brake quickly brings the rotor 70 to a stop when it is launched at full power. Its position is continuously determined by the optical encoder, which allows the motor controller to reposition the rotor if necessary.
  • a transmission mechanism 80 allows the rotor 70 to be driven with the motor 20.
  • this mechanism 80 is of the epicyclic gearbox type, and comprises, as can be seen more particularly in FIG. 7, an internal sun gear 32 constituted by a pinion mounted on the shaft 31, a large ring 81 forming an integral part of the gear. rotor 70, and a planet carrier 82.
  • the rotor 70 is guided by bearings 84 and 85 carried by the stator 50. When the latter is blocked, the rotation of the shaft 31 drives that of the rotor 70, with a reduction factor. In this case, the propeller 3 rotates in the opposite direction of the rotor 70.
  • the rotor 70 can be locked in rotation.
  • Actuators make it possible to selectively block the rotation of the planet carrier 82 or of the rotor 70.
  • the transmission line 30 comprises a transmission joint 33 between the shaft 31 and the motor 20, which makes it possible to transmit the torque of the motor 20 to the shaft 31, while allowing freedom of orientation of the shaft. 31 relative to engine 20.
  • This transmission joint 33 may be of the constant velocity type, and include, as illustrated in FIG. 6, a cage 34 provided on its inner surface with grooves 35 which house balls 36 ensuring the transmission of torque with an internal ball 37.
  • the cage 34 of the constant velocity joint 33 and the ball joint formed between the skirts 51 and 60 are substantially concentric.
  • the roots of the wings 10 comprise mats 11 connected to the rotor 70 and each comprising an articulation 12, visible in Figure 10, which allow the wings to be folded over the fuselage. , as shown in figure 12.
  • a rotary actuator 13 is housed in each wing to modify their incidence in the rotary wing configuration or to block their incidence in the fixed wing configuration.
  • each ring 18 is in the form of a cylindrical segment integral with its respective wing and provided with a pull reinforcement 17 perpendicular to its end.
  • the reinforcement 17 follows the chord of the roots and fits into the profile of the wing, behind the leading edge.
  • a mechanism transforms a rotational movement of the actuator 13 into an axial displacement of the mast 11.
  • the latter may include a first lug 311 close to the actuator and a second lug 312 close to the rotor.
  • the two pins 311 and 312 move together under the action of the actuator 13.
  • the latter drives in rotation a drive ring 320 which has an axial slot 321 in which the first lug 311 is engaged.
  • the first lug 311 is also engaged in a helical slot 325 of a tubular part 330 fixed with the wing, integral with the locking ring 18.
  • a rotation of the drive ring 320 is accompanied by a displacement. axial of the mast 11 relative to the locking ring 18 and to the fixed tubular part 330.
  • the second lug 312 is engaged in a slot 340 formed on a tubular part 341 which is fixed to the rotor 70, and which rotates with it.
  • This slot 340 has a first portion 343, which is linear and extends radially, and a second portion 344 which is helical.
  • the first portion 343 serves to lock the wing 10 in the fixed wing advancement configuration.
  • the second portion 344 makes it possible to modify the incidence of the wing 10 in the rotary airfoil configuration, in order to vary the collective pitch.
  • the actuators 13 can be supplied from the rotor by rotary collectors.
  • the actuators can be checked by power lines, for example.
  • the asymmetry between the propeller 3 and the rotor 70 is mechanically compensated by the epicyclic gear which adjusts the number of revolutions per minute between the two.
  • the volume of air swept by the propeller 30 is preferably substantially equal to the volume of air swept by the wings 10 rotating with the rotor.
  • the drone 1 can be launched while being contained with all wings folded, as illustrated in FIG. 12, in a launcher 100 such as that represented in FIGS. 13 to 19.
  • this launcher is capable of maneuvering at high velocity and, during the launch phase, borrows the flight characteristics of a surface-to-air missile.
  • the launcher comprises a cap 101 of circular section and a cruciform tail 102.
  • the maneuverability and controllability of the launcher are ensured by four 120 boosters arranged symmetrically around the fairing.
  • the cover 101 comprises two shells, connected below by a joint 103, visible in FIG. 15.
  • the symmetrical thrust of the four boosters 120 helps to keep the fairing 101 closed until their deceleration phase.
  • Vector thrust optimizes positioning times with a very tight turn between vertical ejection and horizontal flight. Regardless of its maneuverability, the use of vector thrust makes it possible to maintain control of the launcher with three boosters in the event of a failure of one of the boosters.
  • the four 120 boosters each have two degrees of freedom (vertical and horizontal), resulting in vector propulsion.
  • Each booster is directly connected to a deflector 122 which forces the gases to borrow an toroidal section 123 with an integrated nozzle, visible in FIG. 17, ensuring the horizontal corrections.
  • the vertical corrections are made by the body of the deflector, composed of two blocks 124 which encapsulate the toric section 123. The latter can pivot about an axis of rotation X relative to the body of the deflector formed by the blocks 124.
  • the section 123 is produced. with ends of diametrically opposed axes 127, which are received in corresponding openings of the body of the deflector, these openings being formed by the meeting of notches 126 present on each of the blocks 124.
  • Each block 124 comprises half-ends of diametrically opposed axes, which form when the blocks 124 are joined together of the ends of axes 128, as illustrated in FIG. 18, making it possible to orient the deflector around an axis of rotation Y perpendicular to the X axis.
  • Each actuator system 125 of a booster baffle 120 is preferably provided with symmetrical redundancy regarding the control in rotation about both the X axis and the Y axis, ensuring system reliability.
  • the body of the deflector can carry two actuators each connected to a respective end of axle 127, in order to control the tilting of the toric section 123 relative to the body of the deflector, and the latter can pivot around the axis Y under the action of two actuators each connected to an end of axis 128 by means of a respective link mechanism 150.
  • the air flow exerts pressure on the convex deflection surface of the fairing and the separation takes place at a controlled velocity during deceleration.
  • the launcher opening velocity is controlled by concomitant measurements of the air pressure, for example using a Pitot tube, and the mechanical pressure exerted on the fuselage, for example by means of a piezoelectric pressure sensor.
  • the fairing 101 opens, as illustrated in Figure 19, and ejects the drone 1 which can continue its flight in fixed wing or rotary wing configuration. Once the mission is completed, the drone 1 can be recovered by an autonomous ground system with which it communicates.
  • the drone can comprise, as illustrated in FIG. 20, a connector 300 connected to a corresponding connector present on the launcher (not visible) for the exchange of data between the two, and in particular allowing the control of the boosters and the deflectors by the electronics of the drone during the launch phase.
  • the connectors separate.
  • the connector 300 may be present on the ventral face of the fuselage.
  • the drone is gyrostabilized by motors equipped with small propellers housed in the fuselage. These motors play no role in the lift of the drone, and their ability is strictly limited to produce anti-torque thrust and create a moment that allows an approach path to be maintained at a given angle during landing.
  • the openings can be closed by a circular slide mechanism integrated into the nose of the cell. The mechanism can be passive and the slide can return to its position by gravity. In the event of a reversion of the wing configuration (rotating wing / fixed wing), the extension generated by the slide shifts the center of gravity towards the rear of the platform, thus helping to increase its stability at low engine speeds. At high speed, the slide retracts under the pressure of the relative wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)
  • Transmission Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Drone comportant une partie avant, une voilure portée par un rotor situé en arrière de la partie avant, et une hélice de propulsion à l'arrière, la voilure comportant deux ailes tournant avec le rotor, la voilure pouvant évoluer entre une configuration de vol où rotor est immobile relativement à la partie avant et la propulsion assurée par l'hélice de propulsion, et une configuration de vol avec voilure tournante, où le rotor est entraîné en rotation relativement à la partie avant, le rotor étant relié à la partie avant avec une possibilité d'orientation de son axe de rotation relativement à celle-ci afin de pouvoir diriger le drone en configuration de voilure tournante en jouant sur ladite orientation.

Description

DRONE
Domaine technique
La présente invention concerne un drone ayant une voilure évolutive, et un lanceur correspondant.
Technique antérieure
La demande WO 2018/024567 divulgue un drone à voilure évolutive, comportant deux ailes reliées à un rotor, la voilure pouvant évoluer entre une configuration de vol rapide où le rotor est immobile relativement au fuselage et une configuration de vol avec voilure tournante, où le rotor est entraîné en rotation relativement au fuselage.
Il existe un besoin pour perfectionner encore ce type de drone, notamment améliorer sa manœuvrabilité en configuration de vol avec voilure tournante.
Exposé de l’invention
L’invention vise à répondre à ce besoin, selon un premier de ses aspects.
Résumé de l’invention
L’invention a ainsi pour objet un drone comportant une partie avant, une voilure portée par un rotor situé en arrière de la partie avant, et une hélice de propulsion à l’arrière, la voilure comportant deux ailes tournant avec le rotor, la voilure pouvant évoluer entre une configuration de vol où le rotor est immobile relativement à la partie avant et la propulsion est assurée par l’hélice, et une configuration de vol avec voilure tournante, où le rotor est entraîné en rotation relativement à la partie avant, le rotor étant relié à la partie avant avec une possibilité d’orientation de son axe de rotation relativement à celle-ci afin de pouvoir diriger le drone en configuration de voilure tournante, enjouant sur ladite orientation
Grâce à la possibilité d’orienter le rotor en vol d’avancement en configuration de voilure tournante, le drone peut être dirigé horizontalement, sans avoir à prévoir une commande complexe de pas cyclique au niveau de la liaison entre les ailes et le rotor.
Le drone comportant un stator portant le rotor, le stator peut être relié par au moins un actuateur à la partie avant, l’ actuateur étant agencé pour modifier l’orientation du stator relativement à la partie avant lorsqu’il est actionné. De préférence, le drone comporte plusieurs actuateurs reliant la partie avant au stator et permettant lorsqu’actionnés de modifier l’orientation du stator relativement à la partie avant autour d’au moins deux axes géométriques. De façon plus préférée, le drone comporte trois actionneurs reliant la partie avant au stator, disposés à 120° les uns des autres autour de l’axe longitudinal du stator. Ces actionneurs sont de préférence des actionneurs linéaires, et sont de préférence reliés chacun par une liaison rotule au stator.
A l’instar d’un hélicoptère, le drone selon l’invention peut disposer d’une commande de pas collectif et d’une commande de pas cyclique. La commande de pas collectif peut être assurée par des actionneurs situés dans les ailes. La commande de pas cyclique est réalisée par l’inclinaison du stator. Ainsi, de préférence, les ailes peuvent pivoter relativement au rotor pour changer leur incidence, ce qui permet de changer le pas collectif en configuration de voilure tournante.
De préférence, le drone comporte une liaison rotule entre la partie avant et le stator. Une telle liaison permet avantageusement de reprendre une partie des efforts mécaniques entre la partie avant et le stator. Un déflecteur recouvre avantageusement cette liaison, pour permettre de conserver une continuité du fuselage à la transition entre la partie avant et le stator, malgré les changements d’orientation de celui-ci.
Le drone comporte un moteur pour entraîner en rotation l’hélice de propulsion. Ce moteur est de préférence logé dans la partie avant, une ligne de transmission reliant le moteur à l’hélice de propulsion, cette ligne de transmission comportant un joint de transmission permettant de transmettre l’entraînement du moteur à l’hélice de propulsion malgré les changements d’orientation de l’axe de rotation du rotor relativement à la partie avant. De préférence, le drone est agencé de telle sorte que les mouvements d’orientation de l’axe de rotation du rotor ont lieu autour d’un centre de rotation sur lequel le joint de transmission est centré.
De préférence, l’hélice de propulsion et le rotor sont mus par un même moteur. Le rotor peut être entraîné via un réducteur à train épicycloïdal.
Le drone peut comporter une partie arrière portant l’hélice de propulsion, le rotor tournant entre les parties avant et arrière.
De préférence, chaque aile est reliée au rotor par un mat comportant une articulation permettant de rabattre l’aile sur le fuselage durant une phase de lancement du drone, lorsque ce dernier est contenu dans un lanceur.
De préférence encore, le drone comporte un mécanisme qui permet de bloquer la charnière une fois l’aile déployée. Ce mécanisme de blocage peut comporter une bague de verrouillage qui vient dans la position de verrouillage recouvrir la charnière et ainsi immobiliser le mat dans une configuration où il est coaxial avec la bague. Un actionneur logé dans l’aile peut générer un mouvement relatif entre le mat et la bague de verrouillage permettant d’amener celle-ci dans sa configuration de blocage. La variation de l’incidence de l’aile relativement au rotor peut être obtenue par un mécanisme qui transforme un mouvement de rotation d’un actuateur en un déplacement axial du mat. Ce dernier peut comporter un premier ergot proche de l’actuateur et un deuxième ergot proche du rotor. Les deux ergots se déplacent ensemble sous l’action de l’actuateur. Ce dernier entraîne en rotation une bague d’entraînement qui présente une fente axiale dans laquelle le premier ergot est engagé. Le premier ergot est également engagé dans une fente hélicoïdale d’une partie tubulaire fixe avec l’aile, solidaire de la bague de verrouillage. Ainsi, une rotation de la bague d’entrainement s’accompagne d’un déplacement axial du mat relativement à la bague de verrouillage et à la partie tubulaire fixe. Le deuxième ergot est engagé dans une fente ménagée sur une partie tubulaire qui est fixée sur le rotor, et qui tourne avec lui. Cette fente comporte une première portion, qui est linéaire et s’étend radialement, et une deuxième portion qui est hélicoïdale. Lorsque le mat se déplace axialement, sous l’effet de la rotation de l’actuateur, le deuxième ergot se déplace dans la première portion linéaire, puis dans la deuxième portion. La première portion sert à verrouiller l’aile en configuration d’avancement en voilure fixe. La deuxième portion permet de modifier l’incidence de l’aile en configuration de voilure tournante, pour faire varier le pas collectif.
L’invention a encore pour objet, selon un autre de ses aspects, indépendamment ou en combinaison avec ce qui précède, un lanceur pouvant être utilisé pour lancer un drone tel que défini ci-dessus, comportant une coiffe pouvant loger le drone, et quatre boosters à poussée vectorielle, pour orienter le lanceur.
De préférence, le drone comporte des ailes repliables, qui peuvent se rabattre contre le fuselage lorsque le drone est contenu dans le lanceur.
De préférence, la coiffe comporte deux parties articulées qui sont maintenues fermées par la poussée aérodynamique lors de l’évolution du lanceur à haute vitesse.
De préférence, le drone comporte des ailes repliables, qui peuvent se rabattre contre le fuselage lorsque le drone est contenu dans la coiffe.
De préférence, chaque booster comporte un déflecteur comportant un corps pouvant pivoter autour d’un premier axe de rotation, ce corps enserrant un élément pouvant pivoter autour d’un deuxième axe perpendiculaire au premier. Le corps peut notamment être formé de deux blocs qui sont assemblés autour d’une section torique constituant ledit élément.
De préférence, un système d’actionneurs redondants assure la commande du pivotement du déflecteur selon ces deux axes de rotation. Brève description des dessins
L’invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d’un exemple de mise en œuvre non limitatif de celle-ci, et à l’examen du dessin annexé, sur lequel :
[Fig 1] la figure 1 représente un exemple de drone en configuration de vol rapide avec voilure fixe,
[Fig 2] la figure 2 représente le drone de la figure 1 en configuration de voilure tournante,
[Fig 3] la figure 3 est une coupe longitudinale partielle et schématique du drone des figures 1 et
2
[Fig 4] la figure 4 représente un détail de la liaison entre le stator et la partie avant du drone, pour une orientation donnée de l’axe de rotation du rotor,
[Fig 5] la figure 5 est une vue analogue à la figure 4 pour une orientation différente de l’axe de rotation du rotor,
[Fig 6] la figure 6 est une vue schématique en perspective éclatée de la liaison entre le stator et la partie avant,
[Fig 7] la figure 7 est une vue partielle et schématique du mécanisme d’entraînement du rotor, [Fig 8] la figure 8 est une vue partielle et schématique, avec coupe longitudinale, du mécanisme de la figure 7,
[Fig 9] la figure 9 représente de manière partielle et schématique la liaison entre les ailes et le rotor,
[Fig 10] la figure 10 représente un détail de réalisation de la liaison entre une aile et le rotor,
[Fig 11] la figure 11 est une vue analogue à la figure 10 d’un autre détail de réalisation,
[Fig 12] la figure 12 illustre le repliement des ailes le long du fuselage, pour le lancement,
[Fig 13] la figure 13 représente un exemple de lanceur en vue de face,
[Fig 14] la figure 14 représente le lanceur de la figure 13 en vue de côté,
[Fig 15] la figure 15 représente le lanceur de la figure 13 en vue de dessous,
[Fig 16] la figure 16 représente le lanceur de la figure 13 en vue de dessus,
[Fig 17] la figure 17 représente un détail du montage d’un déflecteur,
[Fig 18] la figure 18 illustre de manière partielle et schématique le mécanisme d’orientation du déflecteur, [Fig 19] la figure 19 illustre l’ouverture du lanceur,
[Fig 20] la figure 20 représente un connecteur permettant au drone d’échanger des informations avec le lanceur, lorsque présent au sein de celui-ci,
[Fig 21 ] la figure 21 est une coupe longitudinale, schématique et partielle, du mécanisme intégré à l’emplanture d’une aile,
[Fig 22] représente l’aile au niveau de son emplanture,
[Fig 23] représente le mécanisme de la figure 21 , sous un autre angle de vue,
[Fig 24] est une vue analogue à la figure 23, sous un autre angle de vue, et
[Fig 25] représente le mécanisme des figures 23 et 24, avec la bague d’entrainement enlevée.
Description détaillée
Le drone 1 selon l’invention représenté aux figures 1 et 2 comporte deux ailes 10 mobiles relativement au fuselage 2 entre une configuration avec voilure fixe, correspondant à la figure 1, et une configuration avec voilure tournante, illustrée sur la figure 2.
Le drone 1 comporte, à l’arrière, une hélice de propulsion 3 représentée schématiquement à la figure 2 et, à l’avant, de ailerons 3 de plan canard. La partie arrière 5 du drone 1 peut porter des ailerons et/ou gouvernes 6.
En configuration de voilure fixe, les ailes 10 sont fixes relativement au fuselage, avec une configuration en flèche inversée, ce qui permet au drone d’évoluer comme un avion, en vol rapide. La configuration en flèche inversée offre une combinaison d’avantages, dont une efficacité énergétique liée à sa faible trainée, une optimisation de la portance et de la charge utile, une meilleure manœuvrabilité et une plus grande tolérance au décrochage à très bas régime.
Dans l’exemple illustré, le fuselage du drone comporte une baie centrale, de section prismique, qui concourt à sa portance.
Dans la configuration de voilure tournante, les ailes 10 tournent avec un rotor relativement à la partie avant 4 du drone, avec des incidences inverses. Dans cette configuration, les ailes 10 agissent comme des pales d’hélicoptère. L’hélice de propulsion 3 peut alors tourner en sens inverse des ailes 10, pour servir d’anti- couple. Lorsque le drone évolue en vol d’avancement en configuration de voilure tournante, l’arête dorsale de la section prismique de la baie centrale est de préférence placée face au vent relatif.
Conformément à un premier aspect de l’invention, l’axe de rotation du rotor est orientable relativement à la partie avant 4, ce qui permet de contrôler l’avancement du drone en configuration de voilure tournante.
Si l’on se reporte plus particulièrement aux figures 3 à 8, on voit que le drone 1 comporte un moteur électrique principal 20, de préférence du type sans balais, logé dans la partie avant 4, et relié à l’hélice de propulsion 3 par une ligne de transmission 30 comportant un arbre 31.
La partie avant 4 loge trois actuateurs 40 disposés à 120° les uns des autres autour de l’axe de rotation du moteur 20. Ces actuateurs 40 sont des actuateurs linéaires dans l’exemple considéré, et comportent chacun une tige 41 mobile axialement relativement au corps 42 de l’actuateur. Les tiges 41 sont reliées à leur extrémité par une liaison rotule 43 à un stator 50, et permettent de commander l’orientation de ce dernier relativement à la partie avant 4.
Le stator 50 comporte une jupe périphérique 51 en forme de portion de sphère, qui forme une liaison rotule avec une jupe interne 60 de forme correspondante de la partie avant 4.
Un déflecteur 61 monté sur le fuselage de la partie avant 4 recouvre partiellement la jupe périphérique 51 et assure une certaine continuité de la surface extérieure du drone 1, pour de meilleures performances aérodynamiques.
Les ailes 10 sont portées par un rotor 70 qui peut tourner relativement au stator 50.
Le moteur 20 intègre de préférence un frein électromagnétique à courants de Foucault et un capteur de positionnement du rotor tel qu’un codeur optique.
Le frein électromagnétique permet d’immobiliser rapidement le rotor 70 lancé à pleine puissance. Sa position est continuellement déterminée par le codeur optique, qui permet au contrôleur du moteur de repositionner le rotor si nécessaire.
Un mécanisme de transmission 80 permet d’entraîner le rotor 70 avec le moteur 20.
Dans l’exemple illustré, ce mécanisme 80 est du type réducteur à train épicycloïdal, et comporte comme visible plus particulièrement sur la figure 7 un planétaire intérieur 32 constitué par un pignon monté sur l’arbre 31 , une grande couronne 81 faisant partie intégrante du rotor 70, et un porte satellites 82.
Le rotor 70 est guidé par des roulements 84 et 85 portés par le stator 50. Lorsque celle-ci est bloquée, la rotation de l’arbre 31 entraîne celle du rotor 70, avec un facteur de réduction. Dans ce cas, l’hélice de propulsion 3 tourne en sens inverse du rotor 70.
Quand le porte satellites 82 est libre de tourner, le rotor 70 peut être bloqué en rotation.
Lorsque la grande couronne 81 est bloquée, seule l’hélice de propulsion 3 est entraînée en rotation. Lorsque la grande couronne 81 est débloquée, le train épicycloïdal agit comme un réducteur et entraine les ailes 10. Cette séquence est réversible.
Des actuateurs non représentés permettent de bloquer sélectivement la rotation du porte satellites 82 ou du rotor 70.
La ligne de transmission 30 comporte un joint de transmission 33 entre l’arbre 31 et le moteur 20, qui permet de transmettre le couple de rotation du moteur 20 à l’arbre 31, tout en permettant une liberté d’orientation de l’arbre 31 relativement au moteur 20.
Ce joint de transmission 33 peut être du type homocinétique, et comporter, comme illustré sur la figure 6, une cage 34 pourvue sur sa surface intérieure de rainures 35 qui logent des billes 36 assurant la transmission du couple avec une rotule interne 37. La cage 34 du joint homocinétique 33 et la liaison rotule formée entre les jupes 51 et 60 sont sensiblement concentriques.
Si l’on se reporte aux figures 9 à 11, on voit que les emplantures des ailes 10 comportent des mats 11 reliés au rotor 70 et comportant chacun une articulation 12, visible sur la figure 10, qui permettent de rabattre les ailes sur le fuselage, comme illustré sur la figure 12.
Un actuateur rotatif 13 est logé dans chaque aile pour modifier leur incidence en configuration de voilure tournante ou bloquer leur incidence en configuration de voilure fixe.
Les deux axes de travail des emplantures permettent de rabattre les ailes 10 le long du fuselage et d’ajuster leur angle d’attaque. Les ailes 10 sont automatiquement déployées par le vent relatif et leur verrouillage est assuré par une bague de verrouillage 18 qui vient coiffer l’articulation 12 lorsque le mat 11 est déplacé axialement relativement à cette bague 18 par l’actionneur 13. Comme visible sur les figures 21 à 25 notamment, chaque bague 18 se présente sous la forme d’un segment cylindrique solidaire de son aile respective et doté d’un renfort de tirage 17 perpendiculaire à son extrémité. Le renfort 17 épouse la corde des emplantures et s’intrique dans le profil de l’aile, derrière le bord d’attaque. Un mécanisme transforme un mouvement de rotation de l’actuateur 13 en un déplacement axial du mat 11. Ce dernier peut comporter un premier ergot 311 proche de l’actuateur et un deuxième ergot 312 proche du rotor. Les deux ergots 311 et 312 se déplacent ensemble sous l’action de l’actuateur 13. Ce dernier entraîne en rotation une bague d’entraînement 320 qui présente une fente axiale 321 dans laquelle le premier ergot 311 est engagé. Le premier ergot 311 est également engagé dans une fente hélicoïdale 325 d’une partie tubulaire 330 fixe avec l’aile, solidaire de la bague de verrouillage 18. Ainsi, une rotation de la bague d’entrainement 320 s’accompagne d’un déplacement axial du mat 11 relativement à la bague de verrouillage 18 et à la partie tubulaire fixe 330. Le deuxième ergot 312 est engagé dans une fente 340 ménagée sur une partie tubulaire 341 qui est fixée sur le rotor 70, et qui tourne avec lui. Cette fente 340 comporte une première portion 343, qui est linéaire et s’étend radialement, et une deuxième portion 344 qui est hélicoïdale. Lorsque le mat 11 se déplace axial ement, sous l’effet de la rotation de l’actuateur 13, le deuxième ergot 312 se déplace dans la première portion linéaire 343, puis dans la deuxième portion hélicoïdale 344. La première portion 343 sert à verrouiller l’aile 10 en configuration d’avancement en voilure fixe. La deuxième portion 344 permet de modifier l’incidence de l’aile 10 en configuration de voilure tournante, pour faire varier le pas collectif.
Les actionneurs 13 peuvent être alimentés depuis le rotor par des collecteurs tournants. Le contrôle des actionneurs peut s’effectuer par courants porteurs par exemple.
En configuration de voilure tournante, l’asymétrie entre l’hélice de propulsion 3 et le rotor 70 est mécaniquement compensée par le train épicycloïdal qui ajuste le nombre de révolutions par minute entre les deux. Ainsi le volume d’air balayé par l’hélice de propulsion 30 est de préférence sensiblement égal au volume d’air balayé par les ailes 10 tournant avec le rotor.
Le drone 1 peut être lancé en étant contenu toutes ailes repliées, comme illustré sur la figure 12, dans un lanceur 100 tel que celui représenté sur les figures 13 à 19.
De préférence, ce lanceur est capable de manœuvrer à haute vélocité et emprunte, durant la phase de lancement, les caractéristiques de vol d’un missile sol/air.
Le lanceur comporte une coiffe 101 de section circulaire et un empennage 102 cruciforme. La manœuvrabilité et la contrôlabilité du lanceur sont assurées par quatre boosters 120 disposés symétriquement autours de la coiffe.
La coiffe 101 comporte deux coques, reliées inférieurement par une articulation 103, visible sur la figure 15.
La poussée symétrique des quatre boosters 120 concourt à maintenir la coiffe 101 fermée jusqu’à leur phase de décélération. La poussée vectorielle permet d’optimiser les temps de positionnement avec un virage très serré entre l’éjection verticale et le vol horizontal. Indépendamment de sa manœuvrabilité, l’utilisation de la poussée vectorielle permet de maintenir le contrôle du lanceur avec trois boosters en cas de de défaillance d’un des boosters.
Les quatre boosters 120, symétriquement montés de part et d’autre de la coiffe, ont chacun deux degrés de liberté (vertical et horizontal), dont résulte la propulsion vectorielle. Chaque booster est directement connecté à un déflecteur 122 qui force les gaz à emprunter une section torique 123 à tuyère intégrée, visible sur la figure 17, assurant les corrections horizontales. Les corrections verticales sont réalisées par le corps du déflecteur, composé de deux blocs 124 qui encapsulent la section torique 123. Cette dernière peut pivoter autour d’un axe de rotation X relativement au corps du déflecteur formé des blocs 124. La section 123 est réalisée avec des bouts d’axes 127 diamétralement opposés, qui sont reçus dans des ouvertures correspondantes du corps du déflecteur, ces ouvertures étant formées par la réunion d’encoches 126 présentes sur chacun des blocs 124.
Chaque bloc 124 comporte des demi -bouts d’axes diamétralement opposés, qui forment lorsque les blocs 124 sont réunis des bouts d’axes 128, comme illustré sur la figure 18, permettant d’orienter le déflecteur autour d’un axe de rotation Y perpendiculaire à l’axe X.
Chaque système d’actionneurs 125 d’un déflecteur de booster 120 est de préférence doté d’une redondance symétrique concernant la commande en rotation à la fois autour de l’axe X et de l’axe Y, assurant la fiabilité du système.
En particulier, comme illustré, le corps du déflecteur peut porter deux actionneurs reliés chacun à un bout d’axe 127 respectif, afin de commander le basculement de la section torique 123 relativement au corps du déflecteur, et ce dernier peut pivoter autour de l’axe Y sous l’action de deux actionneurs reliés chacun à un bout d’axe 128 par l’intermédiaire d’un mécanisme à biellettes 150 respectif.
La fiabilité de la libération est critique au succès de la mission et les facteurs de charge exercés sur la coiffe 101 peuvent compromettre l’ouverture. Afin de s’affranchir de ce risque, la coiffe est maintenue fermée à haute vitesse durant les virages serrés que le lanceur est susceptible de réaliser et durant sa phase de décélération.
Durant toute la durée du vol, l’écoulement de l’air execrce une pression sur la surface de déflection convexe de la coiffe et la séparation s’opère à vélocité contrôlée durant la décélération. La vélocité d’ouverture du lanceur est contrôlée par des mesures concomitantes de la pression de l’air, par exemple à l’aide d’un tube Pitot, et de la pression mécanique exercée sur le fuselage, par exemple au moyen d’un capteur de pression piézoélectrique.
Arrivé à sa position programmée, la coiffe 101 s’ouvre, comme illustré à la figure 19, et éjecte le drone 1 qui peut poursuivre son vol en configuration voilure fixe ou voilure tournante. Une fois la mission terminée, le drone 1 peut être récupéré par un système terrestre autonome avec lequel il communique.
Le drone peut comporter, comme illustré à la figure 20, un connecteur 300 relié à un connecteur correspondant présent sur le lanceur (non apparent) pour l’échange de données entre les deux, et permettant notamment le contrôle des boosters et des déflecteurs par l’électronique du drone durant la phase de lancement. Lors du largage du drone, les connecteurs se séparent. Le connecteur 300 peut être présent sur la face ventrale du fuselage.
Dans une variante, le drone est gyrostabilisé par des moteurs équipés de petites hélices logées dans le fuselage. Ces moteurs ne jouent aucun rôle dans la portance du drone, et leur capacité est strictement limitée à produire une poussée anti-couple et à créer un moment qui permet maintenir une traj ectoire d’approche avec un angle donné durant l’atterrissage. Afin d’éviter des problèmes de stabilité liés aux différences de pression entre la surface extérieure de la cellule et l’intérieur, les ouvrants peuvent obturés par un mécanisme à glissière circulaire intégré au nez de la cellule. Le mécanisme peut être passif et la glissière peut rejoindre sa position par gravité. En cas de réversion de la configuration des voilures (voilure toumante/voilure fixe), l’extension générée par la glissière déplace le centre de gravité vers l’arrière de la plateforme, concourant ainsi à accroître sa stabilité à faible régime. A haut régime, la glissière se rétracte sous la pression du vent relatif.

Claims

Revendications
1. Drone ( 1 ) comportant une partie avant (4), une voilure portée par un rotor (70) situé en arrière de la partie avant, et une hélice de propulsion (3) à l’arrière, la voilure comportant deux ailes (10) tournant avec le rotor, la voilure pouvant évoluer entre une configuration de vol où rotor est immobile relativement à la partie avant et la propulsion assurée par l’hélice de propulsion, et une configuration de vol avec voilure tournante, où le rotor est entraîné en rotation relativement à la partie avant, le rotor étant relié à la partie avant avec une possibilité d’orientation de son axe de rotation relativement à celle-ci afin de pouvoir diriger le drone en configuration de voilure tournante en jouant sur ladite orientation.
2. Drone selon la revendication 1 , comportant un stator (50) portant le rotor (70), le stator étant relié par au moins un actuateur (40) à la partie avant, l’actuateur étant agencé pour modifier l’orientation du stator relativement à la partie avant lorsqu’il est actionné.
3. Drone selon la revendication 2, comportant plusieurs actuateurs (40) reliant la partie avant au stator et permettant lorsqu’actionnés de modifier l’orientation du stator relativement à la partie avant autour d’au moins deux axes géométriques.
4. Drone selon la revendication 3, comportant trois actionneurs (40) reliant la partie avant au stator, disposés à 120° les uns des autres autour de l’axe longitudinal du stator.
5. Drone selon l’une quelconque des revendications 2 à 4, comportant une liaison rotule (51 , 60) entre la partie avant (4) et le stator (50).
6. Drone selon l’une quelconque des revendications précédentes, comportant un moteur (20) pour entraîner en rotation l’hélice de propulsion, ce moteur étant logé dans la partie avant (4), une ligne de transmission (30) reliant le moteur à l’hélice de propulsion, cette ligne de transmission comportant un joint de transmission (33) permettant de transmettre l’entraînement du moteur à l’hélice de propulsion malgré les changements d’orientation de l’axe de rotation du rotor relativement à la partie avant.
7. Drone selon la revendication 6, les mouvements d’orientation de l’axe de rotation du rotor (20) ayant heu autour d’un centre de rotation sur lequel le joint de transmission (33) est centré.
8. Drone selon l’une quelconque des revendications précédentes, les ailes (10) pouvant pivoter relativement au rotor pour changer leur incidence.
9. Drone selon l’une quelconque des revendications précédentes, l’hélice de propulsion (3) et le rotor (70) étant mus par un même moteur (20).
10. Drone selon l’une quelconque des revendications précédentes, comportant une partie arrière (5) portant l’hélice de propulsion, le rotor (70) tournant entre les parties avant (4) et arrière (5).
11. Drone selon l’une quelconque des revendications précédentes, chaque aile étant reliée au rotor par un mat (11) comportant une articulation (12) permettant de rabattre l’aile sur le fuselage durant une phase de lancement du drone, lorsque ce dernier est contenu dans un lanceur (100), le drone comportant un mécanisme qui permet de bloquer la charnière (12) une fois l’aile déployée, ce mécanisme de blocage comportant de préférence une bague de verrouillage (18) qui vient dans la position de verrouillage recouvrir la charnière (12) et ainsi immobiliser le mat dans une configuration où il est coaxial avec la bague, un actionneur (13) de préférence logé dans l’aile permettant de générer un mouvement relatif entre le mat et la bague de verrouillage permettant d’amener celle-ci dans sa configuration de blocage.
12. Drone selon l’une quelconque des revendications 8 à 11, la variation de l’incidence de l’aile relativement au rotor étant obtenue par un mécanisme qui transforme un mouvement de rotation d’un actuateur (13) en un déplacement axial du mat, ce dernier comportant de préférence un premier ergot (311) proche de G actuateur (13) et un deuxième ergot (312) proche du rotor (70), les deux ergots se déplaçant ensemble sous l’action de l’actuateur (13), ce dernier entraînant en rotation une bague d’entraînement (320) qui présente une fente axiale (321) dans laquelle le premier ergot (311) est engagé, le premier ergot (311) étant également engagé dans une fente hélicoïdale (325) d’une partie tubulaire (330) fixe avec l’aile, solidaire de la bague de verrouillage (18), une rotation de la bague d’entrainement (320) s’accompagnant d’un déplacement axial du mat (11) relativement à la bague de verrouillage (18) et à la partie tubulaire fixe (330), le deuxième ergot (312) étant engagé dans une fente (340) ménagée sur une partie tubulaire (341) qui est fixée sur le rotor, et qui tourne avec lui, cette fente (340) comportant une première portion (343), qui est linéaire et s’étend radialement, et une deuxième portion (344) qui est hélicoïdale.
13. Lanceur dans lequel est disposé un drone selon l’une quelconque des revendications précédentes, le drone (1) comportant des ailes repliables, qui peuvent se rabattre contre le fuselage lorsque le drone est contenu dans le lanceur.
14. Lanceur selon la revendication précédente, le lanceur comportant une coiffe logeant le drone, et quatre boosters à poussée vectorielle, pour orienter le lanceur.
15. Lanceur selon la revendication 14, la coiffe comportant deux parties articulées qui sont maintenues fermées par la poussée aérodynamique lors de l’évolution du lanceur à haute vitesse.
16. Lanceur selon l’une des revendications 14 et 15, chaque booster comportant un déflecteur comportant un corps pouvant pivoter autour d’un premier axe de rotation, ce corps enserrant un élément pouvant pivoter autour d’un deuxième axe perpendiculaire au premier, le corps étant de préférence formé de deux blocs (124) qui sont assemblés autour d’une section torique (123) constituant ledit élément, un système d’actionneurs redondants assurant de préférence la commande du pivotement du déflecteur selon ces deux axes de rotation.
EP20804577.3A 2019-11-19 2020-11-17 Drone Withdrawn EP4061710A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912888A FR3103174B1 (fr) 2019-11-19 2019-11-19 Drone
PCT/EP2020/082443 WO2021099334A1 (fr) 2019-11-19 2020-11-17 Drone

Publications (1)

Publication Number Publication Date
EP4061710A1 true EP4061710A1 (fr) 2022-09-28

Family

ID=71452274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20804577.3A Withdrawn EP4061710A1 (fr) 2019-11-19 2020-11-17 Drone

Country Status (4)

Country Link
US (1) US12054255B2 (fr)
EP (1) EP4061710A1 (fr)
FR (1) FR3103174B1 (fr)
WO (1) WO2021099334A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL290392B2 (en) * 2019-08-14 2024-06-01 Unmanned Aerospace Llc aircraft

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116040A (en) * 1961-06-26 1963-12-31 Us Industries Inc Supersonic rotary wing platform
US6056237A (en) * 1997-06-25 2000-05-02 Woodland; Richard L. K. Sonotube compatible unmanned aerial vehicle and system
ES2504167T3 (es) * 2004-04-14 2014-10-08 Paul E. Arlton Vehículo de alas giratorias
DE102004061977B4 (de) * 2004-12-23 2008-04-10 Lfk-Lenkflugkörpersysteme Gmbh Klein-Flugkörper
WO2011137335A1 (fr) * 2010-04-30 2011-11-03 Elbit Systems Of America, Llc Bouée sonar basée sur un véhicule aérien sans pilote
US9004393B2 (en) * 2010-10-24 2015-04-14 University Of Kansas Supersonic hovering air vehicle
US10054939B1 (en) * 2012-09-22 2018-08-21 Paul G. Applewhite Unmanned aerial vehicle systems and methods of use
US9789950B1 (en) * 2013-04-24 2017-10-17 Bird Aerospace Llc Unmanned aerial vehicle (UAV) with multi-part foldable wings
US11117649B2 (en) * 2015-11-11 2021-09-14 Area-I Inc. Foldable propeller blade with locking mechanism
FR3054825B1 (fr) 2016-08-02 2018-08-24 De Perera Sylvain Roldan Drone
US10407169B2 (en) * 2016-08-30 2019-09-10 Bell Textron Inc. Aircraft having dual rotor-to-wing conversion capabilities
WO2018187844A1 (fr) * 2017-04-13 2018-10-18 Iridium Dynamics Pty Ltd Aéronef à double mode de vol
WO2019043520A1 (fr) * 2017-08-29 2019-03-07 Hangzhou Zero Zero Technology Co., Ltd. Système aérien de stabilisation automatique autonome et procédé associé
US10946956B2 (en) * 2018-08-30 2021-03-16 Textron Innovations Inc. Unmanned aerial systems having out of phase gimballing axes

Also Published As

Publication number Publication date
FR3103174B1 (fr) 2021-12-03
US12054255B2 (en) 2024-08-06
WO2021099334A1 (fr) 2021-05-27
FR3103174A1 (fr) 2021-05-21
US20230002045A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
EP3239049B1 (fr) Drone comportant au moins trois rotors de sustentation et de propulsion
EP3259183B1 (fr) Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)
EP3328732B1 (fr) Rotor de sustentation et aerodyne hybride a decollage et/ou atterrissage vertical ou court le comportant
CA2850702C (fr) Turbomachine a helice(s) pour aeronef avec systeme pour changer le pas de l'helice
EP0808768B1 (fr) Aérodyne à décollage et atterrissage verticaux
FR2791319A1 (fr) Aeronef convertible a rotors basculants
FR2791634A1 (fr) Perfectionnements aux aeronefs convertibles a rotors basculants
WO2021219711A1 (fr) Aeronef
FR2973333A1 (fr) Systeme pour changer le pas d'helices contrarotatives d'un turbomoteur
EP2212197B1 (fr) Engin volant a deux rotors
EP3212498B1 (fr) Perfectionnements aux machines tournantes à rotor fluidique à pales orientables
EP1165369B1 (fr) Helicoptere a pilotage pendulaire a haute stabilite et a grande manoeuvrabilite
WO2021099334A1 (fr) Drone
FR3036379A1 (fr) Drone avec rotor a pas variable
CA3129980C (fr) Dispositif de propulsion pour aerodyne a voilure tournante et a decollage et atterrissage verticaux, et aerodyne comprenant au moins un tel dispositif de propulsion
FR2980117A1 (fr) Engin volant a decollage et atterrissage vertical a rotor contrarotatif
EP0318477B1 (fr) Perfectionnements aux aeronefs a decollage vertical
WO2022130151A1 (fr) Aérodyne à décollage et atterrissage verticaux optimisé pour le vol horizontal
EP0104163B1 (fr) Aeronef sans moteur
FR3106811A1 (fr) Drone à voilure tournante et fixe à décollage et atterrissage verticaux, à traînée optimisée pour ces deux utilisations
EP3953252A1 (fr) Voilure tournante dans le domaine des aeronefs
FR3056193A1 (fr) Dispositif propulsif a portance active a grande compacite
BE464896A (fr)
BE825667A (fr) Dispositif de poussee

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230601