EP3936790A1 - Catalytic alkane degradation - Google Patents
Catalytic alkane degradation Download PDFInfo
- Publication number
- EP3936790A1 EP3936790A1 EP21182836.3A EP21182836A EP3936790A1 EP 3936790 A1 EP3936790 A1 EP 3936790A1 EP 21182836 A EP21182836 A EP 21182836A EP 3936790 A1 EP3936790 A1 EP 3936790A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat transfer
- transfer fluid
- circuit
- added
- oxygen carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000001335 aliphatic alkanes Chemical class 0.000 title claims abstract description 27
- 230000003197 catalytic effect Effects 0.000 title description 2
- 230000015556 catabolic process Effects 0.000 title 1
- 238000006731 degradation reaction Methods 0.000 title 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000001301 oxygen Substances 0.000 claims abstract description 23
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 23
- 239000013529 heat transfer fluid Substances 0.000 claims abstract description 20
- 230000007797 corrosion Effects 0.000 claims abstract description 18
- 238000005260 corrosion Methods 0.000 claims abstract description 18
- 239000003112 inhibitor Substances 0.000 claims abstract description 18
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 14
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 17
- 235000015393 sodium molybdate Nutrition 0.000 claims description 8
- 239000011684 sodium molybdate Substances 0.000 claims description 8
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 claims description 8
- JQVALDCWTQRVQE-UHFFFAOYSA-N dilithium;dioxido(dioxo)chromium Chemical compound [Li+].[Li+].[O-][Cr]([O-])(=O)=O JQVALDCWTQRVQE-UHFFFAOYSA-N 0.000 claims description 3
- 239000007800 oxidant agent Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 2
- 239000012267 brine Substances 0.000 description 23
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 20
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 14
- 239000012530 fluid Substances 0.000 description 7
- 239000001294 propane Substances 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002516 radical scavenger Substances 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 235000013847 iso-butane Nutrition 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 1
- LKMJVFRMDSNFRT-UHFFFAOYSA-N 2-(methoxymethyl)oxirane Chemical compound COCC1CO1 LKMJVFRMDSNFRT-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- PEKMXCRKYQVRCK-UHFFFAOYSA-N benzene-1,4-diol;phenol Chemical compound OC1=CC=CC=C1.OC1=CC=C(O)C=C1 PEKMXCRKYQVRCK-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- UCAJPHQTEWYXEA-UHFFFAOYSA-N triazine-4-carboxylic acid Chemical class OC(=O)C1=CC=NN=N1 UCAJPHQTEWYXEA-UHFFFAOYSA-N 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
Definitions
- the invention relates to the removal of flammable gases containing alkane in a heating circuit or cooling brine circuit of a heat pump system.
- heating circuits occasionally have to be vented because air can collect in the system. This usually happens due to leaks at elevated points in the heating circuit, where a leak in connection with negative pressure leads to air being sucked into the water circuit. In some cases, it is also air that is dissolved in top-up water and is released when it is heated. The same applies to brine-split systems in which there is brine in the heating circuit.
- Such gaseous components that get into the heating circuit via leaks can be separated using gas separators, but dissolved and very fine-bubble gas components remain. These can cause problems when the temperature changes by outgassing at unfavorable points in the water or brine circuit if their solubility changes due to temperature. This applies above all to the propane in the refrigerant R290, which is now frequently used, but also isobutane in the refrigerant R600a, n-butane in R600, propylene in R1270 and other alkanes.
- Such dissolved or very fine-bubble gas components from alkanes should be eliminated from the heating circuit. This elimination takes place through oxidation of the dissolved alkane, for which an oxygen carrier or oxidizing agent and a suitable catalyst must be provided.
- common oxygen carriers such as hydrogen peroxide
- hydrogen peroxide are themselves combustible and also aggressive to the usual installations of a water or brine circuit. This also applies to almost all other common oxidizing agents, these also oxidize the pipe material for heating circuits and lead to rusting.
- corrosion inhibitors are sometimes added to heating circuits, for example with a solution of sodium molybdate available under the Fernox trade name.
- the use of triazine carboxylic acids is possible, as in the EP 46139 B1 is described.
- Such corrosion inhibitors form a passive layer on the pipe material and the fittings, which prevents further rusting, although the corrosion inhibitors are sometimes themselves oxygen carriers.
- the U.S. 2010/0181524 A1 proposes radical scavengers for the stabilization of working fluids, which are, for example, acids, oxygen radical scavengers, polymerization inhibitors or combinations thereof. However, this is intended to stabilize working fluids made from hydrofluoroolefins and/or hydrochlorofluoroolefins.
- these working materials are so different from the brines of a heating or cooling circuit that they cannot be used or transferred.
- Oxalic acid, acetic acid, lactic acid and formic acid have become known as the oxidation products of propylene glycol, for example when the circuit is connected to a solar system with flow through which is occasionally exposed to high temperatures. This occurs regularly in midsummer when the heat absorbed is not taken off and the circuit is temporarily not in operation and the brine heats up significantly. These reaction products are very corrosive, so it is usually avoided to provide an oxygen carrier in the circuit.
- the antifreeze cannot be dispensed with because of the risk of damage due to frost in winter, the proportion of antifreeze in the brine is often even more than 50%.
- the invention therefore strives for a heterogeneous catalytic reaction between a corrosion inhibitor serving as an oxygen carrier and a dissolved alkane in the heating or brine circuit of a heat pump.
- the oxidation reaction should be carried out up to the respective alkanol, since the alkenes that form first in the heating or brine circuit are just as unfavorable as the starting alkane. This means that enough oxygen must be provided for the desired reaction, which affects the amount of oxygen to be provided.
- the amount of corrosion inhibitors to be added is, as usual, dimensioned according to the inner surface of the pipe system, the reaction with an alkane, at least two oxygen atoms are additionally provided for each alkane molecule.
- the oxygen carrier can therefore be added generously if the corrosion of the pipes and fittings can be reliably prevented.
- This alkane concentration in the separated gas phase can be used to draw conclusions about the alkane concentration using known solubility data in the heating or brine circuit. If the leakage is small and remains small, the oxygen carrier can be replenished accordingly. Ideally, this happens automatically, but it is also possible to top up manually.
- the corrosion inhibitor can be added generously and is then already in the heating or brine circuit before a leak occurs.
- the object of the invention is therefore to convert working fluid components or refrigerant components containing alkanes that are dissolved or have very fine bubbles in the heat transfer fluid into a harmless form.
- a gas phase is separated from the heat transfer fluid and the alkane concentration therein is determined. If a concentration is measured, which indicates a leak, the required quantity of an oxygen carrier is determined on the basis of the alkane concentration and this quantity is metered into the heat transfer fluid circuit.
- the corrosion inhibitor, the oxygen carrier and the catalyst are the same substance, preferably sodium molybdate or lithium chromate or mixtures thereof.
- the alkane is propane, which is the main component of the refrigerant R290.
- Sodium molybdate is used as an oxygen carrier, catalyst and corrosion inhibitor.
- the entire heating and brine circuit is covered with a layer on the inside, which through Dosing of sodium molybdate, for example in the form of Fernox solution, takes place in the circuit.
- the gas separator determines whether there is flammable gas in the separated gas. This can be done with a commercially available gas detector. As soon as the gas alarm goes off, the concentration of propane and the amount of propane are determined. From the solubility of the propane in the brine at the prevailing temperature, the amount of propane probably dissolved in the brine is deduced and a corresponding amount of sodium molybdate is replenished.
- the method is particularly suitable in the event that the usual double-walled heat exchangers, which are in contact with the working fluid as evaporators and condensers, can be replaced by simple designs that also allow a higher efficiency of the entire system, since lower temperature differences are required for heat transfer . Since such leaks, as long as they are small, do not cause any impairments and no longer pose a safety risk, it is possible to continue to operate the heat pump system and the heat transfer medium circuit for a long time after a leak has been detected and to postpone repairs that are due until the next regular maintenance.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Verfahren zur Umwandlung von im Wärmeträgerfluid gelösten Alkanen im Wärmeträgerfluidkreislauf einer Wärmepumpe in nicht-entzündliche, wasserlösliche Verbindungen, wobei dem Wärmeträgerfluid mindestens ein Korrosionsinhibitor zugegeben wird, dem Wärmeträgerfluid ferner mindestens ein wasserlöslicher Sauerstoffträger zugegeben wird, und im Wärmeträgerfluidkreislauf mindestens ein Katalysator das gelöste Alkan in ein flüssiges Oxidationsprodukt oxidiert.Method for converting alkanes dissolved in the heat transfer fluid in the heat transfer fluid circuit of a heat pump into non-flammable, water-soluble compounds, wherein at least one corrosion inhibitor is added to the heat transfer fluid, at least one water-soluble oxygen carrier is also added to the heat transfer fluid, and at least one catalyst in the heat transfer fluid circuit converts the dissolved alkane into a liquid oxidation product oxidized.
Description
Die Erfindung betrifft die Entfernung alkanhaltiger entzündlicher Gase in einem Heizungskreislauf oder Kühlsolekreislauf eines Wärmepumpensystems. Einerseits ist bekannt, dass Heizkreisläufe gelegentlich entlüftet werden müssen, da sich Luft im System ansammeln kann. Meist geschieht dies durch Undichtigkeiten an erhöhten Stellen im Heizkreislauf, bei denen eine Undichtigkeit in Verbindung mit Unterdruck zum Ansaugen von Luft in den Wasserkreislauf führt. In manchen Fällen handelt es sich auch um Luft, die in Nachfüllwasser gelöst ist und die bei dessen Erwärmung freigesetzt wird. Dasselbe gilt für Sole-Split-Anlagen, bei denen sich Sole im Heizkreis befindet.The invention relates to the removal of flammable gases containing alkane in a heating circuit or cooling brine circuit of a heat pump system. On the one hand, it is known that heating circuits occasionally have to be vented because air can collect in the system. This usually happens due to leaks at elevated points in the heating circuit, where a leak in connection with negative pressure leads to air being sucked into the water circuit. In some cases, it is also air that is dissolved in top-up water and is released when it is heated. The same applies to brine-split systems in which there is brine in the heating circuit.
Andererseits werden inzwischen in Wärmepumpen und in Kühl- und Gefrieranlagen entzündliche Kältemittel verwendet, die den Vorteil haben, bei ihrer versehentlichen Freisetzung weder das Klima noch die Ozonschicht zu schädigen. Eine solche versehentliche Freisetzung ist aufgrund deren Brennbarkeit aber möglichst zu vermeiden. In Kältekreisen, in denen solche Arbeitsfluide eingesetzt werden, können solche unbeabsichtigten Freisetzungen über die Wärmetauscher passieren, die als Verflüssiger und Verdampfer zum Einsatz kommen und die mit dem Heizungskreislauf oder Kühlsolekreislauf über ihre Austauschflächen verbunden sind. Im Unterschied zu herkömmlichen Gasbrennkesseln steht das Arbeitsfluid im Kältekreis unter einem höheren Druck als das Wärmeträgerfluid im Heizkreis oder Kühlsolekreis, es könnte also bei Leckagen leicht in den unter geringerem Druck stehenden Wärmeträgerkreislauf gelangen.On the other hand, flammable refrigerants are now used in heat pumps and in refrigeration and freezing systems, which have the advantage of not damaging the climate or the ozone layer if accidentally released. However, due to their flammability, such an accidental release should be avoided as far as possible. In refrigeration circuits in which such working fluids are used, such unintentional releases can happen via the heat exchangers, which are used as condensers and evaporators and which are connected to the heating circuit or cooling brine circuit via their exchange surfaces. In contrast to conventional gas combustion boilers, the working fluid in the refrigeration circuit is under a higher pressure than the heat transfer fluid in the heating circuit or cooling brine circuit, so it could easily get into the heat transfer circuit, which is under lower pressure, in the event of leaks.
Solche Leckagen können auch in Wärmepumpen, welche als Klimatisierungen in Fahrzeugen Verwendung finden, zu Problemen führen. Die
Um all dies so weit wie möglich zu verhindern, werden im herkömmlichen Stand der Technik teure doppelwandige Wärmetauscher verwendet. Neben dem hohen Preis führt dieser Einsatz aber zu Effizienzverlusten, da die Materialien, wie beispielsweise etwa Edelstahl, Wärme schlecht leiten und der dünne Luftspalt zwischen den Wärmetauscherflächen wie eine Isolierung wirkt. Praktisch bedeutet dies, dass höhere Temperaturdifferenzen in den Wärmetauschern eingestellt werden müssen, was den Wirkungsgrad von Wärmepumpen herabsetzt.In order to prevent all this as much as possible, expensive double-walled heat exchangers are used in the conventional art. In addition to the high price, this use leads to a loss of efficiency, since the materials, such as stainless steel, conduct heat poorly and the thin air gap between the heat exchanger surfaces acts as insulation. In practice, this means that higher temperature differences have to be set in the heat exchangers, which reduces the efficiency of heat pumps.
Solche gasförmigen Bestandteile, die über Leckagen in den Heizkreislauf gelangen, können mittels Gasabscheidern abgeschieden werden, es verbleiben aber gelöste und sehr feinblasige Gasbestandteile. Diese können bei Temperaturänderungen Probleme bereiten, indem sie an ungünstigen Stellen im Wasser- oder Solekreislauf ausgasen, wenn sich ihre Löslichkeit temperaturbedingt ändert. Dies betrifft vor allem das inzwischen häufig eingesetzte Propan im Kältemittel R290, aber auch Isobutan im Kältemittel R600a, n-Butan in R600, Propylen in R1270 sowie weitere Alkane.Such gaseous components that get into the heating circuit via leaks can be separated using gas separators, but dissolved and very fine-bubble gas components remain. These can cause problems when the temperature changes by outgassing at unfavorable points in the water or brine circuit if their solubility changes due to temperature. This applies above all to the propane in the refrigerant R290, which is now frequently used, but also isobutane in the refrigerant R600a, n-butane in R600, propylene in R1270 and other alkanes.
Solche gelösten oder sehr feinblasigen Gasbestandteile aus Alkanen sollen aus dem Heizkreislauf eliminiert werden. Diese Elimination erfolgt durch Oxidation des gelösten Alkans, dafür müssen ein Sauerstoffträger bzw. Oxidationsmittel und ein geeigneter Katalysator bereitgestellt werden. Übliche Sauerstoffträger, wie beispielsweise Wasserstoffperoxid, sind jedoch selbst brennbar und auch aggressiv zu den üblichen Installationen eines Wasser- oder Solekreislaufs. Das gilt auch für fast alle anderen üblichen Oxidationsmittel, diese oxidieren auch das Rohrmaterial für Heizungskreisläufe und führen zum Rosten.Such dissolved or very fine-bubble gas components from alkanes should be eliminated from the heating circuit. This elimination takes place through oxidation of the dissolved alkane, for which an oxygen carrier or oxidizing agent and a suitable catalyst must be provided. However, common oxygen carriers, such as hydrogen peroxide, are themselves combustible and also aggressive to the usual installations of a water or brine circuit. This also applies to almost all other common oxidizing agents, these also oxidize the pipe material for heating circuits and lead to rusting.
Um Rosten zu verhindern, werden Heizungskreisläufen gelegentlich Korrosionsinhibitoren zugesetzt, beispielsweise mit einer Lösung aus Natriummolybdat, erhältlich unter dem Handelsnamen Fernox. Auch die Verwendung von Triazinkarbonsäuren ist möglich, wie in der
Bei Heizungskreisläufen, die üblicherweise aus Wasser bestehen, ist es ausreichend, die Rohre und Armaturen gegen Oxidation zu schützen. Bei Solekreisläufen von Wärmepumpen, die Wärme aus dem Außenbereich gewinnen oder die im Sommer als Klimaanlagen betrieben werden, müssen aber auch die Solebestandteile vor Oxidation geschützt werden. Weder darf der verwendete Sauerstoffträger diese Solebestandteile direkt angreifen, noch darf der zugesetzte Katalysator hier zur Oxidation der Sole führen. Als Sole werden zumeist Frostschutzmittel wie Ethylenglycol oder Propylenglycol verwendet, vor allem letzteres, weil es ungiftig ist.In the case of heating circuits, which usually consist of water, it is sufficient to protect the pipes and fittings against oxidation. However, in the brine circuits of heat pumps that gain heat from outside or that are operated as air conditioning systems in summer, the brine components must also be protected from oxidation. The oxygen carrier used must not attack these brine components directly, nor must the added catalyst lead to oxidation of the brine. Anti-freeze agents such as ethylene glycol or propylene glycol are mostly used as brines, especially the latter because it is non-toxic.
Die
Als Oxidationsprodukte des Propylenglykols sind Oxalsäure, Essigsäure, Milchsäure und Ameisensäure bekannt geworden, etwa dann, wenn der Kreislauf mit einer durchströmten Solaranlage verbunden ist, die gelegentlich hohen Temperaturen ausgesetzt ist. Dies tritt regelmäßig im Hochsommer auf, wenn die aufgenommene Wärme nicht abgenommen wird, und der Kreislauf vorübergehend nicht in Betrieb ist und sich die Sole stark erhitzt. Diese Reaktionsprodukte sind sehr korrosiv, es wird daher üblicherweise vermieden, einen Sauerstoffträger im Kreislauf vorzusehen. Verzichtbar ist das Frostschutzmittel wegen der Beschädigungsgefahr aufgrund von Frost im Winter aber auch nicht, oft beträgt der Anteil des Frostschutzmittels in der Sole sogar über 50 %.Oxalic acid, acetic acid, lactic acid and formic acid have become known as the oxidation products of propylene glycol, for example when the circuit is connected to a solar system with flow through which is occasionally exposed to high temperatures. This occurs regularly in midsummer when the heat absorbed is not taken off and the circuit is temporarily not in operation and the brine heats up significantly. These reaction products are very corrosive, so it is usually avoided to provide an oxygen carrier in the circuit. However, the antifreeze cannot be dispensed with because of the risk of damage due to frost in winter, the proportion of antifreeze in the brine is often even more than 50%.
Hierdurch ergibt sich ein Dilemma. Einerseits sollen gelöste Alkane oxidiert werden, andererseits soll diese Oxidation aber nicht zu Alkansäuren führen, sondern nur zu Alkanolen. Auch die Sole soll nicht in Alkansäuren zerfallen. Überraschenderweise zeigte sich, dass einige der bekannten Korrosionsinhibitoren auch katalytisch bezüglich der Oxidation gelöster Alkane wirken, gleichzeitig als Sauerstoffträger dienen, die Sole jedoch nicht angreifen, sondern schützen.This creates a dilemma. On the one hand, dissolved alkanes should be oxidized, but on the other hand, this oxidation should not lead to alkanoic acids, but only to alkanols. The brine should also not decompose into alkanoic acids. Surprisingly, it was found that some of the known corrosion inhibitors also have a catalytic effect with regard to the oxidation of dissolved alkanes, and at the same time serve as oxygen carriers, but do not attack the brines but protect them.
Die Erfindung strebt daher eine heterogene katalytische Reaktion zwischen einem als Sauerstoffträger dienenden Korrosionsinhibitor und einem gelösten Alkan im Heiz- bzw. Solekreislauf einer Wärmepumpe an. Die Oxidationsreaktion soll bis zum jeweiligen Alkanol durchgeführt werden, da die sich zunächst bildenden Alkene im Heiz- bzw. Solekreislauf ebenso ungünstig sind wie das Ausgangsalkan. Dies bedeutet, dass genug Sauerstoff für die gewünschte Reaktion bereitgestellt werden muss, was sich auf die bereitzustellende Menge an Sauerstoff auswirkt.The invention therefore strives for a heterogeneous catalytic reaction between a corrosion inhibitor serving as an oxygen carrier and a dissolved alkane in the heating or brine circuit of a heat pump. The oxidation reaction should be carried out up to the respective alkanol, since the alkenes that form first in the heating or brine circuit are just as unfavorable as the starting alkane. This means that enough oxygen must be provided for the desired reaction, which affects the amount of oxygen to be provided.
Während die Menge an zuzugebenden Korrosionsinhibitoren wie üblich nach der Rohrinnenfläche des Rohrleitungssystems dimensioniert wird, müssen für die Reaktion mit einem Alkan zusätzlich für jedes Alkanmolekül mindestens zwei Sauerstoffatome bereitgestellt werden. Eine weitergehende Oxidation bis zum Kohlendioxid ist jedoch unschädlich. Der Sauerstoffträger kann also großzügig zugesetzt werden, wenn die Korrosion der Rohrleitungen und Armaturen sicher unterbunden werden kann.While the amount of corrosion inhibitors to be added is, as usual, dimensioned according to the inner surface of the pipe system, the reaction with an alkane, at least two oxygen atoms are additionally provided for each alkane molecule. However, further oxidation to carbon dioxide is harmless. The oxygen carrier can therefore be added generously if the corrosion of the pipes and fittings can be reliably prevented.
Zur Bestimmung der Mindestmenge muss bestimmt werden, ob ein Alkan leckagebedingt in den Heiz- bzw. Solekreislauf gelangt ist. Dies ist jedoch schwierig, wenn sich bereits ein Sauerstoffträger und ein Katalysator im Heiz- bzw. Solekreislauf befinden und leckagebedingt eintretendes Alkan sofort umsetzen. Eine Leckage zeigt sich aber auch in der Gasphase und kann, wenn diese Gasphase in einem Gasabscheider abgeschieden wird, in der Gasphase bestimmt werden.To determine the minimum quantity, it must be determined whether an alkane has entered the heating or brine circuit due to a leak. However, this is difficult if there is already an oxygen carrier and a catalyst in the heating or brine circuit and immediately convert any alkane that occurs due to a leak. However, a leak can also be seen in the gas phase and can be determined in the gas phase if this gas phase is separated in a gas separator.
Aus dieser Alkankonzentration in der abgeschiedenen Gasphase kann auf die Alkankonzentration anhand bekannter Löslichkeitsdaten im Heiz- bzw. Solekreislauf geschlossen werden. Sofern die Leckage klein ist und klein bleibt, kann der Sauerstoffträger entsprechend nachdosiert werden. Im Idealfall geschieht dies automatisch, es ist jedoch auch möglich, manuell nachzudosieren.This alkane concentration in the separated gas phase can be used to draw conclusions about the alkane concentration using known solubility data in the heating or brine circuit. If the leakage is small and remains small, the oxygen carrier can be replenished accordingly. Ideally, this happens automatically, but it is also possible to top up manually.
Sofern der Sauerstoffträger und der Katalysator mit dem Korrosionsinhibitor identisch sind, kann der Korrosionsinhibitor großzügig vorgelegt werden und befindet sich dann bereits vor dem Auftreten einer Leckage im Heiz- bzw. Solekreislauf.If the oxygen carrier and the catalyst are identical to the corrosion inhibitor, the corrosion inhibitor can be added generously and is then already in the heating or brine circuit before a leak occurs.
Die Aufgabe der Erfindung ist daher, im Wärmeträgerfluid gelöste oder sehr feinblasige Arbeitsfluidbestandteile bzw. Kältemittelbestandteile, die Alkane enthalten, in eine unschädliche Form umzuwandeln.The object of the invention is therefore to convert working fluid components or refrigerant components containing alkanes that are dissolved or have very fine bubbles in the heat transfer fluid into a harmless form.
Die Erfindung löst die Aufgabe durch ein entsprechendes Verfahren zur Umwandlung von in Wärmeträgerfluid gelösten Alkanen in nicht-entzündliche, wasserlösliche Verbindungen, wobei
- dem Wärmeträgerfluid mindestens ein Korrosionsinhibitor zugegeben wird,
- dem Wärmeträgerfluid ferner mindestens ein wasserlöslicher Sauerstoffträger zugegeben wird, und
- im Wärmeträgerfluidkreislauf mindestens ein Katalysator das gelöste Alkan in ein flüssiges Oxidationsprodukt oxidiert.
- at least one corrosion inhibitor is added to the heat transfer fluid,
- at least one water-soluble oxygen carrier is also added to the heat transfer fluid, and
- at least one catalyst in the heat transfer fluid circuit oxidizes the dissolved alkane into a liquid oxidation product.
In einer Ausgestaltung des Verfahrens wird vorgesehen, dass eine Gasphase aus dem Wärmeträgerfluid abgeschieden und darin die Alkan-Konzentration bestimmt wird. Sofern eine Konzentration gemessen wird, was auf eine Leckage schließen lässt, wird anhand der Alkan-Konzentration die erforderliche Menge eines Sauerstoffträgers ermittelt und diese Menge dem Wärmeträgerfluidkreislauf zudosiert.In one embodiment of the method, it is provided that a gas phase is separated from the heat transfer fluid and the alkane concentration therein is determined. If a concentration is measured, which indicates a leak, the required quantity of an oxygen carrier is determined on the basis of the alkane concentration and this quantity is metered into the heat transfer fluid circuit.
In einer weiteren Ausgestaltung des Verfahrens ist vorgesehen, dass der Korrosionsinhibitor, der Sauerstoffträger und der Katalysator dieselbe Substanz sind, vorzugsweise sind dies Natriummolybdat oder Lithiumchromat oder Mischungen daraus.In a further embodiment of the method, it is provided that the corrosion inhibitor, the oxygen carrier and the catalyst are the same substance, preferably sodium molybdate or lithium chromate or mixtures thereof.
Hierbei ist es nicht erforderlich, dass die Oxidation vollständig bis zum Kohlendioxid verläuft, da auch alle Teiloxidationsprodukte wie Alkanole, Alkanale und Alkanone zur Erreichung des angestrebten Umwandlungsziels akzeptabel sind, nicht jedoch Alkansäuren.In this case, it is not necessary for the oxidation to proceed completely to carbon dioxide, since all partial oxidation products such as alkanols, alkanals and alkanones are also acceptable for achieving the desired conversion goal, but not alkanoic acids.
Die Erfindung wird nachfolgend an einem Beispiel dargestellt. Hierbei ist das Alkan Propan, welches den Hauptbestandteil des Kältemittels R290 bildet. Als Sauerstoffträger, Katalysator und Korrosionsinhibitor wird Natriummolybdat verwendet. Zunächst wird der gesamte Heiz- und Solekreislauf mit einer Schicht auf der Innenseite belegt, was durch Eindosierung von Natriummolybdat, beispielsweise in Form von Fernox-Lösung, in den Kreislauf erfolgt.The invention is illustrated below using an example. Here, the alkane is propane, which is the main component of the refrigerant R290. Sodium molybdate is used as an oxygen carrier, catalyst and corrosion inhibitor. First, the entire heating and brine circuit is covered with a layer on the inside, which through Dosing of sodium molybdate, for example in the form of Fernox solution, takes place in the circuit.
Dann wird am Gasabscheider gemessen, ob sich entzündliches Gas in abgeschiedenen Gas befindet, dies kann mit einem handelsüblichen Gaswarner erfolgen. Sobald der Gaswarner anschlägt, werden die Konzentration des Propans und die die Menge des Propans ermittelt. Aus der Löslichkeit des Propans in der Sole bei der vorliegenden Temperatur wird auf die wahrscheinlich in der Sole gelöste Menge an Propan geschlossen und eine entsprechende Menge an Natriummolybdat wird nachdosiert.Then it is measured at the gas separator whether there is flammable gas in the separated gas. This can be done with a commercially available gas detector. As soon as the gas alarm goes off, the concentration of propane and the amount of propane are determined. From the solubility of the propane in the brine at the prevailing temperature, the amount of propane probably dissolved in the brine is deduced and a corresponding amount of sodium molybdate is replenished.
Während die ursprünglich vorgelegte Menge an Natriummolybdat abhängig von der Größe desjenigen Heiz- und Solenkreislaufs ist, ergibt sich die nachzudosierende Menge aus dem stöchiometrischen Bedarf. In derselben Weise kann auch mit Lithiumchromat anstelle von Natriummolybdat vorgegangen werden, auch eine parallele Verwendung ist möglich.While the originally submitted amount of sodium molybdate depends on the size of that heating and brine circuit, the amount to be replenished results from the stoichiometric requirement. Lithium chromate can be used in the same way instead of sodium molybdate, and parallel use is also possible.
Die Methode eignet sich besonders für den Fall, dass die üblichen doppelwandigen Wärmetauscher, die als Verdampfer und Verflüssiger mit dem Arbeitsfluid in Kontakt sind, durch einfache Bauarten ersetzt werden können, die gleichzeitig einen höheren Wirkungsgrad der Gesamtanlage erlauben, da geringere Temperaturdifferenzen beim Wärmeübergang benötigt werden. Dadurch, dass solche Leckagen, solange sie klein sind, keine Beeinträchtigungen hervorrufen und auch kein Sicherheitsrisiko mehr darstellen, ist es möglich, die Wärmepumpenanlage und den Wärmeträgerkreislauf auch nach der Detektion einer Leckage noch lange weiterzubetreiben und fällige Reparaturen auf die nächste Regelwartung zu verschieben.The method is particularly suitable in the event that the usual double-walled heat exchangers, which are in contact with the working fluid as evaporators and condensers, can be replaced by simple designs that also allow a higher efficiency of the entire system, since lower temperature differences are required for heat transfer . Since such leaks, as long as they are small, do not cause any impairments and no longer pose a safety risk, it is possible to continue to operate the heat pump system and the heat transfer medium circuit for a long time after a leak has been detected and to postpone repairs that are due until the next regular maintenance.
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020117946.4A DE102020117946A1 (en) | 2020-07-08 | 2020-07-08 | Catalytic alkane degradation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3936790A1 true EP3936790A1 (en) | 2022-01-12 |
Family
ID=76999619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21182836.3A Pending EP3936790A1 (en) | 2020-07-08 | 2021-06-30 | Catalytic alkane degradation |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3936790A1 (en) |
DE (1) | DE102020117946A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133028A (en) * | 1960-02-18 | 1964-05-12 | Wright Chem Corp | Corrosion inhibition |
EP0046139B1 (en) | 1980-08-13 | 1984-07-18 | Ciba-Geigy Ag | Use of triazine-carboxylic acids as corrosion inhibitors for aqueous systems |
EP0520384A2 (en) * | 1991-06-24 | 1992-12-30 | Sharp Kabushiki Kaisha | Process of suppressing corrosion of a heat exchanging apparatus |
US20030056529A1 (en) | 2001-09-27 | 2003-03-27 | Nobuharu Kakehashi | Vehicle air conditioning air duct system |
US20100181524A1 (en) | 2007-06-27 | 2010-07-22 | Arkema Inc. | Stabilized hydrochlorofluoroolefins and hydrofluoroolefins |
US20180347860A1 (en) * | 2016-02-10 | 2018-12-06 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Heat source machine and operating method therefor |
-
2020
- 2020-07-08 DE DE102020117946.4A patent/DE102020117946A1/en active Pending
-
2021
- 2021-06-30 EP EP21182836.3A patent/EP3936790A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3133028A (en) * | 1960-02-18 | 1964-05-12 | Wright Chem Corp | Corrosion inhibition |
EP0046139B1 (en) | 1980-08-13 | 1984-07-18 | Ciba-Geigy Ag | Use of triazine-carboxylic acids as corrosion inhibitors for aqueous systems |
EP0520384A2 (en) * | 1991-06-24 | 1992-12-30 | Sharp Kabushiki Kaisha | Process of suppressing corrosion of a heat exchanging apparatus |
US20030056529A1 (en) | 2001-09-27 | 2003-03-27 | Nobuharu Kakehashi | Vehicle air conditioning air duct system |
US20100181524A1 (en) | 2007-06-27 | 2010-07-22 | Arkema Inc. | Stabilized hydrochlorofluoroolefins and hydrofluoroolefins |
US20180347860A1 (en) * | 2016-02-10 | 2018-12-06 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Heat source machine and operating method therefor |
Also Published As
Publication number | Publication date |
---|---|
DE102020117946A1 (en) | 2022-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112016005606T5 (en) | Using heat extracted from a heat source to obtain hot water | |
DE102010006541B4 (en) | Method and apparatus for cooling acid | |
DE69903915T2 (en) | FROST-RESISTANT HEATING / COOLANT | |
EP2700075A1 (en) | Method for conditioning a power-generating circulatory system of a power plant | |
EP3882526B1 (en) | Separating method and separating device | |
WO2012168078A2 (en) | Cooling by steam jet generation | |
EP3800263A1 (en) | Biological alkane degradation | |
EP3936790A1 (en) | Catalytic alkane degradation | |
DE69215438T2 (en) | Corrosion prevention method in a heat exchanger | |
DE1243214B (en) | Corrosion protection for absorption refrigeration machines working with salt solutions | |
DE102021126948A1 (en) | Increasing the solubility of alkanes | |
CN203928485U (en) | The cold recovery system of liquid nitrogen vaporization | |
CN111057409A (en) | UV ink cleaning agent car washing water and preparation method thereof | |
EP2542641B1 (en) | Biodegradable, frost proof heat-transfer fluid, use thereof in near-surface geothermal installations, and a concentrate for preparing same | |
JP5274778B2 (en) | Higher polyglycol based heat-carrying media with improved thermal stability | |
DE4309844C2 (en) | Process for producing a tube bundle heat exchanger for flue gases | |
DE102021126949A1 (en) | Solubility reduction of alkanes | |
DE102022100817A1 (en) | Liquid extraction of hydrocarbons | |
DE1629062A1 (en) | Device for freezing and freeze-drying | |
DE69814663T2 (en) | LIQUID FOR EVAPORATOR | |
DE19525090A1 (en) | Method and concentrate for inhibiting blockages in solar absorber - uses aq. concentrate contg. polyethylene glycol, propylene and/or ethylene glycol and corrosion inhibitors, which does not form insoluble deposit even at high temp. | |
DE19758301C1 (en) | Method for thermally reducing dissolved gases in stored hot water from boiler | |
EP1101226A2 (en) | Method and device for separating a neutron absorber from a cooling medium | |
DE102012007276A1 (en) | Process for the thermal utilization of fluids and equipment for the treatment of objects | |
EP2645461A1 (en) | Cooling circuit for cooling an electrochemical cell and method for operating such a cooling circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
B565 | Issuance of search results under rule 164(2) epc |
Effective date: 20211115 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220712 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240304 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20240917 |