[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3931378A1 - Structurally-colored filaments and methods for making and using structurally-colored filaments - Google Patents

Structurally-colored filaments and methods for making and using structurally-colored filaments

Info

Publication number
EP3931378A1
EP3931378A1 EP20717430.1A EP20717430A EP3931378A1 EP 3931378 A1 EP3931378 A1 EP 3931378A1 EP 20717430 A EP20717430 A EP 20717430A EP 3931378 A1 EP3931378 A1 EP 3931378A1
Authority
EP
European Patent Office
Prior art keywords
article
fragments
optical
filament
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20717430.1A
Other languages
German (de)
French (fr)
Inventor
Jeremy GANTZ
Yuanmin Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nike Innovate CV USA
Original Assignee
Nike Innovate CV USA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike Innovate CV USA filed Critical Nike Innovate CV USA
Publication of EP3931378A1 publication Critical patent/EP3931378A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/567Shapes or effects upon shrinkage
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/04Pigments

Definitions

  • Structural color is caused by the physical interaction of light with the micro- or nano- features of a surface and the bulk maxerial as compared to color derived from the presence of dyes or pigments that absorb or reflect specific wavelengths of light based on the chemical properties of the dyes or pigments.
  • Color from dyes and pigments can be problematic in a number of ways. For example, dyes and pigments and their associated chemistries for fabrication and incorporation into finished goods may not be environmentally friendly.
  • Figures 1A-1M shows various articles of footwear, apparel, athletic equipment, container, electronic equipment, and vision wear that include the structure in accordance with the present disclosure, while Figures 1N-1P illustrate additional details regarding different types of footwear.
  • Figure 2A illustrates a side view of exemplary inorganic optical element of the present disclosure.
  • Figure 2B illustrates a side view of exemplary inorganic optical element of the present disclosure.
  • the present disclosure provides for filaments (structural color filament or“SC” filament) that comprise optical elements or fragments thereof that impart an optical effect (e.g., a structural color, a metallic appearance, or an iridescent appearance), where the optical elements are randomly dispersed throughout and on the surface of the SC filament.
  • the optical effect imparted to the SC filament produces an aesthetically appealing appearance without requiring the use of inks or pigments and the environmental impact associated with their use.
  • the optical effect from the optical element or fragments thereof is produced, at least in part, through scattering, refraction, reflection, interference, and/or diffraction of visible wavelengths of light.
  • the optical effect can include structural color (e.g., hues of blue, green, red, yellow, and the like), where a subset of the structural color can be an iridescent or metallic appearance.
  • Yarn or fiber can be formed using the SC filament and optionally other types of filaments.
  • the SC filament can be produced by melting a plurality of structurally colored articles and then extruding the molten material to form the SC filament, where the optical element or fragments thereof are dispersed throughout and on the surface of the SC filament.
  • the structurally colored article can include a thermoplastic material and a plurality of the optical elements and fragments thereof.
  • the SC filament can include intact optical elements as originally produced or fragments thereof, where the optical elements and fragments thereof can impart the optical effect.
  • the structurally colored articles can include pellets, films, sheets, and the like where each can be extruded articles.
  • the structurally colored articles can be formed by disposing (e.g., affixing, attaching, adhering, bonding, joining) the optical element directly onto an article.
  • the structurally colored articles can be formed by processing (e.g., grinding, cutting, shredding, crushing, or a combination thereof) a polymer-based item that includes a thermoplastic material and at least one optical element.
  • fragments of one or more optical elements can be formed, where all or some of the optical elements or fragments thereof retain the characteristic to impart the optical effect.
  • the pieces of the polymer-based item are melted to form a molten material.
  • the molten material is extruded to form the structurally colored articles.
  • the optical elements and/or fragments thereof from the processing step can also form other fragments during the extrusion process.
  • the optical element and/or fragments of optical elements impart the optical effect to the structurally colored articles.
  • the optical effect before and after processing and/or extrusion may be the same or different.
  • the optical element or fragments of the optical element can include at least one optical layer optionally having a textured surface (e.g., integral to the optical element or as part of the surface of the article), optionally with a protective layer, or optionally with any combination of the textured surface and the protective layer.
  • the optical element can be a single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter.
  • the optical elements or fragments of the optical element on the surface of the filaments cause the article incorporating the filament to have the optical effect that can be different than the article with a filament without the optical elements or fragments of the optical element.
  • the present disclosure provides a method of making a structural color (SC) filament, comprising melting a plurality of structurally colored articles, each structurally colored article comprising a thermoplastic material and a plurality of optical elements or fragments thereof, to form a first molten material including the plurality of optical elements or fragments thereof dispersed therein; and extruding the first molten material to form the SC filament, wherein the SC filament includes the dispersed plurality of optical elements or fragments thereof, and the dispersed plurality of optical elements or fragments thereof impart an optical effect to the SC filament.
  • the present disclosure also provides an article comprising the SC filament made according to the method above and herein.
  • the article can be an article of footwear, an article of apparel, or an article of sporting equipment.
  • the present disclosure provides for an article, comprising a SC filament having a plurality of optical elements and the fragments thereof randomly distributed throughout the SC filament, wherein the plurality of optical elements and the fragments thereof impart an optical effect to the filament.
  • the present disclosure provides for a method of forming an item, comprising: processing thereof a polymer-based item comprising at least one optical element to form pieces of the polymer-based item, wherein the optical element imparts a first optical effect to the polymer- based item, wherein a portion of at least one optical element is ground or cut into fragments of the optical element, wherein a first portion of the pieces of the polymer-based item retain the characteristic to impart the first optical effect; melting the pieces of the polymer-based item to form a second molten material; and extruding the second molten material to form structurally colored articles comprising the optical element and fragments thereof, wherein a portion of the optical elements and/or the fragments thereof impart a second optical effect to the structurally colored articles.
  • the present disclosure provides for a method of forming structurally colored item, comprising: disposing an optical element onto a pellet for form a structurally colored pellet, wherein the optical element imparts an optical effect to the structurally colored pellets.
  • the optical effect can be a structural color such as iridescent (e.g., iridescent structural color, a color which shifts over a wide range of hues when viewed from different angles), metallic, or a“color” (e.g., non-iridescent or non- metallic) as described herein.
  • iridescent e.g., iridescent structural color, a color which shifts over a wide range of hues when viewed from different angles
  • metallic e.g., a“color” (e.g., non-iridescent or non- metallic) as described herein.
  • a“color” e.g., non-iridescent or non- metallic
  • the present disclosure provides for the optical element or fragments of the optical element, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and a 1 * and b 1 *, and a second color measurement at a second angle of observation having coordinates L 2 * and a 2 * and b 2 *, and a third color measurement at a third angle of observation having coordinates L 3 * and a 3 * and b 3 *, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the a 1 *, a 2 *, and a 3 * coordinate values may be the same or different, wherein the b 1 *, b 2 *, and b 3 * coordinate values may be the same or different, and wherein the range of the combined a 1 *, a 2 * and a 3 * values is less than about 40% of the overall
  • the present disclosure provides for the optical element, when measured according to the CIELCH color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and C 1 * and h 1 °, and a second color measurement at a second angle of observation having coordinates L 2 * and C 2 * and h 2 °, and a third color measurement at a third angle of observation having coordinates L 3 * and C 3 * and h 3 °, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the C 1 *, C 2 *, and C 3 * coordinate values may be the same or different, wherein the h 1 °, h 2 ° and h 3 ° coordinate values may be the same or different, and wherein the range of the combined h 1 °, h 2 ° and h 3 ° values is less than about 10 degrees or alternatively greater than
  • a method of making a structural color (SC) filament comprising
  • thermoplastic material comprising a thermoplastic material and a plurality of optical elements or fragments thereof, to form a first molten material including the plurality of optical elements or fragments thereof dispersed therein;
  • the SC filament includes the dispersed plurality of optical elements or fragments thereof, and the dispersed plurality of optical elements or fragments thereof impart an optical effect to the SC filament.
  • Aspect 2 The method of the preceding aspect, wherein the optical element of each structurally colored article is a coating on the structurally colored article.
  • Aspect 3 The method of any one of the preceding aspects, wherein the structurally colored article is a pellet, optionally an extruded pellet.
  • Aspect 4 The method of any one of the preceding aspects, wherein the structurally colored article is a ground, crushed or shredded structurally colored article.
  • Aspect 5 The method of any one of the preceding aspects, wherein the ground, crushed or shredded structurally colored article is a film or sheet.
  • Aspect 6 The method of any one of the preceding aspects, wherein the ground, crushed or shredded structurally colored article is a ground structurally colored container, optionally a ground, crushed or shredded structurally colored bottle.
  • optical element and the fragments thereof are layered structures having two or more layers stacked in the z dimension, optionally the optical element and the fragments thereof have a width in the x dimension, a length in the y dimension and a thickness in the z dimension, wherein the
  • thickness of the plurality of optical elements the fragments thereof dispersed in the filament are less than 10 percent less than the thickness of the plurality of optical element and the fragments thereof on the structurally colored article, and optionally the width and length of the portions of the plurality of optical elements and the fragments thereof dispersed in the filament are at least 5 percent smaller than the width and length of the plurality of optical elements and the fragments thereof of the structurally colored article.
  • Aspect 8 The method of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof dispersed in the filament optionally has, independently, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; wherein the plurality of optical elements and the fragments thereof dispersed in the filament has an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; and optionally wherein the plurality of dispersed optical elements and the fragments thereof in the filament has an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300 nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers or more.
  • optical element on the structurally colored article is a structurally colored coating covering at least 25 percent or at least 50 percent or at least 75 percent of a total surface area of the structurally colored article, and optionally the portions of the plurality of optical elements the fragments thereof dispersed in the filament are a plurality of fragments formed from grinding, crushing, shredding, melting, or a combination thereof of the structurally colored article.
  • Aspect 10 The method of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof make up at least 1 percent by weight or at least 2 percent by weight or at least 5 percent by weight or at least 7 percent by weight or at least 10 percent by weight of a total weight of the filament.
  • Aspect 11 The method of any one of the preceding aspects, wherein a portion of the plurality of optical elements and the fragments thereof are not structurally deteriorated during melting, extruding, or both so that they do not impart the optical effect.
  • Aspect 12 The method of any one of the preceding aspects, wherein a portion of the plurality of optical elements and the fragments thereof are structurally deteriorated during melting, extruding, or both so that they do not impart the optical effect.
  • Aspect 13 The method of any one of the preceding aspects, wherein the method further comprises processing the structurally colored polymeric material prior to the melting, wherein optionally processing comprises grinding, shredding, cutting, or crushing.
  • Aspect 14 An article comprising, the SC filament made according to any one of aspects 1-13.
  • Aspect 15 The article of the preceding aspect, wherein the article is an article of footwear, an article of apparel, or an article of sporting equipment.
  • Aspect 16 An article, comprising a SC filament having a plurality of optical elements and the fragments thereof randomly distributed throughout the SC filament, wherein the plurality of optical elements and the fragments thereof impart an optical effect to the filament.
  • Aspect 17 The article of any one of the preceding aspects, wherein the optical effect is a structural color and is not iridescent or metallic.
  • Aspect 18 The article of any one of the preceding aspects, wherein the optical effect is an iridescent appearance.
  • Aspect 19 The article of any one of the preceding aspects, wherein the optical effect is a metallic appearance.
  • Aspect 20 The article of any one of the preceding aspects, wherein the optical element and the fragments thereof are layered structures that has two or more layers stacked in a z dimension perpendicular to the plane of the layered structures.
  • Aspect 21 The article of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof dispersed in the SC filament optionally has, individually, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; wherein the plurality of optical elements and the fragments thereof dispersed in the filament has an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; and optionally wherein the plurality of dispersed optical elements and the fragments thereof in the filament has an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300 nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers or more.
  • Aspect 22 The article of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof make up at least 1 percent by weight, or at least 2 percent by weight, or at least 5 percent by weight, or at least 7 percent by weight, or at least 10 percent by weight of a total weight of the filament.
  • Aspect 23 The article of any one of the preceding aspects, wherein the plurality of the optical elements and the fragments thereof on the SC filament covers at least 25 percent, or at least 50 percent, or at least 75 percent of a total surface area of the filament.
  • Aspect 24 The method or article of any one of the preceding aspects, wherein the optical effect is a structural color and not iridescent or metallic.
  • Aspect 25 The method or article of any one of the preceding aspects, wherein the optical effect is an iridescent appearance.
  • Aspect 26 The method or article of any one of the preceding aspects, wherein the optical effect is a metallic appearance.
  • Aspect 27 The method or article of any one of the preceding aspects, wherein the optical effect imparts two or more different hues to the filament when the filament is viewed from at least two different angles 15 degrees apart.
  • Aspect 28 The method or article of any one of the preceding aspects, wherein the optical effect imparted to the filament is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
  • Aspect 29 The method or article of any one of the preceding aspects, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
  • Aspect 30 The method or article of any one of the preceding aspects, wherein the yarn is a monofilament yarn or a multi-filament yarn.
  • Aspect 31 The method or article of any one of the preceding aspects, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament.
  • Aspect 32 The method or article of any one of the preceding aspects, wherein the filament is present in a staple yarn, a monofilament yarn, or a multifilament yarn; optionally wherein the yarn has a tenacity of about 1.5 grams per Denier to about 4.0 grams per Denier; or has tenacity of greater than 4.0 grams per Denier; or has a tenacity of about 5.0 grams per Denier to about 10 grams per Denier.
  • Aspect 33 The method or article of any one of the preceding aspects, wherein the SC filament of a staple fiber has an aspect ratio of 10 to 100,000.
  • Aspect 34 The method or article of any one of the preceding aspects, wherein the SC filament is present in the form of a textile, and optionally wherein the textile is a non-woven textile, a woven textile, a knit textile, a braided textile, or a crocheted textile.
  • Aspect 35 The method or article of any one of the preceding aspects, wherein the SC filament is attached to a substrate, optionally wherein the SC filament is stitched to or embroidered to the substrate.
  • Aspect 36 The method or article of any one of the preceding aspects, wherein the SC filament is included with a plurality of second filaments in the form of a tow.
  • Aspect 37 The method or article of any one of the preceding aspects, wherein the plurality of second filaments of the tow are substantially free of optical elements.
  • Aspect 38 The method or article of any one of the preceding aspects, wherein the plurality of second filaments of the tow comprise second optical elements imparting a second optical effect to the second filaments.
  • Aspect 39 The method or article of any one of the preceding aspects, wherein the second optical effect of the plurality of second filaments is a different type of optical effect than the optical effect of the SC filament.
  • Aspect 40 The method or article of any one of the preceding aspects, further comprising dying the SC filament, fibers comprising the SC filament, or yarn comprising the SC filament.
  • thermoplastic material comprises at least one thermoplastic polymer, optionally wherein the at least one thermoplastic polymer includes a thermoplastic elastomer.
  • Aspect 42 The method or article of any one of the preceding aspects, wherein melting includes increasing a temperature of the thermoplastic material to a first temperature at or above a melting temperature of the thermoplastic polymer.
  • Aspect 43 The method or article of any one of the preceding aspects, wherein the
  • thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyethers, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co- polymers thereof, or a combination thereof.
  • Aspect 44 The method or article of any one of the preceding aspects, wherein the optical element includes at least one optical layer.
  • Aspect 45 The method or article of any one of the preceding aspects, wherein the optical element is single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter.
  • Aspect 46 The method or article of any one of the preceding aspects, wherein the multilayer reflector has at least two layers, including at least two adjacent layers having different refractive indices.
  • Aspect 47 The method or article of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector has a thickness that is about one-fourth of the wavelength of visible light.
  • Aspect 48 The method or article of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector comprises a material selected from the group consisting of: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, and a combination thereof.
  • Aspect 49 The method or article of any one of the preceding aspects, further comprising a textured surface on a first side of the optical element.
  • Aspect 50 The method or article of any one of the preceding aspects, wherein the textured surface has a plurality of profile features and a plurality of flat areas.
  • Aspect 51 The method or article of any one of the preceding aspects, wherein the textured surface includes a plurality of profile features and flat planar areas, wherein the profile features extend above the flat areas of the textured surface.
  • Aspect 52 The method or article of any one of the preceding aspects, wherein the
  • Aspect 53 The method or article of any one of the preceding aspects, wherein the spacing among the profile features reduces distortion effects of the profile features produced from interfering with one another when imparting the structural color of the structural colored pellet.
  • Aspect 54 The method or article of any one of the preceding aspects, wherein the profile features and the flat areas result in at least one optical layer of the optical element having an undulating topography, wherein the optical layer has a planar region between neighboring depressions and/or elevations that is planar with the flat planar areas of the textured surface.
  • Aspect 55 The method or article of any one of the preceding aspects, wherein the structural color of the structurally colored pellets has the appearance of a single color or multiple colors.
  • Aspect 56 The method or article of any one of the preceding aspects, wherein the spacing among the profile features reduces distortion effects of the profile features produced from interfering with one another when imparting the structural color of the structural colored pellet.
  • the optical element or the fragments thereof exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and a 1 * and b 1 *, and a second color measurement at a second angle of observation having coordinates L 2 * and a 2 * and b 2 *, and a third color measurement at a third angle of observation having coordinates L 3 * and a 3 * and b 3 *, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the a 1 *, a 2 *, and a 3 * coordinate values may be the same or different, wherein the b1*, b2*, and b3* coordinate values may be the same or different, and wherein the range of the combined a 1 *, a 2 * and a 3
  • Aspect 57 The method or article of any one of the preceding aspects, wherein the optical element or the fragments thereof exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and a 1 * and b 1 *, and a second color measurement at a second angle of observation having coordinates L 2 * and a 2 * and b 2 *, and a third color measurement at a third angle of observation having coordinates L 3 * and a 3 * and b 3 *, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the a 1 *, a 2 *, and a 3 * coordinate values may be the same or different, wherein the b 1 *, b 2 *, and b 3 * coordinate values may be the same or different, and wherein the range of the combined b 1 *, b 2
  • Aspect 59 The method or article of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIELCH color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1* and C1* and h1°, and a second color measurement at a second angle of observation having coordinates L 2 * and C 2 * and h 2 °, and a third color measurement at a third angle of observation having coordinates L 3 * and C 3 * and h 3 °, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the C 1 *, C 2 *, and C 3 * coordinate values may be the same or different, wherein the h 1 °, h 2 ° and h 3 ° coordinate values may be the same or different, and wherein the range of the combined h 1 °, h 2 ° and h
  • Aspect 60 The method or article of one the preceding aspects, wherein the optical effect is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
  • Aspect 61 The method or article of one the preceding aspects, wherein the structural color has a single hue.
  • Aspect 62 The method or article of one the preceding aspects, wherein the structural color includes two or more hues.
  • Aspect 63 The method or article of one the preceding aspects, wherein the structural color has limited iridescence.
  • Aspect 64 The method or article of one the preceding aspects, wherein the structural color is not iridescence.
  • Aspect 65 The method or article of one the preceding aspects, wherein the structural color has limited iridescence such that, when each color visible at each possible angle of observation is assigned to a single hue selected from the group consisting of the primary, secondary and tertiary colors on the red yellow blue (RYB) color wheel, all of the assigned hues fall into a single hue group, wherein the single hue group is one of a) green-yellow, yellow, and yellow- orange; b) yellow, yellow-orange and orange; c) yellow-orange, orange, and orange-red; d) orange-red, and red-purple; e) red, red-purple, and purple; f) red-purple, purple, and purple- blue; g) purple, purple-blue, and blue; h) purple-blue, blue, and blue-green; i) blue, blue-green and green; and j) blue-green, green, and green-yellow.
  • the single hue group is one of a) green-yello
  • Aspect 66 The method or article of one the preceding aspects, wherein the structural color having limited iridescence is limited to two or three of the hues green-yellow, yellow, yellow- orange; or the hues purple-blue, blue, and blue-green; or the hues orange-red, red, and red- purple; or the hues blue-green, green, and green-yellow; or the hues yellow-orange, orange, and orange-red; or the hues red-purple, purple, and purple-blue.
  • Aspect 67 The method or article of one of the preceding aspects, wherein an article comprises the SC filament.
  • Aspect 68 The method or article of one of the preceding aspects, wherein the article or substrate is an article of footwear, an article of apparel, or an article of sporting equipment.
  • a method of forming an item comprising: processing thereof a polymer-based item comprising at least one optical element to form pieces of the polymer-based item, wherein the optical element imparts a first optical effect to the polymer-based item, wherein a portion of at least one optical element is ground or cut into fragments of the optical element, wherein a first portion of the pieces of the polymer-based item retain the characteristic to impart the first optical effect;
  • Aspect 70 The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect are the same or the first optical effect and the second optical effect are different.
  • Aspect 71 The method of any one of the preceding aspects, wherein the structurally colored articles are pellets or SC filaments.
  • Aspect 72 The method of any one of the preceding aspects, wherein the polymer-based item is a film or sheet.
  • Aspect 73 The method of any one of the preceding aspects, wherein the polymer-based item article is a container, optionally a bottle.
  • Aspect 74 The method of any one of the preceding aspects, wherein the article is an article of footwear, an article of apparel, or an article of sporting equipment
  • Aspect 75 The method of any one of the preceding aspects, wherein the optical element and the fragments thereof are layered structures having two or more layers stacked in the z dimension, optionally the optical element and the fragments thereof have a width in the x dimension, a length in the y dimension and a thickness in the z dimension, wherein the thickness of the optical elements and the fragments thereof dispersed in the structurally colored article are less than 10 percent less than the thickness of the optical element and the fragments thereof on the polymer-based item, and optionally the width and length of the portions of the optical elements and the fragments thereof dispersed in the polymer-based item are at least 5 percent smaller than the width and length of the optical element of the polymer-based item.
  • Aspect 76 Aspect 76.
  • the plurality of optical elements and the fragments thereof dispersed in the structurally colored article optionally has, independently, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; wherein the plurality of optical elements and the fragments thereof dispersed in the filament has an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; and optionally wherein the thickness of the fragments of the optical elements and the fragments thereof dispersed in the structurally colored articles are less than 10 percent less than the thickness of the optical element on the polymer-based item.
  • Aspect 77 The method of any one of the preceding aspects, wherein the plurality of fragments of the dispersed optical elements in the structurally colored article has an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300
  • nanometers or more about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers or more.
  • Aspect 78 The method of any one of the preceding aspects, further comprising extruding the second molten material with a third molten material, wherein the third molten material can comprise a thermoplastic material including one or more thermoplastic polyurethanes,
  • thermoplastic polyesters thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co- polymers thereof, or a combination thereof.
  • Aspect 79 The method of any one of the preceding aspects, wherein a portion of the optical elements and the fragments thereof are not structurally deteriorated during processing, melting, extruding, or a combination thereof.
  • Aspect 80 The method of any one of the preceding aspects, wherein a portion of the number of the fragments of the optical elements are structurally deteriorated during processing, melting, extruding, or a combination thereof.
  • Aspect 81 The method of any one of the preceding aspects, wherein processing includes grinding, cutting, shredding, crushing, or a combination.
  • Aspect 82 The method of the preceding aspect, wherein the polymer-based item is a film.
  • Aspect 83 The method of any one of the preceding aspects, wherein the film has a thickness of about 3 nanometers to about 1 millimeter.
  • Aspect 84 The method of any one of the preceding aspects, wherein the pieces of the polymer- based item have a largest dimension of about 0.05 millimeters mm to 20 millimeters.
  • Aspect 85 The method of any one of the preceding aspects, wherein the structurally colored pellets have a largest dimension of about 0.05 millimeters mm to 20 millimeters.
  • Aspect 86 The method of any one of the preceding aspects, wherein the polymer-based item comprise a thermoplastic polymer or an elastomeric material, or an elastomeric thermoplastic material.
  • thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co-polymers thereof, or a combination thereof.
  • thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co-polymers thereof, or a combination thereof.
  • first optical effect and the second optical effect are, independently, a structural color.
  • Aspect 90 The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect have, independently, an iridescent appearance.
  • Aspect 91 The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect have, independently, a metallic appearance.
  • Aspect 92 The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect, independently, impart two or more different hues when viewed from at least two different angles 15 degrees apart.
  • Aspect 93 The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect, independently, imparted is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article or item.
  • Aspect 94 The method of any one of the preceding aspects, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
  • Aspect 95 The method of any one of the preceding aspects, wherein the yarn is a
  • Aspect 96 The method of any one of the preceding aspects, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament.
  • Aspect 97 The method of any one of the preceding aspects, wherein the SC filament is present in a staple yarn, a monofilament yarn, or a multifilament yarn; optionally wherein the yarn has a tenacity of about 1.5 grams per Denier to about 4.0 grams per Denier; or has tenacity of greater than 4.0 grams per Denier; or has a tenacity of about 5.0 grams per Denier to about 10 grams per Denier.
  • Aspect 98 The method of any one of the preceding aspects, wherein the SC filament of a staple fiber has an aspect ratio of 10 to 100,000.
  • Aspect 99 The method of any one of the preceding aspects, wherein the SC filament is present in the form of a textile, and optionally wherein the textile is a non-woven textile, a woven textile, a knit textile, a braided textile, or a crocheted textile.
  • Aspect 100 The method of any one of the preceding aspects, wherein the SC filament is attached to a substrate, optionally wherein the filament is stitched to or embroidered to the substrate.
  • Aspect 101 The method of any one of the preceding aspects, wherein the SC filament is included with a plurality of second filaments in the form of a tow.
  • Aspect 102 The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow are substantially free of optical elements.
  • Aspect 103 The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow comprise second optical elements imparting a second optical effect to the second filaments.
  • Aspect 104 The method of any one of the preceding aspects, wherein the second optical effect of the plurality of second filaments is a different type of optical effect than the optical effect of the filament.
  • Aspect 105 The method of any one of the preceding aspects, further comprising dying the SC filament, fibers comprising the SC filament, or yarn comprising the SC filament.
  • thermoplastic material comprises at least one thermoplastic polymer, optionally wherein the at least one thermoplastic polymer includes a thermoplastic elastomer.
  • Aspect 107 The method of any one of the preceding aspects, wherein melting includes increasing a temperature of the thermoplastic material to a first temperature at or above a melting temperature of the thermoplastic polymer.
  • thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyethers, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co-polymers thereof, or a combination thereof.
  • Aspect 109 The method of any one of the preceding aspects, wherein the optical element includes at least one optical layer.
  • Aspect 110 The method of any one of the preceding aspects, wherein the optical element is single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter.
  • Aspect 111 The method of any one of the preceding aspects, wherein the multilayer reflector has at least two layers, including at least two adjacent layers having different refractive indices.
  • Aspect 112. The method of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector has a thickness that is about one-fourth of the wavelength of visible light.
  • Aspect 113. The method of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector comprises a material selected from the group consisting of: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, and a combination thereof.
  • Aspect 114 The method of any one of the preceding aspects, further comprising a textured surface on a first side of the optical element.
  • Aspect 115 The method of any one of the preceding aspects, wherein the textured surface has a plurality of profile features and a plurality of flat areas.
  • Aspect 116 The method of any one of the preceding aspects, wherein the textured surface includes a plurality of profile features and flat planar areas, wherein the profile features extend above the flat areas of the textured surface.
  • Aspect 117 The method of any one of the preceding aspects, wherein the dimensions of the profile features, a shape of the profile features, a spacing among the plurality of the profile features, in combination with the optical layer impart the structural color.
  • Aspect 118 The method of any one of the preceding aspects, wherein the spacing among the profile features reduces distortion effects of the profile features produced from interfering with one another when imparting the structural color of the structural colored pellet.
  • Aspect 119 The method of any one of the preceding aspects, wherein the profile features and the flat areas result in at least one optical layer of the optical element having an undulating topography, wherein the optical layer has a planar region between neighboring depressions and/or elevations that is planar with the flat planar areas of the textured surface.
  • Aspect 120 The method of any one of the preceding aspects, wherein the structural color of the structurally colored pellets has the appearance of a single color or multiple colors.
  • Aspect 121 The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and a 1 * and b 1 *, and a second color measurement at a second angle of observation having coordinates L 2 * and a 2 * and b 2 *, and a third color measurement at a third angle of observation having coordinates L3* and a3* and b3*, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the a 1 *, a 2 *, and a 3 * coordinate values may be the same or different, wherein the b 1 *, b 2 *, and b 3 * coordinate values may be the same or different, and wherein the range of the combined a 1 *, a 2 * and a 3 * values
  • Aspect 122 The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and a 1 * and b 1 *, and a second color measurement at a second angle of observation having coordinates L 2 * and a 2 * and b 2 *, and a third color measurement at a third angle of observation having coordinates L 3 * and a 3 * and b 3 *, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the a 1 *, a 2 *, and a 3 * coordinate values may be the same or different, wherein the b 1 *, b 2 *, and b 3 * coordinate values may be the same or different, and wherein the range of the combined b 1 *, b 2 * and b 3 * values
  • Aspect 124 The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIELCH color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L 1 * and C 1 * and h 1 °, and a second color measurement at a second angle of observation having coordinates L 2 * and C 2 * and h 2 °, and a third color measurement at a third angle of observation having coordinates L 3 * and C 3 * and h 3 °, wherein the L 1 *, L 2 *, and L 3 * values may be the same or different, wherein the C 1 *, C 2 *, and C 3 * coordinate values may be the same or different, wherein the h 1 °, h 2 ° and h 3 ° coordinate values may be the same or different, and wherein the range of the combined h 1 °, h 2 ° and h 3
  • Aspect 125 The method of one the preceding aspects, wherein the structural color is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
  • Aspect 126 The method of one the preceding aspects, wherein the structural color has a single hue.
  • Aspect 127 The method of one the preceding aspects, wherein the structural color includes two or more hues.
  • Aspect 128 The method of one the preceding aspects, wherein the structural color has limited iridescence.
  • Aspect 129 The method of one the preceding aspects, wherein the structural color is not iridescence.
  • Aspect 130 The method of one the preceding aspects, wherein the structural color has limited iridescence such that, when each color visible at each possible angle of observation is assigned to a single hue selected from the group consisting of the primary, secondary and tertiary colors on the red yellow blue (RYB) color wheel, all of the assigned hues fall into a single hue group, wherein the single hue group is one of a) green-yellow, yellow, and yellow- orange; b) yellow, yellow-orange and orange; c) yellow-orange, orange, and orange-red; d) orange-red, and red-purple; e) red, red-purple, and purple; f) red-purple, purple, and purple- blue; g) purple, purple-blue, and blue; h) purple-blue, blue, and blue-green; i) blue, blue-green and green; and j) blue-green, green, and green-yellow.
  • the single hue group is one of a) green-yellow,
  • Aspect 131 The method of one the preceding aspects, wherein the structural color having limited iridescence is limited to two or three of the hues green-yellow, yellow, yellow-orange; or the hues purple-blue, blue, and blue-green; or the hues orange-red, red, and red-purple; or the hues blue-green, green, and green-yellow; or the hues yellow-orange, orange, and orange-red; or the hues red-purple, purple, and purple-blue.
  • Aspect 132 The method of one of the preceding aspects, wherein an article comprises the SC filament.
  • Aspect 133 The method of one of the preceding aspects, wherein the article or substrate is an article of footwear, an article of apparel, or an article of sporting equipment.
  • a method of forming structurally colored item comprising:
  • Aspect 135. The method of any one of the preceding aspects, wherein the optical effect is a structural color and not iridescent or metallic.
  • Aspect 136 The method of any one of the preceding aspects, wherein the optical effect is an iridescent appearance.
  • Aspect 137 The method of any one of the preceding aspects, wherein the optical effect is a metallic appearance.
  • Aspect 138 The method of any one of the preceding aspects, wherein the optical effect imparts two or more different hues to the filament when the filament is viewed from at least two different angles 15 degrees apart.
  • Aspect 139 The method of any one of the preceding aspects, wherein the optical effect imparted to the filament is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
  • Aspect 140 The method of any one of the preceding aspects, wherein the structurally colored item is a SC filament.
  • Aspect 141 The method of any one of the preceding aspects, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
  • Aspect 142 The method of any one of the preceding aspects, wherein the yarn is a monofilament yarn or a multi-filament yarn.
  • Aspect 143 The method of any one of the preceding aspects, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament.
  • Aspect 144 The method of any one of the preceding aspects, wherein the SC filament is present in a staple yarn, a monofilament yarn, or a multifilament yarn; optionally wherein the yarn has a tenacity of about 1.5 grams per Denier to about 4.0 grams per Denier; or has tenacity of greater than 4.0 grams per Denier; or has a tenacity of about 5.0 grams per Denier to about 10 grams per Denier.
  • Aspect 145 The method of any one of the preceding aspects, wherein the SC filament of a staple fiber has an aspect ratio of 10 to 100,000.
  • Aspect 146 The method of any one of the preceding aspects, wherein the SC filament is present in the form of a textile, and optionally wherein the textile is a non-woven textile, a woven textile, a knit textile, a braided textile, or a crocheted textile.
  • Aspect 147 The method of any one of the preceding aspects, wherein the SC filament is attached to a substrate, optionally wherein the SC filament is stitched to or embroidered to the substrate.
  • Aspect 148 The method of any one of the preceding aspects, wherein the SC filament is included with a plurality of second filaments in the form of a tow.
  • Aspect 149 The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow are substantially free of optical elements.
  • Aspect 150 The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow comprise second optical elements imparting a second optical effect to the second filaments.
  • Aspect 151 The method of any one of the preceding aspects, wherein the second optical effect of the plurality of second filaments is a different type of optical effect than the optical effect of the filament.
  • Aspect 152 The method of any one of the preceding aspects, further comprising dying the SC filament, fibers comprising the filament, or yarn comprising the SC filament.
  • Aspect 153 The method of any one of the preceding aspects, wherein the features described in aspects 41-68 also describe features of aspects 134-153.
  • Aspect 154 The article and/or method of any of the preceding aspects, wherein the profile feature has at least one dimension greater than 500 micrometers and optionally greater than about 600 micrometers.
  • Aspect 155 The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is greater than 500 micrometers or optionally both the length and the width of the profile feature is greater than 500 micrometers.
  • Aspect 156 The article and/or method of any of the preceding aspects, wherein the height of the profile features can be greater than 50 micrometers or optionally greater than about 60 micrometers.
  • Aspect 157 The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is less than 500 micrometers or both the length and the width of the profile feature is less than 500 micrometers, while the height is greater than 50 micrometers.
  • Aspect 158. The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is greater than 500 micrometers or both the length and the width of the profile feature is greater than 500 micrometers, while the height is greater than 50 micrometers.
  • Aspect 159 The article and/or method of any of the preceding aspects, wherein at least one of the dimensions of the profile feature is in the nanometer range, while at least one other dimension is in the micrometer range.
  • Aspect 160 The article and/or method of any of the preceding aspects, wherein the nanometer range is about 10 nanometers to about 1000 nanometers, while the micrometer range is about 5 micrometers to 500 micrometers.
  • Aspect 161 The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is in the nanometer range, while the other of the length and the width of the profile feature is in the micrometer range.
  • Aspect 162 The article and/or method of any of the preceding aspects, wherein height of the profile features is greater than 250 nanometers.
  • Aspect 163 The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is in the nanometer range and the other in the micrometer range, where the height is greater than 250 nanometers.
  • Aspect 164 The article and/or method of any of the preceding aspects, wherein spatial orientation of the profile features is periodic.
  • Aspect 165 The article and/or method of any of the preceding aspects, wherein spatial orientation of the profile features is a semi-random pattern or a set pattern.
  • Aspect 166 The article and/or method of any of the preceding aspects, wherein the surface of the layers of the inorganic optical element are a substantially three-dimensional flat planar surface or a three-dimensional flat planar surface.
  • Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of material science, chemistry, textiles, polymer chemistry, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
  • the present disclosure provides for SC filaments and methods of making SC filaments.
  • the SC filament can include a plurality of optical elements that impart an optical effect such as a color, a metallic appearance, or an iridescent appearance as a result of structural color effects.
  • the optical elements or fragments of the optical elements are randomly dispersed throughout and on the surface of the SC filament so that the optical effect is imparted to the SC filament to produce an aesthetically appealing appearance.
  • the optical effect can be done without requiring the use of inks or pigments and the environmental impact associated with their use, while in other situations ink and/or pigments can be used in combination with the optical elements or fragments thereof.
  • Scattering, refraction, reflection, interference, and/or diffraction of visible wavelengths of light by the optical elements and/or fragments thereof can produce the optical effect such as structural color (e.g., hues of blue, green, red, yellow, and the like), where two types of the structural color can be the iridescent or metallic appearance.
  • structural color e.g., hues of blue, green, red, yellow, and the like
  • the SC filament can be included in yarns and fibers.
  • the SC filaments, fibers, and yarns can be included in a textile.
  • A“textile” may be defined as any material manufactured from fibers, filaments, or yarns (e.g., SC or other type) characterized by flexibility, fineness, and a high ratio of length to thickness. Textiles generally fall into two categories. The first category includes textiles produced directly from webs of filaments (e.g., SC or other type) or fibers (e.g., SC filament based or other type) by randomly interlocking to construct non-woven fabrics and felts.
  • the second category includes textiles formed through a mechanical manipulation of yarn (e.g., SC filament based or other type), thereby producing a woven fabric, a knitted fabric, a braided fabric, a crocheted fabric, and the like (e.g., including the SC filament).
  • the yarns, fibers, and articles of manufacture can include one or more SC filaments (the same or different types of SC filaments) as well as other types of filaments, fibers, and yarns.
  • SC filaments the same or different types of SC filaments
  • each reference to fiber, yarn, and article of manufacture may not list that it includes a SC filament and it will be understood that each reference to fiber, yarn, and article of manufacture can include one or more SC filaments even if that is not expressly stated unless it is otherwise evident that a SC filament is intended to be excluded.
  • the terms“filament,”“fiber,” or“fibers” refer to materials that are in the form of discrete elongated pieces that are significantly longer than they are wide.
  • the fibers can have an indefinite length and can be cut to form staple SC fibers of relatively uniform length.
  • the SC staple fiber can have a have a length of about 1 millimeter to 100 centimeters or more as well as any increment therein (e.g., 1 millimeter increments).
  • the SC fiber can have any of a variety of cross-sectional shapes similar to those described in connection with other fibers described herein.
  • a fiber can be a multi-component fiber, such as one comprising two or more co-extruded polymeric materials (e.g., one including the optical elements or fragments thereof).
  • a plurality of SC fibers includes 2 to hundreds or thousands or more SC fibers (the same or different types) or other types of fibers.
  • the plurality of fibers can be in the form of bundles of strands of fibers, referred to as tows, or in the form of relatively aligned staple fibers referred to as sliver and roving.
  • the term“yarn” refers to an assembly formed of one or more SC fibers (the same or different types) or other types of fibers, wherein the strand has a substantial length and a relatively small cross-section, and is suitable for use in the production of textiles by hand or by machine, including textiles made using weaving, knitting, crocheting, braiding, sewing, embroidery, or ropemaking techniques.
  • Thread is a type of yarn commonly used for sewing. Two or more yarns can be combined, for example, to form composite yarns such as single- or double-covered yarns, and corespun yarns. Accordingly, yarns may have a variety of configurations that generally conform to the descriptions provided herein.
  • Such techniques include, for example, interweaving, intertwining and twisting, and interlooping.
  • Interweaving is the intersection of two yarns that cross and interweave at right angles to each other.
  • the textile can be a nonwoven textile.
  • a nonwoven textile or fabric is a sheet or web structure made from fibers and/or yarns that are bonded together. Additional details regarding filaments, fibers, and yarns is provided below.
  • the SC filaments and yarns or fibers thereof can be incorporated into articles of manufacture such as an article of footwear, an article of apparel, or an article of sporting equipment or components of any of these.
  • the article of manufacture can include footwear, apparel (e.g., shirts, jerseys, pants, shorts, gloves, glasses, socks, hats, caps, jackets, undergarments), containers (e.g., backpacks, bags), and upholstery for furniture (e.g., chairs, couches, car seats), bed coverings (e.g., sheets, blankets), table coverings, towels, flags, tents, sails, and parachutes, or components of any one of these.
  • apparel e.g., shirts, jerseys, pants, shorts, gloves, glasses, socks, hats, caps, jackets, undergarments
  • containers e.g., backpacks, bags
  • upholstery for furniture e.g., chairs, couches, car seats
  • bed coverings e.g., sheets, blankets
  • table coverings towels, flags
  • the component including the SC filaments and yarns or fibers thereof can be used with or disposed on textiles or other items such as striking devices (e.g., bats, rackets, sticks, mallets, golf clubs, paddles, etc.), athletic equipment (e.g., golf bags, baseball and football gloves, soccer ball restriction structures), protective equipment (e.g., pads, helmets, guards, visors, masks, goggles, etc.), locomotive equipment (e.g., bicycles, motorcycles, skateboards, cars, trucks, boats, surfboards, skis, snowboards, etc.), balls or pucks for use in various sports, fishing or hunting equipment, furniture, electronic equipment, construction materials, eyewear, timepieces, jewelry, and the like.
  • striking devices e.g., bats, rackets, sticks, mallets, golf clubs, paddles, etc.
  • athletic equipment e.g., golf bags, baseball and football gloves, soccer ball restriction structures
  • protective equipment e.g., pads, helmets, guards,
  • the article can be an article of footwear.
  • the article of footwear can be designed for a variety of uses, such as sporting, athletic, military, work-related, recreational, or casual use.
  • the article of footwear is intended for outdoor use on unpaved surfaces (in part or in whole), such as on a ground surface including one or more of grass, turf, gravel, sand, dirt, clay, mud, pavement, and the like, whether as an athletic performance surface or as a general outdoor surface.
  • the article of footwear may also be desirable for indoor applications, such as indoor sports including dirt playing surfaces for example (e.g., indoor baseball fields with dirt infields).
  • the article of footwear can be designed for use in indoor or outdoor sporting activities, such as global football/soccer, golf, American football, rugby, baseball, running, track and field, cycling (e.g., road cycling and mountain biking), and the like.
  • the article of footwear can optionally include traction elements (e.g., lugs, cleats, studs, and spikes as well as tread patterns) to provide traction on soft and slippery surfaces, where articles of the present disclosure can be used or applied between or among the traction elements and optionally on the sides of the traction elements but on the surface of the traction element that contacts the ground or surface.
  • traction elements e.g., lugs, cleats, studs, and spikes as well as tread patterns
  • Cleats, studs and spikes are commonly included in footwear designed for use in sports such as global football/soccer, golf, American football, rugby, baseball, and the like, which are frequently played on unpaved surfaces. Lugs and/or exaggerated tread patterns are commonly included in footwear including boots design for use under rugged outdoor conditions, such as trail running, hiking, and military use.
  • the article can be an article of apparel (i.e., a garment).
  • the article of apparel can be an article of apparel designed for athletic or leisure activities.
  • the article of apparel can be an article of apparel designed to provide protection from the elements (e.g., wind and/or rain), or from impacts.
  • the article can be an article of sporting equipment.
  • the article of sporting equipment can be designed for use in indoor or outdoor sporting activities, such as global football/soccer, golf, American football, rugby, baseball, running, track and field, cycling (e.g., road cycling and mountain biking), and the like.
  • Figures 1A-M illustrate articles of manufacture that include the SC filaments or fibers and/or yarns thereof of the present disclosure.
  • the SC filaments and fibers or and/or yarns thereof are represented by hashed areas 12A’/12M’-12A”/12M”.
  • the location of the SC filaments and fibers or and/or yarns thereof are provided only to indicate one possible area that the SC filaments or fibers or and/or yarns thereof can be located.
  • two locations are illustrated in the figures, but this is done only for illustration purposes as the articles can include one or a plurality of areas for the SC filaments and fibers or and/or yarns thereof, where the size and location can be determined based on the article of manufacture.
  • the SC filaments or fibers and/or yarns thereof located on each article of manufacture can represent a number, letter, symbol, design, emblem, graphic mark, icon, logo, or the like.
  • Figures 1N(a) and 1N(b) illustrate a perspective view and a side view of an article of footwear 100 that include a sole structure 104 and an upper 102.
  • the structure including the SC filaments or fibers and/or yarns thereof is represented by 122a and 122b.
  • the sole structure 104 is secured to the upper 102 and extends between the foot and the ground when the article of footwear 100 is worn.
  • the primary elements of the sole structure 104 are a midsole 114 and an outsole 112.
  • the midsole 114 is secured to a lower area of the upper 102 and may be formed of a polymer foam or another appropriate material.
  • the midsole 114 can incorporate fluid-filled chambers, plates, moderators, and/or other elements that further attenuate forces, enhance stability, or influence motions of the foot.
  • the outsole 112 is secured to a lower surface of the midsole 114 and may be formed from a wear-resistant rubber material that is textured to impart traction, for example.
  • the upper 102 can be formed from various elements (e.g., lace, tongue, collar) that combine to provide a structure for securely and comfortably receiving a foot. Although the configuration of the upper 102 may vary significantly, the various elements generally define a void within the upper 102 for receiving and securing the foot relative to sole structure 104.
  • the upper 102 can be made of one or more materials such as textiles, a polymer foam, leather, synthetic leather, and the like that are stitched or bonded together.
  • this configuration for the sole structure 104 and the upper 102 provides an example of a sole structure that may be used in connection with an upper, a variety of other conventional or nonconventional configurations for the sole structure 104 and/or the upper 102 can also be utilized. Accordingly, the configuration and features of the sole structure 104 and/or the upper 102 can vary considerably.
  • Figures 1O(a) and 1O(b) illustrate a perspective view and a side view of an article of footwear 130 that include a sole structure 134 and an upper 132.
  • the structure including the SC filaments or fibers and/or yarns thereof is represented by 136a and 136b/136b’.
  • the sole structure 134 is secured to the upper 132 and extends between the foot and the ground when the article of footwear 130 is worn.
  • the upper 132 can be formed from various elements (e.g., lace, tongue, collar) that combine to provide a structure for securely and comfortably receiving a foot. Although the configuration of the upper 132 may vary significantly, the various elements generally define a void within the upper 132 for receiving and securing the foot relative to the sole structure 134.
  • the upper 132 can be made of one or more materials such as textiles including natural and synthetic leathers, molded polymeric components, polymer foam and the like that are stitched or bonded together.
  • the primary elements of the sole structure 134 are a forefoot component 142, a heel component 144, and an outsole 146.
  • Each of the forefoot component 142 and the heel component 144 are directly or indirectly secured to a lower area of the upper 132 and formed from a polymer material that encloses a fluid, which may be a gas, liquid, or gel.
  • a fluid which may be a gas, liquid, or gel.
  • the forefoot component 142 and the heel component 144 compress between the foot and the ground, thereby attenuating ground reaction forces. That is, the forefoot component 142 and the heel component 144 are inflated and may be pressurized with the fluid to cushion the foot.
  • the outsole 146 is secured to lower areas of the forefoot component 142 and the heel component 144 and may be formed from a wear-resistant rubber material that is textured to impart traction.
  • the forefoot component 142 can be made of one or more polymers (e.g., layers of one or more polymers films) that form a plurality of chambers that includes a fluid such as a gas.
  • the plurality of chambers can be independent or fluidically interconnected.
  • the heel component 144 can be made of one or more polymers (e.g., layers of one or more polymers films) that form a plurality of chambers that includes a fluid such as a gas and can also be independent or fluidically interconnected.
  • the sole structure 134 may include a foam layer, for example, that extends between the upper 132 and one or both of the forefoot component 142 and the heel component 144, or a foam element may be located within indentations in the lower areas of the forefoot component 142 and the heel component 144.
  • the sole structure 132 may incorporate plates, moderators, lasting elements, or motion control members that further attenuate forces, enhance stability, or influence the motions of the foot, for example.
  • the depicted configuration for the sole structure 134 and the upper 132 provides an example of a sole structure that may be used in connection with an upper, a variety of other conventional or nonconventional configurations for the sole structure 134 and/or the upper 132 can also be utilized. Accordingly, the configuration and features of the sole structure 134 and/or the upper 132 can vary considerably.
  • Figure 1O(c) is a cross-sectional view of A-A that depicts the upper 132 and the heel component 144.
  • the SC filaments or fibers and/or yarns thereof 136b can be disposed on the outside wall of the heel component 144 or alternatively or optionally the SC filaments or fibers and/or yarns thereof 136b’ can be disposed on the inside wall of the heel component 144.
  • Figures 1P(a) and 1P(b) illustrate a perspective view and a side view of an article of footwear 160 that includes traction elements 168.
  • the structure including the SC filaments or fibers and/or yarns thereof is represented by 172a and 172b.
  • the article of footwear 160 includes an upper 162 and a sole structure 164, where the upper 162 is secured to the sole structure 164.
  • the sole structure 164 can include one or more of a toe plate 166a, a mid-plate 166b, and a heel plate 166c.
  • the plate can include one or more traction elements 168, or the traction elements can be applied directly to a ground-facing surface of the article of footwear.
  • the traction elements 168 are cleats, but the traction elements can include lugs, cleats, studs, and spikes as well as tread patterns to provide traction on soft and slippery surfaces.
  • the cleats, studs and spikes are commonly included in footwear designed for use in sports such as global football/soccer, golf, American football, rugby, baseball, and the like, while lugs and/or exaggerated tread patterns are commonly included in footwear (not shown) including boots design for use under rugged outdoor conditions, such as trail running, hiking, and military use.
  • the sole structure 164 is secured to the upper 162 and extends between the foot and the ground when the article of footwear 160 is worn.
  • the upper 162 can be formed from various elements (e.g., lace, tongue, collar) that combine to provide a structure for securely and comfortably receiving a foot. Although the configuration of the upper 162 may vary significantly, the various elements generally define a void within the upper 162 for receiving and securing the foot relative to the sole structure 164. Surfaces of the void within upper 162 are shaped to accommodate the foot and extend over the instep and toe areas of the foot, along the medial and lateral sides of the foot, under the foot, and around the heel area of the foot.
  • the upper 162 can be made of one or more materials such as textiles including natural and synthetic leathers, molded polymeric components, a polymer foam, and the like that are stitched or bonded together.
  • the sole structure 164 may incorporate foam, one or more fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot.
  • foam one or more fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot.
  • the depicted configuration for the sole structure 164 and the upper 162 provides an example of a sole structure that may be used in connection with an upper, a variety of other conventional or nonconventional configurations for the sole structure 164 and/or the upper 162 can also be utilized. Accordingly, the configuration and features of the sole structure 164 and/or the upper 162 can vary considerably.
  • SC filaments or fibers and/or yarns thereof and articles of manufacture made thereof of the present disclosure include the optical element or fragments of the optical element, where each can have the characteristic of imparting optical effects including structural color (e.g., single color, multicolor, iridescent, metallic).
  • the optical element can include at least one optical layer (e.g., a single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter) optionally having a textured surface (e.g., integral to the optical element or as part of the surface of the article), optionally with a protective layer, or optionally with any combination of the textured surface and the protective layer.
  • Optical elements or fragments of the optical element on the surface of the filaments cause the article filament, fiber, yarn, or article of manufacture to appear to be colored (i.e., to have a new, different color (e.g., a color which differs in hue or iridescence or as otherwise described herein) than the color the surface of the article without the optical element or fragments thereof) without the application of additional pigments or dyes to the article.
  • pigments and/or dyes can be used in conjunction with the optical element to produce aesthetically pleasing effects.
  • the SC filament can be produced by melting a plurality of structurally colored articles and then extruding the molten material to form the SC filament. Melting can be accomplished by bringing the structurally colored articles to a temperature and/or pressure to cause the material to melt, for example to a temperature at or above the melting point of the material (e.g., thermoplastic polymer). Extruding can be accomplished using an extruder such as a single screw or multi-screw extruder.
  • the structurally colored article can include a thermoplastic material and a plurality of the optical elements.
  • the structurally colored article can include pellets, films, sheets, and articles as well as extruded versions of each, where each has one or more optical elements.
  • the SC filament can include intact optical elements as originally produced and/or fragments of the optical elements. Despite being processed (e.g., extruding, grinding, cutting, shredding, crushing, or a combination thereof), a portion of the optical elements and/or the fragments of the optical elements are not deteriorated and can impart the optical effect to the filament. Another portion of the optical elements and/or the fragments thereof are deteriorated and cannot impart the optical effect to the filament.
  • the plurality of optical elements and the fragments thereof can make up at least 1 percent by weight, or at least 2 percent by weight, or at least 5 percent by weight, or at least 7 percent by weight, or at least 10 percent by weight of a total weight of the filament.
  • the structurally colored articles can be formed by disposing (e.g., affixing, attaching, adhering, bonding, joining) the optical element directly onto an article in a manner as described herein.
  • the structurally colored articles can be formed by processing (e.g., grinding, cutting, shredding, crushing, extruding, or a combination thereof) a polymer-based item that includes a thermoplastic material and at least one optical element.
  • the polymer-based item can include pellets, films, sheets, and articles, each having the optical structure.
  • a portion of the optical elements are unchanged while another portion of the optical elements form fragments thereof, where all or some of the optical elements or fragments of the optical elements retain the characteristic to impart the optical effect.
  • the pieces of the polymer-based item formed from the processing can be melted to form a molten material, which can then be extruded to form the structurally colored articles.
  • the optical elements and/or fragments of one or more optical elements from the processing step can also form other fragments of one or more optical elements during the extrusion process.
  • the optical element and/or fragments of optical element impart the optical effect to the structurally colored articles.
  • the optical effect before and after processing and/or extrusion may be the same or different. For example, prior to one or more of the processing steps, the optical effect a structure color of blue and after processing the optical effect impart is iridescent appearance or metallic appearance.
  • the optical element on the structurally colored article can be a structurally colored coating covering at least 25 percent, or at least 50 percent, or at least 75 percent of a total surface area of the structurally colored article.
  • the structural color can include one of a number of colors.
  • The“color” of SC filaments or fibers and/or yarns thereof and article of manufacture as perceived by a viewer can differ from the actual color of the article, as the color perceived by a viewer is determined by the actual color of the article by the presence of optical elements which may absorb, refract, interfere with, or otherwise alter light reflected by the article, by the viewer’s ability to detect the wavelengths of light reflected by the article, by the wavelengths of light used to illuminate the article, as well as other factors such as the coloration of the environment of the article, and the type of incident light (e.g., sunlight, fluorescent light, and the like).
  • the color of an object as perceived by a viewer can differ from the actual color of the article.
  • Structural color is color which is produced, at least in part, by microscopically structured surfaces that interfere with visible light contacting the surface.
  • the structural color is color caused by physical phenomena including the scattering, refraction, reflection, interference, and/or diffraction of light, unlike color caused by the absorption or emission of visible light through coloring matters.
  • optical phenomena which impart structural color can include multilayer interference, thin-film interference, refraction, dispersion, light scattering, Mie scattering, diffraction, and diffraction grating.
  • structural color imparted to an article can be visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
  • the structural color can be iridescent or metallic.
  • structural color is produced, at least in part, by the optical element, as opposed to the color being produced solely by pigments and/or dyes.
  • the coloration of a structurally-colored article e.g., the SC filament or fiber or an article including the SC filament(s) or fiber(s)
  • structural color can be due solely to structural color (i.e., the article, a colored portion of the article, or a colored outer layer of the article can be substantially free of pigments and/or dyes).
  • Structural color can also be used in combination with pigments and/or dyes, for example, to alter all or a portion of a structural color.
  • “Hue” is commonly used to describe the property of color which is discernible based on a dominant wavelength of visible light, and is often described using terms such as magenta, red, orange, yellow, green, cyan, blue, indigo, violet, etc. or can be described in relation (e.g., as similar or dissimilar) to one of these.
  • the hue of a color is generally considered to be independent of the intensity or lightness of the color.
  • the properties of color include hue, value (lightness) and chroma (color purity). Particular hues are commonly associated with particular ranges of wavelengths in the visible spectrum:
  • wavelengths in the range of about 700 to 635 nanometers are associated with red
  • the range of about 635 to 590 nanometers is associated with orange
  • the range of about 590 to 560 nanometers is associated with yellow
  • the range of about 560 to 520 nanometers is associated with green
  • the range of about 520 to 490 nanometers is associated with cyan
  • the range of about 490 nanometers to 450 nanometers is associated with blue
  • the range of about 450 to 400 nanometers is associated with violet.
  • the color (including the hue) of an article as perceived by a viewer can differ from the actual color of the article.
  • the color as perceived by a viewer depends not only on the physics of the article, but also its environment, and the characteristics of the perceiving eye and brain. For example, as the color perceived by a viewer is determined by the actual color of the article (e.g., the color of the light leaving the surface of the article), by the viewer’s ability to detect the wavelengths of light reflected or emitted by the article, by the wavelengths of light used to illuminate the article, as well as other factors such as the coloration of the environment of the article, and the type of incident light (e.g., sunlight, fluorescent light, and the like). As a result, the color of an object as perceived by a viewer can differ from the actual color of the article.
  • a structurally-colored article i.e., an article that has been structurally colored by incorporating an optical element or fragments thereof into the article, based on the wavelengths of light the structurally-colored portion of the article absorbs and reflects (e.g., linearly and non-linearly). While the optical element or fragments thereof may impart a first structural color, the presence of an optional textured surface can alter the structural color. Other factors such as coatings or transparent elements may further alter the perceived structural color.
  • the hue of the structurally colored article can include any of the hues described herein as well as any other hues or combination of hues.
  • the structural color can be referred to as a“single hue” (i.e., the hue remains substantially the same, regardless of the angle of observation and/or illumination), or “multihued” (i.e., the hue varies depending upon the angle of observation and/or illumination).
  • the multihued structural color can be iridescent (i.e., the hue changes gradually over two or more hues as the angle of observation or illumination changes).
  • the hue of an iridescent multihued structural color can change gradually across all the hues in the visible spectrum (e.g., like a“rainbow”) as the angle of observation or illumination changes.
  • the hue of an iridescent multihued structural color can change gradually across a limited number of hues in the visible spectrum as the angle of observation or illumination changes, in other words, one or more hues in the visible spectrum (e.g., red, orange, yellow, etc.) are not observed in the structural color as the angle of observation or illumination changes. Only one hue, or substantially one hue, in the visible spectrum may be present for a single-hued structural color.
  • the hue of a multihued structural color can change more abruptly between a limited number of hues (e.g., between 2-8 hues, or between 2-4 hues, or between 2 hues) as the angle of observation or illumination changes.
  • the structural color can be a multi-hued structural color in which two or more hues are imparted by the structural color.
  • the structural color can be iridescent multi-hued structural color in which the hue of the structural color varies over a wide number of hues (e.g., 4, 5, 6, 7, 8 or more hues) when viewed at a single viewing angle, or when viewed from two or more different viewing angles that are at least 15 degrees apart from each other.
  • hues e.g. 4, 5, 6, 7, 8 or more hues
  • the structural color can be limited iridescent multi-hue structural color in which the hue of the structural color varies, or varies substantially (e.g., about 90 percent, about 95 percent, or about 99 percent) over a limited number of hues (e.g., 2 hues, or 3 hues) when viewed from two or more different viewing angles that are at least 15 degrees apart from each other.
  • hues e.g., 2 hues, or 3 hues
  • a structural color having limited iridescence is limited to two, three or four hues selected from the RYB primary colors of red, yellow and blue, optionally the RYB primary and secondary colors of red, yellow, blue, green, orange and purple, or optionally the RYB primary, secondary and tertiary colors of red, yellow, blue, green, orange purple, green-yellow, yellow- orange, orange-red, red-purple, purple-blue, and blue-green.
  • the structural color can be single-hue angle-independent structural color in which the hue, the hue and value, or the hue, value and chroma of the structural color is independent of or substantially (e.g., about 90 percent, about 95 percent, or about 99 percent) independent of the angle of observation.
  • the single-hue angle-independent structural color can display the same hue or substantially the same hue when viewed from at least 3 different angles that are at least 15 degrees apart from each other (e.g., single-hue structural color).
  • the structural color imparted can be a structural color having limited iridescence such that, when each color observed at each possible angle of observation is assigned to a single hue selected from the group consisting of the primary, secondary and tertiary colors on the red yellow blue (RYB) color wheel, for a single structural color, all of the assigned hues fall into a single hue group, wherein the single hue group is one of a) green-yellow, yellow, and yellow- orange; b) yellow, yellow-orange and orange; c) yellow-orange, orange, and orange-red; d) orange-red, and red-purple; e) red, red-purple, and purple; f) red-purple, purple, and purple- blue; g) purple, purple-blue, and blue; h) purple-blue, blue, and blue-green; i) blue, blue-green and green; and j) blue-green, green, and green-yellow.
  • the single hue group is one of a) green-yello
  • the hue (or the hue and the value, or the hue, value and chroma) imparted by the structural color varies depending upon the angle at which the structural color is observed, but the hues of each of the different colors viewed at the various angles of observations varies over a limited number of possible hues.
  • the hue visible at each angle of observation can be assigned to a single primary, secondary or tertiary hue on the red yellow blue (RYB) color wheel (i.e., the group of hues consisting of red, yellow, blue, green, orange purple, green-yellow, yellow-orange, orange-red, red-purple, purple-blue, and blue-green).
  • the list of assigned hues includes no more than one, two, or three hues selected from the list of RYB primary, secondary and tertiary hues.
  • all of the assigned hues fall into a single hue group selected from hue groups a)-j), each of which include three adjacent hues on the RYB primary, secondary and tertiary color wheel.
  • all of the assigned hues can be a single hue within hue group h) (e.g., blue), or some of the assigned hues can represent two hues in hue group h) (e.g., purple-blue and blue), or can represent three hues in hue group h) (e.g., purple-blue, blue, and blue-green).
  • the structural color can have a matte appearance, a glossy appearance, or a metallic appearance, or a combination thereof.
  • the color (including hue) of a structurally-colored article can vary depending upon the angle at which the structurally-colored article is observed or illuminated. The hue or hues of an article can be determined by observing the article, or illuminating the article, at a variety of angles using constant lighting conditions.
  • the“angle” of illumination or viewing is the angle measured from an axis or plane that is orthogonal to the surface.
  • the viewing or illuminating angles can be set between about 0 and 180 degrees.
  • the viewing or illuminating angles can be set at 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees and the color can be measured using a colorimeter or
  • spectrophotometer e.g., Konica Minolta
  • the viewing or illuminating angles can be set at 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 90 degrees, 105 degrees, 120 degrees, 135 degrees, 150 degrees, 165 degrees, 180 degrees, 195 degrees, 210 degrees, 225 degrees, 240 degrees, 255 degrees, 270 degrees, 285 degrees, 300 degrees, 315 degrees, 330 degrees, and 345 degrees and the color can be measured using a colorimeter or spectrophotometer.
  • the hues measured for article consisted of“blue” at three of the measurement angles,“blue-green” at 2 of the measurement angles and“purple” at one of the measurement angles.
  • the color (including hue, value and/or chroma) of a structurally- colored article does not change substantially, if at all, depending upon the angle at which the article is observed or illuminated.
  • the structural color can be an angle- independent structural color in that the hue, the hue and value, or the hue, value and chroma observed is substantially independent or is independent of the angle of observation.
  • L*a*b* color space where, for a given illumination condition, L* is a value for lightness, and a* and b* are values for color-opponent dimensions based on the CIE coordinates (CIE 1976 color space or CIELAB).
  • CIE 1976 color space CIE 1976 color space
  • a structurally-colored article having structural color can be considered as having a“single” color when the change in color measured for the article is within about 10% or within about 5% of the total scale of the a* or b* coordinate of the L*a*b* scale (CIE 1976 color space) at three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
  • colors which, when measured and assigned values in the L*a*b* system that differ by at least 5 percent of the scale of the a* and b* coordinates, or by at least 10 percent of the scale of the a* and b* coordinates, are considered to be different colors.
  • the structurally-colored article can have a change of less than about 40%, or less than about 30%, or less than about 20%, or less than about 10%, of the total scale of the a* coordinate or b* coordinate of the L*a*b* scale (CIE 1976 color space) at three or more measured observation or illumination angles.
  • a change in color between two measurements in the CIELAB space can be determined mathematically. For example, a first measurement has coordinates L 1 *, a 1 * and b 1 *, and a second measurement has coordinates L 2 *, a 2 * and b 2 *.
  • a structurally colored article having structural color can be considered as having a two colors when the DE* ab of about 3 to 60, or about 3 to 50, or about 3 to 40, or about 3 to 30, between three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
  • the structurally-colored article can have a DE* ab that is about 3 to about 100, or about 3 to about 80, or about 3 to about 60, between two or more measured observation or illumination angles.
  • a structurally colored article having structural color can be considered as having a single color when the DE* ab of about 1 to 3, or about 1 to 2.5, or about 1 to 2.2, between three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
  • a structurally colored article having structural color can be considered as having a single color where the DE* ab of about 1 to 3, or about 1 to 2.5, or about 1 to 2.2, between two or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
  • a color scale is the CIELCH color space, where, for a given illumination condition, L* is a value for lightness, C* is a value for chroma, and h° denotes a hue as an angular measurement.
  • a structurally-colored article having structural color can be considered as having a“single” color when the color measured for the article is less than 10 degrees different or less than 5 degrees different at the h° angular coordinate of the CIELCH color space, at three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
  • colors which, when measured and assigned values in the CIELCH system that vary by at least 45 degrees in the h° measurements, are considered to be different colors.
  • the structurally-colored article can have a change of 10 to about 60 degrees, 10 to about 50 degrees, or 10 to about 40 degrees, 10 to about 30 degrees, or 10 to about 20 degrees, in the h° measurements of the CIELCH system at three or more measured observation or illumination angles.
  • the structurally-colored article can have a change of about 1 to 10 degrees, about 1 to 7.5 degrees, or 1 to about 2 degrees, in the h° measurements of the CIELCH system at three or more measured observation or illumination angles.
  • Another system for characterizing color includes the“PANTONE” Matching System (Pantone LLC, Carlstadt, New Jersey, USA), which provides a visual color standard system to provide an accurate method for selecting, specifying, broadcasting, and matching colors through any medium.
  • a structurally-colored article having a structural color can be considered as having a“single” color when the color measured for the article is within a certain number of adjacent standards, e.g., within 20 adjacent PANTONE standards, at three or more measured observation or illumination angles selected from 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
  • the SC filament includes the optical element or fragments thereof.
  • the optical element can include at least one optical layer.
  • the optical element that can be or include a single or multilayer reflector or a multilayer filter.
  • the optical element can function to modify the light that impinges thereupon so that structural color is imparted to the article.
  • the optical element can include at least one optical layer and optionally one or more additional layers (e.g., a protective layer, the textured layer, a polymer layer, and the like).
  • the method of making the structurally colored article or the polymer-based item can include disposing (e.g., affixing, attaching, bonding, fastening, joining, appending, connecting, binding, and operably disposed, etc.) the optical element onto the structurally colored article (e.g., pellet, extruded pellet, sheet, film, and the like) or a polymer-based item (e.g., pellet, sheet, film, article or component of an article that included the optical element, and the like).
  • the article has a surface upon which the optical element can be disposed.
  • the surface of the article can be made of a material such as a thermoplastic material, as described herein.
  • the optical element has a first side (including the outer surface) and a second side opposing the first side (including the opposing outer surface).
  • optical element or layers or portions thereof can be formed using known techniques such as physical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, pulsed laser deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), chemical vapor deposition, plasma-enhanced chemical vapor deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer-by-layer deposition, sol-gel deposition, Langmuir blodgett, and the like.
  • known techniques such as physical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, pulsed laser deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), chemical vapor deposition, plasma-enhanced chemical vapor deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer-by-layer de
  • the optical layer(s) of the optical element can comprise a single layer reflector or a multilayer reflector.
  • the multilayer reflector can be configured to have a certain reflectivity at a given wavelength of light (or range of wavelengths) depending, at least in part, on the material selection, thickness and number of the layers of the multilayer reflector. In other words, one can carefully select the materials, thicknesses, and numbers of the layers of a multilayer reflector and optionally its interaction with one or more other layers, so that it can reflect a certain wavelength of light (or range of wavelengths), to produce a desired structural color (e.g., color, iridescence, metallic).
  • the optical layer can include at least two adjacent layers, where the adjacent layers have different refractive indices.
  • the difference in the index of refraction of adjacent layers of the optical layer can be about 0.0001 to 50 percent, about 0.1 to 40 percent, about 0.1 to 30 percent, about 0.1 to 20 percent, about 0.1 to 10 percent (and other ranges there between (e.g., the ranges can be in increments of 0.0001 to 5 percent)).
  • the index of refraction depends at least in part upon the material of the optical layer and can range from 1.3 to 2.6.
  • the optical element can include 2 to 20 layers, 2 to 15 layers, 2 to 10 layers, 2 to 6 layers, or 2 to 4 layers. Each layer of the optical element can have a thickness that is about one-fourth of the wavelength of light to be reflected to produce the desired structural color. Each layer of the optical element can have a thickness of about 10 to 500 nanometers or about 90 to 200 nanometers.
  • the optical layer can have at least two layers, where adjacent layers have different thicknesses and optionally the same or different refractive indices.
  • the optical element can have a thickness of about 100 to 1,500 nanometers, about 100 to 1,200
  • nanometers about 100 to about 700 nanometers, or of about 200 to about 500 nanometers.
  • Each of the layers of the optical element can have a thickness of at least 10 nanometers, optionally at least 30 nanometers, at least 40 nanometers, at least 50 nanometers, optionally at least 60 nanometers, at least 100 nanometers, at least 150 nanometers, optionally a thickness of from about 10 nanometers to about 250 nanometers or more, about 10 nanometers to about 200 nanometers, about 10 nanometers to about 150 nanometers, about 10 nanometers to about 100 nanometers, or of from about 30 nanometers to about 80 nanometers, or from about 40 nanometers to about 60 nanometers.
  • the each layer can be about 30 to 150 nanometers thick.
  • the density of the Ti layer or TiO x layer can be about 3 to 6 grams per centimeter cubed, about 3 to 5 grams per centimeter cubed, about 4 to 5 grams per centimeter cubed, or 4.5 grams per centimeter cubed.
  • the optical element can comprise a single layer filter or a multilayer filter.
  • the multilayer filter destructively interferes with light that impinges upon the structure or article, where the destructive interference of the light and optionally interaction with one or more other layers or structures (e.g., a multilayer reflector, a textured structure) impart the structural color.
  • the layers of the multilayer filter can be designed (e.g., material selection, thickness, number of layer, and the like) so that a single wavelength of light, or a particular range of wavelengths of light, make up the structural color.
  • the range of wavelengths of light can be limited to a range within plus or minus 30 percent or a single wavelength, or within plus or minus 20 percent of a single wavelength, or within plus or minus 10 percent of a single wavelength, or within plus or minus 5 percent or a single wavelength.
  • wavelengths can be broader to produce a more iridescent structural color or can be metallic in nature.
  • the optical layer(s) can include a single layer or multiple layers where each layer independently comprises a material selected from: the transition metals, the metalloids, the lanthanides, and the actinides, as well as nitrides, oxynitrides, sulfides, sulfates, selenides, and tellurides of these.
  • the material can be selected to provide an index of refraction that when optionally combined with the other layers of the optical element achieves the desired result.
  • One or more layers of the optical layer can be made of liquid crystals. Each layer of the optical layer can be made of liquid crystals.
  • One or more layers of the optical layer can be made of a material such as: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, aluminum oxide, or a combination thereof.
  • Each layer of the optical layer can be made of a material such as: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, aluminum oxide, or a combination thereof.
  • the optical element can be uncolored (e.g., no pigments or dyes added to the structure or its layers), colored (e.g., pigments and/or dyes are added to the structure or its layers (e.g., dark or black color)), reflective, and/or transparent (e.g., percent transmittance of 75 percent or more).
  • the surface of the article upon which the optical element is disposed can be uncolored (e.g., no pigments or dyes added to the material), colored (e.g., pigments and/or dyes are added to the material (e.g., dark or black color)), reflective, and/or transparent (e.g., percent transmittance of 75 percent or more).
  • the optical layer(s) can be formed in a layer-by-layer manner, where each layer has a different index of refraction.
  • Each layer of the optical layer can be formed using known techniques such as physical vapor deposition including: chemical vapor deposition, pulsed laser deposition, evaporative deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), plasma enhanced chemical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer by layer deposition, sol- gel deposition, Langmuir blodgett and the like.
  • physical vapor deposition including: chemical vapor deposition, pulsed laser deposition, evaporative deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), plasma enhanced chemical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam
  • the optical element can include one or more layers in addition to the optical layer(s).
  • the optical element has a first side (e.g., the side having a surface) and a second side (e.g., the side having a surface).
  • the one or more other layers of the optical element can be on the first side and/or the second side of the optical element.
  • the optical element can include a protective layer and/or a polymeric layer such as a thermoplastic polymeric layer, where the protective layer and/or the polymeric layer can be on one or both of the first side and the second side of the optical element.
  • One or more of the optional other layers can include a textured surface.
  • one or more optical layers of the optical element can include a textured surface.
  • a portion of the plurality of optical elements or the fragments of the optical elements are not structurally deteriorated during processing such that the optical elements or the fragments thereof have the optical effect, while other portions are structurally deteriorated during processing and do not have the optical effect.
  • the optical element and the fragments of the optical element are layered structures having two or more layers stacked in the z dimension, perpendicular to the plane of the layered stack.
  • the optical element and the fragments of the optical element have a width in the x dimension, a length in the y dimension and a thickness in the z dimension.
  • the thickness of the fragments of the optical elements is such that it imparts an optical effect, where the optical effect of the fragments of the optical elements can be the same or different than the optical effect of the optical element before processing.
  • the thickness of the optical elements or fragments of the optical elements in the dispersed in the structurally colored article or the SC filament can be less than 30 percent less, less than 20 percent less, can be less than 10 percent less, can be less than 5 percent less, than the thickness of the optical element on the polymer-based item (or the pre-process and/or extruded optical element).
  • the width and length of the fragments of the optical elements dispersed in the polymer-based item can be unchanged or be about 5 percent, about 10 percent, about 15 percent, about 25 percent, about 35 percent, about 50 percent, or smaller than the width and length of the optical element of the polymer- based item before processing.
  • the plurality of optical elements or fragments thereof dispersed in the structurally colored article or the SC filament can have, independently of each other, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more.
  • the plurality of optical elements or fragments thereof dispersed in the structurally colored article or the SC filament can have an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more.
  • the plurality of optical elements or fragments thereof dispersed in the structurally colored article or the SC filament can have an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300 nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers, or about 1,000 to 10,000 nanometers or more.
  • a protective layer can be disposed on the first and/or second side of the optical layer to protect the optical layer.
  • the protective layer is more durable or more abrasion resistant than the optical layer.
  • the protective layer is optically transparent to visible light.
  • the protective layer can be on the first side of the optical element to protect the optical layer. All or a portion of the protective layer can include a dye or pigment in order to alter an appearance of the structural color.
  • the protective layer can include silicon dioxide, glass, combinations of metal oxides, or mixtures of polymers.
  • the protective layer can have a thickness of about 3 nanometers to 1 millimeter. The polymer layer may be removed during the processing or extruding process of the optical layers.
  • the protective layer can be formed using physical vapor deposition, chemical vapor deposition, pulsed laser deposition, evaporative deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), plasma enhanced chemical vapor deposition, electron beam deposition, cathodic arc deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer by layer deposition, sol-gel deposition, Langmuir blodgett, and the like.
  • the protective layer can be applied by spray coating, dip coating, brushing, spin coating, doctor blade coating, and the like.
  • a polymeric layer can be disposed on the first and/or the second side of the optical element.
  • the polymeric layer can be used to dispose the optical element onto an article, such as, for example, when the article does not include a thermoplastic material to adhere the optical element.
  • the polymeric layer can comprise a polymeric adhesive material, such as a hot melt adhesive.
  • the polymeric layer can be a thermoplastic material and can include one or more layers.
  • the thermoplastic material can be any one of the thermoplastic material described herein.
  • the polymeric layer can be applied using various methodologies, such as spin coating, dip coating, doctor blade coating, and so on.
  • the polymeric layer can have a thickness of about 3 nanometer to 1 millimeter.
  • the optical element can include at least one optical layer and optionally a textured surface.
  • the textured surface can be a surface of a textured structure or a textured layer.
  • the textured surface or textured layer may be provided as part of the optical element.
  • the optical element may comprise a textured layer or a textured structure that comprises the textured surface.
  • the textured surface may be formed on the first or second side of the optical element.
  • a side of the optical element can be formed or modified to provide a textured surface, or a textured layer or textured structure can be disposed on (e.g., affixed to) the first or second side of the optical element.
  • the textured surface may be provided as part of the article to which the optical element is disposed, in which case the optical element has the topography or similar topography as the textured surface.
  • the optical element may be disposed onto the surface of the article where the surface of the article is a textured surface, or the surface of the article includes a textured structure or a textured layer.
  • the textured surface may be provided as a feature on or part of another medium, such as a transfer medium, and imparted to a side or layer of the optical element or to the surface of the article.
  • a mirror image or relief form of the textured surface may be provided on the side of a transfer medium, and the transfer medium contacts a side of the optical element or the surface of the article in a way that imparts the textured surface to the optical element or article. While the various embodiments herein may be described with respect to a textured surface of the optical element, it will be understood that the features of the textured surface, or a textured structure or textured layer, may be imparted in any of these ways.
  • the textured surface can contribute to the structural color resulting from the optical element. As described herein, structural coloration is imparted, at least in part, due to optical effects resulting from physical phenomena such as scattering, diffraction, reflection, interference or unequal refraction of light rays from an optical element.
  • the textured surface (or its mirror image or relief) can include a plurality of profile features and flat or planar areas. The plurality of profile features included in the textured surface, including their size, shape, orientation, spatial arrangement, etc., can affect the light scattering, diffraction, reflection, interference and/or refraction resulting from the optical element.
  • the flat or planar areas included in the textured surface can affect the light scattering, diffraction, reflection, interference and/or refraction resulting from the optical element.
  • the desired structural color can be designed, at least in part, by adjusting one or more of properties of the profile features and/or flat or planar areas of the textured surface.
  • the profile features can extend from a side of the flat areas, so as to provide the appearance of projections and/or depressions therein.
  • the flat areas can be flat planar areas.
  • a profile feature may include various combinations of projections and
  • a profile feature may include a projection with one or more depressions therein, a depression with one or more projections therein, a projection with one or more further projections thereon, a depression with one or more further depressions therein, and the like.
  • the flat areas do not have to be completely flat and can include texture, roughness, and the like.
  • the texture of the flat areas may not contribute much, if any, to the imparted structural color.
  • the texture of the flat areas typically contributes to the imparted structural color.
  • the profile features and flat areas are described in reference to the profile features extending above the flat areas, but the inverse (e.g., dimensions, shapes, and the like) can apply when the profile features are depressions in the textured surface.
  • the textured surface can comprise a thermoplastic material.
  • the profile features and the flat areas can be formed using a thermoplastic material.
  • the textured surface generally has a length dimension extending along an x-axis, and a width dimension extending along a z-axis, and a thickness dimension extending along a y-axis.
  • the textured surface has a generally planar portion extending in a first plane that extends along the x-axis and the z-axis.
  • a profile feature can extend outward from the first plane, so as to extend above or below the plane x.
  • a profile feature may extend generally orthogonal to the first plane, or at an angle greater to or less than 90 degrees to the first plane.
  • the dimensional measurements in reference to the profile features (e.g., length, width, height, diameter, and the like) described herein refer to an average dimensional measurement of profile features in 1 square centimeter in the inorganic optical element.
  • the dimension (e.g., length, width, height, diameter, depending upon the shape of the profile feature) of each profile feature can be within the nanometer to micrometer range.
  • a textured surface can have a profile feature and/or flat area with a dimension of about 10 nanometers to about 500 micrometers.
  • the profile feature can have dimensions in the nanometer range, e.g., from about 10 nanometers to about 1000 nanometers. All of the dimensions of the profile feature (e.g., length, width, height, diameter, depending on the geometry) can be in the nanometer range, e.g., from about 10 nanometers to about 1000 nanometers.
  • the textured surface can have a plurality of profile features having dimensions that are 1 micrometer or less.
  • the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have a dimension in this range.
  • the profile features can have a ratio of width:height and/or length:height dimensions of about 1:2 and 1:100, or 1:5 and 1:50, or 1:5 and 1:10.
  • the textured surface can have a profile feature and/or flat area with a dimension within the micrometer range of dimensions.
  • a textured surface can have a profile feature and/or flat area with a dimension of about 1 micrometer to about 500 micrometers. All of the dimensions of the profile feature (e.g., length, width, height, diameter, depending on the geometry) can be in the micrometer range, e.g., from about 1 micrometer to about 500 micrometers.
  • the textured surface can have a plurality of profile features having dimensions that are from about 1 micrometer to about 500 micrometer.
  • the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have a dimension in this range.
  • the height of the profile features can be about 0.1 and 50 micrometers, about 1 to 5 micrometers, or 2 to 3 micrometers.
  • the profile features can have a ratio of width:height and/or length:height dimensions of about 1:2 and 1:100, or 1:5 and 1:50, or 1:5 and 1:10.
  • a textured surface can have a plurality of profile features having a mixture of size dimensions within the nanometer to micrometer range (e.g., a portion of the profile features are on the nanometer scale and a portion of the profile features are on the micrometer scale).
  • a textured surface can have a plurality of profile features having a mixture of dimensional ratios.
  • the textured surface can have a profile feature having one or more nanometer-scale projections or depressions on a micrometer-scale projection or depression.
  • the profile feature can have height and width dimensions that are within a factor of three of each other (0.33w £ h £ w where w is the width and h is the height of the profile feature) and/or height and length dimensions that are within a factor of three of each other (0.33l £ h £ 3l where I is the length and h is the height of the profile feature).
  • the profile feature can have a ratio of length:width that is from about 1:3 to about 3:1, or about 1:2 to about 2:1, or about 1:1.5 to about 1.5:1, or about 1:1.2 to about 1.2:1, or about 1:1.
  • the width and length of the profile features can be substantially the same or different.
  • the textured surface can have a profile feature and/or flat area with at least one dimension in the mid-micrometer range and higher (e.g., greater than 500
  • the profile feature can have at least one dimension (e.g., the largest dimension such as length, width, height, diameter, and the like depending upon the geometry or shape of the profile feature) of greater than 500 micrometers, greater than 600 micrometers, greater than 700 micrometers, greater than 800 micrometers, greater than 900 micrometers, greater than 1000 micrometers, greater than 2 millimeters, greater than 10 millimeters, or more.
  • the largest dimension of the profile feature can range from about 600 micrometers to about 2000 micrometers, or about 650 micrometers to about 1500 micrometers, or about 700 micrometers to about 1000 micrometers.
  • At least one or more of the dimensions of the profile feature can be in the micrometer range, while one or more of the other dimensions can be in the nanometer to micrometer range (e.g., less than 500 micrometers, less than 100 micrometers, less than 10 micrometers, or less than 1 micrometer).
  • the textured surface can have a plurality of profile features having at least one dimension that is in the mid-micrometer or more range (e.g., 500 micrometers or more).
  • the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at least one dimension that is greater than 500 micrometers.
  • at least one of the length and width of the profile feature is greater than 500 micrometers or both the length and the width of the profile feature is greater than 500 micrometers.
  • the diameter of the profile feature is greater than 500 micrometers.
  • the longest dimension is greater than 500 micrometers.
  • the height of the profile features can be greater than 50 micrometers.
  • the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at height that is greater than 50 micrometers.
  • the height of the profile feature can be 50 micrometers, about 60 micrometers, about 70 micrometers, about 80 micrometers, about 90 micrometers, or about 100 micrometers to about 60 micrometers, about 70 micrometers, about 80 micrometers, about 90 micrometers, about 100 micrometers, about 150 micrometers, about 250 micrometers, about 500 micrometers or more.
  • the ranges can include 50 micrometers to 500 micrometers, about 60 micrometers to 250 micrometers, about 60 micrometers to about 150 micrometers, and the like.
  • One or more of the other dimensions can be in the nanometer to micrometer range (e.g., less than 500 micrometers, less than 100 micrometers, less than 10 micrometers, or less than 1 micrometer).
  • at least one of the length and width of the profile feature is less than 500 micrometers or both the length and the width of the profile feature is less than 500 micrometers, while the height is greater than 50 micrometers.
  • One or more of the other dimensions can be in the micrometer to millimeter range (e.g., greater than 500 micrometers to 10 millimeters).
  • the dimension (e.g., length, width, height, diameter, depending upon the shape of the profile feature) of each profile feature can be within the nanometer to micrometer range.
  • the textured surface can have a profile feature and/or flat area with a dimension of about 10 nanometers to about 500 micrometers or higher (e.g., about 1 millimeter, about 2 millimeters, about 5 millimeters, or about 10 millimeters).
  • At least one of the dimensions of the profile feature can be in the nanometer range (e.g., from about 10 nanometers to about 1000 nanometers), while at least one other dimension (e.g., length, width, height, diameter, depending on the geometry) can be in the micrometer range (e.g., 5 micrometers to 500 micrometers or more (e.g., about 1 to 10 millimeters)).
  • the textured surface can have a plurality of profile features having at least one dimension in the nanometer range (e.g., about 10 to 1000 nanometers) and the other in the micrometer range (e.g., 5 micrometers to 500 micrometers or more).
  • the phrase “plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at least one dimension in the nanometer range and at least one dimension in the micrometer range.
  • at least one of the length and width of the profile feature is in the nanometer range, while the other of the length and the width of the profile feature is in the micrometer range.
  • the height of the profile features can be greater than 250 nanometers.
  • the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at height that is greater than 250 nanometers.
  • the height of the profile feature can be 250 nanometers, about 300 nanometers, about 400 nanometers, or about 500 nanometers, to about 300 nanometers, about 400 nanometers, about 500 nanometers, or about 1000 nanometers or more.
  • the range can be 250 nanometers to about 1000 nanometers, about 300 nanometers to 500 nanometers, about 400 nanometers to about 1000 nanometers, and the like.
  • One or more of the other dimensions can be in the micrometer to millimeter range (e.g., greater than 500 micrometers to 10 millimeters).
  • at least one of the length and width of the profile feature is in the nanometer range (e.g., about 10 to 1000 nanometers) and the other in the micrometer range (e.g., 5 micrometers to 500 micrometers or more), while the height is greater than 250 nanometers.
  • the profile features can have a certain spatial arrangement.
  • the spatial arrangement of the profile features may be uniform, such as spaced evenly apart or forming a pattern.
  • the spatial arrangement can be random.
  • Adjacent profile features can be about 10 to 500 nanometers apart, about 100 to 1000 nanometers apart, about 1 to 100 micrometers apart or about 5 to 100 micrometers apart. Adjacent profile features can overlap one another or be adjacent one another so little or no flat regions are positioned there between.
  • the desired spacing can depend, at least in part, on the size and/or shape of the profile structures and the desired structural color effect.
  • the profile features can have a certain cross-sectional shape (with respect to a plane parallel the first plane).
  • the textured surface can have a plurality of profile features having the same or similar cross-sectional shape.
  • the textured surface has a plurality of profile features having a mixture of different cross-sectional shapes.
  • the cross-sectional shapes of the profile features can include polygonal (e.g., square or triangle or rectangle cross section), circular, semi-circular, tubular, oval, random, high and low aspect ratios, overlapping profile features, and the like.
  • the profile feature (e.g., about 10 nanometers to 500 micrometers) can include an upper, flat surface.
  • the profile feature (e.g., about 10 nanometers to 500 micrometers) can include an upper, concavely curved surface.
  • the concave curved surface may extend symmetrically either side of an uppermost point.
  • the concave curved surface may extend symmetrically across only 50 percent of the uppermost point.
  • the profile feature (e.g., about 10 nanometers to 500 micrometers) can include an upper, convexly curved surface.
  • the curved surface may extend symmetrically either side of an uppermost point.
  • the curved surface may extend symmetrically across only 50 percent of the uppermost point.
  • the profile feature can include protrusions from the textured surface.
  • the profile feature can include indents (hollow areas) formed in the textured surface.
  • the profile feature can have a smooth, curved shape (e.g., a polygonal cross-section with curved corners).
  • the profile features (whether protrusions or depressions) can be approximately conical or frusto-conical (i.e. the projections or indents may have horizontally or diagonally flattened tops) or have an approximately part-spherical surface (e.g., a convex or concave surface respectively having a substantially even radius of curvature).
  • the profile features may have one or more sides or edges that extend in a direction that forms an angle to the first plane of the textured surface.
  • the angle between the first plane and a side or edge of the profile feature is about 45 degrees or less, about 30 degrees or less, about 25 degrees or less, or about 20 degrees or less.
  • the one or more sides or edges may extend in a linear or planar orientation or may be curved so that the angle changes as a function of distance from the first plane.
  • the profile features may have one or more sides that include step(s) and/or flat side(s).
  • the profile feature can have one or more sides (or portions thereof) that can be orthogonal or perpendicular to the first plane of the textured surface, or extend at an angle of about 10 degrees to 89 degrees to the first plane (90 degrees being perpendicular or orthogonal to the first plane)) .
  • the profile feature can have a side with a stepped configuration, where portions of the side can be parallel to the first plane of the textured surface or have an angle of about 1 degree to 179 degrees (0 degrees being parallel to the first plane)).
  • the textured surface can have profile features with varying shapes (e.g., the profile features can vary in shape, height, width and length among the profile features) or profile features with substantially uniform shapes and/or dimensions.
  • the structural color produced by the textured surface can be determined, at least in part, by the shape, dimensions, spacing, and the like, of the profile features.
  • the profile features can be shaped so as to result in a portion of the surface (e.g., about 25 to 50 percent or more) being about normal to the incoming light when the light is incident at the normal to the first plane of the textured surface.
  • the profile features can be shaped so as to result in a portion of the surface (e.g., about 25 to 50 percent or more) being about normal to the incoming light when the light is incident at an angle of up to 45 degrees to the first plane of the textured surface.
  • the spatial orientation of the profile features on the textured surface can be used to produce the structural color, or to effect the degree to which the structural color shifts at different viewing angles.
  • the spatial orientation of the profile features on the textured surface can be random, a semi-random pattern, or in a set pattern.
  • a set pattern of profile features is a known set up or configuration of profile features in a certain area (e.g., about 50 nanometers squared to about 10 millimeters squared depending upon the dimensions of the profile features (e.g., any increment between about 50 nanometers and about 10 millimeters is included)).
  • a semi- random pattern of profile features is a known set up of profile features in a certain area (e.g., about 50 nanometers squared to 10 millimeters squared) with some deviation (e.g., 1 to 15% deviation from the set pattern), while random profile features are present in the area but the pattern of profile features is discernable.
  • a random spatial orientation of the profile features in an area produces no discernable pattern in a certain area, (e.g., about 50 nanometers squared to 10 millimeters squared).
  • the spatial orientation of the profile features can be periodic (e.g., full or partial) or non- periodic.
  • a periodic spatial orientation of the profile features is a recurring pattern at intervals.
  • the periodicity of the periodic spatial orientation of the profile features can depend upon the dimensions of the profile features but generally are periodic from about 50 nanometers to 100 micrometers. For example, when the dimensions of the profile features are submicron, the periodicity of the periodic spatial orientation of the profile features can be in the 50 to 500 nanometer range or 100 to 1000 nanometer range. In another example, when the dimensions of the profile features are at the micron level, the periodicity of the periodic spatial orientation of the profile features can be in the 10 to 500 micrometer range or 10 to 1000 micrometer range.
  • a non-periodic spatial orientation of profile features is not periodic and does not show periodicity based on the dimensions of the profile features, in particular, no periodicity in the 50 to 500 nanometer range or 100 to 1000 nanometer range where the dimensions are of the profile features are submicron or no periodicity in the 10 to 500 micrometer range or 10 to 1000 micrometer range where the dimensions are of the profile features are in the micron range.
  • the spatial orientation of the profile features on the textured surface can be set to reduce distortion effects, e.g., caused by the interference of one profile feature with another in regard to the structural color of the article. Since the shape, dimension, relative orientation of the profile features can vary considerably across the textured surface, the desired spacing and/or relative positioning for a particular area (e.g., in the micrometer range or about 1 to 10 square micrometers) having profile features can be appropriately determined.
  • the shape, dimension, relative orientation of the profile features affect the contours of the reflective layer(s) and/or constituent layer(s), so the dimensions (e.g., thickness), index of refraction, number of layers in the inorganic optical element (e.g., reflective layer(s) and constituent layer(s)) are considered when designing the textured side of the texture layer.
  • the profile features are located in nearly random positions relative to one another across a specific area of the textured surface (e.g., in the micrometer range or about 1 to 10 square micrometers to centimeter range or about 0.5 to 5 square centimeters, and all range increments therein), where the randomness does not defeat the purpose of producing the structural color.
  • the randomness is consistent with the spacing, shape, dimension, and relative orientation of the profile features, the dimensions (e.g., thickness), index of refraction, and number of layers (e.g., the reflective layer(s), the constituent layer(s), and the like, with the goal to achieve the structural color.
  • the profile features are positioned in a set manner relative to one another across a specific area of the textured surface to achieve the purpose of producing the structural color.
  • the relative positions of the profile features do not necessarily follow a pattern, but can follow a pattern consistent with the desired structural color.
  • various parameters related to the profile features, flat areas, and reflective layer(s) and/or the constituent layer can be used to position the profile features in a set manner relative to one another.
  • the textured surface can include micro and/or nanoscale profile features that can form gratings (e.g., a diffractive grating), photonic crystal structure, a selective mirror structure, crystal fiber structures, deformed matrix structures, spiraled coiled structures, surface grating structures, and combinations thereof.
  • the textured surface can include micro and/or nanoscale profile features that form a grating having a periodic or non-periodic design structure to impart the structural color.
  • the micro and/or nanoscale profile features can have a peak-valley pattern of profile features and/or flat areas to produce the desired structural color.
  • the grading can be an Echelette grating.
  • an inorganic optical element 200 includes a textured structure 220 having a plurality of profile features 222 and flat areas 224.
  • one or more of the profile features 222 can be projections from a surface of the textured structure 220, and/or one or more of the profile features can be depressions in a surface of the textured structure 220 (not shown).
  • One or more constituent layers 240 are disposed on the textured structure 220 and then a reflective layer 230 and one or more constituent layers 245 are disposed on the preceding layers.
  • the resulting topography of the textured structure 220 and the one or more constituent layers 240 and 245 and the reflective layer 230 are not identical, but rather, the one or more constituent layers 240 and 245 and the reflective layer 230 can have elevated or depressed regions 242 which are either elevated or depressed relative to the height of the planar regions 244 and which roughly correspond to the location of the profile features 222 of the textured structure 220.
  • the one or more constituent layers 240 and 245 and the reflective layer 230 have planar regions 244 that roughly correspond to the location of the flat areas 224 of the textured structure 220.
  • the resultant overall topography of the one or more constituent layers 240 and 245 and the reflective layer 230 can be that of an undulating or wave-like structure.
  • the dimension, shape, and spacing of the profile features along with the number of layers of the constituent layer, the reflective layer, the thickness of each of the layers, refractive index of each layer, and the type of material, can be used to produce an inorganic optical element which results in a particular structural color.
  • the textured surface can produce the structural color in some embodiments, or can affect the degree to which the structural color shifts at different viewing angles
  • a“textured surface” or surface with texture may not produce the structural color, or may not affect the degree to which the structural color shifts at different viewing angles.
  • the structural color can be produced by the design of the inorganic optical element with or without the textured surface.
  • the inorganic optical element can include the textured surface having profile elements of dimensions in the nanometer to millimeter range, but the structural color or the shifting of the structural color is not attributable to the presence or absence of the textured surface.
  • the inorganic optical element imparts the same structural color where or not the textured surface is present
  • the design of the textured surface can be configured to not affect the structural color imparted by the inorganic optical element, or not affect the shifting of the structural color imparted by the inorganic optical element.
  • the shape of the profile features, dimensions of the shapes, the spatial orientation of the profile features relative to one another, and the like can be selected so that the textured surface does not affect the structural color attributable to the inorganic optical element.
  • the structural color imparted by a first inorganic optical element and a second inorganic optical element, where the only difference between the first and second inorganic optical element is that the first inorganic optical element includes the textured surface can be compared.
  • a color measurement can be performed for each of the first and second inorganic optical element at the same relative angle, where a comparison of the color measurements can determine what, if any, change is correlated to the presence of the textured surface. For example, at a first observation angle the structural color is a first structural color for the first inorganic optical element and at first observation angle the structural color is a second structural color for the second inorganic optical element.
  • the first color measurement can be obtained and has coordinates L 1 * and a 1 * and b 1 *, while a second color measurement can be obtained and has coordinates L 2 * and a 2 * and b 2 * can be obtained, according to the CIE 1976 color space under a given illumination condition.
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color by more than 20 percent, 10 percent, or 5 percent).
  • DE* ab between the first color measurement and the second color measurement is greater than 3 or optionally greater than about 4 or 5
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color by more than 20 percent, 10 percent, or 5 percent).
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color by less than 20 percent, 10 percent, or 5 percent).
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color by more than 20 percent, 10 percent, or 5 percent).
  • the structural color imparted by a first inorganic optical element and a second inorganic optical element can be compared at different angles of incident light upon the inorganic optical element or different observation angles.
  • a color measurement can be performed for each of the first and second inorganic optical element at different angles (e.g., angle of about -15 and 180 degrees or about -15 degrees and +60 degrees and which are at least 15 degrees apart from each other), where a comparison of the color measurements can determine what, if any, change is correlated to the presence of the textured surface a different angles.
  • the structural color is a first structural color for the first inorganic optical element and at second observation angle the structural color is a second structural color for the second inorganic optical element.
  • the first color measurement can be obtained and has coordinates L 1 * and a 1 * and b 1 *
  • a second color measurement can be obtained and has coordinates L 2 * and a 2 * and b 2 * can be obtained, according to the CIE 1976 color space under a given illumination condition.
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color based on different angles of incident light upon the inorganic optical element or different observation angles).
  • the textured surface does cause or change the structural color at different angles of incident light upon the inorganic optical element or different observation angles.
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color by more than 20 percent, 10 percent, or 5 percent at different angles of incident light upon the inorganic optical element or different observation angles).
  • the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color by more than 20 percent, 10 percent, or 5 percent at different angles of incident light upon the inorganic optical element or different observation angles).
  • the structural color can be imparted by the inorganic optical element without the textured surface.
  • the surface of the layers of the optical element are substantially flat (or substantially three-dimensional flat planar surface) or flat (or three- dimensional flat planar surface) at the microscale (e.g., about 1 to 500 micrometers) and/or nanoscale (e.g., about 50 to 500 nanometers).
  • the surface can include some minor topographical features (e.g., nanoscale and/or microscale) such as those that might be caused due to unintentional imperfections, slight undulations that are unintentional, other topographical features (e.g., extensions above the plane of the layer or depressions below or into the plane of the layer) caused by the equipment and/or process used and the like that are unintentionally introduced.
  • the topographical features do not resemble profile features of the textured surface.
  • substantially flat (or substantially three dimensional flat planar surface) or flat (or three dimensional flat planar surface) may include curvature as the dimensions of the optical element increase, for example about 500 micrometers or more, about 10 millimeter or more, about 10 centimeters or more, depending upon the dimensions of the inorganic optical element, as long as the surface is flat or substantially flat and the surface only includes some minor topographical features.
  • FIG.2B is a cross-section illustration of a substantially flat (or substantially three- dimensional flat planar surface) or flat (or three dimensional flat planar surface) inorganic optical element 300.
  • the inorganic optical element 300 includes one or more constituent layers 340 are disposed on the flat or three-dimensional flat planar surface structure 320 and then a reflective layer 330 and one or more constituent layers 345 are disposed on the preceding layers.
  • the material that makes up the constituent layers and the reflective layer, number of layers of the constituent layer, the reflective layer, the thickness of each of the layers, refractive index of each layer, and the like, can produce an inorganic optical element which results in a particular structural color.
  • the polymer can be a thermoplastic polymer.
  • the polymer can be an elastomeric polymer, including an elastomeric thermoplastic polymer.
  • the polymer can be selected from: polyurethanes (including elastomeric polyurethanes, thermoplastic polyurethanes (TPUs), and elastomeric TPUs), polyesters, polyethers, polyamides, vinyl polymers (e.g., copolymers of vinyl alcohol, vinyl esters, ethylene, acrylates, methacrylates, styrene, and so on), polyacrylonitriles, polyphenylene ethers, polycarbonates, polyureas, polystyrenes, co-polymers thereof (including polyester-polyurethanes, polyether-polyurethanes, polycarbonate-polyurethanes, polyether block polyamides (PEBAs), and styrene block copolymers) , and any combination thereof, as described herein.
  • polyurethanes including elastomeric polyurethanes, thermoplastic polyurethanes (TPUs), and elastomeric TPUs
  • polyesters e
  • the polymer can include one or more polymers selected from the group consisting of polyesters, polyethers, polyamides, polyurethanes, polyolefins copolymers of each, and combinations thereof.
  • polymer refers to a chemical compound formed of a plurality of repeating structural units referred to as monomers. Polymers often are formed by a polymerization reaction in which the plurality of structural units become covalently bonded together. When the monomer units forming the polymer all have the same chemical structure, the polymer is a homopolymer. When the polymer includes two or more monomer units having different chemical structures, the polymer is a copolymer.
  • One example of a type of copolymer is a terpolymer, which includes three different types of monomer units.
  • the co-polymer can include two or more different monomers randomly distributed in the polymer (e.g., a random co-polymer).
  • one or more blocks containing a plurality of a first type of monomer can be bonded to one or more blocks containing a plurality of a second type of monomer, forming a block copolymer.
  • a single monomer unit can include one or more different chemical functional groups.
  • Polymers having repeating units which include two or more types of chemical functional groups can be referred to as having two or more segments.
  • a polymer having repeating units of the same chemical structure can be referred to as having repeating segments.
  • Segments are commonly described as being relatively harder or softer based on their chemical structures, and it is common for polymers to include relatively harder segments and relatively softer segments bonded to each other in a single monomeric unit or in different monomeric units.
  • the polymer includes repeating segments, physical interactions or chemical bonds can be present within the segments or between the segments or both within and between the segments.
  • segments often referred to as hard segments include segments including a urethane linkage, which can be formed from reacting an isocyanate with a polyol to form a polyurethane.
  • segments often referred to as soft segments include segments including an alkoxy functional group, such as segments including ether or ester functional groups, and polyester segments. Segments can be referred to based on the name of the functional group present in the segment (e.g., a polyether segment, a polyester segment), as well as based on the name of the chemical structure which was reacted in order to form the segment (e.g., a polyol-derived segment, an isocyanate-derived segment).
  • the polymer can contain up to 10 mole percent of segments of other functional groups or derived from other chemical structures.
  • a polyether segment is understood to include up to 10 mole percent of non- polyether segments.
  • the polymer can be a thermoplastic polymer.
  • a thermoplastic polymer softens or melts when heated and returns to a solid state when cooled.
  • the thermoplastic polymer transitions from a solid state to a softened state when its temperature is increased to a temperature at or above its softening temperature, and a liquid state when its temperature is increased to a temperature at or above its melting temperature.
  • the thermoplastic polymer transitions from the softened or liquid state to the solid state.
  • the thermoplastic polymer may be softened or melted, molded, cooled, re-softened or re-melted, re-molded, and cooled again through multiple cycles.
  • thermoplastic polymers For amorphous thermoplastic polymers, the solid state is understood to be the“rubbery” state above the glass transition temperature of the polymer.
  • the thermoplastic polymer can have a melting temperature from about 90 degrees C to about 190 degrees C when determined in accordance with ASTM D3418-97 as described herein below, and includes all subranges therein in increments of 1 degree.
  • the thermoplastic polymer can have a melting temperature from about 93 degrees C to about 99 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
  • the thermoplastic polymer can have a melting temperature from about 112 degrees C to about 118 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
  • the glass transition temperature is the temperature at which an amorphous polymer transitions from a relatively brittle“glassy” state to a relatively more flexible“rubbery” state.
  • the thermoplastic polymer can have a glass transition temperature from about -20 degrees C to about 30 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
  • the thermoplastic polymer can have a glass transition temperature (from about -13 degree C to about -7 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
  • the thermoplastic polymer can have a glass transition temperature from about 17 degrees C to about 23 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
  • the thermoplastic polymer can have a melt flow index from about 10 to about 30 cubic centimeters per 10 minutes (cm 3 /10 min) when tested in accordance with ASTM D1238-13 as described herein below at 160 degrees C using a weight of 2.16 kilograms (kg).
  • thermoplastic polymer can have a melt flow index from about 22 cm 3 /10 min to about 28 cm 3 /10 min when tested in accordance with ASTM D1238-13 as described herein below at 160 degrees C using a weight of 2.16 kg.
  • the thermoplastic polymer can have a cold Ross flex test result of about 120,000 to about 180,000 cycles without cracking or whitening when tested on a thermoformed plaque of the thermoplastic polymer in accordance with the cold Ross flex test as described herein below.
  • the thermoplastic polymer can have a cold Ross flex test result of about 140,000 to about 160,000 cycles without cracking or whitening when tested on a thermoformed plaque of the thermoplastic polymer in accordance with the cold Ross flex test as described herein below.
  • the thermoplastic polymer can have a modulus from about 5 megaPascals (MPa) to about 100 MPa when determined on a thermoformed plaque in accordance with ASTM D412-98 Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension with modifications described herein below.
  • the thermoplastic polymer can have a modulus from about 20 MPa to about 80 MPa when determined on a thermoformed plaque in accordance with ASTM D412-98 Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension with modifications described herein below.
  • the polymer can be a polyurethane, such as a thermoplastic polyurethane (also referred to as“TPU”). Additionally, polyurethane can be an elastomeric polyurethane, including an elastomeric TPU.
  • the elastomeric polyurethane can include hard and soft segments.
  • the hard segments can comprise or consist of urethane segments (e.g., isocyanate-derived segments).
  • the soft segments can comprise or consist of alkoxy segments (e.g., polyol-derived segments including polyether segments, or polyester segments, or a combination of polyether segments and polyester segments).
  • the polyurethane can comprise or consist essentially of an elastomeric polyurethane having repeating hard segments and repeating soft segments.
  • One or more of the polyurethanes can be produced by polymerizing one or more isocyanates with one or more polyols to produce polymer chains having carbamate linkages (-N(CO)O—) as illustrated below in Formula 1, where the isocyanate(s) each preferably include two or more isocyanate (—NCO) groups per molecule, such as 2, 3, or 4 isocyanate groups per molecule (although, mono-functional isocyanates can also be optionally included, e.g., as chain terminating units).
  • Each R 1 group and R 2 group independently is an aliphatic or aromatic group.
  • each R 2 can be a relatively hydrophilic group, including a group having one or more hydroxyl groups.
  • the isocyanates can also be chain extended with one or more chain extenders to bridge two or more isocyanates, increasing the length of the hard segment.
  • This can produce polyurethane polymer chains as illustrated below in Formula 2, where R 3 includes the chain extender.
  • each R 3 independently is an aliphatic or aromatic functional group.
  • Each R 1 group in Formulas 1 and 2 can independently include a linear or branched group having from 3 to 30 carbon atoms, based on the particular isocyanate(s) used, and can be aliphatic, aromatic, or include a combination of aliphatic portions(s) and aromatic portion(s).
  • the term“aliphatic” refers to a saturated or unsaturated organic molecule or portion of a molecule that does not include a cyclically conjugated ring system having delocalized pi electrons.
  • the term“aromatic” refers to an organic molecule or portion of a molecule having a cyclically conjugated ring system with delocalized pi electrons, which exhibits greater stability than a hypothetical ring system having localized pi electrons.
  • Each R 1 group can be present in an amount of about 5 percent to about 85 percent by weight, from about 5 percent to about 70 percent by weight, or from about 10 percent to about 50 percent by weight, based on the total weight of the reactant compounds or monomers which form the polymer.
  • each R 1 group can include a linear aliphatic group, a branched aliphatic group, a cycloaliphatic group, or combinations thereof.
  • each R 1 group can include a linear or branched alkylene group having from 3 to 20 carbon atoms (e.g., an alkylene having from 4 to 15 carbon atoms, or an alkylene having from 6 to 10 carbon atoms), one or more cycloalkylene groups having from 3 to 8 carbon atoms (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl), and combinations thereof.
  • alkene or“alkylene” as used herein refers to a bivalent hydrocarbon. When used in association with the term C n it means the alkene or alkylene group has“n” carbon atoms.
  • C 1-6 alkylene refers to an alkylene group having, e.g., 1, 2, 3, 4, 5, or 6 carbon atoms.
  • Suitable aliphatic diisocyanates for producing the polyurethane polymer chains include hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI),
  • BDI butylenediisocyanate
  • HMDI bisisocyanatocyclohexylmethane
  • TMDI trimethylhexamethylene diisocyanate
  • the isocyanate-derived segments can include segments derived from aliphatic diisocyanate.
  • a majority of the isocyanate-derived segments can comprise segments derived from aliphatic diisocyanates. At least 90% of the isocyanate-derived segments are derived from aliphatic diisocyanates.
  • the isocyanate-derived segments can consist essentially of segments derived from aliphatic diisocyanates.
  • the aliphatic diisocyanate-derived segments can be derived substantially (e.g., about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more) from linear aliphatic diisocyanates.
  • At least 80% of the aliphatic diisocyanate-derived segments can be derived from aliphatic diisocyanates that are free of side chains.
  • the segments derived from aliphatic diisocyanates can include linear aliphatic diisocyanates having from 2 to 10 carbon atoms.
  • each R 1 group can include one or more aromatic groups, such as phenyl, naphthyl,
  • an aromatic group can be an unsubstituted aromatic group or a substituted aromatic group, and can also include heteroaromatic groups.
  • “Heteroaromatic” refers to monocyclic or polycyclic (e.g., fused bicyclic and fused tricyclic) aromatic ring systems, where one to four ring atoms are selected from oxygen, nitrogen, or sulfur, and the remaining ring atoms are carbon, and where the ring system is joined to the remainder of the molecule by any of the ring atoms.
  • heteroaryl groups examples include pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, tetrazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, furanyl, quinolinyl, isoquinolinyl, benzoxazolyl, benzimidazolyl, and benzothiazolyl groups.
  • Suitable aromatic diisocyanates for producing the polyurethane polymer chains include toluene diisocyanate (TDI), TDI adducts with trimethyloylpropane (TMP), methylene diphenyl diisocyanate (MDI), xylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), hydrogenated xylene diisocyanate (HXDI), naphthalene 1,5-diisocyanate (NDI), 1,5-tetrahydronaphthalene diisocyanate, para-phenylene diisocyanate (PPDI), 3,3’– dimethyldipheny1-4, 4’–diisocyanate (DDDI), 4,4‘-dibenzyl diisocyanate (DBDI), 4-chloro-1,3- phenylene diisocyanate, and combinations thereof.
  • the polymer chains can be substantially free of aromatic groups.
  • the polyurethane polymer chains can be produced from diisocyanates including HMDI, TDI, MDI, H 12 aliphatics, and combinations thereof.
  • the polyurethane can comprise one or more polyurethane polymer chains produced from diisocyanates including HMDI, TDI, MDI, H 12 aliphatics, and combinations thereof.
  • Polyurethane chains which are at least partially crosslinked or which can be crosslinked can be used in accordance with the present disclosure. It is possible to produce crosslinked or crosslinkable polyurethane chains by reacting multi-functional isocyanates to form the polyurethane.
  • suitable triisocyanates for producing the polyurethane chains include TDI, HDI, and IPDI adducts with trimethyloylpropane (TMP), uretdiones (i.e., dimerized isocyanates), polymeric MDI, and combinations thereof.
  • the R 3 group in Formula 2 can include a linear or branched group having from 2 to 10 carbon atoms, based on the particular chain extender polyol used, and can be, for example, aliphatic, aromatic, or an ether or polyether.
  • suitable chain extender polyols for producing the polyurethane include ethylene glycol, lower oligomers of ethylene glycol (e.g., diethylene glycol, triethylene glycol, and tetraethylene glycol), 1,2-propylene glycol, 1,3- propylene glycol, lower oligomers of propylene glycol (e.g., dipropylene glycol, tripropylene glycol, and tetrapropylene glycol), 1,4-butylene glycol, 2,3-butylene glycol, 1,6-hexanediol, 1,8- octanediol, neopentyl glycol, 1 ,4-cyclohexanedimethanol, 2-ethyl-1
  • the R 2 group in Formula 1 and 2 can include a polyether group, a polyester group, a polycarbonate group, an aliphatic group, or an aromatic group. Each R 2 group can be present in an amount of about 5 percent to about 85 percent by weight, from about 5 percent to about 70 percent by weight, or from about 10 percent to about 50 percent by weight, based on the total weight of the reactant monomers.
  • At least one R 2 group of the polyurethane includes a polyether segment (i.e., a segment having one or more ether groups).
  • Suitable polyether groups include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), polytetrahydrofuran (PTHF), polytetramethylene oxide (PTMO), and combinations thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • PTHF polytetrahydrofuran
  • PTMO polytetramethylene oxide
  • alkyl refers to straight chained and branched saturated hydrocarbon groups containing one to thirty carbon atoms, for example, one to twenty carbon atoms, or one to ten carbon atoms. When used in association with the term C n it means the alkyl group has“n” carbon atoms.
  • C 4 alkyl refers to an alkyl group that has 4 carbon atoms.
  • C 1-7 alkyl refers to an alkyl group having a number of carbon atoms encompassing the entire range (i.e., 1 to 7 carbon atoms), as well as all subgroups (e.g., 1-6, 2-7, 1-5, 3-6, 1, 2, 3, 4, 5, 6, and 7 carbon atoms).
  • alkyl groups include, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec- butyl (2-methylpropyl), t-butyl (1,1- dimethylethyl), 3,3-dimethylpentyl, and 2-ethylhexyl.
  • an alkyl group can be an unsubstituted alkyl group or a substituted alkyl group.
  • the at least one R 2 group includes a polyester group.
  • the polyester group can be derived from the polyesterification of one or more dihydric alcohols (e.g., ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3- butanediol, 2-methylpentanediol, 1,5,diethylene glycol,1,5-pentanediol, 1,5-hexanediol, 1,2- dodecanediol, cyclohexanedimethanol, and combinations thereof) with one or more dicarboxylic acids (e.g., adipic acid, succinic acid, sebacic acid, suberic acid, methyladipic acid, glutaric acid, pimelic acid, azelaic acid, thiodipropionic acid and citraconic acid and combinations thereof).
  • the polyester group also can be derived from polycarbonate prepoly
  • polyesters can include, for example, polyethylene adipate (PEA), poly(1,4-butylene adipate), poly(tetramethylene adipate), poly(hexamethylene adipate), polycaprolactone, polyhexamethylene carbonate, poly(propylene carbonate), poly(tetramethylene carbonate), poly(nonanemethylene carbonate), and combinations thereof.
  • PEA polyethylene adipate
  • 1,4-butylene adipate poly(tetramethylene adipate)
  • poly(hexamethylene adipate) polycaprolactone
  • At least one R 2 group can include a polycarbonate group.
  • the polycarbonate group can be derived from the reaction of one or more dihydric alcohols (e.g., ethylene glycol, 1,3- propylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3-butanediol, 2-methylpentanediol, 1,5, diethylene glycol, 1,5-pentanediol, 1,5-hexanediol, 1,2-dodecanediol, cyclohexanedimethanol, and combinations thereof) with ethylene carbonate.
  • dihydric alcohols e.g., ethylene glycol, 1,3- propylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3-butanediol, 2-methylpentanediol, 1,5, diethylene glycol, 1,5-pentanediol, 1,5-hexaned
  • the aliphatic group can be linear and can include, for example, an alkylene chain having from 1 to 20 carbon atoms or an alkenylene chain having from 1 to 20 carbon atoms (e.g., methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, tridecylene, ethenylene, propenylene, butenylene, pentenylene, hexenylene, heptenylene, octenylene, nonenylene, decenylene, undecenylene, dodecenylene, tridecenylene).
  • alkene or“alkylene” refers to a bivalent hydrocarbon.
  • alkenylene refers to a bivalent hydrocarbon molecule or portion of a molecule having at least one double bond.
  • the aliphatic and aromatic groups can be substituted with one or more pendant relatively hydrophilic and/or charged groups.
  • the pendant hydrophilic group can include one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) hydroxyl groups.
  • the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino groups.
  • the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) carboxylate groups.
  • the aliphatic group can include one or more polyacrylic acid group.
  • the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) sulfonate groups.
  • the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) phosphate groups.
  • the pendant hydrophilic group includes one or more ammonium groups (e.g., tertiary and/or quaternary ammonium).
  • the pendant hydrophilic group includes one or more zwitterionic groups (e.g., a betaine, such as poly(carboxybetaine (pCB) and ammonium phosphonate groups such as a phosphatidylcholine group).
  • the R 2 group can include charged groups that are capable of binding to a counterion to ionically crosslink the polymer and form ionomers.
  • R 2 is an aliphatic or aromatic group having pendant amino, carboxylate, sulfonate, phosphate, ammonium, or zwitterionic groups, or combinations thereof.
  • the pendant hydrophilic group can be at least one polyether group, such as two polyether groups. In other cases, the pendant hydrophilic group is at least one polyester.
  • the pendant hydrophilic group can be a polylactone group (e.g., polyvinylpyrrolidone). Each carbon atom of the pendant hydrophilic group can optionally be substituted with, e.g., an alkyl group having from 1 to 6 carbon atoms.
  • the aliphatic and aromatic groups can be graft polymeric groups, wherein the pendant groups are homopolymeric groups (e.g., polyether groups, polyester groups, polyvinylpyrrolidone groups).
  • the pendant hydrophilic group can be a polyether group (e.g., a polyethylene oxide (PEO) group, a polyethylene glycol (PEG) group), a polyvinylpyrrolidone group, a polyacrylic acid group, or combinations thereof.
  • a polyether group e.g., a polyethylene oxide (PEO) group, a polyethylene glycol (PEG) group
  • PEO polyethylene oxide
  • PEG polyethylene glycol
  • polyvinylpyrrolidone group e.g., a polyvinylpyrrolidone group
  • a polyacrylic acid group e.g., a polyacrylic acid group, or combinations thereof.
  • the pendant hydrophilic group can be bonded to the aliphatic group or aromatic group through a linker.
  • the linker can be any bifunctional small molecule (e.g., one having from 1 to 20 carbon atoms) capable of linking the pendant hydrophilic group to the aliphatic or aromatic group.
  • the linker can include a diisocyanate group, as previously described herein, which when linked to the pendant hydrophilic group and to the aliphatic or aromatic group forms a carbamate bond.
  • the linker can be 4,4'-diphenylmethane diisocyanate (MDI), as shown below.
  • the pendant hydrophilic group can be a polyethylene oxide group and the linking group can be MDI, as shown below.
  • the pendant hydrophilic group can be functionalized to enable it to bond to the aliphatic or aromatic group, optionally through the linker.
  • the pendant hydrophilic group includes an alkene group, which can undergo a Michael addition with a sulfhydryl- containing bifunctional molecule (i.e., a molecule having a second reactive group, such as a hydroxyl group or amino group), resulting in a hydrophilic group that can react with the polymer backbone, optionally through the linker, using the second reactive group.
  • the pendant hydrophilic group is a polyvinylpyrrolidone group
  • it can react with the sulfhydryl group on mercaptoethanol to result in hydroxyl-functionalized polyvinylpyrrolidone, as shown below.
  • At least one R 2 group in the polyurethane can include a polytetramethylene oxide group. At least one R 2 group of the polyurethane can include an aliphatic polyol group functionalized with a polyethylene oxide group or polyvinylpyrrolidone group, such as the polyols described in E.P. Patent No.2462908, which is hereby incorporated by reference.
  • the R 2 group can be derived from the reaction product of a polyol (e.g., pentaerythritol or 2,2,3- trihydroxypropanol) and either MDI-derivatized methoxypolyethylene glycol (to obtain compounds as shown in Formulas 6 or 7) or with MDI-derivatized polyvinylpyrrolidone (to obtain compounds as shown in Formulas 8 or 9) that had been previously been reacted with mercaptoethanol, as shown below.
  • a polyol e.g., pentaerythritol or 2,2,3- trihydroxypropanol
  • MDI-derivatized methoxypolyethylene glycol to obtain compounds as shown in Formulas 6 or 7
  • MDI-derivatized polyvinylpyrrolidone to obtain compounds as shown in Formulas 8 or 9 that had been previously been reacted with mercaptoethanol, as shown below.
  • At least one R 2 of the polyurethane can be a polysiloxane,
  • the R 2 group can be derived from a silicone monomer of Formula 10, such as a silicone monomer disclosed in U.S. Pat. No.5,969,076, which is hereby incorporated by reference:
  • a is 1 to 10 or larger (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10); each R 4 independently is hydrogen, an alkyl group having from 1 to 18 carbon atoms, an alkenyl group having from 2 to 18 carbon atoms, aryl, or polyether; and each R 5 independently is an alkylene group having from 1 to 10 carbon atoms, polyether, or polyurethane.
  • Each R 4 group can independently be a H, an alkyl group having from 1 to 10 carbon atoms, an alkenyl group having from 2 to 10 carbon atoms, an aryl group having from 1 to 6 carbon atoms, polyethylene, polypropylene, or polybutylene group.
  • Each R 4 group can independently be selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, s-butyl, t-butyl, ethenyl, propenyl, phenyl, and polyethylene groups.
  • Each R 5 group can independently include an alkylene group having from 1 to 10 carbon atoms (e.g., a methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, or decylene group).
  • Each R 5 group can be a polyether group (e.g., a polyethylene, polypropylene, or polybutylene group).
  • Each R 5 group can be a polyurethane group.
  • the polyurethane can include an at least partially crosslinked polymeric network that includes polymer chains that are derivatives of polyurethane.
  • the level of crosslinking can be such that the polyurethane retains thermoplastic properties (i.e., the crosslinked thermoplastic polyurethane can be melted and re-solidified under the processing conditions described herein).
  • This crosslinked polymeric network can be produced by polymerizing one or more isocyanates with one or more polyamino compounds, polysulfhydryl compounds, or combinations thereof, as shown in Formulas 11 and 12, below:
  • isocyanates can also be chain extended with one or more polyamino or polythiol chain extenders to bridge two or more isocyanates, such as previously described for the polyurethanes of Formula 2.
  • the polyurethane chain can be physically crosslinked to another polyurethane chain through e.g., nonpolar or polar interactions between the urethane or carbamate groups of the polymers (the hard segments).
  • the R 1 group in Formula 1, and the R 1 and R 3 groups in Formula 2 form the portion of the polymer often referred to as the“hard segment”, and the R 2 group forms the portion of the polymer often referred to as the“soft segment”.
  • the soft segment is covalently bonded to the hard segment.
  • the polyurethane having physically crosslinked hard and soft segments can be a hydrophilic polyurethane (i.e., a polyurethane, including a thermoplastic polyurethane, including hydrophilic groups as disclosed herein).
  • the polyurethane can be a thermoplastic polyurethane composed of MDI, PTMO, and 1,4-butylene glycol, as described in U.S. Patent No.4,523,005.
  • Commercially available polyurethanes suitable for the present use include, but are not limited to those under the tradename“SANCURE” (e.g., the“SANCURE” series of polymer such as“SANCURE” 20025F) or "TECOPHILIC” (e.g., TG-500, TG-2000, SP-80A-150, SP-93A-100, SP-60D-60) (Lubrizol, Countryside, IL, USA),“PELLETHANE“ 2355-85ATP and 2355-95AE (Dow Chemical Company of Midland, MI, USA.), "ESTANE” (e.g., ALR G 500, or 58213; Lubrizol, Countryside, IL, USA).
  • the water-dispersible polyurethane can also be referred to as“a water-borne polyurethane polymer dispersion.”
  • the water-dispersible enhancing moiety can be added to the chain of Formula 1 or 2 (e.g., within the chain and/or onto the chain as a side chain).
  • water-borne herein means the continuous phase of the dispersion or formulation of about 50 weight percent to 100 weight percent water, about 60 weight percent to 100 weight percent water, about 70 weight percent to 100 weight percent water, or about 100 weight percent water.
  • water-borne dispersion refers to a dispersion of a component (e.g., polymer, cross-linker, and the like) in water without co-solvents.
  • the co-solvent can be used in the water-borne dispersion and the co-solvent can be an organic solvent. Additional detail regarding the polymers, polyurethanes, isocyantes and the polyols are provided below.
  • the polyurethane (e.g., a water-borne polyurethane polymer dispersion) can include one or more water-dispersible enhancing moieties.
  • the water-dispersible enhancing moiety can have at least one hydrophilic (e.g., poly(ethylene oxide)), ionic or potentially ionic group to assist dispersion of the polyurethane, thereby enhancing the stability of the dispersions.
  • a water- dispersible polyurethane can be formed by incorporating a moiety bearing at least one hydrophilic group or a group that can be made hydrophilic (e.g., by chemical modifications such as neutralization) into the polymer chain.
  • these compounds can be nonionic, anionic, cationic or zwitterionic or the combination thereof.
  • anionic groups such as carboxylic acid groups can be incorporated into the chain in an inactive form and
  • a salt-forming compound such as a tertiary amine.
  • a salt-forming compound such as a tertiary amine.
  • Other water- dispersible enhancing moieties can also be reacted into the backbone through urethane linkages or urea linkages, including lateral or terminal hydrophilic ethylene oxide or ureido units.
  • the water-dispersible enhancing moiety can be a one that includes carboxyl groups.
  • Water-dispersible enhancing moiety that include a carboxyl group can be formed from hydroxy- carboxylic acids having the general formula (HO) x Q(COOH) y , where Q can be a straight or branched bivalent hydrocarbon radical containing 1 to 12 carbon atoms, and x and y can each independently be 1 to 3.
  • Illustrative examples include dimethylolpropanoic acid (DMPA), dimethylol butanoic acid (DMBA), citric acid, tartaric acid, glycolic acid, lactic acid, malic acid, dihydroxymalic acid, dihydroxytartaric acid, and the like, and mixtures thereof.
  • the water-dispersible enhancing moiety can include reactive polymeric polyol components that contain pendant anionic groups that can be polymerized into the backbone to impart water dispersible characteristics to the polyurethane.
  • Anionic functional polymeric polyols can include anionic polyester polyols, anionic polyether polyols, and anionic
  • the water-dispersible enhancing moiety can include a side chain hydrophilic monomer.
  • the water-dispersible enhancing moiety including the side chain hydrophilic monomer can include alkylene oxide polymers and copolymers in which the alkylene oxide groups have from 2-10 carbon atoms as shown in U.S. Patent 6,897,281.
  • Additional types of water-dispersible enhancing moieties can include thioglycolic acid, 2,6-dihydroxybenzoic acid, sulfoisophthalic acid, polyethylene glycol, and the like, and mixtures thereof. Additional details regarding water-dispersible enhancing moieties can be found in U.S. Patent 7,476,705.
  • the polymer can comprise a polyamide, such as a thermoplastic polyamide.
  • the polyamide can be an elastomeric polyamide, including an elastomeric thermoplastic polyamide.
  • the polyamide can be a polyamide homopolymer having repeating polyamide segments of the same chemical structure.
  • the polyamide can comprise a number of polyamide segments having different polyamide chemical structures (e.g., polyamide 6 segments, polyamide 11 segments, polyamide 12 segments, polyamide 66 segments, etc.).
  • the polyamide segments having different chemical structure can be arranged randomly, or can be arranged as repeating blocks.
  • the polyamide can be a co-polyamide (i.e., a co-polymer including polyamide segments and non-polyamide segments).
  • the polyamide segments of the co-polyamide can comprise or consist of polyamide 6 segments, polyamide 11 segments, polyamide 12 segments, polyamide 66 segments, or any combination thereof.
  • the polyamide segments of the co-polyamide can be arranged randomly, or can be arranged as repeating segments.
  • the polyamide segments can comprise or consist of polyamide 6 segments, or polyamide 12 segments, or both polyamide 6 segment and polyamide 12 segments. In the example where the polyamide segments of the co- polyamide include of polyamide 6 segments and polyamide 12 segments, the segments can be arranged randomly.
  • the non-polyamide segments of the co-polyamide can comprise or consist of polyether segments, polyester segments, or both polyether segments and polyester segments.
  • the co-polyamide can be a block co-polyamide, or can be a random co-polyamide.
  • the copolyamide can be formed from the polycondensation of a polyamide oligomer or prepolymer with a second oligomer prepolymer to form a copolyamide (i.e., a co-polymer including polyamide segments.
  • the second prepolymer can be a hydrophilic prepolymer.
  • the polyamide can be a polyamide-containing block co-polymer.
  • the block co-polymer can have repeating hard segments, and repeating soft segments.
  • the hard segments can comprise polyamide segments, and the soft segments can comprise non- polyamide segments.
  • the polyamide-containing block co-polymer can be an elastomeric co- polyamide comprising or consisting of polyamide-containing block co-polymers having repeating hard segments and repeating soft segments.
  • block co-polymers including block co-polymers having repeating hard segments and soft segments, physical crosslinks can be present within the segments or between the segments or both within and between the segments.
  • the polyamide itself, or the polyamide segment of the polyamide-containing block co- polymer can be derived from the condensation of polyamide prepolymers, such as lactams, amino acids, and/or diamino compounds with dicarboxylic acids, or activated forms thereof.
  • the resulting polyamide segments include amide linkages (—(CO)NH—).
  • the term“amino acid” refers to a molecule having at least one amino group and at least one carboxyl group.
  • Each polyamide segment of the polyamide can be the same or different.
  • the polyamide or the polyamide segment of the polyamide-containing block co-polymer can be derived from the polycondensation of lactams and/or amino acids, and can include an amide segment having a structure shown in Formula 13, below, wherein R 6 group represents the portion of the polyamide derived from the lactam or amino acid.
  • the R 6 group can be derived from a lactam.
  • the R 6 group can be derived from a lactam group having from 3 to 20 carbon atoms, or a lactam group having from 4 to 15 carbon atoms, or a lactam group having from 6 to 12 carbon atoms.
  • the R 6 group can be derived from caprolactam or laurolactam.
  • the R 6 group can be derived from one or more amino acids.
  • the R 6 group can be derived from an amino acid group having from 4 to 25 carbon atoms, or an amino acid group having from 5 to 20 carbon atoms, or an amino acid group having from 8 to 15 carbon atoms.
  • the R 6 group can be derived from 12-aminolauric acid or 11-aminoundecanoic acid.
  • Formula 13 can include a polyamide-polyether block copolymer segment, as shown below:
  • the polyamide or the polyamide segment of the polyamide-containing block co-polymer can be derived from the condensation of diamino compounds with dicarboxylic acids, or activated forms thereof, and can include an amide segment having a structure shown in Formula 15, below, wherein the R 7 group represents the portion of the polyamide derived from the diamino compound, and the R 8 group represents the portion derived from the dicarboxylic acid compound:
  • the R 7 group can be derived from a diamino compound that includes an aliphatic group having from 4 to 15 carbon atoms, or from 5 to 10 carbon atoms, or from 6 to 9 carbon atoms.
  • the diamino compound can include an aromatic group, such as phenyl, naphthyl, xylyl, and tolyl.
  • Suitable diamino compounds from which the R 7 group can be derived include, but are not limited to, hexamethylene diamine (HMD), tetramethylene diamine, trimethyl hexamethylene diamine (TMD),m-xylylene diamine (MXD), and 1,5-pentamine diamine.
  • the R 8 group can be derived from a dicarboxylic acid or activated form thereof, including an aliphatic group having from 4 to 15 carbon atoms, or from 5 to 12 carbon atoms, or from 6 to 10 carbon atoms.
  • the dicarboxylic acid or activated form thereof from which R 8 can be derived includes an aromatic group, such as phenyl, naphthyl, xylyl, and tolyl groups.
  • Suitable carboxylic acids or activated forms thereof from which R 8 can be derived include adipic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • the polyamide chain can be substantially free of aromatic groups.
  • Each polyamide segment of the polyamide can be independently derived from a polyamide prepolymer selected from the group consisting of 12-aminolauric acid, caprolactam, hexamethylene diamine and adipic acid.
  • the polyamide can comprise or consist essentially of a poly(ether-block-amide).
  • the poly(ether-block-amide) can be formed from the polycondensation of a carboxylic acid terminated polyamide prepolymer and a hydroxyl terminated polyether prepolymer to form a poly(ether-block-amide), as shown in Formula 16:
  • the poly(ether block amide) polymer can be prepared by polycondensation of polyamide blocks containing reactive ends with polyether blocks containing reactive ends.
  • Examples include: 1) polyamide blocks containing diamine chain ends with polyoxyalkylene blocks containing carboxylic chain ends; 2) polyamide blocks containing dicarboxylic chain ends with polyoxyalkylene blocks containing diamine chain ends obtained by cyanoethylation and hydrogenation of aliphatic dihydroxylated alpha-omega polyoxyalkylenes known as polyether diols; 3) polyamide blocks containing dicarboxylic chain ends with polyether diols, the products obtained in this particular case being polyetheresteramides.
  • the polyamide block of the poly(ether-block-amide) can be derived from lactams, amino acids, and/or diamino compounds with dicarboxylic acids as previously described.
  • the polyether block can be derived from one or more polyethers selected from the group consisting of polyethylene oxide (PEO), polypropylene oxide (PPO), polytetrahydrofuran (PTHF), polytetramethylene oxide (PTMO), and combinations thereof.
  • the poly(ether block amide) polymers can include those comprising polyamide blocks comprising dicarboxylic chain ends derived from condensation of a, w- aminocarboxylic acids, of lactams or of dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid.
  • poly(ether block amide) polymers of this type a a, w-aminocarboxylic acid such as aminoundecanoic acid can be used; a lactam such as caprolactam or lauryllactam can be used; a dicarboxylic acid such as adipic acid, decanedioic acid or dodecanedioic acid can be used; and a diamine such as hexamethylenediamine can be used; or various combinations of any of the foregoing.
  • the copolymer can comprise polyamide blocks comprising polyamide 12 or of polyamide 6.
  • the poly(ether block amide) polymers can include those comprising polyamide blocks derived from the condensation of one or more a, w-aminocarboxylic acids and/or of one or more lactams containing from 6 to 12 carbon atoms in the presence of a dicarboxylic acid containing from 4 to 12 carbon atoms, and are of low mass, i.e., they have a number-average molecular weight of from 400 to 1000.
  • an a, w- aminocarboxylic acid such as aminoundecanoic acid or aminododecanoic acid
  • a dicarboxylic acid such as adipic acid, sebacic acid, isophthalic acid, butanedioic acid, 1,4- cyclohexyldicarboxylic acid, terephthalic acid, the sodium or lithium salt of sulphoisophthalic acid
  • dimerized fatty acids (these dimerized fatty acids have a dimer content of at least 98 weight percent and are preferably hydrogenated) and dodecanedioic acid HOOC—(CH 2 ) 10 — COOH
  • a lactam such as caprolactam and lauryllactam can be used; or various combinations of any of the foregoing.
  • the copolymer can comprise polyamide blocks obtained by condensation of lauryllactam in the presence of adipic acid or dodecanedioic acid and with a number average molecular weight of at least 750 have a melting temperature of from about 127 to about 130 degrees C.
  • the various constituents of the polyamide block and their proportion can be chosen in order to obtain a melting point of less than 150 degrees C, or from about 90 degrees C to about 135 degrees C.
  • the poly(ether block amide) polymers can include those comprising polyamide blocks derived from the condensation of at least one a, w-aminocarboxylic acid (or a lactam), at least one diamine and at least one dicarboxylic acid.
  • a a, w- aminocarboxylic acid, the lactam and the dicarboxylic acid can be chosen from those described herein above and the diamine that can be used can include an aliphatic diamine containing from 6 to 12 atoms and can be acyclic and/or saturated cyclic such as, but not limited to, hexamethylenediamine, piperazine, 1-aminoethylpiperazine, bisaminopropylpiperazine, tetramethylenediamine, octamethylene-diamine, decamethylenediamine,
  • the diamine that can be used can include an aliphatic diamine containing from 6 to 12 atoms and can be acyclic and/or saturated cyclic such as, but not limited to, hexamethylenediamine, piperazine, 1-aminoethylpiperazine, bisaminopropylpiperazine, tetramethylenediamine, octamethylene-diamine, decam
  • dodecamethylenediamine 1,5-diaminohexane, 2,2,4-trimethyl-1,6-diaminohexane, diamine polyols, isophoronediamine (IPD), methylpentamethylenediamine (MPDM),
  • AFM bis(aminocyclohexyl)methane
  • BMACM bis(3-methyl-4-aminocyclohexyl)methane
  • the polyamide can be a thermoplastic polyamide and the constituents of the polyamide block and their proportion can be chosen in order to obtain a melting temperature of less than 150 degrees C, such as a melting point of from about 90 degrees C to about 135 degrees C.
  • the various constituents of the thermoplastic polyamide block and their proportion can be chosen in order to obtain a melting point of less than 150 degrees C, such as from about and 90 degrees C to about 135 degrees C.
  • the number average molar mass of the polyamide blocks can be from about 300 grams per mole to about 15,000 grams per mole, from about 500 grams per mole to about 10,000 grams per mole, from about 500 grams per mole to about 6,000 grams per mole, from about 500 grams per mole to about 5,000 grams per mole, or from about 600 grams per mole to about 5,000 grams per mole.
  • the number average molecular weight of the polyether block can range from about 100 to about 6,000, from about 400 to about 3000, or from about 200 to about 3,000.
  • the polyether (PE) content (x) of the poly(ether block amide) polymer can be from about 0.05 to about 0.8 (i.e., from about 5 mole percent to about 80 mole percent ).
  • the polyether blocks can be present in the polyamide in an amount of from about 10 weight percent to about 50 weight percent, from about 20 weight percent to about 40 weight percent, or from about 30 weight percent to about 40 weight percent.
  • the polyamide blocks can be present in the polyamide in an amount of from about 50 weight percent to about 90 weight percent, from about 60 weight percent to about 80 weight percent, or from about 70 weight percent to about 90 weight percent.
  • the polyether blocks can contain units other than ethylene oxide units, such as, for example, propylene oxide or polytetrahydrofuran (which leads to polytetramethylene glycol sequences). It is also possible to use simultaneously PEG blocks, i.e., those consisting of ethylene oxide units, polypropylene glycol (PPG) blocks, i.e. those consisting of propylene oxide units, and poly(tetramethylene ether)glycol (PTMG) blocks, i.e. those consisting of
  • tetramethylene glycol units also known as polytetrahydrofuran.
  • PPG or PTMG blocks are advantageously used.
  • the amount of polyether blocks in these copolymers containing polyamide and polyether blocks can be from about 10 weight percent to about 50 weight percent of the copolymer, or from about 35 weight percent to about 50 weight percent.
  • the copolymers containing polyamide blocks and polyether blocks can be prepared by any means for attaching the polyamide blocks and the polyether blocks. In practice, two processes are essentially used, one being a 2-step process and the other a one-step process.
  • the polyamide blocks having dicarboxylic chain ends are prepared first, and then, in a second step, these polyamide blocks are linked to the polyether blocks.
  • the polyamide blocks having dicarboxylic chain ends are derived from the condensation of polyamide precursors in the presence of a chain-stopper dicarboxylic acid. If the polyamide precursors are only lactams or a, w-aminocarboxylic acids, a dicarboxylic acid is added. If the precursors already comprise a dicarboxylic acid, this is used in excess with respect to the stoichiometry of the diamines.
  • the reaction usually takes place from about 180 to about 300 degrees C, such as from about 200 degrees to about 290 degrees C, and the pressure in the reactor can be set from about 5 to about 30 bar and maintained for approximately 2 to 3 hours.
  • the pressure in the reactor is slowly reduced to atmospheric pressure and then the excess water is distilled off, for example for one or two hours.
  • the polyether, the polyol and a catalyst are then added.
  • the total amount of polyether can be divided and added in one or more portions, as can the catalyst.
  • the polyether is added first and the reaction of the OH end groups of the polyether and of the polyol with the COOH end groups of the polyamide starts, with the formation of ester linkages and the elimination of water. Water is removed as much as possible from the reaction mixture by distillation and then the catalyst is introduced in order to complete the linking of the polyamide blocks to the polyether blocks.
  • This second step takes place with stirring, preferably under a vacuum of at least 50 millibar (5000 Pascals) at a temperature such that the reactants and the copolymers obtained are in the molten state.
  • this temperature can be from about 100 to about 400 degrees C, such as from about 200 to about 250 degrees C.
  • the reaction is monitored by measuring the torque exerted by the polymer melt on the stirrer or by measuring the electric power consumed by the stirrer. The end of the reaction is determined by the value of the torque or of the target power.
  • the catalyst is defined as being any product which promotes the linking of the polyamide blocks to the polyether blocks by esterification.
  • the catalyst can be a derivative of a metal (M) chosen from the group formed by titanium, zirconium and hafnium.
  • the derivative can be prepared from a tetraalkoxides consistent with the general formula M(OR) 4 , in which M represents titanium, zirconium or hafnium and R, which can be identical or different, represents linear or branched alkyl radicals having from 1 to 24 carbon atoms.
  • the catalyst can comprise a salt of the metal (M), particularly the salt of (M) and of an organic acid and the complex salts of the oxide of (M) and/or the hydroxide of (M) and an organic acid.
  • the organic acid can be formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid or crotonic acid.
  • the organic acid can be an acetic acid or a propionic acid.
  • M can be zirconium and such salts are called zirconyl salts, e.g., the commercially available product sold under the name zirconyl acetate.
  • the weight proportion of catalyst can vary from about 0.01 to about 5 percent of the weight of the mixture of the dicarboxylic polyamide with the polyetherdiol and the polyol.
  • the weight proportion of catalyst can vary from about 0.05 to about 2 percent of the weight of the mixture of the dicarboxylic polyamide with the polyetherdiol and the polyol.
  • the polyamide precursors, the chain stopper and the polyether are blended together; what is then obtained is a polymer having essentially polyether blocks and polyamide blocks of highly variable length, but also the various reactants that have reacted randomly, which are distributed randomly along the polymer chain. They are the same reactants and the same catalyst as in the two-step process described above. If the polyamide precursors are only lactams, it is advantageous to add a little water.
  • the copolymer has essentially the same polyether blocks and the same polyamide blocks, but also a small portion of the various reactants that have reacted randomly, which are distributed randomly along the polymer chain.
  • the reactor is closed and heated, with stirring.
  • the pressure established is from about 5 to about 30 bar. When the pressure no longer changes, the reactor is put under reduced pressure while still maintaining vigorous stirring of the molten reactants.
  • the reaction is monitored as previously in the case of the two- step process.
  • the proper ratio of polyamide to polyether blocks can be found in a single poly(ether block amide), or a blend of two or more different composition poly(ether block amide)s can be used with the proper average composition. It can be useful to blend a block copolymer having a high level of polyamide groups with a block copolymer having a higher level of polyether blocks, to produce a blend having an average level of polyether blocks of about 20 to about 40 weight percent of the total blend of poly(amid-block-ether) copolymers, or about 30 to about 35 weight percent.
  • the copolymer can comprise a blend of two different poly(ether-block-amide)s comprising at least one block copolymer having a level of polyether blocks below 35 weight percent, and a second poly(ether-block-amide) having at least 45 weight percent of polyether blocks.
  • Exemplary commercially available copolymers include, but are not limited to, those available under the tradenames of“VESTAMID” (Evonik Industries, Essen, Germany);
  • the polyamide can be physically crosslinked through, e.g., nonpolar or polar interactions between the polyamide groups of the polymers.
  • the copolyamide can be physically crosslinked through interactions between the polyamide groups, and optionally by interactions between the copolymer groups.
  • the co- polyamide is physically crosslinked through interactions between the polyamide groups
  • the polyamide segments can form the portion of the polymer referred to as the hard segment
  • copolymer segments can form the portion of the polymer referred to as the soft segment.
  • the copolyamide is a poly(ether-block-amide)
  • the polyamide segments form the hard segments of the polymer
  • polyether segments form the soft segments of the polymer. Therefore, in some examples, the polymer can include a physically crosslinked polymeric network having one or more polymer chains with amide linkages.
  • the polyamide segment of the co-polyamide can include polyamide-11 or polyamide-12 and the polyether segment can be a segment selected from the group consisting of
  • polyethylene oxide polypropylene oxide, and polytetramethylene oxide segments, and combinations thereof.
  • the polyamide can be partially or fully covalently crosslinked, as previously described herein.
  • the degree of crosslinking present in the polyamide is such that, when it is thermally processed, e.g., in the form of a yarn or fiber to form the articles of the present disclosure, the partially covalently crosslinked thermoplastic polyamide retains sufficient thermoplastic character that the partially covalently crosslinked thermoplastic polyamide is melted during the processing and re-solidifies.
  • the polymers can comprise a polyester.
  • the polyester can comprise a thermoplastic polyester. Additionally, the polyester can be an elastomeric polyester, including a thermoplastic polyester.
  • the polyester can be formed by reaction of one or more carboxylic acids, or its ester- forming derivatives, with one or more bivalent or multivalent aliphatic, alicyclic, aromatic or araliphatic alcohols or a bisphenol.
  • the polyester can be a polyester homopolymer having repeating polyester segments of the same chemical structure.
  • the polyester can comprise a number of polyester segments having different polyester chemical structures (e.g., polyglycolic acid segments, polylactic acid segments, polycaprolactone segments,
  • polyester segments having different chemical structure can be arranged randomly, or can be arranged as repeating blocks.
  • Exemplary carboxylic acids that can be used to prepare a polyester include, but are not limited to, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonane dicarboxylic acid, decane dicarboxylic acid, undecane dicarboxylic acid, terephthalic acid, isophthalic acid, alkyl-substituted or halogenated terephthalic acid, alkyl-substituted or halogenated isophthalic acid, nitro-terephthalic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl thioether dicarboxylic acid, 4,4'-diphenyl sulfone-dicarboxylic acid, 4,4'-diphenyl alkylenedicarboxylic acid, naphthalene-2,6-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid and
  • Exemplary diols or phenols suitable for the preparation of the polyester include, but are not limited to, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4- butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,2-propanediol, 2,2-dimethyl-1,3- propanediol, 2,2,4-trimethylhexanediol, p-xylenediol, 1,4-cyclohexanediol, 1,4-cyclohexane dimethanol, and bis-phenol A.
  • the polyester can be a polybutylene terephthalate (PBT), a polytrimethylene
  • PET polyethylene terephthalate
  • PEI polyethylene isophthalate
  • PAR polyarylate
  • PBN polybutylene naphthalate
  • liquid crystal polyester or a blend or mixture of two or more of the foregoing.
  • the polyester can be a co-polyester (i.e., a co-polymer including polyester segments and non-polyester segments).
  • the co-polyester can be an aliphatic co-polyester (i.e., a co- polyester in which both the polyester segments and the non-polyester segments are aliphatic).
  • the co-polyester can include aromatic segments.
  • the polyester segments of the co-polyester can comprise or consist essentially of polyglycolic acid segments, polylactic acid segments, polycaprolactone segments, polyhydroxyalkanoate segments, polyhydroxybutyrate segments, or any combination thereof.
  • the polyester segments of the co-polyester can be arranged randomly, or can be arranged as repeating blocks.
  • the polyester can be a block co-polyester having repeating blocks of polymeric units of the same chemical structure which are relatively harder (hard segments), and repeating blocks of the same chemical structure which are relatively softer (soft segments).
  • block co-polyesters including block co-polyesters having repeating hard segments and soft segments, physical crosslinks can be present within the blocks or between the blocks or both within and between the blocks.
  • the polymer can comprise or consist essentially of an elastomeric co-polyester having repeating blocks of hard segments and repeating blocks of soft segments.
  • the non-polyester segments of the co-polyester can comprise or consist essentially of polyether segments, polyamide segments, or both polyether segments and polyamide segments.
  • the co-polyester can be a block co-polyester, or can be a random co-polyester.
  • the co-polyester can be formed from the polycondensation of a polyester oligomer or prepolymer with a second oligomer prepolymer to form a block copolyester.
  • the second prepolymer can be a hydrophilic prepolymer.
  • the co-polyester can be formed from the polycondensation of terephthalic acid or naphthalene dicarboxylic acid with ethylene glycol, 1,4-butanediol, or 1,3-propanediol.
  • co-polyesters include polyethylene adipate, polybutylene succinate, poly(3-hydroxbutyrate-co-3-hydroxyvalerate), polyethylene
  • the co-polyamide can comprise or consist of
  • the polyester can be a block copolymer comprising segments of one or more of polybutylene terephthalate (PBT), a polytrimethylene terephthalate, a polyhexamethylene terephthalate, a poly-1,4-dimethylcyclohexane terephthalate, a polyethylene terephthalate (PET), a polyethylene isophthalate (PEI), a polyarylate (PAR), a polybutylene naphthalate (PBN), and a liquid crystal polyester.
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene isophthalate
  • PAR polyarylate
  • PBN polybutylene naphthalate
  • a suitable polyester that is a block copolymer can be a PET/PEI copolymer, a polybutylene terephthalate/tetraethylene glycol copolymer, a polyoxyalkylenediimide diacid/polybutylene terephthalate copolymer, or a blend or mixture of any of the foregoing.
  • the polyester can be a biodegradable resin, for example, a copolymerized polyester in which poly(a-hydroxy acid) such as polyglycolic acid or polylactic acid is contained as principal repeating units.
  • the disclosed polyesters can be prepared by a variety of polycondensation methods known to the skilled artisan, such as a solvent polymerization or a melt polymerization process.
  • the polymers can comprise or consist essentially of a polyolefin.
  • the polyolefin can be a thermoplastic polyolefin. Additionally, the polyolefin can be an elastomeric polyolefin, including a thermoplastic elastomeric polyolefin.
  • Exemplary polyolefins can include polyethylene, polypropylene, and olefin elastomers (e.g.,metallocene-catalyzed block copolymers of ethylene DQG ⁇ -olefins having 4 to about 8 carbon atoms).
  • the polyolefin can be a polymer comprising a polyethylene, an ethylene- ⁇ -olefin copolymer, an ethylene-propylene rubber (EPDM), a polybutene, a polyisobutylene, a poly-4-methylpent-1-ene, a polyisoprene, a polybutadiene, a ethylene-methacrylic acid copolymer, and an olefin elastomer such as a dynamically cross- linked polymer obtained from polypropylene (PP) and an ethylene-propylene rubber (EPDM), and blends or mixtures of the foregoing.
  • Further exemplary polyolefins include polymers of cycloolefins such as cyclopentene or norbornene.
  • polyethylene which optionally can be crosslinked, is inclusive a variety of polyethylenes, including low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE- HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), and blends or mixtures of any the foregoing polyethylenes.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • VLDPE linear low density polyethylene
  • VLDPE linear low density polyethylene
  • ULDPE medium density polyethylene
  • MDPE medium density polyethylene
  • HDPE high density polyethylene
  • HDPE- HMW high density and high molecular weight polyethylene
  • HDPE-UHMW high density and ultrahigh molecular weight polyethylene
  • a polyethylene can also be a polyethylene copolymer derived from monomers of monolefins and diolefins copolymerized with a vinyl, acrylic acid, methacrylic acid, ethyl acrylate, vinyl alcohol, and/or vinyl acetate.
  • Polyolefin copolymers comprising vinyl acetate-derived units can be a high vinyl acetate content copolymer, e.g., greater than about 50 weight percent vinyl acetate-derived composition.
  • the polyolefin can be formed through free radical, cationic, and/or anionic
  • the disclosed polyolefin can be prepared by radical polymerization under high pressure and at elevated temperature.
  • the polyolefin can be prepared by catalytic polymerization using a catalyst that normally contains one or more metals from group IVb, Vb, VIb or VIII metals.
  • the catalyst usually has one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that can be either p- or s-coordinated complexed with the group IVb, Vb, VIb or VIII metal.
  • the metal complexes can be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide.
  • the metal catalysts can be soluble or insoluble in the polymerization medium.
  • the catalysts can be used by themselves in the polymerization or further activators can be used, typically a group Ia, IIa and/or IIIa metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes.
  • the activators can be modified conveniently with further ester, ether, amine or silyl ether groups.
  • Suitable polyolefins can be prepared by polymerization of monomers of monolefins and diolefins as described herein.
  • Exemplary monomers that can be used to prepare the polyolefin include, but are not limited to, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 2-methyl-1- propene, 3-methyl-1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and mixtures thereof.
  • Suitable ethylene-a-olefin copolymers can be obtained by copolymerization of ethylene with an a-olefin such as propylene, butene-1, hexene-1, octene-1,4-methyl-1-pentene or the like having carbon numbers of 3 to 12.
  • a-olefin such as propylene, butene-1, hexene-1, octene-1,4-methyl-1-pentene or the like having carbon numbers of 3 to 12.
  • Suitable dynamically cross-linked polymers can be obtained by cross-linking a rubber component as a soft segment while at the same time physically dispersing a hard segment such as PP and a soft segment such as EPDM by using a kneading machine such as a Banbury mixer and a biaxial extruder.
  • the polyolefin can be a mixture of polyolefins, such as a mixture of two or more polyolefins disclosed herein above.
  • a suitable mixture of polyolefins can be a mixture of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) or mixtures of different types of polyethylene (for example LDPE/HDPE).
  • the polyolefin can be a copolymer of suitable monolefin monomers or a copolymer of a suitable monolefin monomer and a vinyl monomer.
  • exemplary polyolefin copolymers include ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers,
  • ethylene/methylpentene copolymers ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-
  • the polyolefin can be a polypropylene homopolymer, a polypropylene copolymers, a polypropylene random copolymer, a polypropylene block copolymer, a polyethylene
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • the polyolefin can be a polypropylene.
  • polypropylene is intended to encompass any polymeric composition comprising propylene monomers, either alone or in mixture or copolymer with other randomly selected and oriented polyolefins, dienes, or other monomers (such as ethylene, butylene, and the like). Such a term also encompasses any different configuration and arrangement of the constituent monomers (such as atactic, syndiotactic, isotactic, and the like). Thus, the term as applied to fibers is intended to encompass actual long strands, tapes, threads, and the like, of drawn polymer.
  • polypropylene can be of any standard melt flow (by testing); however, standard fiber grade polypropylene resins possess ranges of Melt Flow Indices between about 1 and 1000.
  • the polyolefin can be a polyethylene.
  • polyethylene is intended to encompass any polymeric composition comprising ethylene monomers, either alone or in mixture or copolymer with other randomly selected and oriented polyolefins, dienes, or other monomers (such as propylene, butylene, and the like). Such a term also encompasses any different configuration and arrangement of the constituent monomers (such as atactic, syndiotactic, isotactic, and the like). Thus, the term as applied to fibers is intended to encompass actual long strands, tapes, threads, and the like, of drawn polymer.
  • polyethylene can be of any standard melt flow (by testing); however, standard fiber grade polyethylene resins possess ranges of Melt Flow Indices between about 1 and 1000.
  • the thermoplastic material can further comprise one or more processing aids.
  • the processing aid can be a non-polymeric material. These processing aids can be independently selected from the group including, but not limited to, curing agents, initiators, plasticizers, mold release agents, lubricants, antioxidants, flame retardants, dyes, pigments, reinforcing and non- reinforcing fillers, fiber reinforcements, and light stabilizers.
  • a method of making the polymer-based item includes disposing (e.g., affixing) an optical element onto a first surface of polymer-based item or melting the structurally colored article and the like, the first surface of the article defined by a first polymeric material (e.g., a first thermoplastic material).
  • a first polymeric material e.g., a first thermoplastic material
  • the first polymeric material can be a thermoplastic material
  • the optical element is disposed onto the thermoplastic material.
  • a thermoplastic polymer softens or melts when heated and returns to a solid state when cooled.
  • the thermoplastic polymer transitions from a solid state to a softened state or liquid state when heated to or above one or more of the: (1) creep relaxation temperature (T cr ), (2) Vicat softening temperature (T vs ), (3) heat deflection temperature (T hd ), or (4) melting temperature (T m ).
  • T cr creep relaxation temperature
  • T vs Vicat softening temperature
  • T hd heat deflection temperature
  • T m melting temperature
  • the thermoplastic polymer transitions from the softened or liquid state to the solid state.
  • the thermoplastic polymer may be softened or melted, molded, cooled, re-softened or re- melted, re-molded, and cooled again through multiple cycles.
  • the method involves increasing a temperature of at least a portion of the first surface of the article to a first temperature at or above one or more of the: (1) creep relaxation temperature, (2) Vicat softening temperature, (3) heat deflection temperature, or (4) melting temperature, of the first thermoplastic material.
  • the optical element can be disposed on the first thermoplastic material while the temperature is at or above the first temperature.
  • the temperature can be lowered to a second temperature that is below one or more of: (1) creep relaxation temperature, (2) Vicat softening temperature, (3) heat deflection temperature, or (4) melting temperature, of the first thermoplastic material, to at least partially re-solidify the first thermoplastic material, and the optical element is disposed on the first thermoplastic material while the temperature is at or below the second temperature.
  • the method includes increasing a temperature of the at least a portion of the first surface of the article to a first temperature at or above one of a creep relaxation temperature, a heat deflection temperature, a Vicat softening temperature, or a melting temperature of the first thermoplastic material. Then the texture of the at least a portion of the first surface can be altered while the temperature of the first surface is at or above the first temperature. Subsequently, the optical element can be disposed onto at the at least a portion of the first surface having the altered texture.
  • Altering the texture of the first surface can include, for example, contacting a transfer medium having a first textured surface with the first surface of the article during or after increasing the temperature of the first surface of the article to the first temperature; and using the first textured surface of the transfer medium, forming a second textured surface on the first surface of the article prior to disposing the optical element onto the first surface.
  • the first textured surface of the transfer medium is an inverse or a relief of the resulting textured surface on the article.
  • the transfer medium used to alter the texture of the surface can include a release paper, a mold, a drum, a plate, or a roller. In these aspects, the combination of the textured surface and optical element can impart the structural color to the article.
  • disposing an optical element on the first surface of the article can include forming or depositing the optical element on the first surface of the article, including, for example, depositing the optical element using a technique comprising: physical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, pulsed laser deposition, sputtering, chemical vapor deposition, plasma- enhanced chemical vapor deposition, low pressure chemical vapor deposition, wet chemistry techniques, or combinations thereof.
  • a technique comprising: physical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, pulsed laser deposition, sputtering, chemical vapor deposition, plasma- enhanced chemical vapor deposition, low pressure chemical vapor deposition, wet chemistry techniques, or combinations thereof.
  • Disposing the optical element can further include optionally depositing at least three layers of the optical element using a deposition process, optionally depositing a first layer comprising a metal, optionally depositing a second layer comprising a metal oxide, optionally depositing both a first layer comprising a metal and a second layer comprising a metal oxide, or a combination thereof.
  • the optional first layer can comprise a titanium layer, or a silicon layer
  • the optional second layer can comprise a titanium dioxide layer or a silicon dioxide layer.
  • a textured surface e.g., textured layer, textured structure
  • the combination of the textured surface and the optical element impart the structural color to the article.
  • A“textile” may be defined as any material manufactured from fibers, filaments, or yarns characterized by flexibility, fineness, and a high ratio of length to thickness. Textiles generally fall into two categories. The first category includes textiles produced directly from webs of filaments or fibers by randomly interlocking to construct non-woven fabrics and felts. The second category includes textiles formed through a mechanical manipulation of yarn, thereby producing a woven fabric, a knitted fabric, a braided fabric, a crocheted fabric, and the like. The yarns, fibers, and articles of manufacture can include SC filaments of the present disclosure as well as other filaments, fibers, and yarns.
  • the terms“filament,”“fiber,” or“fibers” refer to materials that are in the form of discrete elongated pieces that are significantly longer than they are wide.
  • the fiber can include natural, manmade or synthetic fibers.
  • the fibers may be produced by conventional techniques, such as extrusion, electrospinning, interfacial polymerization, pulling, and the like.
  • the fibers can include carbon fibers, boron fibers, silicon carbide fibers, titania fibers, alumina fibers, quartz fibers, glass fibers, such as E, A, C, ECR, R, S, D, and NE glasses and quartz, or the like.
  • the fibers can be fibers formed from synthetic polymers capable of forming fibers such as poly(ether ketone), polyimide, polybenzoxazole, poly(phenylene sulfide), polyesters, polyolefins (e.g., polyethylene, polypropylene), aromatic polyamides (e.g., an aramid polymer such as para- aramid fibers and meta-aramid fibers), aromatic polyimides, polybenzimidazoles, polyetherimides, polytetrafluoroethylene, acrylic, modacrylic, poly(vinyl alcohol), polyamides, polyurethanes, and copolymers such as polyether-polyurea copolymers, polyester- polyurethanes, polyether block amide copolymers, or the like.
  • synthetic polymers capable of forming fibers such as poly(ether ketone), polyimide, polybenzoxazole, poly(phenylene sulfide), polyesters, polyolefins (e.g., polyethylene
  • the fibers can be natural fibers (e.g., silk, wool, cashmere, vicuna, cotton, flax, hemp, jute, sisal).
  • the fibers can be man-made fibers from regenerated natural polymers, such as rayon, lyocell, acetate, triacetate, rubber, and poly(lactic acid).
  • the fibers can have an indefinite length.
  • man-made and synthetic fibers are generally extruded in substantially continuous strands.
  • the fibers can be staple fibers, such as, for example, cotton fibers or extruded synthetic polymer fibers can be cut to form staple fibers of relatively uniform length.
  • the staple fiber can have a have a length of about 1 millimeter to 100 centimeters or more as well as any increment therein (e.g., 1 millimeter increments).
  • the fiber can have any of a variety of cross-sectional shapes. Natural fibers can have a natural cross-section, or can have a modified cross-sectional shape (e.g., with processes such as mercerization). Man-made or synthetic fibers can be extruded to provide a strand having a predetermined cross-sectional shape.
  • the cross-sectional shape of a fiber can affect properties, such as its softness, luster, and wicking ability.
  • the fibers can have round or essentially round cross sections. Alternatively, the fibers can have non-round cross sections, such as flat, oval, octagonal, rectangular, wedge-shaped, triangular, dog-bone, multi-lobal, multi-channel, hollow, core-shell, or other shapes.
  • the fiber can be processed.
  • the properties of fibers can be affected, at least in part, by processes such as drawing (stretching) the fibers, annealing (hardening) the fibers, and/or crimping or texturizing the fibers.
  • a fiber can be a multi-component fiber, such as one comprising two or more co-extruded polymeric materials.
  • the two or more co-extruded polymeric materials can be extruded in a core-sheath, islands-in-the-sea, segmented-pie, striped, or side-by-side configuration.
  • a multi-component fiber can be processed in order to form a plurality of smaller fibers (e.g., microfibers) from a single fiber, for example, by remove a sacrificial material.
  • the fiber can be a carbon fiber such as TARIFYL produced by Formosa Plastics Corp. of Kaohsiung City, Taiwan, (e.g., 12,000, 24,000, and 48,000 fiber tows, specifically fiber types TC-35 and TC-35R), carbon fiber produced by SGL Group of Wiesbaden, Germany (e.g., 50,000 fiber tow), carbon fiber produced by Hyosung of Seoul, South Korea, carbon fiber produced by Toho Tenax of Tokyo, Japan, fiberglass produced by Jushi Group Co., LTD of Zhejiang, China (e.g., E6, 318, silane-based sizing, filament diameters 14, 15, 17, 21,and 24 micrometers), and polyester fibers produced by Amann Group of Bonningheim, Germany (e.g., SERAFILE 200/2 non-lubricated polyester filament and SERAFILE COMPHIL 200/2 lubricated polyester filament).
  • TARIFYL produced by Formosa Plastics Corp. of Kaohsiung City, Taiwan, (e.g
  • a plurality of fibers includes 2 to hundreds or thousands or more fibers.
  • the plurality of fibers can be in the form of bundles of strands of fibers, referred to as tows, or in the form of relatively aligned staple fibers referred to as sliver and roving.
  • a single type fiber can be used either alone or in combination with one or more different types of fibers by co-mingling two or more types of fibers. Examples of co-mingled fibers include polyester fibers with cotton fibers, glass fibers with carbon fibers, carbon fibers with aromatic polyimide (aramid) fibers, and aromatic polyimide fibers with glass fibers.
  • the term“yarn” refers to an assembly formed of one or more fibers, wherein the strand has a substantial length and a relatively small cross-section, and is suitable for use in the production of textiles by hand or by machine, including textiles made using weaving, knitting, crocheting, braiding, sewing, embroidery, or ropemaking techniques. Thread is a type of yarn commonly used for sewing.
  • Yarns can be made using fibers formed of natural, man-made and synthetic materials. Synthetic fibers are most commonly used to make spun yarns from staple fibers, and filament yarns. Spun yarn is made by arranging and twisting staple fibers together to make a cohesive strand. The process of forming a yarn from staple fibers typically includes carding and drawing the fibers to form sliver, drawing out and twisting the sliver to form roving, and spinning the roving to form a strand. Multiple strands can be plied (twisted together) to make a thicker yarn. The twist direction of the staple fibers and of the plies can affect the final properties of the yarn.
  • a filament yarn can be formed of a single long, substantially continuous filament, which is conventionally referred to as a“monofilament yarn,” or a plurality of individual filaments grouped together.
  • a filament yarn can also be formed of two or more long, substantially continuous filaments which are grouped together by grouping the filaments together by twisting them or entangling them or both. As with staple yarns, multiple strands can be plied together to form a thicker yarn.
  • the yarn can undergo further treatment such as texturizing, thermal or mechanical treating, or coating with a material such as a synthetic polymer.
  • the fibers, yarns, or textiles, or any combination thereof, used in the disclosed articles can be sized. Sized fibers, yarns, and/or textiles are coated on at least part of their surface with a sizing composition selected to change the absorption or wear characteristics, or for compatibility with other materials.
  • the sizing composition facilitates wet-out and wet-through of the coating or resin upon the surface and assists in attaining desired physical properties in the final article.
  • An exemplary sizing composition can comprise, for example, epoxy polymers, urethane-modified epoxy polymers, polyester polymers, phenol polymers, polyamide polymers, polyurethane polymers, polycarbonate polymers, polyetherimide polymers, polyamideimide polymers, polystylylpyridine polymers, polyimide polymers bismaleimide polymers, polysulfone polymers, polyethersulfone polymers, epoxy-modified urethane polymers, polyvinyl alcohol polymers, polyvinyl pyrrolidone polymers, and mixtures thereof.
  • yarns can be combined, for example, to form composite yarns such as single- or double-covered yarns, and corespun yarns. Accordingly, yarns may have a variety of configurations that generally conform to the descriptions provided herein.
  • the yarn can comprise at least one thermoplastic material (e.g., one or more of the fibers can be made of thermoplastic material).
  • the yarn can be made of a thermoplastic material.
  • the yarn can be coated with a layer of a material such as a thermoplastic material.
  • the linear mass density or weight per unit length of a yarn can be expressed using various units, including denier (D) and tex. Denier is the mass in grams of 9000 meters of yarn. The linear mass density of a single filament of a fiber can also be expressed using denier per filament (DPF). Tex is the mass in grams of a 1000 meters of yarn. Decitex is another measure of linear mass and is the mass in grams for a 10,000 meters of yarn.
  • D denier
  • tex is another measure of linear mass and is the mass in grams for a 10,000 meters of yarn.
  • tenacity is understood to refer to the amount of force (expressed in units of weight, for example: pounds, grams, centinewtons or other units) needed to break a yarn (i.e., the breaking force or breaking point of the yarn), divided by the linear mass density of the yarn expressed, for example, in (unstrained) denier, decitex, or some other measure of weight per unit length.
  • the breaking force of the yarn is determined by subjecting a sample of the yarn to a known amount of force, for example, using a strain gauge load cell such as an INSTRON brand testing system (Norwood, MA, USA). Yarn tenacity and yarn breaking force are distinct from burst strength or bursting strength of a textile, which is a measure of how much pressure can be applied to the surface of a textile before the surface bursts.
  • the minimum tenacity required is approximately 1.5 grams per Denier.
  • Most yarns formed from commodity polymeric materials generally have tenacities in the range of about 1.5 grams per Denier to about 4 grams per Denier.
  • polyester yarns commonly used in the manufacture of knit uppers for footwear have tenacities in the range of about 2.5 to about 4 grams per Denier.
  • Yarns formed from commodity polymeric materials which are considered to have high tenacities generally have tenacities in the range of about 5 grams per Denier to about 10 grams per Denier.
  • yarns formed of aramid fiber typically have tenacities of about 20 grams per Denier
  • yarns formed of ultra-high molecular weight polyethylene (UHMWPE) having tenacities greater than 30 grams per Denier are available from Dyneema (Stanley, NC, USA ) and Spectra (Honeywell-Spectra, Colonial Heights, VA, USA).
  • Such techniques include, for example, interweaving, intertwining and twisting, and interlooping.
  • Interweaving is the intersection of two yarns that cross and interweave at right angles to each other.
  • the yarns utilized in interweaving are conventionally referred to as“warp” and“weft.”
  • a woven textile includes include a warp yarn and a weft yarn.
  • the warp yarn extends in a first direction
  • the weft strand extends in a second direction that is substantially perpendicular to the first direction.
  • Intertwining and twisting encompasses various procedures, such as braiding and knotting, where yarns intertwine with each other to form a textile.
  • Interlooping involves the formation of a plurality of columns of intermeshed loops, with knitting being the most common method of interlooping.
  • the textile may be primarily formed from one or more yarns that are mechanically-manipulated, for example, through interweaving, intertwining and twisting, and/or interlooping processes, as mentioned above.
  • the textile can be a nonwoven textile.
  • a nonwoven textile or fabric is a sheet or web structure made from fibers and/or yarns that are bonded together.
  • the bond can be a chemical and/or mechanical bond, and can be formed using heat, solvent, adhesive or a combination thereof.
  • Exemplary nonwoven fabrics are flat or tufted porous sheets that are made directly from separate fibers, molten plastic and/or plastic film. They are not made by weaving or knitting and do not necessarily require converting the fibers to yarn, although yarns can be used as a source of the fibers.
  • Nonwoven textiles are typically manufactured by putting small fibers together in the form of a sheet or web (similar to paper on a paper machine), and then binding them either mechanically (as in the case of felt, by interlocking them with serrated or barbed needles, or hydro-entanglement such that the inter-fiber friction results in a stronger fabric), with an adhesive, or thermally (by applying binder (in the form of powder, paste, or polymer melt) and melting the binder onto the web by increasing temperature).
  • a nonwoven textile can be made from staple fibers (e.g., from wetlaid, airlaid, carding/crosslapping processes), or extruded fibers (e.g., from meltblown or spunbond processes, or a combination thereof), or a combination thereof.
  • Bonding of the fibers in the nonwoven textile can be achieved with thermal bonding (with or without calendering), hydro-entanglement, ultrasonic bonding, needlepunching (needlefelting), chemical bonding (e.g., using binders such as latex emulsions or solution polymers or binder fibers or powders), meltblown bonding (e.g., fiber is bonded as air attenuated fibers intertangle during simultaneous fiber and web formation).
  • the melting temperature and glass transition temperature are determined using a commercially available Differential Scanning Calorimeter (“DSC”) in accordance with ASTM D3418-97. Briefly, a 10-15 gram sample is placed into an aluminum DSC pan and then the lead was sealed with the crimper press. The DSC is configured to scan from -100 degrees C to 225 degrees C with a 20 degrees C/minute heating rate, hold at 225 degrees C for 2 minutes, and then cool down to 25 degrees C at a rate of - 10 degrees C/minute. The DSC curve created from this scan is then analyzed using standard techniques to determine the glass transition temperature and the melting temperature.
  • DSC Differential Scanning Calorimeter
  • melt flow index is determined according to the test method detailed in ASTM D1238-13 Standard Test Method for Melt Flow Rates of
  • melt flow index measures the rate of extrusion of thermoplastics through an orifice at a prescribed temperature and load.
  • approximately 7 grams of the material is loaded into the barrel of the melt flow apparatus, which has been heated to a temperature specified for the material.
  • a weight specified for the material is applied to a plunger and the molten material is forced through the die.
  • a timed extrudate is collected and weighed.
  • Melt flow rate values are calculated in grams/10 min.
  • the creep relation temperature T cr is determined according to the exemplary techniques described in U.S. Patent No.5,866,058.
  • the creep relaxation temperature T cr is calculated to be the temperature at which the stress relaxation modulus of the tested material is 10% relative to the stress relaxation modulus of the tested material at the solidification temperature of the material, where the stress relaxation modulus is measured according to ASTM E328-02.
  • the solidification temperature is defined as the temperature at which there is little to no change in the stress relaxation modulus or little to no creep about 300 seconds after a stress is applied to a test material, which can be observed by plotting the stress relaxation modulus (in Pa) as a function of temperature (in °C).
  • the Vicat softening temperature T vs is be determined according to the test method detailed in ASTM D1525-09 Standard Test Method for Vicat Softening Temperature of Plastics, preferably using Load A and Rate A. Briefly, the Vicat softening temperature is the temperature at which a flat-ended needle penetrates the specimen to the depth of 1 mm under a specific load. The temperature reflects the point of softening expected when a material is used in an elevated temperature application. It is taken as the temperature at which the specimen is penetrated to a depth of 1 mm by a flat-ended needle with a 1 mm 2 circular or square cross-section. For the Vicat A test, a load of 10 N is used, whereas for the Vicat B test, the load is 50 N.
  • the test involves placing a test specimen in the testing apparatus so that the penetrating needle rests on its surface at least 1 mm from the edge. A load is applied to the specimen per the requirements of the Vicat A or Vicat B test. The specimen is then lowered into an oil bath at 23 °C. The bath is raised at a rate of 50 °C or 120 °C per hour until the needle penetrates 1 mm.
  • the test specimen must be between 3 and 6.5 mm thick and at least 10 mm in width and length. No more than three layers can be stacked to achieve minimum thickness.
  • the heat deflection temperature T hd is be determined according to the test method detailed in ASTM D648-16 Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position, using a 0.455 MPa applied stress. Briefly, the heat deflection temperature is the temperature at which a polymer or plastic sample deforms under a specified load. This property of a given plastic material is applied in many aspects of product design, engineering, and manufacture of products using thermoplastic components. In the test method, the bars are placed under the deflection measuring device and a load (0.455 MPa) of is placed on each specimen.
  • ASTM uses a standard bar 5" x 1 ⁇ 2" x 1 ⁇ 4".
  • ISO edgewise testing uses a bar 120mm x 10mm x 4mm.
  • ISO flatwise testing uses a bar 80mm x 10mm x 4mm.
  • the spectrometer was calibrated using a standard prior to the
  • the visible light transmittance was the measurement of visible light (or light energy) that was transmitted through a sample material when visible light within the spectral range of 400 nanometers to 700 nanometers was directed through the material. The results of all
  • the visible light reflectance was a measurement of the visible light (or light energy) that was reflected by a sample material when visible light within the spectral range of 400
  • nanometers to 700 nanometers was directed through the material.
  • the results of all reflectance over the range of 400 nanometers to 700 nanometers was collected and recorded. For each sample, a minimum value for the visible light reflectance was determined for this range.
  • a concentration range of“about 0.1 percent to about 5 percent” should be interpreted to include not only the explicitly recited concentration of about 0.1 weight percent to about 5 weight percent but also include individual concentrations (e.g., 1 percent, 2 percent, 3 percent, and 4 percent) and the sub-ranges (e.g., 0.5 percent, 1.1 percent, 2.2 percent, 3.3 percent, and 4.4 percent) within the indicated range.
  • the term“about” can include traditional rounding according to significant figures of the numerical value.
  • the phrase“about‘x’ to‘y’” includes“about‘x’ to about‘y’”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

The present disclosure are directed to objects having an optical element that imparts structural color. The present disclosure provides for filaments (structural color filament or "SC" filament) that comprise optical elements or fragments thereof that impart an optical effect (e.g., a structural color, a metallic appearance, or an iridescent appearance), where the optical elements are randomly dispersed throughout and on the surface of the SC filament.

Description

STRUCTURALLY-COLORED FILAMENTS AND METHODS FOR MAKING AND USING
STRUCTURALLY-COLORED FILAMENTS CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority to, co-pending U.S. Patent Application entitled
"STRUCTURALLY-COLORED FILAMENTS AND METHODS FOR MAKING AND USING STRUCTURALLY-COLORED FILAMENTS," filed on March 27, 2019, and assigned application number 62/824,632, and claims priority to, co-pending U.S. Patent Application entitled
"STRUCTURALLY-COLORED FILAMENTS AND METHODS FOR MAKING AND USING STRUCTURALLY-COLORED FILAMENTS," filed on October 17, 2019, and assigned application number 62/916,296, both of which are incorporated herein by reference in their entireties. BACKGROUND
Structural color is caused by the physical interaction of light with the micro- or nano- features of a surface and the bulk maxerial as compared to color derived from the presence of dyes or pigments that absorb or reflect specific wavelengths of light based on the chemical properties of the dyes or pigments. Color from dyes and pigments can be problematic in a number of ways. For example, dyes and pigments and their associated chemistries for fabrication and incorporation into finished goods may not be environmentally friendly. BRIEF DESCRIPTION OF THE DRAWINGS
Further embodiments of the present disclosure will be more readily appreciated upon review of the detailed description of its various embodiments, described below, when taken in conjunction with the accompanying drawings.
Figures 1A-1M shows various articles of footwear, apparel, athletic equipment, container, electronic equipment, and vision wear that include the structure in accordance with the present disclosure, while Figures 1N-1P illustrate additional details regarding different types of footwear.
Figure 2A illustrates a side view of exemplary inorganic optical element of the present disclosure. Figure 2B illustrates a side view of exemplary inorganic optical element of the present disclosure. DESCRIPTION
The present disclosure provides for filaments (structural color filament or“SC” filament) that comprise optical elements or fragments thereof that impart an optical effect (e.g., a structural color, a metallic appearance, or an iridescent appearance), where the optical elements are randomly dispersed throughout and on the surface of the SC filament. The optical effect imparted to the SC filament produces an aesthetically appealing appearance without requiring the use of inks or pigments and the environmental impact associated with their use. The optical effect from the optical element or fragments thereof is produced, at least in part, through scattering, refraction, reflection, interference, and/or diffraction of visible wavelengths of light. The optical effect can include structural color (e.g., hues of blue, green, red, yellow, and the like), where a subset of the structural color can be an iridescent or metallic appearance. Yarn or fiber can be formed using the SC filament and optionally other types of filaments.
The SC filament can be produced by melting a plurality of structurally colored articles and then extruding the molten material to form the SC filament, where the optical element or fragments thereof are dispersed throughout and on the surface of the SC filament. The structurally colored article can include a thermoplastic material and a plurality of the optical elements and fragments thereof. Depending upon how the structurally colored articles are produced and/or the processing of the structurally color article (e.g., the extrusion process), the SC filament can include intact optical elements as originally produced or fragments thereof, where the optical elements and fragments thereof can impart the optical effect.
The structurally colored articles can include pellets, films, sheets, and the like where each can be extruded articles. The structurally colored articles can be formed by disposing (e.g., affixing, attaching, adhering, bonding, joining) the optical element directly onto an article. Alternatively, the structurally colored articles can be formed by processing (e.g., grinding, cutting, shredding, crushing, or a combination thereof) a polymer-based item that includes a thermoplastic material and at least one optical element. During the processing of the polymer- based item, fragments of one or more optical elements can be formed, where all or some of the optical elements or fragments thereof retain the characteristic to impart the optical effect. The pieces of the polymer-based item are melted to form a molten material. The molten material is extruded to form the structurally colored articles. The optical elements and/or fragments thereof from the processing step can also form other fragments during the extrusion process. The optical element and/or fragments of optical elements impart the optical effect to the structurally colored articles. The optical effect before and after processing and/or extrusion may be the same or different. The optical element or fragments of the optical element can include at least one optical layer optionally having a textured surface (e.g., integral to the optical element or as part of the surface of the article), optionally with a protective layer, or optionally with any combination of the textured surface and the protective layer. The optical element can be a single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter. The optical elements or fragments of the optical element on the surface of the filaments cause the article incorporating the filament to have the optical effect that can be different than the article with a filament without the optical elements or fragments of the optical element.
The present disclosure provides a method of making a structural color (SC) filament, comprising melting a plurality of structurally colored articles, each structurally colored article comprising a thermoplastic material and a plurality of optical elements or fragments thereof, to form a first molten material including the plurality of optical elements or fragments thereof dispersed therein; and extruding the first molten material to form the SC filament, wherein the SC filament includes the dispersed plurality of optical elements or fragments thereof, and the dispersed plurality of optical elements or fragments thereof impart an optical effect to the SC filament. The present disclosure also provides an article comprising the SC filament made according to the method above and herein. The article can be an article of footwear, an article of apparel, or an article of sporting equipment.
The present disclosure provides for an article, comprising a SC filament having a plurality of optical elements and the fragments thereof randomly distributed throughout the SC filament, wherein the plurality of optical elements and the fragments thereof impart an optical effect to the filament.
The present disclosure provides for a method of forming an item, comprising: processing thereof a polymer-based item comprising at least one optical element to form pieces of the polymer-based item, wherein the optical element imparts a first optical effect to the polymer- based item, wherein a portion of at least one optical element is ground or cut into fragments of the optical element, wherein a first portion of the pieces of the polymer-based item retain the characteristic to impart the first optical effect; melting the pieces of the polymer-based item to form a second molten material; and extruding the second molten material to form structurally colored articles comprising the optical element and fragments thereof, wherein a portion of the optical elements and/or the fragments thereof impart a second optical effect to the structurally colored articles. The present disclosure provides for a method of forming structurally colored item, comprising: disposing an optical element onto a pellet for form a structurally colored pellet, wherein the optical element imparts an optical effect to the structurally colored pellets.
While in many examples of this disclosure, the optical effect can be a structural color such as iridescent (e.g., iridescent structural color, a color which shifts over a wide range of hues when viewed from different angles), metallic, or a“color” (e.g., non-iridescent or non- metallic) as described herein. In regard to an aspect where the structural color is not iridescent or metallic, the structural color can be of the type which does not shift over a wide range of hues when viewed from different angles (e.g., a structural color which does not shift hues, or which shifts over a limited number of hues depending upon the viewing angle). In one example, the present disclosure provides for the optical element or fragments of the optical element, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, and a third color measurement at a third angle of observation having coordinates L3* and a3* and b3*, wherein the L1*, L2*, and L3* values may be the same or different, wherein the a1*, a2*, and a3* coordinate values may be the same or different, wherein the b1*, b2*, and b3* coordinate values may be the same or different, and wherein the range of the combined a1*, a2* and a3* values is less than about 40% of the overall scale of possible a* values.
In another example, the present disclosure provides for the optical element, when measured according to the CIE 1976 color space under a given illumination condition at two observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, wherein the L1* and L2* values may be the same or different, wherein the a1* and a2* coordinate values may be the same or different, wherein the b1* and b2* coordinate values may be the same or different ,and wherein the DE*ab between the first color measurement and the second color measurement is less than or equal to 10, where DE*ab= [(L1*-L2*)2 + (a1*–a2*)2 + (b1*-b2*)2]1/2 or alternatively greater than 10.
In yet another example, the present disclosure provides for the optical element, when measured according to the CIELCH color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and C1* and h1°, and a second color measurement at a second angle of observation having coordinates L2* and C2* and h2°, and a third color measurement at a third angle of observation having coordinates L3* and C3* and h3°, wherein the L1*, L2*, and L3* values may be the same or different, wherein the C1*, C2*, and C3* coordinate values may be the same or different, wherein the h1°, h2° and h3° coordinate values may be the same or different, and wherein the range of the combined h1°, h2° and h3° values is less than about 10 degrees or alternatively greater than 10 degrees.
The present disclosure will be better understood upon reading the following numbered aspects, which should not be confused with the claims. Any of the numbered aspects below can, in some instances, be combined with aspects described elsewhere in this disclosure and such combinations are intended to form part of the disclosure.
Aspect 1. A method of making a structural color (SC) filament, comprising
melting a plurality of structurally colored articles, each structurally colored article
comprising a thermoplastic material and a plurality of optical elements or fragments thereof, to form a first molten material including the plurality of optical elements or fragments thereof dispersed therein; and
extruding the first molten material to form the SC filament, wherein the SC filament includes the dispersed plurality of optical elements or fragments thereof, and the dispersed plurality of optical elements or fragments thereof impart an optical effect to the SC filament.
Aspect 2. The method of the preceding aspect, wherein the optical element of each structurally colored article is a coating on the structurally colored article.
Aspect 3. The method of any one of the preceding aspects, wherein the structurally colored article is a pellet, optionally an extruded pellet.
Aspect 4. The method of any one of the preceding aspects, wherein the structurally colored article is a ground, crushed or shredded structurally colored article.
Aspect 5. The method of any one of the preceding aspects, wherein the ground, crushed or shredded structurally colored article is a film or sheet.
Aspect 6. The method of any one of the preceding aspects, wherein the ground, crushed or shredded structurally colored article is a ground structurally colored container, optionally a ground, crushed or shredded structurally colored bottle.
Aspect 7. The method of any one of the preceding aspects, wherein the optical element and the fragments thereof are layered structures having two or more layers stacked in the z dimension, optionally the optical element and the fragments thereof have a width in the x dimension, a length in the y dimension and a thickness in the z dimension, wherein the
thickness of the plurality of optical elements the fragments thereof dispersed in the filament are less than 10 percent less than the thickness of the plurality of optical element and the fragments thereof on the structurally colored article, and optionally the width and length of the portions of the plurality of optical elements and the fragments thereof dispersed in the filament are at least 5 percent smaller than the width and length of the plurality of optical elements and the fragments thereof of the structurally colored article.
Aspect 8. The method of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof dispersed in the filament optionally has, independently, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; wherein the plurality of optical elements and the fragments thereof dispersed in the filament has an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; and optionally wherein the plurality of dispersed optical elements and the fragments thereof in the filament has an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300 nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers or more.
Aspect 9. The method of any one of the preceding aspects, wherein the optical element on the structurally colored article is a structurally colored coating covering at least 25 percent or at least 50 percent or at least 75 percent of a total surface area of the structurally colored article, and optionally the portions of the plurality of optical elements the fragments thereof dispersed in the filament are a plurality of fragments formed from grinding, crushing, shredding, melting, or a combination thereof of the structurally colored article.
Aspect 10. The method of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof make up at least 1 percent by weight or at least 2 percent by weight or at least 5 percent by weight or at least 7 percent by weight or at least 10 percent by weight of a total weight of the filament.
Aspect 11. The method of any one of the preceding aspects, wherein a portion of the plurality of optical elements and the fragments thereof are not structurally deteriorated during melting, extruding, or both so that they do not impart the optical effect.
Aspect 12. The method of any one of the preceding aspects, wherein a portion of the plurality of optical elements and the fragments thereof are structurally deteriorated during melting, extruding, or both so that they do not impart the optical effect. Aspect 13. The method of any one of the preceding aspects, wherein the method further comprises processing the structurally colored polymeric material prior to the melting, wherein optionally processing comprises grinding, shredding, cutting, or crushing.
Aspect 14. An article comprising, the SC filament made according to any one of aspects 1-13. Aspect 15. The article of the preceding aspect, wherein the article is an article of footwear, an article of apparel, or an article of sporting equipment.
Aspect 16. An article, comprising a SC filament having a plurality of optical elements and the fragments thereof randomly distributed throughout the SC filament, wherein the plurality of optical elements and the fragments thereof impart an optical effect to the filament.
Aspect 17. The article of any one of the preceding aspects, wherein the optical effect is a structural color and is not iridescent or metallic.
Aspect 18. The article of any one of the preceding aspects, wherein the optical effect is an iridescent appearance.
Aspect 19. The article of any one of the preceding aspects, wherein the optical effect is a metallic appearance.
Aspect 20. The article of any one of the preceding aspects, wherein the optical element and the fragments thereof are layered structures that has two or more layers stacked in a z dimension perpendicular to the plane of the layered structures.
Aspect 21. The article of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof dispersed in the SC filament optionally has, individually, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; wherein the plurality of optical elements and the fragments thereof dispersed in the filament has an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; and optionally wherein the plurality of dispersed optical elements and the fragments thereof in the filament has an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300 nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers or more.
Aspect 22. The article of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof make up at least 1 percent by weight, or at least 2 percent by weight, or at least 5 percent by weight, or at least 7 percent by weight, or at least 10 percent by weight of a total weight of the filament. Aspect 23. The article of any one of the preceding aspects, wherein the plurality of the optical elements and the fragments thereof on the SC filament covers at least 25 percent, or at least 50 percent, or at least 75 percent of a total surface area of the filament.
Aspect 24. The method or article of any one of the preceding aspects, wherein the optical effect is a structural color and not iridescent or metallic.
Aspect 25. The method or article of any one of the preceding aspects, wherein the optical effect is an iridescent appearance.
Aspect 26. The method or article of any one of the preceding aspects, wherein the optical effect is a metallic appearance.
Aspect 27. The method or article of any one of the preceding aspects, wherein the optical effect imparts two or more different hues to the filament when the filament is viewed from at least two different angles 15 degrees apart.
Aspect 28. The method or article of any one of the preceding aspects, wherein the optical effect imparted to the filament is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
Aspect 29. The method or article of any one of the preceding aspects, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
Aspect 30. The method or article of any one of the preceding aspects, wherein the yarn is a monofilament yarn or a multi-filament yarn.
Aspect 31. The method or article of any one of the preceding aspects, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament. Aspect 32. The method or article of any one of the preceding aspects, wherein the filament is present in a staple yarn, a monofilament yarn, or a multifilament yarn; optionally wherein the yarn has a tenacity of about 1.5 grams per Denier to about 4.0 grams per Denier; or has tenacity of greater than 4.0 grams per Denier; or has a tenacity of about 5.0 grams per Denier to about 10 grams per Denier.
Aspect 33. The method or article of any one of the preceding aspects, wherein the SC filament of a staple fiber has an aspect ratio of 10 to 100,000.
Aspect 34. The method or article of any one of the preceding aspects, wherein the SC filament is present in the form of a textile, and optionally wherein the textile is a non-woven textile, a woven textile, a knit textile, a braided textile, or a crocheted textile.
Aspect 35. The method or article of any one of the preceding aspects, wherein the SC filament is attached to a substrate, optionally wherein the SC filament is stitched to or embroidered to the substrate. Aspect 36. The method or article of any one of the preceding aspects, wherein the SC filament is included with a plurality of second filaments in the form of a tow.
Aspect 37. The method or article of any one of the preceding aspects, wherein the plurality of second filaments of the tow are substantially free of optical elements.
Aspect 38. The method or article of any one of the preceding aspects, wherein the plurality of second filaments of the tow comprise second optical elements imparting a second optical effect to the second filaments.
Aspect 39. The method or article of any one of the preceding aspects, wherein the second optical effect of the plurality of second filaments is a different type of optical effect than the optical effect of the SC filament.
Aspect 40. The method or article of any one of the preceding aspects, further comprising dying the SC filament, fibers comprising the SC filament, or yarn comprising the SC filament.
Aspect 41. The method or article of any one of the preceding aspects, wherein the structurally colored thermoplastic material comprises at least one thermoplastic polymer, optionally wherein the at least one thermoplastic polymer includes a thermoplastic elastomer.
Aspect 42. The method or article of any one of the preceding aspects, wherein melting includes increasing a temperature of the thermoplastic material to a first temperature at or above a melting temperature of the thermoplastic polymer.
Aspect 43. The method or article of any one of the preceding aspects, wherein the
thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyethers, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co- polymers thereof, or a combination thereof.
Aspect 44. The method or article of any one of the preceding aspects, wherein the optical element includes at least one optical layer.
Aspect 45. The method or article of any one of the preceding aspects, wherein the optical element is single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter.
Aspect 46. The method or article of any one of the preceding aspects, wherein the multilayer reflector has at least two layers, including at least two adjacent layers having different refractive indices.
Aspect 47. The method or article of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector has a thickness that is about one-fourth of the wavelength of visible light.
Aspect 48. The method or article of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector comprises a material selected from the group consisting of: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, and a combination thereof.
Aspect 49. The method or article of any one of the preceding aspects, further comprising a textured surface on a first side of the optical element.
Aspect 50. The method or article of any one of the preceding aspects, wherein the textured surface has a plurality of profile features and a plurality of flat areas.
Aspect 51. The method or article of any one of the preceding aspects, wherein the textured surface includes a plurality of profile features and flat planar areas, wherein the profile features extend above the flat areas of the textured surface.
Aspect 52. The method or article of any one of the preceding aspects, wherein the
dimensions of the profile features, a shape of the profile features, a spacing among the plurality of the profile features, in combination with the optical layer impart the structural color.
Aspect 53. The method or article of any one of the preceding aspects, wherein the spacing among the profile features reduces distortion effects of the profile features produced from interfering with one another when imparting the structural color of the structural colored pellet. Aspect 54. The method or article of any one of the preceding aspects, wherein the profile features and the flat areas result in at least one optical layer of the optical element having an undulating topography, wherein the optical layer has a planar region between neighboring depressions and/or elevations that is planar with the flat planar areas of the textured surface. Aspect 55. The method or article of any one of the preceding aspects, wherein the structural color of the structurally colored pellets has the appearance of a single color or multiple colors. Aspect 56. The method or article of any one of the preceding aspects, wherein the optical element or the fragments thereof exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, and a third color measurement at a third angle of observation having coordinates L3* and a3* and b3*, wherein the L1*, L2*, and L3* values may be the same or different, wherein the a1*, a2*, and a3* coordinate values may be the same or different, wherein the b1*, b2*, and b3* coordinate values may be the same or different, and wherein the range of the combined a1*, a2* and a3* values is less than about 40% of the overall scale of possible a* values, optionally is less than about 30% of the overall scale of possible a* values, optionally is less than about 20% of the overall scale of possible a* values, or optionally is less than about 10% of the overall scale of possible a* values. Aspect 57. The method or article of any one of the preceding aspects, wherein the optical element or the fragments thereof exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, and a third color measurement at a third angle of observation having coordinates L3* and a3* and b3*, wherein the L1*, L2*, and L3* values may be the same or different, wherein the a1*, a2*, and a3* coordinate values may be the same or different, wherein the b1*, b2*, and b3* coordinate values may be the same or different, and wherein the range of the combined b1*, b2* and b3* values is less than about 40% of the overall scale of possible b* values, optionally is less than about 30% of the overall scale of possible b* values, optionally is less than about 20% of the overall scale of possible b* values, or optionally is 10% of the overall scale of possible b* values.
Aspect 58. The method or article of any one of the preceding aspects, wherein the optical element the fragments thereof exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at two observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, wherein the L1* and L2* values may be the same or different, wherein the a1* and a2* coordinate values may be the same or different, wherein the b1* and b2* coordinate values may be the same or different, and wherein the DE*ab between the first color measurement and the second color measurement is greater than or equal to about 100, where DE*ab= [(L1*-L2*)2 + (a1*–a2*)2 + (b1*-b2*)2]1/2, optionally is greater than or equal to about 80, or optionally is greater than or equal to about 60 or alternatively less than 3 or less than 2.2, or less than 2.
Aspect 59. The method or article of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIELCH color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and C1* and h1°, and a second color measurement at a second angle of observation having coordinates L2* and C2* and h2°, and a third color measurement at a third angle of observation having coordinates L3* and C3* and h3°, wherein the L1*, L2*, and L3* values may be the same or different, wherein the C1*, C2*, and C3* coordinate values may be the same or different, wherein the h1°, h2° and h3° coordinate values may be the same or different, and wherein the range of the combined h1°, h2° and h3° values is greater than about 60 degrees, optionally is greater than about 50 degrees, optionally is greater than about 40 degrees, optionally is greater than about 30 degrees, or optionally is greater than about 20 degrees or alternatively less than 10 degrees or less than 5 degrees.
Aspect 60. The method or article of one the preceding aspects, wherein the optical effect is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
Aspect 61. The method or article of one the preceding aspects, wherein the structural color has a single hue.
Aspect 62. The method or article of one the preceding aspects, wherein the structural color includes two or more hues.
Aspect 63. The method or article of one the preceding aspects, wherein the structural color has limited iridescence.
Aspect 64. The method or article of one the preceding aspects, wherein the structural color is not iridescence.
Aspect 65. The method or article of one the preceding aspects, wherein the structural color has limited iridescence such that, when each color visible at each possible angle of observation is assigned to a single hue selected from the group consisting of the primary, secondary and tertiary colors on the red yellow blue (RYB) color wheel, all of the assigned hues fall into a single hue group, wherein the single hue group is one of a) green-yellow, yellow, and yellow- orange; b) yellow, yellow-orange and orange; c) yellow-orange, orange, and orange-red; d) orange-red, and red-purple; e) red, red-purple, and purple; f) red-purple, purple, and purple- blue; g) purple, purple-blue, and blue; h) purple-blue, blue, and blue-green; i) blue, blue-green and green; and j) blue-green, green, and green-yellow.
Aspect 66. The method or article of one the preceding aspects, wherein the structural color having limited iridescence is limited to two or three of the hues green-yellow, yellow, yellow- orange; or the hues purple-blue, blue, and blue-green; or the hues orange-red, red, and red- purple; or the hues blue-green, green, and green-yellow; or the hues yellow-orange, orange, and orange-red; or the hues red-purple, purple, and purple-blue.
Aspect 67. The method or article of one of the preceding aspects, wherein an article comprises the SC filament.
Aspect 68. The method or article of one of the preceding aspects, wherein the article or substrate is an article of footwear, an article of apparel, or an article of sporting equipment.
Aspect 69. A method of forming an item, comprising: processing thereof a polymer-based item comprising at least one optical element to form pieces of the polymer-based item, wherein the optical element imparts a first optical effect to the polymer-based item, wherein a portion of at least one optical element is ground or cut into fragments of the optical element, wherein a first portion of the pieces of the polymer-based item retain the characteristic to impart the first optical effect;
melting the pieces of the polymer-based item to form a second molten material; and extruding the second molten material to form structurally colored articles comprising the optical element and fragments thereof, wherein a portion of the optical elements and/or the fragments thereof impart a second optical effect to the structurally colored articles.
Aspect 70. The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect are the same or the first optical effect and the second optical effect are different.
Aspect 71. The method of any one of the preceding aspects, wherein the structurally colored articles are pellets or SC filaments.
Aspect 72. The method of any one of the preceding aspects, wherein the polymer-based item is a film or sheet.
Aspect 73. The method of any one of the preceding aspects, wherein the polymer-based item article is a container, optionally a bottle.
Aspect 74. The method of any one of the preceding aspects, wherein the article is an article of footwear, an article of apparel, or an article of sporting equipment
Aspect 75. The method of any one of the preceding aspects, wherein the optical element and the fragments thereof are layered structures having two or more layers stacked in the z dimension, optionally the optical element and the fragments thereof have a width in the x dimension, a length in the y dimension and a thickness in the z dimension, wherein the thickness of the optical elements and the fragments thereof dispersed in the structurally colored article are less than 10 percent less than the thickness of the optical element and the fragments thereof on the polymer-based item, and optionally the width and length of the portions of the optical elements and the fragments thereof dispersed in the polymer-based item are at least 5 percent smaller than the width and length of the optical element of the polymer-based item. Aspect 76. The method of any one of the preceding aspects, wherein the plurality of optical elements and the fragments thereof dispersed in the structurally colored article optionally has, independently, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; wherein the plurality of optical elements and the fragments thereof dispersed in the filament has an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more; and optionally wherein the thickness of the fragments of the optical elements and the fragments thereof dispersed in the structurally colored articles are less than 10 percent less than the thickness of the optical element on the polymer-based item.
Aspect 77. The method of any one of the preceding aspects, wherein the plurality of fragments of the dispersed optical elements in the structurally colored article has an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300
nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers or more.
Aspect 78. The method of any one of the preceding aspects, further comprising extruding the second molten material with a third molten material, wherein the third molten material can comprise a thermoplastic material including one or more thermoplastic polyurethanes,
thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co- polymers thereof, or a combination thereof.
Aspect 79. The method of any one of the preceding aspects, wherein a portion of the optical elements and the fragments thereof are not structurally deteriorated during processing, melting, extruding, or a combination thereof.
Aspect 80. The method of any one of the preceding aspects, wherein a portion of the number of the fragments of the optical elements are structurally deteriorated during processing, melting, extruding, or a combination thereof.
Aspect 81. The method of any one of the preceding aspects, wherein processing includes grinding, cutting, shredding, crushing, or a combination.
Aspect 82. The method of the preceding aspect, wherein the polymer-based item is a film. Aspect 83. The method of any one of the preceding aspects, wherein the film has a thickness of about 3 nanometers to about 1 millimeter.
Aspect 84. The method of any one of the preceding aspects, wherein the pieces of the polymer- based item have a largest dimension of about 0.05 millimeters mm to 20 millimeters.
Aspect 85. The method of any one of the preceding aspects, wherein the structurally colored pellets have a largest dimension of about 0.05 millimeters mm to 20 millimeters.
Aspect 86. The method of any one of the preceding aspects, wherein the polymer-based item comprise a thermoplastic polymer or an elastomeric material, or an elastomeric thermoplastic material. Aspect 87. The method of any one of the preceding aspects, wherein melting includes increasing a temperature of the thermoplastic polymer to a first temperature above a melting of the thermoplastic polymer, or an elastomeric material, or an elastomeric thermoplastic material.
Aspect 88. The method of any one of the preceding aspects, wherein the thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co-polymers thereof, or a combination thereof. Aspect 89. The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect are, independently, a structural color.
Aspect 90. The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect have, independently, an iridescent appearance.
Aspect 91. The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect have, independently, a metallic appearance.
Aspect 92. The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect, independently, impart two or more different hues when viewed from at least two different angles 15 degrees apart.
Aspect 93. The method of any one of the preceding aspects, wherein the first optical effect and the second optical effect, independently, imparted is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article or item.
Aspect 94. The method of any one of the preceding aspects, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
Aspect 95. The method of any one of the preceding aspects, wherein the yarn is a
monofilament yarn or a multi-filament yarn.
Aspect 96. The method of any one of the preceding aspects, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament.
Aspect 97. The method of any one of the preceding aspects, wherein the SC filament is present in a staple yarn, a monofilament yarn, or a multifilament yarn; optionally wherein the yarn has a tenacity of about 1.5 grams per Denier to about 4.0 grams per Denier; or has tenacity of greater than 4.0 grams per Denier; or has a tenacity of about 5.0 grams per Denier to about 10 grams per Denier.
Aspect 98. The method of any one of the preceding aspects, wherein the SC filament of a staple fiber has an aspect ratio of 10 to 100,000.
Aspect 99. The method of any one of the preceding aspects, wherein the SC filament is present in the form of a textile, and optionally wherein the textile is a non-woven textile, a woven textile, a knit textile, a braided textile, or a crocheted textile. Aspect 100. The method of any one of the preceding aspects, wherein the SC filament is attached to a substrate, optionally wherein the filament is stitched to or embroidered to the substrate.
Aspect 101. The method of any one of the preceding aspects, wherein the SC filament is included with a plurality of second filaments in the form of a tow.
Aspect 102. The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow are substantially free of optical elements.
Aspect 103. The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow comprise second optical elements imparting a second optical effect to the second filaments.
Aspect 104. The method of any one of the preceding aspects, wherein the second optical effect of the plurality of second filaments is a different type of optical effect than the optical effect of the filament.
Aspect 105. The method of any one of the preceding aspects, further comprising dying the SC filament, fibers comprising the SC filament, or yarn comprising the SC filament.
Aspect 106. The method of any one of the preceding aspects, wherein the structurally colored thermoplastic material comprises at least one thermoplastic polymer, optionally wherein the at least one thermoplastic polymer includes a thermoplastic elastomer.
Aspect 107. The method of any one of the preceding aspects, wherein melting includes increasing a temperature of the thermoplastic material to a first temperature at or above a melting temperature of the thermoplastic polymer.
Aspect 108. The method of any one of the preceding aspects, wherein the thermoplastic material includes one or more thermoplastic polyurethanes, thermoplastic polyethers, thermoplastic polyesters, thermoplastic polyamides, thermoplastic polyolefins, thermoplastic co-polymers thereof, or a combination thereof.
Aspect 109. The method of any one of the preceding aspects, wherein the optical element includes at least one optical layer.
Aspect 110. The method of any one of the preceding aspects, wherein the optical element is single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter.
Aspect 111. The method of any one of the preceding aspects, wherein the multilayer reflector has at least two layers, including at least two adjacent layers having different refractive indices. Aspect 112. The method of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector has a thickness that is about one-fourth of the wavelength of visible light. Aspect 113. The method of any one of the preceding aspects, wherein at least one of the layers of the multilayer reflector comprises a material selected from the group consisting of: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, and a combination thereof.
Aspect 114. The method of any one of the preceding aspects, further comprising a textured surface on a first side of the optical element.
Aspect 115. The method of any one of the preceding aspects, wherein the textured surface has a plurality of profile features and a plurality of flat areas.
Aspect 116. The method of any one of the preceding aspects, wherein the textured surface includes a plurality of profile features and flat planar areas, wherein the profile features extend above the flat areas of the textured surface.
Aspect 117. The method of any one of the preceding aspects, wherein the dimensions of the profile features, a shape of the profile features, a spacing among the plurality of the profile features, in combination with the optical layer impart the structural color.
Aspect 118. The method of any one of the preceding aspects, wherein the spacing among the profile features reduces distortion effects of the profile features produced from interfering with one another when imparting the structural color of the structural colored pellet.
Aspect 119. The method of any one of the preceding aspects, wherein the profile features and the flat areas result in at least one optical layer of the optical element having an undulating topography, wherein the optical layer has a planar region between neighboring depressions and/or elevations that is planar with the flat planar areas of the textured surface.
Aspect 120. The method of any one of the preceding aspects, wherein the structural color of the structurally colored pellets has the appearance of a single color or multiple colors.
Aspect 121. The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, and a third color measurement at a third angle of observation having coordinates L3* and a3* and b3*, wherein the L1*, L2*, and L3* values may be the same or different, wherein the a1*, a2*, and a3* coordinate values may be the same or different, wherein the b1*, b2*, and b3* coordinate values may be the same or different, and wherein the range of the combined a1*, a2* and a3* values is less than about 40% of the overall scale of possible a* values, optionally is less than about 30% of the overall scale of possible a* values, optionally is less than about 20% of the overall scale of possible a* values, or optionally is less than about 10% of the overall scale of possible a* values.
Aspect 122. The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, and a third color measurement at a third angle of observation having coordinates L3* and a3* and b3*, wherein the L1*, L2*, and L3* values may be the same or different, wherein the a1*, a2*, and a3* coordinate values may be the same or different, wherein the b1*, b2*, and b3* coordinate values may be the same or different, and wherein the range of the combined b1*, b2* and b3* values is less than about 40% of the overall scale of possible b* values, optionally is less than about 30% of the overall scale of possible b* values, optionally is less than about 20% of the overall scale of possible b* values, or optionally is 10% of the overall scale of possible b* values.
Aspect 123. The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIE 1976 color space under a given illumination condition at two observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and a1* and b1*, and a second color measurement at a second angle of observation having coordinates L2* and a2* and b2*, wherein the L1* and L2* values may be the same or different, wherein the a1* and a2* coordinate values may be the same or different, wherein the b1* and b2* coordinate values may be the same or different, and wherein the DE*ab between the first color measurement and the second color measurement is greater than or equal to about 100, where DE*ab= [(L1*-L2*)2 + (a1*–a2*)2 + (b1*-b2*)2]1/2, optionally is greater than or equal to about 80, or optionally is greater than or equal to about 60 or alternatively less than 3, less than 2.2, or less than 2.
Aspect 124. The method of any one of the preceding aspects, wherein the optical element exhibits a color that, when measured according to the CIELCH color space under a given illumination condition at three observation angles of about -15 to 180 degrees or about -15 degrees and +60 degrees, has a first color measurement at a first angle of observation having coordinates L1* and C1* and h1°, and a second color measurement at a second angle of observation having coordinates L2* and C2* and h2°, and a third color measurement at a third angle of observation having coordinates L3* and C3* and h3°, wherein the L1*, L2*, and L3* values may be the same or different, wherein the C1*, C2*, and C3* coordinate values may be the same or different, wherein the h1°, h2° and h3° coordinate values may be the same or different, and wherein the range of the combined h1°, h2° and h3° values is greater than about 60 degrees, optionally is greater than about 50 degrees, optionally is greater than about 40 degrees, optionally is greater than about 30 degrees, or optionally is greater than about 20 degrees or alternatively less than 10 degrees or less than 5 degrees.
Aspect 125. The method of one the preceding aspects, wherein the structural color is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
Aspect 126. The method of one the preceding aspects, wherein the structural color has a single hue.
Aspect 127. The method of one the preceding aspects, wherein the structural color includes two or more hues.
Aspect 128. The method of one the preceding aspects, wherein the structural color has limited iridescence.
Aspect 129. The method of one the preceding aspects, wherein the structural color is not iridescence.
Aspect 130. The method of one the preceding aspects, wherein the structural color has limited iridescence such that, when each color visible at each possible angle of observation is assigned to a single hue selected from the group consisting of the primary, secondary and tertiary colors on the red yellow blue (RYB) color wheel, all of the assigned hues fall into a single hue group, wherein the single hue group is one of a) green-yellow, yellow, and yellow- orange; b) yellow, yellow-orange and orange; c) yellow-orange, orange, and orange-red; d) orange-red, and red-purple; e) red, red-purple, and purple; f) red-purple, purple, and purple- blue; g) purple, purple-blue, and blue; h) purple-blue, blue, and blue-green; i) blue, blue-green and green; and j) blue-green, green, and green-yellow.
Aspect 131. The method of one the preceding aspects, wherein the structural color having limited iridescence is limited to two or three of the hues green-yellow, yellow, yellow-orange; or the hues purple-blue, blue, and blue-green; or the hues orange-red, red, and red-purple; or the hues blue-green, green, and green-yellow; or the hues yellow-orange, orange, and orange-red; or the hues red-purple, purple, and purple-blue.
Aspect 132. The method of one of the preceding aspects, wherein an article comprises the SC filament. Aspect 133. The method of one of the preceding aspects, wherein the article or substrate is an article of footwear, an article of apparel, or an article of sporting equipment.
Aspect 134. A method of forming structurally colored item, comprising:
disposing an optical element onto a pellet for form a structurally colored pellet, wherein the optical element imparts an optical effect to the structurally colored pellets.
Aspect 135. The method of any one of the preceding aspects, wherein the optical effect is a structural color and not iridescent or metallic.
Aspect 136. The method of any one of the preceding aspects, wherein the optical effect is an iridescent appearance.
Aspect 137. The method of any one of the preceding aspects, wherein the optical effect is a metallic appearance.
Aspect 138. The method of any one of the preceding aspects, wherein the optical effect imparts two or more different hues to the filament when the filament is viewed from at least two different angles 15 degrees apart.
Aspect 139. The method of any one of the preceding aspects, wherein the optical effect imparted to the filament is visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article.
Aspect 140. The method of any one of the preceding aspects, wherein the structurally colored item is a SC filament.
Aspect 141. The method of any one of the preceding aspects, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
Aspect 142. The method of any one of the preceding aspects, wherein the yarn is a monofilament yarn or a multi-filament yarn.
Aspect 143. The method of any one of the preceding aspects, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament.
Aspect 144. The method of any one of the preceding aspects, wherein the SC filament is present in a staple yarn, a monofilament yarn, or a multifilament yarn; optionally wherein the yarn has a tenacity of about 1.5 grams per Denier to about 4.0 grams per Denier; or has tenacity of greater than 4.0 grams per Denier; or has a tenacity of about 5.0 grams per Denier to about 10 grams per Denier.
Aspect 145. The method of any one of the preceding aspects, wherein the SC filament of a staple fiber has an aspect ratio of 10 to 100,000. Aspect 146. The method of any one of the preceding aspects, wherein the SC filament is present in the form of a textile, and optionally wherein the textile is a non-woven textile, a woven textile, a knit textile, a braided textile, or a crocheted textile.
Aspect 147. The method of any one of the preceding aspects, wherein the SC filament is attached to a substrate, optionally wherein the SC filament is stitched to or embroidered to the substrate.
Aspect 148. The method of any one of the preceding aspects, wherein the SC filament is included with a plurality of second filaments in the form of a tow.
Aspect 149. The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow are substantially free of optical elements.
Aspect 150. The method of any one of the preceding aspects, wherein the plurality of second filaments of the tow comprise second optical elements imparting a second optical effect to the second filaments.
Aspect 151. The method of any one of the preceding aspects, wherein the second optical effect of the plurality of second filaments is a different type of optical effect than the optical effect of the filament.
Aspect 152. The method of any one of the preceding aspects, further comprising dying the SC filament, fibers comprising the filament, or yarn comprising the SC filament.
Aspect 153. The method of any one of the preceding aspects, wherein the features described in aspects 41-68 also describe features of aspects 134-153.
Aspect 154. The article and/or method of any of the preceding aspects, wherein the profile feature has at least one dimension greater than 500 micrometers and optionally greater than about 600 micrometers.
Aspect 155. The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is greater than 500 micrometers or optionally both the length and the width of the profile feature is greater than 500 micrometers.
Aspect 156. The article and/or method of any of the preceding aspects, wherein the height of the profile features can be greater than 50 micrometers or optionally greater than about 60 micrometers.
Aspect 157. The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is less than 500 micrometers or both the length and the width of the profile feature is less than 500 micrometers, while the height is greater than 50 micrometers. Aspect 158. The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is greater than 500 micrometers or both the length and the width of the profile feature is greater than 500 micrometers, while the height is greater than 50 micrometers.
Aspect 159. The article and/or method of any of the preceding aspects, wherein at least one of the dimensions of the profile feature is in the nanometer range, while at least one other dimension is in the micrometer range.
Aspect 160. The article and/or method of any of the preceding aspects, wherein the nanometer range is about 10 nanometers to about 1000 nanometers, while the micrometer range is about 5 micrometers to 500 micrometers.
Aspect 161. The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is in the nanometer range, while the other of the length and the width of the profile feature is in the micrometer range.
Aspect 162. The article and/or method of any of the preceding aspects, wherein height of the profile features is greater than 250 nanometers.
Aspect 163. The article and/or method of any of the preceding aspects, wherein at least one of the length and width of the profile feature is in the nanometer range and the other in the micrometer range, where the height is greater than 250 nanometers.
Aspect 164. The article and/or method of any of the preceding aspects, wherein spatial orientation of the profile features is periodic.
Aspect 165. The article and/or method of any of the preceding aspects, wherein spatial orientation of the profile features is a semi-random pattern or a set pattern.
Aspect 166. The article and/or method of any of the preceding aspects, wherein the surface of the layers of the inorganic optical element are a substantially three-dimensional flat planar surface or a three-dimensional flat planar surface.
Now having described embodiments of the present disclosure generally, additional discussion regarding embodiments will be described in greater details.
This disclosure is not limited to particular embodiments described, and as such may, of course, vary. The terminology used herein serves the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
Where a range of values is provided, each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure. Any recited method may be carried out in the order of events recited or in any other order that is logically possible.
Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of material science, chemistry, textiles, polymer chemistry, and the like, which are within the skill of the art. Such techniques are explained fully in the literature.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of material science, chemistry, textiles, polymer chemistry, and the like. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein.
As used in the specification and the appended claims, the singular forms“a,”“an,” and “the” may include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to“a support” includes a plurality of supports. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings unless a contrary intention is apparent.
The present disclosure provides for SC filaments and methods of making SC filaments. The SC filament can include a plurality of optical elements that impart an optical effect such as a color, a metallic appearance, or an iridescent appearance as a result of structural color effects. The optical elements or fragments of the optical elements are randomly dispersed throughout and on the surface of the SC filament so that the optical effect is imparted to the SC filament to produce an aesthetically appealing appearance. The optical effect can be done without requiring the use of inks or pigments and the environmental impact associated with their use, while in other situations ink and/or pigments can be used in combination with the optical elements or fragments thereof. Scattering, refraction, reflection, interference, and/or diffraction of visible wavelengths of light by the optical elements and/or fragments thereof can produce the optical effect such as structural color (e.g., hues of blue, green, red, yellow, and the like), where two types of the structural color can be the iridescent or metallic appearance.
The SC filament can be included in yarns and fibers. The SC filaments, fibers, and yarns can be included in a textile. A“textile” may be defined as any material manufactured from fibers, filaments, or yarns (e.g., SC or other type) characterized by flexibility, fineness, and a high ratio of length to thickness. Textiles generally fall into two categories. The first category includes textiles produced directly from webs of filaments (e.g., SC or other type) or fibers (e.g., SC filament based or other type) by randomly interlocking to construct non-woven fabrics and felts. The second category includes textiles formed through a mechanical manipulation of yarn (e.g., SC filament based or other type), thereby producing a woven fabric, a knitted fabric, a braided fabric, a crocheted fabric, and the like (e.g., including the SC filament). The yarns, fibers, and articles of manufacture can include one or more SC filaments (the same or different types of SC filaments) as well as other types of filaments, fibers, and yarns. For simplicity, each reference to fiber, yarn, and article of manufacture may not list that it includes a SC filament and it will be understood that each reference to fiber, yarn, and article of manufacture can include one or more SC filaments even if that is not expressly stated unless it is otherwise evident that a SC filament is intended to be excluded.
The terms“filament,”“fiber,” or“fibers” refer to materials that are in the form of discrete elongated pieces that are significantly longer than they are wide. The fibers can have an indefinite length and can be cut to form staple SC fibers of relatively uniform length. The SC staple fiber can have a have a length of about 1 millimeter to 100 centimeters or more as well as any increment therein (e.g., 1 millimeter increments). The SC fiber can have any of a variety of cross-sectional shapes similar to those described in connection with other fibers described herein. In some cases a fiber can be a multi-component fiber, such as one comprising two or more co-extruded polymeric materials (e.g., one including the optical elements or fragments thereof). A plurality of SC fibers includes 2 to hundreds or thousands or more SC fibers (the same or different types) or other types of fibers. The plurality of fibers can be in the form of bundles of strands of fibers, referred to as tows, or in the form of relatively aligned staple fibers referred to as sliver and roving. As used herein, the term“yarn” refers to an assembly formed of one or more SC fibers (the same or different types) or other types of fibers, wherein the strand has a substantial length and a relatively small cross-section, and is suitable for use in the production of textiles by hand or by machine, including textiles made using weaving, knitting, crocheting, braiding, sewing, embroidery, or ropemaking techniques. Thread is a type of yarn commonly used for sewing. Two or more yarns can be combined, for example, to form composite yarns such as single- or double-covered yarns, and corespun yarns. Accordingly, yarns may have a variety of configurations that generally conform to the descriptions provided herein.
Various techniques exist for mechanically manipulating yarns to form a textile. Such techniques include, for example, interweaving, intertwining and twisting, and interlooping.
Interweaving is the intersection of two yarns that cross and interweave at right angles to each other. The textile can be a nonwoven textile. Generally, a nonwoven textile or fabric is a sheet or web structure made from fibers and/or yarns that are bonded together. Additional details regarding filaments, fibers, and yarns is provided below.
The SC filaments and yarns or fibers thereof can be incorporated into articles of manufacture such as an article of footwear, an article of apparel, or an article of sporting equipment or components of any of these. The article of manufacture can include footwear, apparel (e.g., shirts, jerseys, pants, shorts, gloves, glasses, socks, hats, caps, jackets, undergarments), containers (e.g., backpacks, bags), and upholstery for furniture (e.g., chairs, couches, car seats), bed coverings (e.g., sheets, blankets), table coverings, towels, flags, tents, sails, and parachutes, or components of any one of these. In addition, the component including the SC filaments and yarns or fibers thereof can be used with or disposed on textiles or other items such as striking devices (e.g., bats, rackets, sticks, mallets, golf clubs, paddles, etc.), athletic equipment (e.g., golf bags, baseball and football gloves, soccer ball restriction structures), protective equipment (e.g., pads, helmets, guards, visors, masks, goggles, etc.), locomotive equipment (e.g., bicycles, motorcycles, skateboards, cars, trucks, boats, surfboards, skis, snowboards, etc.), balls or pucks for use in various sports, fishing or hunting equipment, furniture, electronic equipment, construction materials, eyewear, timepieces, jewelry, and the like.
The article can be an article of footwear. The article of footwear can be designed for a variety of uses, such as sporting, athletic, military, work-related, recreational, or casual use. Primarily, the article of footwear is intended for outdoor use on unpaved surfaces (in part or in whole), such as on a ground surface including one or more of grass, turf, gravel, sand, dirt, clay, mud, pavement, and the like, whether as an athletic performance surface or as a general outdoor surface. However, the article of footwear may also be desirable for indoor applications, such as indoor sports including dirt playing surfaces for example (e.g., indoor baseball fields with dirt infields).
The article of footwear can be designed for use in indoor or outdoor sporting activities, such as global football/soccer, golf, American football, rugby, baseball, running, track and field, cycling (e.g., road cycling and mountain biking), and the like. The article of footwear can optionally include traction elements (e.g., lugs, cleats, studs, and spikes as well as tread patterns) to provide traction on soft and slippery surfaces, where articles of the present disclosure can be used or applied between or among the traction elements and optionally on the sides of the traction elements but on the surface of the traction element that contacts the ground or surface. Cleats, studs and spikes are commonly included in footwear designed for use in sports such as global football/soccer, golf, American football, rugby, baseball, and the like, which are frequently played on unpaved surfaces. Lugs and/or exaggerated tread patterns are commonly included in footwear including boots design for use under rugged outdoor conditions, such as trail running, hiking, and military use.
The article can be an article of apparel (i.e., a garment). The article of apparel can be an article of apparel designed for athletic or leisure activities. The article of apparel can be an article of apparel designed to provide protection from the elements (e.g., wind and/or rain), or from impacts.
The article can be an article of sporting equipment. The article of sporting equipment can be designed for use in indoor or outdoor sporting activities, such as global football/soccer, golf, American football, rugby, baseball, running, track and field, cycling (e.g., road cycling and mountain biking), and the like.
Figures 1A-M illustrate articles of manufacture that include the SC filaments or fibers and/or yarns thereof of the present disclosure. The SC filaments and fibers or and/or yarns thereof are represented by hashed areas 12A’/12M’-12A”/12M”. The location of the SC filaments and fibers or and/or yarns thereof are provided only to indicate one possible area that the SC filaments or fibers or and/or yarns thereof can be located. Also, two locations are illustrated in the figures, but this is done only for illustration purposes as the articles can include one or a plurality of areas for the SC filaments and fibers or and/or yarns thereof, where the size and location can be determined based on the article of manufacture. The SC filaments or fibers and/or yarns thereof located on each article of manufacture can represent a number, letter, symbol, design, emblem, graphic mark, icon, logo, or the like.
Figures 1N(a) and 1N(b) illustrate a perspective view and a side view of an article of footwear 100 that include a sole structure 104 and an upper 102. The structure including the SC filaments or fibers and/or yarns thereof is represented by 122a and 122b. The sole structure 104 is secured to the upper 102 and extends between the foot and the ground when the article of footwear 100 is worn. The primary elements of the sole structure 104 are a midsole 114 and an outsole 112. The midsole 114 is secured to a lower area of the upper 102 and may be formed of a polymer foam or another appropriate material. In other configurations, the midsole 114 can incorporate fluid-filled chambers, plates, moderators, and/or other elements that further attenuate forces, enhance stability, or influence motions of the foot. The outsole 112 is secured to a lower surface of the midsole 114 and may be formed from a wear-resistant rubber material that is textured to impart traction, for example. The upper 102 can be formed from various elements (e.g., lace, tongue, collar) that combine to provide a structure for securely and comfortably receiving a foot. Although the configuration of the upper 102 may vary significantly, the various elements generally define a void within the upper 102 for receiving and securing the foot relative to sole structure 104. Surfaces of the void within upper 102 are shaped to accommodate the foot and can extend over the instep and toe areas of the foot, along the medial and lateral sides of the foot, under the foot, and around the heel area of the foot. The upper 102 can be made of one or more materials such as textiles, a polymer foam, leather, synthetic leather, and the like that are stitched or bonded together. Although this configuration for the sole structure 104 and the upper 102 provides an example of a sole structure that may be used in connection with an upper, a variety of other conventional or nonconventional configurations for the sole structure 104 and/or the upper 102 can also be utilized. Accordingly, the configuration and features of the sole structure 104 and/or the upper 102 can vary considerably.
Figures 1O(a) and 1O(b) illustrate a perspective view and a side view of an article of footwear 130 that include a sole structure 134 and an upper 132. The structure including the SC filaments or fibers and/or yarns thereof is represented by 136a and 136b/136b’. The sole structure 134 is secured to the upper 132 and extends between the foot and the ground when the article of footwear 130 is worn. The upper 132 can be formed from various elements (e.g., lace, tongue, collar) that combine to provide a structure for securely and comfortably receiving a foot. Although the configuration of the upper 132 may vary significantly, the various elements generally define a void within the upper 132 for receiving and securing the foot relative to the sole structure 134. Surfaces of the void within the upper 132 are shaped to accommodate the foot and can extend over the instep and toe areas of the foot, along the medial and lateral sides of the foot, under the foot, and around the heel area of the foot. The upper 132 can be made of one or more materials such as textiles including natural and synthetic leathers, molded polymeric components, polymer foam and the like that are stitched or bonded together.
The primary elements of the sole structure 134 are a forefoot component 142, a heel component 144, and an outsole 146. Each of the forefoot component 142 and the heel component 144 are directly or indirectly secured to a lower area of the upper 132 and formed from a polymer material that encloses a fluid, which may be a gas, liquid, or gel. During walking and running, for example, the forefoot component 142 and the heel component 144 compress between the foot and the ground, thereby attenuating ground reaction forces. That is, the forefoot component 142 and the heel component 144 are inflated and may be pressurized with the fluid to cushion the foot. The outsole 146 is secured to lower areas of the forefoot component 142 and the heel component 144 and may be formed from a wear-resistant rubber material that is textured to impart traction. The forefoot component 142 can be made of one or more polymers (e.g., layers of one or more polymers films) that form a plurality of chambers that includes a fluid such as a gas. The plurality of chambers can be independent or fluidically interconnected. Similarly, the heel component 144 can be made of one or more polymers (e.g., layers of one or more polymers films) that form a plurality of chambers that includes a fluid such as a gas and can also be independent or fluidically interconnected. In some configurations, the sole structure 134 may include a foam layer, for example, that extends between the upper 132 and one or both of the forefoot component 142 and the heel component 144, or a foam element may be located within indentations in the lower areas of the forefoot component 142 and the heel component 144. In other configurations, the sole structure 132 may incorporate plates, moderators, lasting elements, or motion control members that further attenuate forces, enhance stability, or influence the motions of the foot, for example. Although the depicted configuration for the sole structure 134 and the upper 132 provides an example of a sole structure that may be used in connection with an upper, a variety of other conventional or nonconventional configurations for the sole structure 134 and/or the upper 132 can also be utilized. Accordingly, the configuration and features of the sole structure 134 and/or the upper 132 can vary considerably.
Figure 1O(c) is a cross-sectional view of A-A that depicts the upper 132 and the heel component 144. The SC filaments or fibers and/or yarns thereof 136b can be disposed on the outside wall of the heel component 144 or alternatively or optionally the SC filaments or fibers and/or yarns thereof 136b’ can be disposed on the inside wall of the heel component 144.
Figures 1P(a) and 1P(b) illustrate a perspective view and a side view of an article of footwear 160 that includes traction elements 168. The structure including the SC filaments or fibers and/or yarns thereof is represented by 172a and 172b. The article of footwear 160 includes an upper 162 and a sole structure 164, where the upper 162 is secured to the sole structure 164. The sole structure 164 can include one or more of a toe plate 166a, a mid-plate 166b, and a heel plate 166c. The plate can include one or more traction elements 168, or the traction elements can be applied directly to a ground-facing surface of the article of footwear. As shown in Figs.1P(a) and (b), the traction elements 168 are cleats, but the traction elements can include lugs, cleats, studs, and spikes as well as tread patterns to provide traction on soft and slippery surfaces. In general, the cleats, studs and spikes are commonly included in footwear designed for use in sports such as global football/soccer, golf, American football, rugby, baseball, and the like, while lugs and/or exaggerated tread patterns are commonly included in footwear (not shown) including boots design for use under rugged outdoor conditions, such as trail running, hiking, and military use. The sole structure 164 is secured to the upper 162 and extends between the foot and the ground when the article of footwear 160 is worn. The upper 162 can be formed from various elements (e.g., lace, tongue, collar) that combine to provide a structure for securely and comfortably receiving a foot. Although the configuration of the upper 162 may vary significantly, the various elements generally define a void within the upper 162 for receiving and securing the foot relative to the sole structure 164. Surfaces of the void within upper 162 are shaped to accommodate the foot and extend over the instep and toe areas of the foot, along the medial and lateral sides of the foot, under the foot, and around the heel area of the foot. The upper 162 can be made of one or more materials such as textiles including natural and synthetic leathers, molded polymeric components, a polymer foam, and the like that are stitched or bonded together. In other aspects not depicted, the sole structure 164 may incorporate foam, one or more fluid-filled chambers, plates, moderators, or other elements that further attenuate forces, enhance stability, or influence the motions of the foot. Although the depicted configuration for the sole structure 164 and the upper 162 provides an example of a sole structure that may be used in connection with an upper, a variety of other conventional or nonconventional configurations for the sole structure 164 and/or the upper 162 can also be utilized. Accordingly, the configuration and features of the sole structure 164 and/or the upper 162 can vary considerably.
SC filaments or fibers and/or yarns thereof and articles of manufacture made thereof of the present disclosure include the optical element or fragments of the optical element, where each can have the characteristic of imparting optical effects including structural color (e.g., single color, multicolor, iridescent, metallic). The optical element can include at least one optical layer (e.g., a single layer reflector, a single layer filter, a multilayer reflector or a multilayer filter) optionally having a textured surface (e.g., integral to the optical element or as part of the surface of the article), optionally with a protective layer, or optionally with any combination of the textured surface and the protective layer. Optical elements or fragments of the optical element on the surface of the filaments cause the article filament, fiber, yarn, or article of manufacture to appear to be colored (i.e., to have a new, different color (e.g., a color which differs in hue or iridescence or as otherwise described herein) than the color the surface of the article without the optical element or fragments thereof) without the application of additional pigments or dyes to the article. However, pigments and/or dyes can be used in conjunction with the optical element to produce aesthetically pleasing effects.
The SC filament can be produced by melting a plurality of structurally colored articles and then extruding the molten material to form the SC filament. Melting can be accomplished by bringing the structurally colored articles to a temperature and/or pressure to cause the material to melt, for example to a temperature at or above the melting point of the material (e.g., thermoplastic polymer). Extruding can be accomplished using an extruder such as a single screw or multi-screw extruder. The structurally colored article can include a thermoplastic material and a plurality of the optical elements. The structurally colored article can include pellets, films, sheets, and articles as well as extruded versions of each, where each has one or more optical elements. Depending upon how the structurally colored articles are produced and/or processing of the structurally color article (e.g., the extrusion process), the SC filament can include intact optical elements as originally produced and/or fragments of the optical elements. Despite being processed (e.g., extruding, grinding, cutting, shredding, crushing, or a combination thereof), a portion of the optical elements and/or the fragments of the optical elements are not deteriorated and can impart the optical effect to the filament. Another portion of the optical elements and/or the fragments thereof are deteriorated and cannot impart the optical effect to the filament.
The plurality of optical elements and the fragments thereof can make up at least 1 percent by weight, or at least 2 percent by weight, or at least 5 percent by weight, or at least 7 percent by weight, or at least 10 percent by weight of a total weight of the filament.
The structurally colored articles can be formed by disposing (e.g., affixing, attaching, adhering, bonding, joining) the optical element directly onto an article in a manner as described herein. Alternatively, the structurally colored articles can be formed by processing (e.g., grinding, cutting, shredding, crushing, extruding, or a combination thereof) a polymer-based item that includes a thermoplastic material and at least one optical element. The polymer-based item can include pellets, films, sheets, and articles, each having the optical structure. During the processing of the polymer-based item, a portion of the optical elements are unchanged while another portion of the optical elements form fragments thereof, where all or some of the optical elements or fragments of the optical elements retain the characteristic to impart the optical effect. The pieces of the polymer-based item formed from the processing can be melted to form a molten material, which can then be extruded to form the structurally colored articles. The optical elements and/or fragments of one or more optical elements from the processing step can also form other fragments of one or more optical elements during the extrusion process. The optical element and/or fragments of optical element impart the optical effect to the structurally colored articles. The optical effect before and after processing and/or extrusion may be the same or different. For example, prior to one or more of the processing steps, the optical effect a structure color of blue and after processing the optical effect impart is iridescent appearance or metallic appearance.
The optical element on the structurally colored article can be a structurally colored coating covering at least 25 percent, or at least 50 percent, or at least 75 percent of a total surface area of the structurally colored article.
As has been described herein, the structural color can include one of a number of colors. The“color” of SC filaments or fibers and/or yarns thereof and article of manufacture as perceived by a viewer can differ from the actual color of the article, as the color perceived by a viewer is determined by the actual color of the article by the presence of optical elements which may absorb, refract, interfere with, or otherwise alter light reflected by the article, by the viewer’s ability to detect the wavelengths of light reflected by the article, by the wavelengths of light used to illuminate the article, as well as other factors such as the coloration of the environment of the article, and the type of incident light (e.g., sunlight, fluorescent light, and the like). As a result, the color of an object as perceived by a viewer can differ from the actual color of the article.
Conventionally, color is imparted to man-made objects by applying colored pigments or dyes to the object. More recently, methods of imparting“structural color” to man-made objects have been developed. Structural color is color which is produced, at least in part, by microscopically structured surfaces that interfere with visible light contacting the surface. The structural color is color caused by physical phenomena including the scattering, refraction, reflection, interference, and/or diffraction of light, unlike color caused by the absorption or emission of visible light through coloring matters. For example, optical phenomena which impart structural color can include multilayer interference, thin-film interference, refraction, dispersion, light scattering, Mie scattering, diffraction, and diffraction grating. In various aspects described herein, structural color imparted to an article can be visible to a viewer having 20/20 visual acuity and normal color vision from a distance of about 1 meter from the article. In addition to“colors”, the structural color can be iridescent or metallic.
As described herein, structural color is produced, at least in part, by the optical element, as opposed to the color being produced solely by pigments and/or dyes. The coloration of a structurally-colored article (e.g., the SC filament or fiber or an article including the SC filament(s) or fiber(s)) can be due solely to structural color (i.e., the article, a colored portion of the article, or a colored outer layer of the article can be substantially free of pigments and/or dyes).
Structural color can also be used in combination with pigments and/or dyes, for example, to alter all or a portion of a structural color.
“Hue” is commonly used to describe the property of color which is discernible based on a dominant wavelength of visible light, and is often described using terms such as magenta, red, orange, yellow, green, cyan, blue, indigo, violet, etc. or can be described in relation (e.g., as similar or dissimilar) to one of these. The hue of a color is generally considered to be independent of the intensity or lightness of the color. For example, in the Munsell color system, the properties of color include hue, value (lightness) and chroma (color purity). Particular hues are commonly associated with particular ranges of wavelengths in the visible spectrum:
wavelengths in the range of about 700 to 635 nanometers are associated with red, the range of about 635 to 590 nanometers is associated with orange, the range of about 590 to 560 nanometers is associated with yellow, the range of about 560 to 520 nanometers is associated with green, the range of about 520 to 490 nanometers is associated with cyan, the range of about 490 nanometers to 450 nanometers is associated with blue, and the range of about 450 to 400 nanometers is associated with violet.
The color (including the hue) of an article as perceived by a viewer can differ from the actual color of the article. The color as perceived by a viewer depends not only on the physics of the article, but also its environment, and the characteristics of the perceiving eye and brain. For example, as the color perceived by a viewer is determined by the actual color of the article (e.g., the color of the light leaving the surface of the article), by the viewer’s ability to detect the wavelengths of light reflected or emitted by the article, by the wavelengths of light used to illuminate the article, as well as other factors such as the coloration of the environment of the article, and the type of incident light (e.g., sunlight, fluorescent light, and the like). As a result, the color of an object as perceived by a viewer can differ from the actual color of the article.
When used in the context of structural color, one can characterize the hue of a structurally-colored article, i.e., an article that has been structurally colored by incorporating an optical element or fragments thereof into the article, based on the wavelengths of light the structurally-colored portion of the article absorbs and reflects (e.g., linearly and non-linearly). While the optical element or fragments thereof may impart a first structural color, the presence of an optional textured surface can alter the structural color. Other factors such as coatings or transparent elements may further alter the perceived structural color. The hue of the structurally colored article can include any of the hues described herein as well as any other hues or combination of hues. The structural color can be referred to as a“single hue” (i.e., the hue remains substantially the same, regardless of the angle of observation and/or illumination), or “multihued” (i.e., the hue varies depending upon the angle of observation and/or illumination). The multihued structural color can be iridescent (i.e., the hue changes gradually over two or more hues as the angle of observation or illumination changes). The hue of an iridescent multihued structural color can change gradually across all the hues in the visible spectrum (e.g., like a“rainbow”) as the angle of observation or illumination changes. The hue of an iridescent multihued structural color can change gradually across a limited number of hues in the visible spectrum as the angle of observation or illumination changes, in other words, one or more hues in the visible spectrum (e.g., red, orange, yellow, etc.) are not observed in the structural color as the angle of observation or illumination changes. Only one hue, or substantially one hue, in the visible spectrum may be present for a single-hued structural color. The hue of a multihued structural color can change more abruptly between a limited number of hues (e.g., between 2-8 hues, or between 2-4 hues, or between 2 hues) as the angle of observation or illumination changes.
The structural color can be a multi-hued structural color in which two or more hues are imparted by the structural color.
The structural color can be iridescent multi-hued structural color in which the hue of the structural color varies over a wide number of hues (e.g., 4, 5, 6, 7, 8 or more hues) when viewed at a single viewing angle, or when viewed from two or more different viewing angles that are at least 15 degrees apart from each other.
The structural color can be limited iridescent multi-hue structural color in which the hue of the structural color varies, or varies substantially (e.g., about 90 percent, about 95 percent, or about 99 percent) over a limited number of hues (e.g., 2 hues, or 3 hues) when viewed from two or more different viewing angles that are at least 15 degrees apart from each other. In some aspects, a structural color having limited iridescence is limited to two, three or four hues selected from the RYB primary colors of red, yellow and blue, optionally the RYB primary and secondary colors of red, yellow, blue, green, orange and purple, or optionally the RYB primary, secondary and tertiary colors of red, yellow, blue, green, orange purple, green-yellow, yellow- orange, orange-red, red-purple, purple-blue, and blue-green.
The structural color can be single-hue angle-independent structural color in which the hue, the hue and value, or the hue, value and chroma of the structural color is independent of or substantially (e.g., about 90 percent, about 95 percent, or about 99 percent) independent of the angle of observation. For example, the single-hue angle-independent structural color can display the same hue or substantially the same hue when viewed from at least 3 different angles that are at least 15 degrees apart from each other (e.g., single-hue structural color).
The structural color imparted can be a structural color having limited iridescence such that, when each color observed at each possible angle of observation is assigned to a single hue selected from the group consisting of the primary, secondary and tertiary colors on the red yellow blue (RYB) color wheel, for a single structural color, all of the assigned hues fall into a single hue group, wherein the single hue group is one of a) green-yellow, yellow, and yellow- orange; b) yellow, yellow-orange and orange; c) yellow-orange, orange, and orange-red; d) orange-red, and red-purple; e) red, red-purple, and purple; f) red-purple, purple, and purple- blue; g) purple, purple-blue, and blue; h) purple-blue, blue, and blue-green; i) blue, blue-green and green; and j) blue-green, green, and green-yellow. In other words, in this example of limited iridescence, the hue (or the hue and the value, or the hue, value and chroma) imparted by the structural color varies depending upon the angle at which the structural color is observed, but the hues of each of the different colors viewed at the various angles of observations varies over a limited number of possible hues. The hue visible at each angle of observation can be assigned to a single primary, secondary or tertiary hue on the red yellow blue (RYB) color wheel (i.e., the group of hues consisting of red, yellow, blue, green, orange purple, green-yellow, yellow-orange, orange-red, red-purple, purple-blue, and blue-green). For example, while a plurality of different colors are observed as the angle of observation is shifted, when each observed hue is classified as one of red, yellow, blue, green, orange purple, green-yellow, yellow-orange, orange-red, red-purple, purple-blue, and blue-green, the list of assigned hues includes no more than one, two, or three hues selected from the list of RYB primary, secondary and tertiary hues. In some examples of limited iridescence, all of the assigned hues fall into a single hue group selected from hue groups a)-j), each of which include three adjacent hues on the RYB primary, secondary and tertiary color wheel. For example, all of the assigned hues can be a single hue within hue group h) (e.g., blue), or some of the assigned hues can represent two hues in hue group h) (e.g., purple-blue and blue), or can represent three hues in hue group h) (e.g., purple-blue, blue, and blue-green).
Similarly, other properties of the structural color, such as the lightness of the color, the saturation of the color, and the purity of the color, among others, can be substantially the same regardless of the angle of observation or illumination, or can vary depending upon the angle of observation or illumination. The structural color can have a matte appearance, a glossy appearance, or a metallic appearance, or a combination thereof. As discussed above, the color (including hue) of a structurally-colored article can vary depending upon the angle at which the structurally-colored article is observed or illuminated. The hue or hues of an article can be determined by observing the article, or illuminating the article, at a variety of angles using constant lighting conditions. As used herein, the“angle” of illumination or viewing is the angle measured from an axis or plane that is orthogonal to the surface. The viewing or illuminating angles can be set between about 0 and 180 degrees. The viewing or illuminating angles can be set at 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees and the color can be measured using a colorimeter or
spectrophotometer (e.g., Konica Minolta), which focuses on a particular area of the article to measure the color. The viewing or illuminating angles can be set at 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, 90 degrees, 105 degrees, 120 degrees, 135 degrees, 150 degrees, 165 degrees, 180 degrees, 195 degrees, 210 degrees, 225 degrees, 240 degrees, 255 degrees, 270 degrees, 285 degrees, 300 degrees, 315 degrees, 330 degrees, and 345 degrees and the color can be measured using a colorimeter or spectrophotometer. In a particular example of a multihued article colored using only structural color, when measured at 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees, the hues measured for article consisted of“blue” at three of the measurement angles,“blue-green” at 2 of the measurement angles and“purple” at one of the measurement angles.
In other embodiments, the color (including hue, value and/or chroma) of a structurally- colored article does not change substantially, if at all, depending upon the angle at which the article is observed or illuminated. In instances such as this the structural color can be an angle- independent structural color in that the hue, the hue and value, or the hue, value and chroma observed is substantially independent or is independent of the angle of observation.
Various methodologies for defining color coordinate systems exist. One example is L*a*b* color space, where, for a given illumination condition, L* is a value for lightness, and a* and b* are values for color-opponent dimensions based on the CIE coordinates (CIE 1976 color space or CIELAB). In an embodiment, a structurally-colored article having structural color can be considered as having a“single” color when the change in color measured for the article is within about 10% or within about 5% of the total scale of the a* or b* coordinate of the L*a*b* scale (CIE 1976 color space) at three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees. In certain embodiments, colors which, when measured and assigned values in the L*a*b* system that differ by at least 5 percent of the scale of the a* and b* coordinates, or by at least 10 percent of the scale of the a* and b* coordinates, are considered to be different colors. The structurally-colored article can have a change of less than about 40%, or less than about 30%, or less than about 20%, or less than about 10%, of the total scale of the a* coordinate or b* coordinate of the L*a*b* scale (CIE 1976 color space) at three or more measured observation or illumination angles.
A change in color between two measurements in the CIELAB space can be determined mathematically. For example, a first measurement has coordinates L1*, a1* and b1*, and a second measurement has coordinates L2*, a2* and b2*. The total difference between these two measurements on the CIELAB scale can be expressed as DE*ab, which is calculated as follows: DE*ab= [(L1*-L2*)2 + (a1*–a2*)2 + (b1*-b2*)2]1/2. Generally speaking, if two colors have a DE*ab of less than or equal to 1, the difference in color is not perceptible to human eyes, and if two colorshave a DE*ab of greater than 100 the colors are considered to be opposite colors, while a DE*ab of about 2-3 is considered the threshold for perceivable color difference. In certain
embodiments, a structurally colored article having structural color can be considered as having a two colors when the DE*ab of about 3 to 60, or about 3 to 50, or about 3 to 40, or about 3 to 30, between three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees. The structurally-colored article can have a DE*ab that is about 3 to about 100, or about 3 to about 80, or about 3 to about 60, between two or more measured observation or illumination angles. In certain embodiments, a structurally colored article having structural color can be considered as having a single color when the DE*ab of about 1 to 3, or about 1 to 2.5, or about 1 to 2.2, between three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees. In certain embodiments, a structurally colored article having structural color can be considered as having a single color where the DE*ab of about 1 to 3, or about 1 to 2.5, or about 1 to 2.2, between two or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
Another example of a color scale is the CIELCH color space, where, for a given illumination condition, L* is a value for lightness, C* is a value for chroma, and h° denotes a hue as an angular measurement. In an embodiment, a structurally-colored article having structural color can be considered as having a“single” color when the color measured for the article is less than 10 degrees different or less than 5 degrees different at the h° angular coordinate of the CIELCH color space, at three or more measured observation or illumination angles selected from measured at observation or illumination angles of 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees. In certain embodiments, colors which, when measured and assigned values in the CIELCH system that vary by at least 45 degrees in the h° measurements, are considered to be different colors. The structurally-colored article can have a change of 10 to about 60 degrees, 10 to about 50 degrees, or 10 to about 40 degrees, 10 to about 30 degrees, or 10 to about 20 degrees, in the h° measurements of the CIELCH system at three or more measured observation or illumination angles. The structurally-colored article can have a change of about 1 to 10 degrees, about 1 to 7.5 degrees, or 1 to about 2 degrees, in the h° measurements of the CIELCH system at three or more measured observation or illumination angles.
Another system for characterizing color includes the“PANTONE” Matching System (Pantone LLC, Carlstadt, New Jersey, USA), which provides a visual color standard system to provide an accurate method for selecting, specifying, broadcasting, and matching colors through any medium. In an example, a structurally-colored article having a structural color can be considered as having a“single” color when the color measured for the article is within a certain number of adjacent standards, e.g., within 20 adjacent PANTONE standards, at three or more measured observation or illumination angles selected from 0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, and -15 degrees.
Now having described color, additional details regarding the optical element are provided. As described herein, the SC filament includes the optical element or fragments thereof. For simplicity, reference to the structure of the optical element also includes the fragments of the optical element unless specifically stated otherwise. The optical element can include at least one optical layer. The optical element that can be or include a single or multilayer reflector or a multilayer filter. The optical element can function to modify the light that impinges thereupon so that structural color is imparted to the article. The optical element can include at least one optical layer and optionally one or more additional layers (e.g., a protective layer, the textured layer, a polymer layer, and the like).
The method of making the structurally colored article or the polymer-based item can include disposing (e.g., affixing, attaching, bonding, fastening, joining, appending, connecting, binding, and operably disposed, etc.) the optical element onto the structurally colored article (e.g., pellet, extruded pellet, sheet, film, and the like) or a polymer-based item (e.g., pellet, sheet, film, article or component of an article that included the optical element, and the like). The article has a surface upon which the optical element can be disposed. The surface of the article can be made of a material such as a thermoplastic material, as described herein. The optical element has a first side (including the outer surface) and a second side opposing the first side (including the opposing outer surface).
The optical element or layers or portions thereof (e.g., optical layer) can be formed using known techniques such as physical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, pulsed laser deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), chemical vapor deposition, plasma-enhanced chemical vapor deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer-by-layer deposition, sol-gel deposition, Langmuir blodgett, and the like.
The optical layer(s) of the optical element can comprise a single layer reflector or a multilayer reflector. The multilayer reflector can be configured to have a certain reflectivity at a given wavelength of light (or range of wavelengths) depending, at least in part, on the material selection, thickness and number of the layers of the multilayer reflector. In other words, one can carefully select the materials, thicknesses, and numbers of the layers of a multilayer reflector and optionally its interaction with one or more other layers, so that it can reflect a certain wavelength of light (or range of wavelengths), to produce a desired structural color (e.g., color, iridescence, metallic). The optical layer can include at least two adjacent layers, where the adjacent layers have different refractive indices. The difference in the index of refraction of adjacent layers of the optical layer can be about 0.0001 to 50 percent, about 0.1 to 40 percent, about 0.1 to 30 percent, about 0.1 to 20 percent, about 0.1 to 10 percent (and other ranges there between (e.g., the ranges can be in increments of 0.0001 to 5 percent)). The index of refraction depends at least in part upon the material of the optical layer and can range from 1.3 to 2.6.
The optical element can include 2 to 20 layers, 2 to 15 layers, 2 to 10 layers, 2 to 6 layers, or 2 to 4 layers. Each layer of the optical element can have a thickness that is about one-fourth of the wavelength of light to be reflected to produce the desired structural color. Each layer of the optical element can have a thickness of about 10 to 500 nanometers or about 90 to 200 nanometers. The optical layer can have at least two layers, where adjacent layers have different thicknesses and optionally the same or different refractive indices. The optical element can have a thickness of about 100 to 1,500 nanometers, about 100 to 1,200
nanometers, about 100 to about 700 nanometers, or of about 200 to about 500 nanometers.
Each of the layers of the optical element can have a thickness of at least 10 nanometers, optionally at least 30 nanometers, at least 40 nanometers, at least 50 nanometers, optionally at least 60 nanometers, at least 100 nanometers, at least 150 nanometers, optionally a thickness of from about 10 nanometers to about 250 nanometers or more, about 10 nanometers to about 200 nanometers, about 10 nanometers to about 150 nanometers, about 10 nanometers to about 100 nanometers, or of from about 30 nanometers to about 80 nanometers, or from about 40 nanometers to about 60 nanometers. For example, the each layer can be about 30 to 150 nanometers thick. The density of the Ti layer or TiOx layer can be about 3 to 6 grams per centimeter cubed, about 3 to 5 grams per centimeter cubed, about 4 to 5 grams per centimeter cubed, or 4.5 grams per centimeter cubed.
The optical element can comprise a single layer filter or a multilayer filter. The multilayer filter destructively interferes with light that impinges upon the structure or article, where the destructive interference of the light and optionally interaction with one or more other layers or structures (e.g., a multilayer reflector, a textured structure) impart the structural color. In this regard, the layers of the multilayer filter can be designed (e.g., material selection, thickness, number of layer, and the like) so that a single wavelength of light, or a particular range of wavelengths of light, make up the structural color. For example, the range of wavelengths of light can be limited to a range within plus or minus 30 percent or a single wavelength, or within plus or minus 20 percent of a single wavelength, or within plus or minus 10 percent of a single wavelength, or within plus or minus 5 percent or a single wavelength. The range of
wavelengths can be broader to produce a more iridescent structural color or can be metallic in nature.
The optical layer(s) can include a single layer or multiple layers where each layer independently comprises a material selected from: the transition metals, the metalloids, the lanthanides, and the actinides, as well as nitrides, oxynitrides, sulfides, sulfates, selenides, and tellurides of these. The material can be selected to provide an index of refraction that when optionally combined with the other layers of the optical element achieves the desired result. One or more layers of the optical layer can be made of liquid crystals. Each layer of the optical layer can be made of liquid crystals. One or more layers of the optical layer can be made of a material such as: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, aluminum oxide, or a combination thereof. Each layer of the optical layer can be made of a material such as: silicon dioxide, titanium dioxide, zinc sulfide, magnesium fluoride, tantalum pentoxide, aluminum oxide, or a combination thereof.
The optical element can be uncolored (e.g., no pigments or dyes added to the structure or its layers), colored (e.g., pigments and/or dyes are added to the structure or its layers (e.g., dark or black color)), reflective, and/or transparent (e.g., percent transmittance of 75 percent or more). The surface of the article upon which the optical element is disposed can be uncolored (e.g., no pigments or dyes added to the material), colored (e.g., pigments and/or dyes are added to the material (e.g., dark or black color)), reflective, and/or transparent (e.g., percent transmittance of 75 percent or more).
The optical layer(s) can be formed in a layer-by-layer manner, where each layer has a different index of refraction. Each layer of the optical layer can be formed using known techniques such as physical vapor deposition including: chemical vapor deposition, pulsed laser deposition, evaporative deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), plasma enhanced chemical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer by layer deposition, sol- gel deposition, Langmuir blodgett and the like.
As mentioned above, the optical element can include one or more layers in addition to the optical layer(s). The optical element has a first side (e.g., the side having a surface) and a second side (e.g., the side having a surface). The one or more other layers of the optical element can be on the first side and/or the second side of the optical element. For example, the optical element can include a protective layer and/or a polymeric layer such as a thermoplastic polymeric layer, where the protective layer and/or the polymeric layer can be on one or both of the first side and the second side of the optical element. One or more of the optional other layers can include a textured surface. Alternatively or in addition, one or more optical layers of the optical element can include a textured surface.
A portion of the plurality of optical elements or the fragments of the optical elements are not structurally deteriorated during processing such that the optical elements or the fragments thereof have the optical effect, while other portions are structurally deteriorated during processing and do not have the optical effect.
The optical element and the fragments of the optical element are layered structures having two or more layers stacked in the z dimension, perpendicular to the plane of the layered stack. In addition, the optical element and the fragments of the optical element have a width in the x dimension, a length in the y dimension and a thickness in the z dimension. The thickness of the fragments of the optical elements is such that it imparts an optical effect, where the optical effect of the fragments of the optical elements can be the same or different than the optical effect of the optical element before processing. The thickness of the optical elements or fragments of the optical elements in the dispersed in the structurally colored article or the SC filament can be less than 30 percent less, less than 20 percent less, can be less than 10 percent less, can be less than 5 percent less, than the thickness of the optical element on the polymer-based item (or the pre-process and/or extruded optical element). The width and length of the fragments of the optical elements dispersed in the polymer-based item can be unchanged or be about 5 percent, about 10 percent, about 15 percent, about 25 percent, about 35 percent, about 50 percent, or smaller than the width and length of the optical element of the polymer- based item before processing.
The plurality of optical elements or fragments thereof dispersed in the structurally colored article or the SC filament can have, independently of each other, an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more. The plurality of optical elements or fragments thereof dispersed in the structurally colored article or the SC filament can have an average width and an average length of about 400 nanometers or more, about 500 nanometer or more, or about 800 nanometers or more. The plurality of optical elements or fragments thereof dispersed in the structurally colored article or the SC filament can have an average thickness of about 200 nanometers or more, about 250 nanometers or more, about 300 nanometers or more, about 350 nanometers for more, about 400 nanometers or more about 500 nanometers or more, about 600 nanometers or more, about 800 nanometers, or about 1,000 to 10,000 nanometers or more.
A protective layer can be disposed on the first and/or second side of the optical layer to protect the optical layer. The protective layer is more durable or more abrasion resistant than the optical layer. The protective layer is optically transparent to visible light. The protective layer can be on the first side of the optical element to protect the optical layer. All or a portion of the protective layer can include a dye or pigment in order to alter an appearance of the structural color. The protective layer can include silicon dioxide, glass, combinations of metal oxides, or mixtures of polymers. The protective layer can have a thickness of about 3 nanometers to 1 millimeter. The polymer layer may be removed during the processing or extruding process of the optical layers.
The protective layer can be formed using physical vapor deposition, chemical vapor deposition, pulsed laser deposition, evaporative deposition, sputtering deposition (e.g., radio frequency, direct current, reactive, non-reactive), plasma enhanced chemical vapor deposition, electron beam deposition, cathodic arc deposition, low pressure chemical vapor deposition and wet chemistry techniques such as layer by layer deposition, sol-gel deposition, Langmuir blodgett, and the like. Alternatively or in addition, the protective layer can be applied by spray coating, dip coating, brushing, spin coating, doctor blade coating, and the like.
A polymeric layer can be disposed on the first and/or the second side of the optical element. The polymeric layer can be used to dispose the optical element onto an article, such as, for example, when the article does not include a thermoplastic material to adhere the optical element. The polymeric layer can comprise a polymeric adhesive material, such as a hot melt adhesive. The polymeric layer can be a thermoplastic material and can include one or more layers. The thermoplastic material can be any one of the thermoplastic material described herein. The polymeric layer can be applied using various methodologies, such as spin coating, dip coating, doctor blade coating, and so on. The polymeric layer can have a thickness of about 3 nanometer to 1 millimeter.
Having described the optical element, additional details will now be described for the optional textured surface. As described herein, the optical element can include at least one optical layer and optionally a textured surface. The textured surface can be a surface of a textured structure or a textured layer. The textured surface or textured layer may be provided as part of the optical element. For example, the optical element may comprise a textured layer or a textured structure that comprises the textured surface. The textured surface may be formed on the first or second side of the optical element. For example, a side of the optical element can be formed or modified to provide a textured surface, or a textured layer or textured structure can be disposed on (e.g., affixed to) the first or second side of the optical element. The textured surface may be provided as part of the article to which the optical element is disposed, in which case the optical element has the topography or similar topography as the textured surface. For example, the optical element may be disposed onto the surface of the article where the surface of the article is a textured surface, or the surface of the article includes a textured structure or a textured layer.
The textured surface (or a textured structure or textured layer including the textured surface) may be provided as a feature on or part of another medium, such as a transfer medium, and imparted to a side or layer of the optical element or to the surface of the article. For example, a mirror image or relief form of the textured surface may be provided on the side of a transfer medium, and the transfer medium contacts a side of the optical element or the surface of the article in a way that imparts the textured surface to the optical element or article. While the various embodiments herein may be described with respect to a textured surface of the optical element, it will be understood that the features of the textured surface, or a textured structure or textured layer, may be imparted in any of these ways.
The textured surface can contribute to the structural color resulting from the optical element. As described herein, structural coloration is imparted, at least in part, due to optical effects resulting from physical phenomena such as scattering, diffraction, reflection, interference or unequal refraction of light rays from an optical element. The textured surface (or its mirror image or relief) can include a plurality of profile features and flat or planar areas. The plurality of profile features included in the textured surface, including their size, shape, orientation, spatial arrangement, etc., can affect the light scattering, diffraction, reflection, interference and/or refraction resulting from the optical element. The flat or planar areas included in the textured surface, including their size, shape, orientation, spatial arrangement, etc., can affect the light scattering, diffraction, reflection, interference and/or refraction resulting from the optical element. The desired structural color can be designed, at least in part, by adjusting one or more of properties of the profile features and/or flat or planar areas of the textured surface.
The profile features can extend from a side of the flat areas, so as to provide the appearance of projections and/or depressions therein. In an aspect, the flat areas can be flat planar areas. A profile feature may include various combinations of projections and
depressions. For example, a profile feature may include a projection with one or more depressions therein, a depression with one or more projections therein, a projection with one or more further projections thereon, a depression with one or more further depressions therein, and the like. The flat areas do not have to be completely flat and can include texture, roughness, and the like. The texture of the flat areas may not contribute much, if any, to the imparted structural color. The texture of the flat areas typically contributes to the imparted structural color. For clarity, the profile features and flat areas are described in reference to the profile features extending above the flat areas, but the inverse (e.g., dimensions, shapes, and the like) can apply when the profile features are depressions in the textured surface.
The textured surface can comprise a thermoplastic material. The profile features and the flat areas can be formed using a thermoplastic material.
The textured surface generally has a length dimension extending along an x-axis, and a width dimension extending along a z-axis, and a thickness dimension extending along a y-axis. The textured surface has a generally planar portion extending in a first plane that extends along the x-axis and the z-axis. A profile feature can extend outward from the first plane, so as to extend above or below the plane x. A profile feature may extend generally orthogonal to the first plane, or at an angle greater to or less than 90 degrees to the first plane.
The dimensional measurements in reference to the profile features (e.g., length, width, height, diameter, and the like) described herein refer to an average dimensional measurement of profile features in 1 square centimeter in the inorganic optical element.
The dimension (e.g., length, width, height, diameter, depending upon the shape of the profile feature) of each profile feature can be within the nanometer to micrometer range. A textured surface can have a profile feature and/or flat area with a dimension of about 10 nanometers to about 500 micrometers. The profile feature can have dimensions in the nanometer range, e.g., from about 10 nanometers to about 1000 nanometers. All of the dimensions of the profile feature (e.g., length, width, height, diameter, depending on the geometry) can be in the nanometer range, e.g., from about 10 nanometers to about 1000 nanometers. The textured surface can have a plurality of profile features having dimensions that are 1 micrometer or less. In this context, the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have a dimension in this range. The profile features can have a ratio of width:height and/or length:height dimensions of about 1:2 and 1:100, or 1:5 and 1:50, or 1:5 and 1:10.
The textured surface can have a profile feature and/or flat area with a dimension within the micrometer range of dimensions. A textured surface can have a profile feature and/or flat area with a dimension of about 1 micrometer to about 500 micrometers. All of the dimensions of the profile feature (e.g., length, width, height, diameter, depending on the geometry) can be in the micrometer range, e.g., from about 1 micrometer to about 500 micrometers. The textured surface can have a plurality of profile features having dimensions that are from about 1 micrometer to about 500 micrometer. In this context, the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have a dimension in this range. The height of the profile features (or depth if depressions) can be about 0.1 and 50 micrometers, about 1 to 5 micrometers, or 2 to 3 micrometers. The profile features can have a ratio of width:height and/or length:height dimensions of about 1:2 and 1:100, or 1:5 and 1:50, or 1:5 and 1:10.
A textured surface can have a plurality of profile features having a mixture of size dimensions within the nanometer to micrometer range (e.g., a portion of the profile features are on the nanometer scale and a portion of the profile features are on the micrometer scale). A textured surface can have a plurality of profile features having a mixture of dimensional ratios. The textured surface can have a profile feature having one or more nanometer-scale projections or depressions on a micrometer-scale projection or depression.
The profile feature can have height and width dimensions that are within a factor of three of each other (0.33w £ h £3w where w is the width and h is the height of the profile feature) and/or height and length dimensions that are within a factor of three of each other (0.33l £ h £ 3l where I is the length and h is the height of the profile feature). The profile feature can have a ratio of length:width that is from about 1:3 to about 3:1, or about 1:2 to about 2:1, or about 1:1.5 to about 1.5:1, or about 1:1.2 to about 1.2:1, or about 1:1. The width and length of the profile features can be substantially the same or different.
In another aspect, the textured surface can have a profile feature and/or flat area with at least one dimension in the mid-micrometer range and higher (e.g., greater than 500
micrometers). The profile feature can have at least one dimension (e.g., the largest dimension such as length, width, height, diameter, and the like depending upon the geometry or shape of the profile feature) of greater than 500 micrometers, greater than 600 micrometers, greater than 700 micrometers, greater than 800 micrometers, greater than 900 micrometers, greater than 1000 micrometers, greater than 2 millimeters, greater than 10 millimeters, or more. For example, the largest dimension of the profile feature can range from about 600 micrometers to about 2000 micrometers, or about 650 micrometers to about 1500 micrometers, or about 700 micrometers to about 1000 micrometers. At least one or more of the dimensions of the profile feature (e.g., length, width, height, diameter, depending on the geometry) can be in the micrometer range, while one or more of the other dimensions can be in the nanometer to micrometer range (e.g., less than 500 micrometers, less than 100 micrometers, less than 10 micrometers, or less than 1 micrometer). The textured surface can have a plurality of profile features having at least one dimension that is in the mid-micrometer or more range (e.g., 500 micrometers or more). In this context, the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at least one dimension that is greater than 500 micrometers. In particular, at least one of the length and width of the profile feature is greater than 500 micrometers or both the length and the width of the profile feature is greater than 500 micrometers. In another example, the diameter of the profile feature is greater than 500 micrometers. In another example, when the profile feature is an irregular shape, the longest dimension is greater than 500 micrometers.
In aspects, the height of the profile features can be greater than 50 micrometers. In this context, the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at height that is greater than 50 micrometers. The height of the profile feature can be 50 micrometers, about 60 micrometers, about 70 micrometers, about 80 micrometers, about 90 micrometers, or about 100 micrometers to about 60 micrometers, about 70 micrometers, about 80 micrometers, about 90 micrometers, about 100 micrometers, about 150 micrometers, about 250 micrometers, about 500 micrometers or more. For example, the ranges can include 50 micrometers to 500 micrometers, about 60 micrometers to 250 micrometers, about 60 micrometers to about 150 micrometers, and the like. One or more of the other dimensions (e.g., length, width, diameter, or the like) can be in the nanometer to micrometer range (e.g., less than 500 micrometers, less than 100 micrometers, less than 10 micrometers, or less than 1 micrometer). In particular, at least one of the length and width of the profile feature is less than 500 micrometers or both the length and the width of the profile feature is less than 500 micrometers, while the height is greater than 50 micrometers. One or more of the other dimensions (e.g., length, width, diameter, or the like) can be in the micrometer to millimeter range (e.g., greater than 500 micrometers to 10 millimeters).
The dimension (e.g., length, width, height, diameter, depending upon the shape of the profile feature) of each profile feature can be within the nanometer to micrometer range. The textured surface can have a profile feature and/or flat area with a dimension of about 10 nanometers to about 500 micrometers or higher (e.g., about 1 millimeter, about 2 millimeters, about 5 millimeters, or about 10 millimeters). At least one of the dimensions of the profile feature (e.g., length, width, height, diameter, depending on the geometry) can be in the nanometer range (e.g., from about 10 nanometers to about 1000 nanometers), while at least one other dimension (e.g., length, width, height, diameter, depending on the geometry) can be in the micrometer range (e.g., 5 micrometers to 500 micrometers or more (e.g., about 1 to 10 millimeters)). The textured surface can have a plurality of profile features having at least one dimension in the nanometer range (e.g., about 10 to 1000 nanometers) and the other in the micrometer range (e.g., 5 micrometers to 500 micrometers or more). In this context, the phrase “plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at least one dimension in the nanometer range and at least one dimension in the micrometer range. In particular, at least one of the length and width of the profile feature is in the nanometer range, while the other of the length and the width of the profile feature is in the micrometer range.
In aspects, the height of the profile features can be greater than 250 nanometers. In this context, the phrase“plurality of the profile features” is meant to mean that about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more, or about 99 percent or more of the profile features have at height that is greater than 250 nanometers. The height of the profile feature can be 250 nanometers, about 300 nanometers, about 400 nanometers, or about 500 nanometers, to about 300 nanometers, about 400 nanometers, about 500 nanometers, or about 1000 nanometers or more. For example, the range can be 250 nanometers to about 1000 nanometers, about 300 nanometers to 500 nanometers, about 400 nanometers to about 1000 nanometers, and the like. One or more of the other dimensions (e.g., length, width, diameter, or the like) can be in the micrometer to millimeter range (e.g., greater than 500 micrometers to 10 millimeters). In particular, at least one of the length and width of the profile feature is in the nanometer range (e.g., about 10 to 1000 nanometers) and the other in the micrometer range (e.g., 5 micrometers to 500 micrometers or more), while the height is greater than 250 nanometers.
The profile features can have a certain spatial arrangement. The spatial arrangement of the profile features may be uniform, such as spaced evenly apart or forming a pattern. The spatial arrangement can be random. Adjacent profile features can be about 10 to 500 nanometers apart, about 100 to 1000 nanometers apart, about 1 to 100 micrometers apart or about 5 to 100 micrometers apart. Adjacent profile features can overlap one another or be adjacent one another so little or no flat regions are positioned there between. The desired spacing can depend, at least in part, on the size and/or shape of the profile structures and the desired structural color effect.
The profile features can have a certain cross-sectional shape (with respect to a plane parallel the first plane). The textured surface can have a plurality of profile features having the same or similar cross-sectional shape. The textured surface has a plurality of profile features having a mixture of different cross-sectional shapes. The cross-sectional shapes of the profile features can include polygonal (e.g., square or triangle or rectangle cross section), circular, semi-circular, tubular, oval, random, high and low aspect ratios, overlapping profile features, and the like.
The profile feature (e.g., about 10 nanometers to 500 micrometers) can include an upper, flat surface. The profile feature (e.g., about 10 nanometers to 500 micrometers) can include an upper, concavely curved surface. The concave curved surface may extend symmetrically either side of an uppermost point. The concave curved surface may extend symmetrically across only 50 percent of the uppermost point. The profile feature (e.g., about 10 nanometers to 500 micrometers) can include an upper, convexly curved surface. The curved surface may extend symmetrically either side of an uppermost point. The curved surface may extend symmetrically across only 50 percent of the uppermost point.
The profile feature can include protrusions from the textured surface. The profile feature can include indents (hollow areas) formed in the textured surface. The profile feature can have a smooth, curved shape (e.g., a polygonal cross-section with curved corners). The profile features (whether protrusions or depressions) can be approximately conical or frusto-conical (i.e. the projections or indents may have horizontally or diagonally flattened tops) or have an approximately part-spherical surface (e.g., a convex or concave surface respectively having a substantially even radius of curvature).
The profile features may have one or more sides or edges that extend in a direction that forms an angle to the first plane of the textured surface. The angle between the first plane and a side or edge of the profile feature is about 45 degrees or less, about 30 degrees or less, about 25 degrees or less, or about 20 degrees or less. The one or more sides or edges may extend in a linear or planar orientation or may be curved so that the angle changes as a function of distance from the first plane. The profile features may have one or more sides that include step(s) and/or flat side(s). The profile feature can have one or more sides (or portions thereof) that can be orthogonal or perpendicular to the first plane of the textured surface, or extend at an angle of about 10 degrees to 89 degrees to the first plane (90 degrees being perpendicular or orthogonal to the first plane)). The profile feature can have a side with a stepped configuration, where portions of the side can be parallel to the first plane of the textured surface or have an angle of about 1 degree to 179 degrees (0 degrees being parallel to the first plane)).
The textured surface can have profile features with varying shapes (e.g., the profile features can vary in shape, height, width and length among the profile features) or profile features with substantially uniform shapes and/or dimensions. The structural color produced by the textured surface can be determined, at least in part, by the shape, dimensions, spacing, and the like, of the profile features.
The profile features can be shaped so as to result in a portion of the surface (e.g., about 25 to 50 percent or more) being about normal to the incoming light when the light is incident at the normal to the first plane of the textured surface. The profile features can be shaped so as to result in a portion of the surface (e.g., about 25 to 50 percent or more) being about normal to the incoming light when the light is incident at an angle of up to 45 degrees to the first plane of the textured surface.
The spatial orientation of the profile features on the textured surface can be used to produce the structural color, or to effect the degree to which the structural color shifts at different viewing angles. The spatial orientation of the profile features on the textured surface can be random, a semi-random pattern, or in a set pattern. A set pattern of profile features is a known set up or configuration of profile features in a certain area (e.g., about 50 nanometers squared to about 10 millimeters squared depending upon the dimensions of the profile features (e.g., any increment between about 50 nanometers and about 10 millimeters is included)). A semi- random pattern of profile features is a known set up of profile features in a certain area (e.g., about 50 nanometers squared to 10 millimeters squared) with some deviation (e.g., 1 to 15% deviation from the set pattern), while random profile features are present in the area but the pattern of profile features is discernable. A random spatial orientation of the profile features in an area produces no discernable pattern in a certain area, (e.g., about 50 nanometers squared to 10 millimeters squared).
The spatial orientation of the profile features can be periodic (e.g., full or partial) or non- periodic. A periodic spatial orientation of the profile features is a recurring pattern at intervals. The periodicity of the periodic spatial orientation of the profile features can depend upon the dimensions of the profile features but generally are periodic from about 50 nanometers to 100 micrometers. For example, when the dimensions of the profile features are submicron, the periodicity of the periodic spatial orientation of the profile features can be in the 50 to 500 nanometer range or 100 to 1000 nanometer range. In another example, when the dimensions of the profile features are at the micron level, the periodicity of the periodic spatial orientation of the profile features can be in the 10 to 500 micrometer range or 10 to 1000 micrometer range. Full periodic pattern of profile features indicates that the entire pattern exhibits periodicity, whereas partial periodicity indicates that less than all of the pattern exhibits periodicity (e.g., about 70-99 percent of the periodicity is retained). A non-periodic spatial orientation of profile features is not periodic and does not show periodicity based on the dimensions of the profile features, in particular, no periodicity in the 50 to 500 nanometer range or 100 to 1000 nanometer range where the dimensions are of the profile features are submicron or no periodicity in the 10 to 500 micrometer range or 10 to 1000 micrometer range where the dimensions are of the profile features are in the micron range.
In an aspect, the spatial orientation of the profile features on the textured surface can be set to reduce distortion effects, e.g., caused by the interference of one profile feature with another in regard to the structural color of the article. Since the shape, dimension, relative orientation of the profile features can vary considerably across the textured surface, the desired spacing and/or relative positioning for a particular area (e.g., in the micrometer range or about 1 to 10 square micrometers) having profile features can be appropriately determined. As discussed herein, the shape, dimension, relative orientation of the profile features affect the contours of the reflective layer(s) and/or constituent layer(s), so the dimensions (e.g., thickness), index of refraction, number of layers in the inorganic optical element (e.g., reflective layer(s) and constituent layer(s)) are considered when designing the textured side of the texture layer. The profile features are located in nearly random positions relative to one another across a specific area of the textured surface (e.g., in the micrometer range or about 1 to 10 square micrometers to centimeter range or about 0.5 to 5 square centimeters, and all range increments therein), where the randomness does not defeat the purpose of producing the structural color. In other words, the randomness is consistent with the spacing, shape, dimension, and relative orientation of the profile features, the dimensions (e.g., thickness), index of refraction, and number of layers (e.g., the reflective layer(s), the constituent layer(s), and the like, with the goal to achieve the structural color.
The profile features are positioned in a set manner relative to one another across a specific area of the textured surface to achieve the purpose of producing the structural color. The relative positions of the profile features do not necessarily follow a pattern, but can follow a pattern consistent with the desired structural color. As mentioned above and herein, various parameters related to the profile features, flat areas, and reflective layer(s) and/or the constituent layer can be used to position the profile features in a set manner relative to one another.
The textured surface can include micro and/or nanoscale profile features that can form gratings (e.g., a diffractive grating), photonic crystal structure, a selective mirror structure, crystal fiber structures, deformed matrix structures, spiraled coiled structures, surface grating structures, and combinations thereof. The textured surface can include micro and/or nanoscale profile features that form a grating having a periodic or non-periodic design structure to impart the structural color. The micro and/or nanoscale profile features can have a peak-valley pattern of profile features and/or flat areas to produce the desired structural color. The grading can be an Echelette grating.
The profile features and the flat areas of the textured surface in the inorganic optical element can appear as topographical undulations in each layer (e.g., reflective layer(s) and/or the constituent layer(s)). For example, referring to FIG.2A, an inorganic optical element 200 includes a textured structure 220 having a plurality of profile features 222 and flat areas 224. As described herein, one or more of the profile features 222 can be projections from a surface of the textured structure 220, and/or one or more of the profile features can be depressions in a surface of the textured structure 220 (not shown). One or more constituent layers 240 are disposed on the textured structure 220 and then a reflective layer 230 and one or more constituent layers 245 are disposed on the preceding layers. In some embodiments, the resulting topography of the textured structure 220 and the one or more constituent layers 240 and 245 and the reflective layer 230 are not identical, but rather, the one or more constituent layers 240 and 245 and the reflective layer 230 can have elevated or depressed regions 242 which are either elevated or depressed relative to the height of the planar regions 244 and which roughly correspond to the location of the profile features 222 of the textured structure 220. The one or more constituent layers 240 and 245 and the reflective layer 230 have planar regions 244 that roughly correspond to the location of the flat areas 224 of the textured structure 220. Due to the presence of the elevated or depressed regions 242 and the planar regions 244, the resultant overall topography of the one or more constituent layers 240 and 245 and the reflective layer 230 can be that of an undulating or wave-like structure. The dimension, shape, and spacing of the profile features along with the number of layers of the constituent layer, the reflective layer, the thickness of each of the layers, refractive index of each layer, and the type of material, can be used to produce an inorganic optical element which results in a particular structural color.
While the textured surface can produce the structural color in some embodiments, or can affect the degree to which the structural color shifts at different viewing angles, in other embodiments, a“textured surface” or surface with texture may not produce the structural color, or may not affect the degree to which the structural color shifts at different viewing angles. The structural color can be produced by the design of the inorganic optical element with or without the textured surface. As a result, the inorganic optical element can include the textured surface having profile elements of dimensions in the nanometer to millimeter range, but the structural color or the shifting of the structural color is not attributable to the presence or absence of the textured surface. In other words, the inorganic optical element imparts the same structural color where or not the textured surface is present The design of the textured surface can be configured to not affect the structural color imparted by the inorganic optical element, or not affect the shifting of the structural color imparted by the inorganic optical element. The shape of the profile features, dimensions of the shapes, the spatial orientation of the profile features relative to one another, and the like can be selected so that the textured surface does not affect the structural color attributable to the inorganic optical element.
The structural color imparted by a first inorganic optical element and a second inorganic optical element, where the only difference between the first and second inorganic optical element is that the first inorganic optical element includes the textured surface, can be compared. A color measurement can be performed for each of the first and second inorganic optical element at the same relative angle, where a comparison of the color measurements can determine what, if any, change is correlated to the presence of the textured surface. For example, at a first observation angle the structural color is a first structural color for the first inorganic optical element and at first observation angle the structural color is a second structural color for the second inorganic optical element. The first color measurement can be obtained and has coordinates L1* and a1* and b1*, while a second color measurement can be obtained and has coordinates L2* and a2* and b2* can be obtained, according to the CIE 1976 color space under a given illumination condition.
When DE*ab between the first color measurement and the second color measurement is less than or equal to about 2.2 or is less than or equal to about 3, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color by more than 20 percent, 10 percent, or 5 percent). When DE*ab between the first color measurement and the second color measurement is greater than 3 or optionally greater than about 4 or 5, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color by more than 20 percent, 10 percent, or 5 percent).
In another approach, when the percent difference between one or more of values L1* and L2* a1* and a2*, and b1* and b2* is less than 20 percent, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color by less than 20 percent, 10 percent, or 5 percent). When the percent difference between one or more of values L1* and L2* a1* and a2*, and b1* and b2* is greater than 20 percent, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color by more than 20 percent, 10 percent, or 5 percent).
In another case, the structural color imparted by a first inorganic optical element and a second inorganic optical element, where the only different between the first and second inorganic optical element is that the first inorganic optical element includes the textured surface, can be compared at different angles of incident light upon the inorganic optical element or different observation angles. A color measurement can be performed for each of the first and second inorganic optical element at different angles (e.g., angle of about -15 and 180 degrees or about -15 degrees and +60 degrees and which are at least 15 degrees apart from each other), where a comparison of the color measurements can determine what, if any, change is correlated to the presence of the textured surface a different angles. For example, at a first observation angle the structural color is a first structural color for the first inorganic optical element and at second observation angle the structural color is a second structural color for the second inorganic optical element. The first color measurement can be obtained and has coordinates L1* and a1* and b1*, while a second color measurement can be obtained and has coordinates L2* and a2* and b2* can be obtained, according to the CIE 1976 color space under a given illumination condition.
When DE*ab between the first color measurement and the second color measurement is less than or equal to about 2.2 or is less than or equal to about 3, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color based on different angles of incident light upon the inorganic optical element or different observation angles).
When DE*ab between the first color measurement and the second color measurement is greater than 3 or optionally greater than about 4 or 5, the first structural color associated with the first color measurement and the second structural color associated with the second color
measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color at different angles of incident light upon the inorganic optical element or different observation angles).
In another approach, when the percent difference between one or more of values L1* and L2* a1* and a2*, and b1* and b2* is less than 20 percent, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are the same or not perceptibly different to an average observer (e.g., the textured surface does not cause or change the structural color by more than 20 percent, 10 percent, or 5 percent at different angles of incident light upon the inorganic optical element or different observation angles). When the percent difference between one or more of values L1* and L2* a1* and a2*, and b1* and b2* is greater than 20 percent, the first structural color associated with the first color measurement and the second structural color associated with the second color measurement are different or perceptibly different to an average observer (e.g., the textured surface does cause or change the structural color by more than 20 percent, 10 percent, or 5 percent at different angles of incident light upon the inorganic optical element or different observation angles).
In another embodiment, the structural color can be imparted by the inorganic optical element without the textured surface. The surface of the layers of the optical element are substantially flat (or substantially three-dimensional flat planar surface) or flat (or three- dimensional flat planar surface) at the microscale (e.g., about 1 to 500 micrometers) and/or nanoscale (e.g., about 50 to 500 nanometers). In regard to substantially flat or substantially planar the surface can include some minor topographical features (e.g., nanoscale and/or microscale) such as those that might be caused due to unintentional imperfections, slight undulations that are unintentional, other topographical features (e.g., extensions above the plane of the layer or depressions below or into the plane of the layer) caused by the equipment and/or process used and the like that are unintentionally introduced. The topographical features do not resemble profile features of the textured surface. In addition, the substantially flat (or substantially three dimensional flat planar surface) or flat (or three dimensional flat planar surface) may include curvature as the dimensions of the optical element increase, for example about 500 micrometers or more, about 10 millimeter or more, about 10 centimeters or more, depending upon the dimensions of the inorganic optical element, as long as the surface is flat or substantially flat and the surface only includes some minor topographical features.
FIG.2B is a cross-section illustration of a substantially flat (or substantially three- dimensional flat planar surface) or flat (or three dimensional flat planar surface) inorganic optical element 300. The inorganic optical element 300 includes one or more constituent layers 340 are disposed on the flat or three-dimensional flat planar surface structure 320 and then a reflective layer 330 and one or more constituent layers 345 are disposed on the preceding layers. The material that makes up the constituent layers and the reflective layer, number of layers of the constituent layer, the reflective layer, the thickness of each of the layers, refractive index of each layer, and the like, can produce an inorganic optical element which results in a particular structural color.
Additional details are provided regarding the polymeric materials referenced herein for example, the polymers described in reference to the filaments, fibers, yarns, polymer-based item, articles of manufacture, components of the article, structures, layers, films, sheets, foams, and like the. The polymer can be a thermoplastic polymer. The polymer can be an elastomeric polymer, including an elastomeric thermoplastic polymer. The polymer can be selected from: polyurethanes (including elastomeric polyurethanes, thermoplastic polyurethanes (TPUs), and elastomeric TPUs), polyesters, polyethers, polyamides, vinyl polymers (e.g., copolymers of vinyl alcohol, vinyl esters, ethylene, acrylates, methacrylates, styrene, and so on), polyacrylonitriles, polyphenylene ethers, polycarbonates, polyureas, polystyrenes, co-polymers thereof (including polyester-polyurethanes, polyether-polyurethanes, polycarbonate-polyurethanes, polyether block polyamides (PEBAs), and styrene block copolymers) , and any combination thereof, as described herein. The polymer can include one or more polymers selected from the group consisting of polyesters, polyethers, polyamides, polyurethanes, polyolefins copolymers of each, and combinations thereof. The term“polymer” refers to a chemical compound formed of a plurality of repeating structural units referred to as monomers. Polymers often are formed by a polymerization reaction in which the plurality of structural units become covalently bonded together. When the monomer units forming the polymer all have the same chemical structure, the polymer is a homopolymer. When the polymer includes two or more monomer units having different chemical structures, the polymer is a copolymer. One example of a type of copolymer is a terpolymer, which includes three different types of monomer units. The co-polymer can include two or more different monomers randomly distributed in the polymer (e.g., a random co-polymer).
Alternatively, one or more blocks containing a plurality of a first type of monomer can be bonded to one or more blocks containing a plurality of a second type of monomer, forming a block copolymer. A single monomer unit can include one or more different chemical functional groups.
Polymers having repeating units which include two or more types of chemical functional groups can be referred to as having two or more segments. For example, a polymer having repeating units of the same chemical structure can be referred to as having repeating segments. Segments are commonly described as being relatively harder or softer based on their chemical structures, and it is common for polymers to include relatively harder segments and relatively softer segments bonded to each other in a single monomeric unit or in different monomeric units. When the polymer includes repeating segments, physical interactions or chemical bonds can be present within the segments or between the segments or both within and between the segments. Examples of segments often referred to as hard segments include segments including a urethane linkage, which can be formed from reacting an isocyanate with a polyol to form a polyurethane. Examples of segments often referred to as soft segments include segments including an alkoxy functional group, such as segments including ether or ester functional groups, and polyester segments. Segments can be referred to based on the name of the functional group present in the segment (e.g., a polyether segment, a polyester segment), as well as based on the name of the chemical structure which was reacted in order to form the segment (e.g., a polyol-derived segment, an isocyanate-derived segment). When referring to segments of a particular functional group or of a particular chemical structure from which the segment was derived, it is understood that the polymer can contain up to 10 mole percent of segments of other functional groups or derived from other chemical structures. For example, as used herein, a polyether segment is understood to include up to 10 mole percent of non- polyether segments.
As previously described, the polymer can be a thermoplastic polymer. In general, a thermoplastic polymer softens or melts when heated and returns to a solid state when cooled. The thermoplastic polymer transitions from a solid state to a softened state when its temperature is increased to a temperature at or above its softening temperature, and a liquid state when its temperature is increased to a temperature at or above its melting temperature. When sufficiently cooled, the thermoplastic polymer transitions from the softened or liquid state to the solid state. As such, the thermoplastic polymer may be softened or melted, molded, cooled, re-softened or re-melted, re-molded, and cooled again through multiple cycles. For amorphous thermoplastic polymers, the solid state is understood to be the“rubbery” state above the glass transition temperature of the polymer. The thermoplastic polymer can have a melting temperature from about 90 degrees C to about 190 degrees C when determined in accordance with ASTM D3418-97 as described herein below, and includes all subranges therein in increments of 1 degree. The thermoplastic polymer can have a melting temperature from about 93 degrees C to about 99 degrees C when determined in accordance with ASTM D3418-97 as described herein below. The thermoplastic polymer can have a melting temperature from about 112 degrees C to about 118 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
The glass transition temperature is the temperature at which an amorphous polymer transitions from a relatively brittle“glassy” state to a relatively more flexible“rubbery” state. The thermoplastic polymer can have a glass transition temperature from about -20 degrees C to about 30 degrees C when determined in accordance with ASTM D3418-97 as described herein below. The thermoplastic polymer can have a glass transition temperature (from about -13 degree C to about -7 degrees C when determined in accordance with ASTM D3418-97 as described herein below. The thermoplastic polymer can have a glass transition temperature from about 17 degrees C to about 23 degrees C when determined in accordance with ASTM D3418-97 as described herein below.
The thermoplastic polymer can have a melt flow index from about 10 to about 30 cubic centimeters per 10 minutes (cm3/10 min) when tested in accordance with ASTM D1238-13 as described herein below at 160 degrees C using a weight of 2.16 kilograms (kg). The
thermoplastic polymer can have a melt flow index from about 22 cm3/10 min to about 28 cm3/10 min when tested in accordance with ASTM D1238-13 as described herein below at 160 degrees C using a weight of 2.16 kg.
The thermoplastic polymer can have a cold Ross flex test result of about 120,000 to about 180,000 cycles without cracking or whitening when tested on a thermoformed plaque of the thermoplastic polymer in accordance with the cold Ross flex test as described herein below. The thermoplastic polymer can have a cold Ross flex test result of about 140,000 to about 160,000 cycles without cracking or whitening when tested on a thermoformed plaque of the thermoplastic polymer in accordance with the cold Ross flex test as described herein below.
The thermoplastic polymer can have a modulus from about 5 megaPascals (MPa) to about 100 MPa when determined on a thermoformed plaque in accordance with ASTM D412-98 Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension with modifications described herein below. The thermoplastic polymer can have a modulus from about 20 MPa to about 80 MPa when determined on a thermoformed plaque in accordance with ASTM D412-98 Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension with modifications described herein below.
Polyurethane
The polymer can be a polyurethane, such as a thermoplastic polyurethane (also referred to as“TPU”). Additionally, polyurethane can be an elastomeric polyurethane, including an elastomeric TPU. The elastomeric polyurethane can include hard and soft segments. The hard segments can comprise or consist of urethane segments (e.g., isocyanate-derived segments). The soft segments can comprise or consist of alkoxy segments (e.g., polyol-derived segments including polyether segments, or polyester segments, or a combination of polyether segments and polyester segments). The polyurethane can comprise or consist essentially of an elastomeric polyurethane having repeating hard segments and repeating soft segments.
One or more of the polyurethanes can be produced by polymerizing one or more isocyanates with one or more polyols to produce polymer chains having carbamate linkages (-N(CO)O—) as illustrated below in Formula 1, where the isocyanate(s) each preferably include two or more isocyanate (—NCO) groups per molecule, such as 2, 3, or 4 isocyanate groups per molecule (although, mono-functional isocyanates can also be optionally included, e.g., as chain terminating units).
Each R1 group and R2 group independently is an aliphatic or aromatic group. Optionally, each R2 can be a relatively hydrophilic group, including a group having one or more hydroxyl groups.
Additionally, the isocyanates can also be chain extended with one or more chain extenders to bridge two or more isocyanates, increasing the length of the hard segment. This can produce polyurethane polymer chains as illustrated below in Formula 2, where R3 includes the chain extender. As with each R1 and R2, each R3 independently is an aliphatic or aromatic functional group..
Each R1 group in Formulas 1 and 2 can independently include a linear or branched group having from 3 to 30 carbon atoms, based on the particular isocyanate(s) used, and can be aliphatic, aromatic, or include a combination of aliphatic portions(s) and aromatic portion(s). The term“aliphatic” refers to a saturated or unsaturated organic molecule or portion of a molecule that does not include a cyclically conjugated ring system having delocalized pi electrons. In comparison, the term“aromatic” refers to an organic molecule or portion of a molecule having a cyclically conjugated ring system with delocalized pi electrons, which exhibits greater stability than a hypothetical ring system having localized pi electrons.
Each R1 group can be present in an amount of about 5 percent to about 85 percent by weight, from about 5 percent to about 70 percent by weight, or from about 10 percent to about 50 percent by weight, based on the total weight of the reactant compounds or monomers which form the polymer.
In aliphatic embodiments (from aliphatic isocyanate(s)), each R1 group can include a linear aliphatic group, a branched aliphatic group, a cycloaliphatic group, or combinations thereof. For instance, each R1 group can include a linear or branched alkylene group having from 3 to 20 carbon atoms (e.g., an alkylene having from 4 to 15 carbon atoms, or an alkylene having from 6 to 10 carbon atoms), one or more cycloalkylene groups having from 3 to 8 carbon atoms (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl), and combinations thereof. The term“alkene” or“alkylene” as used herein refers to a bivalent hydrocarbon. When used in association with the term Cn it means the alkene or alkylene group has“n” carbon atoms. For example, C1-6 alkylene refers to an alkylene group having, e.g., 1, 2, 3, 4, 5, or 6 carbon atoms.
Examples of suitable aliphatic diisocyanates for producing the polyurethane polymer chains include hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI),
butylenediisocyanate (BDI), bisisocyanatocyclohexylmethane (HMDI), 2,2,4–
trimethylhexamethylene diisocyanate (TMDI), bisisocyanatomethylcyclohexane,
bisisocyanatomethyltricyclodecane, norbornane diisocyanate (NDI), cyclohexane diisocyanate (CHDI), 4,4’-dicyclohexylmethane diisocyanate (H12MDI), diisocyanatododecane, lysine diisocyanate, and combinations thereof.
The isocyanate-derived segments can include segments derived from aliphatic diisocyanate. A majority of the isocyanate-derived segments can comprise segments derived from aliphatic diisocyanates. At least 90% of the isocyanate-derived segments are derived from aliphatic diisocyanates. The isocyanate-derived segments can consist essentially of segments derived from aliphatic diisocyanates. The aliphatic diisocyanate-derived segments can be derived substantially (e.g., about 50 percent or more, about 60 percent or more, about 70 percent or more, about 80 percent or more, about 90 percent or more) from linear aliphatic diisocyanates. At least 80% of the aliphatic diisocyanate-derived segments can be derived from aliphatic diisocyanates that are free of side chains. The segments derived from aliphatic diisocyanates can include linear aliphatic diisocyanates having from 2 to 10 carbon atoms.
When the isocyanate-derived segments are derived from aromatic isocyanate(s)), each R1 group can include one or more aromatic groups, such as phenyl, naphthyl,
tetrahydronaphthyl, phenanthrenyl, biphenylenyl, indanyl, indenyl, anthracenyl, and fluorenyl. Unless otherwise indicated, an aromatic group can be an unsubstituted aromatic group or a substituted aromatic group, and can also include heteroaromatic groups.“Heteroaromatic” refers to monocyclic or polycyclic (e.g., fused bicyclic and fused tricyclic) aromatic ring systems, where one to four ring atoms are selected from oxygen, nitrogen, or sulfur, and the remaining ring atoms are carbon, and where the ring system is joined to the remainder of the molecule by any of the ring atoms. Examples of suitable heteroaryl groups include pyridyl, pyrazinyl, pyrimidinyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, tetrazolyl, oxazolyl, isooxazolyl, thiadiazolyl, oxadiazolyl, furanyl, quinolinyl, isoquinolinyl, benzoxazolyl, benzimidazolyl, and benzothiazolyl groups.
Examples of suitable aromatic diisocyanates for producing the polyurethane polymer chains include toluene diisocyanate (TDI), TDI adducts with trimethyloylpropane (TMP), methylene diphenyl diisocyanate (MDI), xylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), hydrogenated xylene diisocyanate (HXDI), naphthalene 1,5-diisocyanate (NDI), 1,5-tetrahydronaphthalene diisocyanate, para-phenylene diisocyanate (PPDI), 3,3’– dimethyldipheny1-4, 4’–diisocyanate (DDDI), 4,4‘-dibenzyl diisocyanate (DBDI), 4-chloro-1,3- phenylene diisocyanate, and combinations thereof. The polymer chains can be substantially free of aromatic groups.
The polyurethane polymer chains can be produced from diisocyanates including HMDI, TDI, MDI, H12 aliphatics, and combinations thereof. For example, the polyurethane can comprise one or more polyurethane polymer chains produced from diisocyanates including HMDI, TDI, MDI, H12 aliphatics, and combinations thereof.
Polyurethane chains which are at least partially crosslinked or which can be crosslinked, can be used in accordance with the present disclosure. It is possible to produce crosslinked or crosslinkable polyurethane chains by reacting multi-functional isocyanates to form the polyurethane. Examples of suitable triisocyanates for producing the polyurethane chains include TDI, HDI, and IPDI adducts with trimethyloylpropane (TMP), uretdiones (i.e., dimerized isocyanates), polymeric MDI, and combinations thereof.
The R3 group in Formula 2 can include a linear or branched group having from 2 to 10 carbon atoms, based on the particular chain extender polyol used, and can be, for example, aliphatic, aromatic, or an ether or polyether. Examples of suitable chain extender polyols for producing the polyurethane include ethylene glycol, lower oligomers of ethylene glycol (e.g., diethylene glycol, triethylene glycol, and tetraethylene glycol), 1,2-propylene glycol, 1,3- propylene glycol, lower oligomers of propylene glycol (e.g., dipropylene glycol, tripropylene glycol, and tetrapropylene glycol), 1,4-butylene glycol, 2,3-butylene glycol, 1,6-hexanediol, 1,8- octanediol, neopentyl glycol, 1 ,4-cyclohexanedimethanol, 2-ethyl-1,6-hexanediol, 1-methyl-1,3- propanediol, 2-methyl-1,3-propanediol, dihydroxyalkylated aromatic compounds (e.g., bis(2- hydroxyethyl) ethers of hydroquinone and resorcinol, xylene-a,a-diols, bis(2-hydroxyethyl) ethers of xylene-a,a-diols, and combinations thereof.
The R2 group in Formula 1 and 2 can include a polyether group, a polyester group, a polycarbonate group, an aliphatic group, or an aromatic group. Each R2 group can be present in an amount of about 5 percent to about 85 percent by weight, from about 5 percent to about 70 percent by weight, or from about 10 percent to about 50 percent by weight, based on the total weight of the reactant monomers.
At least one R2 group of the polyurethane includes a polyether segment (i.e., a segment having one or more ether groups). Suitable polyether groups include, but are not limited to, polyethylene oxide (PEO), polypropylene oxide (PPO), polytetrahydrofuran (PTHF), polytetramethylene oxide (PTMO), and combinations thereof. The term“alkyl” as used herein refers to straight chained and branched saturated hydrocarbon groups containing one to thirty carbon atoms, for example, one to twenty carbon atoms, or one to ten carbon atoms. When used in association with the term Cn it means the alkyl group has“n” carbon atoms. For example, C4 alkyl refers to an alkyl group that has 4 carbon atoms. C1-7 alkyl refers to an alkyl group having a number of carbon atoms encompassing the entire range (i.e., 1 to 7 carbon atoms), as well as all subgroups (e.g., 1-6, 2-7, 1-5, 3-6, 1, 2, 3, 4, 5, 6, and 7 carbon atoms). Non-limiting examples of alkyl groups include, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec- butyl (2-methylpropyl), t-butyl (1,1- dimethylethyl), 3,3-dimethylpentyl, and 2-ethylhexyl. Unless otherwise indicated, an alkyl group can be an unsubstituted alkyl group or a substituted alkyl group.
In some examples of the polyurethane, the at least one R2 group includes a polyester group. The polyester group can be derived from the polyesterification of one or more dihydric alcohols (e.g., ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3- butanediol, 2-methylpentanediol, 1,5,diethylene glycol,1,5-pentanediol, 1,5-hexanediol, 1,2- dodecanediol, cyclohexanedimethanol, and combinations thereof) with one or more dicarboxylic acids (e.g., adipic acid, succinic acid, sebacic acid, suberic acid, methyladipic acid, glutaric acid, pimelic acid, azelaic acid, thiodipropionic acid and citraconic acid and combinations thereof). The polyester group also can be derived from polycarbonate prepolymers, such as
poly(hexamethylene carbonate) glycol, poly(propylene carbonate) glycol, poly(tetramethylene carbonate)glycol, and poly(nonanemethylene carbonate) glycol. Suitable polyesters can include, for example, polyethylene adipate (PEA), poly(1,4-butylene adipate), poly(tetramethylene adipate), poly(hexamethylene adipate), polycaprolactone, polyhexamethylene carbonate, poly(propylene carbonate), poly(tetramethylene carbonate), poly(nonanemethylene carbonate), and combinations thereof.
At least one R2 group can include a polycarbonate group. The polycarbonate group can be derived from the reaction of one or more dihydric alcohols (e.g., ethylene glycol, 1,3- propylene glycol, 1,2-propylene glycol, 1,4-butanediol, 1,3-butanediol, 2-methylpentanediol, 1,5, diethylene glycol, 1,5-pentanediol, 1,5-hexanediol, 1,2-dodecanediol, cyclohexanedimethanol, and combinations thereof) with ethylene carbonate.
The aliphatic group can be linear and can include, for example, an alkylene chain having from 1 to 20 carbon atoms or an alkenylene chain having from 1 to 20 carbon atoms (e.g., methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, undecylene, dodecylene, tridecylene, ethenylene, propenylene, butenylene, pentenylene, hexenylene, heptenylene, octenylene, nonenylene, decenylene, undecenylene, dodecenylene, tridecenylene). The term“alkene” or“alkylene” refers to a bivalent hydrocarbon. The term“alkenylene” refers to a bivalent hydrocarbon molecule or portion of a molecule having at least one double bond.
The aliphatic and aromatic groups can be substituted with one or more pendant relatively hydrophilic and/or charged groups. The pendant hydrophilic group can include one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) hydroxyl groups. The pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) amino groups. In some cases, the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) carboxylate groups. For example, the aliphatic group can include one or more polyacrylic acid group. In some cases, the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) sulfonate groups. In some cases, the pendant hydrophilic group includes one or more (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) phosphate groups. In some examples, the pendant hydrophilic group includes one or more ammonium groups (e.g., tertiary and/or quaternary ammonium). In other examples, the pendant hydrophilic group includes one or more zwitterionic groups (e.g., a betaine, such as poly(carboxybetaine (pCB) and ammonium phosphonate groups such as a phosphatidylcholine group).
The R2 group can include charged groups that are capable of binding to a counterion to ionically crosslink the polymer and form ionomers. For example, R2 is an aliphatic or aromatic group having pendant amino, carboxylate, sulfonate, phosphate, ammonium, or zwitterionic groups, or combinations thereof.
When a pendant hydrophilic group is present, the pendant hydrophilic group can be at least one polyether group, such as two polyether groups. In other cases, the pendant hydrophilic group is at least one polyester. The pendant hydrophilic group can be a polylactone group (e.g., polyvinylpyrrolidone). Each carbon atom of the pendant hydrophilic group can optionally be substituted with, e.g., an alkyl group having from 1 to 6 carbon atoms. The aliphatic and aromatic groups can be graft polymeric groups, wherein the pendant groups are homopolymeric groups (e.g., polyether groups, polyester groups, polyvinylpyrrolidone groups).
The pendant hydrophilic group can be a polyether group (e.g., a polyethylene oxide (PEO) group, a polyethylene glycol (PEG) group), a polyvinylpyrrolidone group, a polyacrylic acid group, or combinations thereof.
The pendant hydrophilic group can be bonded to the aliphatic group or aromatic group through a linker. The linker can be any bifunctional small molecule (e.g., one having from 1 to 20 carbon atoms) capable of linking the pendant hydrophilic group to the aliphatic or aromatic group. For example, the linker can include a diisocyanate group, as previously described herein, which when linked to the pendant hydrophilic group and to the aliphatic or aromatic group forms a carbamate bond. The linker can be 4,4'-diphenylmethane diisocyanate (MDI), as shown below.
The pendant hydrophilic group can be a polyethylene oxide group and the linking group can be MDI, as shown below.
The pendant hydrophilic group can be functionalized to enable it to bond to the aliphatic or aromatic group, optionally through the linker. For example, when the pendant hydrophilic group includes an alkene group, which can undergo a Michael addition with a sulfhydryl- containing bifunctional molecule (i.e., a molecule having a second reactive group, such as a hydroxyl group or amino group), resulting in a hydrophilic group that can react with the polymer backbone, optionally through the linker, using the second reactive group. For example, when the pendant hydrophilic group is a polyvinylpyrrolidone group, it can react with the sulfhydryl group on mercaptoethanol to result in hydroxyl-functionalized polyvinylpyrrolidone, as shown below.
At least one R2 group in the polyurethane can include a polytetramethylene oxide group. At least one R2 group of the polyurethane can include an aliphatic polyol group functionalized with a polyethylene oxide group or polyvinylpyrrolidone group, such as the polyols described in E.P. Patent No.2462908, which is hereby incorporated by reference. For example, the R2 group can be derived from the reaction product of a polyol (e.g., pentaerythritol or 2,2,3- trihydroxypropanol) and either MDI-derivatized methoxypolyethylene glycol (to obtain compounds as shown in Formulas 6 or 7) or with MDI-derivatized polyvinylpyrrolidone (to obtain compounds as shown in Formulas 8 or 9) that had been previously been reacted with mercaptoethanol, as shown below.
At least one R2 of the polyurethane can be a polysiloxane, In these cases, the R2 group can be derived from a silicone monomer of Formula 10, such as a silicone monomer disclosed in U.S. Pat. No.5,969,076, which is hereby incorporated by reference:
wherein: a is 1 to 10 or larger (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10); each R4 independently is hydrogen, an alkyl group having from 1 to 18 carbon atoms, an alkenyl group having from 2 to 18 carbon atoms, aryl, or polyether; and each R5 independently is an alkylene group having from 1 to 10 carbon atoms, polyether, or polyurethane.
Each R4 group can independently be a H, an alkyl group having from 1 to 10 carbon atoms, an alkenyl group having from 2 to 10 carbon atoms, an aryl group having from 1 to 6 carbon atoms, polyethylene, polypropylene, or polybutylene group. Each R4 group can independently be selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, s-butyl, t-butyl, ethenyl, propenyl, phenyl, and polyethylene groups.
Each R5 group can independently include an alkylene group having from 1 to 10 carbon atoms (e.g., a methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, or decylene group). Each R5 group can be a polyether group (e.g., a polyethylene, polypropylene, or polybutylene group). Each R5 group can be a polyurethane group.
Optionally, the polyurethane can include an at least partially crosslinked polymeric network that includes polymer chains that are derivatives of polyurethane. The level of crosslinking can be such that the polyurethane retains thermoplastic properties (i.e., the crosslinked thermoplastic polyurethane can be melted and re-solidified under the processing conditions described herein). This crosslinked polymeric network can be produced by polymerizing one or more isocyanates with one or more polyamino compounds, polysulfhydryl compounds, or combinations thereof, as shown in Formulas 11 and 12, below:
wherein the variables are as described above. Additionally, the isocyanates can also be chain extended with one or more polyamino or polythiol chain extenders to bridge two or more isocyanates, such as previously described for the polyurethanes of Formula 2.
The polyurethane chain can be physically crosslinked to another polyurethane chain through e.g., nonpolar or polar interactions between the urethane or carbamate groups of the polymers (the hard segments). The R1 group in Formula 1, and the R1 and R3 groups in Formula 2, form the portion of the polymer often referred to as the“hard segment”, and the R2 group forms the portion of the polymer often referred to as the“soft segment”. The soft segment is covalently bonded to the hard segment. The polyurethane having physically crosslinked hard and soft segments can be a hydrophilic polyurethane (i.e., a polyurethane, including a thermoplastic polyurethane, including hydrophilic groups as disclosed herein).
The polyurethane can be a thermoplastic polyurethane composed of MDI, PTMO, and 1,4-butylene glycol, as described in U.S. Patent No.4,523,005. Commercially available polyurethanes suitable for the present use include, but are not limited to those under the tradename“SANCURE” (e.g., the“SANCURE” series of polymer such as“SANCURE” 20025F) or "TECOPHILIC" (e.g., TG-500, TG-2000, SP-80A-150, SP-93A-100, SP-60D-60) (Lubrizol, Countryside, IL, USA),“PELLETHANE“ 2355-85ATP and 2355-95AE (Dow Chemical Company of Midland, MI, USA.), "ESTANE" (e.g., ALR G 500, or 58213; Lubrizol, Countryside, IL, USA).
One or more of the polyurethanes can be produced by polymerizing one or more isocyanates with one or more polyols to produce copolymer chains having carbamate linkages (-N(C=O)O-) and one or more water-dispersible enhancing moieties, where the polymer chain includes one or more water-dispersible enhancing moieties (e.g., a monomer in polymer chain). The water-dispersible polyurethane can also be referred to as“a water-borne polyurethane polymer dispersion.” The water-dispersible enhancing moiety can be added to the chain of Formula 1 or 2 (e.g., within the chain and/or onto the chain as a side chain). Inclusion of the water-dispersible enhancing moiety enables the formation of a water-borne polyurethane dispersion. The term "water-borne" herein means the continuous phase of the dispersion or formulation of about 50 weight percent to 100 weight percent water, about 60 weight percent to 100 weight percent water, about 70 weight percent to 100 weight percent water, or about 100 weight percent water. The term“water-borne dispersion” refers to a dispersion of a component (e.g., polymer, cross-linker, and the like) in water without co-solvents. The co-solvent can be used in the water-borne dispersion and the co-solvent can be an organic solvent. Additional detail regarding the polymers, polyurethanes, isocyantes and the polyols are provided below.
The polyurethane (e.g., a water-borne polyurethane polymer dispersion) can include one or more water-dispersible enhancing moieties. The water-dispersible enhancing moiety can have at least one hydrophilic (e.g., poly(ethylene oxide)), ionic or potentially ionic group to assist dispersion of the polyurethane, thereby enhancing the stability of the dispersions. A water- dispersible polyurethane can be formed by incorporating a moiety bearing at least one hydrophilic group or a group that can be made hydrophilic (e.g., by chemical modifications such as neutralization) into the polymer chain. For example, these compounds can be nonionic, anionic, cationic or zwitterionic or the combination thereof. In one example, anionic groups such as carboxylic acid groups can be incorporated into the chain in an inactive form and
subsequently activated by a salt-forming compound, such as a tertiary amine. Other water- dispersible enhancing moieties can also be reacted into the backbone through urethane linkages or urea linkages, including lateral or terminal hydrophilic ethylene oxide or ureido units.
The water-dispersible enhancing moiety can be a one that includes carboxyl groups. Water-dispersible enhancing moiety that include a carboxyl group can be formed from hydroxy- carboxylic acids having the general formula (HO)xQ(COOH)y, where Q can be a straight or branched bivalent hydrocarbon radical containing 1 to 12 carbon atoms, and x and y can each independently be 1 to 3. Illustrative examples include dimethylolpropanoic acid (DMPA), dimethylol butanoic acid (DMBA), citric acid, tartaric acid, glycolic acid, lactic acid, malic acid, dihydroxymalic acid, dihydroxytartaric acid, and the like, and mixtures thereof.
The water-dispersible enhancing moiety can include reactive polymeric polyol components that contain pendant anionic groups that can be polymerized into the backbone to impart water dispersible characteristics to the polyurethane. Anionic functional polymeric polyols can include anionic polyester polyols, anionic polyether polyols, and anionic
polycarbonate polyols, where additional detail is provided in U.S. Pat. No.5,334,690.
The water-dispersible enhancing moiety can include a side chain hydrophilic monomer. For example, the water-dispersible enhancing moiety including the side chain hydrophilic monomer can include alkylene oxide polymers and copolymers in which the alkylene oxide groups have from 2-10 carbon atoms as shown in U.S. Patent 6,897,281. Additional types of water-dispersible enhancing moieties can include thioglycolic acid, 2,6-dihydroxybenzoic acid, sulfoisophthalic acid, polyethylene glycol, and the like, and mixtures thereof. Additional details regarding water-dispersible enhancing moieties can be found in U.S. Patent 7,476,705.
Polyamides
The polymer can comprise a polyamide, such as a thermoplastic polyamide. The polyamide can be an elastomeric polyamide, including an elastomeric thermoplastic polyamide. The polyamide can be a polyamide homopolymer having repeating polyamide segments of the same chemical structure. Alternatively, the polyamide can comprise a number of polyamide segments having different polyamide chemical structures (e.g., polyamide 6 segments, polyamide 11 segments, polyamide 12 segments, polyamide 66 segments, etc.). The polyamide segments having different chemical structure can be arranged randomly, or can be arranged as repeating blocks. The polyamide can be a co-polyamide (i.e., a co-polymer including polyamide segments and non-polyamide segments). The polyamide segments of the co-polyamide can comprise or consist of polyamide 6 segments, polyamide 11 segments, polyamide 12 segments, polyamide 66 segments, or any combination thereof. The polyamide segments of the co-polyamide can be arranged randomly, or can be arranged as repeating segments. The polyamide segments can comprise or consist of polyamide 6 segments, or polyamide 12 segments, or both polyamide 6 segment and polyamide 12 segments. In the example where the polyamide segments of the co- polyamide include of polyamide 6 segments and polyamide 12 segments, the segments can be arranged randomly. The non-polyamide segments of the co-polyamide can comprise or consist of polyether segments, polyester segments, or both polyether segments and polyester segments. The co-polyamide can be a block co-polyamide, or can be a random co-polyamide. The copolyamide can be formed from the polycondensation of a polyamide oligomer or prepolymer with a second oligomer prepolymer to form a copolyamide (i.e., a co-polymer including polyamide segments. Optionally, the second prepolymer can be a hydrophilic prepolymer.
The polyamide can be a polyamide-containing block co-polymer. For example, the block co-polymer can have repeating hard segments, and repeating soft segments. The hard segments can comprise polyamide segments, and the soft segments can comprise non- polyamide segments. The polyamide-containing block co-polymer can be an elastomeric co- polyamide comprising or consisting of polyamide-containing block co-polymers having repeating hard segments and repeating soft segments. In block co-polymers, including block co-polymers having repeating hard segments and soft segments, physical crosslinks can be present within the segments or between the segments or both within and between the segments.
The polyamide itself, or the polyamide segment of the polyamide-containing block co- polymer can be derived from the condensation of polyamide prepolymers, such as lactams, amino acids, and/or diamino compounds with dicarboxylic acids, or activated forms thereof. The resulting polyamide segments include amide linkages (—(CO)NH—). The term“amino acid” refers to a molecule having at least one amino group and at least one carboxyl group. Each polyamide segment of the polyamide can be the same or different.
The polyamide or the polyamide segment of the polyamide-containing block co-polymer can be derived from the polycondensation of lactams and/or amino acids, and can include an amide segment having a structure shown in Formula 13, below, wherein R6 group represents the portion of the polyamide derived from the lactam or amino acid.
The R6 group can be derived from a lactam. The R6 group can be derived from a lactam group having from 3 to 20 carbon atoms, or a lactam group having from 4 to 15 carbon atoms, or a lactam group having from 6 to 12 carbon atoms. The R6 group can be derived from caprolactam or laurolactam. The R6 group can be derived from one or more amino acids. The R6 group can be derived from an amino acid group having from 4 to 25 carbon atoms, or an amino acid group having from 5 to 20 carbon atoms, or an amino acid group having from 8 to 15 carbon atoms. The R6 group can be derived from 12-aminolauric acid or 11-aminoundecanoic acid.
Optionally, in order to increase the relative degree of hydrophilicity of the polyamide- containing block co-polymer, Formula 13 can include a polyamide-polyether block copolymer segment, as shown below:
wherein m is 3-20, and n is 1-8. Optionally, m is 4-15, or 6-12 (e.g., 6, 7, 8, 9, 10, 11, or 12), and n is 1, 2, or 3. For example, m can be 11 or 12, and n can be 1 or 3. The polyamide or the polyamide segment of the polyamide-containing block co-polymer can be derived from the condensation of diamino compounds with dicarboxylic acids, or activated forms thereof, and can include an amide segment having a structure shown in Formula 15, below, wherein the R7 group represents the portion of the polyamide derived from the diamino compound, and the R8 group represents the portion derived from the dicarboxylic acid compound:
The R7 group can be derived from a diamino compound that includes an aliphatic group having from 4 to 15 carbon atoms, or from 5 to 10 carbon atoms, or from 6 to 9 carbon atoms. The diamino compound can include an aromatic group, such as phenyl, naphthyl, xylyl, and tolyl. Suitable diamino compounds from which the R7 group can be derived include, but are not limited to, hexamethylene diamine (HMD), tetramethylene diamine, trimethyl hexamethylene diamine (TMD),m-xylylene diamine (MXD), and 1,5-pentamine diamine. The R8 group can be derived from a dicarboxylic acid or activated form thereof, including an aliphatic group having from 4 to 15 carbon atoms, or from 5 to 12 carbon atoms, or from 6 to 10 carbon atoms. The dicarboxylic acid or activated form thereof from which R8 can be derived includes an aromatic group, such as phenyl, naphthyl, xylyl, and tolyl groups. Suitable carboxylic acids or activated forms thereof from which R8 can be derived include adipic acid, sebacic acid, terephthalic acid, and isophthalic acid. The polyamide chain can be substantially free of aromatic groups.
Each polyamide segment of the polyamide (including the polyamide-containing block co- polymer) can be independently derived from a polyamide prepolymer selected from the group consisting of 12-aminolauric acid, caprolactam, hexamethylene diamine and adipic acid.
The polyamide can comprise or consist essentially of a poly(ether-block-amide). The poly(ether-block-amide) can be formed from the polycondensation of a carboxylic acid terminated polyamide prepolymer and a hydroxyl terminated polyether prepolymer to form a poly(ether-block-amide), as shown in Formula 16:
The poly(ether block amide) polymer can be prepared by polycondensation of polyamide blocks containing reactive ends with polyether blocks containing reactive ends. Examples include: 1) polyamide blocks containing diamine chain ends with polyoxyalkylene blocks containing carboxylic chain ends; 2) polyamide blocks containing dicarboxylic chain ends with polyoxyalkylene blocks containing diamine chain ends obtained by cyanoethylation and hydrogenation of aliphatic dihydroxylated alpha-omega polyoxyalkylenes known as polyether diols; 3) polyamide blocks containing dicarboxylic chain ends with polyether diols, the products obtained in this particular case being polyetheresteramides. The polyamide block of the poly(ether-block-amide) can be derived from lactams, amino acids, and/or diamino compounds with dicarboxylic acids as previously described. The polyether block can be derived from one or more polyethers selected from the group consisting of polyethylene oxide (PEO), polypropylene oxide (PPO), polytetrahydrofuran (PTHF), polytetramethylene oxide (PTMO), and combinations thereof.
The poly(ether block amide) polymers can include those comprising polyamide blocks comprising dicarboxylic chain ends derived from condensation of a, w- aminocarboxylic acids, of lactams or of dicarboxylic acids and diamines in the presence of a chain-limiting dicarboxylic acid. In poly(ether block amide) polymers of this type, a a, w-aminocarboxylic acid such as aminoundecanoic acid can be used; a lactam such as caprolactam or lauryllactam can be used; a dicarboxylic acid such as adipic acid, decanedioic acid or dodecanedioic acid can be used; and a diamine such as hexamethylenediamine can be used; or various combinations of any of the foregoing. The copolymer can comprise polyamide blocks comprising polyamide 12 or of polyamide 6.
The poly(ether block amide) polymers can include those comprising polyamide blocks derived from the condensation of one or more a, w-aminocarboxylic acids and/or of one or more lactams containing from 6 to 12 carbon atoms in the presence of a dicarboxylic acid containing from 4 to 12 carbon atoms, and are of low mass, i.e., they have a number-average molecular weight of from 400 to 1000. In poly(ether block amide) polymers of this type, an a, w- aminocarboxylic acid such as aminoundecanoic acid or aminododecanoic acid can be used; a dicarboxylic acid such as adipic acid, sebacic acid, isophthalic acid, butanedioic acid, 1,4- cyclohexyldicarboxylic acid, terephthalic acid, the sodium or lithium salt of sulphoisophthalic acid, dimerized fatty acids (these dimerized fatty acids have a dimer content of at least 98 weight percent and are preferably hydrogenated) and dodecanedioic acid HOOC—(CH2)10— COOH can be used; and a lactam such as caprolactam and lauryllactam can be used; or various combinations of any of the foregoing. The copolymer can comprise polyamide blocks obtained by condensation of lauryllactam in the presence of adipic acid or dodecanedioic acid and with a number average molecular weight of at least 750 have a melting temperature of from about 127 to about 130 degrees C. The various constituents of the polyamide block and their proportion can be chosen in order to obtain a melting point of less than 150 degrees C, or from about 90 degrees C to about 135 degrees C.
The poly(ether block amide) polymers can include those comprising polyamide blocks derived from the condensation of at least one a, w-aminocarboxylic acid (or a lactam), at least one diamine and at least one dicarboxylic acid. In copolymers of this type, a a, w- aminocarboxylic acid, the lactam and the dicarboxylic acid can be chosen from those described herein above and the diamine that can be used can include an aliphatic diamine containing from 6 to 12 atoms and can be acyclic and/or saturated cyclic such as, but not limited to, hexamethylenediamine, piperazine, 1-aminoethylpiperazine, bisaminopropylpiperazine, tetramethylenediamine, octamethylene-diamine, decamethylenediamine,
dodecamethylenediamine, 1,5-diaminohexane, 2,2,4-trimethyl-1,6-diaminohexane, diamine polyols, isophoronediamine (IPD), methylpentamethylenediamine (MPDM),
bis(aminocyclohexyl)methane (BACM) and bis(3-methyl-4-aminocyclohexyl)methane (BMACM).
The polyamide can be a thermoplastic polyamide and the constituents of the polyamide block and their proportion can be chosen in order to obtain a melting temperature of less than 150 degrees C, such as a melting point of from about 90 degrees C to about 135 degrees C. The various constituents of the thermoplastic polyamide block and their proportion can be chosen in order to obtain a melting point of less than 150 degrees C, such as from about and 90 degrees C to about 135 degrees C.
The number average molar mass of the polyamide blocks can be from about 300 grams per mole to about 15,000 grams per mole, from about 500 grams per mole to about 10,000 grams per mole, from about 500 grams per mole to about 6,000 grams per mole, from about 500 grams per mole to about 5,000 grams per mole, or from about 600 grams per mole to about 5,000 grams per mole. The number average molecular weight of the polyether block can range from about 100 to about 6,000, from about 400 to about 3000, or from about 200 to about 3,000. The polyether (PE) content (x) of the poly(ether block amide) polymer can be from about 0.05 to about 0.8 (i.e., from about 5 mole percent to about 80 mole percent ). The polyether blocks can be present in the polyamide in an amount of from about 10 weight percent to about 50 weight percent, from about 20 weight percent to about 40 weight percent, or from about 30 weight percent to about 40 weight percent. The polyamide blocks can be present in the polyamide in an amount of from about 50 weight percent to about 90 weight percent, from about 60 weight percent to about 80 weight percent, or from about 70 weight percent to about 90 weight percent.
The polyether blocks can contain units other than ethylene oxide units, such as, for example, propylene oxide or polytetrahydrofuran (which leads to polytetramethylene glycol sequences). It is also possible to use simultaneously PEG blocks, i.e., those consisting of ethylene oxide units, polypropylene glycol (PPG) blocks, i.e. those consisting of propylene oxide units, and poly(tetramethylene ether)glycol (PTMG) blocks, i.e. those consisting of
tetramethylene glycol units, also known as polytetrahydrofuran. PPG or PTMG blocks are advantageously used. The amount of polyether blocks in these copolymers containing polyamide and polyether blocks can be from about 10 weight percent to about 50 weight percent of the copolymer, or from about 35 weight percent to about 50 weight percent. The copolymers containing polyamide blocks and polyether blocks can be prepared by any means for attaching the polyamide blocks and the polyether blocks. In practice, two processes are essentially used, one being a 2-step process and the other a one-step process.
In the two-step process, the polyamide blocks having dicarboxylic chain ends are prepared first, and then, in a second step, these polyamide blocks are linked to the polyether blocks. The polyamide blocks having dicarboxylic chain ends are derived from the condensation of polyamide precursors in the presence of a chain-stopper dicarboxylic acid. If the polyamide precursors are only lactams or a, w-aminocarboxylic acids, a dicarboxylic acid is added. If the precursors already comprise a dicarboxylic acid, this is used in excess with respect to the stoichiometry of the diamines. The reaction usually takes place from about 180 to about 300 degrees C, such as from about 200 degrees to about 290 degrees C, and the pressure in the reactor can be set from about 5 to about 30 bar and maintained for approximately 2 to 3 hours. The pressure in the reactor is slowly reduced to atmospheric pressure and then the excess water is distilled off, for example for one or two hours.
Once the polyamide having carboxylic acid end groups has been prepared, the polyether, the polyol and a catalyst are then added. The total amount of polyether can be divided and added in one or more portions, as can the catalyst. The polyether is added first and the reaction of the OH end groups of the polyether and of the polyol with the COOH end groups of the polyamide starts, with the formation of ester linkages and the elimination of water. Water is removed as much as possible from the reaction mixture by distillation and then the catalyst is introduced in order to complete the linking of the polyamide blocks to the polyether blocks. This second step takes place with stirring, preferably under a vacuum of at least 50 millibar (5000 Pascals) at a temperature such that the reactants and the copolymers obtained are in the molten state. By way of example, this temperature can be from about 100 to about 400 degrees C, such as from about 200 to about 250 degrees C. The reaction is monitored by measuring the torque exerted by the polymer melt on the stirrer or by measuring the electric power consumed by the stirrer. The end of the reaction is determined by the value of the torque or of the target power. The catalyst is defined as being any product which promotes the linking of the polyamide blocks to the polyether blocks by esterification. The catalyst can be a derivative of a metal (M) chosen from the group formed by titanium, zirconium and hafnium. The derivative can be prepared from a tetraalkoxides consistent with the general formula M(OR)4, in which M represents titanium, zirconium or hafnium and R, which can be identical or different, represents linear or branched alkyl radicals having from 1 to 24 carbon atoms. The catalyst can comprise a salt of the metal (M), particularly the salt of (M) and of an organic acid and the complex salts of the oxide of (M) and/or the hydroxide of (M) and an organic acid. The organic acid can be formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, cyclohexanecarboxylic acid, phenylacetic acid, benzoic acid, salicylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid, phthalic acid or crotonic acid. The organic acid can be an acetic acid or a propionic acid. M can be zirconium and such salts are called zirconyl salts, e.g., the commercially available product sold under the name zirconyl acetate.
The weight proportion of catalyst can vary from about 0.01 to about 5 percent of the weight of the mixture of the dicarboxylic polyamide with the polyetherdiol and the polyol. The weight proportion of catalyst can vary from about 0.05 to about 2 percent of the weight of the mixture of the dicarboxylic polyamide with the polyetherdiol and the polyol.
In the one-step process, the polyamide precursors, the chain stopper and the polyether are blended together; what is then obtained is a polymer having essentially polyether blocks and polyamide blocks of highly variable length, but also the various reactants that have reacted randomly, which are distributed randomly along the polymer chain. They are the same reactants and the same catalyst as in the two-step process described above. If the polyamide precursors are only lactams, it is advantageous to add a little water. The copolymer has essentially the same polyether blocks and the same polyamide blocks, but also a small portion of the various reactants that have reacted randomly, which are distributed randomly along the polymer chain. As in the first step of the two-step process described above, the reactor is closed and heated, with stirring. The pressure established is from about 5 to about 30 bar. When the pressure no longer changes, the reactor is put under reduced pressure while still maintaining vigorous stirring of the molten reactants. The reaction is monitored as previously in the case of the two- step process.
The proper ratio of polyamide to polyether blocks can be found in a single poly(ether block amide), or a blend of two or more different composition poly(ether block amide)s can be used with the proper average composition. It can be useful to blend a block copolymer having a high level of polyamide groups with a block copolymer having a higher level of polyether blocks, to produce a blend having an average level of polyether blocks of about 20 to about 40 weight percent of the total blend of poly(amid-block-ether) copolymers, or about 30 to about 35 weight percent. The copolymer can comprise a blend of two different poly(ether-block-amide)s comprising at least one block copolymer having a level of polyether blocks below 35 weight percent, and a second poly(ether-block-amide) having at least 45 weight percent of polyether blocks.
Exemplary commercially available copolymers include, but are not limited to, those available under the tradenames of“VESTAMID” (Evonik Industries, Essen, Germany);
“PLATAMID” (Arkema, Colombes, France), e.g., product code H2694;“PEBAX” (Arkema), e.g., product code“PEBAX MH1657” and“PEBAX MV1074”;“PEBAX RNEW” (Arkema);
“GRILAMID” (EMS-Chemie AG, Domat-Ems, Switzerland), or also to other similar materials produced by various other suppliers.
The polyamide can be physically crosslinked through, e.g., nonpolar or polar interactions between the polyamide groups of the polymers. In examples where the polyamide is a copolyamide, the copolyamide can be physically crosslinked through interactions between the polyamide groups, and optionally by interactions between the copolymer groups. When the co- polyamide is physically crosslinked through interactions between the polyamide groups, the polyamide segments can form the portion of the polymer referred to as the hard segment, and copolymer segments can form the portion of the polymer referred to as the soft segment. For example, when the copolyamide is a poly(ether-block-amide), the polyamide segments form the hard segments of the polymer, and polyether segments form the soft segments of the polymer. Therefore, in some examples, the polymer can include a physically crosslinked polymeric network having one or more polymer chains with amide linkages.
The polyamide segment of the co-polyamide can include polyamide-11 or polyamide-12 and the polyether segment can be a segment selected from the group consisting of
polyethylene oxide, polypropylene oxide, and polytetramethylene oxide segments, and combinations thereof.
The polyamide can be partially or fully covalently crosslinked, as previously described herein. In some cases, the degree of crosslinking present in the polyamide is such that, when it is thermally processed, e.g., in the form of a yarn or fiber to form the articles of the present disclosure, the partially covalently crosslinked thermoplastic polyamide retains sufficient thermoplastic character that the partially covalently crosslinked thermoplastic polyamide is melted during the processing and re-solidifies.
Polyesters
The polymers can comprise a polyester. The polyester can comprise a thermoplastic polyester. Additionally, the polyester can be an elastomeric polyester, including a thermoplastic polyester. The polyester can be formed by reaction of one or more carboxylic acids, or its ester- forming derivatives, with one or more bivalent or multivalent aliphatic, alicyclic, aromatic or araliphatic alcohols or a bisphenol. The polyester can be a polyester homopolymer having repeating polyester segments of the same chemical structure. Alternatively, the polyester can comprise a number of polyester segments having different polyester chemical structures (e.g., polyglycolic acid segments, polylactic acid segments, polycaprolactone segments,
polyhydroxyalkanoate segments, polyhydroxybutyrate segments, etc.). The polyester segments having different chemical structure can be arranged randomly, or can be arranged as repeating blocks.
Exemplary carboxylic acids that can be used to prepare a polyester include, but are not limited to, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonane dicarboxylic acid, decane dicarboxylic acid, undecane dicarboxylic acid, terephthalic acid, isophthalic acid, alkyl-substituted or halogenated terephthalic acid, alkyl-substituted or halogenated isophthalic acid, nitro-terephthalic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl thioether dicarboxylic acid, 4,4'-diphenyl sulfone-dicarboxylic acid, 4,4'-diphenyl alkylenedicarboxylic acid, naphthalene-2,6-dicarboxylic acid, cyclohexane-1,4-dicarboxylic acid and cyclohexane-1,3- dicarboxylic acid. Exemplary diols or phenols suitable for the preparation of the polyester include, but are not limited to, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4- butanediol, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, 1,2-propanediol, 2,2-dimethyl-1,3- propanediol, 2,2,4-trimethylhexanediol, p-xylenediol, 1,4-cyclohexanediol, 1,4-cyclohexane dimethanol, and bis-phenol A.
The polyester can be a polybutylene terephthalate (PBT), a polytrimethylene
terephthalate, a polyhexamethylene terephthalate, a poly-1,4-dimethylcyclohexane
terephthalate, a polyethylene terephthalate (PET), a polyethylene isophthalate (PEI), a polyarylate (PAR), a polybutylene naphthalate (PBN), a liquid crystal polyester, or a blend or mixture of two or more of the foregoing.
The polyester can be a co-polyester (i.e., a co-polymer including polyester segments and non-polyester segments). The co-polyester can be an aliphatic co-polyester (i.e., a co- polyester in which both the polyester segments and the non-polyester segments are aliphatic). Alternatively, the co-polyester can include aromatic segments. The polyester segments of the co-polyester can comprise or consist essentially of polyglycolic acid segments, polylactic acid segments, polycaprolactone segments, polyhydroxyalkanoate segments, polyhydroxybutyrate segments, or any combination thereof. The polyester segments of the co-polyester can be arranged randomly, or can be arranged as repeating blocks.
For example, the polyester can be a block co-polyester having repeating blocks of polymeric units of the same chemical structure which are relatively harder (hard segments), and repeating blocks of the same chemical structure which are relatively softer (soft segments). In block co-polyesters, including block co-polyesters having repeating hard segments and soft segments, physical crosslinks can be present within the blocks or between the blocks or both within and between the blocks. The polymer can comprise or consist essentially of an elastomeric co-polyester having repeating blocks of hard segments and repeating blocks of soft segments.
The non-polyester segments of the co-polyester can comprise or consist essentially of polyether segments, polyamide segments, or both polyether segments and polyamide segments. The co-polyester can be a block co-polyester, or can be a random co-polyester. The co-polyester can be formed from the polycondensation of a polyester oligomer or prepolymer with a second oligomer prepolymer to form a block copolyester. Optionally, the second prepolymer can be a hydrophilic prepolymer. For example, the co-polyester can be formed from the polycondensation of terephthalic acid or naphthalene dicarboxylic acid with ethylene glycol, 1,4-butanediol, or 1,3-propanediol. Examples of co-polyesters include polyethylene adipate, polybutylene succinate, poly(3-hydroxbutyrate-co-3-hydroxyvalerate), polyethylene
terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene napthalate, and combinations thereof. The co-polyamide can comprise or consist of
polyethylene terephthalate.
The polyester can be a block copolymer comprising segments of one or more of polybutylene terephthalate (PBT), a polytrimethylene terephthalate, a polyhexamethylene terephthalate, a poly-1,4-dimethylcyclohexane terephthalate, a polyethylene terephthalate (PET), a polyethylene isophthalate (PEI), a polyarylate (PAR), a polybutylene naphthalate (PBN), and a liquid crystal polyester. For example, a suitable polyester that is a block copolymer can be a PET/PEI copolymer, a polybutylene terephthalate/tetraethylene glycol copolymer, a polyoxyalkylenediimide diacid/polybutylene terephthalate copolymer, or a blend or mixture of any of the foregoing.
The polyester can be a biodegradable resin, for example, a copolymerized polyester in which poly(a-hydroxy acid) such as polyglycolic acid or polylactic acid is contained as principal repeating units.
The disclosed polyesters can be prepared by a variety of polycondensation methods known to the skilled artisan, such as a solvent polymerization or a melt polymerization process.
Polyolefins
The polymers can comprise or consist essentially of a polyolefin. The polyolefin can be a thermoplastic polyolefin. Additionally, the polyolefin can be an elastomeric polyolefin, including a thermoplastic elastomeric polyolefin. Exemplary polyolefins can include polyethylene, polypropylene, and olefin elastomers (e.g.,metallocene-catalyzed block copolymers of ethylene DQG^Į-olefins having 4 to about 8 carbon atoms). The polyolefin can be a polymer comprising a polyethylene, an ethylene-Į-olefin copolymer, an ethylene-propylene rubber (EPDM), a polybutene, a polyisobutylene, a poly-4-methylpent-1-ene, a polyisoprene, a polybutadiene, a ethylene-methacrylic acid copolymer, and an olefin elastomer such as a dynamically cross- linked polymer obtained from polypropylene (PP) and an ethylene-propylene rubber (EPDM), and blends or mixtures of the foregoing. Further exemplary polyolefins include polymers of cycloolefins such as cyclopentene or norbornene.
It is to be understood that polyethylene, which optionally can be crosslinked, is inclusive a variety of polyethylenes, including low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE- HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), and blends or mixtures of any the foregoing polyethylenes. A polyethylene can also be a polyethylene copolymer derived from monomers of monolefins and diolefins copolymerized with a vinyl, acrylic acid, methacrylic acid, ethyl acrylate, vinyl alcohol, and/or vinyl acetate. Polyolefin copolymers comprising vinyl acetate-derived units can be a high vinyl acetate content copolymer, e.g., greater than about 50 weight percent vinyl acetate-derived composition.
The polyolefin can be formed through free radical, cationic, and/or anionic
polymerization by methods well known to those skilled in the art (e.g., using a peroxide initiator, heat, and/or light). The disclosed polyolefin can be prepared by radical polymerization under high pressure and at elevated temperature. Alternatively, the polyolefin can be prepared by catalytic polymerization using a catalyst that normally contains one or more metals from group IVb, Vb, VIb or VIII metals. The catalyst usually has one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that can be either p- or s-coordinated complexed with the group IVb, Vb, VIb or VIII metal. The metal complexes can be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. The metal catalysts can be soluble or insoluble in the polymerization medium. The catalysts can be used by themselves in the polymerization or further activators can be used, typically a group Ia, IIa and/or IIIa metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes. The activators can be modified conveniently with further ester, ether, amine or silyl ether groups. Suitable polyolefins can be prepared by polymerization of monomers of monolefins and diolefins as described herein. Exemplary monomers that can be used to prepare the polyolefin include, but are not limited to, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 2-methyl-1- propene, 3-methyl-1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene and mixtures thereof.
Suitable ethylene-a-olefin copolymers can be obtained by copolymerization of ethylene with an a-olefin such as propylene, butene-1, hexene-1, octene-1,4-methyl-1-pentene or the like having carbon numbers of 3 to 12.
Suitable dynamically cross-linked polymers can be obtained by cross-linking a rubber component as a soft segment while at the same time physically dispersing a hard segment such as PP and a soft segment such as EPDM by using a kneading machine such as a Banbury mixer and a biaxial extruder.
The polyolefin can be a mixture of polyolefins, such as a mixture of two or more polyolefins disclosed herein above. For example, a suitable mixture of polyolefins can be a mixture of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) or mixtures of different types of polyethylene (for example LDPE/HDPE).
The polyolefin can be a copolymer of suitable monolefin monomers or a copolymer of a suitable monolefin monomer and a vinyl monomer. Exemplary polyolefin copolymers include ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers,
ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.
The polyolefin can be a polypropylene homopolymer, a polypropylene copolymers, a polypropylene random copolymer, a polypropylene block copolymer, a polyethylene
homopolymer, a polyethylene random copolymer, a polyethylene block copolymer, a low density polyethylene (LDPE), a linear low density polyethylene (LLDPE), a medium density polyethylene, a high density polyethylene (HDPE), or blends or mixtures of one or more of the preceding polymers.
The polyolefin can be a polypropylene. The term“polypropylene,” as used herein, is intended to encompass any polymeric composition comprising propylene monomers, either alone or in mixture or copolymer with other randomly selected and oriented polyolefins, dienes, or other monomers (such as ethylene, butylene, and the like). Such a term also encompasses any different configuration and arrangement of the constituent monomers (such as atactic, syndiotactic, isotactic, and the like). Thus, the term as applied to fibers is intended to encompass actual long strands, tapes, threads, and the like, of drawn polymer. The
polypropylene can be of any standard melt flow (by testing); however, standard fiber grade polypropylene resins possess ranges of Melt Flow Indices between about 1 and 1000.
The polyolefin can be a polyethylene. The term“polyethylene,” as used herein, is intended to encompass any polymeric composition comprising ethylene monomers, either alone or in mixture or copolymer with other randomly selected and oriented polyolefins, dienes, or other monomers (such as propylene, butylene, and the like). Such a term also encompasses any different configuration and arrangement of the constituent monomers (such as atactic, syndiotactic, isotactic, and the like). Thus, the term as applied to fibers is intended to encompass actual long strands, tapes, threads, and the like, of drawn polymer. The
polyethylene can be of any standard melt flow (by testing); however, standard fiber grade polyethylene resins possess ranges of Melt Flow Indices between about 1 and 1000.
The thermoplastic material can further comprise one or more processing aids. The processing aid can be a non-polymeric material. These processing aids can be independently selected from the group including, but not limited to, curing agents, initiators, plasticizers, mold release agents, lubricants, antioxidants, flame retardants, dyes, pigments, reinforcing and non- reinforcing fillers, fiber reinforcements, and light stabilizers.
In accordance with an aspect, a method of making the polymer-based item includes disposing (e.g., affixing) an optical element onto a first surface of polymer-based item or melting the structurally colored article and the like, the first surface of the article defined by a first polymeric material (e.g., a first thermoplastic material). As a result, the optical element, as disposed on the first surface, imparts a structural color to the polymer-based item.
In some aspects, the first polymeric material can be a thermoplastic material, and the optical element is disposed onto the thermoplastic material. In general, a thermoplastic polymer softens or melts when heated and returns to a solid state when cooled. The thermoplastic polymer transitions from a solid state to a softened state or liquid state when heated to or above one or more of the: (1) creep relaxation temperature (Tcr), (2) Vicat softening temperature (Tvs), (3) heat deflection temperature (Thd), or (4) melting temperature (Tm). When sufficiently cooled, the thermoplastic polymer transitions from the softened or liquid state to the solid state. As such, the thermoplastic polymer may be softened or melted, molded, cooled, re-softened or re- melted, re-molded, and cooled again through multiple cycles.
In an aspect, the method involves increasing a temperature of at least a portion of the first surface of the article to a first temperature at or above one or more of the: (1) creep relaxation temperature, (2) Vicat softening temperature, (3) heat deflection temperature, or (4) melting temperature, of the first thermoplastic material. The optical element can be disposed on the first thermoplastic material while the temperature is at or above the first temperature. In another aspect, the temperature can be lowered to a second temperature that is below one or more of: (1) creep relaxation temperature, (2) Vicat softening temperature, (3) heat deflection temperature, or (4) melting temperature, of the first thermoplastic material, to at least partially re-solidify the first thermoplastic material, and the optical element is disposed on the first thermoplastic material while the temperature is at or below the second temperature.
In some aspects, the method includes increasing a temperature of the at least a portion of the first surface of the article to a first temperature at or above one of a creep relaxation temperature, a heat deflection temperature, a Vicat softening temperature, or a melting temperature of the first thermoplastic material. Then the texture of the at least a portion of the first surface can be altered while the temperature of the first surface is at or above the first temperature. Subsequently, the optical element can be disposed onto at the at least a portion of the first surface having the altered texture.
Altering the texture of the first surface can include, for example, contacting a transfer medium having a first textured surface with the first surface of the article during or after increasing the temperature of the first surface of the article to the first temperature; and using the first textured surface of the transfer medium, forming a second textured surface on the first surface of the article prior to disposing the optical element onto the first surface. In various aspects, the first textured surface of the transfer medium is an inverse or a relief of the resulting textured surface on the article. The transfer medium used to alter the texture of the surface can include a release paper, a mold, a drum, a plate, or a roller. In these aspects, the combination of the textured surface and optical element can impart the structural color to the article.
In various aspects, disposing an optical element on the first surface of the article can include forming or depositing the optical element on the first surface of the article, including, for example, depositing the optical element using a technique comprising: physical vapor deposition, electron beam deposition, atomic layer deposition, molecular beam epitaxy, cathodic arc deposition, pulsed laser deposition, sputtering, chemical vapor deposition, plasma- enhanced chemical vapor deposition, low pressure chemical vapor deposition, wet chemistry techniques, or combinations thereof. Disposing the optical element can further include optionally depositing at least three layers of the optical element using a deposition process, optionally depositing a first layer comprising a metal, optionally depositing a second layer comprising a metal oxide, optionally depositing both a first layer comprising a metal and a second layer comprising a metal oxide, or a combination thereof. The optional first layer can comprise a titanium layer, or a silicon layer, and the optional second layer can comprise a titanium dioxide layer or a silicon dioxide layer.
According to the various embodiments, a textured surface (e.g., textured layer, textured structure) can be formed or provided, and the combination of the textured surface and the optical element impart the structural color to the article.
As described in some detail above in reference to SC filament, textiles, filaments, fibers, and yarns are descried in more detail, where some of the discussion is directed to other types of filaments or fibers which can be used in conjunction with the SC filament. A“textile” may be defined as any material manufactured from fibers, filaments, or yarns characterized by flexibility, fineness, and a high ratio of length to thickness. Textiles generally fall into two categories. The first category includes textiles produced directly from webs of filaments or fibers by randomly interlocking to construct non-woven fabrics and felts. The second category includes textiles formed through a mechanical manipulation of yarn, thereby producing a woven fabric, a knitted fabric, a braided fabric, a crocheted fabric, and the like. The yarns, fibers, and articles of manufacture can include SC filaments of the present disclosure as well as other filaments, fibers, and yarns.
The terms“filament,”“fiber,” or“fibers” refer to materials that are in the form of discrete elongated pieces that are significantly longer than they are wide. The fiber can include natural, manmade or synthetic fibers. The fibers may be produced by conventional techniques, such as extrusion, electrospinning, interfacial polymerization, pulling, and the like. The fibers can include carbon fibers, boron fibers, silicon carbide fibers, titania fibers, alumina fibers, quartz fibers, glass fibers, such as E, A, C, ECR, R, S, D, and NE glasses and quartz, or the like. The fibers can be fibers formed from synthetic polymers capable of forming fibers such as poly(ether ketone), polyimide, polybenzoxazole, poly(phenylene sulfide), polyesters, polyolefins (e.g., polyethylene, polypropylene), aromatic polyamides (e.g., an aramid polymer such as para- aramid fibers and meta-aramid fibers), aromatic polyimides, polybenzimidazoles, polyetherimides, polytetrafluoroethylene, acrylic, modacrylic, poly(vinyl alcohol), polyamides, polyurethanes, and copolymers such as polyether-polyurea copolymers, polyester- polyurethanes, polyether block amide copolymers, or the like. The fibers can be natural fibers (e.g., silk, wool, cashmere, vicuna, cotton, flax, hemp, jute, sisal). The fibers can be man-made fibers from regenerated natural polymers, such as rayon, lyocell, acetate, triacetate, rubber, and poly(lactic acid).
The fibers can have an indefinite length. For example, man-made and synthetic fibers are generally extruded in substantially continuous strands. Alternatively, the fibers can be staple fibers, such as, for example, cotton fibers or extruded synthetic polymer fibers can be cut to form staple fibers of relatively uniform length. The staple fiber can have a have a length of about 1 millimeter to 100 centimeters or more as well as any increment therein (e.g., 1 millimeter increments).
The fiber can have any of a variety of cross-sectional shapes. Natural fibers can have a natural cross-section, or can have a modified cross-sectional shape (e.g., with processes such as mercerization). Man-made or synthetic fibers can be extruded to provide a strand having a predetermined cross-sectional shape. The cross-sectional shape of a fiber can affect properties, such as its softness, luster, and wicking ability. The fibers can have round or essentially round cross sections. Alternatively, the fibers can have non-round cross sections, such as flat, oval, octagonal, rectangular, wedge-shaped, triangular, dog-bone, multi-lobal, multi-channel, hollow, core-shell, or other shapes.
The fiber can be processed. For example, the properties of fibers can be affected, at least in part, by processes such as drawing (stretching) the fibers, annealing (hardening) the fibers, and/or crimping or texturizing the fibers.
In some cases a fiber can be a multi-component fiber, such as one comprising two or more co-extruded polymeric materials. The two or more co-extruded polymeric materials can be extruded in a core-sheath, islands-in-the-sea, segmented-pie, striped, or side-by-side configuration. A multi-component fiber can be processed in order to form a plurality of smaller fibers (e.g., microfibers) from a single fiber, for example, by remove a sacrificial material.
The fiber can be a carbon fiber such as TARIFYL produced by Formosa Plastics Corp. of Kaohsiung City, Taiwan, (e.g., 12,000, 24,000, and 48,000 fiber tows, specifically fiber types TC-35 and TC-35R), carbon fiber produced by SGL Group of Wiesbaden, Germany (e.g., 50,000 fiber tow), carbon fiber produced by Hyosung of Seoul, South Korea, carbon fiber produced by Toho Tenax of Tokyo, Japan, fiberglass produced by Jushi Group Co., LTD of Zhejiang, China (e.g., E6, 318, silane-based sizing, filament diameters 14, 15, 17, 21,and 24 micrometers), and polyester fibers produced by Amann Group of Bonningheim, Germany (e.g., SERAFILE 200/2 non-lubricated polyester filament and SERAFILE COMPHIL 200/2 lubricated polyester filament).
A plurality of fibers includes 2 to hundreds or thousands or more fibers. The plurality of fibers can be in the form of bundles of strands of fibers, referred to as tows, or in the form of relatively aligned staple fibers referred to as sliver and roving. A single type fiber can be used either alone or in combination with one or more different types of fibers by co-mingling two or more types of fibers. Examples of co-mingled fibers include polyester fibers with cotton fibers, glass fibers with carbon fibers, carbon fibers with aromatic polyimide (aramid) fibers, and aromatic polyimide fibers with glass fibers.
As used herein, the term“yarn” refers to an assembly formed of one or more fibers, wherein the strand has a substantial length and a relatively small cross-section, and is suitable for use in the production of textiles by hand or by machine, including textiles made using weaving, knitting, crocheting, braiding, sewing, embroidery, or ropemaking techniques. Thread is a type of yarn commonly used for sewing.
Yarns can be made using fibers formed of natural, man-made and synthetic materials. Synthetic fibers are most commonly used to make spun yarns from staple fibers, and filament yarns. Spun yarn is made by arranging and twisting staple fibers together to make a cohesive strand. The process of forming a yarn from staple fibers typically includes carding and drawing the fibers to form sliver, drawing out and twisting the sliver to form roving, and spinning the roving to form a strand. Multiple strands can be plied (twisted together) to make a thicker yarn. The twist direction of the staple fibers and of the plies can affect the final properties of the yarn. A filament yarn can be formed of a single long, substantially continuous filament, which is conventionally referred to as a“monofilament yarn,” or a plurality of individual filaments grouped together. A filament yarn can also be formed of two or more long, substantially continuous filaments which are grouped together by grouping the filaments together by twisting them or entangling them or both. As with staple yarns, multiple strands can be plied together to form a thicker yarn.
Once formed, the yarn can undergo further treatment such as texturizing, thermal or mechanical treating, or coating with a material such as a synthetic polymer. The fibers, yarns, or textiles, or any combination thereof, used in the disclosed articles can be sized. Sized fibers, yarns, and/or textiles are coated on at least part of their surface with a sizing composition selected to change the absorption or wear characteristics, or for compatibility with other materials. The sizing composition facilitates wet-out and wet-through of the coating or resin upon the surface and assists in attaining desired physical properties in the final article. An exemplary sizing composition can comprise, for example, epoxy polymers, urethane-modified epoxy polymers, polyester polymers, phenol polymers, polyamide polymers, polyurethane polymers, polycarbonate polymers, polyetherimide polymers, polyamideimide polymers, polystylylpyridine polymers, polyimide polymers bismaleimide polymers, polysulfone polymers, polyethersulfone polymers, epoxy-modified urethane polymers, polyvinyl alcohol polymers, polyvinyl pyrrolidone polymers, and mixtures thereof.
Two or more yarns can be combined, for example, to form composite yarns such as single- or double-covered yarns, and corespun yarns. Accordingly, yarns may have a variety of configurations that generally conform to the descriptions provided herein.
The yarn can comprise at least one thermoplastic material (e.g., one or more of the fibers can be made of thermoplastic material). The yarn can be made of a thermoplastic material. The yarn can be coated with a layer of a material such as a thermoplastic material.
The linear mass density or weight per unit length of a yarn can be expressed using various units, including denier (D) and tex. Denier is the mass in grams of 9000 meters of yarn. The linear mass density of a single filament of a fiber can also be expressed using denier per filament (DPF). Tex is the mass in grams of a 1000 meters of yarn. Decitex is another measure of linear mass and is the mass in grams for a 10,000 meters of yarn.
As used herein, tenacity is understood to refer to the amount of force (expressed in units of weight, for example: pounds, grams, centinewtons or other units) needed to break a yarn (i.e., the breaking force or breaking point of the yarn), divided by the linear mass density of the yarn expressed, for example, in (unstrained) denier, decitex, or some other measure of weight per unit length. The breaking force of the yarn is determined by subjecting a sample of the yarn to a known amount of force, for example, using a strain gauge load cell such as an INSTRON brand testing system (Norwood, MA, USA). Yarn tenacity and yarn breaking force are distinct from burst strength or bursting strength of a textile, which is a measure of how much pressure can be applied to the surface of a textile before the surface bursts.
Generally, in order for a yarn to withstand the forces applied in an industrial knitting machine, the minimum tenacity required is approximately 1.5 grams per Denier. Most yarns formed from commodity polymeric materials generally have tenacities in the range of about 1.5 grams per Denier to about 4 grams per Denier. For example, polyester yarns commonly used in the manufacture of knit uppers for footwear have tenacities in the range of about 2.5 to about 4 grams per Denier. Yarns formed from commodity polymeric materials which are considered to have high tenacities generally have tenacities in the range of about 5 grams per Denier to about 10 grams per Denier. For example, commercially available package dyed polyethylene terephthalate yarn from National Spinning (Washington, NC, USA) has a tenacity of about 6 grams per Denier, and commercially available solution dyed polyethylene terephthalate yarn from Far Eastern New Century (Taipei, Taiwan) has a tenacity of about 7 grams per Denier. Yarns formed from high performance polymeric materials generally have tenacities of about 11 grams per Denier or greater. For example, yarns formed of aramid fiber typically have tenacities of about 20 grams per Denier, and yarns formed of ultra-high molecular weight polyethylene (UHMWPE) having tenacities greater than 30 grams per Denier are available from Dyneema (Stanley, NC, USA ) and Spectra (Honeywell-Spectra, Colonial Heights, VA, USA).
Various techniques exist for mechanically manipulating yarns to form a textile. Such techniques include, for example, interweaving, intertwining and twisting, and interlooping.
Interweaving is the intersection of two yarns that cross and interweave at right angles to each other. The yarns utilized in interweaving are conventionally referred to as“warp” and“weft.” A woven textile includes include a warp yarn and a weft yarn. The warp yarn extends in a first direction, and the weft strand extends in a second direction that is substantially perpendicular to the first direction. Intertwining and twisting encompasses various procedures, such as braiding and knotting, where yarns intertwine with each other to form a textile. Interlooping involves the formation of a plurality of columns of intermeshed loops, with knitting being the most common method of interlooping. The textile may be primarily formed from one or more yarns that are mechanically-manipulated, for example, through interweaving, intertwining and twisting, and/or interlooping processes, as mentioned above.
The textile can be a nonwoven textile. Generally, a nonwoven textile or fabric is a sheet or web structure made from fibers and/or yarns that are bonded together. The bond can be a chemical and/or mechanical bond, and can be formed using heat, solvent, adhesive or a combination thereof. Exemplary nonwoven fabrics are flat or tufted porous sheets that are made directly from separate fibers, molten plastic and/or plastic film. They are not made by weaving or knitting and do not necessarily require converting the fibers to yarn, although yarns can be used as a source of the fibers. Nonwoven textiles are typically manufactured by putting small fibers together in the form of a sheet or web (similar to paper on a paper machine), and then binding them either mechanically (as in the case of felt, by interlocking them with serrated or barbed needles, or hydro-entanglement such that the inter-fiber friction results in a stronger fabric), with an adhesive, or thermally (by applying binder (in the form of powder, paste, or polymer melt) and melting the binder onto the web by increasing temperature). A nonwoven textile can be made from staple fibers (e.g., from wetlaid, airlaid, carding/crosslapping processes), or extruded fibers (e.g., from meltblown or spunbond processes, or a combination thereof), or a combination thereof. Bonding of the fibers in the nonwoven textile can be achieved with thermal bonding (with or without calendering), hydro-entanglement, ultrasonic bonding, needlepunching (needlefelting), chemical bonding (e.g., using binders such as latex emulsions or solution polymers or binder fibers or powders), meltblown bonding (e.g., fiber is bonded as air attenuated fibers intertangle during simultaneous fiber and web formation). Now having described embodiments of the disclosure, evaluation of various properties and characteristics described herein are by various testing procedures as described herein below.
Method to Determine the Melting Temperature, and Glass Transition Temperature. The melting temperature and glass transition temperature are determined using a commercially available Differential Scanning Calorimeter (“DSC”) in accordance with ASTM D3418-97. Briefly, a 10-15 gram sample is placed into an aluminum DSC pan and then the lead was sealed with the crimper press. The DSC is configured to scan from -100 degrees C to 225 degrees C with a 20 degrees C/minute heating rate, hold at 225 degrees C for 2 minutes, and then cool down to 25 degrees C at a rate of - 10 degrees C/minute. The DSC curve created from this scan is then analyzed using standard techniques to determine the glass transition temperature and the melting temperature.
Method to Determine the Melt Flow Index. The melt flow index is determined according to the test method detailed in ASTM D1238-13 Standard Test Method for Melt Flow Rates of
Thermoplastics by Extrusion Plastometer, using Procedure A described therein. Briefly, the melt flow index measures the rate of extrusion of thermoplastics through an orifice at a prescribed temperature and load. In the test method, approximately 7 grams of the material is loaded into the barrel of the melt flow apparatus, which has been heated to a temperature specified for the material. A weight specified for the material is applied to a plunger and the molten material is forced through the die. A timed extrudate is collected and weighed. Melt flow rate values are calculated in grams/10 min.
Method to Determine the Creep Relation Temperature Tcr. The creep relation temperature Tcr is determined according to the exemplary techniques described in U.S. Patent No.5,866,058. The creep relaxation temperature Tcr is calculated to be the temperature at which the stress relaxation modulus of the tested material is 10% relative to the stress relaxation modulus of the tested material at the solidification temperature of the material, where the stress relaxation modulus is measured according to ASTM E328-02. The solidification temperature is defined as the temperature at which there is little to no change in the stress relaxation modulus or little to no creep about 300 seconds after a stress is applied to a test material, which can be observed by plotting the stress relaxation modulus (in Pa) as a function of temperature (in °C). Method to Determine the Vicat Softening Temperature Tvs. The Vicat softening temperature Tvs is be determined according to the test method detailed in ASTM D1525-09 Standard Test Method for Vicat Softening Temperature of Plastics, preferably using Load A and Rate A. Briefly, the Vicat softening temperature is the temperature at which a flat-ended needle penetrates the specimen to the depth of 1 mm under a specific load. The temperature reflects the point of softening expected when a material is used in an elevated temperature application. It is taken as the temperature at which the specimen is penetrated to a depth of 1 mm by a flat-ended needle with a 1 mm2 circular or square cross-section. For the Vicat A test, a load of 10 N is used, whereas for the Vicat B test, the load is 50 N. The test involves placing a test specimen in the testing apparatus so that the penetrating needle rests on its surface at least 1 mm from the edge. A load is applied to the specimen per the requirements of the Vicat A or Vicat B test. The specimen is then lowered into an oil bath at 23 °C. The bath is raised at a rate of 50 °C or 120 °C per hour until the needle penetrates 1 mm. The test specimen must be between 3 and 6.5 mm thick and at least 10 mm in width and length. No more than three layers can be stacked to achieve minimum thickness.
Method to Determine the Heat Deflection Temperature Thd. The heat deflection temperature Thd is be determined according to the test method detailed in ASTM D648-16 Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position, using a 0.455 MPa applied stress. Briefly, the heat deflection temperature is the temperature at which a polymer or plastic sample deforms under a specified load. This property of a given plastic material is applied in many aspects of product design, engineering, and manufacture of products using thermoplastic components. In the test method, the bars are placed under the deflection measuring device and a load (0.455 MPa) of is placed on each specimen. The specimens are then lowered into a silicone oil bath where the temperature is raised at 2° C per minute until they deflect 0.25 mm per ASTM D648- 16. ASTM uses a standard bar 5" x ½" x ¼". ISO edgewise testing uses a bar 120mm x 10mm x 4mm. ISO flatwise testing uses a bar 80mm x 10mm x 4mm.
Transmittance and reflectance. Measurements for visible light transmittance and visible light reflectance were performed using a Shimadzu UV-2600 Spectrometer (Shimadzu
Corporation, Japan). The spectrometer was calibrated using a standard prior to the
measurements. The incident angle for all measurements was zero.
The visible light transmittance was the measurement of visible light (or light energy) that was transmitted through a sample material when visible light within the spectral range of 400 nanometers to 700 nanometers was directed through the material. The results of all
transmittance over the range of 400 nanometers to 700 nanometers was collected and recorded. For each sample, a minimum value for the visible light transmittance was determined for this range.
The visible light reflectance was a measurement of the visible light (or light energy) that was reflected by a sample material when visible light within the spectral range of 400
nanometers to 700 nanometers was directed through the material. The results of all reflectance over the range of 400 nanometers to 700 nanometers was collected and recorded. For each sample, a minimum value for the visible light reflectance was determined for this range.
Various embodiments of the present disclosure are described below in each of the sets of aspects. In each of the clause sets,“disposing” can be replaced with“operably disposing.” It should be noted that ratios, concentrations, amounts, and other numerical data may be expressed herein in a range format. It is to be understood that such a range format is used for convenience and brevity, and thus, should be interpreted in a flexible manner to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. To illustrate, a concentration range of“about 0.1 percent to about 5 percent” should be interpreted to include not only the explicitly recited concentration of about 0.1 weight percent to about 5 weight percent but also include individual concentrations (e.g., 1 percent, 2 percent, 3 percent, and 4 percent) and the sub-ranges (e.g., 0.5 percent, 1.1 percent, 2.2 percent, 3.3 percent, and 4.4 percent) within the indicated range. The term“about” can include traditional rounding according to significant figures of the numerical value. In addition, the phrase“about‘x’ to‘y’” includes“about‘x’ to about‘y’”.
Many variations and modifications may be made to the above-described embodiments. All such modifications and variations are intended to be included herein within the scope of this disclosure and protected by the following claims.

Claims

The clauses are: 1. A method of making a structural color (SC) filament, comprising
melting a plurality of structurally colored articles, each structurally colored article comprising a thermoplastic material and a plurality of optical elements or fragments thereof, to form a first molten material including the plurality of optical elements or fragments thereof dispersed therein; and
extruding the first molten material to form the SC filament, wherein the SC filament includes the dispersed plurality of optical elements or fragments thereof, and the dispersed plurality of optical elements or fragments thereof impart an optical effect to the SC filament.
2. The method of claim 1, wherein the optical element of each structurally colored article is a coating on the structurally colored article.
3. The method of claim 2, wherein the structurally colored article is a pellet.
4. The method of claims 1 or 3, wherein the structurally colored article is a ground, crushed or shredded structurally colored article.
5. The method of claims 1, 2, or 4, wherein the ground, crushed or shredded structurally colored article is a film or sheet.
6. The method of claims 1, 2, or 4, wherein the ground, crushed or shredded structurally colored article is a ground structurally colored container.
7. The method of claim 1, wherein the optical element and the fragments thereof are layered structures having two or more layers stacked in the z dimension, wherein the optical element and the fragments thereof have a width in the x dimension, a length in the y dimension and a thickness in the z dimension, wherein the thickness of the plurality of optical elements the fragments thereof dispersed in the filament are less than 10 percent less than the thickness of the plurality of optical element and the fragments thereof on the structurally colored article
8. The method of claim 1, wherein the width and length of the portions of the plurality of optical elements and the fragments thereof dispersed in the filament are at least 5 percent smaller than the width and length of the plurality of optical elements and the fragments thereof of the structurally colored article.
9. The method of claim 1, wherein the optical element on the structurally colored article is a structurally colored coating covering at least 25 percent of a total surface area of the structurally colored article.
10. The method of claim 1, wherein the portions of the plurality of optical elements and the fragments thereof dispersed in the filament are a plurality of fragments formed from grinding, crushing, shredding, melting, or a combination thereof of the structurally colored article.
11. The method of claims 1 to 10, wherein the plurality of optical elements and the fragments thereof make up at least 5 percent by weight of a total weight of the filament.
12. The method of claim 1, wherein the method further comprises processing the structurally colored polymeric material prior to the melting, wherein processing comprises grinding, shredding, cutting, or crushing.
13. The method of claim 1, wherein a portion of the plurality of optical elements and the fragments thereof are not structurally deteriorated during melting, extruding, or both so that they do not impart the optical effect.
14. The method of claim 1, wherein a portion of the plurality of optical elements and the fragments thereof are structurally deteriorated during melting, extruding, or both so that they do not impart the optical effect.
15. The method of claim 1, wherein the optical effect is a structural color and not iridescent or metallic.
16. The method of claim 1, further comprising forming a fiber or a yarn, wherein the fiber or yarn comprises the SC filament.
17. The method of claim 16, wherein the yarn is a monofilament yarn or a multi-filament yarn.
18. The method or article of any one of the preceding clauses, wherein the yarn is a staple yarn including a plurality of staple fibers formed by cutting or chopping the SC filament.
19. The method of claim 1, further comprising forming the structurally colored articles by: processing a polymer-based item comprising at least one optical element to form pieces of the polymer-based item, wherein the optical element imparts a first optical effect to the polymer-based item, wherein a portion of at least one optical element is ground or cut into fragments of the optical element, wherein a first portion of the pieces of the polymer-based item retain the characteristic to impart the first optical effect;
melting the pieces of the polymer-based item to form a second molten material; and extruding the second molten material to form the structurally colored article comprising the optical element and fragments thereof, wherein a portion of the optical elements, the fragments thereof, or both impart a second optical effect to the structurally colored article; wherein the optical effect and the first optical effect are the same, the optical effect and the second optical effect are the same, or the optical effect, the first optical effect or the second optical effect are the same, or
wherein the optical effect and the first optical effect are the different or the optical effect and the second optical effect are different.
20. A method of making an article of footwear, an article of apparel, or an article of sporting equipment, comprising:
forming the article of footwear, the article of apparel, or the article of sporting equipment from the SC filament of claim 1.
EP20717430.1A 2019-03-27 2020-03-11 Structurally-colored filaments and methods for making and using structurally-colored filaments Withdrawn EP3931378A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962824632P 2019-03-27 2019-03-27
US201962916296P 2019-10-17 2019-10-17
PCT/US2020/022109 WO2020197772A1 (en) 2019-03-27 2020-03-11 Structurally-colored filaments and methods for making and using structurally-colored filaments

Publications (1)

Publication Number Publication Date
EP3931378A1 true EP3931378A1 (en) 2022-01-05

Family

ID=70190154

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20717430.1A Withdrawn EP3931378A1 (en) 2019-03-27 2020-03-11 Structurally-colored filaments and methods for making and using structurally-colored filaments

Country Status (4)

Country Link
US (1) US20200308734A1 (en)
EP (1) EP3931378A1 (en)
CN (1) CN113661278A (en)
WO (1) WO2020197772A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567305A (en) 2017-09-29 2019-04-05 耐克创新有限合伙公司 The method of article and manufacture structure dyed articles with structural color
WO2020263362A1 (en) 2019-06-26 2020-12-30 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
US20210022444A1 (en) 2019-07-26 2021-01-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
EP4044860A1 (en) 2019-10-21 2022-08-24 Nike Innovate C.V. Structurally-colored articles
WO2021243250A1 (en) 2020-05-29 2021-12-02 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
CN115335236A (en) * 2020-11-25 2022-11-11 耐克创新有限合伙公司 Structurally colored articles and methods for making and using same
CN113322532B (en) * 2021-06-24 2023-02-03 北京服装学院 Structural color fiber and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712190A (en) * 1953-05-29 1955-07-05 Rainbo Cel Inc Iridescent material and product

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE464700A (en) * 1941-01-11
US4523005A (en) 1981-10-30 1985-06-11 Thermedics, Inc. Extrudable polyurethane for prosthetic devices prepared from a diisocyanate, a polytetramethylene ether polyol, and 1,4-butane diol
DE4222530A1 (en) 1992-07-09 1994-01-13 Hoechst Ag Polyurethane dispersions
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
US6129784A (en) * 1997-09-30 2000-10-10 Shiseido Co., Ltd. Color titanated mica pigment and coated-body using the same
US5969076A (en) 1998-05-15 1999-10-19 Bausch & Lomb Incorporated Thermoplastic silicone-containing hydrogels
DE20200346U1 (en) * 2002-01-10 2002-04-18 Carpet Concept Objekt-Teppichboden GmbH, 33719 Bielefeld Smooth yarn with a high lightening capacity and textile floor covering with reinforced fabric look
US6897281B2 (en) 2002-04-05 2005-05-24 Noveon Ip Holdings Corp. Breathable polyurethanes, blends, and articles
US7476705B2 (en) 2005-02-07 2009-01-13 Lubrizol Advanced Materials, Inc. Aqueous dispersions of polyurethane compositions
CN101381903B (en) * 2008-10-17 2011-07-27 东华大学 Method for producing terylene fibre with pearly lustre
US20100199406A1 (en) * 2009-02-06 2010-08-12 Nike, Inc. Thermoplastic Non-Woven Textile Elements
TWI465263B (en) 2010-12-10 2014-12-21 Ind Tech Res Inst Medical dressing and negative pressure wound therapy apparatus using the same
WO2017196417A1 (en) * 2016-05-13 2017-11-16 Nike Innovate C.V. Article having a plurality of optical structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712190A (en) * 1953-05-29 1955-07-05 Rainbo Cel Inc Iridescent material and product

Also Published As

Publication number Publication date
CN113661278A (en) 2021-11-16
WO2020197772A1 (en) 2020-10-01
US20200308734A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US20230086274A1 (en) Structurally-colored articles and methods for making and using structurally-colored articles
US11987873B2 (en) Structurally-colored articles and methods for making and using structurally-colored articles
US20200308734A1 (en) Structurally-Colored Filaments and Methods for Making and Using Structurally-Colored Filaments
EP3934469B1 (en) Method for making and using structurally-colored articles

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230425

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: D01F 1/04 20060101ALN20231017BHEP

Ipc: D01F 1/10 20060101AFI20231017BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: D01F 1/04 20060101ALN20231101BHEP

Ipc: D01F 1/10 20060101AFI20231101BHEP

INTG Intention to grant announced

Effective date: 20231117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20240319