[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3915684A1 - Composite wear part - Google Patents

Composite wear part Download PDF

Info

Publication number
EP3915684A1
EP3915684A1 EP20177458.5A EP20177458A EP3915684A1 EP 3915684 A1 EP3915684 A1 EP 3915684A1 EP 20177458 A EP20177458 A EP 20177458A EP 3915684 A1 EP3915684 A1 EP 3915684A1
Authority
EP
European Patent Office
Prior art keywords
alumina
zirconia
alloy
metal matrix
inserts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20177458.5A
Other languages
German (de)
French (fr)
Inventor
Guy Berton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magotteaux International SA
Original Assignee
Magotteaux International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magotteaux International SA filed Critical Magotteaux International SA
Priority to EP20177458.5A priority Critical patent/EP3915684A1/en
Priority to CN202180038714.XA priority patent/CN115867390A/en
Priority to CA3185012A priority patent/CA3185012A1/en
Priority to PE2022002695A priority patent/PE20231236A1/en
Priority to AU2021278584A priority patent/AU2021278584A1/en
Priority to PCT/EP2021/057816 priority patent/WO2021239295A1/en
Priority to EP21713434.5A priority patent/EP4157538A1/en
Priority to BR112022023593A priority patent/BR112022023593A2/en
Priority to US18/000,245 priority patent/US20230201920A1/en
Publication of EP3915684A1 publication Critical patent/EP3915684A1/en
Priority to ZA2022/12082A priority patent/ZA202212082B/en
Priority to CL2022003167A priority patent/CL2022003167A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/004Filling molds with powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/005Lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/02Casting in, on, or around objects which form part of the product for making reinforced articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/06Casting in, on, or around objects which form part of the product for manufacturing or repairing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/14Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1047Alloys containing non-metals starting from a melt by mixing and casting liquid metal matrix composites
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1068Making hard metals based on borides, carbides, nitrides, oxides or silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/35Molten metal infiltrating a metal preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a wear part produced in a foundry. It relates more particularly to a hierarchical wear part comprising a reinforced part on its most stressed side.
  • the reinforced part is obtained by placing a reinforcement consisting of an aggregate of millimeter grains with millimeter interstices in a mold in preparation for the casting of the wearing part.
  • the reinforcement also includes centimetric ceramic inserts previously manufactured according to a predefined geometry. The inserts comprise micrometric ceramic particles bound in a first metal matrix and the millimeter interstices of the reinforcement are infiltrated during casting by a second metal matrix. The first metal matrix is independent of the second metal matrix.
  • the present invention also provides a method for obtaining said wearing part with its reinforcing structure.
  • the ore extraction and fragmentation facilities and in particular the grinding and crushing equipment are subject to numerous constraints in terms of impact resistance and abrasion resistance.
  • wearing parts include ejectors and anvils of vertical-axis crushers, hammers and beaters of horizontal-axis crushers, cones for crushers, tables and rollers. Vertical mills, armor plates and lifters for ball or bar mills.
  • pumps for tar sands or drilling machines we will cite, among others, pumps for tar sands or drilling machines, mining pumps and dredging teeth.
  • EP0575685A1 (Sulzer, 1996 ) describes a molded part with wear surfaces reinforced by porous ceramic bodies embedded in a metallic phase, each ceramic body having a structure in the form of a porous three-dimensional network.
  • WO9815373A1 discloses a composite wear part produced in a foundry. It comprises a metal matrix with reinforcements produced by a three-dimensional structure of agglomerated grains comprising a homogeneous phase of 20 to 80% of Al 2 O 3 and 80 to 20% of ZrO 2 .
  • WO2016008967A1 discloses sintered ceramic grains comprising from 3 to 55% by weight of alumina and 40 to 95% by weight of zirconia associated with inorganic components such as rare metal oxides or alkaline earth metal oxides.
  • the present invention aims to overcome the drawbacks of the state of the art and in particular the difficulty of obtaining reinforcement zones comprising a very high concentration of ceramic particles. It also aims to integrate areas with a high concentration of ceramic particles within a three-dimensional structure of aggregated millimeter grains mainly based on alumina-zirconia comprising millimeter interstices which can be infiltrated by the casting ferrous alloy.
  • the millimetric grain reinforcement structure simultaneously makes it possible to ensure the positioning of prefabricated inserts of defined geometry and concentrated in ceramic particles such as carbides, nitrides, borides or intermetallic elements in the mold of the wearing part.
  • the inserts have a first metal matrix as a binder of the ceramic particles independent of the casting alloy constituting the second metal matrix.
  • the present invention discloses a hierarchical wear part comprising a reinforced part comprising alumina, zirconia or an alumina-zirconia alloy, said reinforced part also comprising centimetric inserts of predefined geometry, said inserts comprising micrometric particles of metal carbides, nitrides, borides or intermetallic compounds linked by a first metal matrix, said inserts being inserted into a reinforcing structure infiltrated by a second metal matrix, the reinforcing structure comprising a periodic alternation of high and low millimeter zones concentration of micrometric particles of alumina, zirconia or an alumina-zirconia alloy, the second metal matrix being different from the first metal matrix.
  • the inserts of predefined geometry manufactured prior to the casting of said wearing part are produced by powder metallurgy.
  • the present invention also discloses the invention in the form of an impactor, an anvil, a cone or a grinding roller.
  • the present invention discloses a wear part with increased resistance to wear produced in a conventional foundry. It relates more particularly to a wear part comprising a reinforced part according to a predefined geometry with ceramic inserts (cylinders, polygons, cones, etc.) at the scale of a few centimeters previously manufactured and inserted into an infiltrated three-dimensional structure. made up of agglomerated millimeter grains and forming a periodic alternation of millimeter grains and interstices.
  • the grains used to manufacture the three-dimensional structure mainly comprise alumina Al 2 O 3 , zirconia ZrO 2 or alumina-zirconia, the composition range of which can vary from 5 to 95% by weight of alumina and 95 to 5% zirconia, preferably 10 to 90% and 90 to 10%, and particularly preferably 20 to 80% and 80 to 20%.
  • the grains may include stabilizers such as rare earth oxides, in particular yttrium oxide or cerium oxide as a stabilizer for the zirconia.
  • the millimeter grains used to manufacture the three-dimensional reinforcing structure may also comprise, in a proportion of less than 50%, preferably less than 40% and particularly preferably less than 30% by volume, titanium carbides, titanium nitrides. or some titanium carbonitrides in a third metal matrix also independent of the first two (not shown in the figures).
  • the third metal matrix serving as a binder for these millimeter grains is preferably based on an iron alloy, a nickel alloy or a molybdenum alloy.
  • the volumetric proportion of the metal binder (third metal matrix) is generally between 5 and 60%, preferably between 7 and 45% and particularly preferably between 10 and 35%.
  • the size of the titanium carbides, nitrides or carbonitrides are from 0.05 to 75 ⁇ m, preferably from 0.2 to 40 ⁇ m, more preferably from 0.5 to 15 ⁇ m.
  • the infiltrable structure therefore consists of a three-dimensional structure of an aggregate of millimeter grains of average size between 0.5 and 10 mm, preferably 0.7 to 6 mm and particularly preferably between 1 and 4 mm.
  • the interstices between the grains depend on the level of compaction and the size of the grains but are of the order of a millimeter or a fraction of a millimeter. There is thus a “periodic” alternation of grains and interstices and not a “random” alternation.
  • the millimeter grains comprise a homogeneous mixture based on alumina, zirconia or alumina-zirconia and can be agglomerated / compacted between them by the use of a binder (glue) or else kept in a metal container in order to define geometrically the reinforced area of the wearing part.
  • binder with setting via the addition of a catalyst makes it possible to produce the infiltrable structure without cooking, which may be preferred in certain cases where adequate cooking means are not available.
  • the nature of the binder is then either of organic type or of mineral type, preferably organic, more preferably of phenolic type.
  • binder with a setting by cooking allows the use of binder more resistant to high temperature.
  • the nature of the binder is then of mineral type, preferably of silicate type, more preferably of sodium silicate type.
  • the amount of binder (glue) used for producing the infiltrable structure is between 0.5% and 10% by weight, preferably between 1% and 8%, more preferably between 1.5% and 7%.
  • the amount of binder is adapted so as to ensure sufficient cohesion of the grains and to limit the production of gas during infiltration by the liquid casting metal and to limit the residual thickness of binder around each grain constituting the three-dimensional structure porous.
  • Ceramic inserts intended to be held by the three-dimensional structure of agglomerated grains, for their part, have any shape, cylindrical, polygonal or conical shapes however being preferred.
  • the diameter of these ceramic inserts, in the case of a cylindrical shape is of the order of 3 to 50 mm, preferably 6 to 30 mm, more particularly 8 to 20 mm and the length of 5 to 300 mm, preferably 10 to 200 mm, in particular 10 to 150 mm.
  • the present invention therefore describes a wear part reinforced on its most stressed side (s) obtained by the infiltration of a three-dimensional ceramic structure of agglomerated millimeter grains periodically alternating with millimeter interstices which already incorporates geometric inserts in prefabricated ceramics of ceramic-metal composite type generally obtained by powder metallurgy, where the ceramic particles are embedded in a first metal matrix completely independent of the second metal casting matrix, mainly made of steel or liquid iron.
  • This technique allows the convenient and robust positioning of inserts of defined geometry and concentrated in carbides, nitrides, metal borides or intermetallic alloys comprising a metal matrix independent of that generated by the casting.
  • This first metal matrix existing prior to the casting of said wearing part is present from the start in the ceramic-metal composite inserts.
  • the pre-existing inserts are integrated into an infiltrable structure comprising agglomerated millimeter grains (padding) of alumina, zirconia, alumina-zirconia or ceramic-metallic composite and which will be infiltrated during the casting of the wearing part.
  • the infiltrable three-dimensional structure can also include a certain proportion of millimeter grains of titanium carbides, titanium nitrides or titanium carbonitrides in a third metal matrix independent of the first two.
  • Ceramic-metal composite inserts such as a cylindrical or frustoconical insert.
  • This insert can be composed for example of titanium carbides, titanium nitrides or chromium carbides with a minimum concentration of 40% by volume in a first metal matrix based on iron, manganese, nickel or cobalt, for example, that l 'we “pack” in an infiltrable structure composed for example of an agglomerate of millimeter grains based on alumina, zirconia or alumina-zirconia.
  • this infiltrable structure can also include millimeter grains of carbides, nitrides, borides of metals or of intermetallic elements, preferably titanium carbide, titanium nitride or titanium carbonitride.
  • Alumina is known for its low load abrasion resistance properties due to its high hardness compared to the hardness of major natural minerals. Alumina also takes advantage of its low density and its low cost of implementation, whether by melting or by powder sintering.
  • Zirconia in its tetragonal crystallographic form exhibits advantageous mechanical properties for the reinforcement of parts subjected to wear.
  • Zirconia has greater flexural strength and toughness than alumina.
  • the wear resistance of zirconia is particularly good in the case where the surface stresses induced by the abrasive particles are high.
  • its lower hardness compared to certain natural minerals, including quartz or free silica limits its use when it is called upon by ores which contain it.
  • alumina-zirconia composites makes it possible to improve the properties of the two compounds taken separately, in particular the mechanical strength and the toughness.
  • the evolution of these properties is illustrated in the following figures.
  • the choice of the proportion of zirconia in the alumina makes it possible to optimize the hardness / mechanical properties-toughness pair as a function of the wear stresses to which the material is subjected in order to obtain the best performance from the part thus reinforced.
  • the present invention therefore makes it possible to achieve not only very high ceramic concentrations, generally greater than 40% by volume but up to 95% by volume in prefabricated geometric inserts or millimetric grains of pre-existing ceramic-metal composite, but also to choose the specific metal matrix (first and third metal matrix) to these elements and therefore to be independent of the casting metal (second metal matrix) of the wearing part which is generally cast iron or steel chrome.
  • the present invention allows better performance of wear parts produced in reinforced foundry compared to those of the prior art thanks to the localized increase in the wear resistance of the reinforced zone by the presence of more wear-resistant particles and / or particles of a different nature by a more suitable metal matrix. It also allows better performance of wear parts produced by adding areas of defined geometry concentrated in carbides, nitrides, metal borides or intermetallic alloys and a metal matrix existing prior to the casting of said wear part.
  • WO9815373A1 Magneticotteaux, 1997 . It is a vertical axis impactor part reinforced by a three-dimensional structure of porous and infiltrable agglomerated millimeter grains.
  • the volume of the wearing part is 10.27 dm 3 . Its mass is 74.16 kg.
  • the weight loss of the entire vertical axis impactor part is measured. This is the only way to determine the wear in practice, which depends on a series of factors and in particular on the positioning geometry in the impactor. Although being predominantly worn on the side of the reinforcement, the impactor is also partially worn outside this reinforcement depending on this positioning.
  • these grains consist of electrofused alumina-zirconia agglomerated with 3.5% by weight of inorganic binder of sodium silicate type.
  • the composition of these electrofused alumina-zirconia grains is described below.
  • This infiltrable structure comprises an aggregate of millimeter grains of average size of about 2.5 mm. These grains are agglomerated in a three-dimensional structure using sodium silicate with a predefined shape in a resin mold. In this three-dimensional structure, there is an alternation between grains and millimeter interstices.
  • This comparative example therefore presents reinforced parts based on alumina-zirconia, on the most stressed side of the wear part without initially containing centimetric ceramic-metal composite inserts, of cylinder type for example, previously positioned in a die. metal different from the ferrous alloy used for casting. At the end of these steps, a form with a total reinforced volume of 0.857 dm 3 is produced.
  • the weight loss observed during a wear test is 6.795 kg per 100 hours of operation (kg / 100h) on the wear part of the vertical axis impactor.
  • the reinforced part according to the invention comprises a reinforced zone of predefined geometry with cylindrical ceramic inserts previously manufactured at the scale of a few centimeters and previously inserted into an infiltrable structure comprising grains based on alumina-zirconia electrofused with the composition. described below. It should be noted that these grains have the same characteristics as those of the comparative example.
  • This infiltrable structure comprises an aggregate of millimeter grains of average size of about 2.5 mm. These grains are agglomerated in a three-dimensional structure using a sodium silicate-based glue with a predefined shape in a resin mold. In this three-dimensional structure, there is a periodic alternation between grains and millimeter interstices.
  • the ceramic inserts manufactured beforehand have a cylindrical geometric shape and consist on average of 70 to 80% of micrometric particles of titanium carbides bound by a first metal matrix of the austenitic steel type.
  • the diameter of these previously manufactured ceramic inserts is 20 mm.
  • the height is 30 mm.
  • the 25 ceramic inserts previously manufactured are positioned vertically with respect to the filling face in a predefined manner in the resin mold which defines the reinforcement zone thanks to notches made in the resin mold and prior to the addition of the millimeter grains of alumina-zirconia.
  • a three-dimensional structure with a total volume of 0.857 dm 3 is manufactured by casting an AFNOR Z 270 C 27 - M type cast iron.
  • This type of cast iron, which constitutes the second metal matrix, is used for all the examples.
  • Ex 1 (25 preformed inserts) 25 ceramic-metal composite inserts preformed with titanium carbide particles (70-80% vol) bound in a first metallic matrix of austenitic steel surrounded by millimeter grains of electrofused zirconia alumina (Al 2 O 3 -ZrO 2 ) Weight loss (kg / 100h) 5.022 kg
  • Example 1 is repeated but this time, 25 ceramic inserts previously manufactured are positioned identically to Example 1, but consist on average of 70 to 80% of micrometric particles of titanium carbides and of a first metal matrix. made of nickel alloy.
  • 25 ceramic-metal composite inserts preformed with titanium carbide particles (70-80% vol) bound in a first metal matrix of nickel alloy surrounded by millimeter grains of electrofused alumina-zirconia (Al 2 O 3 -ZrO 2 ) Weight loss per 100 hours (kg / 100h) 5.125kg
  • Example 1 is repeated with 25 inserts, but this time, the ceramic-metal composite inserts produced beforehand comprise on average from 75 to 85% of micrometric particles of titanium carbonitrides and a first metal matrix based on a molybdenum alloy.
  • the ceramic-metal composite inserts produced beforehand comprise on average from 75 to 85% of micrometric particles of titanium carbonitrides and a first metal matrix based on a molybdenum alloy.
  • Example 1 is repeated with again 25 inserts of the same size, but the ceramic inserts previously manufactured comprise on average from 80 to 90% of micrometric particles of chromium carbides bound in a first metal matrix based on nickel.
  • Ex. 4 25 preformed inserts
  • 25 centimetric inserts preformed with particles of chromium carbides (80-90% vol) bound with a nickel-based binder surrounded by millimeter grains of electrofused alumina-zirconia (Al 2 O 3 -ZrO 2 ) Weight loss per 100 hours (kg / 100h) 6.123kg
  • Example 4 is repeated with again 25 inserts of the same size, where the ceramic inserts previously manufactured comprise on average from 80 to 90% of micrometric particles of chromium carbides bound in a first metal matrix based on nickel.
  • the three-dimensional structure which surrounds the centimetric inserts comprises 25% by volume of millimeter grains comprising in average 80 to 85% of micrometric particles of titanium carbonitrides in a third metal matrix based on molybdenum alloy.
  • 25 centimetric inserts preformed in particles of chromium carbides (80-90% vol) bound with a nickel-based binder surrounded by millimeter grains of electrofused alumina-zirconia (Al 2 O 3 -ZrO 2 ) comprising a proportion of 25% by volume of millimeter grains of titanium carbonitrides Weight loss per 100 hours (kg / 100h) 6, 13 kg
  • the table below shows the weight losses of a wearing part of a 74.16 kg vertical axis impactor in new condition, the reinforced volume of which represents approximately 0.857 dm 3 .
  • the weight loss is measured after 438 hours of operation and is reduced over 100 hours of operation.
  • the wear mechanisms of the wear parts of vertical axis impactors are a complex mixture of material removal by abrasion, micro-chipping by microcrack propagation and impact erosion of the treated particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Food Science & Technology (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Crushing And Grinding (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention se rapporte à une pièce d'usure hiérarchique comportant une partie renforcée comprenant de l'alumine, de la zircone ou un alliage d'alumine-zircone, ladite partie renforcée comprenant également des inserts centimétriques de géométrie prédéfinie, lesdits inserts comportant des particules micrométriques de carbures, nitrures, borures métalliques ou en composés intermétalliques liées par une première matrice métallique, lesdits inserts étant insérés dans une structure de renfort infiltrée par une seconde matrice métallique, la structure de renfort comportant une alternance périodique de zones millimétriques à forte et à faible concentration de particules micrométriques d'alumine, de zircone ou d'un alliage d'alumine-zircone, la seconde matrice métallique étant différente de la première matrice métallique.The present invention relates to a hierarchical wear part comprising a reinforced part comprising alumina, zirconia or an alumina-zirconia alloy, said reinforced part also comprising centimetric inserts of predefined geometry, said inserts comprising micrometric particles of metal carbides, nitrides, borides or intermetallic compounds bound by a first metal matrix, said inserts being inserted into a reinforcing structure infiltrated by a second metal matrix, the reinforcing structure comprising a periodic alternation of millimeter zones with strong and with a low concentration of micrometric particles of alumina, zirconia or an alumina-zirconia alloy, the second metal matrix being different from the first metal matrix.

Description

Objet de l'inventionObject of the invention

La présente invention se rapporte à une pièce d'usure réalisée en fonderie. Elle se rapporte plus particulièrement à une pièce d'usure hiérarchique comportant une partie renforcée sur son côté le plus sollicité. La partie renforcée est obtenue en plaçant un renfort constitué d'un agrégat de grains millimétriques avec des interstices millimétriques dans un moule en préparation de la coulée de la pièce d'usure. Le renfort comporte également des inserts centimétriques en céramiques préalablement fabriqués selon une géométrie prédéfinie. Les inserts comportent des particules de céramiques micrométriques liées dans une première matrice métallique et les interstices millimétriques du renfort sont infiltrés lors de la coulée par une seconde matrice métallique. La première matrice métallique est indépendante de la seconde matrice métallique.The present invention relates to a wear part produced in a foundry. It relates more particularly to a hierarchical wear part comprising a reinforced part on its most stressed side. The reinforced part is obtained by placing a reinforcement consisting of an aggregate of millimeter grains with millimeter interstices in a mold in preparation for the casting of the wearing part. The reinforcement also includes centimetric ceramic inserts previously manufactured according to a predefined geometry. The inserts comprise micrometric ceramic particles bound in a first metal matrix and the millimeter interstices of the reinforcement are infiltrated during casting by a second metal matrix. The first metal matrix is independent of the second metal matrix.

La présente invention propose également un procédé pour l'obtention de ladite pièce d'usure avec sa structure de renforcement.The present invention also provides a method for obtaining said wearing part with its reinforcing structure.

Etat de la techniqueState of the art

Les installations d'extraction et de fragmentation des minerais et en particulier le matériel de broyage et de concassage sont soumis à de nombreuses contraintes de résistance au choc et à la résistance à l'abrasion.The ore extraction and fragmentation facilities and in particular the grinding and crushing equipment are subject to numerous constraints in terms of impact resistance and abrasion resistance.

Dans le domaine du traitement des agrégats, du ciment et des minerais, les pièces d'usure comportent les éjecteurs et enclumes de concasseurs à axe vertical, les marteaux et battoirs de concasseurs à axe horizontal, les cônes pour concasseurs, les tables et galets de broyeurs verticaux, les plaques de blindage et releveurs de broyeurs à boulets ou à barres. Concernant les installations d'extraction minières, nous citerons, entre autres, les pompes pour sables bitumeux ou machines de forage, les pompes de mines et les dents de dragage.In the field of aggregate, cement and mineral processing, wearing parts include ejectors and anvils of vertical-axis crushers, hammers and beaters of horizontal-axis crushers, cones for crushers, tables and rollers. Vertical mills, armor plates and lifters for ball or bar mills. Regarding mining installations, we will cite, among others, pumps for tar sands or drilling machines, mining pumps and dredging teeth.

Les pièces d'usure composites réalisées par coulée en fonderie comportant des parties renforcées par des céramiques et infiltrés lors de la coulée sont connues de l'état de la technique.Composite wear parts produced by casting in a foundry comprising parts reinforced by ceramics and infiltrated during casting are known from the state of the art.

Le document EP0575685A1 (Sulzer, 1996 ) décrit une pièce moulée avec des surfaces d'usure renforcées par des corps céramiques poreux intégrés dans une phase métallique, chaque corps céramique présentant une structure ayant la forme d'un réseau tridimensionnel poreux.The document EP0575685A1 (Sulzer, 1996 ) describes a molded part with wear surfaces reinforced by porous ceramic bodies embedded in a metallic phase, each ceramic body having a structure in the form of a porous three-dimensional network.

Le document WO9815373A1 (Magotteaux, 1997 ) divulgue une pièce d'usure composite réalisée en fonderie. Elle comporte une matrice métallique avec des renforts réalisés par une structure tridimensionnelle de grains agglomérés comportant une phase homogène de 20 à 80% de Al2O3 et 80 à 20% de ZrO2.The document WO9815373A1 (Magotteaux, 1997 ) discloses a composite wear part produced in a foundry. It comprises a metal matrix with reinforcements produced by a three-dimensional structure of agglomerated grains comprising a homogeneous phase of 20 to 80% of Al 2 O 3 and 80 to 20% of ZrO 2 .

Le document WO2016008967A1 (Magotteaux, 2015 ) divulgue des grains de céramique frittés comprenant de 3 à 55 % en poids d'alumine et 40 à 95 % en poids de zircone associés à des composants inorganiques du type oxydes de métaux rares ou oxydes de métaux alcalino-terreux.The document WO2016008967A1 (Magotteaux, 2015 ) discloses sintered ceramic grains comprising from 3 to 55% by weight of alumina and 40 to 95% by weight of zirconia associated with inorganic components such as rare metal oxides or alkaline earth metal oxides.

Les documents selon l'art antérieur ne permettent cependant pas l'obtention de concentrations élevées de céramiques dans les parties les plus sollicitées de la pièce car les structures tridimensionnelles d'agrégats de grains millimétriques lors de la coulée nécessitent des proportions d'interstices suffisants pour permettre l'infiltration complète de cette structure de renfort par l'alliage ferreux lors de la coulée, ce qui limite la concentration en céramiques disponibles aux endroits renforcés.The documents according to the prior art do not, however, make it possible to obtain high concentrations of ceramics in the most stressed parts of the part because the three-dimensional structures of millimeter grain aggregates during casting require sufficient proportions of interstices for allow the complete infiltration of this reinforcing structure by the ferrous alloy during casting, which limits the concentration of ceramics available at the reinforced places.

Buts de l'inventionAims of the invention

La présente invention vise à surmonter les inconvénients de l'état de la technique et notamment la difficulté d'obtention de zones de renfort comportant une très forte concentration en particules céramiques. Elle vise également à intégrer des zones à forte concentration en particules céramiques au sein d'une structure tridimensionnelle de grains millimétriques agrégés principalement à base d'alumine-zircone comportant des interstices millimétriques infiltrables par l'alliage ferreux de coulée. La structure de renfort de grains millimétriques permet en même temps d'assurer le positionnement d'inserts préfabriqués de géométrie définie et concentrés en particules céramiques de type carbures, nitrures, borures ou éléments intermétalliques dans le moule de la pièce d'usure. Les inserts comportent une première matrice métallique en tant que liant des particules céramiques indépendante de l'alliage de coulée constituant la seconde matrice métallique.The present invention aims to overcome the drawbacks of the state of the art and in particular the difficulty of obtaining reinforcement zones comprising a very high concentration of ceramic particles. It also aims to integrate areas with a high concentration of ceramic particles within a three-dimensional structure of aggregated millimeter grains mainly based on alumina-zirconia comprising millimeter interstices which can be infiltrated by the casting ferrous alloy. The millimetric grain reinforcement structure simultaneously makes it possible to ensure the positioning of prefabricated inserts of defined geometry and concentrated in ceramic particles such as carbides, nitrides, borides or intermetallic elements in the mold of the wearing part. The inserts have a first metal matrix as a binder of the ceramic particles independent of the casting alloy constituting the second metal matrix.

Résumé de l'inventionSummary of the invention

La présente invention divulgue une pièce d'usure hiérarchique comportant une partie renforcée comprenant de l'alumine, de la zircone ou un alliage d'alumine-zircone, ladite partie renforcée comprenant également des inserts centimétriques de géométrie prédéfinie, lesdits inserts comportant des particules micrométriques de carbures, nitrures, borures métalliques ou de composés intermétalliques liées par une première matrice métallique, lesdits inserts étant insérés dans une structure de renfort infiltrée par une seconde matrice métallique, la structure de renfort comportant une alternance périodique de zones millimétriques à forte et à faible concentration en particules micrométriques d'alumine, de zircone ou d'un alliage d'alumine-zircone, la seconde matrice métallique étant différente de la première matrice métallique.The present invention discloses a hierarchical wear part comprising a reinforced part comprising alumina, zirconia or an alumina-zirconia alloy, said reinforced part also comprising centimetric inserts of predefined geometry, said inserts comprising micrometric particles of metal carbides, nitrides, borides or intermetallic compounds linked by a first metal matrix, said inserts being inserted into a reinforcing structure infiltrated by a second metal matrix, the reinforcing structure comprising a periodic alternation of high and low millimeter zones concentration of micrometric particles of alumina, zirconia or an alumina-zirconia alloy, the second metal matrix being different from the first metal matrix.

Les modes d'exécution préférés de l'invention comportent au moins une ou une combinaison quelconque appropriée des caractéristiques suivantes :

  • la partie renforcée comporte en outre des zones millimétriques de composite céramique-métal comportant des particules micrométriques de carbures de titane, de nitrures de titane, ou de carbonitrures de titane dans un liant constituant une troisième matrice métallique, la proportion de ces zones par rapport aux zones millimétriques à forte concentration de particules micrométriques d'alumine, de zircone ou d'un alliage d'alumine-zircone est inférieure à 50% en volume, de préférence inférieure à 40% en volume et de manière particulièrement préférée inférieure à 30% en volume, la troisième matrice métallique étant indépendante de la première et de la seconde matrice métallique ;
  • l'insert comporte une concentration en particules micrométriques de carbures, nitrures, borures métalliques ou en éléments intermétalliques entre 20 et 95 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume ;
  • la première matrice métallique servant de liant aux particules micrométriques de l'insert comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée ;
  • la troisième matrice métallique servant de liant aux particules micrométriques de carbures de titane, de nitrures de titane, ou des carbonitrures de titane dans les zones millimétriques faisant partie du renfort comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée ;
  • l'insert ou les zones millimétriques du renfort lorsqu'ils comportent des composites céramique-métal comportent des particules micrométriques de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques de taille moyenne D50 inférieure à 80 µm, de préférence inférieure à 60 µm et de manière particulièrement préférée inférieure à 40 µm ;
  • l'insert et les zones renforcées à l'alumine, à la zircone ou à l'alliage alumine-zircone comportent des interstices micrométriques comportant des matrices métalliques différentes.
Preferred embodiments of the invention include at least one or any suitable combination of the following features:
  • the reinforced part further comprises millimeter zones of ceramic-metal composite comprising micrometric particles of titanium carbides, titanium nitrides, or titanium carbonitrides in a binder constituting a third metal matrix, the proportion of these zones relative to the millimeter areas with a high concentration of micrometric particles of alumina, zirconia or an alumina-zirconia alloy is less than 50% by volume, preferably less than 40% by volume and particularly preferably less than 30% by volume volume, the third metal matrix being independent of the first and the second metal matrix;
  • the insert has a concentration of micrometric particles of carbides, nitrides, metal borides or intermetallic elements between 20 and 95% by volume and at least 30%, preferably at least 40% and particularly preferably at least 50% by volume ;
  • the first metal matrix serving as a binder for the micrometric particles of the insert mainly comprises nickel, a nickel alloy, cobalt, a cobalt alloy or a ferrous alloy other than the casting alloy;
  • the third metal matrix serving as a binder for the micrometric particles of titanium carbides, titanium nitrides, or titanium carbonitrides in the millimeter zones forming part of the reinforcement predominantly comprises nickel, nickel alloy, cobalt, cobalt alloy or a ferrous alloy other than the casting alloy;
  • the insert or the millimeter zones of the reinforcement when they comprise ceramic-metal composites comprise micrometric particles of carbides, nitrides, metal borides or particles of intermetallic alloys of average size D50 less than 80 μm, preferably less than 60 μm and particularly preferably less than 40 μm;
  • the insert and the zones reinforced with alumina, with zirconia or with the alumina-zirconia alloy have micrometric interstices comprising different metal matrices.

La présente invention divulgue également une méthode de fabrication d'une pièce d'usure selon l'invention comprenant les étapes suivantes :

  • mise à disposition d'un moule comprenant l'empreinte d'une pièce d'usure avec une géométrie prédéfinie d'une zone à renforcer ;
  • introduction et positionnement dans ladite zone à renforcer d'un mélange compact de poudres sous forme de granulés millimétriques d'alumine, de zircone ou d'alumine-zircone entourant au moins partiellement un ou plusieurs inserts de géométrie définie préfabriqués concentrés en particules micrométriques de carbures, nitrures, borures métalliques ou en composés intermétalliques liées par une première matrice métallique ;
  • coulée d'un alliage ferreux dans le moule, ledit alliage ferreux liquide infiltrant la structure tridimensionnelle comportant des grains d'alumine, de zircone ou d'un alliage d'alumine-zircone entourant au moins partiellement les inserts préfabriqués.
The present invention also discloses a method of manufacturing a wearing part according to the invention comprising the following steps:
  • provision of a mold comprising the imprint of a wear part with a predefined geometry of a zone to be reinforced;
  • introduction and positioning in said zone to be reinforced of a compact mixture of powders in the form of millimeter granules of alumina, zirconia or alumina-zirconia at least partially surrounding one or more prefabricated inserts of defined geometry concentrated in micrometric particles of carbides , metal nitrides, borides or intermetallic compounds bound by a first metal matrix;
  • casting of a ferrous alloy in the mold, said liquid ferrous alloy infiltrating the three-dimensional structure comprising grains of alumina, zirconia or an alumina-zirconia alloy at least partially surrounding the prefabricated inserts.

Selon un mode d'exécution préféré, la méthode selon l'invention les inserts de géométrie prédéfinie fabriqués préalablement à la coulée de ladite pièce d'usure, le sont par métallurgie des poudres.According to a preferred embodiment, the method according to the invention, the inserts of predefined geometry manufactured prior to the casting of said wearing part, are produced by powder metallurgy.

Le présente invention divulgue également l'invention sous forme d'un impacteur, une enclume, un cône ou un galet de broyage.The present invention also discloses the invention in the form of an impactor, an anvil, a cone or a grinding roller.

Brève description des figuresBrief description of the figures

  • La figure 1 représente schématiquement une pièce d'usure avec une zone renforcée par un renfort comportant des inserts cylindriques en céramiques préfabriqués entourés d'une structure de grains millimétriques agrégés à base d'alumine, de zircone ou d'alumine-zircone infiltrés par le métal de coulée.The figure 1 schematically represents a wear part with a zone reinforced by a reinforcement comprising cylindrical inserts in prefabricated ceramics surrounded by a structure of aggregated millimeter grains based on alumina, zirconia or alumina-zirconia infiltrated by the casting metal .
  • La figure 2 représente schématiquement le détail d'un renfort selon l'invention constitué d'inserts cylindriques en céramiques préfabriqués fixés dans une structure de grains millimétriques à base d'alumine, de zircone ou d'alumine-zircone.The figure 2 schematically shows the detail of a reinforcement according to the invention consisting of prefabricated cylindrical ceramic inserts fixed in a structure of millimeter grains based on alumina, zirconia or alumina-zirconia.
  • La figure 3 représente schématiquement un battoir de concasseur à axe horizontal avec la zone prédéfinie renforcée par des inserts cylindriques en céramiques préfabriqués entourés d'une structure de grains millimétriques d'alumine, de zircone ou d'alumine-zircone avec des interstices millimétriques et une porosité infiltrables.The figure 3 schematically shows a horizontal axis crusher beater with the predefined area reinforced by prefabricated ceramic cylindrical inserts surrounded by a millimetric grain structure of alumina, zirconia or alumina-zirconia with millimeter interstices and infiltrable porosity.
  • La figure 4 représente schématiquement un galet de broyeur vertical avec la zone prédéfinie renforcée par des inserts cylindriques en céramiques préfabriqués entourés d'une structure de grains millimétriques d'alumine, de zircone ou d'alumine-zircone avec des interstices millimétriques et une porosité infiltrables.The figure 4 schematically shows a vertical mill roller with the predefined area reinforced by pre-fabricated ceramic cylindrical inserts surrounded by a structure of millimetric grains of alumina, zirconia or alumina-zirconia with millimeter interstices and infiltrable porosity.
  • La figure 5 représente schématiquement une enclume de concasseur à axe vertical avec la zone prédéfinie renforcée par des inserts cylindriques en céramiques préfabriqués entourés d'une structure de grains millimétriques d'alumine, de zircone ou d'alumine-zircone avec des interstices millimétriques et une porosité infiltrables.The figure 5 Schematically shows a vertical axis crusher anvil with the predefined area reinforced by prefabricated ceramic cylindrical inserts surrounded by a millimetric grain structure of alumina, zirconia or alumina-zirconia with millimeter interstices and infiltrable porosity.
Liste des symboles de référenceList of reference symbols

  • 1 : pièce d'usure composite renforcée par une composition en céramique aux endroits les plus exposés à l'usure. 1 : composite wear part reinforced with a ceramic composition at the places most exposed to wear.
  • 2 : structure de renfort de géométrie prédéfinie infiltrée par le métal de coulée (seconde matrice métallique), la structure comportant des grains millimétriques d'alumine-zircone avec des interstices millimétriques et une porosité infiltrables. 2 : reinforcing structure of predefined geometry infiltrated by the casting metal (second metal matrix), the structure comprising millimeter grains of alumina-zirconia with millimeter interstices and infiltrable porosity.
  • 3 : insert en composite céramique-métal préfabriqué comportant en tant que liant des particules de céramiques à base de carbures, nitrures, borures et d'éléments intermétalliques, une première matrice métallique différente du métal de coulée, l'insert étant intégré à la structure infiltrable, l'ensemble ayant été placé dans le moule avant la coulée. 3 : prefabricated ceramic-metal composite insert comprising as binder ceramic particles based on carbides, nitrides, borides and intermetallic elements, a first metallic matrix different from the casting metal, the insert being integrated into the structure infiltrable, the assembly having been placed in the mold before casting.
  • 4 : détail de structure de renfort montrant un interstice millimétrique avec une zone à faible concentration en particules de céramiques. L'interstice est occupé principalement par la seconde matrice métallique, le métal de coulée 4 : detail of the reinforcement structure showing a millimeter gap with an area with a low concentration of ceramic particles. The gap is occupied mainly by the second metal matrix, the casting metal
  • 5 : détail de structure de renfort montrant schématiquement une zone millimétrique à forte concentration en particules de céramiques issue de l'agrégat de grains millimétriques infiltré par la seconde matrice métallique, le métal de coulée 5 : detail of the reinforcement structure schematically showing a millimeter zone with a high concentration of ceramic particles resulting from the aggregate of millimeter grains infiltrated by the second metal matrix, the casting metal
  • 6 : métal de coulée (seconde matrice métallique). 6: casting metal (second metal matrix).
  • 7 : alumine dans un grain millimétrique composant la structure poreuse infiltrable. 7: alumina in a millimeter grain making up the infiltrable porous structure.
  • 8 : zircone dans un grain millimétrique composant la structure poreuse infiltrable. Les références 7 et 8 montrent un alliage de particules d'alumine-zircone. 8: zirconia in a millimeter grain making up the infiltrable porous structure. References 7 and 8 show an alloy of alumina-zirconia particles.
  • 9 : particules de céramiques préfabriquées pouvant représenter jusqu'à 90 % du volume total de l'insert. Ces inserts peuvent être fabriqués par n'importe quelle technologie mais le sont de préférence par métallurgie des poudres. 9: prefabricated ceramic particles which can represent up to 90% of the total volume of the insert. These inserts can be manufactured by any technology but are preferably manufactured by powder metallurgy.
  • 10: première matrice métallique propre à l'insert en céramiques. Cette matrice métallique qui sert de liant aux particules de carbures, nitrures, borures et éléments intermétalliques est indépendante de la seconde matrice métallique issue de la coulée qui infiltre la structure infiltrable à base d'alumine, de zircone et/ou d'alumine-zircone. 10: first metal matrix specific to the ceramic insert. This metal matrix which serves as a binder for the particles of carbides, nitrides, borides and intermetallic elements is independent of the second metal matrix resulting from the casting which infiltrates the infiltrable structure based on alumina, zirconia and / or alumina-zirconia .
  • 13: battoir d'un concasseur à axe horizontal comportant une structure renforcée selon l'invention 13: beater of a crusher with horizontal axis comprising a reinforced structure according to the invention
  • 14: galet de broyeur vertical comportant une structure renforcée selon l'invention 14: vertical grinder roller comprising a reinforced structure according to the invention
  • 15: enclume d'un concasseur à axe vertical comportant une structure renforcée selon l'invention. 15: anvil of a crusher with a vertical axis comprising a reinforced structure according to the invention.
Description détaillée de l'inventionDetailed description of the invention

La présente invention divulgue une pièce d'usure avec une résistance accrue à l'usure réalisée en fonderie conventionnelle. Elle se rapporte plus particulièrement à une pièce d'usure comportant une partie renforcée selon une géométrie prédéfinie avec des inserts en céramiques (cylindres, polygones, cônes...) à l'échelle de quelques centimètres préalablement fabriqués et insérés dans une structure tridimensionnelle infiltrée constituée de grains millimétriques agglomérés et formant une alternance périodique de grains et d'interstices millimétriques.The present invention discloses a wear part with increased resistance to wear produced in a conventional foundry. It relates more particularly to a wear part comprising a reinforced part according to a predefined geometry with ceramic inserts (cylinders, polygons, cones, etc.) at the scale of a few centimeters previously manufactured and inserted into an infiltrated three-dimensional structure. made up of agglomerated millimeter grains and forming a periodic alternation of millimeter grains and interstices.

Les grains utilisés pour fabriquer la structure tridimensionnelle comportent principalement de l'alumine Al2O3, de la zircone ZrO2 ou de l'alumine-zircone dont la plage de composition peut varier de 5 à 95 % en poids d'alumine et de 95 à 5 % de zircone, de préférence 10 à 90% et 90 à 10%, et de manière particulièrement préférée 20 à 80% et 80 à 20%. En supplément de ces ingrédients, les grains peuvent comporter des stabilisants comme des oxydes de terres rares, en particulier l'oxyde d'yttrium ou l'oxyde de cérium en tant que stabilisant de la zircone.The grains used to manufacture the three-dimensional structure mainly comprise alumina Al 2 O 3 , zirconia ZrO 2 or alumina-zirconia, the composition range of which can vary from 5 to 95% by weight of alumina and 95 to 5% zirconia, preferably 10 to 90% and 90 to 10%, and particularly preferably 20 to 80% and 80 to 20%. In addition to these ingredients, the grains may include stabilizers such as rare earth oxides, in particular yttrium oxide or cerium oxide as a stabilizer for the zirconia.

Les grains millimétriques utilisés pour fabriquer la structure de renfort tridimensionnelle peuvent également comporter, dans une proportion inférieure à 50%, de préférence inférieure à 40% et de manière particulièrement préférée inférieure à 30% en volume, des carbures de titane, des nitrures de titane ou des carbonitrures de titane dans une troisième matrice métallique également indépendante des deux premières (non représentée dans les figures). La troisième matrice métallique servant de liant à ces grains millimétriques est de préférence à base d'alliage de fer, d'alliage de nickel, ou d'alliage de molybdène. La proportion volumétrique du liant métallique (troisième matrice métallique) est généralement entre 5 et 60%, de préférence entre 7 et 45% et de manière particulièrement préférée entre 10 et 35%. La taille des carbures, nitrures ou carbonitrures de titane sont de 0,05 à 75 µm, préférentiellement de 0,2 à 40 µm, plus préférentiellement de 0,5 à 15 µm.The millimeter grains used to manufacture the three-dimensional reinforcing structure may also comprise, in a proportion of less than 50%, preferably less than 40% and particularly preferably less than 30% by volume, titanium carbides, titanium nitrides. or some titanium carbonitrides in a third metal matrix also independent of the first two (not shown in the figures). The third metal matrix serving as a binder for these millimeter grains is preferably based on an iron alloy, a nickel alloy or a molybdenum alloy. The volumetric proportion of the metal binder (third metal matrix) is generally between 5 and 60%, preferably between 7 and 45% and particularly preferably between 10 and 35%. The size of the titanium carbides, nitrides or carbonitrides are from 0.05 to 75 μm, preferably from 0.2 to 40 μm, more preferably from 0.5 to 15 μm.

La structure infiltrable est donc constituée d'une structure tridimensionnelle d'un agrégat de grains millimétriques de taille moyenne entre 0,5 et 10 mm, de préférence 0,7 à 6 mm et de manière particulièrement préférée entre 1 et 4 mm. Les interstices entre les grains dépendent du niveau de compactage et de la taille des grains mais sont de l'ordre du millimètre ou d'une fraction de millimètre. Il y a ainsi une alternance « périodique » de grains et d'interstices et non pas une alternance « aléatoire ».The infiltrable structure therefore consists of a three-dimensional structure of an aggregate of millimeter grains of average size between 0.5 and 10 mm, preferably 0.7 to 6 mm and particularly preferably between 1 and 4 mm. The interstices between the grains depend on the level of compaction and the size of the grains but are of the order of a millimeter or a fraction of a millimeter. There is thus a “periodic” alternation of grains and interstices and not a “random” alternation.

Les grains millimétriques comportent un mélange homogène à base d'alumine, de zircone ou d'alumine-zircone et peuvent être agglomérés/compactés entre eux par l'utilisation d'un liant (colle) ou bien maintenus dans un conteneur métallique afin de définir géométriquement la zone renforcée de la pièce d'usure.The millimeter grains comprise a homogeneous mixture based on alumina, zirconia or alumina-zirconia and can be agglomerated / compacted between them by the use of a binder (glue) or else kept in a metal container in order to define geometrically the reinforced area of the wearing part.

L'utilisation d'un liant avec prise via l'ajout d'un catalyseur permet la réalisation de la structure infiltrable sans cuisson, ce qui peut être préféré dans certains cas où on ne dispose pas de moyens de cuisson adéquats. La nature du liant est alors soit de type organique ou de type minéral, préférentiellement organique, plus préférentiellement de type phénolique.The use of a binder with setting via the addition of a catalyst makes it possible to produce the infiltrable structure without cooking, which may be preferred in certain cases where adequate cooking means are not available. The nature of the binder is then either of organic type or of mineral type, preferably organic, more preferably of phenolic type.

L'utilisation d'un liant avec une prise par cuisson permet l'utilisation de liant plus résistant à haute température. La nature du liant est alors de type minéral, préférentiellement de type silicate, plus préférentiellement de type silicate de sodium.The use of a binder with a setting by cooking allows the use of binder more resistant to high temperature. The nature of the binder is then of mineral type, preferably of silicate type, more preferably of sodium silicate type.

La quantité de liant (colle) utilisée pour la réalisation de la structure infiltrable est comprise entre 0,5% et 10% en poids, préférentiellement entre 1% et 8%, plus préférentiellement entre 1,5% et 7%. La quantité de liant est adaptée de façon à assurer une cohésion suffisante des grains et de limiter la production de gaz lors de l'infiltration par le métal liquide de coulée et de limiter l'épaisseur résiduelle de liant autour de chaque grain constituant la structure tridimensionnelle poreuse.The amount of binder (glue) used for producing the infiltrable structure is between 0.5% and 10% by weight, preferably between 1% and 8%, more preferably between 1.5% and 7%. The amount of binder is adapted so as to ensure sufficient cohesion of the grains and to limit the production of gas during infiltration by the liquid casting metal and to limit the residual thickness of binder around each grain constituting the three-dimensional structure porous.

Les inserts en céramiques destinés à être maintenus par la structure tridimensionnelle de grains agglomérés ont quant à eux une forme quelconque, les formes cylindriques, polygonales ou coniques étant cependant préférées. Le diamètre de ces inserts en céramiques, dans le cas d'une forme cylindrique, est de l'ordre de 3 à 50 mm, de préférence de 6 à 30 mm, plus particulièrement de 8 à 20 mm et la longueur de 5 à 300 mm, de préférence de 10 à 200 mm, en particulier de 10 à 150 mm.Ceramic inserts intended to be held by the three-dimensional structure of agglomerated grains, for their part, have any shape, cylindrical, polygonal or conical shapes however being preferred. The diameter of these ceramic inserts, in the case of a cylindrical shape, is of the order of 3 to 50 mm, preferably 6 to 30 mm, more particularly 8 to 20 mm and the length of 5 to 300 mm, preferably 10 to 200 mm, in particular 10 to 150 mm.

La présente invention décrit donc une pièce d'usure renforcée sur son ou ses côtés les plus sollicités obtenue par l'infiltration d'une structure céramique tridimensionnelle de grains millimétriques agglomérés alternant périodiquement avec des interstices millimétriques qui intègre déjà des inserts géométriques en céramiques préfabriqués de type composite céramique-métal généralement obtenus par métallurgie des poudres, où les particules de céramiques sont noyées dans une première matrice métallique complètement indépendante de la seconde matrice métallique de coulée, principalement constituée d'acier ou de fonte liquide.The present invention therefore describes a wear part reinforced on its most stressed side (s) obtained by the infiltration of a three-dimensional ceramic structure of agglomerated millimeter grains periodically alternating with millimeter interstices which already incorporates geometric inserts in prefabricated ceramics of ceramic-metal composite type generally obtained by powder metallurgy, where the ceramic particles are embedded in a first metal matrix completely independent of the second metal casting matrix, mainly made of steel or liquid iron.

Cette technique permet le positionnement commode et robuste d'inserts de géométrie définie et concentrés en carbures, nitrures, borures métalliques ou en alliages intermétalliques comportant une matrice métallique indépendante de celle générée par la coulée. Cette première matrice métallique existant antérieurement à la coulée de ladite pièce d'usure est présente dès le départ dans les inserts composites céramique-métal. Les inserts préexistants sont intégrés dans une structure infiltrable comportant des grains millimétriques agglomérés (padding) d'alumine, de zircone, d'alumine-zircone ou de composite céramique-métallique et qui seront infiltrés lors de la coulée de la pièce d'usure. La structure tridimensionnelle infiltrable peut également comporter une certaine proportion de grains millimétriques de carbures de titane, des nitrures de titane ou des carbonitrures de titane dans une troisième matrice métallique indépendante des deux premières.This technique allows the convenient and robust positioning of inserts of defined geometry and concentrated in carbides, nitrides, metal borides or intermetallic alloys comprising a metal matrix independent of that generated by the casting. This first metal matrix existing prior to the casting of said wearing part is present from the start in the ceramic-metal composite inserts. The pre-existing inserts are integrated into an infiltrable structure comprising agglomerated millimeter grains (padding) of alumina, zirconia, alumina-zirconia or ceramic-metallic composite and which will be infiltrated during the casting of the wearing part. The infiltrable three-dimensional structure can also include a certain proportion of millimeter grains of titanium carbides, titanium nitrides or titanium carbonitrides in a third metal matrix independent of the first two.

Contrairement à ce qui est pratiqué dans l'art antérieur, on utilise ici partiellement des inserts en composite céramique-métal, comme un insert cylindrique ou tronconique. Cet insert peut être composé par exemple de carbures de titane, de nitrures de titane ou de carbures de chrome avec une concentration minimum de 40 % en volume dans une première matrice métallique à base de fer, manganèse, nickel ou cobalt par exemple, que l'on « emballe » dans une structure infiltrable composée par exemple d'un agglomérat de grains millimétriques à base d'alumine, de zircone ou d'alumine-zircone. Pour certaines condition d'utilisation, cette structure infiltrable peut également comporter des grains millimétriques de carbures, nitrures, borures métalliques ou d'éléments intermétalliques, de préférence du carbure de titane, du nitrure de titane ou du carbonitrure de titane.Contrary to what is practiced in the prior art, here partially used ceramic-metal composite inserts, such as a cylindrical or frustoconical insert. This insert can be composed for example of titanium carbides, titanium nitrides or chromium carbides with a minimum concentration of 40% by volume in a first metal matrix based on iron, manganese, nickel or cobalt, for example, that l 'we “pack” in an infiltrable structure composed for example of an agglomerate of millimeter grains based on alumina, zirconia or alumina-zirconia. For certain conditions of use, this infiltrable structure can also include millimeter grains of carbides, nitrides, borides of metals or of intermetallic elements, preferably titanium carbide, titanium nitride or titanium carbonitride.

L'alumine est connue pour ses propriétés de résistance à l'abrasion à faible charge grâce à sa haute dureté par rapport à la dureté des principaux minéraux naturels. L'alumine tire également avantage de sa faible densité et son faible coût de mise en œuvre que ce soit par fusion ou par frittage de poudre.Alumina is known for its low load abrasion resistance properties due to its high hardness compared to the hardness of major natural minerals. Alumina also takes advantage of its low density and its low cost of implementation, whether by melting or by powder sintering.

La zircone pure, quant à elle, est généralement utilisée en présence de stabilisateurs. La zircone dans sa forme cristallographique tétragonale présente des propriétés mécaniques intéressantes pour le renforcement de pièces sollicitées à l'usure. L'ajout entre 0,3 à 8% d'oxyde de terre rare comme par exemple l'oxyde d'yttrium ou l'oxyde de cérium permet la stabilisation de la zircone dans sa phase tétragonale.Pure zirconia, on the other hand, is generally used in the presence of stabilizers. Zirconia in its tetragonal crystallographic form exhibits advantageous mechanical properties for the reinforcement of parts subjected to wear. The addition of between 0.3 to 8% of rare earth oxide such as, for example, yttrium oxide or cerium oxide allows the stabilization of the zirconia in its tetragonal phase.

La zircone a une plus grande résistance à la flexion et une plus grande ténacité que l'alumine. La capacité de la zircone tétragonale de se transformer en une forme cristallographique monoclinique moins dense et donc de refermer le front de fissuration le cas échéant, donne au matériau sa haute ténacité et résistance mécanique. La résistance à l'usure de la zircone est particulièrement bonne dans le cas où les contraintes de surface induites par les particules abrasives sont importantes. Par contre, sa plus faible dureté par rapport à certains minéraux naturels, dont le quartz ou la silice libre, limite son utilisation lorsqu'elle est sollicitée par des minerais qui en contiennent.Zirconia has greater flexural strength and toughness than alumina. The ability of tetragonal zirconia to transform into a less dense monoclinic crystallographic form and therefore to close the cracking front if necessary, gives the material its high toughness and mechanical strength. The wear resistance of zirconia is particularly good in the case where the surface stresses induced by the abrasive particles are high. On the other hand, its lower hardness compared to certain natural minerals, including quartz or free silica, limits its use when it is called upon by ores which contain it.

La réalisation de composites alumine-zircone permet d'améliorer les propriétés des deux composés pris séparément, notamment la résistance mécanique et la ténacité. L'évolution de ces propriétés est illustrée sur les figures suivantes. Le choix de la proportion de zircone dans l'alumine permet d'optimiser le couple dureté/propriétés mécaniques-ténacité en fonction des sollicitations à l'usure que subit le matériau afin d'obtenir les meilleures performances de la pièce ainsi renforcée.

Figure imgb0001
Figure imgb0002
The production of alumina-zirconia composites makes it possible to improve the properties of the two compounds taken separately, in particular the mechanical strength and the toughness. The evolution of these properties is illustrated in the following figures. The choice of the proportion of zirconia in the alumina makes it possible to optimize the hardness / mechanical properties-toughness pair as a function of the wear stresses to which the material is subjected in order to obtain the best performance from the part thus reinforced.
Figure imgb0001
Figure imgb0002

La présente invention permet donc d'atteindre non seulement des très hautes concentrations en céramiques, généralement supérieures à 40 % en volume mais pouvant aller jusqu'à 95 % en volume dans les inserts géométriques préfabriqués ou des grains millimétriques de composite céramique-métal préexistants, mais également de choisir la matrice métallique propre (première et troisième matrice métallique) à ces éléments et donc d'être indépendant du métal de coulée (seconde matrice métallique) de la pièce d'usure qui est généralement de la fonte ou de l'acier au chrome.The present invention therefore makes it possible to achieve not only very high ceramic concentrations, generally greater than 40% by volume but up to 95% by volume in prefabricated geometric inserts or millimetric grains of pre-existing ceramic-metal composite, but also to choose the specific metal matrix (first and third metal matrix) to these elements and therefore to be independent of the casting metal (second metal matrix) of the wearing part which is generally cast iron or steel chrome.

La présente invention permet une meilleure performance des pièces d'usure réalisées en fonderie renforcées par rapport à celles de l'art antérieur grâce à l'augmentation localisée de la résistance à l'usure de la zone renforcée par la présence de davantage de particules résistant à l'usure et/ou de particules de nature différente par une matrice métallique plus adaptée. Elle permet également une meilleure performance des pièces d'usure réalisées par l'ajout de zones de géométrie définie concentrées en carbures, nitrures, borures métalliques ou en alliages intermétalliques et d'une matrice métallique existant antérieurement à la coulée de ladite pièce d'usure en évitant l'usure préférentielle de l'alliage ferreux de la pièce d'usure autour de ces zones grâce à la structure faisant alterner à l'échelle millimétrique des zones denses en fines particules de céramique avec des zones qui en sont pratiquement exemptes au sein de la matrice métallique de la pièce au voisinage de la structure « d'emballage » des inserts céramiques préexistants tout en en améliorant l'union de ces inserts avec l'alliage ferreux de la pièce d'usure renforcée.The present invention allows better performance of wear parts produced in reinforced foundry compared to those of the prior art thanks to the localized increase in the wear resistance of the reinforced zone by the presence of more wear-resistant particles and / or particles of a different nature by a more suitable metal matrix. It also allows better performance of wear parts produced by adding areas of defined geometry concentrated in carbides, nitrides, metal borides or intermetallic alloys and a metal matrix existing prior to the casting of said wear part. by avoiding preferential wear of the ferrous alloy of the wearing part around these zones thanks to the structure alternating on a millimeter scale zones dense in fine ceramic particles with zones which are practically free of them within of the metal matrix of the part in the vicinity of the “packaging” structure of the pre-existing ceramic inserts while improving the union of these inserts with the ferrous alloy of the reinforced wearing part.

ExemplesExamples Exemple comparatifComparative example

Dans cet exemple la résistance d'une pièce d'usure renforcée selon l'état de la technique est mesurée. Elle est fabriquée de manière analogue au procédé divulgué dans l'art antérieur WO9815373A1 (Magotteaux, 1997 ).
Il s'agit d'une pièce d'impacteur à axe vertical renforcée par une structure tridimensionnelle de grains millimétriques agglomérés poreuse et infiltrable. Le volume de la pièce d'usure est de 10,27 dm3. Sa masse est de 74,16 kg.
In this example, the resistance of a reinforced wearing part according to the state of the art is measured. It is manufactured in a manner analogous to the process disclosed in the prior art. WO9815373A1 (Magotteaux, 1997 ).
It is a vertical axis impactor part reinforced by a three-dimensional structure of porous and infiltrable agglomerated millimeter grains. The volume of the wearing part is 10.27 dm 3 . Its mass is 74.16 kg.

Pour évaluer l'usure, on mesure la perte de poids de la pièce d'impacteur à axe vertical dans son intégralité. C'est le seul moyen de déterminer en pratique l'usure, qui dépend d'une série de facteurs et notamment de la géométrie de positionnement dans l'impacteur. Bien qu'étant majoritairement usé du côté du renfort, l'impacteur est également partiellement usé en dehors de ce renfort en fonction de ce positionnement.To assess wear, the weight loss of the entire vertical axis impactor part is measured. This is the only way to determine the wear in practice, which depends on a series of factors and in particular on the positioning geometry in the impactor. Although being predominantly worn on the side of the reinforcement, the impactor is also partially worn outside this reinforcement depending on this positioning.

Dans la structure tridimensionnelle selon l'art antérieur, il y a une alternance entre des grains et des interstices millimétriques. Ces grains sont constitués d'alumine-zircone électrofondue agglomérée avec 3,5% en poids de liant minéral de type silicate de sodium. La composition de ces grains d'alumine-zircone électrofondue est décrite ci-dessous. Alumine (%pds) Zircone (%pds) Oxyde d'yttrium 59 40 0,80 In the three-dimensional structure according to the prior art, there is an alternation between grains and millimeter interstices. These grains consist of electrofused alumina-zirconia agglomerated with 3.5% by weight of inorganic binder of sodium silicate type. The composition of these electrofused alumina-zirconia grains is described below. Alumina (% wt) Zirconia (% wt) Yttrium oxide 59 40 0.80

Cette structure infiltrable comporte un agrégat de grains millimétriques de taille moyenne d'environ 2,5 mm. Ces grains sont agglomérés dans une structure tridimensionnelle à l'aide de silicate de sodium avec une forme prédéfinie dans un moule en résine. Dans cette structure tridimensionnelle, il y a une alternance entre des grains et des interstices millimétriques.This infiltrable structure comprises an aggregate of millimeter grains of average size of about 2.5 mm. These grains are agglomerated in a three-dimensional structure using sodium silicate with a predefined shape in a resin mold. In this three-dimensional structure, there is an alternation between grains and millimeter interstices.

Cet exemple comparatif présente donc des parties renforcées à base d'alumine-zircone, du côté le plus sollicité de la pièce d'usure sans contenir au départ des inserts centimétriques composites céramique-métal, de type cylindre par exemple, préalablement positionnés dans une matrice métallique différente de l'alliage ferreux utilisé pour la coulée. Au terme de ces étapes, une forme d'un volume total renforcé de 0,857 dm3 est fabriquée. La perte en poids constatée lors d'un test d'usure est de 6,795 kg par 100 heures de fonctionnement (kg/100h) sur la pièce d'usure de l'impacteur à axe vertical.This comparative example therefore presents reinforced parts based on alumina-zirconia, on the most stressed side of the wear part without initially containing centimetric ceramic-metal composite inserts, of cylinder type for example, previously positioned in a die. metal different from the ferrous alloy used for casting. At the end of these steps, a form with a total reinforced volume of 0.857 dm 3 is produced. The weight loss observed during a wear test is 6.795 kg per 100 hours of operation (kg / 100h) on the wear part of the vertical axis impactor.

Exemples selon l'inventionExamples according to the invention Exemple 1 : Example 1 :

La pièce renforcée selon l'invention comporte une zone renforcée de géométrie prédéfinie avec des inserts en céramiques cylindriques préalablement fabriqués à l'échelle de quelques centimètres et préalablement insérés dans une structure infiltrable comportant des grains à base d'alumine-zircone électrofondue avec la composition décrite ci-dessous. Il est à noter que ces grains ont les mêmes caractéristiques que ceux de l'exemple comparatif. Alumine (%pds) Zircone (%pds) Oxyde d'yttrium 59 40 0,80 The reinforced part according to the invention comprises a reinforced zone of predefined geometry with cylindrical ceramic inserts previously manufactured at the scale of a few centimeters and previously inserted into an infiltrable structure comprising grains based on alumina-zirconia electrofused with the composition. described below. It should be noted that these grains have the same characteristics as those of the comparative example. Alumina (% wt) Zirconia (% wt) Yttrium oxide 59 40 0.80

Cette structure infiltrable comporte un agrégat de grains millimétriques de taille moyenne d'environ 2,5 mm. Ces grains sont agglomérés dans une structure tridimensionnelle à l'aide d'une colle à base de silicate de sodium avec une forme prédéfinie dans un moule en résine. Dans cette structure tridimensionnelle, il y a une alternance périodique entre des grains et des interstices millimétriques.This infiltrable structure comprises an aggregate of millimeter grains of average size of about 2.5 mm. These grains are agglomerated in a three-dimensional structure using a sodium silicate-based glue with a predefined shape in a resin mold. In this three-dimensional structure, there is a periodic alternation between grains and millimeter interstices.

Les inserts en céramiques préalablement fabriqués ont une forme géométrique cylindrique et sont constitués en moyenne de 70 à 80% de particules micrométriques de carbures de titane liées par une première matrice métallique de type acier austénitique.
Le diamètre de ces inserts céramiques préalablement fabriqués est de 20 mm. La hauteur est de 30 mm.
The ceramic inserts manufactured beforehand have a cylindrical geometric shape and consist on average of 70 to 80% of micrometric particles of titanium carbides bound by a first metal matrix of the austenitic steel type.
The diameter of these previously manufactured ceramic inserts is 20 mm. The height is 30 mm.

Les 25 inserts céramiques préalablement fabriqués sont positionnés verticalement par rapport à la face de remplissage de façon prédéfinie dans le moule en résine qui définit la zone de renforcement grâce à des encoches pratiquées dans le moule en résine et préalablement à l'ajout des grains millimétriques d'alumine-zircone.The 25 ceramic inserts previously manufactured are positioned vertically with respect to the filling face in a predefined manner in the resin mold which defines the reinforcement zone thanks to notches made in the resin mold and prior to the addition of the millimeter grains of alumina-zirconia.

Au terme de ces étapes, une structure tridimensionnelle d'un volume total de 0,857 dm3, semblable à la figure 2, est fabriquée par coulée d'une fonte de type AFNOR Z 270 C 27 - M. Ce type de fonte, qui constitue la seconde matrice métallique, est utilisé pour tous les exemples. Ex 1 (25 inserts préformés) 25 inserts composites céramique-métal préformés avec des particules de carbures de titane (70-80%vol) liées dans une première matrice métallique d'acier austénitique entourés de grains millimétriques d'alumine zircone électrofondue (Al2O3-ZrO2) Perte en poids (kg/100h) 5,022 kg At the end of these steps, a three-dimensional structure with a total volume of 0.857 dm 3 , similar to the figure 2 , is manufactured by casting an AFNOR Z 270 C 27 - M type cast iron. This type of cast iron, which constitutes the second metal matrix, is used for all the examples. Ex 1 (25 preformed inserts) 25 ceramic-metal composite inserts preformed with titanium carbide particles (70-80% vol) bound in a first metallic matrix of austenitic steel surrounded by millimeter grains of electrofused zirconia alumina (Al 2 O 3 -ZrO 2 ) Weight loss (kg / 100h) 5.022 kg

Exemple 2 : Example 2 :

L'exemple 1 est répété mais cette fois, 25 inserts céramiques préalablement fabriqués sont positionnés de façon identique à l'exemple 1, mais sont constitués en moyenne de 70 à 80% de particules micrométriques de carbures de titane et d'une première matrice métallique en alliage de nickel. Ex. 2 (25 inserts préformés) 25 inserts composites céramique-métal préformés avec des particules de carbure de titane (70-80%vol) liées dans une première matrice métallique d'alliaqe de nickel entourés de grains millimétriques d'alumine-zircone électrofondue (Al2O3-ZrO2) Perte en poids par 100 heures (kg/100h) 5,125kg Example 1 is repeated but this time, 25 ceramic inserts previously manufactured are positioned identically to Example 1, but consist on average of 70 to 80% of micrometric particles of titanium carbides and of a first metal matrix. made of nickel alloy. Ex. 2 (25 preformed inserts) 25 ceramic-metal composite inserts preformed with titanium carbide particles (70-80% vol) bound in a first metal matrix of nickel alloy surrounded by millimeter grains of electrofused alumina-zirconia (Al 2 O 3 -ZrO 2 ) Weight loss per 100 hours (kg / 100h) 5.125kg

Exemple 3 :Example 3:

On répète l'exemple 1 avec 25 inserts mais cette fois, les inserts en composite céramique-métal préalablement fabriqués comportent en moyenne de 75 à 85% de particules micrométriques de carbonitrures de titane et une première matrice métallique à base d'alliage de molybdène. Ex.3 (25 inserts préformés) 25 inserts centimétriques composites métal-céramique préformés avec particules de carbonitrures de titane (75-85%vol) liées dans une première matrice métallique de molybdène entourés de grains millimétriques d'alumine zircone électrofondue (Al2O3-ZrO2) Perte en poids par 100 heures (kg/100h) 4,921kg Example 1 is repeated with 25 inserts, but this time, the ceramic-metal composite inserts produced beforehand comprise on average from 75 to 85% of micrometric particles of titanium carbonitrides and a first metal matrix based on a molybdenum alloy. Ex. 3 (25 preformed inserts) 25 centimetric metal-ceramic composite inserts preformed with titanium carbonitride particles (75-85% vol) bound in a first metal matrix of molybdenum surrounded by millimeter grains of electrofused zirconia alumina (Al2O3-ZrO2) Weight loss per 100 hours (kg / 100h) 4.921kg

Exemple 4 : Example 4 :

L'exemple 1 est répété avec à nouveau 25 inserts de même taille, mais les inserts céramiques préalablement fabriqués comportent en moyenne de 80 à 90% de particules micrométriques de carbures de chrome liées dans une première matrice métallique à base de nickel. Ex. 4 (25 inserts préformés) 25 inserts centimétriques préformés avec des particules de carbures de chrome (80-90%vol) liées avec un liant à base de nickel entourés de grains millimétriques d'alumine-zircone électrofondue (Al2O3-ZrO2) Perte en poids par 100 heures (kg/100h) 6,123kg Example 1 is repeated with again 25 inserts of the same size, but the ceramic inserts previously manufactured comprise on average from 80 to 90% of micrometric particles of chromium carbides bound in a first metal matrix based on nickel. Ex. 4 (25 preformed inserts) 25 centimetric inserts preformed with particles of chromium carbides (80-90% vol) bound with a nickel-based binder surrounded by millimeter grains of electrofused alumina-zirconia (Al 2 O 3 -ZrO 2 ) Weight loss per 100 hours (kg / 100h) 6.123kg

Exemple 5 : Example 5 :

L'exemple 4 est répété avec à nouveau 25 inserts de même taille, où les inserts céramiques préalablement fabriqués comportent en moyenne de 80 à 90% de particules micrométriques de carbures de chrome liées dans une première matrice métallique à base de nickel.Example 4 is repeated with again 25 inserts of the same size, where the ceramic inserts previously manufactured comprise on average from 80 to 90% of micrometric particles of chromium carbides bound in a first metal matrix based on nickel.

Cette fois, la structure tridimensionnelle qui entoure les inserts centimétriques comporte 25 % en volume de grains millimétriques comportant en moyenne 80 à 85% de particules micrométriques de carbonitrures de titane dans une troisième matrice métallique à base d'alliage de molybdène. Ex. 5 (25 inserts préformés) 25 inserts centimétriques préformés en particules de carbures de chrome (80-90%vol) liées avec un liant à base de nickel entourés de grains millimétriques d'alumine-zircone électrofondue (Al2O3-ZrO2) comportant une proportion de 25% en volume de grains millimétriques de carbonitrures de titane Perte en poids par 100 heures (kg/100h) 6, 13 kg This time, the three-dimensional structure which surrounds the centimetric inserts comprises 25% by volume of millimeter grains comprising in average 80 to 85% of micrometric particles of titanium carbonitrides in a third metal matrix based on molybdenum alloy. Ex. 5 (25 preformed inserts) 25 centimetric inserts preformed in particles of chromium carbides (80-90% vol) bound with a nickel-based binder surrounded by millimeter grains of electrofused alumina-zirconia (Al 2 O 3 -ZrO 2 ) comprising a proportion of 25% by volume of millimeter grains of titanium carbonitrides Weight loss per 100 hours (kg / 100h) 6, 13 kg

Tableau récapitulatif et interprétation des résultatsSummary table and interpretation of results

Le tableau ci-dessous reprend les pertes de poids d'une pièce d'usure d'un impacteur à axe vertical de 74,16 kg à l'état neuf, dont le volume renforcé représente environ 0,857 dm3. La perte de poids est mesurée après 438 heures de fonctionnement et est ramenée sur 100 heures de fonctionnement. Ex Renfort entourant l'insert préformé Insert préformé Nombre d'inserts préformés Usure de l'impacteur composite (kg/100h) Gain % C. Alumine-zircone électrofondue - - 6,795 - 1 Grains millimétriques en alumine-zircone électrofondue Carbure de titane (70-80%vol) lié avec acier austénitique 25 5,022 35,3 2 Grains millimétriques en alumine-zircone électrofondue Carbure de titane (70-80%vol) lié avec alliage de nickel 25 5,125 32,6 3 Grains millimétriques en alumine-zircone électrofondue Carbonitrure de titane (75-85%vol) lié avec un alliage à base de molybdène 25 4,921 38,1 4 Grains millimétriques en alumine-zircone électrofondue Carbures de chrome (80-90%vol) liés avec un alliage à base de nickel 25 6,123 11,2 5 Grains millimétriques en alumine-zircone électrofondue + 25%vol de grains de carbonitrure de titane Carbures de chrome (80-90%vol) liés avec un liant à base de nickel 25 6,130 11,1 The table below shows the weight losses of a wearing part of a 74.16 kg vertical axis impactor in new condition, the reinforced volume of which represents approximately 0.857 dm 3 . The weight loss is measured after 438 hours of operation and is reduced over 100 hours of operation. Ex Reinforcement surrounding the preformed insert Preformed insert Number of preformed inserts Wear of the composite impactor (kg / 100h) Gain% vs. Electro-fused alumina-zirconia - - 6.795 - 1 Millimeter grains in electrofused alumina-zirconia Titanium carbide (70-80% vol) bonded with austenitic steel 25 5.022 35.3 2 Millimeter grains in electrofused alumina-zirconia Titanium carbide (70-80% vol) bonded with nickel alloy 25 5.125 32.6 3 Millimeter grains in electrofused alumina-zirconia Titanium carbonitride (75-85% vol) bonded with a molybdenum-based alloy 25 4.921 38.1 4 Millimeter grains in electrofused alumina-zirconia Chromium carbides (80-90% vol) bonded with a nickel base alloy 25 6.123 11.2 5 Millimeter grains of electrofused alumina-zirconia + 25% vol of titanium carbonitride grains Chromium carbides (80-90% vol) bonded with a nickel-based binder 25 6.130 11.1

Interprétation des résultatsResults interpretation

Les exemples présentés montrent que la performance à l'usure de la pièce d'usure d'un impacteur à axe vertical est améliorée par rapport à l'état de l'art par l'ajout d'inserts centimétriques de géométrie prédéfinie dans une structure tridimensionnelle poreuse composée de grains millimétriques.The examples presented show that the wear performance of the wear part of a vertical axis impactor is improved compared to the state of the art by the addition of centimetric inserts of predefined geometry in a structure. three-dimensional porous composed of millimeter grains.

Les mécanismes d'usure des pièces d'usure des impacteurs à axe vertical sont un mélange complexe d'arrachement de matière par abrasion, de microécaillage par propagation de microfissure et d'érosion par impact des particules traitées.The wear mechanisms of the wear parts of vertical axis impactors are a complex mixture of material removal by abrasion, micro-chipping by microcrack propagation and impact erosion of the treated particles.

Dans ces conditions complexes de fonctionnement, le comportement à l'usure d'un matériau dépendra d'un grand nombre de paramètres qui sont eux-mêmes interdépendants. On peut citer parmi les plus significatifs la dureté, la ténacité, le module d'élasticité, le libre parcours moyen entre les différentes particules, et ce à différentes échelles (micrométrique, millimétrique, centimétrique) en fonction de la taille et de la forme des particules traitées, la limite élastique, la résistance à la fatigue et la ductilité.Under these complex operating conditions, the wear behavior of a material will depend on a large number of parameters which are themselves interdependent. Among the most significant, we can cite hardness, toughness, modulus of elasticity, mean free path between the different particles, and at different scales (micrometric, millimeter, centimeter) depending on the size and shape of the particles. processed particles, elastic limit, fatigue resistance and ductility.

Dans une approche simplifiée, un matériau résistera d'autant mieux à l'usure que son produit dureté*ténacité est élevé. Or, ces deux propriétés sont intimement liées pour une même famille de matériaux comme illustré sur la figure suivante.

Figure imgb0003
In a simplified approach, a material will resist wear the better the higher its product hardness * toughness. However, these two properties are closely linked for the same family of materials as illustrated in the following figure.
Figure imgb0003

Le développement de matériaux composites permet de déplacer avantageusement cette courbe vers des duretés plus importantes à ténacité équivalente.

Figure imgb0004
The development of composite materials makes it possible to advantageously shift this curve towards greater hardnesses at equivalent tenacity.
Figure imgb0004

L'optimisation de la répartition géométrique des matériaux constituant le composite couplée à leur nature et donc à leurs propriétés intrinsèques permet donc d'augmenter davantage la dureté globale du matériau tout en maintenant une ténacité suffisante conduisant à une meilleure performance à l'usure.Optimizing the geometric distribution of the materials constituting the composite, coupled with their nature and therefore with their intrinsic properties, therefore makes it possible to further increase the overall hardness of the material while maintaining sufficient toughness leading to better wear performance.

Claims (10)

Pièce d'usure (1) hiérarchique comportant une partie renforcée (2) comprenant de l'alumine, de la zircone ou un alliage d'alumine-zircone, ladite partie renforcée comprenant également des inserts (3) centimétriques de géométrie prédéfinie, lesdits inserts (3) comportant des particules micrométriques (9) de carbures, nitrures, borures métalliques ou de composés intermétalliques liées par une première matrice métallique (10), lesdits inserts (3) étant insérés dans une structure de renfort (2) infiltrée par une seconde matrice métallique (6), la structure de renfort comportant une alternance périodique de zones millimétriques à forte et à faible concentration (4,5) en particules micrométriques d'alumine, de zircone ou d'un alliage d'alumine-zircone (7,8), la seconde matrice métallique (6) étant différente de la première matrice métallique (10).Hierarchical wear part (1) comprising a reinforced part (2) comprising alumina, zirconia or an alumina-zirconia alloy, said reinforced part also comprising centimetric inserts (3) of predefined geometry, said inserts (3) comprising micrometric particles (9) of metal carbides, nitrides, borides or intermetallic compounds bound by a first metal matrix (10), said inserts (3) being inserted into a reinforcing structure (2) infiltrated by a second metal matrix (6), the reinforcing structure comprising a periodic alternation of millimeter zones with high and low concentration (4,5) in micrometric particles of alumina, zirconia or an alumina-zirconia alloy (7, 8), the second metal matrix (6) being different from the first metal matrix (10). Pièce d'usure (1) selon la revendication 1 dans laquelle la partie renforcée (2) comporte en outre des zones millimétriques de composite céramique-métal comportant des particules micrométriques de carbures de titane, de nitrures de titane, ou de carbonitrures de titane dans un liant constituant une troisième matrice métallique, la proportion de ces zones par rapport aux zones millimétriques à forte concentration (5) de particules micrométriques d'alumine, de zircone ou d'un alliage d'alumine-zircone (7,8) étant inférieure à 50% en volume, de préférence inférieure à 40% en volume et de manière particulièrement préférée inférieure à 30% en volume, la troisième matrice métallique étant indépendante de la première (10) et de la seconde matrice métallique (6).Wear part (1) according to claim 1 wherein the reinforced part (2) further comprises millimeter areas of ceramic-metal composite comprising micrometric particles of titanium carbides, titanium nitrides, or titanium carbonitrides in a binder constituting a third metal matrix, the proportion of these areas relative to the millimeter-sized areas with a high concentration (5) of micrometric particles of alumina, zirconia or an alumina-zirconia alloy (7,8) being less at 50% by volume, preferably less than 40% by volume and particularly preferably less than 30% by volume, the third metal matrix being independent of the first (10) and of the second metal matrix (6). Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) comporte une concentration en particules micrométriques (9) de carbures, nitrures, borures métalliques ou en éléments intermétalliques entre 20 et 95 % en volume et au moins 30%, de préférence au moins 40% et de manière particulièrement préférée au moins 50 % en volume.Wear part (1) according to any one of the preceding claims, in which the insert (3) comprises a concentration of micrometric particles (9) of carbides, nitrides, metal borides or intermetallic elements between 20 and 95% by volume and at least 30%, preferably at least 40% and particularly preferably at least 50% by volume. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la première matrice métallique (10) servant de liant aux particules micrométriques (9) de l'insert (3) comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée (6).Wear part (1) according to any one of the preceding claims, in which the first metal matrix (10) serving as a binder for the micrometric particles (9) of the insert (3) mainly comprises nickel, an alloy of nickel, cobalt, cobalt alloy or a ferrous alloy other than the casting alloy (6). Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle la troisième matrice métallique servant de liant aux particules micrométriques de carbures de titane, de nitrures de titane, ou des carbonitrures de titane dans les zones millimétriques faisant partie du renfort (2), comporte majoritairement du nickel, de l'alliage de nickel, du cobalt, de l'alliage de cobalt ou un alliage ferreux différent de l'alliage de coulée (6).Wear part (1) according to any one of the preceding claims, in which the third metal matrix serving as a binder for the micrometric particles of titanium carbides, titanium nitrides, or Titanium carbonitrides in the millimeter-sized areas forming part of the reinforcement (2), mainly comprises nickel, nickel alloy, cobalt, cobalt alloy or a ferrous alloy other than the casting alloy (6) . Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3), ou les zones millimétriques du renfort (2) lorsqu'ils comportent des composites céramique métal, comportent des particules (9) de carbures, nitrures, borures métalliques ou des particules d'alliages intermétalliques de taille moyenne D50 inférieure à 80 µm, de préférence inférieure à 60 µm et de manière particulièrement préférée inférieure à 40 µm.Wear part (1) according to any one of the preceding claims, in which the insert (3), or the millimeter zones of the reinforcement (2) when they comprise ceramic-metal composites, comprise particles (9) of carbides , metal nitrides, borides or particles of intermetallic alloys of average size D50 less than 80 μm, preferably less than 60 μm and particularly preferably less than 40 μm. Pièce d'usure (1) selon l'une quelconque des revendications précédentes dans laquelle l'insert (3) et les zones renforcées à l'alumine, à la zircone ou à l'alliage alumine zircone (5) comportent des interstices micrométriques comportant des matrices métalliques différentes (6,10).Wear part (1) according to any one of the preceding claims, in which the insert (3) and the areas reinforced with alumina, zirconia or alumina zirconia alloy (5) comprise micrometric interstices comprising different metal matrices (6,10). Méthode de fabrication d'une pièce d'usure (1) selon l'une quelconque des revendications précédentes comprenant les étapes suivantes : - mise à disposition d'un moule comprenant l'empreinte d'une pièce d'usure (1) avec une géométrie prédéfinie d'une zone à renforcer (2) ; - introduction et positionnement dans ladite zone à renforcer (2) d'un mélange compact de poudres sous forme de granulés millimétriques d'alumine, de zircone ou d'alumine-zircone entourant au moins partiellement un ou plusieurs inserts (3) de géométrie définie préfabriqués concentrés en particules micrométriques de carbures, nitrures, borures métalliques ou en composés intermétalliques liées par une première matrice métallique (10), - coulée d'un alliage ferreux (6) dans le moule, ledit alliage ferreux liquide infiltrant la structure tridimensionnelle comportant des grains d'alumine, de zircone ou d'un alliage d'alumine-zircone entourant au moins partiellement les inserts (3) préfabriqués. A method of manufacturing a wearing part (1) according to any one of the preceding claims comprising the following steps: - provision of a mold comprising the imprint of a wear part (1) with a predefined geometry of a zone to be reinforced (2); - introduction and positioning in said zone to be reinforced (2) of a compact mixture of powders in the form of millimetric granules of alumina, zirconia or alumina-zirconia at least partially surrounding one or more inserts (3) of defined geometry prefabricated products concentrated in micrometric particles of metal carbides, nitrides, borides or intermetallic compounds bound by a first metal matrix (10), - Casting of a ferrous alloy (6) in the mold, said liquid ferrous alloy infiltrating the three-dimensional structure comprising grains of alumina, zirconia or an alumina-zirconia alloy at least partially surrounding the inserts (3) prefabricated. Méthode de fabrication d'une pièce d'usure (1) selon la revendication 8 dans laquelle les inserts de géométrie prédéfinie (3) fabriqués préalablement à la coulée de ladite pièce d'usure, le sont par métallurgie des poudres.Method of manufacturing a wear part (1) according to claim 8, in which the inserts of predefined geometry (3) manufactured prior to the casting of said wear part, are produced by powder metallurgy. Pièce d'usure (1) selon l'une quelconque des revendications 1 à 7 réalisée sous forme d'un impacteur, une enclume, un cône ou un galet de broyage.Wear part (1) according to any one of claims 1 to 7, produced in the form of an impactor, an anvil, a cone or a grinding roller.
EP20177458.5A 2020-05-29 2020-05-29 Composite wear part Withdrawn EP3915684A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP20177458.5A EP3915684A1 (en) 2020-05-29 2020-05-29 Composite wear part
PCT/EP2021/057816 WO2021239295A1 (en) 2020-05-29 2021-03-25 Composite wear part
CA3185012A CA3185012A1 (en) 2020-05-29 2021-03-25 Composite wear part
PE2022002695A PE20231236A1 (en) 2020-05-29 2021-03-25 COMPOSITE WEAR PART
AU2021278584A AU2021278584A1 (en) 2020-05-29 2021-03-25 Composite wear part
CN202180038714.XA CN115867390A (en) 2020-05-29 2021-03-25 Composite wear part
EP21713434.5A EP4157538A1 (en) 2020-05-29 2021-03-25 Composite wear part
BR112022023593A BR112022023593A2 (en) 2020-05-29 2021-03-25 HIERARCHICAL WEAR PART AND METHOD FOR MANUFACTURING A WEAR PART
US18/000,245 US20230201920A1 (en) 2020-05-29 2021-03-25 Composite wear part
ZA2022/12082A ZA202212082B (en) 2020-05-29 2022-11-04 Composite wear part
CL2022003167A CL2022003167A1 (en) 2020-05-29 2022-11-14 Composite Wear Part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20177458.5A EP3915684A1 (en) 2020-05-29 2020-05-29 Composite wear part

Publications (1)

Publication Number Publication Date
EP3915684A1 true EP3915684A1 (en) 2021-12-01

Family

ID=70968769

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20177458.5A Withdrawn EP3915684A1 (en) 2020-05-29 2020-05-29 Composite wear part
EP21713434.5A Pending EP4157538A1 (en) 2020-05-29 2021-03-25 Composite wear part

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21713434.5A Pending EP4157538A1 (en) 2020-05-29 2021-03-25 Composite wear part

Country Status (10)

Country Link
US (1) US20230201920A1 (en)
EP (2) EP3915684A1 (en)
CN (1) CN115867390A (en)
AU (1) AU2021278584A1 (en)
BR (1) BR112022023593A2 (en)
CA (1) CA3185012A1 (en)
CL (1) CL2022003167A1 (en)
PE (1) PE20231236A1 (en)
WO (1) WO2021239295A1 (en)
ZA (1) ZA202212082B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575685A1 (en) 1992-06-23 1993-12-29 Sulzer Innotec Ag Investment casting with wear surfaces
WO1998015373A1 (en) 1996-10-01 1998-04-16 Hubert Francois Composite wear part
US20030213861A1 (en) * 2002-05-15 2003-11-20 Condon Gary J. Crusher wear components
WO2011008439A2 (en) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Reinforced roll and method of making same
US20110287238A1 (en) * 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2014125034A1 (en) * 2013-02-18 2014-08-21 Amincem S.A. Metal matrix composite useful as wear parts for cement and mining industries
WO2016008967A1 (en) 2014-07-16 2016-01-21 Magotteaux International S.A. Ceramic grains and method for their production
CN108348995A (en) * 2015-11-12 2018-07-31 伊诺科有限责任公司 Method for manufacturing the powder composition of casting inserts, casting inserts and obtain local recombination region in casting

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0575685A1 (en) 1992-06-23 1993-12-29 Sulzer Innotec Ag Investment casting with wear surfaces
WO1998015373A1 (en) 1996-10-01 1998-04-16 Hubert Francois Composite wear part
US20030213861A1 (en) * 2002-05-15 2003-11-20 Condon Gary J. Crusher wear components
WO2011008439A2 (en) * 2009-07-14 2011-01-20 Tdy Industries, Inc. Reinforced roll and method of making same
US20110287238A1 (en) * 2010-05-20 2011-11-24 Baker Hughes Incorporated Methods of forming at least a portion of earth-boring tools, and articles formed by such methods
WO2014125034A1 (en) * 2013-02-18 2014-08-21 Amincem S.A. Metal matrix composite useful as wear parts for cement and mining industries
WO2016008967A1 (en) 2014-07-16 2016-01-21 Magotteaux International S.A. Ceramic grains and method for their production
CN108348995A (en) * 2015-11-12 2018-07-31 伊诺科有限责任公司 Method for manufacturing the powder composition of casting inserts, casting inserts and obtain local recombination region in casting

Also Published As

Publication number Publication date
ZA202212082B (en) 2024-04-24
CL2022003167A1 (en) 2023-01-13
CN115867390A (en) 2023-03-28
PE20231236A1 (en) 2023-08-21
AU2021278584A1 (en) 2022-12-08
CA3185012A1 (en) 2021-12-02
EP4157538A1 (en) 2023-04-05
US20230201920A1 (en) 2023-06-29
WO2021239295A1 (en) 2021-12-02
BR112022023593A2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
EP1450973B1 (en) Cast part with enhanced wear resistance
EP2323770B1 (en) Composite impactor for impact crusher
EP2329052B1 (en) Composite tooth for working the ground or rock
BE1018128A3 (en) GRINDING CONE FOR COMPRESSION CRUSHER.
EP2334836B9 (en) Hierarchical composite material
US12123177B2 (en) Composite tooth with frustoconical insert
EP3915699A1 (en) Ceramic-metal composite wear part
EP3915684A1 (en) Composite wear part
EP3969206B1 (en) Composite wear part
EP1393840B1 (en) Method of producing wear resistant parts
CN115835924A (en) Crushing or wearing part with local composite wearing area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20201027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220602