[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3985151B1 - Spinning preparation machine - Google Patents

Spinning preparation machine Download PDF

Info

Publication number
EP3985151B1
EP3985151B1 EP21201354.4A EP21201354A EP3985151B1 EP 3985151 B1 EP3985151 B1 EP 3985151B1 EP 21201354 A EP21201354 A EP 21201354A EP 3985151 B1 EP3985151 B1 EP 3985151B1
Authority
EP
European Patent Office
Prior art keywords
preparation machine
spinning preparation
perforated element
transport air
air outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21201354.4A
Other languages
German (de)
French (fr)
Other versions
EP3985151A1 (en
Inventor
Alexis HIRT
Tobias WOLFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIETER AG
Original Assignee
Rieter Ag
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Ag, Maschinenfabrik Rieter AG filed Critical Rieter Ag
Publication of EP3985151A1 publication Critical patent/EP3985151A1/en
Application granted granted Critical
Publication of EP3985151B1 publication Critical patent/EP3985151B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01GPRELIMINARY TREATMENT OF FIBRES, e.g. FOR SPINNING
    • D01G13/00Mixing, e.g. blending, fibres; Mixing non-fibrous materials with fibres

Definitions

  • the invention relates to a spinning preparation machine for mixing fibers, with a removal device for removing the fibers from the spinning preparation machine and with a filling device for filling the spinning preparation machine with fibers.
  • the spinning preparation machine is designed as a shaft mixer with at least two mixing chambers, wherein the filling device has a fiber material inlet and a transport air outlet with a transport air outlet channel and a distribution channel guided from the fiber material inlet to the transport air outlet via the at least two mixing chambers.
  • a fiber preparation plant in a spinning mill delivered fibers or fiber flakes are prepared for use in a spinning machine.
  • the fibers to be prepared for spinning go through several processing stages. In a first stage, the fibers are separated from fiber bales in the form of fiber flakes. So-called bale openers are usually used for this. These fiber flakes are removed from the bale opener via a pneumatic flake conveyor and, for example, taken to a subsequent cleaning machine.
  • the fiber flakes are usually conveyed into a mixer, which ensures that the fiber flakes are mixed through various shafts, for example.
  • the fibers are then removed from the mixer using a removal device, for example using a needle-lattice cloth, and transported further.
  • DE 37 13 5902 A1 discloses a mixer with several filling shafts. The filling shafts are filled simultaneously via the pneumatic transport system. By controlling the removal devices of the individual shafts, the fiber material is mixed thoroughly.
  • the EP 0 874 070 A1 a shaft mixer with several shafts.
  • the fiber material is distributed to the various shafts or chambers of the mixer by means of a pneumatic conveyor with the help of transport air.
  • the transport air is discharged from the chambers into an exhaust air duct via air-permeable side walls.
  • the shaft mixer is divided into various shafts, which are open at the top and are connected to the pneumatic conveyor line.
  • the incoming fiber flakes are evenly distributed to the various shafts via a distributor.
  • the shafts After the distributor, the shafts initially extend vertically before making a 90° bend, so that the shafts or their flake fillings now extend horizontally. Their horizontal extension ends in front of a ladder cloth, which passes all shafts, essentially in a vertical direction from bottom to top, and removes the fibers.
  • the mixer as a shaft mixer, the fibers are mixed thoroughly due to the different lengths of the shafts, i.e. the distances that the fibers have to travel, as the fibers fed to the mixer at different times and therefore from different bales are simultaneously removed from the different shafts by the removal device. This design of shaft mixers has proven itself.
  • the object of the invention is therefore to create a device which provides a simple separation of fiber material and transport air and at the same time avoids a different influence of the various filling levels of the shafts of the mixer by a shaft-by-shaft separation of the transport air from the fibers.
  • a novel spinning preparation machine for mixing fibers proposed with a removal device for removing the fibers from the spinning preparation machine and with a filling device for filling the spinning preparation machine with fibers.
  • the spinning preparation machine is designed as a shaft mixer with at least two shafts, wherein the filling device has a fiber material inlet and a transport air outlet with a transport air outlet channel and a distribution channel led from the fiber material inlet to the transport air outlet via the at least two shafts.
  • the distribution channel is separated from the transport air outlet by a perforated element.
  • the perforated element is designed with a convex shape seen in the direction of the transport air outlet.
  • a transport channel is provided as a filling device through which the fiber material is brought into the distribution channel with transport air as a fiber-air mixture.
  • the distribution channel is kept open towards the shafts. Due to the flow guided through the fiber material inlet, the transport air follows the distribution channel to the transport air outlet.
  • the transport air outlet is arranged on a side opposite the fiber material inlet so that the fiber-air mixture passes over the shafts. The fibers or fiber flakes fall down into the shafts.
  • the perforated element is installed as a curved element to separate the fiber material from the transport air and thus separates the distribution channel from the transport air outlet channel. The transport air passes through the perforation into the transport air outlet channel while the fiber material is held back.
  • the convex shape of the perforated element causes the fiber-air mixture to accelerate in the upper area of the distribution channel in front of the perforated element, which contributes to automatic cleaning of the perforated element. It has also been shown that the flows created in the distribution channel by the arrangement and shape of the perforated element, as well as the resulting pressure conditions in the individual shafts, are conducive to an even distribution of the incoming fibers into the shafts.
  • the positioning of the transport air outlet channel or the fiber material inlet in relation to the machine's longitudinal axis is not important.
  • the transport air outlet channel and the fiber material inlet can be provided either at the front or at the rear of the machine. This means that The machine can be ideally integrated into an existing fiber preparation plant in a spinning mill.
  • the fibers pass through the individual shafts and are mixed by a deflection and with the help of the removal device.
  • the principle of first vertical and then horizontal flow through the shafts before they reach the removal device is known from the state of the art.
  • a needle slat cloth can be used as an ascending conveyor as the removal device, which on the one hand removes the fibers from the various shafts and on the other hand transports the removed fibers to a fiber material outlet.
  • the shafts are advantageously surrounded by airtight shaft walls. Because the separation of the transport air from the fibers is concentrated on the transition from the distribution channel to the transport air outlet channel and does not occur in an uncontrolled manner via individual shaft walls, it is possible to fill the shafts evenly under constant flow and pressure conditions.
  • the distribution channel is surrounded on at least three sides by air-tight channel walls. Attempts in earlier designs to separate part of the transport air to the side of the distribution channel according to the distance traveled have proven to be disruptive. This is also due to the fact that the fiber-air mixture is not homogeneous and the load of the transport air with fiber material is subject to constant fluctuations. The risk of clogging of the air-permeable elements is also minimized, in particular due to the predictable flow and pressure conditions with a central separation of transport air and fibers. Due to the prevailing flow conditions and the pressure conditions in the shafts, the shafts are filled evenly even without corresponding guide elements such as flaps or sheets in the distribution channel.
  • the convex shape of the perforated element is formed from a series of flat sieve elements.
  • this is made by a series of flat sieve elements.
  • the individual sieve elements are joined together in such a way that that an overall convex shape of the perforated element is created.
  • the individual sieve elements have a corresponding perforation and are connected to one another, for example, by welding, gluing or screwing.
  • the perforated element can be formed from a flat sheet of metal using a corresponding bending process or by forming bending edges between the sieve elements. The bending edges are to be viewed as the boundary of the individual sieve elements.
  • the production of the perforated element can be simplified compared to production by rolling a sheet of metal to a large diameter and is more cost-effective.
  • a segment-by-segment construction of the convex perforated element has no decisive influence on the functioning of the perforated element or the flow conditions, provided the perforated element is made up of more than three sieve elements.
  • the convex shape preferably corresponds to a circular arc with a radius in a range from 200 mm to 1,000 mm, particularly preferably in a range from 400 mm to 800 mm.
  • the size of the radius to be selected depends on the size of the spinning preparation machine.
  • the perforated element preferably has a perforation of 20% to 50%. This means that at least 20%, but not more than 50% of the surface is perforated, i.e. there is between 0.2 cm 2 and 0.5 cm 2 of free passage in the perforated element per cm 2 of area. Too much perforation would result in good fibers passing through the holes or becoming caught in the holes and causing snags.
  • the perforated element is divided into at least two areas, wherein the areas have different perforations.
  • an upper half of the perforated element with a perforation of 28% and a lower Half of the perforated element is designed with a perforation of 21%. Due to the resulting flow conditions, the differential pressure can be evened out across the perforated element and the transport air is separated more evenly across the cross section of the perforated element.
  • This type of design of the perforated element is facilitated by a construction with sieve elements arranged in a row. More than two areas with different perforations are also conceivable. The individual sieve elements can easily be provided with different perforations.
  • the convex perforated element extends over an angle of more than 90 degrees. This increases the screen surface and also improves the flow conditions.
  • the flow conditions in front of the perforated element are also influenced in such a way that no or only a small amount of transport air is diverted from the distribution channel through the convex shape of the perforated element into the last shaft in front of the perforated element.
  • a cover element for setting a negative pressure in the transport air outlet channel is provided on a side of the perforated element facing the transport air outlet.
  • the cover element can be designed as a filter cloth or as a cover plate.
  • the perforation in the perforated element is formed by round or square openings with a cross-section of less than 0.1 cm 2.
  • the small cross-sectional size of the individual openings of the perforation prevents or at least It is strongly restricted that good fibres pass through the perforated element into the transport air outlet channel.
  • the perforated element is made of metal.
  • the perforated element is made of plastic. If the perforated element is made of metal, a small thickness, for example less than 1 mm, can be selected, which in turn leads to better cleaning by the flow passing over the perforated element due to the low edge height of the passages.
  • a perforated element made of plastic with sufficiently high stability and strength can also be used.
  • an air guide element is provided in the distribution channel above a shaft partition between two shafts.
  • the air guide element is designed as the upper end of the shaft partition.
  • the air guide element briefly accelerates the flow from the fiber material inlet to the transport air outlet, which leads to an improvement in the distribution of the fiber material to the shafts.
  • the air guide element is advantageously provided with a convex end in its shape against the distribution channel in order to prevent fibers from sticking.
  • the transport air outlet channel has a larger cross-section than the perforated element.
  • the transport air outlet channel is arranged in the shape of a hood around the perforated element at a certain distance.
  • the distance between a wall of the transport air outlet channel and the perforated element is preferably greater than 100 mm. This calms the flow and promotes a more even passage of the transport air through the perforated element.
  • a maintenance opening is preferably provided in the transport air outlet channel in order to be able to check the condition of the perforated element and, if necessary, to clean the transport air outlet channel. At least part of the maintenance opening is advantageously designed to be transparent.
  • the transport air outlet channel advantageously has a first section and a second section adjoining the first section, with the first section being guided along the perforated element and the second section being guided away from the perforated element.
  • the first section of the transport air outlet channel is adapted in its design to the convex perforated element so that an arc-shaped channel is created.
  • the transport air flowing through the perforated element into the first section of the transport air outlet channel is subsequently diverted and guided along the perforated element and reaches the second section of the transport air outlet channel at the end of the perforated element.
  • the first section and the second section of the transport air outlet channel are designed in their cross-section such that the transport air reaches a minimum speed of 12 m/s.
  • the value for the speed of the transport air in the transport air outlet channel is selected such that the dust that accumulates and the fiber residues that enter the transport air outlet channel through the perforation are entrained by the transport air. This can prevent an accumulation of dust and fiber residues in the transport air outlet channel.
  • a maintenance opening is preferably provided between the first section and the second section.
  • FIG 1 shows a schematic representation of a spinning preparation machine 1 according to the invention and Figure 2 a schematic representation of a section at point XX according to Figure 1 .
  • Shown is a spinning preparation machine 1 in the design of a shaft mixer with four shafts 2 to 5.
  • the individual shafts 2 to 5 are separated from one another by shaft partitions 17 to 19, with the separation being provided over the entire width B, but not over the entire height H of the shaft mixer.
  • the shafts 2 to 5 are provided as shafts 2 to 5 that are open at the top and bottom and are delimited on four sides.
  • the shaft 4 is delimited by the shaft partitions 17 and 18 and the shaft outer walls 19 and 20.
  • each shaft partition 17 to 19 a shaft partition end piece 20 is provided which directly connects to the shaft partition 17 to 19.
  • the shaft partition end piece 20 serves to redirect the fiber flow which slides downwards through the shafts 2 to 5 from a vertical to a horizontal movement.
  • the fiber material is introduced into the spinning preparation machine 1 in the form of a fiber-air mixture 7 through the fiber material inlet 6 with the aid of transport air 10 and is guided through a distribution channel 11 via the shafts 2 to 5 to the transport air outlet channel 9.
  • the distribution channel 11 is limited on three sides by an upper distribution channel wall 14 and two lateral distribution channel walls 15 and 16.
  • the distribution channel 11 is open opposite the shafts 2 to 5.
  • this demarcation of the distribution channel 11 is shown with the channel course 12 as an auxiliary line.
  • a perforated element 13 is inserted in the transition from the distribution channel 11 to the transport air outlet channel 9.
  • the perforated element 13 separates the distribution channel 9 from the transport air outlet channel 9. This separates the transport air 10 from the fiber material.
  • the perforated element 13 has a convex shape with a radius R when viewed in the direction from the fiber material inlet 6 to the transport air outlet 8.
  • air guide elements 21 are mounted above the shaft partition walls 17 to 19.
  • the transport air 10 is discharged from the transport air outlet channel 9 via the transport air outlet 8.
  • the transport air outlet channel 9 is designed in such a way that it hood-shaped around the perforated element 13 and is arranged with its walls at a distance A from the perforated element 13. This shape enables the transport air 10 to pass unhindered through the perforated element 13.
  • the fiber material is mixed by the deflection of the fiber material in the individual shafts 2 to 5 and the subsequent horizontal transport with the aid of the conveyor belt 24 to the removal device 25 as well as the in turn rising transport within the removal device 25.
  • the removal device 25 in the embodiment shown is formed by a rising slat cloth and a discharge roller.
  • the mixed fiber material is transferred from the removal device 25 into an outlet channel 26 which leads to the fiber material outlet 27.
  • Figure 3 shows a first embodiment of a perforated element 13 which is composed of a plurality of individual sieve elements 28.
  • the sieve elements 28 are designed as flat sieve surfaces provided with a perforation 30.
  • the perforation 30 is in Figure 3 shown schematically and extends evenly over all sieve elements 28 of the perforated element 13.
  • the sieve elements 28 are arranged one behind the other in such a way that a convex element 13 is formed in a circular arc with a radius R.
  • Figure 4 shows a second embodiment of a perforated element 13 which is also composed of individual sieve elements 28 arranged one behind the other.
  • the perforated element 13 is divided into two areas 29 and 31, whereby a first area 29 is designed with a perforation 30 which differs from the perforation 32 in the second area 31.
  • the perforation 30 in the first area 29 is larger than the perforation 32 in the second area 31. This results in a more even flow through the perforated element 13 over its entire length.
  • the perforations 30 and 32 are in Figure 4 shown schematically and extend evenly over the corresponding sieve elements 28 of the areas 29 and 31 of the perforated element 13.
  • the convex perforated element 13 extends over an angle ⁇ of more than 90 degrees. Due to the increased arc length of more than 90 degrees results in a better discharge of the transport air through the perforated element 13.
  • Figure 5 shows a schematic representation of a cross section of another embodiment of the transport air outlet channel 9.
  • the perforated element 13 is shown as a circular arc with a radius R and an angle ⁇ of more than 90 degrees.
  • the transport air outlet channel 9 consists of Figure 5 from a first section 35 which is arranged behind the perforated element 13 and a second section 36 following the first section 35 which brings the transport air 10 to the transport air outlet 8.
  • Arrows show the flow 33 of the transport air 10 guided through the perforated element 13 into a first section 35 of the transport air outlet channel 9 and from the first section 35 into the second section 36.
  • the transport air outlet 8 is shown as a flange by way of example.
  • a maintenance opening 34 is shown between the sections 35 and 36 of the transport air outlet channel 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

Die Erfindung betrifft eine Spinnereivorbereitungsmaschine zum Mischen von Fasern, mit einer Entnahmevorrichtung zum Entnehmen der Fasern aus der Spinnereivorbereitungsmaschine und mit einer Befüllvorrichtung zur Befüllung der Spinnereivorbereitungsmaschine mit Fasern. Die Spinnereivorbereitungsmaschine ist als Schachtmischer mit mindestens zwei Mischkammern ausgebildet, wobei die Befüllvorrichtung einen Faserguteintritt und einen Transportluftaustritt mit einem Transportluftaustrittskanal und einen vom Faserguteintritt zum Transportluftaustritt über die mindestens zwei Mischkammern geführten Verteilkanal aufweistThe invention relates to a spinning preparation machine for mixing fibers, with a removal device for removing the fibers from the spinning preparation machine and with a filling device for filling the spinning preparation machine with fibers. The spinning preparation machine is designed as a shaft mixer with at least two mixing chambers, wherein the filling device has a fiber material inlet and a transport air outlet with a transport air outlet channel and a distribution channel guided from the fiber material inlet to the transport air outlet via the at least two mixing chambers.

In einer Faservorbereitungsanlage in einer Spinnerei werden angelieferte Fasern respektive Faserflocken für die Verwendung in einer Spinnmaschine vorbereitet. In einer Faservorbereitungsanlage durchlaufen die für die Spinnerei vorzubereitenden Fasern mehrere Verarbeitungsstufen. In einer ersten Stufe werden die Fasern in Form von Faserflocken aus Faserballen herausgelöst. Hierfür finden meist sogenannte Ballenöffner Verwendung. Über eine pneumatische Flockenförderung werden diese Faserflocken aus dem Ballenöffner herausgebracht und beispielsweise an eine nachfolgende Reinigungsmaschine verbracht.In a fiber preparation plant in a spinning mill, delivered fibers or fiber flakes are prepared for use in a spinning machine. In a fiber preparation plant, the fibers to be prepared for spinning go through several processing stages. In a first stage, the fibers are separated from fiber bales in the form of fiber flakes. So-called bale openers are usually used for this. These fiber flakes are removed from the bale opener via a pneumatic flake conveyor and, for example, taken to a subsequent cleaning machine.

Nach der Reinigungsmaschine werden die Faserflocken in der Regel in einen Mischer gefördert, der beispielsweise über verschiedene Schächte für eine Durchmischung der Faserflocken sorgt. Die Fasern werden dem Mischer anschliessend über eine Entnahmevorrichtung, beispielsweise mittels eines Nadellattentuchs entnommen und weitertransportiert. Die DE 37 13 5902 A1 offenbart einen Mischer mit mehreren Füllschächten. Dabei werden die Füllschächte über das pneumatische Transportsystem gleichzeitig befüllt. Durch eine Steuerung der Entnahmevorrichtungen der einzelnen Schächte wird eine Durchmischung des Fasergutes erreicht.After the cleaning machine, the fiber flakes are usually conveyed into a mixer, which ensures that the fiber flakes are mixed through various shafts, for example. The fibers are then removed from the mixer using a removal device, for example using a needle-lattice cloth, and transported further. DE 37 13 5902 A1 discloses a mixer with several filling shafts. The filling shafts are filled simultaneously via the pneumatic transport system. By controlling the removal devices of the individual shafts, the fiber material is mixed thoroughly.

Weiter offenbart die EP 0 874 070 A1 einen Schachtmischer mit mehreren Schächten. Das Fasergut wird mit einer pneumatischen Förderung mit Hilfe von Transportluft auf die verschiedenen Schächte respektive Kammern des Mischers verteilt. Die Transportluft wird über luftdurchlässige Seitenwände aus den Kammern in einen Abluftkanal abgeleitet.The EP 0 874 070 A1 a shaft mixer with several shafts. The fiber material is distributed to the various shafts or chambers of the mixer by means of a pneumatic conveyor with the help of transport air. The transport air is discharged from the chambers into an exhaust air duct via air-permeable side walls.

Der Schachtmischer ist in verschiedene Schächte unterteilt, die an ihrer Oberseite offen sind und an die pneumatische Förderleitung angeschlossen sind. Über einen Verteiler werden die ankommenden Faserflocken gleichmässig auf die verschiedenen Schächte verteilt. Nach dem Verteiler erstrecken sich die Schächte zunächst in vertikaler Richtung, bevor sie eine 90°-Biegung machen, so dass sich die Schächte bzw. deren Flockenfüllungen nunmehr in horizontaler Richtung erstrecken. Ihre horizontale Erstreckung endet vor einem Steiglattentuch, das an allen Schächten, im Wesentlichen in vertikaler Richtung von unten nach oben vorbeistreicht und die Fasern entnimmt. Durch diese Ausbildung des Mischers als Schachtmischer wird erreicht, dass bedingt durch die verschiedenen Längen der Schächte, das heisst also Weglängen, die die Fasern zurücklegen müssen die Durchmischung der Fasern erfolgt, indem die zu anderen Zeiten und damit von anderen Ballen dem Mischer zugeführten Fasern gleichzeitig durch die Entnahmevorrichtung aus den verschiedenen Schächten entnommen werden. Diese Bauweise von Schachtmischern hat sich bewährt.The shaft mixer is divided into various shafts, which are open at the top and are connected to the pneumatic conveyor line. The incoming fiber flakes are evenly distributed to the various shafts via a distributor. After the distributor, the shafts initially extend vertically before making a 90° bend, so that the shafts or their flake fillings now extend horizontally. Their horizontal extension ends in front of a ladder cloth, which passes all shafts, essentially in a vertical direction from bottom to top, and removes the fibers. By designing the mixer as a shaft mixer, the fibers are mixed thoroughly due to the different lengths of the shafts, i.e. the distances that the fibers have to travel, as the fibers fed to the mixer at different times and therefore from different bales are simultaneously removed from the different shafts by the removal device. This design of shaft mixers has proven itself.

Nachteilig an dieser Bauweise ist, dass eine Trennung des Fasergutes von der Transportluft aufwändig ist. Jede Kammer respektive jeder Schacht ist mit einer luftdurchlässigen Wand versehen, was auch ein mehrfaches Risiko von Verstopfungen ergibt. Während des Betriebes verändert sich die Luftdurchlässigkeit der einzelnen Trennwände, wodurch eine unterschiedliche Befüllung der Schächte aufgrund der Druckverhältnisse entstehen kann, welche durch eine entsprechende Regelung der Verteilung korrigiert werden muss.The disadvantage of this design is that separating the fiber material from the transport air is complex. Each chamber or shaft is provided with an air-permeable wall, which also results in a multiple risk of blockages. During operation, the air permeability of the individual partition walls changes, which can lead to different filling of the shafts due to the pressure conditions, which must be corrected by appropriate control of the distribution.

Eine weitere Spinnereivorbereitungsmaschine zum Mischen von Fasern ist in DE 41 11 894 A1 offenbart.Another spinning preparation machine for blending fibers is in DE 41 11 894 A1 revealed.

Die Aufgabe der Erfindung ist es demnach eine Vorrichtung zu schaffen, welche eine einfache Trennung von Fasergut und Transportluft vorsieht und dabei eine unterschiedliche Beeinflussung der verschiedenen Füllstande der Schächte des Mischers durch eine schachtweise Trennung der Transportluft von den Fasern vermeidet.The object of the invention is therefore to create a device which provides a simple separation of fiber material and transport air and at the same time avoids a different influence of the various filling levels of the shafts of the mixer by a shaft-by-shaft separation of the transport air from the fibers.

Die Aufgabe wird gelöst durch eine Vorrichtung mit den Merkmalen des unabhängigen Anspruchs. Zur Lösung der Aufgabe wird eine neuartige Spinnereivorbereitungsmaschine zum Mischen von Fasern vorgeschlagen mit einer Entnahmevorrichtung zum Entnehmen der Fasern aus der Spinnereivorbereitungsmaschine und mit einer Befüllvorrichtung zur Befüllung der Spinnereivorbereitungsmaschine mit Fasern. Die Spinnereivorbereitungsmaschine ist als Schachtmischer mit mindestens zwei Schächten ausgebildet ist, wobei die Befüllvorrichtung einen Faserguteintritt und einen Transportluftaustritt mit einem Transportluftaustrittskanal und einen vom Faserguteintritt zum Transportluftaustritt über die mindestens zwei Schächte geführten Verteilkanal aufweist. Der Verteilkanal ist vom Transportluftaustritt durch ein perforiertes Element getrennt. Das perforierte Element ist mit einer in Richtung des Transportluftaustritts gesehenen konvexen Form ausgebildet.The problem is solved by a device having the features of the independent claim. To solve the problem, a novel spinning preparation machine is for mixing fibers proposed with a removal device for removing the fibers from the spinning preparation machine and with a filling device for filling the spinning preparation machine with fibers. The spinning preparation machine is designed as a shaft mixer with at least two shafts, wherein the filling device has a fiber material inlet and a transport air outlet with a transport air outlet channel and a distribution channel led from the fiber material inlet to the transport air outlet via the at least two shafts. The distribution channel is separated from the transport air outlet by a perforated element. The perforated element is designed with a convex shape seen in the direction of the transport air outlet.

Als Befüllvorrichtung ist ein Transportkanal vorgesehen durch welchen das Fasergut mit Transportluft als Faser-Luft-Gemisch in den Verteilkanal gebracht wird. Der Verteilkanal ist gegen die Schächte offen gehalten. Aufgrund der durch den Faserguteintritt geleiteten Strömung folgt die Transportluft dem Verteilkanal zum Transportluftaustritt. Der Transportluftaustritt ist auf einer dem Faserguteintritt gegenüberliegenden Seite angeordnet, sodass das Faser-Luft-Gemisch die Schächte überstreicht. Dabei fallen die Fasern respektive die Faserflocken nach unten in die Schächte. Am Ende des Verteilkanals ist zur Trennung des Fasergutes von der Transportluft das perforierte Element als gebogenes Element eingebaut und trennt damit den Verteilkanal vom Transportluftaustrittskanal. Die Transportluft gelangt durch die Perforation in den Transportluftaustrittskanal währenddessen das Fasergut aufgehalten wird. Durch die konvexe Ausformung des perforierten Elements stellt sich im oberen Bereich des Verteilkanals vor dem perforierten Element eine Beschleunigung des Faser-Luft-Gemisches ein, was zu einer automatischen Reinigung des perforierten Elements beiträgt. Es hat sich auch gezeigt, dass die im Verteilkanal durch die Anordnung und Ausformung des perforierten Elements entstehenden Strömungen wie auch die dadurch bedingten Druckverhältnisse in den einzelnen Schächten für eine gleichmässige Verteilung der eintretenden Fasern in die Schächte förderlich ist. Dabei spielt die Positionierung des Transportluftaustrittskanals respektive des Faserguteintritts in Bezug auf die Maschinenlängsachse keine Rolle. Der Transportluftaustrittskanal wie auch der Faserguteintritt kann sowohl an der Maschinenvorderseite wie auch an der Maschinenhinterseite vorgesehen werden. Dadurch kenn die Maschine ideal in eine bestehende Faservorbereitungsanlage einer Spinnerei eingefügt werden.A transport channel is provided as a filling device through which the fiber material is brought into the distribution channel with transport air as a fiber-air mixture. The distribution channel is kept open towards the shafts. Due to the flow guided through the fiber material inlet, the transport air follows the distribution channel to the transport air outlet. The transport air outlet is arranged on a side opposite the fiber material inlet so that the fiber-air mixture passes over the shafts. The fibers or fiber flakes fall down into the shafts. At the end of the distribution channel, the perforated element is installed as a curved element to separate the fiber material from the transport air and thus separates the distribution channel from the transport air outlet channel. The transport air passes through the perforation into the transport air outlet channel while the fiber material is held back. The convex shape of the perforated element causes the fiber-air mixture to accelerate in the upper area of the distribution channel in front of the perforated element, which contributes to automatic cleaning of the perforated element. It has also been shown that the flows created in the distribution channel by the arrangement and shape of the perforated element, as well as the resulting pressure conditions in the individual shafts, are conducive to an even distribution of the incoming fibers into the shafts. The positioning of the transport air outlet channel or the fiber material inlet in relation to the machine's longitudinal axis is not important. The transport air outlet channel and the fiber material inlet can be provided either at the front or at the rear of the machine. This means that The machine can be ideally integrated into an existing fiber preparation plant in a spinning mill.

Die Fasern durchlaufen die einzelnen Schächte und werden durch eine Umlenkung und mit Hilfe der Entnahmevorrichtung gemischt. Das Prinzip der zuerst senkrechten und anschliessend waagrechten Durchströmung der Schächte bevor diese die Entnahmevorrichtung erreichen ist aus dem Stand der Technik bekannt. Als Entnahmevorrichtung kann beispielsweise ein Nadellattentuch als Steigförderer eingesetzt werden, welches einerseits die Fasern aus den verschiedenen Schächten abträgt und andrerseits die abgetragenen Fasern in einen Fasergutaustritt befördert.The fibers pass through the individual shafts and are mixed by a deflection and with the help of the removal device. The principle of first vertical and then horizontal flow through the shafts before they reach the removal device is known from the state of the art. For example, a needle slat cloth can be used as an ascending conveyor as the removal device, which on the one hand removes the fibers from the various shafts and on the other hand transports the removed fibers to a fiber material outlet.

Vorteilhafterweise sind die Schächte von luftundurchlässigen Schachtwänden umgeben. Dadurch, dass sich die Trennung der Transportluft von den Fasern auf den Übergang vom Verteilkanal zum Transportluftaustrittskanal konzentriert und nicht unkontrolliert über einzelne Schachtwände erfolgt, ist eine gleichmässige Befüllung der Schächte unter konstanten Strömungs- und Druckverhältnissen möglich.The shafts are advantageously surrounded by airtight shaft walls. Because the separation of the transport air from the fibers is concentrated on the transition from the distribution channel to the transport air outlet channel and does not occur in an uncontrolled manner via individual shaft walls, it is possible to fill the shafts evenly under constant flow and pressure conditions.

Ebenfalls von Vorteil ist es, wenn der Verteilkanal zumindest auf drei Seiten von luftundurchlässigen Kanalwänden umgeben ist. Bestrebungen bei früheren Konstruktionen seitlich des Verteilkanals entsprechend der zurückgelegten Strecke einen Teil der Transportluft abzuscheiden haben sich als störend erwiesen. Dies auch bedingt dadurch, dass das Faser-Luft-Gemisch nicht homogen ist und die Belastung der Transportluft mit Fasergut ständigen Schwankungen unterworfen ist. Auch wird das Risiko einer Verstopfung der luftdurchlässigen Elemente minimiert, insbesondere auch durch die vorhersehbaren Strömungs-und Druckverhältnisse bei einer zentralen Trennung von Tarnsportluft und Fasern. Bedingt durch die herrschenden Strömungsverhältnisse und die Druckverhältnisse in den Schächten werden auch ohne entsprechende Leitorgane wie Klappen oder Bleche im Verteilkanal die Schächte gleichmässig befüllt.It is also advantageous if the distribution channel is surrounded on at least three sides by air-tight channel walls. Attempts in earlier designs to separate part of the transport air to the side of the distribution channel according to the distance traveled have proven to be disruptive. This is also due to the fact that the fiber-air mixture is not homogeneous and the load of the transport air with fiber material is subject to constant fluctuations. The risk of clogging of the air-permeable elements is also minimized, in particular due to the predictable flow and pressure conditions with a central separation of transport air and fibers. Due to the prevailing flow conditions and the pressure conditions in the shafts, the shafts are filled evenly even without corresponding guide elements such as flaps or sheets in the distribution channel.

Bevorzugterweise ist die konvexe Form des perforierten Elements aus aneinandergereihten ebenen Siebelementen gebildet. Als Alternative zu einem kreisbogenförmig ausgebildeten perforierten Element ist dieses durch ein Aneinanderreihen von ebenen Siebelementen gefertigt. Die einzelnen Siebelemente werden derart aneinandergefügt, dass eine insgesamt konvexe Form des perforierten Elementes entsteht. Die einzelnen Siebelemente weisen eine entsprechende Perforierung auf und werden beispielsweise durch Schweissen, Kleben oder Schrauben miteinander verbunden. In einer alternativen Produktionsweise kann das perforierte Element aus einem flachen Blech durch einen entsprechenden Abkantungsprozess respektive durch die Bildung von Biegekanten zwischen den Siebelementen geformt werden. Dabei sind die Biegekanten als Begrenzung der einzelnen Siebelemente zu betrachten. Die Herstellung des perforierten Elements kann auf diese Weise gegenüber einer Herstellung durch Rollen eines Bleches zu einem grossen Durchmesser vereinfacht werden und ist kostengünstiger. Umso schmaler die einzelnen Siebelemente ausgebildet werden desto mehr nähert sich die Form der zusammengefügten oder zusammenhängenden Siebelemente einem Kreisbogensegment an. Auf die Funktionsweise des perforierten Elementes oder die Strömungsverhältnisse hat eine segmentweise Konstruktion des konvexen perforierten Elements keinen entscheidenden Einfluss sofern das perforierte Element aus mehr als drei Siebelementen aufgebaut wird.Preferably, the convex shape of the perforated element is formed from a series of flat sieve elements. As an alternative to a circularly arc-shaped perforated element, this is made by a series of flat sieve elements. The individual sieve elements are joined together in such a way that that an overall convex shape of the perforated element is created. The individual sieve elements have a corresponding perforation and are connected to one another, for example, by welding, gluing or screwing. In an alternative production method, the perforated element can be formed from a flat sheet of metal using a corresponding bending process or by forming bending edges between the sieve elements. The bending edges are to be viewed as the boundary of the individual sieve elements. In this way, the production of the perforated element can be simplified compared to production by rolling a sheet of metal to a large diameter and is more cost-effective. The narrower the individual sieve elements are, the more the shape of the joined or connected sieve elements approaches a circular arc segment. A segment-by-segment construction of the convex perforated element has no decisive influence on the functioning of the perforated element or the flow conditions, provided the perforated element is made up of more than three sieve elements.

Bevorzugterweise entspricht die konvexe Form einem Kreisbogen mit einem Radius in einem Bereich von 200 mm bis 1'000 mm, besonders bevorzugt in einem Bereich von 400 mm bis 800 mm. Die zu wählende Grösse des Radius ist dabei abhängig von der Baugrösse der Spinnereivorbereitungsmaschine. Eine derartige Ausbildung des perforierten Elements führt zu vorteilhaften Strömungsverhältnissen, welche verhindert, dass sich Fasern in der Perforierung festsetzen. Um eine gute Luftdurchlässigkeit zu erreichen und einen zu hohen Staudruck zu vermeiden weist das perforierte Element bevorzugterweise eine Perforation von 20% bis 50% auf. Dies bedeutet, dass mindestens 20%, jedoch nicht mehr als 50 % der Oberfläche perforiert sind, also im perforierten Element pro cm2 Fläche zwischen 0.2 cm2 und 0.5 cm2 freier Durchgang vorhanden ist. Eine zu hohe Perforation würde dazu führen, dass gute Fasern durch die Löcher gelangen oder sich in den Löchern verfangen und Anhängestellen bilden könnten.The convex shape preferably corresponds to a circular arc with a radius in a range from 200 mm to 1,000 mm, particularly preferably in a range from 400 mm to 800 mm. The size of the radius to be selected depends on the size of the spinning preparation machine. Such a design of the perforated element leads to advantageous flow conditions, which prevents fibers from becoming stuck in the perforation. In order to achieve good air permeability and to avoid excessive back pressure, the perforated element preferably has a perforation of 20% to 50%. This means that at least 20%, but not more than 50% of the surface is perforated, i.e. there is between 0.2 cm 2 and 0.5 cm 2 of free passage in the perforated element per cm 2 of area. Too much perforation would result in good fibers passing through the holes or becoming caught in the holes and causing snags.

Vorteilhafterweise ist das perforierte Element in zumindest zwei Bereiche aufgeteilt, wobei die Bereiche unterschiedliche Perforationen aufweisen. Beispielsweise werden eine obere Hälfte des perforierten Elements mit einer Perforation von 28% und eine untere Hälfte des perforierten Elements mit einer Perforation von 21% ausgeführt. Aufgrund der entstehenden Strömungsverhältnisse kann derart eine Vergleichmässigung des Differenzdruckes über das perforierte Element geschaffen werden und es erfolgt eine gleichmässigere Abscheidung der Transportluft über den Querschnitt des perforierten Elements. Begünstigt wird eine derartige Ausbildung des perforierten Elements bei einer Konstruktion durch aneinandergereihte Siebelemente. Es sind auch mehr als zwei Bereiche mit unterschiedlichen Perforationen denkbar. Die einzelnen Siebelemente können auf einfache Weise mit einer unterschiedlichen Perforation versehen werden.Advantageously, the perforated element is divided into at least two areas, wherein the areas have different perforations. For example, an upper half of the perforated element with a perforation of 28% and a lower Half of the perforated element is designed with a perforation of 21%. Due to the resulting flow conditions, the differential pressure can be evened out across the perforated element and the transport air is separated more evenly across the cross section of the perforated element. This type of design of the perforated element is facilitated by a construction with sieve elements arranged in a row. More than two areas with different perforations are also conceivable. The individual sieve elements can easily be provided with different perforations.

Von Vorteil ist es, wenn sich das konvexe perforierte Element über einen Winkel von mehr als 90 Winkelgraden erstreckt. Dadurch werden eine Vergrösserung der Siebfläche und auch eine Verbesserung der Strömungsverhältnisse erreicht. Auch werden die Strömungsverhältnisse vor dem perforierten Element derart beeinflusst, dass keine oder nur eine geringfügige Menge an Transportluft vom Verteilkanal durch die konvexe Form des perforierten Elements in den letzten Schacht vor dem perforierten Element abgeleitet wird.It is advantageous if the convex perforated element extends over an angle of more than 90 degrees. This increases the screen surface and also improves the flow conditions. The flow conditions in front of the perforated element are also influenced in such a way that no or only a small amount of transport air is diverted from the distribution channel through the convex shape of the perforated element into the last shaft in front of the perforated element.

In einer Weiterentwicklung der Erfindung ist auf einer dem Transportluftaustritt zugewandten Seite des perforierten Elements ein Abdeckelement zur Einstellung eines Unterdruckes im Transportluftaustrittskanal vorgesehen. Das Abdeckelement kann als Filtertuch oder als Abdeckblech ausgebildet sein. Durch eine gezielte teilweise Abdeckung der Perforation des perforierten Elementes werden die Druck- und Strömungsverhältnisse am perforierten Element beeinflusst und es kann ein gewünschter Differenzdruck über das perforierte Element eingestellt werden. Dadurch wird auch ein Luftdurchtritt durch das perforierte Element vergleichmässigt. Gleichzeigt wird die austretende Transportluft bei Verwendung eines Filtertuches frei gehalten von grösseren Staubmengen oder Faserteilen.In a further development of the invention, a cover element for setting a negative pressure in the transport air outlet channel is provided on a side of the perforated element facing the transport air outlet. The cover element can be designed as a filter cloth or as a cover plate. By selectively partially covering the perforation of the perforated element, the pressure and flow conditions on the perforated element are influenced and a desired differential pressure can be set across the perforated element. This also evens out the air flow through the perforated element. At the same time, the escaping transport air is kept free of large amounts of dust or fiber particles when a filter cloth is used.

Vorteilhafterweise ist im perforierten Element die Perforation durch runde oder eckige Öffnungen mit einem Querschnitt von weniger als 0.1 cm2 gebildet. Durch die geringe Querschnittsgrösse der einzelnen Öffnungen der Perforation wird verhindert oder zumindest stark eingeschränkt, dass Gutfasern durch das perforierte Element in den Transportluftaustrittskanal gelangen.Advantageously, the perforation in the perforated element is formed by round or square openings with a cross-section of less than 0.1 cm 2. The small cross-sectional size of the individual openings of the perforation prevents or at least It is strongly restricted that good fibres pass through the perforated element into the transport air outlet channel.

Bevorzugterweise ist das perforierte Element aus Metall gefertigt. Alternativ ist das perforierte Element aus Kunststoff gefertigt. Bei einer Fertigung des perforierten Elements aus Metall kann eine geringe Dicke, beispielsweise von weniger als 1 mm gewählt werden, was wiederum aufgrund einer geringen Kantenhöhe der Durchgänge zu einer besseren Abreinigung durch die über das perforierte Elemente hinweggeführte Strömung führt. Bei einer kleineren Dimension des Schachtmischers ist jedoch auch ein perforiertes Element aus Kunststoff mit einer genügend hohen Stabilität und Festigkeit einsetzbar.Preferably, the perforated element is made of metal. Alternatively, the perforated element is made of plastic. If the perforated element is made of metal, a small thickness, for example less than 1 mm, can be selected, which in turn leads to better cleaning by the flow passing over the perforated element due to the low edge height of the passages. However, if the shaft mixer is smaller, a perforated element made of plastic with sufficiently high stability and strength can also be used.

Bevorzugterweise ist im Verteilkanal jeweils oberhalb einer Schachttrennwand zwischen zwei Schächten ein Luftleitelement vorgesehen. Das Luftleitelement ist als oberer Abschluss der Schachttrennwand ausgeführt. Durch das Luftleitelement wird die Strömung vom Faserguteintritt zum Transportluftaustritt kurzzeitig beschleunigt was zu einer Verbesserung der Verteilung des Fasergutes auf die Schächte führt. Das Luftleitelement ist in seiner Ausformung gegen den Verteilkanal vorteilhafterweise mit einem konvexen Abschluss versehen um Anhaftungen von Fasern zu vermeiden.Preferably, an air guide element is provided in the distribution channel above a shaft partition between two shafts. The air guide element is designed as the upper end of the shaft partition. The air guide element briefly accelerates the flow from the fiber material inlet to the transport air outlet, which leads to an improvement in the distribution of the fiber material to the shafts. The air guide element is advantageously provided with a convex end in its shape against the distribution channel in order to prevent fibers from sticking.

Von Vorteil ist es wenn der Transportluftaustrittskanal einen grösseren Querschnitt als das perforierte Element aufweist. Der Transportluftaustrittskanal ist haubenförmig um das perforierte Element mit einem bestimmten Abstand angeordnet. Der Abstand zwischen einer Wandung des Transportluftaustrittskanals und dem perforierten Element ist bevorzugterweise grösser als 100 mm. Dadurch wird eine Beruhigung der Strömung erreicht und eine Vergleichmässigung des Luftdurchtritts der Transportluft durch das perforierte Element gefördert. Weiter ist bevorzugterweise eine Wartungsöffnung im Transportluftaustrittskanal vorgesehen um eine Kontrolle des Zustandes des perforierten Elements vornehmen und falls notwendig den Transportluftaustrittskanal reinigen zu können. Zumindest ein Teil der Wartungsöffnung ist vorteilhafterweise transparent ausgeführt.It is advantageous if the transport air outlet channel has a larger cross-section than the perforated element. The transport air outlet channel is arranged in the shape of a hood around the perforated element at a certain distance. The distance between a wall of the transport air outlet channel and the perforated element is preferably greater than 100 mm. This calms the flow and promotes a more even passage of the transport air through the perforated element. Furthermore, a maintenance opening is preferably provided in the transport air outlet channel in order to be able to check the condition of the perforated element and, if necessary, to clean the transport air outlet channel. At least part of the maintenance opening is advantageously designed to be transparent.

In einer Alternative zur haubenförmigen Ausführung des Transportluftaustrittskanals weist der Transportluftaustrittskanal vorteilhafterweise einen ersten Abschnitt und einen dem ersten Abschnitt anschliessenden zweiten Abschnitt auf, wobei der erste Abschnitt dem perforierten Element entlang und der zweite Abschnitt vom perforierten Element weg geführt ist. Der erste Abschnitt des Transportluftaustrittskanals ist in seiner Ausbildung dem konvexen perforierten Element angepasst sodass sich ein bogenförmiger Kanal ergibt. Die durch das perforierte Element in den ersten Abschnitt des Transportluftaustrittskanals einströmende Transportluft wird in der Folge umgelenkt und am perforierten Element entlang geführt und gelangt am Ende des perforierten Elements in den zweiten Abschnitt des Transportluftaustrittskanals.In an alternative to the hood-shaped design of the transport air outlet channel, the transport air outlet channel advantageously has a first section and a second section adjoining the first section, with the first section being guided along the perforated element and the second section being guided away from the perforated element. The first section of the transport air outlet channel is adapted in its design to the convex perforated element so that an arc-shaped channel is created. The transport air flowing through the perforated element into the first section of the transport air outlet channel is subsequently diverted and guided along the perforated element and reaches the second section of the transport air outlet channel at the end of the perforated element.

Besonders bevorzugt sind der erste Abschnitt und der zweite Abschnitt des Transportluftaustrittskanals in ihrem Querschnitt derart ausgebildet, dass die Transportluft eine Mindestgeschwindigkeit von 12 m/s erreicht. Der Wert für die Geschwindigkeit der Transportluft im Transportluftaustrittskanal ist derart gewählt, dass eine Mitnahme des anfallenden Staubes und der durch die Perforation in den Transportluftaustrittskanal gelangenden Faserreste durch die Transportluft mitgerissen werden. Dadurch kann eine Ansammlung von Staub und Faserresten im Transportluftaustrittskanal vermieden werden. Zur Inspektion und einer notwendigen Reinigung des Transportluftaustrittskanals ist bevorzugterweise zwischen dem ersten Abschnitt und dem zweiten Abschnitt eine Wartungsöffnung vorgesehen.Particularly preferably, the first section and the second section of the transport air outlet channel are designed in their cross-section such that the transport air reaches a minimum speed of 12 m/s. The value for the speed of the transport air in the transport air outlet channel is selected such that the dust that accumulates and the fiber residues that enter the transport air outlet channel through the perforation are entrained by the transport air. This can prevent an accumulation of dust and fiber residues in the transport air outlet channel. For inspection and any necessary cleaning of the transport air outlet channel, a maintenance opening is preferably provided between the first section and the second section.

Im Folgenden wird die Erfindung anhand von einer beispielhaften Ausführungsform erklärt und durch Zeichnungen näher erläutert. Es zeigen

Figur 1
eine schematische Darstellung einer Spinnereivorbereitungsmaschine;
Figur 2
eine schematische Darstellung eines Schnittes an der Stelle X-X nach Figur 1;
Figur 3
eine erste Ausführung eines perforierten Elements;
Figur 4
eine zweite Ausführung eines perforierten Elements und
Figur 5
eine schematische Darstellung eines Querschnitts einer weiteren Ausführung des Transportluftaustrittskanals.
In the following, the invention is explained using an exemplary embodiment and explained in more detail by drawings.
Figure 1
a schematic representation of a spinning preparation machine;
Figure 2
a schematic representation of a section at point XX according to Figure 1 ;
Figure 3
a first embodiment of a perforated element;
Figure 4
a second embodiment of a perforated element and
Figure 5
a schematic representation of a cross-section of another embodiment of the transport air outlet duct.

Figur 1 zeigt eine schematische Darstellung einer Spinnereivorbereitungsmaschine 1 nach der Erfindung und Figur 2 eine schematische Darstellung eines Schnittes an der Stelle X-X nach Figur 1. Gezeigt wird eine Spinnereivorbereitungsmaschine 1 in der Bauart eines Schachtmischers mit vier Schächten 2 bis 5. Die einzelnen Schächte 2 bis 5 sind durch Schachttrennwände 17 bis 19 voneinander getrennt, wobei die Trennung über die gesamte Breite B, nicht jedoch über die gesamte Höhe H des Schachtmischers vorgesehen ist. Die Schächte 2 bis 5 sind als oben und unten offene Schächte 2 bis 5 mit einer Begrenzung auf vier Seiten vorgesehen. Beispielsweise ist der Schacht 4 begrenzt durch die Schachttrennwände 17 und 18 sowie die Schachtaussenwände 19 und 20. Am unteren Ende einer jeweiligen Schachttrennwand 17 bis 19 ist ein Schachttrennwandendstück 20 vorgesehen welches unmittelbar an die Schachttrennwand 17 bis 19 anschliesst. Das Schachttrennwandendstück 20 dient dazu den Faserstrom welcher durch den Schacht 2 bis 5 nach unten gleitet von einer senkrechten in eine waagrechte Bewegung umzuleiten. Figure 1 shows a schematic representation of a spinning preparation machine 1 according to the invention and Figure 2 a schematic representation of a section at point XX according to Figure 1 . Shown is a spinning preparation machine 1 in the design of a shaft mixer with four shafts 2 to 5. The individual shafts 2 to 5 are separated from one another by shaft partitions 17 to 19, with the separation being provided over the entire width B, but not over the entire height H of the shaft mixer. The shafts 2 to 5 are provided as shafts 2 to 5 that are open at the top and bottom and are delimited on four sides. For example, the shaft 4 is delimited by the shaft partitions 17 and 18 and the shaft outer walls 19 and 20. At the lower end of each shaft partition 17 to 19, a shaft partition end piece 20 is provided which directly connects to the shaft partition 17 to 19. The shaft partition end piece 20 serves to redirect the fiber flow which slides downwards through the shafts 2 to 5 from a vertical to a horizontal movement.

Das Fasergut wird mit Hilfe von Transportluft 10 durch den Faserguteintritt 6 in Form eines Faserluftgemischs 7 in die Spinnereivorbereitungsmaschine 1 eingebracht und durch einen Verteilkanal 11 über die Schächte 2 bis 5 hinweg zum Transportluftaustrittskanal 9 geführt. Der Verteilkanal 11 ist dabei auf drei Seiten durch eine obere Verteilkanalwand 14 und zwei seitliche Verteilkanalwände 15 und 16 begrenzt. Gegenüber den Schächten 2 bis 5 ist der Verteilkanal 11 offen. In Figur 1 ist diese Abgrenzung des Verteilkanals 11 mit dem Kanalverlauf 12 als Hilfslinie angezeigt. Im Übergang vom Verteilkanal 11 zum Transportluftaustrittskanal 9 ist ein perforiertes Element 13 eingefügt. Das perforierte Element 13 trennt den Verteilkanal 9 vom Transportluftaustrittskanal 9. Dadurch wird die Transportluft 10 vom Fasergut getrennt. Das perforierte Element 13 weist eine in Richtung vom Faserguteintritt 6 zum Transportluftaustritt 8 gesehen konvexe Form mit einem Radius R auf. Zur Verbesserung der Strömung im Verteilkanal 11 sind jeweils oberhalb der Schachttrennwände 17 bis 19 Luftleitelemente 21 angebracht.The fiber material is introduced into the spinning preparation machine 1 in the form of a fiber-air mixture 7 through the fiber material inlet 6 with the aid of transport air 10 and is guided through a distribution channel 11 via the shafts 2 to 5 to the transport air outlet channel 9. The distribution channel 11 is limited on three sides by an upper distribution channel wall 14 and two lateral distribution channel walls 15 and 16. The distribution channel 11 is open opposite the shafts 2 to 5. In Figure 1 this demarcation of the distribution channel 11 is shown with the channel course 12 as an auxiliary line. A perforated element 13 is inserted in the transition from the distribution channel 11 to the transport air outlet channel 9. The perforated element 13 separates the distribution channel 9 from the transport air outlet channel 9. This separates the transport air 10 from the fiber material. The perforated element 13 has a convex shape with a radius R when viewed in the direction from the fiber material inlet 6 to the transport air outlet 8. To improve the flow in the distribution channel 11, air guide elements 21 are mounted above the shaft partition walls 17 to 19.

Die Transportluft 10 wird aus dem Transportluftaustrittskanal 9 über den Transportluftaustritt 8 abgeführt. Der Transportluftaustrittskanal 9 ist derart gestaltet, dass er sich haubenförmig um das perforierte Element 13 legt und dabei mit seinen Wandungen in einem Abstand A vom perforierten Element 13 angeordnet ist. Diese Formgebung ermöglicht einen ungehinderten Durchtritt der Transportluft 10 durch das perforierte Element 13.The transport air 10 is discharged from the transport air outlet channel 9 via the transport air outlet 8. The transport air outlet channel 9 is designed in such a way that it hood-shaped around the perforated element 13 and is arranged with its walls at a distance A from the perforated element 13. This shape enables the transport air 10 to pass unhindered through the perforated element 13.

Die Umlenkung des Fasergutes in den einzelnen Schächten 2 bis 5 und den anschliessenden waagrechten Transport mit Hilfe des Transportbandes 24 zur Entnahmevorrichtung 25 sowie den wiederum steigenden Transport innerhalb der Entnahmevorrichtung 25 wird das Fasergut durchmischt. Die Entnahmevorrichtung 25 im gezeigten Ausführungsbeispiel wird gebildet durch ein Steiglattentuch und einer Austragswalze. Das gemischte Fasergut wird von der Entnahmevorrichtung 25 in einen Austrittskanal 26 übergeben welcher zum Fasergutaustritt 27 führt.The fiber material is mixed by the deflection of the fiber material in the individual shafts 2 to 5 and the subsequent horizontal transport with the aid of the conveyor belt 24 to the removal device 25 as well as the in turn rising transport within the removal device 25. The removal device 25 in the embodiment shown is formed by a rising slat cloth and a discharge roller. The mixed fiber material is transferred from the removal device 25 into an outlet channel 26 which leads to the fiber material outlet 27.

Figur 3 zeigt eine erste Ausführung eines perforierten Elements 13 welches aus einer Mehrzahl an einzelnen Siebelementen 28 zusammengesetzt ist. Die Siebelemente 28 sind als ebene mit einer Perforation 30 versehene Siebflächen ausgebildet. Die Perforation 30 ist in Figur 3 schematisch dargestellt und erstreckt sich gleichmässig über alle Siebelemente 28 des perforierten Elements 13. Die Siebelemente 28 sind derart hintereinander angeordnet, dass sich ein konvexes Element 13 in einer kreisbogenförmigen Ausbildung mit einem Radius R ergibt. Figure 3 shows a first embodiment of a perforated element 13 which is composed of a plurality of individual sieve elements 28. The sieve elements 28 are designed as flat sieve surfaces provided with a perforation 30. The perforation 30 is in Figure 3 shown schematically and extends evenly over all sieve elements 28 of the perforated element 13. The sieve elements 28 are arranged one behind the other in such a way that a convex element 13 is formed in a circular arc with a radius R.

Figur 4 zeigt eine zweite Ausführung eines perforierten Elements 13 welches ebenfalls aus einzelnen hintereinander angeordneten Siebelementen 28 zusammengesetzt ist. Das perforierte Element 13 ist in zwei Bereiche 29 und 31 aufgeteilt, wobei ein erster Bereich 29 mit einer Perforation 30 ausgeführt ist welche sich von der Perforation 32 im zweiten Bereich 31 unterscheidet. Die Perforation 30 im ersten Bereich 29 ist dabei grösser als die Perforation 32 im zweiten Bereich 31. Dadurch ergibt sich eine gleichmässigere Durchströmung des perforierten Elements 13 auf seiner gesamten Länge. Die Perforationen 30 und 32 sind in Figur 4 schematisch dargestellt und erstrecken sich gleichmässig über die entsprechenden Siebelemente 28 der Bereiche 29 und 31 des perforierten Elements 13. Weiter erstreckt sich sich das konvexe perforierte Element 13 über einen Winkel α von mehr als 90 Winkelgraden. Durch die erhöhte Bogenlänge von mehr als 90 Winkelgraden ergibt sich eine bessere Ableitung der Transportluft durch das perforierte Element 13. Figure 4 shows a second embodiment of a perforated element 13 which is also composed of individual sieve elements 28 arranged one behind the other. The perforated element 13 is divided into two areas 29 and 31, whereby a first area 29 is designed with a perforation 30 which differs from the perforation 32 in the second area 31. The perforation 30 in the first area 29 is larger than the perforation 32 in the second area 31. This results in a more even flow through the perforated element 13 over its entire length. The perforations 30 and 32 are in Figure 4 shown schematically and extend evenly over the corresponding sieve elements 28 of the areas 29 and 31 of the perforated element 13. Furthermore, the convex perforated element 13 extends over an angle α of more than 90 degrees. Due to the increased arc length of more than 90 degrees results in a better discharge of the transport air through the perforated element 13.

Figur 5 zeigt eine schematische Darstellung eines Querschnitts einer weiteren Ausführung des Transportluftaustrittskanals 9. Das perforierte Element 13 ist als Kreisbogen mit einem Radius R und einem Winkel α von mehr als 90 Winkelgraden gezeigt. Im Gegensatz zur haubenförmigen Ausgestaltung des Transportluftaustrittskanal 9 wie er in Figur 1 gezeigt ist, besteht der Transportluftaustrittskanal 9 in Figur 5 aus einem ersten Abschnitt 35 welcher hinter dem perforierten Element 13 angeordnet ist und einem dem ersten Abschnitt 35 nachfolgenden zweiten Abschnitt 36 welcher die Transportluft 10 zum Transportluftaustritt 8 bringt. Mit Pfeilen ist die Strömung 33 der durch das perforierte Element 13 in einen ersten Abschnitt 35 des Transportluftaustrittskanals 9 und vom ersten Abschnitt 35 in den zweiten Abschnitt 36 geführten Transportluft 10 dargestellt. Der Transportluftaustritt 8 ist beispielhaft als ein Flansch dargestellt. Zwischen den Abschnitten 35 und 36 des Transportluftaustrittskanals 9 ist eine Wartungsöffnung 34 gezeigt. Figure 5 shows a schematic representation of a cross section of another embodiment of the transport air outlet channel 9. The perforated element 13 is shown as a circular arc with a radius R and an angle α of more than 90 degrees. In contrast to the hood-shaped design of the transport air outlet channel 9 as shown in Figure 1 As shown, the transport air outlet channel 9 consists of Figure 5 from a first section 35 which is arranged behind the perforated element 13 and a second section 36 following the first section 35 which brings the transport air 10 to the transport air outlet 8. Arrows show the flow 33 of the transport air 10 guided through the perforated element 13 into a first section 35 of the transport air outlet channel 9 and from the first section 35 into the second section 36. The transport air outlet 8 is shown as a flange by way of example. A maintenance opening 34 is shown between the sections 35 and 36 of the transport air outlet channel 9.

Die vorliegende Erfindung ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele beschränkt. Abwandlungen im Rahmen der Patentansprüche sind ebenso möglich wie eine Kombination der Merkmale, auch wenn diese in unterschiedlichen Ausführungsbeispielen dargestellt und beschrieben sind.The present invention is not limited to the embodiments shown and described. Modifications within the scope of the patent claims are possible, as is a combination of the features, even if these are shown and described in different embodiments.

Legendelegend

11
SpinnereivorbereitungsmaschineSpinning preparation machine
2 - 52 - 5
SchachtShaft
66
FaserguteintrittFibre entry
77
FaserluftgemischFibre-air mixture
88
TransportluftaustrittTransport air outlet
99
TransportluftaustrittskanalTransport air outlet duct
1010
TransportluftTransport air
1111
VerteilkanalDistribution channel
1212
KanalverlaufChannel course
1313
Perforiertes ElementPerforated element
1414
Obere VerteilkanalwandUpper distribution channel wall
15 - 1615 - 16
Seitliche VerteilkanalwandLateral distribution channel wall
17 - 1917 - 19
SchachttrennwandShaft partition wall
2020
SchachttrennwandendstückShaft partition end piece
21 - 2221 - 22
SchachtaussenwandShaft outer wall
2323
LuftleitelementAir guide element
2424
TransportbandConveyor belt
2525
EntnahmevorrichtungRemoval device
2626
AustrittskanalOutlet channel
2727
FasergutaustrittFibre material discharge
2828
SiebelementSieve element
2929
Erster BereichFirst area
3030
Perforation erster BereichPerforation first area
3131
Zweiter BereichSecond area
3232
Perforation zweiter BereichPerforation second area
3333
Strömungflow
3434
WartungsöffnungMaintenance opening
3535
Erster Abschnitt TransportluftaustrittskanalFirst section transport air outlet duct
3636
Zweiter Abschnitt TransportluftaustrittskanalSecond section transport air outlet duct
AA
AbstandDistance
BB
BreiteWidth
HH
GesamthöheTotal height
RR
Radiusradius
αα
Winkelangle

Claims (15)

  1. Spinning preparation machine (1) for mixing fibers, comprising a removal device (25) for removing the fibers from the spinning preparation machine (1) and a filling device for filling the spinning preparation machine (1) with fibers, wherein the spinning preparation machine (1) is designed as a chute mixer having at least two chutes (2-5), wherein the filling device has a fiber material inlet (6) and a transport air outlet (8) having a transport air outlet duct (9) and a distribution duct (11) leading from the fiber material inlet (6) to the transport air outlet (8) via the at least two chutes (2-5), characterized in that the distribution duct (11) is separated from the transport air outlet (8) by a perforated element (12), the perforated element (12) being designed to have a convex shape when viewed in the direction of the transport air outlet (8).
  2. Spinning preparation machine (1) according to claim 1, characterized in that the chutes (2-5) are surrounded by air-impermeable chute walls (17-20).
  3. Spinning preparation machine (1) according to either claim 1 or claim 2, characterized in that the distribution duct (11) is surrounded on at least three sides by air-impermeable duct walls (14, 15, 16).
  4. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the convex shape of the perforated element (13) is formed from flat sieve elements (28) lined up in a row.
  5. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the convex shape of the perforated element (13) corresponds to an arc of a circle with a radius (R) in a range from 200 mm to 1000 mm.
  6. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the perforated element (13) has a perforation of 20% to 50%.
  7. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the perforated element (13) is divided into at least two regions (29, 31), the regions (29, 31) having different perforations (30, 32).
  8. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the convex perforated element (13) extends over an angle (α) of more than 90 degrees.
  9. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that a cover element for setting a negative pressure in the transport air outlet duct (9) is provided on a side of the perforated element (13) facing the transport air outlet (8).
  10. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the perforation in the perforated element (13) is formed by round or angular openings with a cross section of less than 0.1 cm2.
  11. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the perforated element (13) is made of metal.
  12. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the perforated element (13) is made of plastics material.
  13. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that an air guide element (21) is provided in the distribution duct (11) above a chute partition wall (17, 18) between two chutes (4, 5).
  14. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the transport air outlet duct (9) has a first portion (35) and a second portion (36) adjoining the first portion (35), the first portion (35) being guided along the perforated element (13) and the second portion (36) being guided away from the perforated element (13).
  15. Spinning preparation machine (1) according to at least one of the preceding claims, characterized in that the transport air outlet duct (9) is designed in such a way that the transport air (10) reaches a minimum speed of 12 m/s.
EP21201354.4A 2020-10-13 2021-10-07 Spinning preparation machine Active EP3985151B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01297/20A CH717947A1 (en) 2020-10-13 2020-10-13 Spinning preparation machine for blending fibers.

Publications (2)

Publication Number Publication Date
EP3985151A1 EP3985151A1 (en) 2022-04-20
EP3985151B1 true EP3985151B1 (en) 2024-08-21

Family

ID=80685614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21201354.4A Active EP3985151B1 (en) 2020-10-13 2021-10-07 Spinning preparation machine

Country Status (3)

Country Link
EP (1) EP3985151B1 (en)
CN (1) CN114351297A (en)
CH (1) CH717947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH719434A1 (en) * 2022-02-18 2023-08-31 Rieter Ag Maschf Spinning preparation machine for mixing fibers.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3632934A1 (en) * 1986-09-27 1988-04-14 Spinnbau Gmbh Arrangement for feeding an apparatus for the production of a fibre nonwoven
DE3713590A1 (en) 1987-04-23 1987-10-08 Hergeth Hubert CHAMBER MIXER
DE3941729A1 (en) * 1989-12-18 1991-06-20 Truetzschler & Co Fibre mixing assembly - has containers to be charged at right angles to flocking travel for even height across each filling shaft
DE4026330A1 (en) * 1990-08-20 1992-02-27 Rieter Ag Maschf CLEANING LINE
DE4111894A1 (en) * 1991-04-12 1992-10-15 Truetzschler & Co DEVICE FOR MIXING TEXTILE FIBERS, LIKE COTTON, CHEMICAL FIBERS AND THE LIKE
DE19716792A1 (en) 1997-04-22 1998-10-29 Rieter Ag Maschf Spinning preparation facility
EP0877105A1 (en) * 1997-05-07 1998-11-11 Maschinenfabrik Rieter Ag Spinning preparation apparatus
DE19847237B4 (en) * 1998-02-19 2012-01-26 TRüTZSCHLER GMBH & CO. KG Spinning preparation apparatus for separating foreign matter on a high-speed roll for opening fiber material, e.g. B. Cotton u. like.
CN209584441U (en) * 2019-02-15 2019-11-05 郑州宏大新型纺机有限责任公司 A kind of water conservancy diversion valve arrangement suitable for the feeding of multi-mixer hopper

Also Published As

Publication number Publication date
CN114351297A (en) 2022-04-15
EP3985151A1 (en) 2022-04-20
CH717947A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
EP3372065B1 (en) Agricultural machine and method for operating an agricultural machine, distributor tower of an agricultural machine
DE69908050T2 (en) Device and method for separating contaminants from textile fibers in pneumatic conveyor systems
EP3985151B1 (en) Spinning preparation machine
DE2217394A1 (en) Method and device for homogenizing, separating and purifying mixtures of fibers
DE3149965C2 (en) Device on a card or card for web production
DE3021822C2 (en) Flotation cell
CH688589A5 (en) Device on a carder for losing weight and packing a exiting a delivery mechanism of the card fibrous web.
DE3626053A1 (en) GRAVITY WINIFIFIER FOR SEPARATING SHEET MATERIALS
DE3210385C2 (en) Sorting drum
EP1418258A1 (en) Solid particles separator for fibre material
EP2890840A1 (en) Bale opener
WO2008144944A1 (en) Device for trapping solids from a flow of airborne fiber flocks
DE1290853B (en) System for feeding a group of cards
DE4442538C2 (en) Double-strand cigarette manufacturing apparatus
DE2137139A1 (en) Method and device for the purification of the exhaust air emerging from a filling chute for fiber flocks
DE69127528T2 (en) Mixing device for stack material, in particular for cotton stacks
EP3323916A1 (en) Heavy item separator
EP4230779A1 (en) Spinning preparation machine
DE1760261C3 (en) Shaft-like molding chamber for the production of mineral fiber fleeces or mats, in particular from cut strands of glass thread
EP0181452B1 (en) Transporting duct for fibre flocks
WO2024132950A1 (en) Spinning preparation machine
DE60125358T2 (en) DEVICE FOR A SCREEN WATER CHANNEL
DE841388C (en) Device for the separation of foreign matter from granular, powdery or similar material
DE60012902T2 (en) DRYING DEVICE
EP0877106B1 (en) Method for filling a flock hopper and hopper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221007

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETER AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021004839

Country of ref document: DE