EP3981918B1 - Road finisher and method for levelling the screed of a finisher - Google Patents
Road finisher and method for levelling the screed of a finisher Download PDFInfo
- Publication number
- EP3981918B1 EP3981918B1 EP20200791.0A EP20200791A EP3981918B1 EP 3981918 B1 EP3981918 B1 EP 3981918B1 EP 20200791 A EP20200791 A EP 20200791A EP 3981918 B1 EP3981918 B1 EP 3981918B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- screed
- finishing machine
- road finishing
- measuring
- distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 11
- 238000012937 correction Methods 0.000 claims description 56
- 238000005259 measurement Methods 0.000 claims description 28
- 238000013499 data model Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000001960 triggered effect Effects 0.000 claims 1
- 238000009434 installation Methods 0.000 description 27
- 239000000758 substrate Substances 0.000 description 5
- SEQDDYPDSLOBDC-UHFFFAOYSA-N Temazepam Chemical compound N=1C(O)C(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 SEQDDYPDSLOBDC-UHFFFAOYSA-N 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
- E01C19/4866—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ with solely non-vibratory or non-percussive pressing or smoothing means for consolidating or finishing
- E01C19/4873—Apparatus designed for railless operation
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/48—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/004—Devices for guiding or controlling the machines along a predetermined path
- E01C19/006—Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C19/00—Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
- E01C19/004—Devices for guiding or controlling the machines along a predetermined path
- E01C19/008—Devices for guiding or controlling the machines along a predetermined path by reference lines placed along the road, e.g. wires co-operating with feeler elements
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01C—CONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
- E01C23/00—Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
- E01C23/01—Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
Definitions
- the present invention relates to a road paver according to the preamble of claim 1.
- the invention further relates to a method according to independent method claim 16.
- Leveling systems for a paver screed have a tow point control loop that works taking into account a difference between a tow arm inclination detected using an inclination sensor and a target inclination value for the tow arm.
- the target inclination value is calculated based on height monitoring carried out in the area of the rear edge of the screed. During height monitoring, distance measurements are carried out to a reference in the area of the rear edge of the screed and compared with a target distance in order to determine the inclination setpoint.
- DE 100 25 462 A1 discloses a road paver with a layer thickness measuring device for determining a layer thickness of the paving layer produced in an area of a rear edge of the screed.
- a height signal from a sensor that is stationarily arranged on a screed-towing arm assembly and detects a distance to the ground, as well as an inclination signal from an inclination sensor arranged on the screed-towing arm assembly is used.
- the DE 11 2009 001 767 T5 discloses a paver that has a control for leveling the screed.
- the control has a first sensor on the front of the paver is arranged in front of the material bunker in order to record a height to the ground.
- the control also includes a second sensor that detects the height of the front pulling point on the plank beam in relation to the ground.
- DE 691 26 017 T2 discloses a road paver with a leveling device, which takes into account a determined thickness of the surface produced.
- a leveling setpoint is calculated based on the recorded thickness of the covering, with the height of the screed being adjusted when the calculated leveling setpoint deviates from a measured value that is recorded by a height sensor in front of the installation bowl.
- EP 1 672 122 A1 discloses a road paver with a leveling device for a screed, which is operated on the basis of a target/actual value comparison between a determined working height of the screed and a set target height.
- EP 2 535 456 A1 discloses a road paver with a measuring device mounted on it, the vectorially detectable movement of which is recorded during paving operation and taken into account when calculating the layer thickness at the rear edge of the paving screed.
- US 4,807,131A discloses a road construction machine with a working part, the working height of which can be detected by means of a measuring device, with the working height being able to be regulated based on this.
- the invention is based on the object of equipping a road paver with a leveling system which reliably enables improved leveling of the paving screed of the road paver using simple, practical technical means and, above all, is suitable for producing a more precise evenness of the installed paving layer. Furthermore, it is the object of the invention to provide a leveling method for a paving screed of a road paver, by means of which a flat paving layer can be produced more easily.
- This task is solved by a road paver according to claim 1. Furthermore, this task is solved using a method according to claim 16.
- the road paver according to the invention comprises a paving screed for producing a paving layer on a surface on which the road paver moves along in the paving direction moved along an installation route.
- the screed is mounted in a height-adjustable manner and has a pull arm which is attached to a front pull point formed thereon by means of a leveling cylinder on the paver.
- the paver according to the invention comprises a measuring device for carrying out a distance measurement, a storage device, a control device and a functionally connected controller device for adjusting a setting of the leveling cylinder.
- the control unit is designed to calculate a correction value depending on at least one distance measurement of the measuring device carried out relative to the subsurface and/or to a reference, which can be carried out at a measuring point located in front of the front edge of the screed in the installation direction.
- the correction value preferably represents an unevenness detected at the measuring point as a difference between a planum and the actual subsurface with unevenness.
- the control unit is designed to at least temporarily store the correction value in the memory device and, when the installation operation continues, to calculate a leveling setpoint for the measuring point, taking into account the stored correction value, based on which the leveling cylinder of the screed is controlled when the front edge of the screed reaches the measuring point .
- the control device thus reacts to an unevenness in the subsurface detected at the measuring point at a later point in time during the paving journey, namely when the front edge of the towed screed reaches the measuring point at which the unevenness in the subsurface was recorded directly based on the correction value.
- the determination of the correction value for detecting unevenness in the subsurface, which precedes the actual control process, is based on a simple height measurement technology that is ideal for use on pavers.
- the invention offers the advantage that inclination sensors can be dispensed with, which means that the leveling system according to the invention is designed to be more robust overall for use on construction sites.
- the measuring device arranged in front of the screed in the invention is less influenced by the vibrating operation of the screed, so that the distances measured by the measuring device can be taken into account more precisely when leveling the screed.
- the invention offers a cost-effective solution that can be easily installed and retrofitted to the paver. Because in the invention the control device only responds to the detected unevenness of the measuring point when the front edge of the screed reaches the measuring point, reaction times of the leveling cylinder can be better compensated, whereby an installation layer with high evenness can be produced.
- the measuring device is preferably attached to the tension arm of the screed. Movements of the pull arm, in particular raising and lowering the pull arm, can thus be taken into account in the distance measurements. Above all, the measuring device can detect precise unevenness in the ground in front of the working area of the paving screed from the tension arm on the side of the paver, i.e. directly next to the chassis, and/or measure a distance to a reference provided along the ground on the side of the paving screed, for example as a There is a stretched guide wire next to the paver. As an alternative to the guide wire, a tensioned rope, a curb and/or an already prepared paving layer could be considered as a reference.
- the measuring device can be attached to a tractor of the paver, the measured values of which can optionally be offset against measured values of a further measuring device, which is arranged on the traction arm or on the screed, in order to regulate a specific screed height.
- a particularly advantageous variant provides that the measuring device is arranged in the area of the front pull point of the pull arm. This means that directly at the location of the leveling cylinder, i.e. without any noticeable influence of the tension arm inclination, a distance measurement to the subsurface and/or to the reference can be carried out, based on which precise leveling of the screed is possible.
- the measuring device is rotatably attached to the pull arm, in particular at the front pull point of the pull arm or at least in the immediate vicinity thereof. This ensures that it maintains an equilibrium position or at least moves back into it automatically, regardless of a change in the inclination of the tension arm controlled during the leveling process. In other words, this means that the measuring device does not follow the changes in inclination of the pull arm. This means that the height measurements of the measuring device are not influenced by changes in the inclination of the tension arm, but only record changes in distance to the ground and/or to the reference.
- a linear guide is formed on the pull arm for the measuring device, along which the measuring device can be positioned in an adjustable manner in the installation direction. This allows the distance between the measuring device and the front edge of the screed to be adjusted.
- the measuring device can be rotatably mounted on the linear guide to ignore changes in inclination of the pull arm.
- the measuring device has at least one first sensor for measuring a distance to the reference and at least one second sensor for measuring a distance to the ground. These two height measurements can be taken into account when calculating the correction value in order to record unevenness in the ground.
- the measuring device has a sensor that is designed to detect both a distance to the ground and a distance to the reference. For example, a radar sensor can be used for this.
- the first and second sensors are at the same distance from the front edge of the screed in the installation direction.
- the two sensors can carry out height measurements at the same measuring point in the installation direction, based on which any unevenness that may be present at the measuring point can be precisely recorded as a deviation from the planum.
- two distance measurements are carried out at the same point in front of the screed, one to the subsoil and the other to the reference, in order to determine the correction value for this measuring point based on this.
- the first and/or the second sensor are preferably in the form of an optical or acoustic sensor, for example a laser or ultrasonic sensor.
- the height measurements can be carried out using a transit time measurement, a phase position measurement and/or a laser triangulation.
- the determined correction value can be visualized as a measure of an unevenness recorded in the subsoil compared to an average subsoil course (grade) on the paver, for example by means of a display on the screed operator's station. On the display, the correction factor can show small and comparatively large unevennesses in differentiated colors.
- control device is designed to calculate the correction value for the measuring point based on the distance to the ground measured at the measuring point using the second sensor, minus the distance to the reference measured using the first sensor and further minus a preset altitude of the reference to the subgrade determine.
- a correction value calculated using this equation for the measuring point using the control device precisely depicts the unevenness that deviates from the subsurface, i.e. an elevation or a depression in the subsurface.
- the control device is configured to derive the leveling setpoint for the measuring point, i.e. to form the setpoint for a distance of the sensor from the reference, in an intermediate step to form a difference between a preset base leveling setpoint and the stored correction value.
- the basic leveling setpoint provides a guideline value for the control and regulation function, on the basis of which the screed should be towed, assuming a flat, averaged surface, i.e. a fictitious surface without unevenness.
- the correction value is used to adjust the basic leveling setpoint in the practical case that the measuring device detects an unevenness in the subsurface, whereby a more precise leveling setpoint adapted to the unevenness can be calculated for the measuring point. This means that the detected unevenness can be optimally compensated for.
- control device is configured to calculate the leveling setpoint from the difference between the preset basic leveling setpoint and the stored correction value minus a distance to the reference currently measured by the measuring device. This leveling setpoint is then available to the control device as an input variable, based on which the leveling cylinder can be controlled to level the screed.
- the measuring device has a plurality of sensors for measuring a distance to the ground and/or to the reference
- the control device for this purpose is designed to form a respective average value as a basis for determining the correction value based on several distance measurements carried out at the same time to the background and / or to the reference.
- the fact that several distance measurements to the subsurface and/or to the reference are averaged to determine the correction value creates a filter function so that smoother transitions when leveling the screed are possible because the control device thus responds to unevenness during the installation operation in a somewhat dampened manner.
- control device is configured to multiply the calculated correction value by a compensation factor that is dependent on a geometry of the screed.
- the compensation factor includes, for example, the weight of the screed and/or at least one operating parameter set and/or recorded thereon during operation of the screed, for example a tamper speed and/or a heating output of the screed, is taken into account.
- the compensation factor takes into account the density of the ground on which the paver moves during paving. This would allow the flexibility of the subsurface to be taken into account when leveling the screed, meaning that any unevenness can be compensated for by operating the screed.
- the correction factor takes into account an installation temperature of the installed installation layer that is currently measured behind the screed.
- the paver has at least one distance measuring device for detecting a distance traveled by the front edge of the screed, the calculation of the leveling setpoint being triggerable on the control device when the distance traveled by the screed recorded by means of the distance measuring device corresponds to a distance between the measuring device and the front edge of the screed .
- control device is designed to continuously calculate correction values during an paving journey of the paver along the paving route, to store these for the respective measuring points and to use the respective stored correction values to determine adapted leveling setpoints. This will ensures that the control device responds reliably to all unevenness in the subsurface along the installation route, so that a flat installation layer can be produced along the entire installation route.
- the control device is preferably designed to use a GPS data-based underground data model to determine the correction value.
- a GPS data-based underground data model can be made available to the control device using a web-based application, in particular using a cloud-based application, in order to supply the paver, in particular the control device trained on it, with updated geosubsoil data along the paving route.
- the control device is designed to calculate the correction value taking into account a piston position of the leveling cylinder currently set at the measuring point.
- the piston position can be represented, for example, by means of an extension path of the piston that can be detected, in particular using the measuring device. This would make it possible to detect unevenness in the subsurface even if the measuring device only carries out the distance measurement to the reference, for example to a taut guide wire, with no distance measurement to the subsurface otherwise taking place. Detecting the piston position of the leveling cylinder can replace measuring the distance to the ground. This can be advantageous for certain types of substrate, especially open-pored substrate surfaces.
- control device is designed to set the correction value for the measuring point based on the distance to the reference measured at the measuring point using the first sensor plus the height of the reference to the subgrade plus a distance of the measuring device to the pull point height plus one set based on the piston position To determine the extension path of the leveling cylinder and minus a constructive height between the underside of the paver's chassis and the pull point of the leveling cylinder when retracted.
- the present invention also relates to a method for leveling a paving screed of a paver, wherein a control device of the paver depends on at least one distance measurement carried out to the subsoil and / or to a reference by means of a measuring device provided on the paver, the distance measurement being carried out on a front edge in the paving direction
- the measuring point lying on the screed is carried out, a correction value is calculated and this is stored at least temporarily in a storage device is stored and, when the paving operation continues, a leveling setpoint is calculated for the measuring point, taking into account the stored correction value, based on which at least one leveling cylinder of the screed is controlled when the front edge of the paving screed reaches the measuring point.
- the measuring device preferably carries out at least two distance measurements at the measuring point in front of the screed, one to the reference and one to the subsurface. This means that any unevenness in the subsurface at the measuring point can be determined precisely as a deviation from the subgrade and used precisely to level the screed.
- the leveling system according to the invention and the leveling method according to the invention can be carried out on both sides of the paver.
- the embodiments presented previously in connection with the invention can therefore be used on both sides of the paver.
- Figure 1 shows a paver 1, which produces a paving layer 2 on a surface 3, on which the paver 1 moves along a paving direction R during a paving journey.
- the road paver 1 has a height-adjustable paving screed 4 for (pre-)compacting the paving layer 2.
- the paving screed 4 is attached to a pull arm 5, which is connected at a front pull point 6 to a leveling cylinder 7 on a tractor 22 of the road paver 1.
- the pull arm 5 serves as a lever to convert a varying leveling cylinder position into a corresponding change in the angle of attack of the screed 4, in particular to compensate for unevenness 8 in the subsurface 3.
- Figure 2 shows an isolated, schematic representation of the screed 4, the pull arm 5 and the leveling cylinder 7.
- a measuring device 10 is arranged on the pull arm 5 between a front edge 9 of the screed and the front pull point 6.
- the measuring device 10 is designed to carry out at least one distance measurement to the substrate 3 and/or to a reference 11.
- the reference 11 is constructed as a guide wire, with the reference 11 occupying an average height h 11 above the substrate 3.
- the reference 11 is stretched to the side of the paver 1 and, as will be explained in more detail below, serves a leveling function of the screed 4.
- the measuring device 10 has a first sensor 12 for measuring a distance y 1 to the reference and a second sensor 13 for measuring a distance y 2 to the substrate 3.
- the first and second sensors 12, 13 are positioned in the installation direction R at an equal distance x 9 from the front edge 9 of the installation screed 4.
- two distance measurements were carried out, one to measure the distance y 1 and one to measure the distance y 2 .
- the measuring device 10 can detect an unevenness 8 in the subsurface 3 at the measuring point 14 below the measuring device 10 by means of the two sensors 12, 13.
- the unevenness 8 represents a difference to a planum P.
- Figure 2 A corresponding leveling of the screed 4 takes place when, during continued installation operation in the installation direction R, the front edge 9 of the screed 4 arrives above the unevenness 8, ie at the measuring point 14.
- the leveling system used according to the invention reacts according to the in Figure 2 shown variant on the unevenness 8 detected by the measuring device 10 at the measuring point 14 when the front edge 9 of the screed 4 is in Figure 2 distance x 9 shown.
- Figure 3 shows a variant for attaching the measuring device 10 Figure 2 .
- the arrangement Figure 3 differs from Figure 2 in that the measuring device 10 is positioned directly at the front pull point 6. At this position, so to speak at the front end of the pull arm 5, the distances y 1 , y 2 detected by the two sensors 12, 13 can be used particularly advantageously to compensate for unevenness 8 when leveling the paving screed 4 to produce a flat paving layer 2, because at this point the height of the pull point 6 is recorded exactly and is not superimposed by the changes in inclination of the screed 4.
- FIG 4 shows a schematic representation of a leveling system 15.
- the leveling system 15 can according to Figure 2 and Figure 3 Use the recorded height measurements to level the screed 4 in order to compensate for unevenness 8 in the subsurface 3.
- the leveling system 15 has a memory device 16, a control device 17 and a functionally connected controller device 18 for adjusting a setting of the leveling cylinder 7.
- the control device 17 Based on the measured distances y 1 , y 2 and taking into account the established height h 11 of the reference 11 above the subgrade P, the control device 17 can determine a correction value K.
- the control device 17 off Figure 4 is designed to calculate the correction value K for the measuring point 14 based on the distance y 2 to the ground 3 measured at the measuring point 14 using the second sensor 13 minus the distance y 1 to the reference 11 measured using the first sensor 12 and further minus the preset height h 11 of reference 11 to determine. Furthermore, the control device 17 can be configured to continuously store the correction values K determined during the installation operation along the installation route in the installation direction R in the memory device 16 for the respective measuring points 14, so that the correction values K reach the corresponding ones when the front edge 9 of the installation screed 4 is reached Measuring points 14 can be used along the installation route for leveling the installation screed 4.
- control device 17 can display a current paving speed v E of the paver 1 by means of a speed sensor 19.
- the installation speed v E transmitted to the control device 17 can be used to determine the distance x 9 .
- a distance measuring device 20 for the leveling system 15 is present in order to Distance x 9 or a distance traveled by the front edge 9 of the paving screed 4 when the paver 1 moves in the paving direction R during the paving journey.
- control device 17 is supplied with a preset basic leveling setpoint y 1-basis . Furthermore, a compensation factor c can be stored in the control device 17, which may be dependent on a geometry of the screed 4.
- the control device 17 off Figure 4 is configured to determine for each stored correction value K the path traveled, ie the distance traveled, which the screed 4, in particular the front edge 9 formed thereon, has covered from the time of storage. As soon as the distance traveled corresponds to the distance x 9 , the correction value K is subtracted from the basic leveling setpoint y 1 basis using the control device 17. Optionally, the correction value K can be multiplied beforehand by the compensation factor c.
- the basic leveling setpoint y 1-basis can be set manually by an operator on a control panel of the paver, so that a desired height of the screed 4 can be set accordingly for the paving operation.
- the height of the screed 4 can be determined manually by the operator or measured by a layer thickness sensor, not shown.
- the leveling setpoint y 1 - setpoint determined taking into account the correction value K using the control device 17 for the measuring point 14 is supplied to the control device 18. Furthermore, the control device 18 is supplied with the measured distance y 1 .
- the controller device 18 is designed to calculate a controller variable u, which is fed to an actuator 21, based on a difference between the leveling target values y 1 -target calculated on the basis of unevenness 8 and the distance y 1 currently measured at the measuring point 14.
- the actuator 21, for example a hydraulic drive component then sets an extension path s 7 of the leveling cylinder 7, so that a pull point height h 6 can be adjusted in order to position the screed 4, in particular its rear edge, at a desired height h bo .
- Figure 5 essentially shows the arrangement Figure 3 , wherein the measuring device 10 according to Figure 5 only has the first sensor 12 for measuring the distance y 1 to the reference 11.
- the correction value K can be calculated primarily based on the measured distance y 1 and based on the extension path s 7 of the leveling cylinder 7 become.
- the correction value K can be a sum of the distance y 1 , the height h 11 to the reference 11, a distance h s of the first sensor 12 to the front pull point 6 and the extension path s 7 of the leveling cylinder 7 minus a height h zp , which indicates a constructive height of the underside of the chassis F to the front pull point 6 when the leveling cylinder 7 is retracted.
- Figure 6 shows a schematic representation of a leveling system 15 'for the in Figure 5 arrangement shown.
- the measured distances y 1 and the detected extension paths s 7 of the leveling cylinder 7 are continuously transmitted to the control device 17, based on which the correction value K is calculated and stored in the storage device 16 for each measuring point 14 along the installation route.
- the correction value K can be calculated using the sum described above minus the height h zp , which is present when the leveling cylinder 7 is retracted.
- the basic leveling setpoint y 1-setpoint held by the control device 17 is calculated minus the correction value K to the leveling setpoint y 1-setpoint , which is fed to the control device 18 as an input variable at the latest when the front edge 9 of the screed 4 is at the measuring point 14 for the measured distance y 1 has arrived, whereby the control device 18 determines the control variable u for the actuator 21 from a difference between the calculated leveling setpoint y 1-setpoint and the measured distance y 1 , which adjusts the leveling cylinder 7 accordingly in order to level the screed 4.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Road Paving Machines (AREA)
Description
Die vorliegende Erfindung bezieht sich auf einen Straßenfertiger gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung ein Verfahren gemäß dem unabhängigen Verfahrensanspruch 16.The present invention relates to a road paver according to the preamble of claim 1. The invention further relates to a method according to
In
Bei der vorangehend beschriebenen Praxis hat sich insbesondere der Einsatz von Neigungssensoren als problematisch erwiesen, da diese empfindlich auf Unebenheiten des Untergrunds sowie Vibrationen während des Einbaubetriebs reagieren können, was eine darauf aufbauende Nivellierungsregelung negativ beeinflussen kann. Außerdem wird für den oben beschriebenen Zugpunktregelkreis aufgrund der Tatsache, dass die Zugpunktregelung zeitgleich zur Höhenüberwachung stattfindet, ein hoher Steuer- und Regelungsaufwand betrieben.In the practice described above, the use of inclination sensors in particular has proven to be problematic, as they can react sensitively to unevenness in the surface and vibrations during installation, which can negatively influence a leveling control based on them. In addition, a high level of control and regulation effort is required for the tow point control loop described above due to the fact that the tow point control takes place at the same time as height monitoring.
Die
Der Erfindung liegt die Aufgabe zugrunde, einen Straßenfertiger mit einem Nivelliersystem auszustatten, das zuverlässig anhand einfacher, praxistauglicher technischer Mittel eine verbesserte Nivellierung der Einbaubohle des Straßenfertigers ermöglicht und vor allem zur Herstellung einer präziseren Ebenheit der eingebauten Einbauschicht geeignet ist. Ferner ist es die Aufgabe der Erfindung, ein Nivellierverfahren für eine Einbaubohle eines Straßenfertigers zur Verfügung zu stellen, anhand dessen eine ebene Einbauschicht besser herstellbar ist.The invention is based on the object of equipping a road paver with a leveling system which reliably enables improved leveling of the paving screed of the road paver using simple, practical technical means and, above all, is suitable for producing a more precise evenness of the installed paving layer. Furthermore, it is the object of the invention to provide a leveling method for a paving screed of a road paver, by means of which a flat paving layer can be produced more easily.
Diese Aufgabe wird gelöst durch einen Straßenfertiger gemäß dem Anspruch 1. Ferner wird diese Aufgabe gelöst anhand eines Verfahrens gemäß Anspruch 16.This task is solved by a road paver according to claim 1. Furthermore, this task is solved using a method according to
Vorteilhafte Weiterbildungen der Erfindung sind durch die jeweiligen Unteransprüche gegeben.Advantageous developments of the invention are given by the respective subclaims.
Der erfindungsgemäße Straßenfertiger umfasst eine Einbaubohle zum Herstellen einer Einbauschicht auf einem Untergrund, auf welchem sich der Straßenfertiger in Einbaurichtung entlang einer Einbaustrecke fortbewegt. Die Einbaubohle ist höhenverstellbar gelagert und weist einen Zugarm auf, der an einem daran ausgebildeten vorderen Zugpunkt mittels eines Nivellierzylinders am Straßenfertiger befestigt ist. Außerdem umfasst der erfindungsgemäße Straßenfertiger eine Messeinrichtung zum Durchführen einer Abstandsmessung, eine Speichereinrichtung, eine Steuereinrichtung sowie eine damit funktional verbundene Reglereinrichtung zum Anpassen einer Einstellung des Nivellierzylinders.The road paver according to the invention comprises a paving screed for producing a paving layer on a surface on which the road paver moves along in the paving direction moved along an installation route. The screed is mounted in a height-adjustable manner and has a pull arm which is attached to a front pull point formed thereon by means of a leveling cylinder on the paver. In addition, the paver according to the invention comprises a measuring device for carrying out a distance measurement, a storage device, a control device and a functionally connected controller device for adjusting a setting of the leveling cylinder.
Gemäß der Erfindung ist die Steuereinheit dazu ausgebildet, in Abhängigkeit mindestens einer zum Untergrund und/oder zu einer Referenz durchgeführten Abstandsmessung der Messeinrichtung, die an einer in Einbaurichtung vor der Vorderkante der Einbaubohle liegenden Messstelle durchführbar ist, einen Korrekturwert zu berechnen. Der Korrekturwert bildet vorzugsweise eine an der Messstelle erfasste Unebenheit als Differenz zwischen einem Planum und dem tatsächlichen Untergrund mit Unebenheiten ab. Weiter ist die Steuereinheit dazu ausgebildet, den Korrekturwert in der Speichereinrichtung zumindest temporär zu speichern und bei fortgesetztem Einbaubetrieb unter Berücksichtigung des gespeicherten Korrekturwerts einen Nivelliersollwert für die Messstelle zu berechnen, anhand dessen der Nivellierzylinder der Einbaubohle angesteuert wird, wenn die Vorderkante der Einbaubohle die Messstelle erreicht.According to the invention, the control unit is designed to calculate a correction value depending on at least one distance measurement of the measuring device carried out relative to the subsurface and/or to a reference, which can be carried out at a measuring point located in front of the front edge of the screed in the installation direction. The correction value preferably represents an unevenness detected at the measuring point as a difference between a planum and the actual subsurface with unevenness. Furthermore, the control unit is designed to at least temporarily store the correction value in the memory device and, when the installation operation continues, to calculate a leveling setpoint for the measuring point, taking into account the stored correction value, based on which the leveling cylinder of the screed is controlled when the front edge of the screed reaches the measuring point .
Damit reagiert die Reglereinrichtung auf eine an der Messstelle erfasste Unebenheit des Untergrunds gezielt zu einem späteren Zeitpunkt der Einbaufahrt, nämlich dann, wenn die Vorderkante der geschleppten Einbaubohle die Messstelle, an welcher die Unebenheit im Untergrund direkt anhand des Korrekturwerts erfasst wurde, erreicht. Die dem eigentlichen Regelungsvorgang vorausgehende Ermittlung des Korrekturwerts zum Erfassen von Unebenheiten des Untergrunds basiert auf einer einfachen, hervorragend am Straßenfertiger einsetzbaren Höhenmesstechnik. Weiterhin bietet die Erfindung den Vorteil, dass auf Neigungssensoren verzichtet werden kann, wodurch das erfindungsgemäße Nivelliersystem insgesamt robuster für den Baustelleneinsatz ausgebildet ist. Außerdem wird die bei der Erfindung vor der Einbaubohle angeordnete Messeinrichtung weniger durch den vibrierenden Betrieb der Einbaubohle beeinflusst, sodass die mittels der Messeinrichtung gemessenen Abstände genauer bei der Nivellierung der Einbaubohle berücksichtigt werden können. Ferner bietet die Erfindung eine kostengünstige Lösung, die insgesamt einfach am Straßenfertiger anbau- und nachrüstbar ist. Dadurch, dass bei der Erfindung die Regelungseinrichtung erst dann auf die erfasste Unebenheit der Messstelle anspricht, wenn die Vorderkante der Einbaubohle die Messstelle erreicht, können Reaktionszeiten des Nivellierzylinders besser kompensiert werden, wodurch eine Einbauschicht mit hoher Ebenheit herstellbar ist.The control device thus reacts to an unevenness in the subsurface detected at the measuring point at a later point in time during the paving journey, namely when the front edge of the towed screed reaches the measuring point at which the unevenness in the subsurface was recorded directly based on the correction value. The determination of the correction value for detecting unevenness in the subsurface, which precedes the actual control process, is based on a simple height measurement technology that is ideal for use on pavers. Furthermore, the invention offers the advantage that inclination sensors can be dispensed with, which means that the leveling system according to the invention is designed to be more robust overall for use on construction sites. In addition, the measuring device arranged in front of the screed in the invention is less influenced by the vibrating operation of the screed, so that the distances measured by the measuring device can be taken into account more precisely when leveling the screed. Furthermore, the invention offers a cost-effective solution that can be easily installed and retrofitted to the paver. Because in the invention the control device only responds to the detected unevenness of the measuring point when the front edge of the screed reaches the measuring point, reaction times of the leveling cylinder can be better compensated, whereby an installation layer with high evenness can be produced.
Vorzugsweise ist die Messeinrichtung am Zugarm der Einbaubohle befestigt. Bewegungen des Zugarms, insbesondere ein Anheben und Absenken des Zugarms, können damit in den Abstandsmessungen berücksichtigt werden. Vor allem kann die Messeinrichtung vom Zugarm aus seitlich des Straßenfertigers, d.h. direkt neben dem Fahrwerk, präzise Unebenheiten des Untergrunds vor dem Arbeitsbereich der Einbaubohle erfassen und/oder einen Abstand zu einer entlang des Untergrunds seitlich der Einbaubohle vorgesehenen Referenz messen, die bspw. als ein neben dem Straßenfertiger gespannter Leitdraht vorliegt. Als Referenz käme alternativ zum Leitdraht ein gespanntes Seil, eine Bordsteinkante und/oder eine bereits hergestellte Einbauschicht in Frage.The measuring device is preferably attached to the tension arm of the screed. Movements of the pull arm, in particular raising and lowering the pull arm, can thus be taken into account in the distance measurements. Above all, the measuring device can detect precise unevenness in the ground in front of the working area of the paving screed from the tension arm on the side of the paver, i.e. directly next to the chassis, and/or measure a distance to a reference provided along the ground on the side of the paving screed, for example as a There is a stretched guide wire next to the paver. As an alternative to the guide wire, a tensioned rope, a curb and/or an already prepared paving layer could be considered as a reference.
Gemäß einer Variante kann die Messeinrichtung an einer Zugmaschine des Straßenfertigers befestigt sein, wobei deren Messwerte optional mit Messwerten einer weiteren Messeinrichtung, die am Zugarm oder an der Einbaubohle angeordnet ist, verrechenbar sind, um eine bestimmte Bohlenhöhe einzuregeln.According to a variant, the measuring device can be attached to a tractor of the paver, the measured values of which can optionally be offset against measured values of a further measuring device, which is arranged on the traction arm or on the screed, in order to regulate a specific screed height.
Eine besonders vorteilhafte Variante sieht vor, dass die Messeinrichtung im Bereich des vorderen Zugpunkts des Zugarms angeordnet ist. Damit kann unmittelbar an der Stelle des Nivellierzylinders, d.h. ohne bemerkenswerten Einfluss der Zugarmneigung, eine Abstandsmessung zum Untergrund und/oder zur Referenz durchgeführt werden, worauf basierend eine präzise Nivellierung der Einbaubohle möglich ist.A particularly advantageous variant provides that the measuring device is arranged in the area of the front pull point of the pull arm. This means that directly at the location of the leveling cylinder, i.e. without any noticeable influence of the tension arm inclination, a distance measurement to the subsurface and/or to the reference can be carried out, based on which precise leveling of the screed is possible.
Vorzugsweise ist die Messeinrichtung drehbar am Zugarm, insbesondere am vorderen Zugpunkt des Zugarms oder zumindest in unmittelbarer Nähe davon, befestigt. Dadurch wird erreicht, dass sie unabhängig von einer beim Nivelliervorgang gesteuerten Neigungsänderung des Zugarms eine Gleichgewichtslage beibehält oder sich zumindest selbsttätig in diese zurückbewegt. In anderen Worten bedeutet dies, dass die Messeinrichtung den Neigungsänderungen des Zugarms nicht mitgeht. Damit werden die Höhenmessungen der Messeinrichtung nicht durch Neigungsänderungen des Zugarms beeinflusst, sondern erfassen lediglich Abstandsänderungen zum Untergrund und/oder zur Referenz.Preferably, the measuring device is rotatably attached to the pull arm, in particular at the front pull point of the pull arm or at least in the immediate vicinity thereof. This ensures that it maintains an equilibrium position or at least moves back into it automatically, regardless of a change in the inclination of the tension arm controlled during the leveling process. In other words, this means that the measuring device does not follow the changes in inclination of the pull arm. This means that the height measurements of the measuring device are not influenced by changes in the inclination of the tension arm, but only record changes in distance to the ground and/or to the reference.
Eine Variante sieht vor, dass am Zugarm für die Messeinrichtung eine Linearführung ausgebildet ist, entlang welcher die Messeinrichtung in Einbaurichtung verstellbar positionierbar ist. Damit kann der Abstand zwischen der Messeinrichtung und der Vorderkante der Einbaubohle eingestellt werden. Die Messeinrichtung kann zum Ignorieren von Neigungsänderungen des Zugarms drehbar an der Linearführung montiert sein.One variant provides that a linear guide is formed on the pull arm for the measuring device, along which the measuring device can be positioned in an adjustable manner in the installation direction. This allows the distance between the measuring device and the front edge of the screed to be adjusted. The measuring device can be rotatably mounted on the linear guide to ignore changes in inclination of the pull arm.
Gemäß einer Ausführungsform der Erfindung weist die Messeinrichtung mindestens einen ersten Sensor zum Messen eines Abstands zur Referenz sowie mindestens einen zweiten Sensor zum Messen eines Abstands zum Untergrund auf. Diese beiden Höhenmessungen können bei der Berechnung des Korrekturwerts berücksichtigt werden, um damit Unebenheiten des Untergrunds zu erfassen. Eine Variante sieht vor, dass die Messeinrichtung einen Sensor aufweist, der dazu ausgebildet ist, sowohl einen Abstand zum Untergrund als auch einen Abstand zur Referenz zu erfassen. Hierfür kann z.B. ein Radarsensor eingesetzt werden.According to one embodiment of the invention, the measuring device has at least one first sensor for measuring a distance to the reference and at least one second sensor for measuring a distance to the ground. These two height measurements can be taken into account when calculating the correction value in order to record unevenness in the ground. One variant provides that the measuring device has a sensor that is designed to detect both a distance to the ground and a distance to the reference. For example, a radar sensor can be used for this.
Vorzugsweise weisen der erste und der zweite Sensor in Einbaurichtung den gleichen Abstand zur Vorderkante der Einbaubohle auf. Damit können die beiden Sensoren in Einbaurichtung an derselben Messstelle Höhenmessungen durchführen, worauf basierend eine ggf. an der Messstelle vorliegende Unebenheit als Abweichung zum Planum präzise erfasst werden kann. Bei dieser Variante werden daher gleich zwei Abstandsmessungen an der gleichen Stelle vor der Einbaubohle durchgeführt, eine zum Untergrund und die andere zur Referenz, um darauf basierend für diese Messstelle den Korrekturwert zu bestimmen.Preferably, the first and second sensors are at the same distance from the front edge of the screed in the installation direction. This means that the two sensors can carry out height measurements at the same measuring point in the installation direction, based on which any unevenness that may be present at the measuring point can be precisely recorded as a deviation from the planum. In this variant, two distance measurements are carried out at the same point in front of the screed, one to the subsoil and the other to the reference, in order to determine the correction value for this measuring point based on this.
Der erste und/oder der zweite Sensor liegen vorzugsweise in Form eines optischen oder akustischen Sensors, z.B. als Laser- oder Ultraschallsensor, vor. Die Höhenmessungen können anhand einer Laufzeitmessung, einer Phasenlagemessung und/oder einer Lasertriangulation durchgeführt werden.The first and/or the second sensor are preferably in the form of an optical or acoustic sensor, for example a laser or ultrasonic sensor. The height measurements can can be carried out using a transit time measurement, a phase position measurement and/or a laser triangulation.
Vorstellbar ist es, dass der ermittelte Korrekturwert als Maß für eine im Untergrund erfasste Unebenheit gegenüber einem gemittelten Untergrundverlauf (Planum) am Straßenfertiger, beispielsweise mittels eines Displays des Bohlenbedienstands, visualisierbar ist. Am Display kann der Korrekturfaktor geringe und vergleichsweise große Unebenheiten farblich differenziert darstellen.It is conceivable that the determined correction value can be visualized as a measure of an unevenness recorded in the subsoil compared to an average subsoil course (grade) on the paver, for example by means of a display on the screed operator's station. On the display, the correction factor can show small and comparatively large unevennesses in differentiated colors.
Vorteilhaft ist es, wenn die Steuereinrichtung dazu ausgebildet ist, den Korrekturwert für die Messstelle anhand des an der Messstelle mittels des zweiten Sensors gemessenen Abstands zum Untergrund abzüglich des mittels des ersten Sensors gemessenen Abstands zur Referenz und weiter abzüglich einer voreingestellten Höhenlage der Referenz zum Planum zu bestimmen. Ein anhand dieser Gleichung für die Messstelle mittels der Steuereinrichtung berechneter Korrekturwert bildet präzise die dort von dem Planum abweichende Unebenheit, d.h. eine Erhebung oder eine Vertiefung im Untergrund, ab.It is advantageous if the control device is designed to calculate the correction value for the measuring point based on the distance to the ground measured at the measuring point using the second sensor, minus the distance to the reference measured using the first sensor and further minus a preset altitude of the reference to the subgrade determine. A correction value calculated using this equation for the measuring point using the control device precisely depicts the unevenness that deviates from the subsurface, i.e. an elevation or a depression in the subsurface.
Vorzugsweise ist die Steuereinrichtung dazu konfiguriert, zur Herleitung des Nivelliersollwerts für die Messstelle, d.h. zum Bilden des Sollwerts für einen Abstand des Sensors zur Referenz, in einem Zwischenschritt eine Differenz aus einem voreingestellten Basisnivelliersollwert und dem gespeicherten Korrekturwert zu bilden. Der Basisnivelliersollwert bietet für die Steuerungs- und Regelungsfunktion einen Richtwert, auf dessen Basis unter der Annahme eines ebenen, gemittelten Untergrunds, d.h. ein fiktiver Untergrund ohne Unebenheiten, die Einbaubohle geschleppt werden sollte. Der Korrekturwert dient zum Anpassen des Basisnivelliersollwerts für den praktischen Fall, dass die Messeinrichtung eine Unebenheit im Untergrund erfasst, wodurch sich ein für die Messstelle, an die Unebenheit angepasster präziserer Nivelliersollwert berechnen lässt. Damit kann die erfasste Unebenheit optimal kompensiert werden.Preferably, the control device is configured to derive the leveling setpoint for the measuring point, i.e. to form the setpoint for a distance of the sensor from the reference, in an intermediate step to form a difference between a preset base leveling setpoint and the stored correction value. The basic leveling setpoint provides a guideline value for the control and regulation function, on the basis of which the screed should be towed, assuming a flat, averaged surface, i.e. a fictitious surface without unevenness. The correction value is used to adjust the basic leveling setpoint in the practical case that the measuring device detects an unevenness in the subsurface, whereby a more precise leveling setpoint adapted to the unevenness can be calculated for the measuring point. This means that the detected unevenness can be optimally compensated for.
Eine vorteilhafte Weiterbildung sieht vor, dass die Steuereinrichtung dazu konfiguriert ist, aus der Differenz zwischen dem voreingestellten Basisnivelliersollwert und dem gespeicherten Korrekturwert abzüglich eines aktuell mittels der Messeinrichtung gemessenen Abstands zur Referenz den Nivelliersollwert zu berechnen. Dieser Nivelliersollwert liegt dann der Reglereinrichtung als Eingangsgröße vor, worauf basierend der Nivellierzylinder für eine Nivellierung der Einbaubohle ansteuerbar ist.An advantageous development provides that the control device is configured to calculate the leveling setpoint from the difference between the preset basic leveling setpoint and the stored correction value minus a distance to the reference currently measured by the measuring device. This leveling setpoint is then available to the control device as an input variable, based on which the leveling cylinder can be controlled to level the screed.
Gemäß einer Ausführungsform weist die Messeinrichtung mehrere Sensoren zum Messen eines Abstands zum Untergrund und/oder zur Referenz auf, wobei die Steuereinrichtung dazu ausgebildet ist, basierend auf mehreren damit zeitgleich durchgeführten Abstandsmessungen zum Untergrund und/oder zur Referenz einen jeweiligen Mittelwert als Basis zur Bestimmung des Korrekturwerts zu bilden. Dadurch, dass zur Bestimmung des Korrekturwerts mehrere Abstandsmessungen zum Untergrund und/oder zur Referenz gemittelt werden, kommt eine Filterfunktion zustande, sodass sanftere Übergänge bei der Nivellierung der Einbaubohle möglich sind, weil die Reglereinrichtung damit gewissermaßen gedämpft auf Unebenheiten während des Einbaubetriebs anspricht.According to one embodiment, the measuring device has a plurality of sensors for measuring a distance to the ground and/or to the reference, the control device for this purpose is designed to form a respective average value as a basis for determining the correction value based on several distance measurements carried out at the same time to the background and / or to the reference. The fact that several distance measurements to the subsurface and/or to the reference are averaged to determine the correction value creates a filter function so that smoother transitions when leveling the screed are possible because the control device thus responds to unevenness during the installation operation in a somewhat dampened manner.
Eine Weiterbildung der Erfindung sieht vor, dass die Steuereinrichtung dazu konfiguriert ist, den berechneten Korrekturwert mit einem von einer Geometrie der Einbaubohle abhängigen Kompensationsfaktor zu multiplizieren. Vorstellbar ist es, dass im Kompensationsfaktor außer oder anstelle der Geometrie der Einbaubohle bspw. das Gewicht der Einbaubohle und/oder zumindest ein während des Betriebs der Einbaubohle daran eingestellter und/oder erfasster Betriebsparameter, bspw. eine Tamperdrehzahl und/oder eine Heizleistung der Einbaubohle, berücksichtigt ist. Weiter vorstellbar ist es, dass anhand des Kompensationsfaktors eine Dichte des Untergrunds, auf welchem sich der Straßenfertiger während des Einbaus fortbewegt, berücksichtigt wird. Damit ließe sich bei der Nivellierung der Einbaubohle eine Nachgiebigkeit des Untergrunds, wodurch ggf. Unebenheiten schon durch den Betrieb der Einbaubohle ausgleichbar sind, berücksichtigen. Eine Ausführungsform sieht vor, dass im Korrekturfaktor eine aktuell hinter der Einbaubohle gemessene Einbautemperatur der hergestellten Einbauschicht berücksichtigt ist.A further development of the invention provides that the control device is configured to multiply the calculated correction value by a compensation factor that is dependent on a geometry of the screed. It is conceivable that in addition to or instead of the geometry of the screed, the compensation factor includes, for example, the weight of the screed and/or at least one operating parameter set and/or recorded thereon during operation of the screed, for example a tamper speed and/or a heating output of the screed, is taken into account. It is also conceivable that the compensation factor takes into account the density of the ground on which the paver moves during paving. This would allow the flexibility of the subsurface to be taken into account when leveling the screed, meaning that any unevenness can be compensated for by operating the screed. One embodiment provides that the correction factor takes into account an installation temperature of the installed installation layer that is currently measured behind the screed.
Vorzugsweise weist der Straßenfertiger zum Erfassen einer zurückgelegten Strecke der Vorderkante der Einbaubohle mindestens eine Wegmesseinrichtung auf, wobei die Berechnung des Nivelliersollwerts an der Steuereinrichtung triggerbar ist, wenn die mittels der Wegmesseinrichtung erfasste zurückgelegte Strecke der Einbaubohle einem Abstand zwischen der Messeinrichtung und der Vorderkante der Einbaubohle entspricht. Damit ist es möglich, dass die Reglereinrichtung zum richtigen Zeitpunkt und am richtigen Ort, d.h. an der Messstelle, eine auf Basis des dort berechneten Korrekturwerts ortsgenaue Nivellierung der Einbaubohle durchführt, sodass die an der Messstelle ggf. gemessene Unebenheit zuverlässig kompensiert werden kann.Preferably, the paver has at least one distance measuring device for detecting a distance traveled by the front edge of the screed, the calculation of the leveling setpoint being triggerable on the control device when the distance traveled by the screed recorded by means of the distance measuring device corresponds to a distance between the measuring device and the front edge of the screed . This makes it possible for the control device to carry out a precise leveling of the screed at the right time and at the right place, i.e. at the measuring point, based on the correction value calculated there, so that any unevenness measured at the measuring point can be reliably compensated for.
Besonders vorteilhaft ist es, wenn die Steuereinrichtung dazu ausgebildet ist, während einer Einbaufahrt des Straßenfertigers entlang der Einbaustrecke fortlaufend Korrekturwerte zu berechnen, diese für die jeweiligen Messstellen abzuspeichern und die jeweiligen abgespeicherten Korrekturwerte zur Bestimmung angepasster Nivelliersollwerte einzusetzen. Damit wird erreicht, dass die Reglereinrichtung entlang der Einbaustrecke auf alle Unebenheiten des Untergrunds zuverlässig anspricht, sodass entlang der gesamten Einbaustrecke eine ebene Einbauschicht hergestellt werden kann.It is particularly advantageous if the control device is designed to continuously calculate correction values during an paving journey of the paver along the paving route, to store these for the respective measuring points and to use the respective stored correction values to determine adapted leveling setpoints. This will ensures that the control device responds reliably to all unevenness in the subsurface along the installation route, so that a flat installation layer can be produced along the entire installation route.
Vorzugsweise ist die Steuereinrichtung dazu ausgebildet, ein GPS-datenbasiertes Untergrunddatenmodell zur Bestimmung des Korrekturwerts einzusetzen. Eine Variante sieht vor, dass das GPS-datenbasierte Untergrunddatenmodell mittels einer webbasierten Anwendung, insbesondere anhand einer cloudbasierten Anwendung, der Steuereinrichtung vorhaltbar ist, um den Straßenfertiger, insbesondere die daran ausgebildete Steuereinrichtung, mit aktualisierten Geountergrunddaten entlang der Einbaustrecke zu versorgen.The control device is preferably designed to use a GPS data-based underground data model to determine the correction value. One variant provides that the GPS data-based subsurface data model can be made available to the control device using a web-based application, in particular using a cloud-based application, in order to supply the paver, in particular the control device trained on it, with updated geosubsoil data along the paving route.
Gemäß einer Ausführungsform der Erfindung ist die Steuereinrichtung dazu ausgebildet, den Korrekturwert unter Einbeziehung einer an der Messstelle aktuell eingestellten Kolbenstellung des Nivellierzylinders zu berechnen. Die Kolbenstellung kann beispielsweise mittels eines, insbesondere anhand der Messeinrichtung, erfassbaren Ausfahrwegs des Kolbens dargestellt sein. Damit wäre es möglich, eine Unebenheit des Untergrunds auch dann festzustellen, wenn die Messeinrichtung lediglich die Abstandsmessung zur Referenz, bspw. zu einem gespannten Leitdraht, durchführt, wobei ansonsten keine Abstandsmessung zum Untergrund geschieht. Das Erfassen der Kolbenstellung des Nivellierzylinders kann damit die Abstandsmessung zum Untergrund ersetzen. Dies kann bei bestimmten Untergrundtypen, insbesondere bei offenporigen Untergrundflächen, vorteilhaft sein.According to one embodiment of the invention, the control device is designed to calculate the correction value taking into account a piston position of the leveling cylinder currently set at the measuring point. The piston position can be represented, for example, by means of an extension path of the piston that can be detected, in particular using the measuring device. This would make it possible to detect unevenness in the subsurface even if the measuring device only carries out the distance measurement to the reference, for example to a taut guide wire, with no distance measurement to the subsurface otherwise taking place. Detecting the piston position of the leveling cylinder can replace measuring the distance to the ground. This can be advantageous for certain types of substrate, especially open-pored substrate surfaces.
Vorstellbar ist es, dass die Steuereinrichtung dazu ausgebildet ist, den Korrekturwert für die Messstelle anhand des an der Messstelle mittels des ersten Sensors gemessenen Abstands zur Referenz zuzüglich der Höhenlage der Referenz zum Planum zuzüglich eines Abstands der Messeinrichtung zur Zugpunkthöhe weiter zuzüglich eines aufgrund der Kolbenstellung eingestellten Ausfahrwegs des Nivellierzylinders sowie abzüglich einer konstruktiven Höhe zwischen einer Fahrwerksunterseite des Straßenfertigers zum Zugpunkt des Nivellierzylinders bei eingefahrenem Zustand zu bestimmen.It is conceivable that the control device is designed to set the correction value for the measuring point based on the distance to the reference measured at the measuring point using the first sensor plus the height of the reference to the subgrade plus a distance of the measuring device to the pull point height plus one set based on the piston position To determine the extension path of the leveling cylinder and minus a constructive height between the underside of the paver's chassis and the pull point of the leveling cylinder when retracted.
Die vorliegende Erfindung betrifft auch ein Verfahren zum Nivellieren einer Einbaubohle eines Straßenfertigers, wobei eine Steuereinrichtung des Straßenfertigers in Abhängigkeit mindestens einer zum Untergrund und/oder zu einer Referenz durchgeführten Abstandsmessung mittels einer am Straßenfertiger vorgesehenen Messeinrichtung, wobei die Abstandsmessung an einer in Einbaurichtung vor einer Vorderkante der Einbaubohle liegenden Messstelle durchgeführt wird, einen Korrekturwert berechnet, diesen in einer Speichereinrichtung zumindest temporär speichert und bei fortgesetztem Einbaubetrieb unter Berücksichtigung des gespeicherten Korrekturwerts einen Nivelliersollwert für die Messstelle berechnet, anhand dessen mindestens ein Nivellierzylinder der Einbaubohle angesteuert wird, wenn die Vorderkante der Einbaubohle die Messstelle erreicht.The present invention also relates to a method for leveling a paving screed of a paver, wherein a control device of the paver depends on at least one distance measurement carried out to the subsoil and / or to a reference by means of a measuring device provided on the paver, the distance measurement being carried out on a front edge in the paving direction The measuring point lying on the screed is carried out, a correction value is calculated and this is stored at least temporarily in a storage device is stored and, when the paving operation continues, a leveling setpoint is calculated for the measuring point, taking into account the stored correction value, based on which at least one leveling cylinder of the screed is controlled when the front edge of the paving screed reaches the measuring point.
Vorzugsweise führt die Messeinrichtung zum Bestimmen des Korrekturwerts an der Messstelle vor der Einbaubohle mindestens zwei Abstandsmessungen durch, eine zur Referenz und eine zum Untergrund. Damit kann eine ggf. an der Messstelle vorliegende Unebenheit des Untergrunds als Abweichung vom Planum ortsgenau bestimmt und präzise zur Nivellierung der Einbaubohle eingesetzt werden.To determine the correction value, the measuring device preferably carries out at least two distance measurements at the measuring point in front of the screed, one to the reference and one to the subsurface. This means that any unevenness in the subsurface at the measuring point can be determined precisely as a deviation from the subgrade and used precisely to level the screed.
Das erfindungsgemäße Nivelliersystem und das erfindungsgemäße Nivellierverfahren können beidseitig am Straßenfertiger durchgeführt werden. Die zuvor in Zusammenhang mit der Erfindung vorgestellten Ausführungsformen können daher an beiden Seiten des Straßenfertigers zum Einsatz kommen.The leveling system according to the invention and the leveling method according to the invention can be carried out on both sides of the paver. The embodiments presented previously in connection with the invention can therefore be used on both sides of the paver.
Ausführungsformen der Erfindung werden anhand der folgenden Figuren genauer erläutert. Es zeigen:
- Figur 1
- einen Straßenfertiger zur Herstellung einer Einbauschicht auf einem Untergrund,
Figur 2- eine schematische, isolierte Darstellung der Einbaubohle des Straßenfertigers mit einer Messeinrichtung gemäß einer Variante der Erfindung,
Figur 3- eine schematische, isolierte Darstellung der Einbaubohle mit einer daran befestigten Messeinrichtung gemäß einer anderen Variante der Erfindung,
Figur 4- eine schematische Darstellung eines erfindungsgemäßen Regelkreises zum Durchführen der Nivellierung der Einbaubohle aus
den Figuren 2 und 3 , Figur 5- eine schematische, isolierte Darstellung der Einbaubohle mit einer daran befestigten Messeinrichtung gemäß einer weiteren Variante der Erfindung, und
- Figur 6
- eine schematische Darstellung eines Regelkreises zum Nivellieren der Einbaubohle gemäß der Variante aus
.Figur 5
- Figure 1
- a paver for producing a paving layer on a surface,
- Figure 2
- a schematic, isolated representation of the paver's paving screed with a measuring device according to a variant of the invention,
- Figure 3
- a schematic, isolated representation of the screed with a measuring device attached to it according to another variant of the invention,
- Figure 4
- a schematic representation of a control circuit according to the invention for carrying out the leveling of the screed from the
Figures 2 and 3 , - Figure 5
- a schematic, isolated representation of the screed with a measuring device attached to it according to a further variant of the invention, and
- Figure 6
- a schematic representation of a control circuit for leveling the screed according to the variant
Figure 5 .
Gleiche Komponenten sind in den Figuren durchgängig mit den gleichen Bezugszeichen versehen.The same components are given the same reference numerals throughout the figures.
In
Ferner zeigt
Das Nivelliersystem 15 weist eine Speichereinrichtung 16, eine Steuereinrichtung 17 sowie eine damit funktional verbundene Reglereinrichtung 18 zum Anpassen einer Einstellung des Nivellierzylinders 7 auf. Gemäß
Die Steuereinrichtung 17 aus
Ferner zeigt
Ferner zeigt
Die Steuereinrichtung 17 aus
Der Basisnivelliersollwert y1-Basis kann manuell von einem Bediener an einem Bedienpult des Straßenfertigers festgelegt werden, sodass sich dementsprechend eine gewünschte Höhe der Einbaubohle 4 für den Einbaubetrieb einstellen lässt. Die Höhe der Einbaubohle 4 kann durch den Bediener manuell ermittelt werden oder durch einen nicht gezeigten Schichtstärkensensor gemessen werden.The basic leveling setpoint y 1-basis can be set manually by an operator on a control panel of the paver, so that a desired height of the
Ferner zeigt
Claims (16)
- Road finishing machine (1), comprising a screed (4) for producing a paving layer (2) on a subsoil (3) on which the road finishing machine (1) is moving in the laying direction (R) along a laying section, wherein the screed (4) is height-adjustable and has a pulling arm (5) which is fixed to the road finishing machine (1) at a front pulling point (6) formed thereon by means of a levelling cylinder (7), at least one measuring means (10) for performing at least one distance measurement, a storage means (16), a controlling system (17) and a closed-loop controller means (18) operatively linked thereto for adapting a setting of the levelling cylinder (7), wherein the controlling system (17) is embodied to calculate a correction value (K) in response to at least one distance measurement performed with respect to the subsoil (3) and/or to a reference (11), which is performable at a measuring point (14) located in front of a front edge (9) of the screed (4) in the laying direction (R) and to at least temporarily store the correction value (K) in the storage means (17), characterized in that the controlling system (17) is configured to calculate, with a continued laying operation, a desired levelling value (y1-soll) for the measuring point (14), taking into consideration the stored correction value (K), on the basis of which the levelling cylinder (7) of the screed (4) is controlled when the front edge (9) of the screed (4) reaches the measuring point (14).
- Road finishing machine according to claim 1, characterized in that the measuring means (10) is fixed at the pulling arm (5) of the screed (4).
- Road finishing machine according to claim 1 or 2, characterized in that the measuring means (10) is arranged in the region of the front pulling point (6) of the pulling arm (5).
- Road finishing machine according to one of the preceding claims, characterized in that the measuring means (10) has at least one first sensor (12) for measuring a distance (y1) to the reference (11) and at least one second sensor (13) for measuring a distance (y2) to the subsoil (3).
- Road finishing machine according to claim 4, characterized in that the first and the second sensors (12, 13) have the same distance (x9) to the front edge (9) of the screed (4) in the laying direction (R).
- Road finishing machine according to claim 4 or 5, characterized in that the controlling system (17) is embodied to determine the correction value (K) for the measuring point (14) by means of the distance (y2) to the subsoil (3) measured at the measuring point (14) by means of the second sensor (13), minus the distance (y1) to the reference (11) measured by means of the first sensor (12), and furthermore minus a pre-set altitude (h11) of the reference (11) to the subsoil (3).
- Road finishing machine according to one of the preceding claims 4 to 6, characterized in that the controlling system (17) is configured to form, in an intermediate step, a difference of a pre-set desired basic levelling value (y1-Basis) and the stored correction value (K) to derive the desired levelling value (y1-soll) for the measuring point (14).
- Road finishing machine according to claim 7, characterized in that the controlling system (17) is configured to calculate, from the difference between the pre-set desired basic levelling value (y1-Basis) and the stored correction value (K), minus a distance (y1) to the reference (11) currently measured by means of the measuring means (10), the desired levelling value (y1-Soll).
- Road finishing machine according to one of the preceding claims, characterized in that the measuring means (10) has a plurality of sensors (12, 13) for measuring a distance (y1, y2) to the subsoil (3) and/or to the reference (11), wherein the controlling system (17) is embodied to form, based on a plurality of distance measurements (y1, y2) to the subsoil (3) and/or to the reference (11) performed simultaneously, a respective average value as a basis for the determination of the correction value (K).
- Road finishing machine according to one of the preceding claims, characterized in that the controlling system (17) is configured to multiply the calculated correction value (K) with a compensation factor (c) depending on a geometry of the screed (4).
- Road finishing machine according to one of the preceding claims, characterized in that the road finishing machine (1) includes, for detecting a covered section of the front edge (9) of the screed (4), at least one path measuring means (20), wherein the calculation of the desired levelling value (y1-soll) can be triggered by means of the controlling system (17), if the covered section of the front edge (9) of the screed (4) detected by the path measuring means (20) corresponds to a distance (x9) between the measuring means (10) and the front edge (9) of the screed (4).
- Road finishing machine according to one of the preceding claims, characterized in that the controlling system (17) is embodied to continuously calculate correction values (K) during a laying drive of the road finishing machine (1) along the laying section, to store them and to employ the respective stored correction values (K) to determine adapted desired levelling values (y1-Soll).
- Road finishing machine according to one of the preceding claims, characterized in that the controlling system (17) is embodied to employ a GPS data-based subsoil data model to determine the correction value (K).
- Road finishing machine according to one of the preceding claims, characterized in that the controlling system (17) is embodied to calculate the correction value (K) taking into consideration a piston position of the levelling cylinder (7) currently set at the measuring point (14).
- Road finishing machine according to one of the preceding claims, characterized in that the measuring means (10) is fixed to a tractor (22) of the road finishing machine (1), wherein its measured values can be calculated with measured values of a further measuring means which is arranged at the pulling arm or at the screed to control a certain screed height.
- Method for levelling a screed (4) of a road finishing machine (1), wherein a controlling system (17) of the road finishing machine (1) calculates a correction value (K) in response to at least one distance measurement of a measuring means (10) performed with respect to the subsoil (3) and/or to a reference (11), wherein the distance measurement is performed at a measuring point (14) located in front of a front edge (9) of the screed (4) in a laying direction (R), and at least temporarily stores the correction value (K) in a storage means (16), characterized in that the controlling system (17) calculates a desired levelling value (y1-soll) for the measuring point (14) with a continued laying operation, taking into consideration the stored correction value (K), by means of which at least one levelling cylinder (7) of the screed (4) is controlled when the front edge (9) of the screed (4) reaches the measuring point (14).
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL20200791.0T PL3981918T3 (en) | 2020-10-08 | 2020-10-08 | Road finisher and method for levelling the screed of a finisher |
EP20200791.0A EP3981918B1 (en) | 2020-10-08 | 2020-10-08 | Road finisher and method for levelling the screed of a finisher |
CN202111158048.1A CN114293438B (en) | 2020-10-08 | 2021-09-28 | Road finishing machine and method for leveling a screed |
CN202122364784.4U CN216688925U (en) | 2020-10-08 | 2021-09-28 | Road finisher |
BR102021020108-8A BR102021020108A2 (en) | 2020-10-08 | 2021-10-06 | ROAD FINISHING MACHINE AND METHOD FOR LEVELING A TABLE |
JP2021165520A JP2022062702A (en) | 2020-10-08 | 2021-10-07 | Road finishing machine and screed leveling method |
US17/497,086 US20220112669A1 (en) | 2020-10-08 | 2021-10-08 | Road finishing machine and method for levelling a screed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20200791.0A EP3981918B1 (en) | 2020-10-08 | 2020-10-08 | Road finisher and method for levelling the screed of a finisher |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3981918A1 EP3981918A1 (en) | 2022-04-13 |
EP3981918B1 true EP3981918B1 (en) | 2024-03-13 |
Family
ID=72811693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20200791.0A Active EP3981918B1 (en) | 2020-10-08 | 2020-10-08 | Road finisher and method for levelling the screed of a finisher |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220112669A1 (en) |
EP (1) | EP3981918B1 (en) |
JP (1) | JP2022062702A (en) |
CN (2) | CN114293438B (en) |
BR (1) | BR102021020108A2 (en) |
PL (1) | PL3981918T3 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11834797B2 (en) * | 2021-09-08 | 2023-12-05 | Caterpillar Paving Products Inc. | Automatic smoothness control for asphalt paver |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4807131A (en) * | 1987-04-28 | 1989-02-21 | Clegg Engineering, Inc. | Grading system |
WO1992008847A1 (en) * | 1990-11-14 | 1992-05-29 | Niigata Engineering Co., Ltd. | Method of controlling pavement thickness in motor grader and method of setting conditions for automatic control |
DE29619831U1 (en) | 1996-11-14 | 1997-01-09 | MOBA-electronic Gesellschaft für Mobil-Automation mbH, 65604 Elz | Device for controlling the installation height of a paver |
DE19647150C2 (en) | 1996-11-14 | 2001-02-01 | Moba Mobile Automation Gmbh | Device and method for controlling the installation height of a road finisher |
DE10025462A1 (en) | 2000-05-23 | 2001-12-06 | Moba Mobile Automation Gmbh | Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor |
DE10025474B4 (en) | 2000-05-23 | 2011-03-10 | Moba - Mobile Automation Gmbh | Coating thickness determination by relative position detection between the tractor and the traction arm of a paver |
EP1672122A1 (en) * | 2004-12-17 | 2006-06-21 | Leica Geosystems AG | Method and apparatus for controlling a road working machine |
US8070385B2 (en) | 2008-07-21 | 2011-12-06 | Caterpillar Trimble Control Technologies, Llc | Paving machine control and method |
PL2535456T3 (en) * | 2011-06-15 | 2014-05-30 | Joseph Voegele Ag | Road finisher with coating measuring device |
EP3130939A1 (en) * | 2015-08-13 | 2017-02-15 | Joseph Vögele AG | Road finisher with a radar based levelling device and control method |
EP3498914B1 (en) * | 2017-12-13 | 2024-05-15 | Joseph Vögele AG | Adjustment of the levelling cylinder in a road finisher |
-
2020
- 2020-10-08 EP EP20200791.0A patent/EP3981918B1/en active Active
- 2020-10-08 PL PL20200791.0T patent/PL3981918T3/en unknown
-
2021
- 2021-09-28 CN CN202111158048.1A patent/CN114293438B/en active Active
- 2021-09-28 CN CN202122364784.4U patent/CN216688925U/en active Active
- 2021-10-06 BR BR102021020108-8A patent/BR102021020108A2/en unknown
- 2021-10-07 JP JP2021165520A patent/JP2022062702A/en active Pending
- 2021-10-08 US US17/497,086 patent/US20220112669A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
CN216688925U (en) | 2022-06-07 |
CN114293438B (en) | 2023-06-02 |
US20220112669A1 (en) | 2022-04-14 |
CN114293438A (en) | 2022-04-08 |
BR102021020108A2 (en) | 2023-03-07 |
JP2022062702A (en) | 2022-04-20 |
PL3981918T3 (en) | 2024-07-15 |
EP3981918A1 (en) | 2022-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2025811B1 (en) | Method for laying a road paving and paver for carrying out this method | |
EP3739122B1 (en) | Road finisher and method for determining a thickness of a layer of an established installation layer | |
DE19647150C2 (en) | Device and method for controlling the installation height of a road finisher | |
DE112009001767B4 (en) | Paving machine control and process | |
DE102007026527B4 (en) | Control system for an engine grader, engine grader and method for controlling an engine grader | |
EP1825064B1 (en) | Method and device for monitoring a road processing machine | |
DE102011001542B4 (en) | Control and corresponding procedure for a tar machine | |
EP2535456B1 (en) | Road finisher with coating measuring device | |
EP2199466B1 (en) | Method for laying a paving surface | |
EP3048199B2 (en) | Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer | |
DE102008060425B4 (en) | Method for automatically calibrating an electrically operated hydraulic valve | |
US20110229263A1 (en) | Method for controlling the process when producing a paving mat and road finisher | |
EP0834620A1 (en) | Paving train | |
EP3498914B1 (en) | Adjustment of the levelling cylinder in a road finisher | |
DE102017002225A1 (en) | Road paver with control unit for determining the weight and / or the center of gravity and / or the width of the screed and method | |
EP0388819A1 (en) | Road-paving machine | |
DE102005022266A1 (en) | Paver for floor-level installation of layers for roads or the like. | |
EP3892777B1 (en) | Road finisher and method with transverse profile control | |
EP3981918B1 (en) | Road finisher and method for levelling the screed of a finisher | |
EP0495171B1 (en) | Laying-down course thickness adjusting method with a finisher | |
DE10025462A1 (en) | Determination of layer thickness of final surface coat applied by surface finishing machine using inclination sensor | |
DE10038943A1 (en) | Asphalt pavers and paving processes | |
DE10025474B4 (en) | Coating thickness determination by relative position detection between the tractor and the traction arm of a paver | |
EP4056760B1 (en) | Road finisher with levelling cascade control | |
DE102014010837A1 (en) | Process for the production of a road surface and road paver |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220919 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230524 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20231107 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020007319 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240614 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240715 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240713 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |