[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3969321A1 - Bordlader und verfahren zum laden einer hochvoltbatterie eines hochvoltbordnetzes oder einer niedervoltbatterie eines niedervoltbordnetzes - Google Patents

Bordlader und verfahren zum laden einer hochvoltbatterie eines hochvoltbordnetzes oder einer niedervoltbatterie eines niedervoltbordnetzes

Info

Publication number
EP3969321A1
EP3969321A1 EP20710871.3A EP20710871A EP3969321A1 EP 3969321 A1 EP3969321 A1 EP 3969321A1 EP 20710871 A EP20710871 A EP 20710871A EP 3969321 A1 EP3969321 A1 EP 3969321A1
Authority
EP
European Patent Office
Prior art keywords
voltage
low
battery
voltage battery
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20710871.3A
Other languages
English (en)
French (fr)
Inventor
Urs Boehme
Akin Candir
André Haspel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Publication of EP3969321A1 publication Critical patent/EP3969321A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to an on-board charger for charging a high-voltage battery
  • the on-board charger comprises a line filter for filtering an AC voltage and a power factor correction filter for adapting an input current. Furthermore, the on-board charger comprises a first DC / DC converter, which has a transformer with a primary side and a secondary side, with the first
  • the on-board charger also includes a DC voltage filter.
  • the invention also relates to a method for charging a high-voltage battery of a high-voltage vehicle electrical system or a low-voltage battery of a low-voltage vehicle electrical system.
  • Electric vehicles or plug-in vehicles have the option of charging a high-voltage battery at a charging station or at a household connection in one or more phases with an on-board charger.
  • the high-voltage battery supplies other high-voltage components, such as the electric drive (s), air conditioning, heating or an infotainment system.
  • US 2010/0231169 A1 discloses a motor vehicle which has an electric
  • Circuit includes and can be electrically connected to an electrical network. Furthermore, the motor vehicle includes an electric drive that is electrically connected to the circuit and a power conversion module that is electrically connected to the electric drive is connected. With an energy storage unit that is
  • the object of the present invention is to provide an on-board charger and a method with which an on-board charger can be functionally expanded so that synergies can be used.
  • One aspect of the invention relates to an on-board charger for charging a high-voltage battery of a high-voltage on-board network or a low-voltage battery of a low-voltage on-board network.
  • the on-board charger has a line filter for filtering an alternating voltage and a
  • the high-voltage battery is connected to a first circuit on the secondary side of the first DC voltage converter
  • the on-board loader also includes a
  • the low-voltage battery can be supplied with a second DC voltage with a second circuit on the secondary side of the first DC voltage converter.
  • a control unit is designed such that either the first
  • DC-DC converter can be activated.
  • synergies can be used.
  • the first DC / DC converter to supply the high-voltage battery and the low-voltage battery, the functions of an on-board charger and a DC / DC converter in a single component, respectively
  • the on-board charger in particular takes over the functions of the DC voltage converter. In this way, components, weight, volume and costs can be saved in particular. Using the two
  • the high-voltage battery in particular can be charged in one or three phases.
  • the AC voltage on the input side is first filtered with the line filter as the first part of the power stage.
  • the power factor correction filter PFC
  • the input current should be in phase with the mains voltage on the input side. This reduces, for example, the harmonics that are fed back into the network, and the
  • Power factor correction filter a regulated output voltage, by means of which the downstream DC voltage converter can be supplied.
  • the power factor correction filter is followed by the first DC / DC converter, which provides galvanic isolation and generates an output voltage that behaves precisely in accordance with the charging profile of the high-voltage battery.
  • Input voltage of the high-voltage battery is made available, the rectified input voltage is filtered with the aid of a
  • the on-board charger can be used to charge the high-voltage battery of the vehicle
  • the first DC voltage converter in particular has the transformer, which is divided into a primary side and a secondary side.
  • the primary side includes, for example, a primary coil and the secondary side includes a secondary coil.
  • the secondary side of the first DC voltage converter is in particular divided into two parts or into two separate secondary coils.
  • Secondary coil of the secondary side divided into a first secondary coil and a second secondary coil. If the high-voltage battery should be charged during a charging process, the control unit is used to activate the first secondary coil of the
  • DC voltage can be supplied or charged.
  • clocks the control unit controls the charging mode and adapts the first DC voltage to the required charging voltage for the high-voltage battery.
  • the second secondary coil is deactivated.
  • the activation of the second secondary coil of the secondary side and the simultaneous deactivation of the first secondary coil take place when the electrically operated vehicle or the hybrid vehicle is in ferry operation.
  • the second secondary coil of the first DC voltage converter With the help of the second secondary coil of the first DC voltage converter, the low-voltage on-board network or the low-voltage battery is supplied with the second DC voltage.
  • the low-voltage electrical system can be a 12 V electrical system.
  • Another aspect of the invention relates to a method for loading a
  • Low-voltage vehicle electrical system the high-voltage battery being charged with a first direct voltage, which is generated with a first circuit on a secondary side of a transformer of a direct voltage converter.
  • the low-voltage battery is charged with a second direct voltage, which is generated with a second circuit on the secondary side of the direct-voltage converter, it being monitored that only the low-voltage battery or only the high-voltage battery is charged.
  • the high-voltage battery or the low-voltage battery of an electrically operated vehicle or a hybrid vehicle is charged.
  • the first direct voltage is converted by converting an input-side alternating voltage on an on-board charger.
  • the DC / DC converter is formed from a secondary side and a primary side and includes a
  • Transformer that has a primary coil and a secondary coil.
  • the secondary side of the DC voltage converter is divided into a first secondary coil and a second secondary coil.
  • the first secondary coil is switched to active, whereby the high-voltage battery of the
  • High-voltage electrical system can be supplied or charged with the first DC voltage.
  • the high-voltage battery is charged during a charging operation of the electrically operated vehicle or the hybrid vehicle.
  • the first secondary coil can be deactivated and the second secondary coil on the secondary side can be activated, so that the
  • Low-voltage battery can be charged with the second DC voltage.
  • the low-voltage battery can be a battery of a 12 V vehicle electrical system. In particular, it is monitored that only either the low-voltage battery or only the high-voltage battery can be charged. In particular, the low-voltage battery is charged via the battery voltage of the high-voltage battery.
  • FIG. 1 shows a schematic representation of an on-board loader
  • FIG. 2 shows a schematic circuit arrangement for charging a high-voltage battery
  • FIG. 3 shows a schematic circuit arrangement for charging a low-voltage battery.
  • Fig. 1 shows an on-board charger 1 for charging a high-voltage battery 2 of a
  • the on-board charger 1 can, for example, be used for a single-phase or a three-phase
  • the high-voltage battery 2 or the low-voltage battery 3 can be used electrically with the on-board charger
  • the on-board charger 1 has a line filter 4 on the input side.
  • An input-side alternating voltage UAC which is present at the input of the on-board charger 1, can be filtered with the line filter 4.
  • a power factor correction filter 5 is connected downstream, with which an input current of the AC voltage UAC can be brought into a sinusoidal curve, in particular in phase with the alternating voltage UAC.
  • the power factor correction filter 5 provides a regulated output voltage for the
  • the power factor correction filter 5 comprises a precharge circuit 7 with which the following first
  • the precharge circuit 7 of the power factor correction filter 5 has a first resistor Ri and a
  • the first DC voltage converter 6 comprises a transformer 8 (see FIG. 2).
  • the transformer 8 is divided into a primary side 9 and a secondary side 10.
  • the primary side 9 includes in particular a primary coil 11, and the secondary side 10 is divided into a first secondary coil 12 and a second secondary coil 13.
  • the first DC voltage converter 6 is in particular galvanically isolated and provides the first DC voltage U1.
  • the first DC voltage U1 is then filtered with a DC voltage filter 14 and the high-voltage high-voltage battery 2 for
  • a precharge circuit 15 can be connected upstream of the high-voltage battery 2, by means of which the high-voltage battery 2 can be charged from the first direct voltage U1.
  • the high-voltage battery 2 can be precharged via a second resistor R2.
  • a precharge switch Sv is closed. It is also conceivable that with the first
  • an intermediate circuit capacitor CK can be charged.
  • the precharge switch Sv and a first main contactor HS1 and a second main contactor HS2 are open.
  • the two main contactors HS1 and HS2 are closed, the high-voltage battery 2 can be charged via the intermediate circuit capacitor CK.
  • a pre-charging circuit in the charger and in the high-voltage battery 2 can be dispensed with.
  • the on-board charger 1 can be designed for a charging operation of up to 3.7 kW at 230 V and 16 A.
  • Fig. 2 shows a schematic arrangement of the on-board charger 1 when loading the
  • High-voltage battery 2 is used with the first
  • the first secondary coil 12 is the first circuit Secondary side 10 is active and the second secondary coil 13 is deactivated.
  • the activation of the secondary coil 12 and the second secondary coil 13 of the secondary side 10 takes place in particular via a control unit 16 of the on-board charger 1.
  • the control unit 16 ensures that either the first circuit or a second
  • Wiring of the secondary side 10 of the first DC voltage converter 6 is active. Only high-voltage battery 3 or low-voltage battery 2 can be charged at a time. When the high-voltage battery 2 is charged with the first direct voltage U1, the switches S1, S2, S4 are open and the switch S3 is closed. In particular, the control unit 16 clocks the charging operation to a required charging voltage for the
  • the switches S1 to S4 can be mechanical switches or semiconductor switches. The use of mechanical switches and / or semiconductor switches depends on specific safety requirements for the vehicle.
  • the high-voltage battery 2 is charged in the charging mode of the electrically operated vehicle. Since the low-voltage battery 3 or the second secondary coil 13 is deactivated during the charging operation of the high-voltage battery 2, a third DC voltage U3 is provided by means of a second DC-DC converter 17 and thus the low-voltage electrical system or the low-voltage battery 3 is supplied.
  • High-voltage battery 3 can be integrated.
  • the second serves to integrate.
  • the DC voltage converter 17 for supplying or ensuring an emergency call supply for safety-relevant components of the vehicle.
  • the second DC voltage converter 17 can be used to ensure a supply of the emergency components when the high-voltage on-board network or a high-voltage battery 2 is switched off or disconnected.
  • a voltage of 12 V can be provided.
  • the second DC voltage converter 17 can be, for example, a mini converter.
  • the low-voltage battery 3 shows a charging process of the low-voltage battery 3 with the aid of the on-board charger 1.
  • the low-voltage battery 3 is charged in a ferry operation of the electrically operated vehicle or the hybrid vehicle.
  • switches S1, S2, S4 are closed and switch S3 is open.
  • the low-voltage electrical system or the low-voltage battery 3 are charged by means of the second circuitry of the DC-DC converter 6.
  • the first secondary coil 12 of the secondary side 10 is deactivated, and the second secondary coil 13 of the secondary side 10 is active.
  • the activation or deactivation takes place via the control unit 16.
  • the battery voltage U ßat of the high-voltage battery 2 is converted into the second direct voltage U2.
  • the control unit 16 is clocked in such a way that, in particular, a 12 V on-board network can be supplied.
  • the first DC voltage converter 6 can be used to precharge the high-voltage on-board electrical system with the aid of the low-voltage battery 3.
  • the high-voltage battery 2 cannot be charged.
  • the on-board charger 1 includes the functions of an on-board charger and a DC-DC converter, in that the on-board charger 1 uses the synergies of both functions.
  • the function of the on-board charger and the DC-DC converter is merged in a housing or in a component as an on-board charger 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft einen Bordlader (1) zum Laden einer Hochvoltbatterie (2) eines Hochvoltbordnetzes oder einer Niedervoltbatterie (3) eines Niedervoltbordnetzes, mit - einem Netzfilter (4) zum Filtern einer Wechselspannung (UAC), - einem Leistungsfaktorkorrekturfilter (5) zur Anpassung eines Eingangsstroms, - einem ersten Gleichspannungswandler (6), der einen Transformator (8) mit einer Primärseite (9) und einer Sekundärseite (10) aufweist, wobei mit dem ersten Gleichspannungswandler (6) die Hochvoltbatterie (2) über eine erste Beschaltung der Sekundärseite (10) des ersten Gleichspannungswandlers (6) mit einer ersten Gleichspannung (U1) versorgbar ist, - einem Gleichspannungsfilter (14), umfassend - eine zweite Beschaltung der Sekundärseite (10) des ersten Gleichspannungswandlers (6), mit welcher die Niedervoltbatterie (3) mit einer zweiten Gleichspannung (U2) versorgbar ist, - eine Kontrolleinheit (16) zum Aktivieren entweder der ersten Beschaltung oder der zweiten Beschaltung der Sekundärseite (10) des ersten Gleichspannungswandlers (6).

Description

Bordlader und Verfahren zum Laden einer Hochvoltbatterie eines Hochvoltbordnetzes oder einer Niedervoltbatterie eines Niedervoltbordnetzes
Die Erfindung betrifft einen Bordlader zum Laden einer Hochvoltbatterie eines
Hochvoltbordnetzes oder einer Niedervoltbatterie eines Niedervoltbordnetzes. Der Bordlader umfasst einen Netzfilter zum Filtern einer Wechselspannung und einen Leistungsfaktorkorrekturfilter zur Anpassung eines Eingangsstroms. Des Weiteren umfasst der Bordlader einen ersten Gleichspannungswandler, der einen Transformator mit einer Primärseite und einer Sekundärseite aufweist, wobei mit dem ersten
Gleichspannungswandler die Hochvoltbatterie über eine erste Beschaltung der
Sekundärseite des ersten Gleichspannungswandlers mit einer ersten Gleichspannung versorgbar ist. Des Weiteren umfasst der Bordlader einen Gleichspannungsfilter. Des Weiteren betrifft die Erfindung ein Verfahren zum Laden einer Hochvoltbatterie eines Hochvoltbordnetzes oder eine Niedervoltbatterie eines Niedervoltbordnetzes.
Elektrofahrzeuge oder Plug-in-Fahrzeuge besitzen die Möglichkeit, eine Hochvoltbatterie an einer Ladesäule oder an einem Haushaltsanschluss ein- oder mehrphasig mit einem On-Bord-Lader zu laden. Die Hochvoltbatterie versorgt weitere Hochvoltkomponenten, wie zum Beispiel den oder die Elektroantriebe, eine Klimaanlage, eine Heizung oder ein Infotainmentsystem. Des Weiteren gibt es einen Gleichspannungswandler, der aus der Hochvoltspannung der Hochvoltbatterie eine Niedervoltspannung erzeugt und das 12 V- Bordnetz versorgt.
Die US 2010/0231169 A1 offenbart ein Kraftfahrzeug, welches eine elektrische
Schaltung umfasst und elektrisch mit einem elektrischen Netz verbunden werden kann. Des Weiteren umfasst das Kraftfahrzeug einen elektrischen Antrieb, der elektrisch mit der Schaltung verbunden ist und ein Stromumwandlungsmodul, das elektrisch mit dem elektrischen Antrieb verbunden ist. Mit einer Energiespeichereinheit ist der
Energieumwandler elektrisch mit einem Modul verbunden.
Dabei ergibt sich der Nachteil, dass für einen Ladebetrieb einer Hochvoltbatterie und/oder einer Niedervoltbatterie eine Vielzahl an elektrischen Schaltungen und Bauteile benötigt werden.
Aufgabe der vorliegenden Erfindung ist es, einen Bordlader und ein Verfahren bereitzustellen, mit welchen ein Bordlader funktionell erweitert werden kann, so dass Synergien genutzt werden können.
Diese Aufgabe wird durch einen Bordlader und ein Verfahren gemäß den unabhängigen Patentansprüchen gelöst. Sinnvolle Weiterbildungen ergeben sich aus den
Unteransprüchen.
Ein Aspekt der Erfindung betrifft einen Bordlader zum Laden einer Hochvoltbatterie eines Hochvoltbordnetzes oder einer Niedervoltbatterie eines Niedervoltbordnetzes. Der Bordlader weist einen Netzfilter zum Filtern einer Wechselspannung und einen
Leistungsfaktorkorrekturfilter zur Anpassung eines Eingangsstroms auf. Mit einem ersten Gleichspannungswandler des Bordladers, der einen Transformator mit einer Primärseite und einer Sekundärseite aufweist, ist die Hochvoltbatterie über eine erste Beschaltung der Sekundärseite des ersten Gleichspannungswandlers mit einer ersten
Gleichspannung versorgbar. Des Weiteren umfasst der Bordlader einen
Gleichspannungsfilter. Mit einer zweiten Beschaltung der Sekundärseite des ersten Gleichspannungswandlers ist die Niedervoltbatterie mit einer zweiten Gleichspannung versorgbar. Eine Kontrolleinheit ist derart ausgebildet, dass entweder die erste
Beschaltung oder die zweite Beschaltung der Sekundärseite des ersten
Gleichspannungswandlers aktiviert werden kann. Durch Aufteilung der Sekundärseite des ersten Gleichspannungswandlers können Synergien genutzt werden. Insbesondere kann durch Verwendung des ersten Gleichspannungswandlers zur Versorgung der Hochvoltbatterie und der Niedervoltbatterie die Funktionen eines Bordladers und eines Gleichspannungswandlers in einer einzigen Komponente beziehungsweise
Schaltanordnung genutzt werden. Dabei übernimmt insbesondere der Bordlader die Funktionen des Gleichspannungswandlers. Dadurch können insbesondere Bauteile, Gewicht, Volumen und Kosten eingespart werden. Durch Verwendung der zwei
Funktionen der zwei unterschiedlichen Komponenten an ein und demselben Gehäuse kann insbesondere auf ein zusätzliches Kühlkonzept verzichtet werden, da beide Funktionen mit demselben Kühlkonzept in demselben Gehäuse gekühlt werden können. Insbesondere reduziert sich durch Verwendung der zwei Funktionen an einem Gehäuse die Anzahl von Schnittstellen, Hochvoltspannungsleitungen sowie
Niedervoltspannungsleitungen. Insbesondere kann dadurch eine Verlustleistung im Ladebetrieb der Hochvoltbatterie oder der Niedervoltbatterie kleingehalten werden, da nicht mehrere elektronische Bauteile oder Schaltungen benötigt werden.
Mit dem Bordlader kann insbesondere die Hochvoltbatterie einphasig oder dreiphasig geladen werden. Insbesondere wird zuerst die eingangsseitige Wechselspannung mit dem Netzfilter als erster Teil der Leistungsstufe gefiltert. Nach dieser Filterung kann mittels des Leistungsfaktorkorrekturfilters (PFC) der Eingangsstrom einem möglichst sinusförmigen Verlauf angepasst werden. Insbesondere soll der Eingangsstrom phasengleich zur eingangsseitigen Netzspannung sein. Dadurch verringern sich beispielsweise die in das Netz zurückgeweiteten Oberschwingungen, und der
Leistungsfaktor verbessert sich dadurch. Außerdem erzeugt die PFC-Stufe des
Leistungsfaktorkorrekturfilters eine geregelte Ausgangsspannung, mittels welcher der nachgeschaltete Gleichspannungswandler versorgt werden kann. Nach dem
Leistungsfaktorkorrekturfilter schließt sich der erste Gleichspannungswandler an, der für die galvanische Isolation sorgt und eine Ausgangsspannung generiert, die sich genau gemäß dem Ladeprofil der Hochvoltbatterie verhält. Bevor die gleichgerichtete
Eingangsspannung der Hochvoltbatterie zur Verfügung gestellt wird, erfolgt eine Filterung der gleichgerichteten Eingangsspannung mit Hilfe eines
Gleichspannungsfilters.
Insbesondere kann der Bordlader zum Laden der Hochvoltbatterie des
Hochvoltbordnetzes oder der Niedervoltbatterie des Niedervoltbordnetzes eines elektrisch betreibbaren Fahrzeugs oder eines Hybridfahrzeugs verwendet werden. Der erste Gleichspannungswandler weist insbesondere den Transformator auf, welcher in eine Primärseite und in eine Sekundärseite aufgeteilt ist. Dabei umfasst die Primärseite beispielsweise eine Primärspule und die Sekundärseite eine Sekundärspule. Die Sekundärseite des ersten Gleichspannungswandlers wird insbesondere in zwei Teile beziehungsweise in zwei separate Sekundärspulen aufgeteilt. Dabei wird die
Sekundärspule der Sekundärseite in eine erste Sekundärspule und in eine zweite Sekundärspule unterteilt. Wenn die Hochvoltbatterie bei einem Ladevorgang geladen werden sollte, wird mit Hilfe der Kontrolleinheit die erste Sekundärspule der
Sekundärseite aktiv geschaltet, wodurch die Hochvoltbatterie mit der ersten
Gleichspannung versorgt beziehungsweise geladen werden kann. Insbesondere taktet die Kontrolleinheit den Ladebetrieb und passt die erste Gleichspannung an die geforderte Ladespannung für die Hochvoltbatterie an. Insbesondere ist bei aktiver erster Sekundärspule der Sekundärseite die zweite Sekundärspule deaktiviert.
Beispielsweise erfolgt die Aktivierung der zweiten Sekundärspule der Sekundärseite und die gleichzeitige Deaktivierung der ersten Sekundärspule bei einem Fährbetrieb des elektrisch betreibbaren Fahrzeugs oder des Hybridfahrzeugs. Dabei wird mit Hilfe der zweiten Sekundärspule des ersten Gleichspannungswandlers das Niedervoltbordnetz beziehungsweise die Niedervoltbatterie mit der zweiten Gleichspannung versorgt.
Beispielsweise kann es sich bei dem Niedervoltbordnetz um ein 12 V-Bordnetz handeln.
Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zum Laden einer
Hochvoltbatterie eines Hochvoltbordnetzes oder einer Niedervoltbatterie eines
Niedervoltbordnetzes, wobei die Hochvoltbatterie mit einer ersten Gleichspannung, welche mit einer ersten Beschaltung einer Sekundärseite eines Transformators eines Gleichspannungswandlers erzeugt wird, geladen wird. Die Niedervoltbatterie wird mit einer zweiten Gleichspannung, welche mit einer zweiten Beschaltung der Sekundärseite des Gleichspannungswandlers erzeugt wird, geladen, wobei überwacht wird, dass nur die Niedervoltbatterie oder nur die Hochvoltbatterie geladen wird.
Insbesondere wird die Hochvoltbatterie oder die Niedervoltbatterie eines elektrisch betriebenen Fahrzeugs oder eines Hybridfahrzeugs geladen.
Insbesondere wird die erste Gleichspannung durch Umwandlung einer eingangsseitigen Wechselspannung an einem Bordlader umgewandelt. Der Gleichspannungswandler ist aus einer Sekundärseite und einer Primärseite gebildet und umfasst einen
Transformator, der eine Primärspule und eine Sekundärspule aufweist. Die
Sekundärseite des Gleichspannungswandlers ist in eine erste Sekundärspule und in eine zweite Sekundärspule aufgeteilt. Bei der ersten Beschaltung der Sekundärseite wird die erste Sekundärspule aktiv geschalter, wobei dadurch die Hochvoltbatterie des
Hochvoltbordnetzes mit der ersten Gleichspannung versorgt beziehungsweise geladen werden kann. Insbesondere wird die Hochvoltbatterie während eines Ladebetriebs des elektrisch betriebenen Fahrzeugs oder des Hybridfahrzeugs geladen. Sobald die Niedervoltbatterie geladen werden soll, können die erste Sekundärspule deaktiviert und die zweite Sekundärspule der Sekundärseite aktiviert werden, so dass die
Niedervoltbatterie mit der zweiten Gleichspannung geladen werden kann. Insbesondere kann es sich bei der Niedervoltbatterie um eine Batterie eines 12 V-Bordnetzes handeln. Insbesondere wird überwacht, dass immer nur entweder die Niedervoltbatterie oder nur die Hochvoltbatterie geladen werden kann. Insbesondere wird die Niedervoltbatterie über die Batteriespannung der Hochvoltbatterie geladen.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Die vorstehend in der Beschreibung genannten Merkmale und
Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Dabei zeigen die nachfolgenden Figuren in:
Fig. 1 Eine schematische Darstellung eines Bordlader;
Fig. 2 eine schematische Schaltanordnung zum Laden einer Hochvoltbatterie;
und
Fig. 3 eine schematische Schaltanordnung zum Laden einer Niedervoltbatterie.
In den Figuren sind funktionsgleiche Elemente mit denselben Bezugszeichen versehen.
Die Fig. 1 zeigt einen Bordlader 1 zum Laden einer Hochvoltbatterie 2 eines
Hochvoltbordnetzes oder einer Niedervoltbatterie 3 eines Niedervoltbordnetzes. Der Bordlader 1 kann beispielsweise für einen einphasigen oder einen dreiphasigen
Ladevorgang der Hochvoltbatterie 2 verwendet werden. Insbesondere kann mit dem Bordlader die Hochvoltbatterie 2 oder die Niedervoltbatterie 3 eines elektrisch
betriebenen Fahrzeugs oder eines Hybridfahrzeugs geladen werden. Der Bordlader 1 weist eingangsseitig einen Netzfilter 4 auf. Mit dem Netzfilter 4 kann eine eingangsseitige Wechselspannung UAC, welche am Eingang des Bordladers 1 anliegt, gefiltert werden. Nachdem die Wechselspannung UAC mit Hilfe des Netzfilters 4 gefiltert wurde, erfolgt nachgeschaltet ein Leistungsfaktorkorrekturfilter 5, mit welchem ein Eingangsstrom der Wechselspannung UAC in einen sinusförmigen Verlauf gebracht werden kann, insbesondere phasengleich zur Wechselspannung UAC. Insbesondere erfolgt mit dem Leistungsfaktorkorrekturfilter 5 eine geregelte Ausgangsspannung für den
nachgeschalteten Gleichspannungswandler 6. Der Leistungsfaktorkorrekturfilter 5 umfasst eine Vorladeschaltung 7, mit welcher der nachfolgende erste
Gleichspannungswandler 6 vorgeladen werden kann. Die Vorladeschaltung 7 des Leistungsfaktorkorrekturfilters 5 weist einen ersten Widerstand Ri und einen
Vorladeschalter SL auf.
Der erste Gleichspannungswandler 6 umfasst einen Transformator 8 (vergleiche Fig. 2). Der Transformator 8 ist in eine Primärseite 9 und in eine Sekundärseite 10 aufgeteilt. Die Primärseite 9 umfasst insbesondere eine Primärspule 11 , und die Sekundärseite 10 ist in eine erste Sekundärspule 12 und in eine zweite Sekundärspule 13 unterteilt.
Der erste Gleichspannungswandler 6 ist insbesondere galvanisch isoliert und sorgt für die erste Gleichspannung U1. Die erste Gleichspannung U1 wird anschließend mit einem Gleichspannungsfilter 14 gefiltert und der Hochspannungshochvoltbatterie 2 zur
Verfügung gestellt.
Der Hochvoltbatterie 2 kann eine Vorladeschaltung 15 vorgeschaltet sein, mittels welcher die Hochvoltbatterie 2 aus der ersten Gleichspannung U1 ladbar ist. Insbesondere kann die Hochvoltbatterie 2 über einen zweiten Widerstand R2 vorgeladen werden. Dabei ist ein Vorladeschalter Sv geschlossen. Ebenso ist es denkbar, dass mit der ersten
Gleichspannung U1 ein Zwischenkreiskondensator CK geladen werden kann. Dabei ist der Vorladeschalter Sv und ein erstes Hauptschütz HS1 und ein zweites Hauptschütz HS2 geöffnet. Wenn die beiden Hauptschütze HS1 und HS2 geschlossen werden, kann die Hochvoltbatterie 2 über den Zwischenkreiskondensator CK geladen werden. Dadurch kann insbesondere auf eine Vorladeschaltung im Lader und in der Hochvoltbatterie 2 verzichtet werden.
Beispielsweise kann der Bordlader 1 für einen Ladebetrieb bis zu 3,7 kW bei 230 V und 16 A ausgelegt werden.
Die Fig. 2 zeigt eine schematische Anordnung des Bordladers 1 beim Laden der
Hochvoltbatterie 2. Insbesondere wird die Hochvoltbatterie 2 mit der ersten
Gleichspannung LH , welche mit einer ersten Beschaltung der Sekundärseite 10 des Transformators 8 des ersten Gleichspannungswandlers 6 erzeugt wird, geladen.
Insbesondere ist bei der ersten Beschaltung die erste Sekundärspule 12 der Sekundärseite 10 aktiv, und die zweite Sekundärspule 13 ist deaktiviert. Die Aktivierung der Sekundärspule 12 und der zweiten Sekundärspule 13 der Sekundärseite 10 erfolgt insbesondere über eine Kontrolleinheit 16 des Bordladers 1. Insbesondere sorgt die Kontrolleinheit 16 dafür, dass entweder die erste Beschaltung oder eine zweite
Beschaltung der Sekundärseite 10 des ersten Gleichspannungswandlers 6 aktiv ist. Es kann immer nur die Hochvoltbatterie 3 oder die Niedervoltbatterie 2 geladen werden. Beim Laden der Hochvoltbatterie 2 mit der ersten Gleichspannung U1 sind die Schalter S1 , S2, S4 geöffnet, und der Schalter S3 ist geschlossen. Insbesondere taktet die Kontrolleinheit 16 den Ladebetrieb auf eine geforderte Ladespannung für die
Hochvoltbatterie 2. Bei den Schaltern S1 bis S4 kann es sich um mechanische Schalter oder um Halbleiterschalter handeln. Die Verwendung von mechanischen Schaltern und/oder Halbleiterschaltern ist abhängig von spezifischen Sicherheitsanforderungen an das Fahrzeug.
Insbesondere erfolgt das Laden der Hochvoltbatterie 2 im Ladebetrieb des elektrisch betriebenen Fahrzeugs. Da während des Ladebetriebs der Hochvoltbatterie 2 die Niedervoltbatterie 3 beziehungsweise die zweite Sekundärspule 13 deaktiviert ist, wird mittels eines zweiten Gleichspannungswandlers 17 eine dritte Gleichspannung U3 bereitgestellt und damit das Niedervoltbordnetz beziehungsweise die Niedervoltbatterie 3 versorgt. Beispielsweise kann der zweite Gleichspannungswandler 17 in die
Hochvoltbatterie 3 integriert werden. Insbesondere dient der zweite
Gleichspannungswandler 17 zur Versorgung beziehungsweise Sicherstellung einer Notrufversorgung für sicherheitsrelevante Komponenten des Fahrzeugs. Insbesondere sollte es jederzeit möglich sein, bei einem Unfall oder einer Gefahrensituation einen Notruf absetzen zu können. Dies erfordert eine minimale Spannung. Insbesondere kann mit dem zweiten Gleichspannungswandler 17 bei einem abgeschalteten oder getrennten Hochvoltbordnetz beziehungsweise einer Hochvoltbatterie 2 eine Versorgung der Notfallkomponenten sichergestellt werden. Insbesondere kann eine Spannung von 12 V bereitgestellt werden. Bei dem zweiten Gleichspannungswandler 17 kann es sich beispielsweise um einen Miniwandler handeln.
Die Fig. 3 zeigt einen Ladevorgang der Niedervoltbatterie 3 mit Hilfe des Bordladers 1. Insbesondere erfolgt das Laden der Niedervoltbatterie 3 in einem Fährbetrieb des elektrisch betriebenen Fahrzeugs oder des Hybridfahrzeugs. Bei dem Ladebetrieb des Niedervoltbordnetzes sind die Schalter S1 , S2, S4 geschlossen, und der Schalter S3 ist geöffnet. Das Niedervoltbordnetz beziehungsweise die Niedervoltbatterie 3 werden mittels der zweiten Beschaltung des Gleichspannungswandlers 6 geladen. Bei der zweiten Beschaltung ist die erste Sekundärspule 12 der Sekundärseite 10 deaktiviert, und die zweite Sekundärspule 13 der Sekundärseite 10 ist aktiv. Die Aktivierung beziehungsweise Deaktivierung erfolgt über die Kontrolleinheit 16. Mit Hilfe der aktiven zweiten Sekundärspule 13 erfolgt die Umwandlung der Batteriespannung Ußat der Hochvoltbatterie 2 in die zweite Gleichspannung U2. Insbesondere liegt das
Spannungsniveau der zweiten Gleichspannung U2 bei 12 V. Insbesondere wird bei dem Ladevorgang der Niedervoltbatterie 3 die Kontrolleinheit 16 so getaktet, dass insbesondere ein 12 V-Bordnetz versorgt werden kann. Beispielsweise kann der ersten Gleichspannungswandler 6 zum Vorladen des Hochvoltbordnetzes mit Hilfe der Niedervoltbatterie 3 genutzt werden. Insbesondere ist bei einem aktiven Laden der Niedervoltbatterie 3 ein Laden der Hochvoltbatterie 2 nicht möglich.
Insbesondere umfasst der Bordlader 1 die Funktionen eines Bordladers und eines DC- DC-Wandlers, indem der Bordlader 1 die Synergien beider Funktionen verwendet. Insbesondere wird die Funktion des Bordladers und des DC-DC-Wandlers in einem Gehäuse beziehungsweise in einer Komponente als Bordlader 1 verschmolzen.
Bezugszeichenliste
1 Bordlader
2 Hochvoltbatterie
3 Niedervoltbatterie
4 Netzfilter
5 Leistungskorrekturfilter
6 erste Gleichspannungswandler
7 Vorladeschaltung
8 Transformator
9 Primärseite
10 Sekundärseite
1 1 Primärspule
12 erste Sekundärspule
13 zweite Sekundärspule
14 Gleichspannungsfilter
15 Vorladeschaltung
16 Kontrolleinheit
17 zweiter Gleichspannungswandler CK Zwischenkreiskondensator HS1 erstes Hauptschütz
HS2 zweites Hauptschütz
UAC Wechselspannung
Ußat Batteriespannung
U1 bis U3 erste bis dritte Gleichspannung SL, SV Vorladeschalter
S1 bis S4 erster Schalter bis vierter Schalter
Ri, R2 erster und zweiter Widerstand

Claims

Patentansprüche
1. Bordlader (1) zum Laden einer Hochvoltbatterie (2) eines Hochvoltbordnetzes oder einer Niedervoltbatterie (3) eines Niedervoltbordnetzes, mit
- einem Netzfilter (4) zum Filtern einer Wechselspannung (UAC),
- einem Leistungsfaktorkorrekturfilter (5) zur Anpassung eines Eingangsstroms,
- einem ersten Gleichspannungswandler (6), der einen Transformator (8) mit einer Primärseite (9) und einer Sekundärseite (10) aufweist, wobei mit dem ersten Gleichspannungswandler (6) die Hochvoltbatterie (2) über eine erste Beschaltung der Sekundärseite (10) des ersten Gleichspannungswandlers (6) mit einer ersten Gleichspannung (U1) versorgbar ist,
- einem Gleichspannungsfilter (14),
gekennzeichnet, durch
- eine zweite Beschaltung der Sekundärseite (10) des ersten
Gleichspannungswandlers (6), mit welcher die Niedervoltbatterie (3) mit einer zweiten Gleichspannung (U2) versorgbar ist,
- eine Kontrolleinheit (16) zum Aktivieren entweder der ersten Beschaltung oder der zweiten Beschaltung der Sekundärseite (10) des ersten
Gleichspannungswandlers (6).
2. Bordlader (1) nach Anspruch 1
dadurch gekennzeichnet, dass
zum Betreiben des Niedervoltbordnetzes mittels der Hochvoltbatterie (2) der erste Gleichspannungswandler (6) derart gestaltet ist, dass er in der zweiten
Beschaltung der Sekundärseite (10) eine Batteriespannung (UBat) der
Hochvoltbatterie (2) in die zweite Gleichspannung (U2) umwandelt.
3. Bordlader nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
mit einem zweiten Gleichspannungswandler (17) das Niedervoltbordnetz mit einer dritten Gleichspannung (U3) versorgbar ist.
4. Bordlader (1) nach Anspruch 3,
dadurch gekennzeichnet, dass
der zweiten Gleichspannungswandler (17) in der Hochvoltbatterie (2) integriert ist.
5. Bordlader (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der Hochvoltbatterie (2) eine Vorladeschaltung (15) vorgeschaltet ist, mit welcher die Hochvoltbatterie (2) aus der ersten Gleichspannung (U1) ladbar ist.
6. Verfahren zum Laden einer Hochvoltbatterie (2) eines Hochvoltbordnetzes oder einer Niedervoltbatterie (3) eines Niedervoltbordnetzes, wobei
- die Hochvoltbatterie (2) mit einer ersten Gleichspannung (U1), welche mit einer ersten Beschaltung einer Sekundärseite (10) eines Transformators (8) eines ersten Gleichspannungswandlers (6) erzeugt wird, geladen wird,
dadurch gekennzeichnet, dass
- die Niedervoltbatterie (3) mit einer zweiten Gleichspannung (U2), welche mit einer zweiten Beschaltung der Sekundärseite (10) des ersten Gleichspannungswandlers (6) erzeugt wird, geladen wird, wobei
- überwacht wird, dass nur die Niedervoltbatterie (3) oder nur die Hochvoltbatterie (2) geladen wird.
EP20710871.3A 2019-05-15 2020-03-06 Bordlader und verfahren zum laden einer hochvoltbatterie eines hochvoltbordnetzes oder einer niedervoltbatterie eines niedervoltbordnetzes Pending EP3969321A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019003458.9A DE102019003458A1 (de) 2019-05-15 2019-05-15 Bordlader und Verfahren zum Laden einer Hochvoltbatterie eines Hochvoltbordnetzes oder einer Niedervoltbatterie eines Niedervoltbordnetzes
PCT/EP2020/055997 WO2020229012A1 (de) 2019-05-15 2020-03-06 Bordlader und verfahren zum laden einer hochvoltbatterie eines hochvoltbordnetzes oder einer niedervoltbatterie eines niedervoltbordnetzes

Publications (1)

Publication Number Publication Date
EP3969321A1 true EP3969321A1 (de) 2022-03-23

Family

ID=68943959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20710871.3A Pending EP3969321A1 (de) 2019-05-15 2020-03-06 Bordlader und verfahren zum laden einer hochvoltbatterie eines hochvoltbordnetzes oder einer niedervoltbatterie eines niedervoltbordnetzes

Country Status (5)

Country Link
US (1) US20220250493A1 (de)
EP (1) EP3969321A1 (de)
CN (1) CN113874244A (de)
DE (1) DE102019003458A1 (de)
WO (1) WO2020229012A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021101600A1 (de) * 2021-01-26 2022-07-28 Audi Aktiengesellschaft Bordnetz für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betrieb eines Bordnetzes
CN112865263B (zh) * 2021-03-15 2024-08-13 阳光电源股份有限公司 一种充放电控制方法及应用装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006055126A1 (de) * 2006-11-22 2008-06-05 Siemens Ag Verfahren zur Umwandlung einer Eingangsspannung in eine Ausgangsspannung sowie Stromversorgungseinrichtung, insbesondere stromgespeister Gegentaktwandler
US8125182B2 (en) 2009-03-16 2012-02-28 Ford Global Technologies, Llc Automotive vehicle and method for charging/discharging a power storage unit therein
JP5071519B2 (ja) * 2010-05-14 2012-11-14 トヨタ自動車株式会社 電力変換装置およびそれを搭載する車両
CN102892615B (zh) * 2010-07-22 2014-12-10 丰田自动车株式会社 电动车辆及其充电控制方法
JP5577986B2 (ja) * 2010-09-22 2014-08-27 株式会社豊田自動織機 電源装置および車載用電源装置
KR20130078386A (ko) * 2011-12-30 2013-07-10 엘에스산전 주식회사 전기자동차 충전기용 dc-dc 컨버터
DE102013223330A1 (de) * 2013-11-15 2015-05-21 Bayerische Motoren Werke Aktiengesellschaft Wandlerschaltungsanordnung zum Wandeln einer Eingangsgleichspannung in eine Ausgangsgleichspannung
DE102014013039A1 (de) * 2014-09-02 2015-03-19 Daimler Ag Vorrichtung für ein Kraftfahrzeug zum galvanisch entkoppelten Übertragen einer elektrischen Spannung
US10124686B2 (en) * 2016-07-15 2018-11-13 GM Global Technology Operations LLC Dual inductive/conductive DC-coupled charging system
CN107332341A (zh) * 2017-07-27 2017-11-07 深圳市泰昂能源科技股份有限公司 直流ups电源装置以及系统
JP6991178B2 (ja) * 2019-05-24 2022-01-12 株式会社Soken 電力変換装置
KR20210005754A (ko) * 2019-07-03 2021-01-15 현대자동차주식회사 사륜 구동 차량
JP2023154478A (ja) * 2022-04-07 2023-10-20 トヨタ自動車株式会社 電力変換装置

Also Published As

Publication number Publication date
CN113874244A (zh) 2021-12-31
DE102019003458A1 (de) 2020-01-09
WO2020229012A1 (de) 2020-11-19
US20220250493A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
EP2541755B1 (de) Antriebsvorrichtung für ein Fahrzeug
WO2019030125A1 (de) Akkuladevorrichtung für ein kraftfahrzeug, verfahren zum betreiben einer kraftfahrzeugseitigen akkuladevorrichtung, hochvoltbordnetz und verwendung einer akkuladevorrichtung
DE102015101187A1 (de) Hochvolt-Lade-Booster und Verfahren zum Laden einer Gleichstrom-Traktionsbatterie an einer Gleichstrom-Ladesäule sowie entsprechendes Elektrofahrzeug
DE102010040239A1 (de) System zum Laden einer wiederaufladbaren Batterie eines Elektrofahrzeugs
WO2015135729A1 (de) Anordnung zum versorgen eines kraftfahrzeugs mit elektrischer energie
DE102017008840A1 (de) Elektrisches Bordnetz
EP3197725A1 (de) Bordnetz
WO2019141491A1 (de) Elektrisches antriebssystem für ein fahrzeug und verfahren zu dessen betrieb
EP3969321A1 (de) Bordlader und verfahren zum laden einer hochvoltbatterie eines hochvoltbordnetzes oder einer niedervoltbatterie eines niedervoltbordnetzes
DE102021116525A1 (de) Vorrichtung und Verfahren zur elektrischen Versorgung eines Niederspannungs-Bordnetzes eines Kraftfahrzeugs, insbesondere Elektrokraftfahrzeugs
DE102018129413B4 (de) Verfahren und System zur Integration einer Ladeperipheriesteuerung in ein galvanisch nicht getrenntes Ladegerät
DE102019003459A1 (de) Verfahren und Vorrichtung zum Laden einer Hochvoltbatterie eines elektrisch betreibbaren Fahrzeugs
DE102019003542A1 (de) Spannungsversorgungsvorrichtung für ein zumindest teilweise elektrisch betreibbares Kraftfahrzeug, wobei ein erster elektrischer und ein zweiter elektrischer Energiespeicher direkt mit einem Ladeanschluss gekoppelt sind, sowie Verfahren
DE102011006096A1 (de) Laderegelungssystem
DE102010003595A1 (de) Wechselrichter für eine elektrische Maschine und Verfahren zum Betreiben eines Wechselrichters für eine elektrische Maschine
WO2023227278A1 (de) Elektrische schaltung für einen elektrischen antrieb und verfahren zum betreiben der elektrischen schaltung
DE102019001196A1 (de) Verfahren zum Bereitstellen einer Spannung für ein Bordnetz und Bordlader hierzu
WO2019141492A1 (de) Elektrisches antriebssystem für ein fahrzeug und verfahren zu dessen betrieb
EP4399116A1 (de) Verfahren und vorrichtung zum betreiben eines elektrisch angetriebenen fahrzeugs
WO2022194433A1 (de) Vorrichtung und verfahren zur elektrischen versorgung eines niedervolt-bordnetzes eines kraftfahrzeugs, insbesondere elektrokraftfahrzeugs
DE102020007869A1 (de) Elektrisches Bordnetzsystem für ein elektrisch angetriebenes Fahrzeug und dazugehöriges Verfahren
DE102021003831A1 (de) Elektrisches Bordnetz für ein Fahrzeug, Fahrzeug mit einem elektrischen Bordnetz und Verfahren zum Betreiben eines elektrischen Bordnetzes für ein Fahrzeug
DE102021101600A1 (de) Bordnetz für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betrieb eines Bordnetzes
WO2019215145A1 (de) Schalteinrichtung zum laden der batterie eines elektrofahrzeuges an heutigen und zukünftigen dc-lade-infrastrukturen und ein verfahren zum betrieb der schalteinrichtung
EP3784521A1 (de) Elektrisches energiesystem mit brennstoffzellen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCEDES-BENZ GROUP AG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)