EP3951367A1 - Optical process sensor, measuring head, measuring system comprising the two and method for calibrating and / or validating - Google Patents
Optical process sensor, measuring head, measuring system comprising the two and method for calibrating and / or validating Download PDFInfo
- Publication number
- EP3951367A1 EP3951367A1 EP21185992.1A EP21185992A EP3951367A1 EP 3951367 A1 EP3951367 A1 EP 3951367A1 EP 21185992 A EP21185992 A EP 21185992A EP 3951367 A1 EP3951367 A1 EP 3951367A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- housing
- path
- optical
- designed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 41
- 239000000523 sample Substances 0.000 claims description 27
- 238000010200 validation analysis Methods 0.000 claims description 25
- 230000000295 complement effect Effects 0.000 claims description 10
- 238000007654 immersion Methods 0.000 claims description 9
- 239000007787 solid Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009102 absorption Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000004304 visual acuity Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0297—Constructional arrangements for removing other types of optical noise or for performing calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/0235—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for replacing an element by another, for replacing a filter or a grating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0264—Electrical interface; User interface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/027—Control of working procedures of a spectrometer; Failure detection; Bandwidth calculation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0291—Housings; Spectrometer accessories; Spatial arrangement of elements, e.g. folded path arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/255—Details, e.g. use of specially adapted sources, lighting or optical systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/93—Detection standards; Calibrating baseline adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
- G01N2021/8514—Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
- G01N2021/8514—Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
- G01N2021/8521—Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror with a combination mirror cell-cuvette
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
- G01N2021/8528—Immerged light conductor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
- G01N2201/086—Modular construction, e.g. disconnectable fibre parts
Definitions
- the invention relates to an optical process sensor, a measuring head that goes with it, a measuring system comprising the two, and a method for calibrating and/or validating.
- process sensors refer to sensors that are used to optimize, analyze and control manufacturing processes at the field level, such as in the chemical or pharmaceutical industry. These process sensors enable qualitative and quantitative analysis during the running process. For example, physical or chemical parameters are recorded in real time and used for system control or regulation.
- the DE 20 2013 101 907 U1 explained that with such process sensors it is necessary from time to time to clean the sample chamber or the sensor, for which purpose short-wave radiation such as gamma radiation or high temperatures can be used in particular. This entails considerable risks for the comparatively sensitive optics of the measuring probes; In particular, the aggressive radiation or the high temperatures can also destroy the optical part of the measuring probe, so that precautions must be taken to protect the sensitive optics from damage or even destruction when cleaning.
- the DE 20 2013 101 907 U1 proposes that the part that comes into direct contact with the sample to be examined be made detachable so that it can be easily removed from the sensitive parts of the sensor during cleaning.
- Optical sensors that are used, for example, in the food and pharmaceutical industries must be regularly validated to ensure that they function correctly.
- the properties to be checked here are regulated, among other things, in the Pharmacopoeia, USP (USA) and a corresponding counterpart in Europe. These are, for example, the wavelength accuracy, the photometric accuracy or linearity, the scattered light behavior and the resolving power with regard to the wavelength.
- test liquids and solid standards in the form of cuvettes or filter sets with the appropriate certificates are available for laboratory devices.
- the laboratory devices can easily be validated with these standards.
- the cuvette standards or the filters are placed in the beam path of the instrument to be validated.
- Process sensors often work with measuring cells, which are connected to a decoupled measuring system via fiber optics with the light sources and receivers. To validate the measuring system, the light guides are removed from the corresponding measuring cell and connected to a cuvette holder.
- the object of the invention is to validate and calibrate process sensors in a simple manner.
- an optical process sensor for measuring at least one measured variable of a medium in a container, comprising: a housing; a light source in the housing for emitting transmission light; a light receiver in the housing for receiving received light; and a first optical-mechanical interface, comprising: a first optical section, which protrudes from the housing, with a first path and a first light guide, wherein the first light guide is configured such that transmitted light via the first light guide from the light source into the first Path is guided, and transmitted light is coupled out of the housing, and with a second path and a second light line, the second light line being designed in such a way that received light is coupled into the interior of the housing and is guided from the second path to the light receiver via the second light line , and a first mechanical portion configured as an integral part of the housing.
- One embodiment provides that the first and second light guide is designed as an optical waveguide.
- first and second path are designed as two separate rod-shaped, in particular cylindrical, continuations, which are connected to the housing in particular by screwing, gluing, welding or by frictional locking, with the first and second light guide inside the continuations is led.
- the first and second path at the end area remote from the process sensor in particular in each case, comprises an optical element, in particular a window and/or a lens, the optical element being transparent for the transmitted light and received light.
- the senor is designed as a spectrometer.
- an optical process sensor which is designed to measure at least one measured variable of a medium in a container
- the measuring head comprising: a housing which is designed to connect the sensor to the container; a second optical-mechanical interface, comprising a second optical section which is complementary to a first optical section.
- the second optical section is designed as a recess in the housing.
- the first optical section includes a third path that receives transmitted light and couples it into the interior of the housing.
- the third path leads the transmitted light to a deflection element.
- the first optical section includes a fourth path, which receives transmitted light, guides it through an area through which a medium flows, the transmitted light being converted into received light by the medium, and couples received light out of the housing.
- the second opto-mechanical interface comprises a second mechanical section which is complementary to a first mechanical section and is designed as an integral part of the housing.
- the measuring head includes a deflection element in the housing, which deflects the transmitted light or received light from the third path into the fourth path or vice versa.
- the area through which the medium flows is designed as a further recess in the housing.
- the measuring head thus comprises an optical process sensor which is designed to measure at least one measured variable of a medium in a container, the measuring head comprising: a housing which is designed to connect the sensor to the container; a second optical-mechanical interface, comprising a second optical section which is complementary to a first optical section and which is designed as a recess is configured in the housing, a third path, which receives transmitted light, couples it into the interior of the housing and leads to a deflection element, and a fourth path, which receives transmitted light from the deflection element, through an area through which the medium flows, the transmitted light being converted by the medium into received light and decouples received light from the housing, and a second mechanical section, which is complementary to a first mechanical section and is designed as an integral part of the housing, the deflection element, which is arranged in the housing, and the area through which the medium flows, which is a further recess of the housing is designed.
- the measuring head comprises an optical process sensor, which is designed to measure at least one measured variable of a medium in a container, the measuring head comprising: a housing, which is designed to connect the sensor to the container; a second opto-mechanical interface, comprising a second optical section, which is complementary to a first optical section and is designed as a recess in the housing, couples a third path, which receives transmitted light, into the interior of the housing, through an area through which the medium flows, wherein the transmitted light is converted by the medium into received light, and leads received light to a deflection element, and a fourth path that receives received light from the deflection element and decouples it from the housing, and a second mechanical section that is complementary to a first mechanical section and that acts as an integral Part of the housing is configured, the deflection element, which is arranged in the housing, and the area through which the medium flows, which is configured as a further recess of the housing.
- the medium-flow path can thus be arranged in the third or in the fourth path.
- an opto-mechanical interface on the sensor and measuring head makes it possible to decouple different types of measuring heads such as immersion probes or flow cells from process sensors. This allows the measuring head to remain in the process and keeps it closed for the further validation process of the sensor.
- the removed sensor with the opto-mechanical interface can now be used for the validation process.
- a validation adapter which is regarded as a special configuration of a measuring head
- the sensor can be checked easily.
- One embodiment provides that the deflection element deflects the transmitted light by 180°.
- the deflection element is designed as a prism.
- third and fourth path are designed as two separate rod-shaped, in particular cylindrical, recesses.
- the third and fourth path in particular each, includes an optical element, in particular a window and/or a lens, the optical element being transparent for the transmitted light and received light.
- the third or fourth path includes a window to the area through which the medium flows, the window being transparent for the transmitted light and received light.
- the measuring head is designed as an immersion probe.
- the measuring head is designed as a flow probe.
- the measuring head is designed as a calibration and validation device.
- optical-mechanical interface Different measuring heads can be easily exchanged.
- the "actual” measuring head e.g. a flow probe or immersion probe, remains in the process.
- a calibration and validation device is placed on the same opto-mechanical interface.
- the optical path is the same as in the process and the sensor can be calibrated.
- the calibration and validation device includes a cuvette holder with a holder for a cuvette, the holder forming the area through which the medium flows.
- the cuvette holder includes a solid standard.
- the calibration and validation device includes a cuvette changer.
- the calibration and validation device includes a filter wheel or filter changer.
- an optical measuring system comprising an optical process sensor as described above and a measuring head as described above, the second optical section accommodating the first optical section to form an optical connection with a light path from the light source, first light line, first path, third To enable path, deflection element, fourth path, second path, second light line and light receiver, and a mechanical connection of the optical process sensor and measuring head via the first mechanical section and second mechanical section.
- the mechanical connection is detachable, in particular the first mechanical section and the second mechanical section are designed such that there is a screw connection, in particular the first mechanical section and the second mechanical section include bores and/or threads for screws.
- the object is further achieved by a method for calibrating and/or validating an optical process sensor, comprising the steps of: removing the sensor from a measuring head, which is designed as a flow probe or immersion probe; Attaching the sensor to a measuring head which is designed as a calibration and validation device; calibrating and validating the sensor using the calibration and validation device; removing the sensor from the calibration and validation device; and reattaching the sensor to the flow probe or submersible probe.
- the claimed measuring system in its entirety has the reference number 100 and is, for example, in Fig. 2d shown. First, the individual components will be discussed, namely a process sensor 1 and a measuring head 51.
- Figures 1a and 1b show the sensor 1 with the housing 2.
- the sensor is an optical sensor. This is, for example, a spectrometer with a light source 3 and a light receiver 4.
- the light source 3 emits transmitted light 5 and the light receiver 4 receives received light 6, which is produced by converting the transmitted light 5 on the medium to be measured (see below).
- the light 5 emitted by the light source 3 is thus converted by the medium, for example absorbed, scattered or fluorescent light is produced.
- This converted light 6 is picked up by the receiver 4 and converted into an electrical signal.
- the sensor 1 comprises a first opto-mechanical interface 10, which consists of an optical section 11 and a mechanical section 21.
- the mechanical section 21 is used to connect the sensor 1 to the measuring head 51, for example by screwing, with appropriate devices, ie holes, threads or bores 22 and 72 being present.
- the mechanical section 21 is an integral part of the housing 2.
- the optical section 11 projects out of the housing 2 .
- This comprises a first path 12 and a first light guide 13 , for example an optical waveguide or a free beam guide, which introduces the transmitted light 5 from the light source 3 into the first path 12 and then decouples the transmitted light 5 from the housing 2 .
- This also includes a second path 14 and a second light line 15, such as an optical waveguide or a free beam guide, which couples the received light 6 into the interior of the housing 2 and guides it from the second path 14 to the light receiver 4 via the second light line 15.
- the paths 12, 14 are separate, cylindrical continuations, which are screwed to the housing 2, for example, with the optical waveguides 13, 15 being routed inside.
- Figure 2a shows the measuring head 51 in cross section, Figure 2c in a side view.
- Figure 2b shows sensor 1, right next to it Figure 2a .
- Fig. 2d shows the measuring system 100 in the assembly of sensor 1 and head 51.
- the measuring head 51 includes a second opto-mechanical interface 60, which consists of an optical section 61 and a mechanical section 71.
- the mechanical section 71 is used to connect the measuring head 51 to the sensor 1, for example by screwing, with corresponding devices, ie for example holes, Threads or holes 22 and 72 are present.
- the mechanical section 71 is an integral part of the housing 52.
- the housing 52 is designed for connection to a container.
- the housing 52 comprises corresponding connection means.
- the connection means can be designed as a welded or flanged connection, e.g. made of stainless steel. However, other configurations are possible.
- the measuring medium to be measured is located in the container.
- the container can be a container, boiler, pipe, pipeline or the like.
- the second opto-mechanical interface 60 initially comprises a second optical section 61 which is complementary to a first optical section 11 and is designed as a recess in the housing 52 .
- the deflection element 67 deflects the transmitted light 5 by 180° and is designed as a prism.
- the third and fourth paths 62, 64 are designed as two separate rod-shaped, in particular cylindrical, recesses.
- the third and fourth pathways 62, 64 are designed to complement the first and second pathways 12, 14 so that the continuations fit snugly into the recesses. If the sensor 1 and the head 51 are assembled and mechanically fixed via the mechanical sections 11, 61, the two optical sections 11, 51 are positioned in such a way that the transmitted light 5 or the received light 6 is guided ideally from the sensor 1 into the head 51 or vice versa will. There are designs with lenses 16 (as shown) or windows.
- Transparent windows 66 separate the interior from the media (for clarity, the reference number indicates only the left window).
- the path 68 through which the medium flows can be arranged in the third or in the fourth path 62 , 64 .
- the Figures 2a-2d show the configuration of the measuring head 51 as an immersion probe.
- the measuring head 51 is located in the medium to be measured and also remains there.
- the measuring head 51 can also be removed from the process and from the sensor, for example for maintenance purposes such as changing seals.
- Figures 3a-3d are systematically constructed in the same way, with the measuring head 51 being designed as a flow probe.
- Medium flows through an inlet 69a and leaves the flow probe again at the outlet 69b. Inside is the area 68 through which the medium flows.
- the measuring head 51 can be designed as a calibration and validation device.
- the sensor 1 is thus removed and the measuring head 51 in the configuration as a calibration and validation device, which also has a second opto-mechanical interface 60, is attached to the sensor 1.
- a configuration of the calibration and validation device is a cuvette holder.
- the holder 80 into which a cuvette 81 is placed, is located at the area 68 through which the medium flows.
- the cuvette 81 can be configured as a standard, for example as a solid body standard. Shows the assembled condition Figure 4d , whereby the cuvette holder is not fully assembled.
- Figure 4e shows the configuration as a cuvette holder with an inserted sensor, only the first optical section 11 being visible. Some components are drawn transparently to show the assembly, especially the optical sections 11, 61.
- the sensor 1 can be calibrated, validated and, if necessary, adjusted by means of the cuvette holder 51 .
- the calibration and validation device can also be designed as a cuvette changer, filter wheel or filter changer. Different absorptions can be set on the filter wheel so that different situations can be simulated by turning it.
- the senor 1 is removed from the calibration and validation device and can be reconnected to the other measuring head, for example the immersion probe or the flow probe.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Optical Measuring Cells (AREA)
Abstract
Die Erfindung offenbart einen optischer Prozesssensor (1), insbesondere Spektrometer, zur Messung zumindest einer Messgröße eines Mediums in einem Behältnis, umfassend: ein Gehäuse (2); eine Lichtquelle (3) im Gehäuse (2) zum Aussenden von Sendelicht (5); einen Lichtempfänger (4) im Gehäuse (2) zum Empfangen von Empfangslicht (6); und eine erste optisch-mechanische Schnittstelle (10), umfassend einen ersten optischen Abschnitt (11), der aus dem Gehäuse (2) hinausragt, mit einem ersten Pfad (12) und einer ersten Lichtleitung (13), wobei die erste Lichtleitung (13) so ausgestaltet ist, dass Sendelicht (5) über die erste Lichtleitung (13) von der Lichtquelle (3) in den ersten Pfad (12) geführt wird, und Sendelicht (5) aus dem Gehäuse (2) auskoppelt, und mit einem zweiten Pfad (14) und einer zweiten Lichtleitung (15), wobei die zweite Lichtleitung (15) so ausgestaltet ist, dass Empfangslicht (6) in das Innere des Gehäuses (2) einkoppelt und über die zweite Lichtleitung (15) vom zweiten Pfad (14) an den Lichtempfänger (4) geführt wird, und einen ersten mechanischen Abschnitt (21), der als integraler Teil des Gehäuses (2) ausgestaltet ist.Die Erfindung offenbart auch einen Messkopf (51), ein optisches Messsystem (100) umfassend die beiden und ein Verfahren.The invention discloses an optical process sensor (1), in particular a spectrometer, for measuring at least one measured variable of a medium in a container, comprising: a housing (2); a light source (3) in the housing (2) for emitting transmitted light (5); a light receiver (4) in the housing (2) for receiving received light (6); and a first optical-mechanical interface (10) comprising a first optical section (11) protruding from the housing (2) with a first path (12) and a first light guide (13), the first light guide (13 ) is designed such that transmitted light (5) is guided via the first light line (13) from the light source (3) into the first path (12), and transmitted light (5) is decoupled from the housing (2), and with a second path (14) and a second light line (15), the second light line (15) being designed in such a way that received light (6) couples into the interior of the housing (2) and via the second light line (15) from the second path (14 ) to the light receiver (4), and a first mechanical section (21) designed as an integral part of the housing (2). The invention also discloses a measuring head (51), an optical measuring system (100) comprising the two and a procedure.
Description
Die Erfindung betrifft einen optischen Prozesssensor, einen dazu passenden Messkopf, ein Messsystem umfassend die beiden und ein Verfahren zum Kalibrieren und/oder Validieren.The invention relates to an optical process sensor, a measuring head that goes with it, a measuring system comprising the two, and a method for calibrating and/or validating.
Als "Prozesssensor" im Sinne dieser Anmeldung sind Sensoren bezeichnet, die zur Optimierung, der Analyse und Kontrolle von Herstellungsprozessen auf der Feldebene, wie etwa in der chemischen oder pharmazeutischen Industrie, dienen. Diese Prozesssensoren ermöglichen eine qualitative und quantitative Analyse während des laufenden Prozesses. Es werden etwa physikalische oder chemische Parameter in Echtzeit erfasst und zur Anlagensteuerung oder-regelung herangezogen.Within the meaning of this application, “process sensors” refer to sensors that are used to optimize, analyze and control manufacturing processes at the field level, such as in the chemical or pharmaceutical industry. These process sensors enable qualitative and quantitative analysis during the running process. For example, physical or chemical parameters are recorded in real time and used for system control or regulation.
Die
Optische Sensoren, die z.B. in der Lebensmittel- und Pharmaindustrie eingesetzt werden, müssen regelmäßig bezüglich ihrer korrekten Funktionsweise validiert werden. Die hierbei zu überprüfenden Eigenschaften werden u.a. in der Pharmacopoeia, USP (USA) und einem entsprechenden Pendant in Europa geregelt. Diese sind etwa die Wellenlängenrichtigkeit, die photometrische Richtigkeit bzw. die Linearität, das Streulichtverhalten und das Auflösungsvermögen bzgl. der Wellenlänge.Optical sensors that are used, for example, in the food and pharmaceutical industries must be regularly validated to ensure that they function correctly. The properties to be checked here are regulated, among other things, in the Pharmacopoeia, USP (USA) and a corresponding counterpart in Europe. These are, for example, the wavelength accuracy, the photometric accuracy or linearity, the scattered light behavior and the resolving power with regard to the wavelength.
Für die oben beschrieben Tests stehen für Laborgeräte Testflüssigkeiten und Festkörperstandards in Küvettenform oder Filtersätze mit den entsprechenden Zertifikaten zur Verfügung. Die Laborgeräte können in einfacher weise mit diesen Standards validiert werden. Dazu werden die Küvettenstandards oder die Filter in den Strahlengang des zu validierenden Instruments eingebracht.For the tests described above, test liquids and solid standards in the form of cuvettes or filter sets with the appropriate certificates are available for laboratory devices. The laboratory devices can easily be validated with these standards. To do this, the cuvette standards or the filters are placed in the beam path of the instrument to be validated.
Diese Vorgehensweise ist bei Prozesssensoren nicht möglich, da der optische Strahlengang nicht zugänglich ist, er ist ja insbesondere vor der rauen Prozessumgebung geschützt. Prozesssensoren arbeiten dabei häufig mit Messzellen, welche über Lichtleiter mit den Lichtquellen und -empfängern an ein entkoppeltes Messsystem angeschlossen werden. Zur Validierung des Messsystems werden hierbei die Lichtleiter an der entsprechenden Messzelle entfernt und mit einem Küvettenhalter verbunden.This procedure is not possible with process sensors because the optical beam path is not accessible, since it is protected from the harsh process environment in particular. Process sensors often work with measuring cells, which are connected to a decoupled measuring system via fiber optics with the light sources and receivers. To validate the measuring system, the light guides are removed from the corresponding measuring cell and connected to a cuvette holder.
Es gibt Ausführungen mit einem Schlitz im Strahlengang, in den mechanisch angepasste Filter, meist Festkörperfilter, in den Strahlengang gebracht werden können. Diese Lösungen haben den Nachteil, dass hierbei oft keine Standards mit zertifizierten Werten eingesetzt werden können.There are versions with a slit in the beam path into which mechanically adapted filters, mostly solid-state filters, can be placed in the beam path. These solutions have the disadvantage that it is often not possible to use standards with certified values.
Der Erfindung liegt die Aufgabe zugrunde, Prozesssensoren auf einfache Weise zu validieren und zu kalibrieren.The object of the invention is to validate and calibrate process sensors in a simple manner.
Die Aufgabe wird gelöst durch einen optischen Prozesssensor zur Messung zumindest einer Messgröße eines Mediums in einem Behältnis, umfassend: ein Gehäuse; eine Lichtquelle im Gehäuse zum Aussenden von Sendelicht; einen Lichtempfänger im Gehäuse zum Empfangen von Empfangslicht; und eine erste optisch-mechanische Schnittstelle, umfassend: einen ersten optischen Abschnitt, der aus dem Gehäuse hinausragt, mit einem ersten Pfad und einer ersten Lichtleitung, wobei die erste Lichtleitung so ausgestaltet ist, dass Sendelicht über die erste Lichtleitung von der Lichtquelle in den ersten Pfad geführt wird, und Sendelicht aus dem Gehäuse auskoppelt, und mit einem zweiten Pfad und einer zweiten Lichtleitung, wobei die zweite Lichtleitung so ausgestaltet ist, dass Empfangslicht in das Innere des Gehäuses einkoppelt und über die zweite Lichtleitung vom zweiten Pfad an den Lichtempfänger geführt wird, und einen ersten mechanischen Abschnitt, der als integraler Teil des Gehäuses ausgestaltet ist.The object is achieved by an optical process sensor for measuring at least one measured variable of a medium in a container, comprising: a housing; a light source in the housing for emitting transmission light; a light receiver in the housing for receiving received light; and a first optical-mechanical interface, comprising: a first optical section, which protrudes from the housing, with a first path and a first light guide, wherein the first light guide is configured such that transmitted light via the first light guide from the light source into the first Path is guided, and transmitted light is coupled out of the housing, and with a second path and a second light line, the second light line being designed in such a way that received light is coupled into the interior of the housing and is guided from the second path to the light receiver via the second light line , and a first mechanical portion configured as an integral part of the housing.
Auf die Vorteile der Lösung mit dem beschriebenen optischen Sensor, vor allem im Zusammenspiel mit einem Messkopf, die zusammen ein optisches Messsystem bilden, wird weiter unten eingegangen.The advantages of the solution with the described optical sensor, especially in combination with a measuring head, which together form an optical measuring system, are discussed below.
Eine Ausgestaltung sieht vor, dass die erste und zweite Lichtleitung als Lichtwellenleiter ausgestaltet ist.One embodiment provides that the first and second light guide is designed as an optical waveguide.
Eine Ausgestaltung sieht vor, dass der erste und zweite Pfad als zwei separate stabförmige, insbesondere zylinderförmige, Fortführungen ausgestaltet sind, die insbesondere mittels Verschrauben, Verkleben, Verschweißen oder durch Kraftschluss mit dem Gehäuse verbunden sind, wobei die erste und zweite Lichtleitung im Innern der Fortführungen geführt ist.One embodiment provides that the first and second path are designed as two separate rod-shaped, in particular cylindrical, continuations, which are connected to the housing in particular by screwing, gluing, welding or by frictional locking, with the first and second light guide inside the continuations is led.
Eine Ausgestaltung sieht vor, dass der erste und zweite Pfad am vom Prozesssensor entfernten Endbereich, insbesondere jeweils, ein optisches Element umfasst, insbesondere ein Fenster und/oder eine Linse, wobei das optische Element für das Sendelicht und Empfangslicht transparent ist.One embodiment provides that the first and second path at the end area remote from the process sensor, in particular in each case, comprises an optical element, in particular a window and/or a lens, the optical element being transparent for the transmitted light and received light.
Eine Ausgestaltung sieht vor, dass der Sensor als Spektrometer ausgestaltet ist.One embodiment provides that the sensor is designed as a spectrometer.
Die Aufgabe wird weiter gelöst durch einen optischen Prozesssensor, der zur Messung zumindest einer Messgröße eines Mediums in einem Behältnis ausgestaltet ist, der Messkopf umfassend: ein Gehäuse, das zur Anbindung des Sensors an das Behältnis ausgestaltet ist; eine zweite optisch-mechanische Schnittstelle, umfassend einen, zu einem ersten optischen Abschnitt komplementären, zweiten optischen Abschnitt.The object is further achieved by an optical process sensor which is designed to measure at least one measured variable of a medium in a container, the measuring head comprising: a housing which is designed to connect the sensor to the container; a second optical-mechanical interface, comprising a second optical section which is complementary to a first optical section.
In einer Ausgestaltung ist der zweite optische Abschnitt als Aussparung im Gehäuse ausgestaltet.In one configuration, the second optical section is designed as a recess in the housing.
Der erste optischen Abschnitt umfasst einen dritten Pfad, der Sendelicht empfängt und ins Innere des Gehäuses einkoppelt.The first optical section includes a third path that receives transmitted light and couples it into the interior of the housing.
In einer Ausgestaltung führt der dritte Pfad Sendelicht zu einem Umlenkelement.In one configuration, the third path leads the transmitted light to a deflection element.
Der erste optische Abschnitt umfasst einen vierten Pfad, der Sendelicht empfängt, durch einen mediumdurchströmten Bereich führt, wobei das Sendelicht durch das Medium in Empfangslicht gewandelt wird, und Empfangslicht aus dem Gehäuse auskoppelt.The first optical section includes a fourth path, which receives transmitted light, guides it through an area through which a medium flows, the transmitted light being converted into received light by the medium, and couples received light out of the housing.
Die zweite optisch-mechanische Schnittstelle umfasst einen, zu einem ersten mechanischen Abschnitt komplementären, zweiten mechanischen Abschnitt, der als integraler Teil des Gehäuses ausgestaltet ist.The second opto-mechanical interface comprises a second mechanical section which is complementary to a first mechanical section and is designed as an integral part of the housing.
Eine Ausgestaltung sieht vor, dass der Messkopf ein Umlenkelement im Gehäuse umfasst, welches Sendelicht oder Empfangslicht vom dritten Pfad in den vierten Pfad oder umgekehrt umlenkt.One embodiment provides that the measuring head includes a deflection element in the housing, which deflects the transmitted light or received light from the third path into the fourth path or vice versa.
In einer Ausgestaltung ist der mediumdurchströmten Bereich als weitere Aussparung des Gehäuses ausgestaltet.In one embodiment, the area through which the medium flows is designed as a further recess in the housing.
In einer Ausgestaltung umfasst der Messkopf somit einen optischen Prozesssensor, der zur Messung zumindest einer Messgröße eines Mediums in einem Behältnis ausgestaltet ist, der Messkopf umfassend: ein Gehäuse, das zur Anbindung des Sensors an das Behältnis ausgestaltet ist; eine zweite optisch-mechanische Schnittstelle, umfassend einen, zu einem ersten optischen Abschnitt komplementären, zweiten optischen Abschnitt, der als Aussparung im Gehäuse ausgestaltet ist, einen dritten Pfad, der Sendelicht empfängt, ins Innere des Gehäuses einkoppelt und zu einem Umlenkelement führt, und einen vierten Pfad, der Sendelicht vom Umlenkelement empfängt, durch einen mediumdurchströmten Bereich führt, wobei das Sendelicht durch das Medium in Empfangslicht gewandelt wird, und Empfangslicht aus dem Gehäuse auskoppelt, und einen, zu einem ersten mechanischen Abschnitt komplementären, zweiten mechanischen Abschnitt, der als integraler Teil des Gehäuses ausgestaltet ist, das Umlenkelement, welches im Gehäuse angeordnet ist, und den mediumdurchströmten Bereich, der als weitere Aussparung des Gehäuses ausgestaltet ist.In one embodiment, the measuring head thus comprises an optical process sensor which is designed to measure at least one measured variable of a medium in a container, the measuring head comprising: a housing which is designed to connect the sensor to the container; a second optical-mechanical interface, comprising a second optical section which is complementary to a first optical section and which is designed as a recess is configured in the housing, a third path, which receives transmitted light, couples it into the interior of the housing and leads to a deflection element, and a fourth path, which receives transmitted light from the deflection element, through an area through which the medium flows, the transmitted light being converted by the medium into received light and decouples received light from the housing, and a second mechanical section, which is complementary to a first mechanical section and is designed as an integral part of the housing, the deflection element, which is arranged in the housing, and the area through which the medium flows, which is a further recess of the housing is designed.
In einer Ausgestaltung umfasst der Messkopf einen optischen Prozesssensor, der zur Messung zumindest einer Messgröße eines Mediums in einem Behältnis ausgestaltet ist, der Messkopf umfassend: ein Gehäuse, das zur Anbindung des Sensors an das Behältnis ausgestaltet ist; eine zweite optisch-mechanische Schnittstelle, umfassend einen, zu einem ersten optischen Abschnitt komplementären, zweiten optischen Abschnitt, der als Aussparung im Gehäuse ausgestaltet ist, einen dritten Pfad, der Sendelicht empfängt, ins Innere des Gehäuses einkoppelt, durch einen mediumdurchströmten Bereich führt, wobei das Sendelicht durch das Medium in Empfangslicht gewandelt wird, und Empfangslicht zu einem Umlenkelement führt, und einen vierten Pfad, der Empfangslicht vom Umlenkelement empfängt und aus dem Gehäuse auskoppelt, und einen, zu einem ersten mechanischen Abschnitt komplementären, zweiten mechanischen Abschnitt, der als integraler Teil des Gehäuses ausgestaltet ist, das Umlenkelement, welches im Gehäuse angeordnet ist, und den mediumdurchströmten Bereich, der als weitere Aussparung des Gehäuses ausgestaltet ist.In one configuration, the measuring head comprises an optical process sensor, which is designed to measure at least one measured variable of a medium in a container, the measuring head comprising: a housing, which is designed to connect the sensor to the container; a second opto-mechanical interface, comprising a second optical section, which is complementary to a first optical section and is designed as a recess in the housing, couples a third path, which receives transmitted light, into the interior of the housing, through an area through which the medium flows, wherein the transmitted light is converted by the medium into received light, and leads received light to a deflection element, and a fourth path that receives received light from the deflection element and decouples it from the housing, and a second mechanical section that is complementary to a first mechanical section and that acts as an integral Part of the housing is configured, the deflection element, which is arranged in the housing, and the area through which the medium flows, which is configured as a further recess of the housing.
Der mediumdurchströmte Pfad kann somit im dritten oder im vierten Pfad angeordnet sein.The medium-flow path can thus be arranged in the third or in the fourth path.
Die Verwendung einer optisch-mechanischen Schnittstelle jeweils am Sensor und Messkopf ermöglicht es, verschiedenartige Messköpfe wie Tauchsonden oder Durchflusszellen von Prozesssensoren zu entkoppeln. Hierdurch kann der Messkopf im Prozess verbleiben und hält diesen für den weiteren Validierungsprozess des Sensors verschlossen.The use of an opto-mechanical interface on the sensor and measuring head makes it possible to decouple different types of measuring heads such as immersion probes or flow cells from process sensors. This allows the measuring head to remain in the process and keeps it closed for the further validation process of the sensor.
Der abgenommene Sensor mit der optisch-mechanischen Schnittstelle kann nun für den Validierungsprozess verwendet werden. Durch den Austausch des Messkopfs am Sensor gegen einen Validierungsadapter (der als besondere Ausgestaltung eines Messkopfs angesehen wird) zur Aufnahme von zertifizierten Küvetten oder Filtern, kann die Überprüfung des Sensors leicht vorgenommen werden.The removed sensor with the opto-mechanical interface can now be used for the validation process. By replacing the measuring head on the sensor with a validation adapter (which is regarded as a special configuration of a measuring head) for accommodating certified cuvettes or filters, the sensor can be checked easily.
Wie bei einem Laborspektrometer wird mit dieser Validierungsvorrichtung und der Möglichkeit, zertifizierte Standards (Küvetten, Filter) einsetzen zu können, die vollständige Validierung des Prozesssensors ermöglicht.As with a laboratory spectrometer, the full validation of the process sensor is made possible with this validation device and the option of being able to use certified standards (cuvettes, filters).
Eine Ausgestaltung sieht vor, dass das Umlenkelement das Sendelicht um 180 ° umlenkt.One embodiment provides that the deflection element deflects the transmitted light by 180°.
Eine Ausgestaltung sieht vor, dass das Umlenkelement als Prisma ausgestaltet ist.One embodiment provides that the deflection element is designed as a prism.
Eine Ausgestaltung sieht vor, dass der dritte und vierte Pfad als zwei separate stabförmige, insbesondere zylinderförmige, Aussparungen ausgestaltet sind.One embodiment provides that the third and fourth path are designed as two separate rod-shaped, in particular cylindrical, recesses.
Eine Ausgestaltung sieht vor, dass der dritte und vierte Pfad, insbesondere jeweils, ein optisches Element umfasst, insbesondere ein Fenster und/oder eine Linse, wobei das optische Element für das Sendelicht und Empfangslicht transparent ist.One embodiment provides that the third and fourth path, in particular each, includes an optical element, in particular a window and/or a lens, the optical element being transparent for the transmitted light and received light.
Eine Ausgestaltung sieht vor, dass der dritte oder vierte Pfad ein Fenster zum mediumdurchströmten Bereich umfasst, wobei das Fenster für das Sendelicht und Empfangslicht transparent ist.One embodiment provides that the third or fourth path includes a window to the area through which the medium flows, the window being transparent for the transmitted light and received light.
Eine Ausgestaltung sieht vor, dass der Messkopf als Tauchsonde ausgestaltet ist.One embodiment provides that the measuring head is designed as an immersion probe.
Eine Ausgestaltung sieht vor, dass der Messkopf als Durchflusssonde ausgestaltet ist. Eine Ausgestaltung sieht vor, dass der Messkopf als Kalibrier- und Validiereinrichtung ausgestaltet ist.One embodiment provides that the measuring head is designed as a flow probe. One embodiment provides that the measuring head is designed as a calibration and validation device.
Hier sieht man die besonderen Vorteile der optischen-mechanischen Schnittstelle. Es können verschiedene Messköpfe einfach ausgetauscht werden. Der "eigentliche" Messkopf, z.B. eine Durchflusssonde oder Tauchsonde, verbleibt im Prozess. Nach dem Entfernen des Sensors, wird auf die gleiche optisch-mechanische Schnittstelle eine Kalibrier- und Validiereinrichtung gesetzt. Der optische Pfad ist der gleiche wie im Prozess und der Sensor kann kalibriert werden.Here you can see the special advantages of the optical-mechanical interface. Different measuring heads can be easily exchanged. The "actual" measuring head, e.g. a flow probe or immersion probe, remains in the process. After removing the sensor, a calibration and validation device is placed on the same opto-mechanical interface. The optical path is the same as in the process and the sensor can be calibrated.
Eine Ausgestaltung sieht vor, dass die Kalibrier- und Validiereinrichtung einen Küvettenhalter mit einer Halterung für eine Küvette umfasst, wobei die Halterung den mediumdurchströmten Bereich bildet.One embodiment provides that the calibration and validation device includes a cuvette holder with a holder for a cuvette, the holder forming the area through which the medium flows.
Eine Ausgestaltung sieht vor, dass der Küvettenhalter einen Festkörperstandard umfasst.One embodiment provides that the cuvette holder includes a solid standard.
Eine Ausgestaltung sieht vor, dass die Kalibrier- und Validiereinrichtung einen Küvettenwechsler umfasst.One embodiment provides that the calibration and validation device includes a cuvette changer.
Eine Ausgestaltung sieht vor, dass die Kalibrier- und Validiereinrichtung ein Filterrad oder Filterwechsler umfasst.One embodiment provides that the calibration and validation device includes a filter wheel or filter changer.
Dies ermöglicht auch eine automatische Überprüfung der Prozesssensoren durch eine entsprechende Wechseleinheit (z.B. Filterrad, Küvettenwechsler).This also enables the process sensors to be checked automatically using a corresponding exchange unit (e.g. filter wheel, cell changer).
Die Aufgabe wird weiter gelöst durch ein optisches Messsystem umfassend einen optischem Prozesssensor wie oben beschrieben und einen Messkopf wie oben beschrieben, wobei der zweite optische Abschnitt den ersten optischen Abschnitt aufnimmt um eine optische Verbindung mit einem Lichtpfad von Lichtquelle, erste Lichtleitung, erster Pfad, dritter Pfad, Umlenkelement, vierter Pfad, zweiter Pfad, zweite Lichtleitung und Lichtempfänger zu ermöglichen, und eine mechanische Verbindung von optischem Prozesssensor und Messkopf über den ersten mechanischen Abschnitt und zweiten mechanischen Abschnitt ermöglicht.The object is further achieved by an optical measuring system comprising an optical process sensor as described above and a measuring head as described above, the second optical section accommodating the first optical section to form an optical connection with a light path from the light source, first light line, first path, third To enable path, deflection element, fourth path, second path, second light line and light receiver, and a mechanical connection of the optical process sensor and measuring head via the first mechanical section and second mechanical section.
Eine Ausgestaltung sieht vor, dass die mechanische Verbindung lösbar ist, insbesondere sind der erste mechanische Abschnitt und der zweite mechanische Abschnitt so ausgestaltet, dass eine Schraubverbindung besteht, insbesondere umfassen der erste mechanische Abschnitt und der zweite mechanische Abschnitt Bohrungen und/oder Gewinde für Schrauben.One embodiment provides that the mechanical connection is detachable, in particular the first mechanical section and the second mechanical section are designed such that there is a screw connection, in particular the first mechanical section and the second mechanical section include bores and/or threads for screws.
Die Aufgabe wird weiter gelöst durch ein Verfahren zum Kalibrieren und/oder Validieren eines optischen Prozesssensors, umfassend die Schritte: Entfernen des Sensors von einem Messkopf, der als Durchflusssonde oder Tauchsonde ausgestaltet ist; Anbringen des Sensors an einem Messkopf, der als Kalibrier- und Validiereinrichtung ausgestaltet ist; Kalibrieren und Validieren des Sensors mittels des Kalibrier- und Validiereinrichtung; Entfernen des Sensors vom Kalibrier- und Validiereinrichtung; und Wiederanbringen des Sensors an der Durchflusssonde oder Tauchsonde.The object is further achieved by a method for calibrating and/or validating an optical process sensor, comprising the steps of: removing the sensor from a measuring head, which is designed as a flow probe or immersion probe; Attaching the sensor to a measuring head which is designed as a calibration and validation device; calibrating and validating the sensor using the calibration and validation device; removing the sensor from the calibration and validation device; and reattaching the sensor to the flow probe or submersible probe.
Dies wird anhand der nachfolgenden Figuren näherer erläutert.
- Fig. 1a, b
- zeigen den beanspruchten optischen Prozesssensor im Querschnitt und einer Seitenansicht.
- Fig. 2a-d
- zeigen das beanspruchten Messsystem in einer Ausgestaltung (Tauchsonde).
- Fig. 3a-d
- zeigen das beanspruchten Messsystem in einer Ausgestaltung (Durchflusssonde).
- Fig. 4a-e
- zeigen das beanspruchten Messsystem in einer Ausgestaltung (Küvettenhalter).
- Fig. 5
- zeigt das beanspruchten Messsystem in einer Ausgestaltung (LED-Sensor)
- Fig. 6a-c
- zeigen den Küvettenhalter mit und ohne Festkörperstandard.
- Fig. 1a, b
- show the claimed optical process sensor in cross section and a side view.
- Fig. 2a-d
- show the claimed measuring system in one embodiment (immersion probe).
- Fig. 3a-d
- show the claimed measurement system in one embodiment (flow probe).
- Fig. 4a-e
- show the claimed measurement system in one embodiment (cuvette holder).
- figure 5
- shows the claimed measuring system in one embodiment (LED sensor)
- Fig. 6a-c
- show the cuvette holder with and without solid state standard.
In den Figuren sind gleiche Merkmale mit gleichen Bezugszeichen gekennzeichnet.In the figures, the same features are marked with the same reference symbols.
Das beanspruchte Messsystem in seiner Gesamtheit hat das Bezugszeichen 100 und ist beispielsweise in
Der Sensor 1 umfasst eine erste optisch-mechanische Schnittstelle 10, die besteht aus einem optischen Abschnitt 11 und einem mechanischen Abschnitt 21.The
Der mechanische Abschnitt 21 dient der Anbindung des Sensors 1 an den Messkopf 51, beispielsweise durch Verschrauben, wobei entsprechende Vorrichtungen, also etwa Löcher, Gewinde oder Bohrungen 22 und 72 vorhanden sind. Der mechanischen Abschnitt 21 ist integraler Teil des Gehäuses 2.The
Der optische Abschnitt 11 ragt aus dem Gehäuse 2 hinaus. Dieser umfasst einen ersten Pfad 12 und eine erste Lichtleitung 13, etwa ein Lichtwellenleiter oder auch eine freie Strahlführung, die Sendelicht 5 von der Lichtquelle 3 in den ersten Pfad 12 einführt und dann Sendelicht 5 aus dem Gehäuse 2 auskoppelt. Dieser umfasst weiter einen zweiten Pfad 14 und eine zweite Lichtleitung 15, etwa ein Lichtwellenleiter oder eine freie Strahlführung, der Empfangslicht 6 in das Innere des Gehäuses 2 einkoppelt und über die zweite Lichtleitung 15 vom zweiten Pfad 14 an den Lichtempfänger 4 führt. Die Pfade 12, 14 sind separate, zylinderförmige Fortführungen, die beispielsweise mit dem Gehäuse 2 verschraubt sind, wobei die Lichtwellenleiter 13, 15 im Innern geführt sind.The
Der Messkopf 51 umfasst eine zweite optisch-mechanische Schnittstelle 60, die besteht aus einem optischen Abschnitt 61 und einem mechanischen Abschnitt 71.The measuring
Der mechanische Abschnitt 71 dient der Anbindung des Messkopfes 51 an den Sensor 1, beispielsweise durch Verschrauben, wobei entsprechende Vorrichtungen, also etwa Löcher, Gewinde oder Bohrungen 22 und 72 vorhanden sind. Der mechanischen Abschnitt 71 ist integraler Teil des Gehäuses 52.The
Darüber hinaus ist das Gehäuse 52 zur Anbindung an ein Behältnis ausgestaltet. Das Gehäuse 52 umfasst dazu entsprechende Anschlussmittel. Das Anschlussmittel kann etwa als Schweiß- oder Flanschverbindung, z.B. aus Edelstahl, ausgeführt werden. Andere Ausgestaltungen sind aber möglich. Im Behältnis befindet sich das zu messende Messmedium. Das Behältnis kann etwa ein Behälter, Kessel, Rohr, Rohrleitung o.ä. sein.In addition, the
Die zweite optisch-mechanische Schnittstelle 60 umfasst zunächst einen, zu einem ersten optischen Abschnitt 11 komplementären, zweiten optischen Abschnitt 61, der als Aussparung im Gehäuse 52 ausgestaltet ist. Dieser umfasst einen dritten Pfad 62, der Sendelicht 5 empfängt, ins Innere des Gehäuses 52 einkoppelt und zu einem Umlenkelement 67 führt. Dieser umfasst weiter einen vierten Pfad 64, der Sendelicht 5 vom Umlenkelement 67 empfängt, durch einen mediumdurchströmten Bereich 68 führt, wobei das Sendelicht 5 durch das Medium im mediumdurchströmten Bereich 68 in Empfangslicht 6 gewandelt wird, und schließlich Empfangslicht 6 aus dem Gehäuse 52 wieder auskoppelt.The second opto-
Das Umlenkelement 67 lenkt das Sendelicht 5 um 180 ° um und ist als Prisma ausgestaltet.The
Der dritte und vierte Pfad 62, 64 sind als zwei separate stabförmige, insbesondere zylinderförmige, Aussparungen ausgestaltet. Der dritte und vierte Pfad 62, 64 sind komplementär zum ersten und zweiten Pfad 12, 14 ausgestaltet, so dass die Fortführungen genau in die Aussparungen passen. Wird der Sensor 1 und der Kopf 51 zusammengebaut und über die mechanischen Abschnitte 11, 61 mechanisch fixiert, sind die beiden optischen Abschnitte 11, 51 so positioniert, dass das Sendelicht 5 beziehungsweise das Empfangslicht 6 ideal vom Sensor 1 in den Kopf 51 beziehungsweise umgekehrt geführt werden. Es gibt Ausgestaltungen mit Linsen 16 (wie abgebildet) oder Fenstern.The third and
Das Sendelicht 5 tritt aus dem Messkopf 51 kurzzeitig aus, durchläuft den medium durchströmten Bereich 68 und tritt dann wieder in das Gehäuse 52 an entsprechender Stelle ein. Transparente Fenster 66 grenzen das Innere vom Medium ab (der Übersichtlichkeit halber zeigt das Bezugszeichen nur auf das linke Fenster). Der mediumdurchströmte Pfad 68 kann im dritten oder im vierten Pfad 62, 64 angeordnet sein.The transmitted
Die
Ist nun eine Validierung oder Kalibrierung des Sensors 1 nötig, kann dieser einfach vom Messkopf 51 im Prozess (z.B. Ausführung als Durchflusssonde) durch Lösen der Verschraubung abgenommen werden.If a validation or calibration of the
Der Messkopf 51 kann als Kalibrier- und Validiereinrichtung ausgestaltet sein.The measuring
Dies zeigen die
Der Sensor 1 wird also entfernt und der Messkopf 51 in der Ausgestaltung als Kalibrier- und Validiereinrichtung, der ebenfalls eine zweite optisch-mechanische Schnittstelle 60 besitzt, an den Sensor 1 angebracht.The
Eine Ausgestaltung des Kalibrier- und Validiereinrichtung ist ein Küvettenhalter. Am mediumdurchströmten Bereich 68 befindet sich der Halter 80, in den eine Küvette 81 eingebracht wird. Die Küvette 81 kann als Standard, beispielsweise als Festkörperstandard ausgestaltet sein. Den zusammengebauten Zustand zeigt
Die Kalibrier- und Validiereinrichtung kann auch als Küvettenwechsler, Filterrad oder Filterwechsler ausgestaltet sein. Am Filterrad können verschiedene Absorptionen eingestellt werden, sodass durch Drehen verschiedene Situationen simuliert werden können.The calibration and validation device can also be designed as a cuvette changer, filter wheel or filter changer. Different absorptions can be set on the filter wheel so that different situations can be simulated by turning it.
Schließlich wird der Sensor 1 wieder von der Kalibrier- und Validiereinrichtung entfernt und kann wieder an den anderen Messkopf angeschlossen werden, beispielsweise die Tauchsonde oder die Durchflusssonde.Finally, the
- 11
- Prozesssensorprocess sensor
- 22
- Gehäuse von 1housing from 1
- 33
- Lichtquellelight source
- 44
- Lichtempfängerlight receiver
- 55
- Sendelichttransmission light
- 66
- Empfangslichtreceiving light
- 1010
- erste optisch-mechanische Schnittstellefirst optical-mechanical interface
- 1111
- erster optischer Abschnittfirst optical section
- 1212
- erster Pfadfirst path
- 1313
- erste Lichtleitungfirst light line
- 1414
- zweiter Pfadsecond path
- 1515
- zweite Lichtleitungsecond light line
- 1616
- Linselens
- 2121
- erster mechanischer Abschnittfirst mechanical section
- 2222
- Loch/Gewinde für SchraubenHole/thread for screws
- 5151
- Messkopfmeasuring head
- 5252
- Gehäuse von 51Case of 51
- 6060
- zweite optisch-mechanische Schnittstellesecond optical-mechanical interface
- 6161
- zweiter optischer Abschnittsecond optical section
- 6262
- dritter Pfadthird path
- 6464
- vierter Pfadfourth path
- 6666
- Fensterwindow
- 6767
- Umlenkelementdeflection element
- 6868
- mediumdurchströmter Bereichmedium-flow area
- 69a69a
- Durchfluss reinflow clean
- 69b69b
- Durchfluss rausflow out
- 7171
- zweiter mechanischer Abschnittsecond mechanical section
- 7272
- Loch/Gewinde für SchraubenHole/thread for screws
- 8080
- Halterungbracket
- 8181
- Küvettecuvette
- 100100
- Messsystemmeasuring system
Claims (10)
wobei der Messkopf (51) als Tauchsonde ausgestaltet ist.Measuring head (51) according to one of the preceding claims,
wherein the measuring head (51) is designed as an immersion probe.
wobei der Messkopf (51) als Durchflusssonde ausgestaltet ist.Measuring head (51) according to one of the preceding claims,
wherein the measuring head (51) is designed as a flow probe.
wobei der Messkopf als Kalibrier- und Validiereinrichtung ausgestaltet ist.Measuring head (51) according to one of the preceding claims,
wherein the measuring head is designed as a calibration and validation device.
wobei die Kalibrier- und Validiereinrichtung einen Küvettenhalter mit einer Halterung für eine Küvette umfasst, wobei die Halterung den mediumdurchströmten Bereich bildet.Measuring head (51) according to claim 5,
wherein the calibration and validation device comprises a cuvette holder with a holder for a cuvette, the holder forming the area through which the medium flows.
wobei die Kalibrier- und Validiereinrichtung einen Küvettenwechsler, Filterrad oder Filterwechsler umfasst.Measuring head (51) according to claim 5,
wherein the calibration and validation device comprises a cuvette changer, filter wheel or filter changer.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020120718.2A DE102020120718A1 (en) | 2020-08-05 | 2020-08-05 | Optical process sensor, measuring head, measuring system comprising both and method for calibrating and/or validating |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3951367A1 true EP3951367A1 (en) | 2022-02-09 |
Family
ID=76958748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP21185992.1A Pending EP3951367A1 (en) | 2020-08-05 | 2021-07-16 | Optical process sensor, measuring head, measuring system comprising the two and method for calibrating and / or validating |
Country Status (4)
Country | Link |
---|---|
US (1) | US11747200B2 (en) |
EP (1) | EP3951367A1 (en) |
CN (1) | CN114112904A (en) |
DE (1) | DE102020120718A1 (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660106A1 (en) * | 1993-12-22 | 1995-06-28 | Hellma GmbH & Co. KG Glastechnische-optische Werkstätten | Device with spectrophotometer and optical fibers |
DE10149879A1 (en) * | 2001-10-10 | 2003-04-30 | Orban & Trau Xantec | Device for the spectrophotometric analysis of liquid media |
US20080249435A1 (en) * | 2005-10-15 | 2008-10-09 | Hans-Peter Haar | Test element and test system for examining a body fluid |
WO2010027982A2 (en) * | 2008-09-02 | 2010-03-11 | Microptix Technologies, Llc | Adapter mechanism for handheld spectral sensing device |
WO2012033466A1 (en) * | 2010-09-08 | 2012-03-15 | Nitto Denko Corporation | Waveguide biosensor |
DE202013101907U1 (en) | 2013-05-02 | 2013-05-16 | Viacheslav Artyushenko | Front element for an optical probe and probe device |
EP1570253B1 (en) * | 2002-12-11 | 2015-07-08 | Deutsche Institute für Textil- und Faserforschung Denkendorf | Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same |
US9304079B2 (en) * | 2011-12-15 | 2016-04-05 | Mettler-Toledo Gmbh | Gas analyser |
EP3067686A1 (en) * | 2015-03-13 | 2016-09-14 | Yokogawa Electric Corporation | Optical element, transmission probe, sample container, optical device, and immersion transmission measurement method |
US20170146450A1 (en) * | 2015-11-19 | 2017-05-25 | Sentelligence, Inc. | Species specific sensor for exhaust gases and method thereof |
EP3228999A2 (en) * | 2016-04-05 | 2017-10-11 | Viavi Solutions Inc. | Light pipe for spectroscopy |
US20170292909A1 (en) * | 2008-11-24 | 2017-10-12 | Ge Healthcare Bio-Sciences Ab | Flow cell optical detection system |
EP3561488A1 (en) * | 2018-04-25 | 2019-10-30 | Yokogawa Electric Corporation | Gas analyzer |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4786171A (en) * | 1986-07-29 | 1988-11-22 | Guided Wave, Inc. | Spectral analysis apparatus and method |
US6667808B2 (en) * | 2000-03-08 | 2003-12-23 | Thermo Electron Scientific Instruments Corporation | Multifunctional fourier transform infrared spectrometer system |
RU2006116548A (en) * | 2003-11-19 | 2007-12-27 | Раумедик Аг (De) | METHOD AND DEVICE FOR ANALYSIS OF LIQUID SAMPLES |
DE202008003764U1 (en) * | 2008-03-18 | 2008-05-21 | J & M Analytische Mess- Und Regeltechnik Gmbh | Device for the optical measurement of substances |
GB2542855B (en) * | 2015-10-02 | 2017-10-11 | Smart Fibres Ltd | Monitoring probe |
DE102016117733A1 (en) * | 2015-10-09 | 2017-04-13 | Endress+Hauser Conducta Gmbh+Co. Kg | measuring device |
DE102017114317A1 (en) * | 2016-07-27 | 2018-02-01 | Endress+Hauser Conducta Gmbh+Co. Kg | Spectrometric measuring device |
-
2020
- 2020-08-05 DE DE102020120718.2A patent/DE102020120718A1/en active Pending
-
2021
- 2021-07-16 EP EP21185992.1A patent/EP3951367A1/en active Pending
- 2021-07-29 US US17/388,493 patent/US11747200B2/en active Active
- 2021-07-30 CN CN202110873429.1A patent/CN114112904A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0660106A1 (en) * | 1993-12-22 | 1995-06-28 | Hellma GmbH & Co. KG Glastechnische-optische Werkstätten | Device with spectrophotometer and optical fibers |
DE10149879A1 (en) * | 2001-10-10 | 2003-04-30 | Orban & Trau Xantec | Device for the spectrophotometric analysis of liquid media |
EP1570253B1 (en) * | 2002-12-11 | 2015-07-08 | Deutsche Institute für Textil- und Faserforschung Denkendorf | Optical sensor for determining the concentrations of dyes and/or particles in liquid or gaseous media and method for operating the same |
US20080249435A1 (en) * | 2005-10-15 | 2008-10-09 | Hans-Peter Haar | Test element and test system for examining a body fluid |
WO2010027982A2 (en) * | 2008-09-02 | 2010-03-11 | Microptix Technologies, Llc | Adapter mechanism for handheld spectral sensing device |
US20170292909A1 (en) * | 2008-11-24 | 2017-10-12 | Ge Healthcare Bio-Sciences Ab | Flow cell optical detection system |
WO2012033466A1 (en) * | 2010-09-08 | 2012-03-15 | Nitto Denko Corporation | Waveguide biosensor |
US9304079B2 (en) * | 2011-12-15 | 2016-04-05 | Mettler-Toledo Gmbh | Gas analyser |
DE202013101907U1 (en) | 2013-05-02 | 2013-05-16 | Viacheslav Artyushenko | Front element for an optical probe and probe device |
EP3067686A1 (en) * | 2015-03-13 | 2016-09-14 | Yokogawa Electric Corporation | Optical element, transmission probe, sample container, optical device, and immersion transmission measurement method |
US20170146450A1 (en) * | 2015-11-19 | 2017-05-25 | Sentelligence, Inc. | Species specific sensor for exhaust gases and method thereof |
EP3228999A2 (en) * | 2016-04-05 | 2017-10-11 | Viavi Solutions Inc. | Light pipe for spectroscopy |
EP3561488A1 (en) * | 2018-04-25 | 2019-10-30 | Yokogawa Electric Corporation | Gas analyzer |
Also Published As
Publication number | Publication date |
---|---|
US11747200B2 (en) | 2023-09-05 |
DE102020120718A1 (en) | 2022-02-10 |
CN114112904A (en) | 2022-03-01 |
US20220042846A1 (en) | 2022-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112011103757T5 (en) | UV miniature sensor with disposable flow cell | |
DE4443016A1 (en) | Spectral analyser of gas concentration | |
DE102017114317A1 (en) | Spectrometric measuring device | |
WO2015082612A1 (en) | Analysis device (photometer) having a serial light guide | |
EP3832291A1 (en) | Flow-through measuring cell for holding measuring instruments | |
DE102011075530A9 (en) | Photometer for in situ measurement in fluids | |
DE102010038428A1 (en) | Optical measuring system | |
EP1269152A1 (en) | Optical device for simultaneous multiple measurement using polarimetry and spectrometry and method for regulating/monitoring physical-chemical and biotechnical processes using said device | |
DE69422922T2 (en) | FLUORESCENCE DETECTOR AND DEVICE FOR HOLDING A REPLACEABLE SAMPLE CUVETTE IN A FLUORESCENCE DETECTOR | |
EP3951367A1 (en) | Optical process sensor, measuring head, measuring system comprising the two and method for calibrating and / or validating | |
DE202021102073U1 (en) | Optical analysis device for determining a parameter of a medium, housing and overall system | |
DE102006035996A1 (en) | Optical measuring probe for process monitoring | |
DE10149879B4 (en) | Device for the spectrophotometric analysis of liquid media | |
DE202006016617U1 (en) | Device for measuring the energy metabolism of living tissue by laser spectroscopy comprises a laser and an optoelectronic unit connected to a probe and an analysis and display unit through disconnectable interfaces | |
EP2270435A2 (en) | Optical sensor finger | |
EP2416145B1 (en) | Device for analysing a fluid | |
WO2008113505A1 (en) | Particle sensor for flowing liquid or gaseous media | |
DE102022130906A1 (en) | Measuring cell, measuring cell holder and measuring device with a measuring cell | |
WO2022223425A1 (en) | Optical analysis device for determining a parameter of a medium, housing and complete system | |
WO2009115282A1 (en) | Optical probe | |
DE3813718C2 (en) | ||
WO2011003728A2 (en) | Measuring device for recording a raman spectrum | |
EP1331475B1 (en) | Method and device for measuring particle size distribution and concentration of particles in a fluid | |
DE4331232C2 (en) | Device for controlling the degree of transmission in optical devices with light-conducting media, in particular in medical endoscopy devices | |
DE102006031232B4 (en) | Method and arrangement for measuring the power loss of a laser beam of a laser processing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17P | Request for examination filed |
Effective date: 20220118 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20240411 |