[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3941826A1 - Système et procédé de surveillance d'un moteur d'aéronef - Google Patents

Système et procédé de surveillance d'un moteur d'aéronef

Info

Publication number
EP3941826A1
EP3941826A1 EP20727833.4A EP20727833A EP3941826A1 EP 3941826 A1 EP3941826 A1 EP 3941826A1 EP 20727833 A EP20727833 A EP 20727833A EP 3941826 A1 EP3941826 A1 EP 3941826A1
Authority
EP
European Patent Office
Prior art keywords
physical
margins
engine
quantities
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20727833.4A
Other languages
German (de)
English (en)
Inventor
Sébastien Philippe RAZAKARIVONY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran SA
Original Assignee
Safran SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran SA filed Critical Safran SA
Publication of EP3941826A1 publication Critical patent/EP3941826A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0808Diagnosing performance data
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/0085Devices for aircraft health monitoring, e.g. monitoring flutter or vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/40Maintaining or repairing aircraft
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station

Definitions

  • TITLE System and method for monitoring an aircraft engine
  • the present invention relates to the field of monitoring an aircraft engine.
  • the invention relates to a method and a monitoring system for monitoring the state of the engine in order to anticipate maintenance operations.
  • aircraft engine designates the set of turbine engines fitted to flying devices, in particular helicopters and airplanes.
  • margins or indicators during specific maneuvers known as “CSM” Engine Health Check (or “EPC” Engine Power Check).
  • CSM Engine Health Check
  • EPC Engine Power Check
  • Margins are calculated using a physical model simulating the thermodynamic behavior of the engine. More particularly, the model takes as input data relating to the engine and the flight conditions and outputs output data estimated from the input data. The variables of the output data are also recorded in real time by sensors so that the margins are calculated by subtracting between the estimates and the records corresponding to the same variables. These margins are then displayed as a function of the flight dates allowing them to be analyzed visually or by statistical techniques in order to detect anomalies and trends in margins.
  • the object of the present invention is therefore to provide a system for monitoring and tracking an aircraft engine which overcomes the aforementioned drawbacks, in particular by making the best use of the data measured during flights to determine precise indicators. on the state of health of the engine.
  • the invention relates to a monitoring system suitable for monitoring an aircraft engine, said system comprising:
  • an acquisition module configured to acquire, during a flight time of the aircraft, current measurements of physical quantities, called physical input quantities and physical output quantities, relating to said aircraft engine and to its environment ,
  • a module for simulating the physical behavior of said aircraft engine configured to simulate values of output physical quantities as a function of said current measurements of input physical quantities
  • a processor configured to calculate physical margins, called real margins, between said simulated values of physical output quantities and said corresponding current measurements of physical output quantities,
  • a learning module configured to predict margins, called predicted margins, from current measurements of input physical quantities, and in that said processor is further configured to calculate monitoring residuals between said real margins and said predicted margins, said monitoring residues presenting an indication of the condition of the aircraft engine.
  • This system consists of a hybrid combination (and not a simple juxtaposition) between the simulation module and the learning module, thus creating a synergy which allows the physical model to be used outside of its normal operating mode, in addition of course to its use in its usual operating mode. This makes it possible to better exploit the data in the validity space of the physical model used by the simulation module, but also to obtain information outside this validity space.
  • the learning module would have needed to take into account a very large number of physical variables if it were used alone. This would have drastically complicated the control of learning because the physical laws connecting these variables can be non-linear and therefore very sensitive to the initial conditions so that tiny differences can lead to very different results, making the prediction very noisy.
  • said current measurements of physical input quantities and physical output quantities are acquired during the stable and transient phases of said flight of the aircraft.
  • the system comprises an interaction and / or display interface for viewing graphical representations of said monitoring residues.
  • This provides information on trends, anomalies or failures relating to the aircraft engine.
  • the learning module is based on a learning model built beforehand using a reference aircraft engine during a predetermined number of learning flights, the measurements of input physical quantities relating to the reference engine as well. that the real margins generated by the simulation module being injected during each learning flight into the learning module, allowing the latter to build the learning model.
  • the learning module is allowed to learn to predict the margins accurately.
  • said number of learning flights is chosen to ensure a compromise between precision and stability of the learning model and in that only the first elements in the series of flights are taken into account. This makes it possible to increase the learning efficiency while maintaining high precision.
  • said learning model is constructed according to a statistical technique of linear regression, neural networks, or random forests.
  • the physical input quantities comprise at least one input parameter relating to the aircraft engine and / or to the flight conditions of the aircraft, comprising at least one parameter chosen from the speed of rotation of the engine, the outside temperature, the external pressure, the fuel flow, the air flow taken from within the engine, the electrical energy taken from the engine, the position of the blades, the flight altitude, the absence or presence of filters, and in that the physical output quantities comprise at least one output parameter representative of the operating state of the aircraft engine, comprising at least one parameter chosen from the internal temperature of the engine and the torque of an engine shaft.
  • the monitoring residuals are aggregated in the form of means or modes for a synthetic representation.
  • the aircraft engine is a helicopter turbine engine.
  • the invention also relates to a method for monitoring an aircraft engine, comprising the following steps:
  • monitoring residues between said real margins and said predicted margins, said monitoring residues presenting an indication of the state of the aircraft engine.
  • a first (physical) model is used to build a better model (empirical + physical).
  • the predicted margins are defined at the same time as the data used.
  • prediction is used here in the sense of statistical learning and therefore of an output of the empirical model on input data.
  • the monitoring residue is defined between the actual margins and the predicted margins.
  • the monitoring residues are distinct from the “margins” usually used by those skilled in the art.
  • the learning module according to the present invention does not predict the state of the system, but the residue between a physical model and the system.
  • the present invention relates to the use of two waterfall models: the first model (physical) gives margins, and the second model (empirical / learning) predicts the usual deviation between the physical model and the real system . Note that it is not easy to use the physical model in areas in which it is not valid according to physical theories. However, by construction, the system according to the present application learns to correct these errors. Brief description of the figures
  • FIG. 1 schematically illustrates a system for monitoring an aircraft engine according to one embodiment of the invention
  • FIG. 2 schematically illustrates a method for monitoring an aircraft engine according to one embodiment of the invention
  • FIG. 3A schematically illustrates the prior learning phase of the learning module, according to one embodiment of the invention
  • FIG. 3B schematically illustrates the operational phase, according to one embodiment of the invention.
  • FIG. 4 illustrates a graph representing monitoring margins and residuals, according to one embodiment of the invention.
  • the principle of the invention consists in coupling a physical model of the behavior of the aircraft engine with a learning model so that the use of the measurements acquired during flights is maximized, thus allowing complete and optimal monitoring of the engine.
  • FIG. 1 schematically illustrates a system for monitoring an aircraft engine according to one embodiment of the invention.
  • the monitoring system 1 comprises an acquisition module 3, a simulation module 5, a learning module 7 and a processor 9.
  • the monitoring system 1 can be entirely included in an aircraft 11 or shared between the aircraft 11 and a maintenance center 13.
  • the aircraft 11 (here represented by a helicopter but can be an airplane) comprises an engine 15, an on-board computer 17 and sensors 19.
  • the sensors 19 measure physical quantities, called physical input quantities and physical output quantities, relating to the aircraft engine 15 and to its environment.
  • the input physical quantities can comprise at least one input parameter relating to the engine 15 of the aircraft and / or to the flight conditions of the aircraft 11, comprising at least one parameter chosen from the speed of rotation of the engine 15, the outside temperature, the outside pressure, the fuel flow, the air flow taken from the engine 15, the electrical energy taken from the engine 15, the position of the blades, the altitude theft, and the absence or presence of filters.
  • the physical output quantities may include at least one output parameter representative of the operating state of the aircraft engine, comprising at least one parameter chosen from the internal temperature of the engine 15 and the torque of a shaft of the engine 15.
  • the on-board computer 17 comprises the processor 9, the acquisition 3, simulation 5 and learning modules 7 as well as a recording memory 21 and an interface 23. It will be noted that the maintenance center 13 also comprises a computer 117 which can include the same elements (ie processor 109 and acquisition 103, simulation 105 and learning 107 modules, a memory 121 and an interface 123) as the on-board computer 17.
  • the memory 21 (and / or 121) forms a recording medium, readable by the processor 9 (and / or 109) and on which is recorded one or more computer program (s) comprising instruction codes for the execution of the monitoring method described below with reference to Figure 2.
  • FIG. 2 schematically illustrates a method for monitoring an aircraft engine according to one embodiment of the invention.
  • step E1 the acquisition module 3 (and / or 103) is configured to acquire, during a flight time of the aircraft 11, the current measurements of physical input quantities ME and of physical quantities of MS output.
  • the simulation module 5 (and / or 105) is adapted to simulate the physical behavior of the aircraft engine 15.
  • the simulation module 5 comprises a thermodynamic model of the relationships between physical quantities relating to the engine 15 and it acts as a solver which calculates output data according to the input data.
  • the simulation module 5 is configured to simulate the values of physical output quantities VS as a function of the current measurements of physical input quantities ME retrieved from the acquisition module B.
  • the values of physical output quantities VS are simulated from the input values observed in real time.
  • the processor 9 (and / or 109) is configured to calculate physical margins, called real margins, between the simulated values of physical output quantities VS and the corresponding current measurements of physical output quantities MS.
  • the actual margins represent the differences between the actual engine data observed in real time and the outputs calculated by the simulation module.
  • the real margins define the real errors between the physical model and the observed physical quantities.
  • the current measurements of physical input quantities ME and physical output quantities MS are acquired by the acquisition module 3 during the stable and transient phases of the flight of the aircraft 11.
  • the physical model has a specific domain of validity, but outside this domain of validity, the modeling can be considered as a reasonable approximation of the behavior of the engine 15 and can be used as support by the learning module 7. Note, however, that this approximation is not good enough to be used on its own.
  • the learning module 7 (and / or 107) is configured to predict margins, called predicted margins MP, from current measurements of physical input quantities ME (ie the observed input values ).
  • the learning module 7 comprises a statistical learning model based on a known technique of the linear regression type, neural networks, or random forests.
  • the learning module 7 is based on a statistical learning model built beforehand to learn the margins according to classical techniques of linear regression type, or random forests. This learning phase is described later with reference to FIG. 3.
  • a coupling is built between the simulation module 5 and the learning module 7, allowing the latter to learn to predict precise margins on all phases of the flight from the margins generated by the simulation module 5, by correcting the approximate margins generated by the simulation module 5 in the transient phases.
  • This coupling makes it possible to better use the data in the validity space of the physical model used by the simulation module 5 and to obtain, in addition, information outside this validity space.
  • processor 9 (and / or 109) is further configured to calculate monitoring residues R between the real margins and the predicted margins.
  • the monitoring residues provide an indication of the condition of the aircraft engine. The fact of following the monitoring residuals makes it possible to improve the calculated margins and to be able to obtain precise results outside the domain of validity of the physical model.
  • the monitoring residues R can be represented by point clouds or graphs in order to be visualized on the interaction and / or display interface 23 (or 123) of the computer 17 (or 117) thus giving information on trends, anomalies or failures relating to the aircraft engine.
  • the monitoring residues are aggregated in the form of means, modes, or any other dimension reduction technique for a synthetic representation.
  • the operational data collected during the flight of the aircraft are downloaded at the end of the flight.
  • the computer 117 of the maintenance center 13 performs the steps according to FIG. 2 and the results are displayed on the interface 123.
  • the maintenance experts can thus look at the residue curves, in order to alert in the event of abnormal behavior, that either breaks in the curves, abnormal tendencies, or anomalies.
  • FIGS. 3A and 3B schematically illustrate the prior learning phase of the learning module as well as the operational phase, according to one embodiment of the invention. More particularly, FIG. 3A represents the learning phase during which the learning module constructs a learning model based on a very stable reference aircraft engine 115.
  • a reference motor 115 used in the same contexts as the motors to be monitored. It is also advantageous to take the first elements in the series of recorded flights, and not randomly chosen flights from the database, as is usually done in statistical learning.
  • the learning takes place over a time window [t-k; t] defined as relevant from about a few hours to a few tens of flight hours, with a sufficient number of examples taken in the first flights of a predetermined number of learning flights.
  • the learning model works on the margins and not directly on the output variables.
  • the margins are small and therefore noisy, which requires good control of the learning part, in particular the number of examples to be used. The larger this number, the more precise the learning model.
  • the number of training flights is chosen to ensure a compromise between precision and stability of the training model and it is consequently advantageous to choose a reasonable number of flights. This number depends on the learning technique and can be, by way of example, between three and ten flights.
  • the time window encompasses the physical input quantities relating to the aircraft engine and to the flight conditions of the aircraft, until the variable (s) of physical output quantities is predicted, of the time step. tk at time step t.
  • the learning technique according to the invention takes into account the past over a certain time window to further reduce noise.
  • the previous time steps are taken into account according to a predictive logic.
  • the acquisition module of the reference motor 115 collects during each learning flight, the current measurements of physical input quantities ME and of physical output quantities MS relating to the reference motor 115 during the stable and transient phases of flight.
  • the physical input quantities ME are injected into the simulation module 5.
  • the latter estimates values of physical output quantities VS as a function of the current measurements of physical input quantities ME.
  • the processor then calculates the differences between the simulated values of physical output quantities VS and the corresponding current measurements of physical output quantities MS. These differences produce the actual MR margins.
  • the measurements of physical input quantities ME (relating to the reference motor and to the external conditions) over several time steps as well as the real margins MR generated by the simulation module 5 are injected into the learning module 7 allowing the latter to build the learning model.
  • the learning module 7 learns, thanks to the input physical quantities affecting the reference engine over several time steps and not only on the instantaneous values, the relations between the real margins MR and the predicted margins MP (ie the difference between the margins generated by the physical model and those generated by the learning model).
  • FIG. 3B illustrates the operational phase, according to the steps described with reference to FIG. 2, which consists in predicting the values of the margins obtained and comparing them with the margins actually output by the reference engine.
  • the acquisition module collects, during each operational flight, the current measurements of physical input quantities ME and physical output quantities MS relating to the engine 15 under surveillance during all the stable and transient phases of the flight.
  • the simulation module 5 then estimates the values of physical output quantities VS as a function of current measurements of physical input quantities ME.
  • the processor then calculates the actual margins MR by making the difference between the simulated values of physical output quantities VS and the corresponding current measurements of physical output quantities MS.
  • the learning module 7 determines the predicted margins MP from the current measurements of physical input quantities ME. Finally, the processor calculates the monitoring residuals R between the real margins MR and the predicted margins MP.
  • FIG. 4 illustrates a cloud of points representative of the monitoring margins and residuals, according to one embodiment of the invention.
  • the ordinate axis represents the internal temperature margins of the engine 15 (or 115) on a scale of 10 ° C. and the abscissa axis represents the dates or periods of the flights subdivided into quarters.
  • Each black point represents the average of the actual MR margins per flight and each gray point represents the average of the monitoring residuals R per flight.
  • the surveillance system uses the physical model as a first order approximation, which makes it possible to facilitate learning.
  • it uses the first flights of a benchmark engine to learn the model rather than taking random flights. It also uses the history of the variables and not just the instantaneous value of these variables, to properly model the dynamic parts.
  • the monitoring method and system according to the invention is suitable for all aircraft engines and in particular for an aircraft engine which has many transient or unstable phases such as the helicopter.
  • System for monitoring an aircraft engine comprising: - an acquisition module (S) configured to acquire, during a flight time of the aircraft, current measurements of physical quantities, called physical quantities d 'input (ME) and output physical quantities (MS), relating to said aircraft engine (15) and to its environment,
  • S acquisition module
  • ME physical quantities d 'input
  • MS output physical quantities
  • simulation module (5) of the physical behavior of said aircraft engine configured to simulate values of output physical quantities (VS) as a function of said current measurements of input physical quantities (ME),
  • processor (9) configured to calculate physical margins, called real margins
  • a learning module (7) configured to predict margins, called predicted margins (MP), from current measurements of input physical quantities (ME), and in that said processor (9) is further configured for calculating monitoring residuals (R) between said actual margins (MR) and said predicted margins (MP), said monitoring residuals presenting an indication of the condition of the aircraft engine.
  • the learning module (7) is based on a learning model previously constructed using a reference aircraft engine (115) during a predetermined number of learning flights, the measurements of input physical quantities relating to the reference engine as well as the actual margins generated by the

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Un système de surveillance d'un moteur d'aéronef, comportant : un module d'acquisition (3) pour acquérir des mesures courantes de grandeurs physiques, dites d'entrée (ME) et grandeurs physiques de sortie (MS), relatives audit moteur (15) d'aéronef, un module de simulation (5) du comportement physique dudit moteur d'aéronef, pour simuler des valeurs de grandeurs physiques de sortie (VS) en fonction desdites mesures courantes de grandeurs physiques d'entrée (ME), un processeur (9) pour calculer des marges physiques, dites réelles (MR), entre lesdites valeurs simulées de grandeurs physiques de sortie (VS) et lesdites mesures courantes correspondantes de grandeurs physiques de sortie (MS), un module d'apprentissage (7) pour prédire des marges, dites marges prédites (MP), à partir des mesures courantes de grandeurs physiques d'entrée (ME), et en ce que ledit processeur (9) est configuré pour calculer des résidus de surveillance (R) présentant une indication de l'état du moteur d'aéronef.

Description

DESCRIPTION
TITRE : Système et procédé de surveillance d'un moteur d'aéronef
Domaine technique
La présente invention se rapporte au domaine de surveillance d'un moteur d'aéronef. En particulier, l'invention concerne un procédé et un système de surveillance pour suivre l'état du moteur afin d'anticiper les opérations de maintenance.
Le terme « moteur d'aéronef » désigne l'ensemble de turbomoteurs équipant les appareils volants, notamment les hélicoptères et les avions.
Etat de la technique antérieure
Actuellement, le suivi de l'état des moteurs d'aéronefs et en particulier, les turbomoteurs d'hélicoptères est effectué par le calcul de marges ou indicateurs lors de manoeuvres spécifiques dites Contrôle Santé Moteur « CSM » (ou « EPC » Engine Power Check, en anglais). Les marges sont calculées en utilisant un modèle physique simulant le comportement thermodynamique du moteur. Plus particulièrement, le modèle prend en entrée des données relatives au moteur et aux conditions de vol et ressort des données de sortie estimées à partir des données d'entrée. Les variables des données de sortie sont également enregistrées en temps réel par des capteurs de sorte que les marges sont calculées en faisant la soustraction entre les estimations et les enregistrements correspondants aux mêmes variables. Ces marges sont ensuite affichées en fonction des dates du vol permettant de les analyser visuellement ou par des techniques statistiques afin de détecter les anomalies et les tendances des marges.
Toutefois, avant de lancer une procédure automatique d'analyse de données, il est requis au préalable que le pilote place l'aéronef dans des conditions particulières de vol en phases stables. Ce problème est résolu par une méthode décrite dans le brevet FR3003032 qui permet de faire une détection automatique de ces phases stables. Cette méthode consiste à détecter les conditions dans lesquelles les contraintes de validité du modèle thermodynamique sont vérifiées, avant de calculer les marges. Toutefois, ces marges restent valables uniquement sur les parties pour lesquelles le modèle physique reste valide, et donc souffrent de la limitation de domaine de fonctionnement de la surveillance. En outre, à cause d'un petit nombre de données dans les phases stables, il est parfois nécessaire pour un pilote d'effectuer des vols entièrement dédiés au calcul des marges, ce qui représente une charge de travail et des coûts supplémentaires.
L'objet de la présente invention est, par conséquent, de proposer un système de surveillance et de suivi d'un moteur d'aéronef remédiant aux inconvénients précités, en particulier en exploitant au mieux les données mesurées lors des vols pour déterminer des indicateurs précis sur l'état de santé du moteur.
Présentation de l'invention
L'invention concerne un système de surveillance adapté pour surveiller un moteur d'aéronef, ledit système comportant :
- un module d'acquisition configuré pour acquérir au cours d'un temps de vol de l'aéronef des mesures courantes de grandeurs physiques, dites grandeurs physiques d'entrée et grandeurs physiques de sortie, relatives audit moteur d'aéronef et à son environnement,
- un module de simulation du comportement physique dudit moteur d'aéronef, configuré pour simuler des valeurs de grandeurs physiques de sortie en fonction desdites mesures courantes de grandeurs physiques d'entrée,
- un processeur configuré pour calculer des marges physiques, dites marges réelles, entre lesdites valeurs simulées de grandeurs physiques de sortie et lesdites mesures courantes correspondantes de grandeurs physiques de sortie,
- un module d'apprentissage configuré pour prédire des marges, dites marges prédites, à partir des mesures courantes de grandeurs physiques d'entrée, et en ce que ledit processeur est configuré en outre pour calculer des résidus de surveillance entre lesdites marges réelles et lesdites marges prédites, lesdits résidus de surveillance présentant une indication de l'état du moteur d'aéronef.
Ce système consiste en une combinaison hybride (et non pas une simple juxtaposition) entre le module de simulation et le module d'apprentissage, créant ainsi une synergie qui permet d'utiliser le modèle physique en dehors de son mode de fonctionnement normal, en plus bien entendu de son utilisation dans son mode de fonctionnement habituel. Ceci permet de mieux exploiter les données dans l'espace de validité du modèle physique utilisé par le module de simulation, mais aussi d'obtenir des informations en dehors de cet espace de validité. On notera par ailleurs que le module d'apprentissage aurait eu besoin de prendre en compte un très grand nombre de variables physiques s'il était utilisé tout seul. Ceci aurait drastiquement complexifié la maîtrise de l'apprentissage car les lois physiques reliant ces variables peuvent être non-linéaires et donc très sensibles aux conditions initiales de sorte que des différences infimes peuvent entraîner des résultats très différents, rendant la prédiction très bruitée.
Avantageusement, lesdites mesures courantes de grandeurs physiques d'entrée et grandeurs physiques de sortie sont acquises lors des phases stables et transitoires dudit vol de l'aéronef.
En prenant en compte les phases transitoires ou instables, on obtient beaucoup plus de points de résidus et par conséquent, les résultats sont beaucoup moins bruités, permettant de réaliser automatiquement de meilleurs suivis de tendance et en conséquence, de pouvoir réagir beaucoup plus vite en cas d'anomalie. Ceci permet également de surveiller les phases instables ou transitoires (par exemple, au décollage et à l'atterrissage). Avec moins de points, il aurait été beaucoup plus difficile de déterminer la tendance.
Avantageusement, le système comporte une interface d'interaction et/ou d'affichage pour visualiser des représentations graphiques desdits résidus de surveillance.
Ceci donne des renseignements sur les tendances, anomalies ou ruptures relatives au moteur d'aéronef.
Avantageusement, le module d'apprentissage se base sur un modèle d'apprentissage construit préalablement en utilisant un moteur d'aéronef de référence durant un nombre prédéterminé de vol d'apprentissage, les mesures de grandeurs physiques d'entrée relatives au moteur de référence ainsi que les marges réelles générées par le module de simulation étant injectées lors de chaque vol d'apprentissage dans le module d'apprentissage, permettant à ce dernier de construire le modèle d'apprentissage. Ainsi, en utilisant un moteur d'aéronef de référence dans les mêmes contextes, on permet au module d'apprentissage d'apprendre à prédire les marges de manière précise.
Avantageusement, ledit nombre de vols d'apprentissage est choisi pour assurer un compromis entre précision et stabilité du modèle d'apprentissage et en ce que seuls les premiers éléments dans la série de vols sont pris en compte. Ceci permet d'augmenter l'efficacité d'apprentissage tout en maintenant une grande précision.
On notera qu'il ne s'agit pas de la sélection d'un nombre de vol d'apprentissage quelconque, mais la sélection des premiers éléments dans la série de vols. En effet, si ces vols ne sont pas parmi les premiers vols de l'utilisation du moteur, la relation à apprendre (les marges modèle physique / système réel) change trop pour être apprise. L'erreur de modélisation ne serait plus constante mais dépendrait du temps, et ne pourrait donc plus être apprise.
Selon un mode de réalisation, ledit modèle d'apprentissage est construit selon une technique statistique de régression linéaire, réseaux de neurones, ou de forêts aléatoires.
Les grandeurs physiques d'entrée comportent au moins un paramètre d'entrée relatif au moteur d'aéronef et/ou aux conditions de vol de l'aéronef, comprenant au moins un paramètre choisi parmi la vitesse de rotation du moteur, la température extérieure, la pression extérieure, le débit du carburant, le débit d'air prélevé au sein du moteur, l'énergie électrique prélevée au sein du moteur, la position des aubes, l'altitude de vol, l'absence ou présence de filtres, et en ce que les grandeurs physiques de sortie comportent au moins un paramètre de sortie représentatif de l'état de fonctionnement du moteur d'aéronef, comprenant au moins un paramètre choisi parmi la température interne du moteur et le couple d'un arbre du moteur.
Avantageusement, les résidus de surveillance sont agrégés sous forme de moyennes ou modes pour une représentation synthétique.
Selon un mode de réalisation de la présente invention, le moteur d'aéronef est un turbomoteur d'hélicoptère.
L'invention vise également un procédé de surveillance d'un moteur d'aéronef, comportant les étapes suivantes :
- acquérir au cours d'un temps de vol de l'aéronef des mesures courantes de grandeurs physiques, dites grandeurs physiques d'entrée et grandeurs physiques de sortie, relatives audit moteur d'aéronef et à son environnement,
- simuler des valeurs de grandeurs physiques de sortie en fonction desdites mesures courantes de grandeurs physiques d'entrée,
- calculer des marges physiques, dites marges réelles, entre lesdites valeurs simulées de grandeurs physiques de sortie et lesdites mesures courantes correspondantes de grandeurs physiques de sortie,
- prédire des marges, dites marges prédites, à partir des mesures courantes de grandeurs physiques d'entrée, et
- calculer des résidus de surveillance entre lesdites marges réelles et lesdites marges prédites, lesdits résidus de surveillance présentant une indication de l'état du moteur d'aéronef.
On notera que selon la présente invention un premier modèle (physique) est utilisé pour construire un meilleur modèle (empirique + physique).
On notera par ailleurs, que dans la présente invention, les marges prédites sont définies sur le même instant que les données utilisées. En outre, le terme « prédiction » est utilisé ici au sens de l'apprentissage statistique et donc d'une sortie du modèle empirique sur des données d'entrée.
On notera également que dans la présente invention le résidu de surveillance est défini entre les marges réelles et les marges prédites. Ainsi, les résidus de surveillance sont distincts des « marges » usuellement utilisées par l'homme du métier.
Par ailleurs, on notera que le module d'apprentissage selon la présente invention ne prédit pas l'état du système, mais le résidu entre un modèle physique et le système. Ainsi, la présente invention porte sur l'utilisation de deux modèles en cascade : le premier modèle (physique) donne des marges, et le second modèle (empirique/d'apprentissage) prédit l'écart habituel entre le modèle physique et le système réel. On notera qu'il n'est pas évident d'utiliser le modèle physique dans des zones dans lesquels il n'est pas valable selon les théories physiques. Toutefois, par construction, le système selon la présente demande apprend à corriger ces erreurs. Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel de l'invention, décrit en référence aux figures jointes parmi lesquelles :
[Fig. 1] illustre de manière schématique un système de surveillance d'un moteur d'aéronef selon un mode de réalisation de l'invention ;
[Fig. 2] illustre de manière schématique un procédé de surveillance d'un moteur d'aéronef selon un mode de réalisation de l'invention ;
[Fig. 3A] illustre de manière schématique la phase d'apprentissage préalable du module d'apprentissage, selon un mode de réalisation de l'invention ;
[Fig. 3B] illustre de manière schématique la phase opérationnelle, selon un mode de réalisation de l'invention ; et
[Fig. 4] illustre un graphe représentant des marges et résidus de surveillance, selon un mode de réalisation de l'invention.
Description des modes de réalisation
Le principe de l'invention consiste à coupler un modèle physique du comportement du moteur d'aéronef avec un modèle d'apprentissage de sorte que l'exploitation des mesures acquises lors des vols est maximisée permettant ainsi un suivi complet et optimal du moteur.
La figure 1 illustre de manière schématique un système de surveillance d'un moteur d'aéronef selon un mode de réalisation de l'invention.
Le système de surveillance 1 comporte un module d'acquisition 3, un module de simulation 5, un module d'apprentissage 7 et un processeur 9.
Le système de surveillance 1 peut être entièrement compris dans un aéronef 11 ou partagé entre l'aéronef 11 et un centre de maintenance 13.
L'aéronef 11 (ici représenté par un hélicoptère mais peut être un avion) comprend un moteur 15, un ordinateur 17 de bord et des capteurs 19. Les capteurs 19 mesurent des grandeurs physiques, dites grandeurs physiques d'entrée et grandeurs physiques de sortie, relatives au moteur 15 d'aéronef et à son environnement.
A titre d'exemple, les grandeurs physiques d'entrée peuvent comporter au moins un paramètre d'entrée relatif au moteur 15 d'aéronef et/ou aux conditions de vol de l'aéronef 11, comprenant au moins un paramètre choisi parmi la vitesse de rotation du moteur 15, la température extérieure, la pression extérieure, le débit du carburant, le débit d'air prélevé au sein du moteur 15, l'énergie électrique prélevée au sein du moteur 15, la position des aubes, l'altitude de vol, et l'absence ou présence de filtres. Les grandeurs physiques de sortie peuvent comporter au moins un paramètre de sortie représentatif de l'état de fonctionnement du moteur d'aéronef, comprenant au moins un paramètre choisi parmi la température interne du moteur 15 et le couple d'un arbre du moteur 15.
L'ordinateur 17 de bord comprend le processeur 9, les modules d'acquisition 3, de simulation 5 et d'apprentissage 7 ainsi qu'une mémoire 21 d'enregistrement et une interface 23. On notera que le centre de maintenance 13 comporte également un ordinateur 117 qui peut comprendre les mêmes éléments (i.e. processeur 109 et modules d'acquisition 103, de simulation 105 et d'apprentissage 107, une mémoire 121 et une interface 123) que l'ordinateur 17 de bord.
La mémoire 21 (et/ou 121) forme un support d'enregistrement, lisible par le processeur 9 (et/ou 109) et sur lequel est enregistré un ou plusieurs programme(s) d'ordinateur comportant des codes d'instructions pour l'exécution du procédé de surveillance décrit ci-dessous en référence à la figure 2.
En effet, la figure 2 illustre de manière schématique un procédé de surveillance d'un moteur d'aéronef selon un mode de réalisation de l'invention.
A l'étape El, le module d'acquisition 3 (et/ou 103) est configuré pour acquérir au cours d'un temps de vol de l'aéronef 11 les mesures courantes de grandeurs physiques d'entrée ME et de grandeurs physiques de sortie MS.
A l'étape E2, le module de simulation 5 (et/ou 105) est adapté pour simuler le comportement physique du moteur 15 d'aéronef. En effet, le module de simulation 5 comporte un modèle thermodynamique des relations entre des grandeurs physiques relatives au moteur 15 et il agit comme un solveur qui calcule des données de sortie en fonction des données d'entrée. Ainsi, le module de simulation 5 est configuré pour simuler des valeurs de grandeurs physiques de sortie VS en fonction des mesures courantes de grandeurs physiques d'entrée ME récupérées depuis le module d'acquisition B. Ainsi, les valeurs de grandeurs physiques de sortie VS sont simulées à partir des valeurs d'entrée observées en temps réel.
A l'étape E3, le processeur 9 (et/ou 109) est configuré pour calculer des marges physiques, dites marges réelles, entre les valeurs simulées de grandeurs physiques de sortie VS et les mesures courantes correspondantes de grandeurs physiques de sortie MS. Les marges réelles représentent les différences entre les données réelles du moteur observées en temps réel et les sorties calculées par le module de simulation. Autrement dit, les marges réelles définissent les erreurs réelles entre le modèle physique et les grandeurs physiques observées.
Avantageusement, les mesures courantes de grandeurs physiques d'entrée ME et grandeurs physiques de sortie MS sont acquises par le module d'acquisition 3 lors des phases stables et transitoires du vol de l'aéronef 11.
En effet, le modèle physique dispose d'un domaine de validité spécifique, mais en dehors de ce domaine de validité, la modélisation peut être considérée comme une approximation raisonnable du comportement du moteur 15 et peut être utilisée comme support par le module d'apprentissage 7. On notera cependant que cette approximation n'est pas assez bonne pour être utilisée seule.
A l'étape E4, le module d'apprentissage 7 (et/ou 107) est configuré pour prédire des marges, dites marges prédites MP, à partir des mesures courantes de grandeurs physiques d'entrée ME (i.e. les valeurs d'entrée observées). Le module d'apprentissage 7 comporte un modèle d'apprentissage statistique basé sur une technique connue du type régression linéaire, réseaux de neurones, ou forêts aléatoires.
Le module d'apprentissage 7 se base sur un modèle d'apprentissage statistique construit préalablement pour apprendre les marges selon des techniques classiques du type régression linéaire, ou forêts aléatoires. Cette phase d'apprentissage est décrite ultérieurement en référence à la figure 3.
Ainsi, un couplage est construit entre le module de simulation 5 et le module d'apprentissage 7, permettant à ce dernier d'apprendre à prédire des marges précises sur toutes les phases du vol à partir des marges générées par le module de simulation 5, en corrigeant les marges approximatives générées par le module simulation 5 dans les phases transitoires. Ce couplage permet de mieux exploiter les données dans l'espace de validité du modèle physique utilisé par le module de simulation 5 et d'obtenir, en plus, des informations en dehors de cet espace de validité.
A l'étape E5, le processeur 9 (et/ou 109) est configuré en outre pour calculer des résidus de surveillance R entre les marges réelles et les marges prédites. Les résidus de surveillance présentent une indication de l'état du moteur 15 d'aéronef. Le fait de suivre les résidus de surveillance permet d'améliorer les marges calculées et de pouvoir obtenir des résultats précis en dehors du domaine de validité du modèle physique.
Les résidus de surveillance R peuvent être représentés par des nuages de points ou graphique pour être visualisés sur l'interface 23 (ou 123) d'interaction et/ou d'affichage de l'ordinateur 17 (ou 117) donnant ainsi des renseignements sur les tendances, anomalies ou ruptures relatives au moteur d'aéronef. Avantageusement, pour une meilleure lisibilité, les résidus de surveillance sont agrégés sous forme de moyennes, modes, ou toute autre technique de réduction de dimension pour une représentation synthétique.
Avantageusement, les données opérationnelles collectées durant le vol de l'aéronef sont déchargées en fin de vol. L'ordinateur 117 du centre de maintenance 13 effectue les étapes selon la figure 2 et les résultats sont affichés sur l'interface 123. Les experts de maintenance peuvent ainsi regarder les courbes de résidus, afin d'alerter en cas de comportements anormaux, que ce soit des ruptures dans les courbes, des tendances anormales, ou des anomalies.
Les figures 3A et 3B illustrent de manière schématique la phase d'apprentissage préalable du module d'apprentissage ainsi que la phase opérationnelle, selon un mode de réalisation de l'invention. Plus particulièrement, la figure 3A représente la phase d'apprentissage durant laquelle le module d'apprentissage construit un modèle d'apprentissage en se basant sur un moteur d'aéronef de référence 115 très stable.
Afin d'augmenter la précision de l'apprentissage, il est avantageux d'avoir un moteur de référence 115 utilisé dans les mêmes contextes que les moteurs à surveiller. Il est également avantageux de prendre les premiers éléments dans la série de vols enregistrés, et non pas des vols aléatoirement choisis dans la base de données, comme il est habituellement fait en apprentissage statistique.
L'apprentissage se déroule sur une fenêtre de temps [t-k ; t] définie comme pertinente d'environ quelques heures à quelques dizaines d'heures de vol, avec un nombre d'exemples suffisants pris dans les premiers vols d'un nombre prédéterminé de vol d'apprentissage. En effet, le modèle d'apprentissage travaille sur les marges et non directement sur les variables de sortie. Par définition, les marges sont de faibles quantités et donc bruitées, ce qui nécessite de bien maîtriser la partie apprentissage, en particulier le nombre d'exemples à utiliser. Plus ce nombre est grand, plus le modèle d'apprentissage est précis. Cependant, s'il est trop grand, le moteur va changer d'état et on perd la stabilité du modèle. Ainsi, le nombre de vol d'apprentissage est choisi pour assurer un compromis entre précision et stabilité du modèle d'apprentissage et il est par conséquent, avantageux de choisir un nombre raisonnable de vols. Ce nombre dépend de la technique d'apprentissage et peut être à titre d'exemple, entre trois et dix vols.
Avantageusement, la fenêtre de temps englobe les grandeurs physiques d'entrée relatives au moteur d'aéronef et aux conditions de vol de l'aéronef, jusqu'à prédire la ou les variable(s) de grandeurs physiques de sortie, du pas de temps t-k au pas de temps t.
En effet, étant donné qu'en dehors des zones de validité du modèle physique, les variables d'entrées relatives au moteur et aux conditions extérieures ne sont pas en régime stationnaire, la technique d'apprentissage selon l'invention prend en compte le passé sur une certaine fenêtre de temps afin de réduire davantage le bruit. Autrement dit, on utilise non seulement les pas de temps précédents, de t-k à t-1, mais aussi les valeurs des variables à l'instant t. On notera que dans les méthodes classiques d'apprentissage, seuls les pas de temps précédents sont pris en compte selon une logique prédictive.
Comme dans la phase opérationnelle, le module d'acquisition du moteur de référence 115 recueille au cours de chaque vol d'apprentissage, les mesures courantes de grandeurs physiques d'entrée ME et de grandeurs physiques de sortie MS relatives au moteur de référence 115 durant les phases stables et transitoires du vol.
Les grandeurs physiques d'entrée ME sont injectées dans le module de simulation 5. Ce dernier estime des valeurs de grandeurs physiques de sortie VS en fonction des mesures courantes de grandeurs physiques d'entrée ME.
Le processeur calcule ensuite les différences entre les valeurs simulées de grandeurs physiques de sortie VS et les mesures courantes correspondantes de grandeurs physiques de sortie MS. Ces différences produisent les marges réelles MR.
Ensuite, les mesures de grandeurs physiques d'entrée ME (relatives au moteur de référence et aux conditions extérieures) sur plusieurs pas de temps ainsi que les marges réelles MR générées par le module de simulation 5 sont injectées dans le module d'apprentissage 7 permettant à ce dernier de construire le modèle d'apprentissage.
Ainsi, le module d'apprentissage 7 apprend grâce aux grandeurs physiques d'entrée affectant le moteur de référence sur plusieurs pas de temps et non uniquement sur les valeurs instantanées, les relations entre les marges réelles MR et les marges prédites MP (i.e. la différence entre les marges générées par le modèle physique et ceux générées par le modèle d'apprentissage).
L'apprentissage selon l'invention est ainsi facilité par le modèle physique qui absorbe l'impact de données de paramétrage et comble une grande partie des données. Plus particulièrement, le système de surveillance réalise une fusion entre le modèle physique et le modèle d'apprentissage où les résultats du modèle physique sont utilisés par le modèle d'apprentissage pour prédire les marges. En outre, l'apprentissage est basée sur l'historique des données et utilise toute la série temporelle enregistrée (i.e. stables et instables). La figure 3B illustre la phase opérationnelle, selon les étapes décrites en référence à la figure 2, qui consiste à prédire les valeurs des marges obtenues et les comparer avec les marges réellement sorties par le moteur de référence.
Plus particulièrement, le module d'acquisition recueille, au cours de chaque vol opérationnel, les mesures courantes de grandeurs physiques d'entrée ME et de grandeurs physiques de sortie MS relatives au moteur 15 sous surveillance durant toutes les phases stables et transitoires du vol.
Le module de simulation 5 estime ensuite les valeurs de grandeurs physiques de sortie VS en fonction des mesures courantes de grandeurs physiques d'entrée ME. Le processeur calcule alors les marges réelles MR en faisant la différence entre les valeurs simulées de grandeurs physiques de sortie VS et les mesures courantes correspondantes de grandeurs physiques de sortie MS.
Ensuite, le module d'apprentissage 7 détermine les marges prédites MP à partir des mesures courantes de grandeurs physiques d'entrée ME. Finalement, le processeur calcule les résidus de surveillance R entre les marges réelles MR et les marges prédites MP.
La figure 4 illustre un nuage de points représentatifs des marges et résidus de surveillance, selon un mode de réalisation de l'invention.
Selon cet exemple, l'axe des ordonnées représente les marges de la température interne du moteur 15 (ou 115) selon une échelle de 10° C et l'axe des abscisses représente les dates ou périodes des vols subdivisées en trimestres.
Chaque point noir représente la moyenne des marges réelles MR par vol et chaque point gris représente la moyenne des résidus de surveillance R par vol.
Au départ, on a une phase préliminaire d'apprentissage (période PO) où il n'y a que des points noirs (i.e. des marges réelles). Ensuite, on entre dans une phase opérationnelle (périodes P1-P8) où les résidus de surveillance R (i.e. les points gris) sont calculés en plus des marges réelles MR. On notera qu'il y a beaucoup plus de points gris que de points noirs car ces derniers ne sont calculés que sur les phases stables tandis que les points gris sont déterminés sur toutes les phases du vol. Ainsi, en prenant en compte les phases transitoires ou instables, on obtient beaucoup plus de points de surveillance et par conséquent, les résultats sont beaucoup moins bruités, permettant de réaliser automatiquement de meilleurs suivis de tendance et du coup de pouvoir réagir beaucoup plus vite en cas d'anomalie. Ceci permet également de surveiller les phases instables ou transitoires (par exemple, au décollage et à l'atterrissage). Avec moins de points, il aurait été beaucoup plus difficile de déterminer la tendance.
On notera qu'un moteur est considéré vieux lorsqu'il n'a plus de marge (i.e. lorsque la marge de température interne selon le schéma de la figure 4 est proche de zéro). Ce schéma montre également que dans la période P6, le moteur a subi une maintenance qui a permis d'augmenter la marge.
Ainsi, le système de surveillance selon l'invention utilise le modèle physique comme une approximation de premier ordre, ce qui permet de faciliter l'apprentissage. En outre, il utilise les premiers vols d'un moteur de référence pour apprendre le modèle plutôt que de prendre des vols aléatoires. Il utilise en plus, l'historique des variables et non pas uniquement la valeur instantanée de ces variables, pour bien modéliser les parties dynamiques.
Le procédé et système de surveillance selon l'invention est adapté pour tous les moteurs d'aéronefs et en particulier, pour un moteur d'aéronef qui présente beaucoup de phases transitoires ou instables comme l'hélicoptère.
REVENDICATIONS
1. Système de surveillance d'un moteur d'aéronef, comportant : - un module d'acquisition (S) configuré pour acquérir au cours d'un temps de vol de l'aéronef des mesures courantes de grandeurs physiques, dites grandeurs physiques d'entrée (ME) et grandeurs physiques de sortie (MS), relatives audit moteur (15) d'aéronef et à son environnement,
- un module de simulation (5) du comportement physique dudit moteur d'aéronef, configuré pour simuler des valeurs de grandeurs physiques de sortie (VS) en fonction desdites mesures courantes de grandeurs physiques d'entrée (ME),
- un processeur (9) configuré pour calculer des marges physiques, dites marges réelles
(MR), entre lesdites valeurs simulées de grandeurs physiques de sortie (VS) et lesdites mesures courantes correspondantes de grandeurs physiques de sortie (MS),
- un module d'apprentissage (7) configuré pour prédire des marges, dites marges prédites (MP), à partir des mesures courantes de grandeurs physiques d'entrée (ME), et en ce que ledit processeur (9) est configuré en outre pour calculer des résidus de surveillance (R) entre lesdites marges réelles (MR) et lesdites marges prédites (MP), lesdits résidus de surveillance présentant une indication de l'état du moteur d'aéronef.
2. Système selon la revendication 1, caractérisé en ce que lesdites mesures courantes de grandeurs physiques d'entrée et grandeurs physiques de sortie sont acquises lors des phases stables et transitoires dudit vol de l'aéronef.
B. Système selon la revendication 1 ou 2, caractérisé en ce qu'il comporte une interface d'affichage (23) pour visualiser des représentations graphiques desdits résidus de surveillance.
4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le module d'apprentissage (7) se base sur un modèle d'apprentissage construit préalablement en utilisant un moteur d'aéronef de référence (115) durant un nombre prédéterminé de vol d'apprentissage, les mesures de grandeurs physiques d'entrée relatives au moteur de référence ainsi que les marges réelles générées par le module de

Claims

simulation étant injectées lors de chaque vol d'apprentissage dans le module d'apprentissage permettant à ce dernier de construire le modèle d'apprentissage.
5. Système selon la revendication 4, caractérisé en ce que ledit nombre de vol d'apprentissage est choisi pour assurer un compromis entre précision et stabilité du modèle d'apprentissage et en ce que seuls les premiers éléments dans la série de vols est pris en compte.
6. Système selon la revendication 4 ou 5, caractérisé en ce que ledit modèle d'apprentissage (7) est construit selon une technique statistique de régression linéaire ou de forêts aléatoires.
7. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les grandeurs physiques d'entrée comportent au moins un paramètre d'entrée relatif au moteur d'aéronef et/ou aux conditions de vol de l'aéronef, comprenant au moins un paramètre choisi parmi la vitesse de rotation du moteur, la température extérieure, la pression extérieure, le débit du carburant, le débit d'air prélevé au sein du moteur, l'énergie électrique prélevée au sein du moteur, la position des aubes, l'altitude de vol, l'absence ou présence de filtres, et en ce que les grandeurs physiques de sortie comportent au moins un paramètre de sortie représentatif de l'état de fonctionnement du moteur d'aéronef, comprenant au moins un paramètre choisi parmi la température interne du moteur et le couple d'un arbre du moteur.
8. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les résidus de surveillance sont agrégés sous forme de moyennes ou modes pour une représentation synthétique.
9. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le moteur (15) d'aéronef est un turbomoteur d'hélicoptère.
10. Procédé de surveillance d'un moteur d'aéronef, comportant les étapes suivantes :
- acquérir au cours d'un temps de vol de l'aéronef des mesures courantes de grandeurs physiques, dites grandeurs physiques d'entrée (ME) et grandeurs physiques de sortie (MS), relatives audit moteur d'aéronef et à son environnement,
- simuler des valeurs de grandeurs physiques de sortie (VS) en fonction desdites mesures courantes de grandeurs physiques d'entrée (ME), - calculer des marges physiques, dites marges réelles (MR), entre lesdites valeurs simulées de grandeurs physiques de sortie (VS) et lesdites mesures courantes correspondantes de grandeurs physiques de sortie (MS),
- prédire des marges, dites marges prédites (MP), à partir des mesures courantes de grandeurs physiques d'entrée, et
- calculer des résidus de surveillance (R) entre lesdites marges réelles et lesdites marges prédites, lesdits résidus de surveillance présentant une indication de l'état du moteur d'aéronef.
EP20727833.4A 2019-04-23 2020-04-21 Système et procédé de surveillance d'un moteur d'aéronef Pending EP3941826A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1904283A FR3095424B1 (fr) 2019-04-23 2019-04-23 Système et procédé de surveillance d’un moteur d’aéronef
PCT/FR2020/000143 WO2020217004A1 (fr) 2019-04-23 2020-04-21 Système et procédé de surveillance d'un moteur d'aéronef

Publications (1)

Publication Number Publication Date
EP3941826A1 true EP3941826A1 (fr) 2022-01-26

Family

ID=68210889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20727833.4A Pending EP3941826A1 (fr) 2019-04-23 2020-04-21 Système et procédé de surveillance d'un moteur d'aéronef

Country Status (5)

Country Link
US (1) US20220242592A1 (fr)
EP (1) EP3941826A1 (fr)
CN (1) CN113748066A (fr)
FR (1) FR3095424B1 (fr)
WO (1) WO2020217004A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101669B1 (fr) * 2019-10-07 2022-04-08 Safran Dispositif, procédé et programme d’ordinateur de suivi de moteur d’aéronef
US20230245503A1 (en) * 2022-02-02 2023-08-03 The Boeing Company Smart digital twin for monitoring a machine
FR3133885A1 (fr) * 2022-03-28 2023-09-29 Safran Procédé de surveillance de l’état de santé de turbomachine d’aéronef
FR3133884A1 (fr) * 2022-03-28 2023-09-29 Safran Procédé de surveillance de l’état de santé de turbomachine d’aéronef
US20230401899A1 (en) * 2022-06-08 2023-12-14 The Boeing Company Component maintenance prediction system with behavior modeling

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7693608B2 (en) * 2006-04-12 2010-04-06 Edsa Micro Corporation Systems and methods for alarm filtering and management within a real-time data acquisition and monitoring environment
US20090048730A1 (en) * 2007-08-17 2009-02-19 General Electric Company Method and system for planning repair of an engine
US8165826B2 (en) * 2008-09-30 2012-04-24 The Boeing Company Data driven method and system for predicting operational states of mechanical systems
FR2939170B1 (fr) * 2008-11-28 2010-12-31 Snecma Detection d'anomalie dans un moteur d'aeronef.
US8600917B1 (en) * 2011-04-18 2013-12-03 The Boeing Company Coupling time evolution model with empirical regression model to estimate mechanical wear
US20130024179A1 (en) * 2011-07-22 2013-01-24 General Electric Company Model-based approach for personalized equipment degradation forecasting
FR3003032B1 (fr) 2013-03-07 2015-04-03 Turbomeca Procede et systeme de controle de la sante d'une turbomachine d'aeronef
US10055537B2 (en) * 2013-03-14 2018-08-21 Honeywell International Inc. Simulation methods and systems for an aircraft
FR3019295B1 (fr) * 2014-03-27 2016-03-18 Snecma Procede d'estimation du caractere normal ou non d'une valeur mesuree d'un parametre physique d'un moteur d'aeronef
FR3028067B1 (fr) * 2014-11-05 2016-12-30 Snecma Outil de validation d'un systeme de surveillance d'un moteur d'aeronef
EP3035140B1 (fr) * 2014-12-19 2018-09-12 Rolls-Royce Deutschland Ltd & Co KG Procédé et système de surveillance de l'état d'un équipement
FR3035232B1 (fr) * 2015-04-20 2017-03-31 Snecma Systeme de surveillance de l'etat de sante d'un moteur et procede de configuration associe
EP3332211B1 (fr) * 2015-08-04 2024-07-03 Sikorsky Aircraft Corporation Détection et isolation de défauts de structure d'un giravion au moyen d'une surveillance virtuelle des charges
EP3365844B1 (fr) * 2015-10-20 2023-05-24 Crown Equipment Corporation Ajustement de performances d'un véhicule industriel
FR3052273B1 (fr) * 2016-06-02 2018-07-06 Airbus Prediction de pannes dans un aeronef
US10223846B2 (en) * 2016-10-10 2019-03-05 General Electric Company Aerial vehicle engine health prediction
US10474113B2 (en) * 2017-03-09 2019-11-12 General Electric Company Power generation system control through adaptive learning
US20180268288A1 (en) * 2017-03-14 2018-09-20 General Electric Company Neural Network for Steady-State Performance Approximation
EP3441829B1 (fr) * 2017-08-08 2020-11-11 Siemens Aktiengesellschaft Prédiction d'état d'un système
CN108594788B (zh) * 2018-03-27 2020-09-22 西北工业大学 一种基于深度随机森林算法的飞机作动器故障检测与诊断方法
US10964130B1 (en) * 2018-10-18 2021-03-30 Northrop Grumman Systems Corporation Fleet level prognostics for improved maintenance of vehicles

Also Published As

Publication number Publication date
US20220242592A1 (en) 2022-08-04
WO2020217004A1 (fr) 2020-10-29
FR3095424A1 (fr) 2020-10-30
FR3095424B1 (fr) 2024-10-04
CN113748066A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
WO2020217004A1 (fr) Système et procédé de surveillance d'un moteur d'aéronef
EP3039497B1 (fr) Surveillance d'un moteur d'aéronef pour anticiper les opérations de maintenance
EP2368161B1 (fr) Detection d'anomalie dans un moteur d'aeronef
EP2676176B1 (fr) Surveillance d'un moteur d'aéronef pour anticiper les opérations de maintenance
CA2746537C (fr) Standardisation de donnees utilisees pour la surveillance d'un moteur d'aeronef
EP3097455B1 (fr) Procede de prediction d'une anomalie de fonctionnement des equipements d'un aeronef ou d'une flotte d'aeronefs
EP2912526B1 (fr) Système de surveillance d'un ensemble de composants d'un équipement
EP3008531B1 (fr) Procedes de creation d'une base de donnees et d'elaboration d'une carte d'etats de fonctionnement d'aeronefs, et un procede de surveillance du fonctionnement d'un aeronef associe
FR3046268A1 (fr) Systeme d'exploitation de donnees de vol d'un aeronef
EP2500267A1 (fr) Surveillance d'un actionneur de commande de vol d'un aéronef
FR2991486A1 (fr) Procede et dispositif d'assistance au suivi de mission d'un aeronef
WO2016075409A1 (fr) Procédé de surveillance d'un moteur d'aéronef en fonctionnement dans un environnement donné
FR3035232A1 (fr) Systeme de surveillance de l'etat de sante d'un moteur et procede de configuration associe
CA3121061C (fr) Procede et systeme de controle d'un niveau d'endommagement d'au moins une piece d'aeronef, aeronef associe
FR3026785B1 (fr) Surveillance d'un ensemble du systeme propulsif d'un aeronef
EP3066445B1 (fr) Procédé d'essai technique
WO2023187287A1 (fr) Procédé de surveillance de l'état de santé de turbomachine d'aéronef
EP4240952A1 (fr) Procédé de détermination de défaut d'un rendement d'un module d'un turbomoteur d'un aéronef

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230421