[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3941727A1 - Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs - Google Patents

Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs

Info

Publication number
EP3941727A1
EP3941727A1 EP20720338.1A EP20720338A EP3941727A1 EP 3941727 A1 EP3941727 A1 EP 3941727A1 EP 20720338 A EP20720338 A EP 20720338A EP 3941727 A1 EP3941727 A1 EP 3941727A1
Authority
EP
European Patent Office
Prior art keywords
matrix
temperature
fabric
fibers
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20720338.1A
Other languages
English (en)
French (fr)
Inventor
Michel Jansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fond Of GmbH
Original Assignee
Fond Of GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fond Of GmbH filed Critical Fond Of GmbH
Publication of EP3941727A1 publication Critical patent/EP3941727A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C13/00Details; Accessories
    • A45C13/10Arrangement of fasteners
    • A45C13/1023Arrangement of fasteners with elongated profiles fastened by sliders
    • A45C13/103Arrangement of zip-fasteners
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C5/00Rigid or semi-rigid luggage
    • A45C5/02Materials therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • D03D15/46Flat yarns, e.g. tapes or films
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C5/00Rigid or semi-rigid luggage
    • A45C5/03Suitcases
    • A45C2005/032Suitcases semi-rigid, i.e. resistant against deformation and resilient, e.g. with a resilient frame
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2267/00Use of polyesters or derivatives thereof as reinforcement
    • B29K2267/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/7418Suitcases

Definitions

  • the invention relates to a method for producing a self-reinforced thermoplastic composite material with the features of the preamble of claim 1.
  • WO 2005123369 A1 items of luggage are known in which structural elements, such as the half-shells in particular, are made of a polyolefinic composite material that has a high impact resistance and a low specific weight.
  • the composite material consists of a Ge fabric of pre-stretched plastic strips, which are formed from blanks of a film made of polypropylene, polyethylene or a copolymer thereof. These cases have very good properties and are very durable.
  • the production is very complex and requires high investments in the production facilities.
  • a fundamental problem in production is that the plastic strips must be pre-stretched in order to achieve higher mechanical strength.
  • the half-shells or the other structural elements are then produced by hot forming of cut fabric in a heated mold.
  • US Pat. No. 5,380,477 A describes a fiber-reinforced laminate that is formed from a matrix of polyamide (“nylon”) and so-called “Bico” fibers, which combine two plastics.
  • a core consists e.g. B. made of polyester, while a jacket is also made of polyamide.
  • So-called non-wovens are formed from the fibers, i.e. non-woven surfaces.
  • Several pieces of tissue are then connected to one another in a mold under the action of pressure and temperature.
  • the sheath of the reinforcing fibers melts and bonds with the similar plastic of the matrix fibers.
  • the reinforcement fibers made of another plastic are embedded in the matrix.
  • the laminates formed in this way contain two plastics, so that single-type recycling is not possible.
  • the invention retains the known concept of providing a composite material in the form of a ribbon fabric as a base fabric, from which structural elements can later be made by hot forming in a press mold.
  • Essential to the invention is, on the one hand, the choice of material and the structure of the plastic strips used for this purpose.
  • the plastic strips according to the invention are chemically made of the same thermoplastic material, which is present in two different forms, namely crystallinities, there is a large difference between the temperature of the matrix material and the fiber material of at least 30 ° C, in particular even of 50 ° C created. This large distance between the temperatures allows the further processing of the base fabric on much simpler and therefore more cost-effective devices. Temperature control to the exact degree is not required, and the use of clamping frames in the manufacture of structural parts can be dispensed with.
  • a high mechanical strength is achieved according to the invention by using pre-stretched polyester fibers that are produced in continuous form and embedded in the matrix. It is therefore a matter of taut fibers that are aligned unidirectionally in the matrix.
  • the pre-drawn reinforcing polyester fibers embedded in the matrix shrink the subsequent hot forming of the fabric blank or not to an extent that would impair the quality of the product. This means that elements that are free from shrinkage and distortion can be obtained without high manufacturing costs. This is primarily due to the large temperature difference between the individual components of the composite material, so that the fiber components remain unaffected in any case during the subsequent structuring by hot forming.
  • both the matrix and the fibers contained therein as multifilament are made of polyester.
  • the special feature of the invention is to use partially crystalline polyester for the fibers and amorphous polyester for the matrix.
  • flomopolymers or PET copolymers are preferably used in each case, but no other polymers, there are no interfering substances for a later recycling process.
  • the separation into partially crystalline polyester for the fibers and amorphous polyester for the matrix leads to the high temperature difference DT between the respective processing temperatures of the two components fibers and matrix, whereby the temperature at which the fibers are so impaired that their strength or even Lose dimensional stability, is significantly higher than the processing temperature of the matrix.
  • the fibers Due to this temperature difference, the fibers remain unaffected when they are embedded in the matrix.
  • the fibers are not heated too much when the matrix is applied.
  • the matrix In the subsequent hot forming of the base fabric made from the plastic strips, the matrix is only heated to the extent that permanent plastic shaping is possible and / or, if necessary, several layers of fabric can be connected to one another, but that the mechanical properties of the fibers contained in the matrix are retained not be affected.
  • a very advantageous side effect of the selection of materials mentioned is that partially crystalline polyester can be stretched.
  • pre-stretched fibers made of partially crystalline polyester can be subsequently embedded in a matrix, a high strength - under load in the stretching direction of the continuous fibers - of about 400 MPa can be achieved.
  • polyester as the starting material makes the product extremely sustainable, because with polyester as a thermoplastic polycondensate, the product properties can be specifically adjusted during the recycling process, and thus the recycled polyester, so-called R-PET, has at least the same product properties has like new goods.
  • the reprocessing process can be repeated as often as required so that residual pieces of the composite material, but also parts made from it, can be reprocessed according to type after the end of their useful life. If, for example, suitcases are made from the composite material, suitcases returned by customers can be used to make new suitcases without any loss of quality.
  • the polyester waste that arises in various forms around the world can be used.
  • the advantage of the selection of materials according to the invention is that all the other elements required for an item of luggage can also be produced from polyester. Textile elements can be welded or glued to the structural elements. Textile elements can be sewn to one another, and the seam can also be produced with a thread made of polyester. The half-shells can be connected by a polyester zipper. Injection molded parts can also be made from polyester, so that the suitcase manufactured in this way can be recycled according to type.
  • pre-stretched fibers are first produced from a partially crystalline polyester homopolymer with a melting temperature Tsi by extrusion on at least one spinneret and subsequent stretching.
  • the partially crystalline polyester homopolymer has a relative degree of crystallization of more than 75%, based on the absolute crystallinity of the polymer, and a melting temperature of about 260 ° C. ⁇ 10 °.
  • the fibers are preferably wound up and then processed further from bobbins in order to be able to compensate for the different throughput speeds during fiber spinning and matrix production.
  • the fibers are preferably processed as a multifilament, i.e. as a bundle of a large number of individual fibers, but without twisting, etc.
  • the unwound multifilaments are spread apart so that the fiber layer is wider and less high. This results in the adaptation to the ge desired thin rectangular profile of the cross section of the plastic strip.
  • the matrix is formed either by online extrusion or in the so-called film stacking process. Both make it possible to embed the fibers in a taut and directional manner in the matrix, so that in a linear extension of the plastic strips produced according to the invention, significantly higher strengths can be achieved than when using nonwoven webs according to the prior art mentioned above.
  • the prepared fiber bundle is passed through a wetting tool of an extruder, i.e. through a nozzle tool that allows the fibers to pass through and at the same time applies liquid polyester melt to form a matrix that surrounds the fibers.
  • the matrix is formed from a predominantly amorphous polyester homopolymer with a processing temperature T2 of about 210 ° C. This temperature is sufficient to press a flowable melt into the wetting tool and to produce the plastic tape with embedded fibers.
  • the fibers remain unaffected because the temperature difference DT between the processing temperature during extrusion and the melting point of the fibers is 50 ° C.
  • the temperature difference should be at least 30 ° C, preferably 50 ° C.
  • the strand emerging from the wetting tool can then be cooled and calibrated in a known manner, for example by means of a pair of calender rollers.
  • the processing temperature can be even lower than with online extrusion, so that the temperature difference of 50 ° C between the processing temperature of the matrix and the temperature at which the fibers have a negative impact is preferably maintained can definitely be achieved.
  • the trigger can follow in both manufacturing processes on rubberized rollers. For reasons of economy, a wide band is first extruded, which is then divided into several individual plastic bands with the desired width of 2 mm to 25 mm.
  • the plastic straps are then interwoven in a known manner in warp and weft, for example in plain weave or twill weave.
  • the type of weave plays a subordinate role in the strength of the finished product. It is only important that with the desired number of fabric layers that are hot-pressed, a seamless, watertight surface is obtained.
  • one or more layers of fabric cuttings are placed in a heated press mold and pressed under pressure and heat.
  • the hot forming temperature T3 must be in the range from 190 ° C to 230 ° C.
  • the processing temperature T2 of the matrix material lies in this interval.
  • the hot forming temperature T3 should correspond to the processing temperature T2 of the matrix material or even be a few degrees higher, for example 5 ° C to 10 °, so that the matrix material melts on the surface and the fabric layers pressed together firmly connect.
  • the hot forming temperature T3 should correspond to the processing temperature T2 of the matrix material, but if possible a little lower, preferably about 5 ° C to 10 ° C lower. This is sufficient for permanent shaping of the composite material and it prevents the matrix from being melted too far and fibers from being exposed.
  • the advantage of the invention is that there is still a large temperature difference to the melting temperature Ti of the fiber material.
  • the properties of the fibers are not impaired during hot forming, since their melting temperature is the highest temperature in the overall manufacturing process of the case element, but which is not nearly reached.
  • the temperature window does not have to be adhered to to the exact degree in order to reliably avoid impairment of the mechanical properties.
  • the structural element formed in this way can also initially be a plate-shaped flat product made of the composite material.
  • the fabric layers are then welded and pressed by the folded product manufacturer.
  • the processor can produce three-dimensional structural elements from the flat sheet metal by heating them again up to the hot forming temperature or slightly above and then immediately inserting them into a press mold and forming them.
  • the surface temperature of the cavity of the press mold is preferably below T2, so that no surface melts whatsoever are caused. In any case, the surface temperature is clearly Lich, namely at least 30 ° C, preferably 50 ° C, below Ti in order to avoid any Liche effect on the fibers embedded in the tapes or bands.
  • the advantage for the processor is that the energy expenditure for heating a flat product z. B. in the furnace is significantly less than a prolonged heating of the entire press tool.
  • the mold is kept in the range between room temperature and approximately 60 ° C. even by cooling. This enables safe handling without any special protection measures.
  • Figure 1 shows a plastic strip 1 that is Herge in the manner according to the invention. It consists of pre-stretched fibers 2, which are formed from a partially crystalline polyester flomopolymer. They are embedded in a matrix 3, which is also formed by a polyester flomopolymer, but in amorphous form, ie with a very low degree of crystallization of less than 10% crystalline fractions.
  • the fibers 2 consist of a partially crystalline polyester, the degree of crystallization in the material of the fibers being between 30% and 40%.
  • the PET polymer from which the matrix is formed has a relative proportion of a maximum of 10%.
  • the PET fiber material has a relative degree of crystallization of 75% to 100% - again based on the absolute maximum achievable with the PET type used.
  • the individual plastic strips 1 are then woven together so that a base fabric is formed.
  • the relatively large width of the plastic strips used is advantageous in order to impress the base fabric 10 with a certain rigidity. With complicated ones Three-dimensional shapes with narrow radii can be advantageous with a finer fabric.
  • the advantage of using large widths of the tapes, in particular up to 25 mm has the further advantage that a water- and gas-tight structural element can be produced with a few layers stacked on top of one another and connected to one another, because the gaps in the tissue are small anyway and due to the connection several layers of fabric can be completely closed under pressure and temperature.
  • Another criterion for the number of layers of the base fabric that are pressed together results from the desired strength of the structural element or the mechanical requirements that prevail in later use. It has been shown that 3 to 6 layers of a fabric are sufficient, the plastic bands in the fabric each having a thickness of 80 ⁇ m to 200 ⁇ m.
  • Figure 3 shows the use of structural elements formed from the composite material according to the invention, using the example of a suitcase 100.
  • the suitcase 100 has two suitcase shells 101, 102, each of which are three-dimensional structural elements which have been formed from the composite material of the invention .
  • the case shells 101, 102 are connected to one another via a textile web 105, which preferably also consists of polyester, in particular a textile cut made of polyester yarn.
  • the zip fasteners 103, 104 which are each attached to the edge of the Kofferscha len 101, 102, are preferably made of polyester. This means that the majority of the suitcase can be recycled according to type. Polyester materials are also used as much as possible for the other add-on parts, such as rollers 108 or an extendable bracket 109, so that a modern and durable, but completely recyclable suitcase 100 is available after use.
  • the consistent selection of PET as the material also ensures the possibility of hot welding.
  • the zippers 103, 104 can preferably be cut directly during the hot forming of the fabric are also inserted and are then pressed into the composite at the edge. But they can also be welded on later. The same also applies to the central web 105 and, if necessary, to other elements that can be welded to the case shells 101, 102, which are the structural components of the case 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Purses, Travelling Bags, Baskets, Or Suitcases (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Verfahren zum Herstellen eines selbstverstärkten thermoplastischen Kompositwerkstoffs, mit wenigstens folgenden Verfahrensschritten: • Bereitstellen von Bändern (1) aus einem thermoplastischen Kunststoff; • Verweben der Kunststoffbänder (1) zu einem Grundgewebe (10). Die Kunststoffbänder (1) dafür werden durch wenigstens folgende Schritte hergestellt: • Herstellen von vorgestreckten Fasern (2) aus einem teilkristallinen Polyester-Homopolymer (PET) mit einer Schmelztemperatur T1 durch Extrusion an wenigstens einer Spinndüse und anschließend Verstreckung; • Verbinden einer Vielzahl nebeneinander und/oder übereinander liegender, vorgestreckter Endlosfasern (2) mit einer Matrix aus einem amorphen Polyester-Homopolymer bei einer Verarbeitungstemperatur T2 < T1 besitzt, wobei die Temperaturdifferenz zwischen T1 und T2 wenigstens ΔΤ = 30°C beträgt.

Description

Verfahren zum Herstellen eines selbstverstärkten
thermoplastischen Kompositwerkstoffs
Die Erfindung betrifft ein Verfahren zum Herstellen eines selbstverstärkten thermoplastischen Kompositwerkstoffs mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Aus der WO 2005123369 A1 sind Gepäckstücke bekannt, bei denen Struktu relemente wie insbesondere die Halbschalen aus einem polyolefinischen Kompositmaterial bestehen, das eine hohe Stoßfestigkeit und ein geringes spezifisches Gewicht besitzt. Der Kompositwerkstoff besteht aus einem Ge webe aus vorgestreckten Kunststoffbändern, die aus Zuschnitten einer Folie aus Polypropylen, Polyethylen oder einem Copolymer davon gebildet sind. Diese Koffer besitzen sehr gute Gebrauchseigenschaften und sind sehr halt bar. Allerding ist die Fertigung sehr aufwändig und erfordert hohe Investitio nen in die Fertigungsanlagen. Bei der Fertigung besteht ein grundsätzliches Problem darin, dass die Kunststoffbänder zur Erzielung höherer mechani scher Festigkeit vorgestreckt werden müssen. Die Herstellung der Halbscha len oder der anderen Strukturelemente erfolgt dann durch Warmumformung von Gewebezuschnitten in einer erwärmten Form. Bei der Warmumformung schrumpfen die vorgedehnten Kunststoffbänder jedoch partiell. Um dem zu begegnen sind Klemmrahmen erforderlich, so dass entsprechende Investitio nen in Anlagen und eine genaue Temperaturführung erforderlich sind. Die so erhaltenen Koffer sind zwar sehr stoßfest, auch bei tiefen Temperaturen, be sitzen jedoch auch eine hohe elastische Verformbarkeit. Eine höhere Forms teifigkeit ist gerade zur Handhabung des noch offenen Koffers wünschens wert.
Ein weiterer Nachteil besteht darin, dass der polyolefinische Kunststoff, aus dem die Halbschalen und anderen Strukturelemente zwar grundsätzlich sor tenrein recyclingfähig ist, dass aber mit jedem Recyclingvorgang die Werk stoffqualität sinkt bis schließlich nur noch eine Verbrennung möglich ist.
In der US 5 380 477 A wird ein faserverstärktes Laminat beschrieben, das aus einer Matrix aus Polyamid („Nylon“) und sogenannten„Bico“-fasern gebil det ist, welche zwei Kunststoffe in sich vereinen. Ein Kern besteht z. B. aus Polyester, während eine Mantel ebenfalls aus Polyamid besteht. Aus den Fa sern werden sogenannte Non-Wovens gebildet, also nicht gewebte Flächen gebilde. Mehrere Gewebezuschnitte werden dann in einer Form unter der Einwirkung von Druck und Temperatur miteinander verbunden. Dabei schmilzt der Mantel der Verstärkungsfasern an und verbindet sich mit dem gleichartigen Kunstsoff der Matrixfasern. Die aus einem anderen Kunststoff gebildeten Verstärkungsfasern sind so in der Matrix eingebettet. In den so ge bildeten Laminate sind aber zwei Kunststoffe enthalten, so dass ein sortenrei nes Recycling nicht möglich ist.
Die DE 10 2016 205 556 A1 wird beschrieben, wie eine Gemisch amorpher und teilkristalliner und amorpher Polyesterfasern verarbeitet werden soll. Am Ende soll ein Strukturteil mit einer teilkristallinen Matrix dadurch erhalten wer den. Dass ein Vlies mit amorphen Fasern zur teilweisen Kristallisation ge bracht wird. Eine solche In-Situ-Kristallisation bringt aber keine hohe mecha nische Festigkeit. Die Aufgabe der Erfindung besteht somit darin, einen selbstverstärkten und hochbelastbaren, thermoplastischen Kompositwerkstoff zu schaffen, der nachhaltig recyclingfähig ist und der zudem durch einen Verzicht auf eine Weiterverarbeitung im Klemmrahmen kostengünstiger herstellbar und weiter- verarbeitbar ist.
Diese Aufgabe wird durch ein Verfahren zum Herstellen eines selbstverstärk ten thermoplastischen Kompositwerkstoffs mit den Merkmalen des Anspruchs 1 gelöst.
Die Erfindung behält das bekannte Konzept bei, einen Kompositwerkstoff in Form eines Bändchengewebes als Grundgewebe bereitzustellen, aus dem später Strukturelemente durch Warmumformung in einer Pressform herge stellt werden können. Erfindungswesentlich ist dabei zum einen die Werk stoffauswahl und der Aufbau der dazu eingesetzten Kunststoffbänder.
Weil die Kunststoffbänder nach der Erfindung zwar chemisch gesehen aus demselben thermoplastischen Werkstoff bestehen, der jedoch in zwei unter schiedlichen Ausprägungen, nämlich Kristallinitäten, vorliegt, wird ein großer Abstand zwischen der Temperatur des Matrixwerkstoffs und des Faserwerk stoffs von wenigstens 30°C, insbesondere sogar von 50°C geschaffen. Dieser große Abstand der Temperaturen erlaubt die weitere Verarbeitung des Grundgewebes auf wesentlich einfacheren und damit kostengünstigeren Vor richtungen. Eine gradgenaue Temperierung ist nicht erforderlich, und auf sie Verwendung von Klemmrahmen bei der Herstellung von Strukturteilen kann verzichtet werden.
Eine hohe mechanische Belastbarkeit wird nach der Erfindung durch Verwen dung vorgestreckter Polyesterfasern erreicht, die in Endlosform hergestellt und in die Matrix eingebettet werden. Es handelt sich also um gestraffte und unidirektional ausgerichtet in die Matrix integrierte Fasern. Die in die Matrix eingebetteten vorverstreckten Verstärkungs-Polyesterfasern schrumpfen bei der späteren Warmumformung des Gewebezuschnitts nicht oder nicht in ei nem die Qualität des Produkts beeinträchtigenden Umfang. Dadurch können ohne hohen Fertigungsaufwand schrumpf- und verzugsfreie Elemente erhal ten werden. Dafür sorgt vor allem der große Temperaturabstand zwischen den Einzelkomponenten des Kompositwerkstoffs, so dass bei der späteren Strukturgebung durch Warmumformung die Faserkomponente auf jeden Fall unbeeinträchtigt bleibt.
Erfindungswesentlich hinsichtlich des Recyclings ist, dass sowohl die Matrix wie auch die darin als Multifilament enthaltenen Fasern aus Polyester beste hen. Die erfindungsgemäße Besonderheit besteht darin, für die Fasern teil kristallines Polyester zu verwenden und für die Matrix amorphes Polyester.
Da jeweils bevorzugt Flomopolymere oder PET-Copolymere zum Einsatz kommen, aber keine sonstigen Polymere, gibt es keinerlei Störstoffe für einen späteren Recyclingprozess.
Die Trennung in teilkristallines Polyester für die Fasern und amorphes Poly ester für die Matrix führt zu der hohen Temperaturdifferenz DT zwischen den jeweiligen Verarbeitungstemperaturen der beiden Komponenten Fasern und Matrix, wobei die Temperatur, bei der die Fasern so beeinträchtigt werden, dass sie ihre Festigkeit oder gar Formstabilität verlieren, deutlich höher ist als die Verarbeitungstemperatur bei der Matrix.
Durch diesen Temperaturunterschied bleiben die Fasern unbeeinträchtigt, wenn sie in die Matrix eingebettet werden. Die Fasern werden also beim Auf trag der Matrix nicht zu stark erhitzt. Bei der späteren Warmumformung des aus den Kunststoffbändern hergestellten Grundgewebes wird die Matrix nur soweit erwärmt, dass eine dauerhafte plastische Formgebung möglich ist und/oder ggf. mehrere Gewebelagen untereinander verbunden werden kön nen, dass aber die mechanischen Eigenschaften der in der Matrix enthalte nen Fasern dabei nicht beeinträchtigt werden. Ein sehr vorteilhafter Nebeneffekt der genannten Werkstoffauswahl ist, dass teilkristallines Polyester verstreckbar ist. Indem nach der Erfindung vorver streckte Fasern aus teilkristallinem Polyester nachträglich in eine Matrix ein gebettet werden können, kann eine hohe Festigkeit - bei Belastung in der Er streckungsrichtung der Endlosfasern -von etwa 400 MPa erreicht werden.
Durch die Auswahl von Polyester als Ausgangswerkstoff wird eine enorme Nachhaltigkeit des Produkts erzielt, weil bei Polyester als einem thermoplasti schen Polykondensat die Produkteigenschaften während des Recyclingpro zesses gezielt eingestellt werden können, und damit das recycelte Polyester, sogenanntes R-PET, über mindestens die gleichen Produkteigenschaften verfügt wie Neuware. Der Aufbereitungsprozess ist beliebig oft wiederholbar, so dass Reststücke des Kompositwerkstoffs, aber auch daraus hergestellte Teile nach Ende der Nutzungsdauer sortenrein aufbereitet werden können. Werden aus dem Kompositwerkstoff beispielsweise Koffer hergestellt, dann können von Kunden zurückgegebene Koffer ohne jede Qualitätseinbuße zur Fierstellung neuer Koffer benutzt werden. Weiterhin können die weltweit über all in verschiedenen Formen anfallenden Polyesterabfälle genutzt werden.
Vorteilhaft an der erfindungsgemäßen Werkstoffauswahl ist, dass auch alle anderen für ein Gepäckstück benötigten Elemente aus Polyester herstellbar sind. Textile Elemente können an die Strukturelemente angeschweißt oder angeklebt werden. Textile Elemente sind untereinander vernähbar, wobei auch die Naht mit einem Faden aus Polyester herstellbar ist. Die Flalbschalen können durch einen Reißverschluss aus Polyester verbunden sein. Auch Spritgießteile sind aus Polyester herstellbar, so dass der so hergestellte Kof fer sortenrein recyclingfähig ist.
Weitere Vorteile der erfindungsgemäßen Werkstoffauswahl bestehen darin, dass die mechanischen Eigenschaften über den Grad der Verstreckung der Fasern gut einstellbar sind, dass die Kunststoffbänder gut einzufärben sind und dass zwischen Fasern und Matrix eine starke Verbindung besteht, die sich auch unter Last nicht löst. Zur Herstellung des Koffers wird das nachfolgend beschriebene Verfahren angewandt, wobei neben der Auswahl der Werkstoffe zur Herstellung der Kunststoffbändern insbesondere die Temperaturführung des Gesamtprozes ses wichtig ist.
Zunächst werden die Kunststoffbänder hergestellt. Dazu werden zunächst vorgestreckte Fasern aus einem teilkristallinen Polyester-Homopolymer mit einer Schmelztemperatur Tsi durch Extrusion an wenigstens einer Spinndüse und anschließender Verstreckung hergestellt. Das teilkristalline Polyester-Ho- mopolymer hat einen relativen Kristallisationsgrad von mehr als 75%, bezo gen auf die absolute Kristallinität des Polymers, und eine Schmelztemperatur von etwa 260° C ± 10°. Die Fasern werden vorzugsweise aufgespult und dann von Spulen aus weiterverarbeitet, um die unterschiedlichen Durchlauf geschwindigkeiten beim Faserspinnen und bei der Matrixherstellung ausglei- chen zu können.
Die Fasern werden vorzugsweise als Multifilament verarbeitet, das heißt als ein Bündel einer Vielzahl von Einzelfasern, jedoch ohne Verzwirnung etc.
Die abgespulten Multifilamente werden aufgespreizt, so dass die Faserlage breiter und weniger hoch wird. Hierdurch erfolgt die Anpassung an das ge wünschte dünne Rechteckprofil des Querschnitts des Kunststoffbands.
Die Bildung der Matrix erfolgt entweder durch Online-Extrusion oder im soge nannten Filmstacking-Verfahren. Beide ermöglichen es, die Fasern gestrafft und gerichtet in die Matrix einzubetten, so dass in linearer Erstreckung der nach der Erfindung hergestellten Kunststoffbänder wesentlich höhere Festig keiten erzielbar sind als bei der Verwendung von Non-Woven-Vliesen nach dem eingangs genannten Stand der Technik.
Bei der Online-Extrusion wird das vorbereitete Faserbündel durch ein Benet zungswerkzeug eines Extruders geführt, also durch ein Düsenwerkzeug, das einen Durchlauf der Fasern erlaubt und zugleich einen Auftrag flüssiger Poly esterschmelze zur Ausbildung einer Matrix, welche die Fasern umschließt. Die Matrix wird aus einem überwiegend amorphen Polyester-Homopolymer mit einer Verarbeitungstemperatur T2 von etwa 210° C gebildet. Diese Tem peratur ist ausreichend, um eine fließfähige Schmelze in das Benetzungs werkzeug zu pressen und das Kunststoffband mit eingebetteten Fasern her zustellen.
Die Fasern bleiben unbeeinträchtigt, weil die Temperaturdifferenz DT zwi schen der Verarbeitungstemperatur bei der Extrusion und dem Schmelzpunkt der Fasern 50°C beträgt. Die Temperaturdifferenz sollte mindestens 30 °C, vorzugsweise 50°C betragen.
Der aus dem Benetzungswerkzeug austretende Strang kann dann in bekann ter Weise gekühlt und kalibriert werden, beispielsweise über eine Durchfüh rung durch ein Kalanderwalzenpaar.
Noch vorteilhafter ist die Verwendung des Filmstackingverfahrens zur Her stellung der erfindungsgemäßen Kunststoffbänder. Dabei werden zwei Folien im warmen Zustand miteinander verwalzt, wobei sie die Verstärkungsfa serstränge zwischen sich einschließen. Nach der Erfindung werden dazu zwei Folien aus amorphem Polyester verwendet. Die vorgestreckten Verstär kungsfasern aus teilkristallinem Polyester werden zwischen die Folien einge führt und z. B. durch einen Kalanderwalzenspalt geführt. Dabei können die im endlosen Strang eingeführten Verstärkungsfasern gut im gestrafften und li near ausgerichteten Zustand geführt werden. Die Verbindung der beiden Fo lien erfolgt dann unter dem Einfluss von Druck und Temperatur im Walzen spalt. Auch hier wird eine maximale Verarbeitungstemperatur T2 wie oben ge nannt eingestellt. Da der Druck auf die Verbindung der Folien zusätzlichen Einfluss nimmt, kann die Verarbeitungstemperatur sogar noch geringer sein als bei der Onlineextrusion, so dass die vorzugsweise eingehaltene Tempera turdifferenz von 50°C zwischen der Verarbeitungstemperatur der Matrix und der Temperatur, ab der die Fasern negativ beeinflusst werden, auf jeden Fall erreicht werden kann. Der Abzug kann in beiden Herstellungsverfahren über gummierte Walzen er folgen. Aus Gründen der Wirtschaftlichkeit wird zunächst ein breites Band extrudiert, das dann in mehrere einzelne Kunststoffbänder mit der gewünsch ten Breite von 2 mm bis 25 mm geteilt wird.
Die Kunststoffbänder werden dann in bekannter Weise in Kette und Schuss miteinander verwoben, zum Beispiel in Leinwand- oder Köperbindung. Für die Festigkeit des fertigen Produkts spielt die Webart eine untergeordnete Rolle. Wichtig ist nur, dass mit der gewünschten Anzahl von Gewebelagen, die heiß verpresst werden, eine lückenlose, wasserdichte Oberfläche erhalten wird.
Um ein Strukturelement wie insbesondere Halbschalen eines Koffers herzu stellen, werden ein oder mehrere Lagen von Gewebezuschnitten in eine be heizte Pressform eingelegt und unter Druck und Hitze verpresst. Dabei muss die Warmumformtemperatur T3 im Intervall von 190 °C bis 230 °C liegen. In diesem Intervall liegt die Verarbeitungstemperatur T2 des Matrixwerkstoffs.
Um einen mehrlagigen Kompositwerkstoff aus mehreren Gewebezuschnitten zu bilden, sollte Warmumformtemperatur T3 der Verarbeitungstemperatur T2 des Matrixwerkstoffs entsprechen oder sogar um wenige Grad darüber, bei spielsweise 5°C bis 10°, liegen, damit der Matrixwerkstoff oberflächlich an schmilzt und sich aneinander gepresste Gewebelagen fest miteinander ver binden.
Sofern ein Halbzeug des Kompositwerkstoffs in eine dreidimensionale Struk tur gepresst werden soll, sollte die Warmumformtemperatur T3 etwa der Ver arbeitungstemperatur T2 des Matrixwerkstoffs entsprechend, aber möglichst etwas darunter liegen, vorzugsweise um etwa 5°C bis 10°C darunter. Das ist für eine dauerhafte Formgebung des Kompositwerkstoffs ausreichend und es verhindert, dass die Matrix zu weit angeschmolzen wird und Fasern freigelegt werden.
Egal, ob die Warmumformtemperatur etwas höher oder niedriger in Bezug auf die Verarbeitungstemperatur T2 des Matrixwerkstoffs gewählt wird: der Vorteil der Erfindung ist, dass immer noch eine große Temperaturdifferenz zur Schmelztemperatur Ti des Faserwerkstoffs besteht. Die Fasern werden in ih ren Eigenschaften also bei der Warmumformung ohnehin nicht beeinträchtigt, da deren Schmelztemperatur die höchste Temperatur im Gesamtherstel lungsprozess des Kofferelements ist, welche aber nicht annähernd erreicht wird. Bei der Warmumformung muss also das Temperaturfenster nicht auf das Grad genau eingehalten werden, um eine Beeinträchtigung der mechani schen Eigenschaften sicher zu vermeiden.
Das so gebildete Strukturelement kann auch erstmal ein plattenförmiges Flalbzeug aus dem Kompositwerkstoff sein. Die Verschweißung und Verpres- sung der Gewebelagen erfolgt dann durch den Flalbzeughersteller. Der Verar beiter kann aus dem ebenen Flalbzeug dreidimensionale Strukturelemente hersteilen, indem er diese nochmals bis auf die Warmumformtemperatur oder leicht darüber erwärmt und dann sofort in eine Pressform einlegt und um formt. Die Oberflächentemperatur des Formnests der Pressform liegt dabei vorzugsweise unter T2, so dass keinerlei oberflächlichen Aufschmelzungen hervorgerufen werden. Auf jeden Fall liegt die Oberflächentemperatur deut lich, nämlich mindestens 30°C, vorzugsweise 50°C, unterhalb von Ti, um jeg liche Einwirkung auf die in den Tapes oder Bändern eingebetteten Fasern zu vermeiden. Der Vorteil für den Verarbeiter besteht darin, dass der Energieauf wand für die Erwärmung eines Flalbzeugs z. B. im Ofen deutlich geringer ist als eine länger währende Aufheizung des gesamten Presswerkzeugs.
Insbesondere wird die Pressform sogar durch Kühlung im Bereich zwischen der Raumtemperatur und etwa 60°C gehalten. Dadurch ist eine sichere Fland- habung ohne besondere Flitzeschutzmaßnahmen möglich.
Die Erfindung wird nachfolgend mit Bezug auf die Zeichnungen näher erläu tert. Die Figuren zeigen im Einzelnen:
Fig. 1 einen Querschnitt eines Kunststoffbands;
Fig. 2 ein Gewebe von Kunststoffbändern in Draufsicht; Fig. 3 einen geöffneten Koffer in perspektivischer Ansicht
Figur 1 zeigt ein Kunststoffband 1 , dass in erfindungsgemäße Weise herge stellt ist. Es besteht aus vorgestreckten Fasern 2, die aus einem teilkristalli nen Polyester-Flomopolymer gebildet sind. Sie sind in eine Matrix 3 eingebet tet, welche ebenfalls durch ein Polyester-Flomopolymer gebildet ist, jedoch in amorpher Form, also mit einem sehr niedrigen Kristallisationsgrad von weni ger als 10 % kristallinen Anteilen. Flingegen bestehen die Fasern 2 aus einem teilkristallinen Polyester, wobei der Kristallisationsgrad beim Werkstoff der Fa sern zwischen 30 % und 40 % liegt.
Wesentlich ist, dass zwischen den eingesetzten Polyester-Werkstoffen ein ausreichend großes Gefälle in Bezug auf den Kristallisationsgrad besteht.
Von dem bei Polyester maximal erreichbaren Kristallisationsgrad, welcher ab solut, d. h. auf das Gesamtvolumen bezogen, bei den genannten 30% bis 40% liegt, besitzt das PET-Polymer, aus dem die Matrix gebildet ist, einen re lativen Anteil von maximal 10 %. Der PET-Faserwerkstoff weist hingegen ei nen relativen Kristallisationsgrad von 75 % bis 100 % - wieder bezogen auf das absolute mit dem eingesetzten PET-Typ erzielbare Maximum - auf. Durch diese relative Verteilung der unterschiedlichen Kristallisationsgrade und den relativen Abstand von über 60 Prozentpunkten bei den beiden eingesetzten Werkstoffen wird der große Temperaturunterschied in den Schmelz- bzw. Verarbeitungstemperaturen erzielt, der zu einer unkomplizierten und kosten günstigen Fertigungsmöglichkeit von Strukturelementen aus dem erfindungs gemäßen Kompositwerkstoff führt.
Die einzelnen Kunststoffbänder 1 werden anschließend miteinander verwo ben, sodass ein Grundgewebe gebildet wird. Einen Ausschnitt eines Grund gewebes 10, bei dem die Kunststoffbänder 1 zum Beispiel in einfacher Lein wandbindung miteinander verwoben sind, zeigt Figur 2. Die relativ große Breite der eingesetzten Kunststoffbänder ist vorteilhaft, um bereits dem Grundgewebe 10 eine bestimmte Steifigkeit aufzuprägen. Bei komplizierten dreidimensionalen Formgebungen mit engen Radien kann ein feiner ausgebil detes Gewebe vorteilhaft sein. Der Vorteil bei der Verwendung großer Breiten der Bänder von insbesondere bis zu 25 mm hat den weiteren Vorteil, dass mit wenigen übereinander geschichteten und miteinander verbundenen Lagen ein wasser- und gasdichtes Strukturelement herstellbar ist, weil die Lücken im Gewebe ohnehin klein sind und durch die Verbindung mehrere Gewebelagen unter Druck und Temperatur vollständig geschlossen werden.
Ein weiteres Kriterium für die Anzahl der Lagen des Grundgewebes, welche miteinander verpresst werden, ergibt sich aus der gewünschten Stärke des Strukturelements oder den im späteren Gebrauch herrschenden mechani schen Anforderungen daran. Es hat sich gezeigt, dass 3 bis 6 Lagen eines Gewebes ausreichend sind, wobei die Kunststoffbänder im Gewebe jeweils eine Dicke von 80 pm bis 200 pm haben.
Figur 3 zeigt die Verwendung von Strukturelementen, welche aus dem erfin dungsgemäßen Kompositwerkstoff gebildet sind, am Beispiel eines Kof fers 100. Der Koffer 100 besitzt zwei Kofferschalen 101 , 102, die jeweils drei dimensionale Strukturelemente sind, welche aus dem Kompositwerkstoff der Erfindung gebildet worden sind. Die Kofferschalen 101 ,102 sind miteinander über einen textilen Steg 105 verbunden, der vorzugsweise ebenfalls aus Po lyester besteht, insbesondere aus einem Textilzuschnitt aus Polyestergarn. Auch die Reißverschlüsse 103, 104, die jeweils randzeitig an den Kofferscha len 101 , 102 angebracht sind, bestehen bevorzugt aus Polyester. Damit ist bereits der Großteil des Koffers sortenrein recyclingfähig. Auch bei den weite ren Anbauteilen, wie Rollen 108 oder einem ausziehbaren Bügel 109, wird so weit wie möglich auf Polyester-Werkstoffe zurückgegriffen, sodass ein moder ner und haltbarer, aber nach Gebrauchsende vollständig recyclingfähiger Kof fer 100 vorliegt.
Durch die durchgängige Auswahl von PET als Werkstoff ist auch die Möglich keit der Warmverschweißung sichergestellt. Die Reißverschlüsse 103,104 können vorzugsweise direkt bei der Warmumformung der Gewebezuschnitten mit eingelegt werden und werden dann randseitig in den Verbund einge presst. Sie können aber auch nachträglich angeschweißt werden. Dasselbe gilt auch für den Mittelsteg 105 und gegebenenfalls für andere Elemente, die mit den Kofferschalen 101 , 102, welche die strukturgebenden Bauteile des Koffers 100 sind, verschweißt werden können.

Claims

FONP 001 WO A5.docx WO 2020/187371 PCT/DE2020/100217 Patentansprüche
1. Verfahren zum Herstellen eines selbstverstärkten thermoplastischen Komposit- werkstoffs, mit wenigstens folgenden Verfahrensschritten:
- Bereitstellen von Bändern (1 ) aus einem thermoplastischen Kunststoff;
- Verweben der Kunststoffbänder (1 ) zu einem Grundgewebe (10); dadurch gekennzeichnet, dass die Kunststoffbänder (1 ) durch wenigstens fol gende Schritte hergestellt werden:
- Herstellen von vorgestreckten Endlosfasern (2) aus einem teilkristallinen Po- lyester-Homopolymer (PET) mit einer Schmelztemperatur Ti durch Extrusion an wenigstens einer Spinndüse und anschließender Verstreckung;
- Verbinden einer Vielzahl nebeneinander und/oder übereinander liegender, vorgestreckter Endlosfasern (2) mit einer Matrix aus einem amorphen Poly- ester-Homopolymer bei einer Verarbeitungstemperatur T2 < Ti besitzt, wobei die Temperaturdifferenz zwischen Ti und T2 wenigstens DT = 30°C beträgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Faser- und
Matrixwerkstoffe derart gewählt sind, dass die Temperaturdifferenz zwischen Ti und T2 wenigstens DT = 50°C beträgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die
Schmelztemperatur Ti des PET-Faserwerkstoffs zwischen 250°C und 270°C beträgt.
4. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass der relative Kristallisationsgrad des PET-Faserwerkstoffs mehr als 75%, bezogen auf den maximal in dem PET-Polymer erzielbaren ab soluten Kristallisationsgrad, beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Matrix mittels Auftrags einer flüssigen Polyesterschmelze auf die nebenei nander und/oder übereinander liegenden, vorgestreckte Fasern (2) in einem Benetzungswerkzeug eines Extruders hergestellt wird. FONP 001 WO A5.docx
WO 2020/187371 PCT/DE2020/100217
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Matrix durch Verbindung von wenigstens zwei Folien gebildet wird, die je weils aus dem amorphen Polyester-Homopolymer bestehen und die zwischen sich die vorgestreckten Endlosfasern einschließen.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, dass die Verarbeitungstemperatur T2 des PET-Matrixwerkstoffs beim Auf trag auf die Fasern zwischen 160°C und 230°C beträgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, dass der relative Kristallisationsgrad des PET-Matrixwerkstoffs, bezogen auf den maximal in dem PET-Polymer erzielbaren absoluten Kristallisations grad, weniger als 10% beträgt.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeich net, dass die Endlosfasern (2) in gestrafftem Zustand mit der Matrix verbunden werden.
10. Verfahren zur Herstellung eines Strukturelements aus einem nach einem der vorhergehenden Ansprüche hergestellten Kompositwerkstoff, gekennzeichnet durch folgende Schritte:
- Zuschneiden des Grundgewebes (10) zu wenigstens einem Gewebszu- schnitt;
- Einlegen eines Gewebezuschnitts oder mehrerer übereinander liegender Gewebezuschnitte in eine Pressform;
- Erhitzen des wenigstens einen Gewebezuschnitts bis zu einer Warmum- formtemperatur T3 unter gleichzeitiger Druckbeaufschlagung zur Bildung des Strukturelements, wobei die Warm umformtemperatur T3 kleiner oder gleich T2 ist und wenigstens 30°C unterhalb von Ti liegt; und
- Abkühlen des Strukturelements und Entnahme aus der Pressform.
11. Verfahren nach einer der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Warmumformung und Strukturgebung des Gewebezuschnitts randseitig zugleich ein textiler Gewebezuschnitt aus Polyestergewebe ange schweißt wird. FONP 001 WO A5.docx
WO 2020/187371 PCT/DE2020/100217
12. Verfahren nach einer der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zunächst ein ebenes Strukturelement als Halbzeug gebildet wird, das er neut bis zur Warmumformtemperatur T3 erwärmt und in einer Pressform mit ei nem dreidimensional geformtem Formnest zu einem dreidimensionalen Struktu relement umgeformt wird, wobei die Oberflächentemperatur im Formnest zu Be ginn der Umformung des vorgewärmten ebenen Strukturelements kleiner als Ti ist.
13. Koffer (100) mit wenigstens einem nach einem der Ansprüchel O bis 12 herge stellten Strukturelement.
14. Koffer nach Anspruch 13, dadurch gekennzeichnet, dass wenigstens ein Struk turelement mit wenigstens einem textilen Element (105) aus Polyester verbun den ist.
15. Koffer (100) nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass zwei Strukturelemente als Kofferschalen (101 , 102) vorgesehen sind, die durch we nigstens einen aus Polyester bestehenden Reißverschluss (103, 104) und/oder ein textiles Brückenelement (105) miteinander verbunden sind.
EP20720338.1A 2019-03-18 2020-03-18 Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs Withdrawn EP3941727A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019106772.3A DE102019106772A1 (de) 2019-03-18 2019-03-18 Verfahren zum Herstellen eines selbstverstärkten thermoplastischen Kompositwerkstoffs
PCT/DE2020/100217 WO2020187371A1 (de) 2019-03-18 2020-03-18 Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs

Publications (1)

Publication Number Publication Date
EP3941727A1 true EP3941727A1 (de) 2022-01-26

Family

ID=70333739

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20720338.1A Withdrawn EP3941727A1 (de) 2019-03-18 2020-03-18 Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs

Country Status (5)

Country Link
US (1) US20220001628A1 (de)
EP (1) EP3941727A1 (de)
CN (1) CN113677508A (de)
DE (1) DE102019106772A1 (de)
WO (1) WO2020187371A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD977462S1 (en) * 2020-12-08 2023-02-07 Lg Electronics Inc. Wireless earphone
USD950525S1 (en) * 2021-01-26 2022-05-03 Shenzhen Ausounds Intelligent Co., Ltd. Earphone
USD1008210S1 (en) * 2021-08-13 2023-12-19 Harman International Industries, Incorporated Headphone
CN114474772B (zh) * 2022-01-28 2024-07-09 山东鲁化森萱新材料有限公司 一种高强高韧聚甲醛制品的制备方法
CN117141003B (zh) * 2023-10-30 2023-12-26 天津工业大学 一种热塑性复合材料成型方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443606A (en) * 1992-03-26 1995-08-22 The University Of Tennessee Reserch Corporation Post-treatment of laminated nonwoven cellulosic fiber webs
US5380477A (en) * 1993-05-25 1995-01-10 Basf Corporation Process of making fiber reinforced laminates
US5624386A (en) * 1994-02-15 1997-04-29 Bay Mills Limited Thermoplastic orthopedic brace and method of manufacturing same
EP1570976A1 (de) * 2004-03-04 2005-09-07 Alcan Technology &amp; Management Ltd. Verarbeitung von zyklischen Oligomeren zu thermoplastischen PBT-Kunststoffen
DE102004029453A1 (de) * 2004-06-18 2006-06-08 Samsonite Corp., Denver Verfahren zur Herstellung eines Kunststoffteiles, insbesondere Gepäckstückschale, aus selbstverstärktem thermoplastischen Material, Kunststoffteil, hergestellt aus selbstverstärktem thermoplastischen Material und Vorrichtung zur Herstellung eines Kunststoffteiles, insbesondere Gepäckstückschale
DE102006045069A1 (de) * 2006-09-21 2008-04-03 Sandler Ag Mehrlagiges Vliesverbundmaterial und Verfahren zur Herstellung eines mehrlagigen Vliesverbundmaterials
CN102173153A (zh) * 2010-12-13 2011-09-07 中国航空工业集团公司北京航空材料研究院 一种纤维增强复合材料的制备方法
EP2762295B1 (de) * 2013-02-04 2016-04-20 Reifenhäuser GmbH & Co. KG Maschinenfabrik Verfahren und Halbzeug zur Herstellung eines Faserverbundformteils und Faserverbundformteil
DE102016205556A1 (de) * 2016-04-04 2017-10-05 Röchling Automotive SE & Co. KG Verfahren zur Herstellung eines LWRT umfassenden Bauteils mit amorphen Phasen im Ausgangsmaterial

Also Published As

Publication number Publication date
CN113677508A (zh) 2021-11-19
WO2020187371A1 (de) 2020-09-24
US20220001628A1 (en) 2022-01-06
DE102019106772A1 (de) 2020-09-24

Similar Documents

Publication Publication Date Title
EP3941727A1 (de) Verfahren zum herstellen eines selbstverstärkten thermoplastischen kompositwerkstoffs
DE69321549T2 (de) Verformbarer verbundvliesstoff und herstellverfahren hierfür
DE69702706T2 (de) Ausziehbarer gegenstand
EP0793570B1 (de) Verfahren zur herstellung eines kaschierten warmformteils
DE3014086A1 (de) Schichtstoffplatte und verfahren zu deren herstellung
DE102004029453A1 (de) Verfahren zur Herstellung eines Kunststoffteiles, insbesondere Gepäckstückschale, aus selbstverstärktem thermoplastischen Material, Kunststoffteil, hergestellt aus selbstverstärktem thermoplastischen Material und Vorrichtung zur Herstellung eines Kunststoffteiles, insbesondere Gepäckstückschale
DE8020981U1 (de) Vorrichtung zur herstellung eines bahnfoermigen verbundkoerpers
DE2808361A1 (de) Verfahren zum formen eines nicht-gewebten textilstoffs
DE3688791T2 (de) Wasserabsorbierendes material sowie dessen herstellung.
DE2246051A1 (de) Web- und vliesstoffe aus gestreckten kunststoffbaendern sowie verfahren zu deren herstellung
DE2432350A1 (de) Verfahren zur herstellung von netzwerkstrukturen
DE102016209102B4 (de) Thermoplastischer Kunststoff-Verbundstoff und Herstellungsverfahren für einen thermoplastischen Kunststoffverbundstoff
DE2445070A1 (de) Verfahren zur herstellung von materialien mit plueschoberflaeche
DE10133773A1 (de) Regelmässig strukturierte Vliesstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE69528577T2 (de) Verbundplatte aus thermoplastischem Material, sowie Herstellungsverfahren und -vorrichtung dafür
DE4423739C2 (de) Schichtverbundkörper aus einem faserverstärkten, thermoplastischen Verbundwerkstoff und Verfahren zu dessen Herstellung
EP0418772A2 (de) Dimensionsstabiler Verbundkörper und Verfahren zu seiner Herstellung
DE69503942T2 (de) Textilverstärkungseinlage für die Herstellung von mehrschichtigen Artikeln
DE69130111T2 (de) Verfahren zur herstellung eines verbundwerkstoffes sowie verbundwerkstoff
EP0950512B1 (de) Verfahren zum Herstellen einer Verbundbahn
DE1479995C3 (de) Glasfaserhaltige gewebte Textilschicht zur Herstellung von Laminaten mit verbesserter innerer Haftung
WO2013023632A1 (de) Scharnierelement, hergestellt auf basis mindestens eines flächengebildes und verfahren zur herstellung eines scharnierelements auf basis mindestens eines flächengebildes
DE3144781C2 (de) Verfahren zum Herstellen einer Verbundfolie für das Formen eines formstabilen Gegenstandes und deren Verwendung
DE1704900A1 (de) Verfahren zur Herstellung von Schichtstoffen
WO2015042631A1 (de) Verstärkungselement, sowie verfahren zum herstellen eines derartigen verstärkungselementes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20231121