EP3814317B1 - Method for manufacturing mma in high yields - Google Patents
Method for manufacturing mma in high yields Download PDFInfo
- Publication number
- EP3814317B1 EP3814317B1 EP19729742.7A EP19729742A EP3814317B1 EP 3814317 B1 EP3814317 B1 EP 3814317B1 EP 19729742 A EP19729742 A EP 19729742A EP 3814317 B1 EP3814317 B1 EP 3814317B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reactor
- methacrolein
- alkyl
- mma
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 76
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 190
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 163
- STNJBCKSHOAVAJ-UHFFFAOYSA-N Methacrolein Chemical compound CC(=C)C=O STNJBCKSHOAVAJ-UHFFFAOYSA-N 0.000 claims description 126
- 238000006243 chemical reaction Methods 0.000 claims description 121
- 230000008569 process Effects 0.000 claims description 60
- 239000003054 catalyst Substances 0.000 claims description 53
- -1 alkyl methacrylates Chemical class 0.000 claims description 50
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 48
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 42
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 40
- 238000004821 distillation Methods 0.000 claims description 38
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 claims description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 30
- 150000002148 esters Chemical class 0.000 claims description 25
- 239000002253 acid Substances 0.000 claims description 24
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 18
- 238000009835 boiling Methods 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 18
- 238000006709 oxidative esterification reaction Methods 0.000 claims description 17
- 239000011541 reaction mixture Substances 0.000 claims description 17
- 238000000926 separation method Methods 0.000 claims description 16
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 15
- 125000000217 alkyl group Chemical group 0.000 claims description 13
- 229910052783 alkali metal Inorganic materials 0.000 claims description 11
- 238000010626 work up procedure Methods 0.000 claims description 9
- 239000007848 Bronsted acid Substances 0.000 claims description 6
- 125000005907 alkyl ester group Chemical group 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- AKWHOGIYEOZALP-UHFFFAOYSA-N methyl 2-methoxy-2-methylpropanoate Chemical group COC(=O)C(C)(C)OC AKWHOGIYEOZALP-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000002638 heterogeneous catalyst Substances 0.000 claims description 4
- 230000002209 hydrophobic effect Effects 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims 4
- 239000006227 byproduct Substances 0.000 description 30
- 239000000203 mixture Substances 0.000 description 29
- 239000012071 phase Substances 0.000 description 23
- 238000003776 cleavage reaction Methods 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 230000007017 scission Effects 0.000 description 22
- 239000010931 gold Substances 0.000 description 13
- 230000032050 esterification Effects 0.000 description 12
- 238000005886 esterification reaction Methods 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 7
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 238000002955 isolation Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012074 organic phase Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229940098779 methanesulfonic acid Drugs 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 210000002023 somite Anatomy 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CYHRFEUDPXZUCE-UHFFFAOYSA-N [Au].[Co]=O Chemical compound [Au].[Co]=O CYHRFEUDPXZUCE-UHFFFAOYSA-N 0.000 description 2
- YBXMTNGWQWZJHK-UHFFFAOYSA-N [Au].[Ni]=O Chemical compound [Au].[Ni]=O YBXMTNGWQWZJHK-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229950000688 phenothiazine Drugs 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000029219 regulation of pH Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 1
- JIRULJUIQOAJPM-UHFFFAOYSA-N 3-methoxy-2-methylpropanoic acid Chemical compound COCC(C)C(O)=O JIRULJUIQOAJPM-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 238000005698 Diels-Alder reaction Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920005479 Lucite® Polymers 0.000 description 1
- 238000006845 Michael addition reaction Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007068 beta-elimination reaction Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 239000011246 composite particle Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 101150025733 pub2 gene Proteins 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 description 1
- SDKPSXWGRWWLKR-UHFFFAOYSA-M sodium;9,10-dioxoanthracene-1-sulfonate Chemical class [Na+].O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)[O-] SDKPSXWGRWWLKR-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/44—Preparation of carboxylic acid esters by oxidation-reduction of aldehydes, e.g. Tishchenko reaction
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/39—Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/317—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/317—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
- C07C67/327—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/52—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C67/54—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/58—Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/533—Monocarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/54—Acrylic acid esters; Methacrylic acid esters
Definitions
- the present invention relates to a process for preparing methyl methacrylate by direct oxidative esterification of methacrolein with yields that are higher than in the prior art.
- Methyl methacrylate is used in large quantities to produce polymers and copolymers with other polymerizable compounds.
- methyl methacrylate is an important building block for various special esters based on methacrylic acid (MAA), which can be produced by transesterification with the corresponding alcohol. This results in a great interest in manufacturing processes for this starting material that are as simple, economical and environmentally friendly as possible.
- MAA methacrylic acid
- the present invention relates to an optimized processing of the reactor discharge from the oxidative esterification of methacrolein, by means of which specific by-products can be isolated and subsequently converted into alkyl methacrylates, in particular into MMA.
- MMA methyl methacrylate
- MAL methacrolein
- ASAHI oxidative esterification reaction of methacrolein using methanol
- Scheme 1 shows the production of MMA by the so-called Asahi process starting from C4 (isobutene or tert-butanol), with intermediate isolation of MAL and subsequent oxidative esterification (abbreviated “DOE”) of the MAL with methanol to form MMA, with the formation of methacrylic acid (MAS) as a by-product, shown schematically.
- C4 isobutene or tert-butanol
- DOE oxidative esterification
- MAS methacrylic acid
- the methacrolein is obtained from propanal and formalin in the first stage. Such a procedure is in WO 2014/170223 described.
- the bottom product containing MMA is then fed into a second distillation stage, in which an azeotrope of methanol and saturated hydrocarbons is removed overhead.
- the bottom, containing the crude MMA is fed to a further work-up, while methanol is extracted from the fraction obtained overhead by means of a phase separator and a third distillation column isolated and returned to the reactor.
- methanol can contain a relatively large amount of water due to the azeotrope formed and must therefore be dewatered.
- the U.S. 5,969,178 the work-up in only one column, in which case the feed is necessarily located above the bottom.
- Low-boiling constituents are removed from the reactor discharge at the top of this column.
- a mixture of crude MMA and water remains in the sump and is to be fed to further processing.
- a mixture of methacrolein and methanol, intended for recycling into the reactor, is finally removed from the column via a side stream, the exact position of which must first be determined and which can be adjusted by adding various boiling trays.
- U.S. 5,969,178 himself points out that such a process is difficult to carry out due to various azeotropes.
- methacrylic acid in particular which is always present as a by-product, plays a major role. After this procedure, even if the U.S. 5,969,178 remains silent about this, the methacrylic acid would be separated off in such a way that it would remain in a phase to be disposed of and isolation would only be worthwhile to a limited extent. However, this reduces the overall yield of methacrylic products from this process.
- WO 2014/170223 describes a similar procedure as U.S. 7,012,039 .
- the pH value is adjusted by adding a methanolic sodium hydroxide solution in a circuit. If the process is carried out without pH regulation, as described in the two publications mentioned, the reaction becomes "acidified". In a pH range below 7, this leads to Increased formation of the acetal of methacrolein, which would have to be separated off or split hydrolytically in a laborious process.
- the activity of the oxidation catalyst depends, among other things, on the pH value. At conditions below pH 7, the catalyst exhibits progressively lower activity as the pH of the reaction matrix decreases, which is undesirable.
- the pH regulation also serves, among other things, to protect the catalyst.
- the separation of the aqueous phase in the phase separation is easier due to the salt content.
- this also means that the methacrylic acid formed is present as a sodium salt and is later separated off with the aqueous phase and discarded.
- the free acid is indeed recovered, but at the expense of the sodium (hydrogen) sulfate produced, which can lead to other problems during disposal.
- methacrylic acid which is formed in the DOE reaction in the presence of water, which is usually present in the reactor at a steady-state concentration of between 2 and 20% by weight when the reaction is carried out continuously. If the DOE reaction is carried out at constant pH, the methacrylic acid which forms is at least partially neutralized with alkaline or basic auxiliaries, in the simplest case with alkali compounds. Methoxyisobutyral, the Michael addition product of methanol to methacrolein, is also formed in the reaction.
- This methoxyisobutyral is at least partially converted under the conditions of the DOE in the presence of an oxygen-containing gas and, for example, methanol to form methyl methoxyisobutyrate (MIBS-M) as a side reaction.
- the reaction is alkaline catalyzed, so is inevitably formed by the addition of a base used to control the pH of the DOE reaction. It is generally observed that the formation of methoxyisobutyral and thus the consecutive formation of MIBSM are more pronounced with increasing pH.
- 0.1 and up to 5% of this by-product is formed.
- the following scheme 2 shows the reaction matrix (example with ethylene and syngas and formalin to form methacrolein; as described, access to methacrolein starting from isobutene or tert-butanol is also possible), in particular the formation of the target product MMA and the high-boiling by-products MAS, MIBSM, DIMAL and DIMAL esters are listed:
- the result in the product matrix of the DOE reaction is a mixture containing water, methanol, MMA, free methacrylic acid in addition to alkaline-neutralized methacrylic acid, for example sodium methacrylate, and the other by-products described in Scheme 2.
- the objects are achieved by a process for the preparation of alkyl methacrylates, in which methacrolein is prepared in a first reaction stage in a reactor I and this is oxidized in a second reaction stage in a reactor II with an alcohol, preferably with methanol, to form an alkyl methacrylate, preferably corresponding to MMA is esterified, the process being characterized according to the invention in that a. the reactor discharge from reactor II is separated into a fraction containing the majority of the alkyl methacrylate and a second fraction containing methacrylic acid and an alkyl alkoxyisobutyrate (AIBSM).
- AIBSM alkyl alkoxyisobutyrate
- MIBS-M methyl methoxyisobutyrate
- the method according to the invention is characterized in that b. this second fraction is reacted in a reactor III in such a way that further alkyl methacrylate is formed from the AIBSM and the methacrylic acid.
- the chemical conversions are shown in Scheme 3, with the conversion being shown as an example using MAS and MIBS-M:
- MIBS-M one by-product
- methanol which is required in the sense of a cross-transesterification for the conversion of the second by-product, namely methacrylic acid MAS, in order to form MMA.
- the 3-methoxyisobutyric acid formed in traces is also first converted to 3-MIBS-M and then to MMA in this reaction.
- the first stage of the process for synthesizing the methacrolein can be freely selected.
- the process according to the invention can be used both for a first-stage synthesis based on tert-butanol or isobutylene and on the basis of propanal and formalin.
- methacrolein based on propanal and formalin there are in principle two possible process variants which, according to the invention, lead to a quality of the methacrolein which can be used in the DOE reaction.
- propanal and formalin can be reacted in a stirred or circulated reactor at temperatures of 20° C. to 120° C. at pressures of 1 bar to 10 bar. Reaction times of more than 10 minutes are required in order to achieve sufficient conversions.
- MAL can be produced from these educts, the desired high yields being achieved at medium pressure between 10 and 100 bar at higher temperatures between 120° C. and 250° C. with a reaction time of 2 seconds to 20 seconds.
- the oxidative esterification is preferably carried out in the liquid phase at a pressure of 2 to 100 bar, preferably at a pressure in the range from 2 to 50 bar and a temperature in the range from 10 to 200° C. using a heterogeneous catalyst.
- the heterogeneous catalyst is usually supported, gold-containing nanoparticles with a particle size of less than 20 nm, preferably between 0.2 and 20 nm remaining propanal, and/or high boilers, such as dimeric methacrolein.
- step a the separation by means of at least one extraction and/or one distillation. It is also possible to use several distillation steps or extraction steps, as well as combinations of at least one distillation and at least one extraction.
- the process according to the invention is carried out in such a way that the reactor discharge from the reactor II is separated from methacrolein and in a first distillation column is partially de-alcoholized to obtain a stream containing alkyl methacrylate, water, an alkali methacrylate and/or methacrylic acid, MIBSM and alcohol.
- the methacrylic acid can be present in the form of the free, organic acid or as an alkali metal salt or in the form of a mixture of free acid and alkali metal salt.
- the acid present as a salt is converted into the free acid by acidification, for example by adding a Bronsted acid to the mixture.
- This stream is then subjected to an extraction, resulting in an organic phase that mainly contains MMA, but also partially contains the organic by-products MAS and MIBSM.
- the organic phase resulting after extraction is separated in a second distillation into a low-boiling phase containing alkyl methacrylate and the alcohol and a high-boiling phase containing water, MIBSM and methacrylic acid.
- this high-boiling phase described above is then subjected to a further reaction, with the by-products of the DOE being converted to the desired main product MMA.
- the additional MMA formed in reactor III increases the overall yield of the process significantly.
- the crude MMA product obtained in reactor III is advantageously fed to one or more work-up columns of the main process.
- the reaction in reactor III is in turn preferably carried out at a temperature of at least 90.degree. C., particularly preferably at least 110.degree. C., very particularly preferably between 120.degree. C. and 170.degree.
- the reaction can thus be carried out purely thermally without the addition of a catalyst.
- the reaction is particularly preferably carried out thermally in the presence of a catalyst which can in particular be a Bronsted acid.
- reaction can also take place in the presence of such a catalyst at temperatures below 130.degree.
- the Bronsted acid is a strong acid.
- a strong acid is understood as meaning an acid which is stronger than methacrylic acid. This means that this acid has a lower pKa value than methacrylic acid under normal conditions.
- a particularly preferred inorganic acid is sulfuric acid.
- the less preferred organic acids can be, for example, methanesulfonic acid or toluenesulfonic acid.
- An example of another suitable mineral acid is phosphoric acid.
- Sulfuric acid has proven to be a particularly suitable catalyst. In general, it is advantageous to use a catalyst acid in reactor III that is identical to the acid used to acidify and liberate the MAS from the alkali methacrylate.
- a third function of the acid in this process is the decomposition of interfering acetals of methacrolein.
- a particularly suitable example of such a universally usable acid is sulfuric acid, which is concentrated or adjusted to different degrees depending on the application.
- this second fraction can be the stream not contained in the MIBSM after the separation according to the invention in process step a).
- pre-cleaning depends, for example, on the process chosen for the first process step in reactor I and the raw materials used therein.
- This preliminary purification of the actual crude alkyl methacrylate can be, for example, a high-boiling column, a low-boiling column or both distillations connected in series.
- a distillation column for separating off MAL is particularly preferably located directly downstream of reactor II. This can then be returned to reactor II or an upstream cleaning step.
- the production of methacrolein in the reactor I described gives a good overview of the methods and processes for the production of methacrolein Ullmann's Encyclopedia of industrial chemistry, 2012, Wiley-VCH Verlag GmbH, Weinheim, DOI: 10.1002/14356007.a01_149.pub2 .
- the first reaction stage in reactor I is a reaction of propanal with formalin.
- the reactor discharge from reactor II is freed from methacrolein and partially from the alcohol in a first distillation column, a stream comprising alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, MIBSM and alcohol being obtained becomes.
- This stream is then subsequently separated in a second distillation into a light phase containing alkyl methacrylate and the alcohol and a heavy phase containing water, MIBSM, methacrylic acid, dimeric methacrolein and optionally an alkyl ester of dimeric methacrolein.
- the dimeric methacrolein in reactor III in this process variant can then be split into methacrolein. It is then also possible to split the optionally present alkyl ester of the dimeric methacrolein into methacrolein and the alkyl methacrylate corresponding to the alcohol used. The methacrolein thus obtained can then be separated from the alkyl methacrylate in a later distillation stage and returned to reactor II.
- this first reaction stage in reactor I is a reaction of propanal with formalin
- this first reaction stage can also be an oxidation of tert-butanol and/or isobutene.
- reactor II in a first distillation column from methacrolein and partly from the alcohol.
- acid for example mineral acids such as sulfuric acid, neutralizing most of the alkali metal methacrylate and thus forming the free methacrylic acid.
- This stream is then subsequently in a second distillation and / or extraction in a light or hydrophobic phase containing alkyl methacrylate and the by-products of the reaction, namely the majority of the methacrylic acid formed, MIBSM, and DIMAL, DIMAL ester and smaller amounts of water and methanol, and a heavy, hydrophilic phase separated.
- This second, predominantly aqueous phase naturally contains few organic products and consists mainly of water and methanol and contains alkali or alkaline earth salts from the neutralization.
- methacrolein is reacted in the presence of an oxygen-containing gas at moderate temperatures between 20 and 150° C. at moderate pressures between 1 and 20 bar in the presence of a heterogeneous spherical catalyst containing noble metals.
- a variety of catalysts can be used for this oxidative esterification of MAL with methanol to MMA:
- the first known application of the direct oxidative esterification of MAL with methanol to MMA was carried out by Asahi with a Pd-Pb catalyst, which is located on an oxidic support. In the U.S. 6,040,472 these catalysts are described, which, however, lead to MMA with only insufficient activities and selectivities in comparison.
- gold-containing catalysts are described, with the catalytic gold particles described as the active oxidation species having to have an average diameter of less than 6 nm in particular. Said gold particles are distributed on a silicon oxide or a TiO 2 /SiO 2 carrier. In addition to gold, such catalysts also contain other metals in oxidic form as additional active components. this one A synergistic and activity- and selectivity-increasing effect is ascribed to doping components.
- EP 2 177 267 and EP 2 210 664 describes nickel-containing catalysts with a shell structure. Selectivity to MMA is up to 97% with these catalysts. The space-time yield is described as 9.7 mol MMA/(kg h) with a gold content in the catalyst of about 1% by weight. According to examples, a NiO x /Au catalyst shows significantly better activities and selectivities for MMA, while other combinations, such as Au with CuO or Co 3 O 4 , are much less active and selective. Basically, this is a further development of the catalysts described above, with the inhomogeneous distribution of the gold-Ni-oxide composite particle and an inactive catalyst shell characterizing these new catalysts. These also refer to the formation of methacrylic acid as a by-product.
- a catalyst which, in the form of a so-called egg-shell structure, has nickel oxide and gold nanoparticles on a support made of SiOz, Al 2 O 3 and a basic element, in particular an alkali metal or alkaline earth metal, on the outside.
- the nickel oxide is enriched on the surface, but is also present in lower concentrations in the deeper layers of the catalyst particle.
- WO 2017/084969 A1 describes catalyst systems based on several mixed oxides as carriers, which also have nanoparticulate gold in addition to cobalt oxide as an active component.
- the distribution of the catalytically active components, namely gold and cobalt, are distributed anisotropically over the cross section of the grain.
- Other newer catalysts for said reaction are in U.S. 9,676,699 described.
- Similar carrier systems based on silica, alumina and alkaline earth oxide mixtures, which contain palladium in addition to bismuth with various third-party dopings, are described here.
- Example 1 Carrying out the reaction at normal pressure as a feed batch with fresh starting materials, MAS and MIBSM.
- the reaction is carried out in a three-necked glass flask fitted with a column.
- the three-necked flask is equipped with a KPG stirrer and a 1 m high column with a free diameter of 40 mm, which is heated via an oil bath.
- the column is filled with Raschig rings, and a reflux divider is fitted at the top of the column section in order to and to be able to control acceptance. 2 moles of MIBSM and 2 moles of methacrylic acid are placed in a 1 l three-necked flask, as well as 0.2 mole of water.
- phenothiazine and 50 ppm of Tempol are added to this mixture as stabilizers or to inhibit free-radical polymerization of (meth)acrylic starting materials and products under the reaction conditions.
- the reaction mixture is heated to 150° C. using an oil bath, after 10 minutes this temperature is reached with the preheated oil bath, the column is set to full reflux, so that initially no distillate is obtained.
- a mixture of MIBSM, MAS and MeOH, water and sulfuric acid is fed continuously into the reaction mixture at a metering rate of 150 g/h via the submerged capillary.
- the feed mixture is dosed via an HPLC pump, a second HPLC pump discharges the resulting reaction bottoms via a capillary after the reaction has been run in stationary.
- the molar ratio of the C4 by-products MAS and MIBSM corresponds to 1:1.
- the water content is 49 mol% based on MIBSM and 142 mol% MeOH based on MIBSM.
- the oil bath is heated to 160°C with the start of feed dosing, the internal temperature in the reactor gradually rises to around 150°C and a mixture consisting of the azeotropic compositions of the binary azeotropes MeOH and MMA or MMA and water collects at the top of the column. As soon as the top of the column has reached a stable temperature of 69° C., a reflux ratio of 0.8 is set and the distillate is taken off.
- the reaction is initially operated continuously for 6 hours, with the amount of distillate being quantified and analyzed every hour.
- the system is operated in such a way that on average about 90% of the reactant mass fed in is drawn off as distillate at the top per hour, while the reaction bottoms are also continuously discharged.
- An average of about 10% of the feed stream fed in is removed by means of an HPLC pump.
- the fill level in the flask remains the same and the reaction at this stage is to be considered stationary in terms of volume or mass.
- a cold trap is installed to capture volatile components; the cold trap is operated with a mixture of acetone/dry ice at almost minus 60°C, the cold trap is filled with THF to absorb volatile components and to clarify and determine them qualitatively.
- the bottom turns yellowish at first, then light orange within 6 hours, and there is hardly any noticeable increase in viscosity.
- the column top product obtained stationary as distillate weighs 134.9 g/h and, according to GC chromatography, is composed as follows: ⁇ b>Table 2: Distillate product of the reaction. ⁇ /b> chemical wt% M [g/mol] Distillate [g/h] Distillate [mol/h] mma 79.1 100 106.7 1.06 Water 3.3 18 4.7 0.26 methanol 17.6 32 23.7 0.74 distillate total 100 # 134.9 2.06
- the stationary bottom product from the discharge weighs 15.1 g/h and is composed as follows: ⁇ b>Table 3: Bottom product of the reaction. ⁇ /b> chemical wt% M [g/mol] sump [g/h] sump [mmol/h] MIBSM 17.5 118 2.64 22:4 M.A.S 21:9 86 3.30 38.4 methanol 0.1 32 0.01 0.3 sulfuric acid 36.8 98 5.55 56.6 Water 1.7 18 0.25 13.9 high boilers 22.2 # 3.35 # swamp total 100 # 15.1 #
- Methacrolein was prepared according to EP 2 998 284 manufactured and isolated.
- a formalin solution with a formalin content of 37% by weight or 55% by weight, depending on the example, and propanal are mixed using a static mixer (hereinafter referred to as aldehyde solution) and then heated to the desired temperature in an oil-heated heat exchanger (see Table 1). .
- the exact water content of the formalin, depending on the example, is of no further importance, as this is fully included in the water content of the fresh feed according to Table 1.
- a recycle stream from the bottom of the product column, which is connected to the tubular reactor, is mixed with acetic acid and dimethylamine (as a 40% strength solution in water) and likewise preheated to the desired temperature.
- the preheated aldehyde solution and the preheated catalyst solution are mixed in another static mixer. This educt mixture is then fed to a tubular reactor that is heated by means of oil.
- the reaction is usually carried out at pressures of about 35 to 40 bar.
- the product mixture at the outlet of the tubular reactor is expanded via a valve and reaches the product column for distillation. After condensation and phase separation, a two-phase mixture of methacrolein and an aqueous phase is obtained at the top of this column. The aqueous phase is returned to the column. The organic phase enters the product receiver. At the bottom of the column, a partial stream is returned to the reaction as recycle. Another partial flow is discharged as an aqueous product into another product receiver.
- a methacrolein quality with a DIMAL content of less than 0.2% by weight is obtained. The water content is about 56% by weight and the dimethylamine content, based on the water in the feed, is about 2.7% by weight.
- the temperature in the reactor is between 122°C as the inlet temperature and 153°C as the outlet temperature. A significant temperature peak does not occur.
- Examples 5 to 7 show that the parameters of the reaction process have a significant influence on conversion and DIMAL content, since a content of dimeric MAL below 0.4% by weight could be achieved here, but not below 0.2% by weight.
- the difference to Examples 1 to 4 is the higher maximum temperature and the higher outlet temperature, in addition to a partially higher inlet temperature.
- Examples 8 and 9 show embodiments which produce a methacrolein quality with a content of dimeric MAL below 0.5% by weight.
- the inlet temperatures and especially the maximum temperatures were even higher.
- the maximum temperatures were above the preferred maximum temperatures of 165°C or even 170°C.
- the methacrolein prepared as described above is expanded (optionally partially evaporated in a flash box) and fed into a distillation column. After condensation, a two-phase mixture is obtained at the top of the distillation column (depending on the temperature, a more or less large water phase separates), the upper phase containing methacrolein in a quality of >97% with a water content of 1-3 wt%.
- the formalin content in the methacrolein is ⁇ 2000 ppm
- the methanol content is between 0.1 and 1.0 wt%, depending on the methanol content of the formalin used.
- the methacrolein contains a DiMAL content of 0.18 wt% to ⁇ 1 wt%. This quality is used in the following experiments for the direct oxidative esterification with methanol.
- Example 10 Carrying out the direct oxidative esterification in the liquid phase
- Example 11 Cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention.
- Sulfuric acid as a catalyst as a catalyst
- Example 3a The reaction mixture obtained from Example 3a was taken after work-up: The work-up is described as an example, with the respective compositions being listed in Table 1.
- the discharge from reactor II (1000 g/hr) was passed to stage 11 of 22 of the MAL recovery column.
- the temperature in the sump was 70° C. at a pressure of 930 mbar.
- the bottom stream was acidified to pH 2 with sulfuric acid, separated in a decanter and the organics were fed into the bottom of the extraction column, with the aqueous phase being introduced into the top of the 30-stage extraction column.
- the bottom temperature of the extraction column was 43.9° C. at a pressure of 1013 mbar.
- the top stream of the extraction column was introduced to stage 6 of 10 of the high-boiling column.
- the bottom temperature was 85.4° C. at a pressure of 235 mbar.
- the bottom of the high boiler column was collected and used for splitting MIBSM into MMA and MeOH and DIMAL ester into MAL and MMA with simultaneous esterification of MAS with MeOH to form MMA.
- Table No.2 shows the amounts of sulfuric acid, water, methanol and feed sample used.
- the composition of the feed sample for 3-MibsM, MAS and MMA together with the molar masses is also listed.
- Table 6 Amount of substances used and their molar masses.
- Table No.7 shows the recovery of the masses used for the starting materials listed above. ⁇ b>Table 7: Mass balance closure ⁇ /b> Amount used [g] Distillate [g] swamp [g] dest+sump [g] difference [g] accounting 362.57 232.81 125.78 358.59 3.98 98.90%
- Table No.8 shows the molar distribution of the components in the distillate and bottom. ⁇ b>Table 8: Distribution of the components in the distillate and bottom ⁇ /b> comp. Template [mol] dist. [mol] sump [mol] Delta Mol turnover/sel.
- Example 12 Cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention.
- phosphoric acid as a catalyst
- Example 13 Cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention.
- Methanesulfonic acid as a catalyst as a catalyst
- Example 14 Cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention. temperature of 120 °C
- reaction was carried out analogously to example 11 at a temperature of 120.degree.
- Example 15 Cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention. temperature of 90 °C
- reaction was carried out analogously to example 11 at a temperature of 90.degree.
- Example 16 Cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention. Increased amount of sulfuric acid
- reaction was carried out analogously to example 11 at a temperature of 23.degree.
- Example 17 Continuous cleavage of MIBSM to form MMA and methanol with simultaneous esterification of MAS to form MMA using reaction mixtures from Example 3 after separation of methacrolein and methyl methacrylate according to the invention.
- the reaction was carried out analogously to Example 11. In addition, after the bottom temperature of 151° C. had been reached, a continuous feed of feed mixture at a rate of 57 g/hr was started. The experiment ran for 6 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Methylmethacrylat durch direkte oxidative Veresterung von Methacrolein mit gegenüber dem Stand der Technik erhöhten Ausbeuten. Methylmethacrylat wird in großen Mengen zur Herstellung von Polymeren und Copolymeren mit anderen polymerisierbaren Verbindungen eingesetzt. Weiterhin ist Methylmethacrylat ein wichtiger Baustein für diverse, auf Methacrylsäure (MAS) basierenden Spezialester, die durch Umesterung mit dem entsprechenden Alkohol hergestellt werden können. Hieraus ergibt sich ein großes Interesse an möglichst einfachen, wirtschaftlichen und umweltschonenden Herstellungsverfahren für diesen Ausgangsstoff.The present invention relates to a process for preparing methyl methacrylate by direct oxidative esterification of methacrolein with yields that are higher than in the prior art. Methyl methacrylate is used in large quantities to produce polymers and copolymers with other polymerizable compounds. Furthermore, methyl methacrylate is an important building block for various special esters based on methacrylic acid (MAA), which can be produced by transesterification with the corresponding alcohol. This results in a great interest in manufacturing processes for this starting material that are as simple, economical and environmentally friendly as possible.
Insbesondere betrifft die vorliegende Erfindung eine optimierte Aufarbeitung des Reaktoraustrags der oxidativen Veresterung von Methacrolein, mittels der spezifische Nebenprodukte isoliert und anschließend zusätzlich zu Alkylmethacrylaten, insbesondere zu MMA umgesetzt werden können.In particular, the present invention relates to an optimized processing of the reactor discharge from the oxidative esterification of methacrolein, by means of which specific by-products can be isolated and subsequently converted into alkyl methacrylates, in particular into MMA.
Methylmethacrylat (MMA) wird heute mittels diverser Verfahren, die von C2- C3- oder C4-Bausteinen ausgehen, hergestellt. In einem dieser Verfahren wird MMA durch Oxidation von Isobutylen oder tert-Butanol mit Luftsauerstoff in der Gasphase an einem heterogenen Kontakt zu Methacrolein (MAL) und anschließender oxidativer Veresterungsreaktion von Methacrolein unter Verwendung von Methanol erhalten. Dieses von ASAHI entwickelte Verfahren ist unter anderem in den Druckschriften
In folgendem Schema 1 ist die Herstellung von MMA nach dem sogenannten Asahi Verfahren ausgehend von C4 (Isobuten oder tert-Butanol), mit Zwischenisolierung von MAL und anschließender oxidativer Veresterung (abgekürzt "DOE") des MAL mit Methanol zu MMA, unter Bildung von Methacrylsäure (MAS) als Nebenprodukt, schematisch abgebildet.
In einer Weiterentwicklung des Verfahrens wird das Methacrolein in der ersten Stufe aus Propanal und Formalin gewonnen. Ein solches Verfahren ist in
In
Als Alternative zu diesem Verfahren offenbart die
In
Grundsätzlich und in Zusammenfassung des Standes der Technik fallen bei der oxidativen Veresterung von Methacrolein bzw. auch Acrolein, in Gegenwart von Methanol als Alkohol allgemein bei der direkten oxidativen Veresterung ungesättigter Aldehyde, verschiedene schwersiedende Komponenten an. Diese Schwersieder sieden gegenüber dem als Produkt gewünschten Methylmethacrylat (MMA) höher und müssen bei der späteren Isolierung des MMAs zur Erzeugung einer geeigneten Reinheit des Monomers von deutlich größer als 99 Gew% somit von MMA abgetrennt werden. Diese Nebenprodukte, insbesondere Methacrylsäure, Methoxyisobuttersäuremethylester, dimeres Methacrolein (ein Aldehyd) und der korrespondierende Ester des dimeren Methacrolein entstehen in signifikanten Mengen und können die Ausbeute an gewünschtem MMA deutlich negativ beeinflussen. Da sie von entstehendem MMA abgetrennt werden müssen, besteht ebenfalls die Notwendigkeit, diese Stoffe einer Entsorgung zuzuführen, im einfachsten Fall einer Verbrennung, einer thermischen Verwertung unter Dampfgewinnung bzw. einem biologischen Abbau in einer Kläranlage.Basically, and in summary of the prior art, various high-boiling components are obtained in the oxidative esterification of methacrolein or acrolein in the presence of methanol as alcohol, generally in the direct oxidative esterification of unsaturated aldehydes. These high boilers have higher boiling points than the methyl methacrylate (MMA) desired as the product and must therefore be separated from the MMA when the MMA is subsequently isolated in order to produce a suitable purity of the monomer of significantly more than 99% by weight. These by-products, in particular methacrylic acid, methyl methoxyisobutyrate, dimeric methacrolein (an aldehyde) and the corresponding ester of dimeric methacrolein, are formed in significant amounts and can have a clearly negative effect on the yield of the desired MMA. Since they have to be separated from the MMA that is produced, there is also a need to dispose of these substances, in the simplest case by incineration, thermal utilization with steam generation or biological degradation in a sewage treatment plant.
Eines der Nebenprodukte ist Methacrylsäure, die sich in der DOE Reaktion in Gegenwart von Wasser bildet, was üblicherweise bei der kontinuierlichen Durchführung der Reaktion in einer stationären Konzentration zwischen 2 und 20 Gew% im Reaktor anwesend ist. Führt man die DOE Reaktion bei konstantem pH durch, so wird diese sich bildende Methacrylsäure zumindest anteilig mit alkalischen bzw. basischen Hilfsstoffen, im einfachsten Fall Alkaliverbindungen neutralisiert. In der Reaktion bildet sich ebenfalls Methoxyisobutyral, das Michael-Additionsprodukt von Methanol an Methacrolein. Dieses Methoxyisobutyral wird unter den Bedingungen der DOE in Gegenwart eines sauerstoffhaltigen Gases und z.B. Methanol zumindest teilweise zum Methoxyisobuttersäuremethylester (MIBS-M) als Nebenreaktion umgesetzt. Die Reaktion ist alkalisch katalysiert, wird also durch die Zugabe einer Base die man einsetzt um den pH der DOE Reaktion zu kontrollieren zwangsläufig gebildet. Allgemein wird beobachtet, dass die Bildung von Methoxyisobutyral und damit die konsekutive Bildung von MIBSM mit steigendem pH ausgeprägter sind. Je nach eingesetztem Katalysator und je nach gewähltem, stationären pH der DOE Reaktion im Reaktor bilden sich zwischen 0,1 und bis zu 5% dieses Nebenproduktes.One of the by-products is methacrylic acid, which is formed in the DOE reaction in the presence of water, which is usually present in the reactor at a steady-state concentration of between 2 and 20% by weight when the reaction is carried out continuously. If the DOE reaction is carried out at constant pH, the methacrylic acid which forms is at least partially neutralized with alkaline or basic auxiliaries, in the simplest case with alkali compounds. Methoxyisobutyral, the Michael addition product of methanol to methacrolein, is also formed in the reaction. This methoxyisobutyral is at least partially converted under the conditions of the DOE in the presence of an oxygen-containing gas and, for example, methanol to form methyl methoxyisobutyrate (MIBS-M) as a side reaction. The reaction is alkaline catalyzed, so is inevitably formed by the addition of a base used to control the pH of the DOE reaction. It is generally observed that the formation of methoxyisobutyral and thus the consecutive formation of MIBSM are more pronounced with increasing pH. Depending on the catalyst used and depending on the chosen stationary pH of the DOE reaction in the reactor, between 0.1 and up to 5% of this by-product is formed.
Im Stand der Technik zum Beispiel in der deutschen Auslageschrift 1279015, Knörr et al. ist beschrieben, wie Alkoxypropionsäurealkylester thermisch und katalytisch gespalten werden können, wobei ungesättigte Acrylsäureester erhalten werden. Hierbei werden Reinstoffe als Edukte verwendet und es wird eine reine β-Eliminierung beschrieben.In the state of the art, for example in German Auslegeschrift 1279015, Knörr et al. describes how alkoxypropionic acid alkyl esters can be cleaved thermally and catalytically, with unsaturated acrylic acid esters being obtained. Pure substances are used as educts and a pure β-elimination is described.
In der
Im folgenden Schema 2 ist die Reaktionmatrix (exemplarisch mit Ethylen und Syngas und Formalin zum Methacrolein; wie beschrieben ist auch der Methacrolein Zugang ausgehend von Isobuten oder tert-Butanol möglich) dargestellt, insbesondere die Bildung des Zielprodukts MMA sowie die schwersiedenden Nebenprodukte MAS, MIBSM, DIMAL und DIMAL Ester sind aufgeführt:
Zusammengefasst sind die folgenden Aspekte der Verfahren gemäß Stand der Technik vor allem in der Kombination miteinander verbesserungswürdig:
- Möglichst hohe Ausbeute an MMA
- Umwandlung des Nebenprodukts Methacrylsäure zum Methylmethacrylat und Isolierung
- Umwandlung des Nebenprodukts Methoxyisobuttersäuremethylester (MIBSM) zu Methanol und MMA sowie Rückführung des entstehenden Methanols bzw. die Verwendung des MIBSM im Sinne einer Kreuzumesterung zur Umwandlung von MAS in MMA
- zumindest anteilige Umwandung von dimerem Methacrolein und dem entsprechenden DiMAL Ester in MMA und Methacrolein
- Möglichst hoher Grad des Recyclings von Nebenprodukten
- Möglichst saubere Entsorgungsströme bzw. Abgase
- Highest possible yield of MMA
- Conversion of the by-product methacrylic acid to methyl methacrylate and isolation
- Conversion of the by-product methyl methoxyisobutyrate (MIBSM) to methanol and MMA and recycling of the resulting methanol or use of the MIBSM in the sense of a cross-transesterification to convert MAS into MMA
- at least partial conversion of dimeric methacrolein and the corresponding DiMAL ester into MMA and methacrolein
- Highest possible degree of recycling of by-products
- The cleanest possible disposal streams or waste gases
In Anbetracht des Standes der Technik war es daher Aufgabe der vorliegenden Erfindung, ein technisch verbessertes Verfahren zur oxidativen Veresterung von Methacrolein zur Verfügung zu stellen, das nicht mit den Nachteilen herkömmlicher Verfahren behaftet ist und zu gegenüber dem Stand der Technik höheren Ausbeuten führt.In view of the prior art, it was therefore an object of the present invention to provide a technically improved process for the oxidative esterification of methacrolein which does not have the disadvantages of conventional processes and leads to higher yields than the prior art.
Insbesondere war es Aufgabe der vorliegenden Erfindung, eine Verbesserung der Aufarbeitung des Rohproduktes einer oxidativen Veresterung von Methacrolein mit Methanol zu MMA bereitzustellen und damit die Gesamtausbeute eines solchen Prozesses gegenüber dem Stand der Technik zu verbessern.In particular, it was an object of the present invention to provide an improvement in the processing of the crude product of an oxidative esterification of methacrolein with methanol to give MMA and thus to improve the overall yield of such a process compared to the prior art.
Darüber hinaus war es Aufgabe, möglichst viele im Prozess gebildete Nebenprodukte, insbesondere Methoxyisobuttersäurealkylester und Methacrylsäure, in möglichst hohem Maße zu isolieren und ausbeutesteigernd für die Herstellung von Alkylmethacrylaten zur Verfügung zu stellen. Eine weitere explizite Aufgabe der Erfindung bestand darin, einen Prozess zu finden, der es möglichst erlaubt, mehrere dieser Nebenprodukte in einem einzigen Prozessschritt zu MMA umsetzen, und bevorzugt bei der Aufarbeitung des Rohproduktes auf Verfahrensschritte aufbaut, die eh für die Isolierung von MMA benötigt werden. Insbesondere bezieht sich dies auf eine Lösung der Aufgaben, die auf bereits aus anderen Gründen vorliegenden Kolonnen, Phasentrennern, Extraktoren oder allgemeinem Equipment beruht.In addition, it was an object to isolate as many by-products formed in the process as possible, in particular alkyl methoxyisobutyrate and methacrylic acid, to the greatest possible extent and to make them available for the production of alkyl methacrylates in a way that increases the yield. A further explicit object of the invention was to find a process which, if possible, allows several of these by-products to be converted into MMA in a single process step, and preferably builds on process steps in the processing of the crude product which are required in any case for the isolation of MMA . In particular, this relates to a solution to the problem that is based on columns, phase separators, extractors or general equipment that are already available for other reasons.
Insbesondere bestand auch die Aufgabe, ein Verfahren zur Verfügung zu stellen, das mit einem möglichst geringen Entsorgungsaufwand, insbesondere durch ein reduziertes Anfallen organischer Bestandteile und Säuren im Abfallstrom, betrieben werden kann.In particular, there was also the task of making available a method that can be operated with as little disposal effort as possible, in particular due to a reduced accumulation of organic components and acids in the waste stream.
Gelöst werden die Aufgaben durch ein Verfahren zur Herstellung von Alkylmethacrylaten , bei dem in einer ersten Reaktionsstufe in einem Reaktor I Methacrolein hergestellt und dieses in einer zweiten Reaktionsstufe in einem Reaktor II oxidativ mit einem Alkohol, bevorzugt mit Methanol zu einem Alkylmethacrylat, bevorzugt entsprechend zu MMA verestert wird, wobei sich das Verfahren erfindungsgemäß dadurch auszeichnet, dass a. der Reaktoraustrag des Reaktor II in eine den überwiegenden Teil des Alkylmethacrylat enthaltende Fraktion und eine zweite Fraktion, enthaltend Methacrylsäure und einen Alkoxyisobuttersäurealkylester (AIBSM) getrennt wird. Im bevorzugten Falle, dass es sich bei dem Alkohol um Methanol handelt, handelt es sich bei dem AIBSM um Methoxyisobuttersäuremethylester (MIBS-M).The objects are achieved by a process for the preparation of alkyl methacrylates, in which methacrolein is prepared in a first reaction stage in a reactor I and this is oxidized in a second reaction stage in a reactor II with an alcohol, preferably with methanol, to form an alkyl methacrylate, preferably corresponding to MMA is esterified, the process being characterized according to the invention in that a. the reactor discharge from reactor II is separated into a fraction containing the majority of the alkyl methacrylate and a second fraction containing methacrylic acid and an alkyl alkoxyisobutyrate (AIBSM). In the preferred case where the alcohol is methanol, the AIBSM is methyl methoxyisobutyrate (MIBS-M).
Weiterhin ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass b. diese zweite Fraktion in einem Reaktor III derart umgesetzt wird, dass aus dem AIBSM und der Methacrylsäure weiteres Alkylmethacrylat gebildet wird. Die chemischen Umwandlungen sind im Schema 3 dargestellt, wobei exemplarisch die Umsetzung an Hand von MAS und MIBS-M gezeigt ist:
Sehr vorteilhaft kann hier gezeigt werden, dass bei der Spaltung des einen Nebenprodukts (MIBS-M) Methanol freigesetzt wird, was im Sinne einer Kreuzumesterung zur Umsetzung des zweiten Nebenprodukts, nämlich Methacrylsäure MAS, benötigt wird, um MMA zu bilden. Auch die in Spuren gebildete 3-Methoxyisobuttersäure wird bei dieser Umsetzung zunächst zu 3-MIBS-M und dann zu MMA umgesetzt.It can be shown very advantageously here that the cleavage of one by-product (MIBS-M) releases methanol, which is required in the sense of a cross-transesterification for the conversion of the second by-product, namely methacrylic acid MAS, in order to form MMA. The 3-methoxyisobutyric acid formed in traces is also first converted to 3-MIBS-M and then to MMA in this reaction.
Alle diese Reaktionen laufen synchron ab, bevorzugt in einer einzigen Vorrichtung oder einem einzelnen Reaktor, so dass letztlich eine Vielzahl von Nebenprodukten zum Zielprodukt MMA umgesetzt werden.All of these reactions take place synchronously, preferably in a single device or a single reactor, so that ultimately a large number of by-products are converted to the target product MMA.
Das Verfahren zur Synthese von MMA, welches die beiden oben aufgeführten Reaktionsstufen aufweist, kann insbesondere in
Dabei ist erfindungsgemäß die erste Stufe des Verfahrens zur Synthese des Methacroleins frei wählbar. Das erfindungsgemäße Verfahren ist sowohl auf eine Erststufen-Synthese auf Basis von tert-Butanol oder Isobutylen, als auch auf Basis von Propanal und Formalin anwendbar.According to the invention, the first stage of the process for synthesizing the methacrolein can be freely selected. The process according to the invention can be used both for a first-stage synthesis based on tert-butanol or isobutylene and on the basis of propanal and formalin.
Auch bei der Herstellung von Methacrolein auf Basis von Propanal und Formalin kommen im Prinzip zwei Verfahrensvarianten in Frage, die erfindungsgemäß zu einer Qualität des Methacroleins führen, die in der DOE Reaktion eingesetzt werden kann. Zum einen können Propanal und Formalin in einem gerührten oder umgepumpten Reaktor bei Temperaturen von 20°C bis 120°C bei Drücken von 1 bar bis 10 bar umgesetzt werden. Dabei werden Reaktionszeiten größer 10 min benötigt, um ausreichende Umsätze zu erzielen. Zum anderen kann man aus diesen Edukten MAL herstellen, wobei man bei mittleren Druck zwischen 10 und 100 bar bei höheren Temperaturen zwischen 120°C und 250°C die Reaktion mit einer Reaktionszeit von 2 Sekunden bis 20 Sekunden zu gewünschten, hohen Ausbeuten kommt.In the production of methacrolein based on propanal and formalin, there are in principle two possible process variants which, according to the invention, lead to a quality of the methacrolein which can be used in the DOE reaction. On the one hand, propanal and formalin can be reacted in a stirred or circulated reactor at temperatures of 20° C. to 120° C. at pressures of 1 bar to 10 bar. Reaction times of more than 10 minutes are required in order to achieve sufficient conversions. On the other hand, MAL can be produced from these educts, the desired high yields being achieved at medium pressure between 10 and 100 bar at higher temperatures between 120° C. and 250° C. with a reaction time of 2 seconds to 20 seconds.
Bevorzugt wird die oxidative Veresterung in flüssiger Phase bei einem Druck von 2 bis 100 bar, bevorzugt bei einem Druck im Bereich von 2 bis 50 bar und einer Temperatur im Bereich von 10 bis 200 °C mit einem heterogenen Katalysator durchgeführt. Bei dem heterogenen Katalysator handelt es sich in der Regel um geträgerte, goldhaltige Nanopartikel mit einer Teilchengröße kleiner 20 nm, bevorzugt zwischen 0,2 und 20 nm. Die Reaktionsstufe (A) kann eine optionale und weniger bevorzugte Destillationskolonne II zur Abtrennung von Leichtsiedern, wie verbliebenen Propanal, und/oder von Schwersiedern, wie dimeres Methacrolein, aufweisen.The oxidative esterification is preferably carried out in the liquid phase at a pressure of 2 to 100 bar, preferably at a pressure in the range from 2 to 50 bar and a temperature in the range from 10 to 200° C. using a heterogeneous catalyst. The heterogeneous catalyst is usually supported, gold-containing nanoparticles with a particle size of less than 20 nm, preferably between 0.2 and 20 nm remaining propanal, and/or high boilers, such as dimeric methacrolein.
Besonders bevorzugt erfolgt in Schritt a. die Trennung mittels mindestens einer Extraktion und/oder einer Destillation. Dabei können auch mehrere Destillationsschritte oder Extraktionsschritte, wie auch Kombinationen aus mindestens einer Destillation und mindestens einer Extraktion eingesetzt werden.Particular preference is given to step a. the separation by means of at least one extraction and/or one distillation. It is also possible to use several distillation steps or extraction steps, as well as combinations of at least one distillation and at least one extraction.
Es hat sich als ganz besonders bevorzugt in dem erfindungsgemäßen Verfahren erwiesen, das Verfahren derart durchzuführen, dass der Reaktoraustrag des Reaktor II in einer ersten Destillationskolonne von Methacrolein und teilweise von dem Alkohol befreit wird, wobei ein Strom, enthaltend Alkylmethacrylat, Wasser, ein Alkalimethacrylat und/oder Methacrylsäure, MIBSM und Alkohol, erhalten wird. Anschließend wird dieser Strom mit einer starken Säure versetzt und in einer Extraktion in eine hydrophobe Phase, enthaltend Alkylmethacrylat, MAS und MIBSM und eine hydrophile Phase, enthaltend Wasser, den Alkohol, und verbleibende geringere Mengen an Haupt und Nebenprodukten der Reaktion, aufgetrennt.It has proven to be very particularly preferred in the process according to the invention to carry out the process in such a way that the reactor discharge from reactor II is freed from methacrolein and partially from the alcohol in a first distillation column, with a stream containing alkyl methacrylate, water, an alkali metal methacrylate and /or methacrylic acid, MIBSM and alcohol. A strong acid is then added to this stream and, in an extraction, separated into a hydrophobic phase containing alkyl methacrylate, MAS and MIBSM and a hydrophilic phase containing water, the alcohol and remaining smaller amounts of main and by-products of the reaction.
Alternativ dazu und genauso bevorzugt, wird das erfindungsgemäße Verfahren derart ausgeführt, dass der Reaktoraustrag des Reaktor II in einer ersten Destillationskolonne von Methacrolein und teilweise von dem Alkohol befreit wird, wobei ein Strom, enthaltend Alkylmethacrylat, Wasser, ein Alkalimethacrylat und/oder Methacrylsäure, MIBSM und Alkohol, erhalten wird. Die Methacrylsäure kann an dieser Stelle im Verfahren in Form der freien, organischen Säure bzw. als Alkalisalz bzw. in Form einer Mischung von freier Säure und Alkalisalz vorliegen. Optional wird durch Ansäuerung, wie beispielsweise ein Versetzen des Gemisches mit einer Brönstedtsäure, die als Salz vorliegende Säure in die freie Säure überführt.Alternatively, and just as preferred, the process according to the invention is carried out in such a way that the reactor discharge from the reactor II is separated from methacrolein and in a first distillation column is partially de-alcoholized to obtain a stream containing alkyl methacrylate, water, an alkali methacrylate and/or methacrylic acid, MIBSM and alcohol. At this point in the process, the methacrylic acid can be present in the form of the free, organic acid or as an alkali metal salt or in the form of a mixture of free acid and alkali metal salt. Optionally, the acid present as a salt is converted into the free acid by acidification, for example by adding a Bronsted acid to the mixture.
Dieser Strom wird anschließend einer Extraktion unterzogen, wobei eine organische Phase resultiert, die hauptsächlich MMA enthält, aber auch anteilig die organischen Nebenprodukte MAS und MIBSM. Die nach Extraktion resultierende organische Phase wird in einer zweiten Destillation in eine leichtsiedende Phase, enthaltend Alkylmethacrylat und den Alkohol und eine schwersiedende Phase, enthaltend Wasser, MIBSM und Methacrylsäure, getrennt.This stream is then subjected to an extraction, resulting in an organic phase that mainly contains MMA, but also partially contains the organic by-products MAS and MIBSM. The organic phase resulting after extraction is separated in a second distillation into a low-boiling phase containing alkyl methacrylate and the alcohol and a high-boiling phase containing water, MIBSM and methacrylic acid.
Somit ist in dem erfindungsgemäßen Verfahren eine Abtrennung des Wertstoffes MMA von den Nebenprodukten der DOE Reaktion, insbesondere in Reaktor II, besonders vorteilhaft. Insbesondere eine Abtrennung des MMA von MAS, MIBSM, DIMAL und DIMAL-Ester sowie den Isomeren des HIBS kann so erfindungsgemäß überraschend realisiert werden.Thus, in the process according to the invention, it is particularly advantageous to separate the valuable material MMA from the by-products of the DOE reaction, in particular in reactor II. In particular, a separation of the MMA from MAS, MIBSM, DIMAL and DIMAL ester and the isomers of HIBS can surprisingly be realized according to the invention.
Diese oben beschriebene schwersiedende Phase wird darauf gemäß dem zweiten erfindungsgemäßen Aspekt einer weiteren Reaktion unterzogen, wobei die Nebenprodukte der DOE zum gewünschten Hauptprodukt MMA umgesetzt werden. Das zusätzlich in Reaktor III gebildete MMA erhöht die Gesamtausbeute des Verfahrens signifikant. Vorteilhafterweise wird das in Reaktor III erhaltene MMA Rohprodukt einer oder mehreren Aufarbeitungskolonnen des Hauptverfahrens zugeführt.According to the second aspect of the invention, this high-boiling phase described above is then subjected to a further reaction, with the by-products of the DOE being converted to the desired main product MMA. The additional MMA formed in reactor III increases the overall yield of the process significantly. The crude MMA product obtained in reactor III is advantageously fed to one or more work-up columns of the main process.
Die Umsetzung in Reaktor III erfolgt wiederum bevorzugt bei einer Temperatur von mindestens 90 °C, besonders bevorzugt von mindestens 110 °C, ganz besonders bevorzugt zwischen 120°C und 170 °C. So kann die Umsetzung rein thermisch ohne Zugabe eines Katalysators durchgeführt werden. Besonders bevorzugt erfolgt die Umsetzung thermisch in Gegenwart eines Katalysators, bei dem es sich insbesondere um eine Brönstedtsäure handeln kann.The reaction in reactor III is in turn preferably carried out at a temperature of at least 90.degree. C., particularly preferably at least 110.degree. C., very particularly preferably between 120.degree. C. and 170.degree. The reaction can thus be carried out purely thermally without the addition of a catalyst. The reaction is particularly preferably carried out thermally in the presence of a catalyst which can in particular be a Bronsted acid.
In einer dritten Alternative kann die Umsetzung auch in Gegenwart eines solchen Katalysators bei Temperaturen unterhalb von 130 °C erfolgen.In a third alternative, the reaction can also take place in the presence of such a catalyst at temperatures below 130.degree.
Besonders bevorzugt ist es, wenn es sich bei der Brönstedtsäure um eine starke Säure handelt. Erfindungsgemäß wird unter einer starken Säure eine derartige Säure verstanden, die stärker ist als Methacrylsäure. Das bedeutet, dass diese Säure unter Normalbedingungen einen geringeren pKs-Wert als Methacrylsäure aufweist. Eine insbesondere bevorzugte anorganische Säure ist dabei Schwefelsäure. Bei den weniger bevorzugten organischen Säuren kann es sich beispielsweise um Methansulfonsäure oder Toluolsulfonsäure handeln. Beispiel für eine weitere geeignete mineralische Säure ist Phosphorsäure. Schwefelsäure hat sich dabei als besonders geeigneter Katalysator erwiesen. Allgemein ist es vorteilhaft eine Katalysatorsäure in Reaktor III zu verwenden, die identisch ist, mit der Säure, die man zum Ansäuern und Freisetzen der MAS aus der Alkalimethacrylat einsetzt.It is particularly preferred if the Bronsted acid is a strong acid. According to the invention, a strong acid is understood as meaning an acid which is stronger than methacrylic acid. This means that this acid has a lower pKa value than methacrylic acid under normal conditions. A particularly preferred inorganic acid is sulfuric acid. The less preferred organic acids can be, for example, methanesulfonic acid or toluenesulfonic acid. An example of another suitable mineral acid is phosphoric acid. Sulfuric acid has proven to be a particularly suitable catalyst. In general, it is advantageous to use a catalyst acid in reactor III that is identical to the acid used to acidify and liberate the MAS from the alkali methacrylate.
Eine dritte Funktion der Säure in diesem Verfahren ist die Zersetzung von störenden Acetalen des Methacroleins. Somit ist man in der Lage im besten Fall mit nur einer einzigen Säure innerhalb des Anlagenverbunds auszukommen. Ein besonders geeignetes Beispiel einer solchen universal einsetzbaren Säure ist Schwefelsäure, die je nach Einsatzfunktion verschieden stark konzentriert ist bzw. eingestellt wird.A third function of the acid in this process is the decomposition of interfering acetals of methacrolein. Thus, in the best-case scenario, one is able to get by with just a single acid within the system network. A particularly suitable example of such a universally usable acid is sulfuric acid, which is concentrated or adjusted to different degrees depending on the application.
Es hat sich im Weiteren als bevorzugt erwiesen, den Reaktoraustrag des Reaktors III mit der nach Abtrennung des MIBSM und der Methacrylsäure erhaltenden, Alkylmethacrylat-haltigen Fraktion zur weiteren Aufarbeitung zusammenzuführen. Diese zweite Fraktion kann dabei zum einen der nach der erfindungsgemäßen Trennung in Verfahrensschritt a), nicht der MIBSM enthaltene Strom sein. Es ist jedoch günstiger, diesen Strom zunächst in einem oder mehreren Schritten zunächst vor zu reinigen, bevor beide Fraktionen zur weiteren Reinigung zusammengeführt werden. Die Wahl der Vorreinigung hängt beispielsweise von dem für den ersten Verfahrensschritt in Reaktor I gewählten Prozess und den darin eingesetzten Rohstoffen ab. Bei dieser Vorreinigung des eigentlichen Roh-Alkylmethacrylats kann es sich beispielsweise um eine Hochsieder-, eine Niedrigsiederkolonne oder um beide in Reihe geschalteten Destillationen handeln. Alternativ oder parallel dazu ist es natürlich auch möglich, erst den Reaktoraustrag aus Reaktor III vor zu reinigen, bevor diese Fraktion mit der zuvor genannten anderen Fraktion zusammengeführt wird. Auch bei dieser Reinigung kann es sich um eine oder mehrere Extraktionen bzw. Destillationen oder Kombinationen daraus handeln. Die aus der Aufreinigung erhaltene, eingesetzte Säure kann dazu optional wieder in den Reaktor III recycliert werden. Besonders bevorzugt befindet sich direkt hinter Reaktor II eine Destillationskolonne zur Abtrennung von MAL. Dieses kann dann in Reaktor II oder einen vorgeschalteten Reinigungsschritt zurückgeführt werden.It has also proven preferable to combine the reactor effluent from reactor III with the alkyl methacrylate-containing fraction obtained after separating off the MIBSM and the methacrylic acid for further work-up. On the one hand, this second fraction can be the stream not contained in the MIBSM after the separation according to the invention in process step a). However, it is more favorable to pre-clean this stream in one or more steps before the two fractions are combined for further cleaning. The choice of pre-cleaning depends, for example, on the process chosen for the first process step in reactor I and the raw materials used therein. This preliminary purification of the actual crude alkyl methacrylate can be, for example, a high-boiling column, a low-boiling column or both distillations connected in series. Alternatively or in parallel, it is of course also possible to pre-clean the reactor discharge from reactor III before this fraction is combined with the other fraction mentioned above. This purification can also involve one or more extractions or distillations or combinations thereof. For this purpose, the acid used obtained from the purification can optionally be recycled back into the reactor III. A distillation column for separating off MAL is particularly preferably located directly downstream of reactor II. This can then be returned to reactor II or an upstream cleaning step.
Verfahrensgemäß ist als Teilaspekt der vorliegenden Erfindung die Herstellung von Methacrolein im beschriebenen Reaktor I. Einen guten Überblick über die Methoden und Verfahren zur Herstellung von Methacrolein gibt
Wir konnten zeigen, dass mehrere Verfahrensvarianten prinzipiell geeignet sind, um Methacrolein herzustellen, die exemplarisch wie folgt aussehen können:
- a. Herstellung von Methacrolein aus Propanal und Formalin in Gegenwart von Katalysatoren, bevorzugt homogenen Säuren, mineralisch oder organisch, und organischen Aminen unter erhöhtem, absolutem Druck von größer 2 bar. Beispiele sind unter anderem in
EP 2 998 284 A1 US 7,141,702 JP 3069420 JP 4173757 EP 0 317 909 US 2,848,499 DE 32113681 - b.
US 4,408,079 - c. Die dritte Verfahrensvariante zur Herstellung von Methacrolein ist dadurch gekennzeichnet, dass Isobuten oder tert-Butanol in der Gasphase an einem heterogenen Kontakt mit Wasserdampf und sauerstoffhaltigen Gasen bei Temperaturen von über 300°C umgesetzt und anschließend isoliert wird. Eine Vielzahl von Untervarianten und einsetzbarer Katalysatorsysteme sowie Isolierungsoptionen sind im einschlägigen Stand der Technik beschrieben. Eine gute Übersicht hierzu gibt folgende Referenz:
Trends and Future of Monomer-MMA Technologies, K. Nagai & T. Ui, Sumitomo Chemical Co., Ltd.,Basic Chemicals Research Laboratory, 2005, http://ww.sumitomo chem.co.jp/english/rd/report/theses/docs/20040200_30a.pdf
- a. Production of methacrolein from propanal and formalin in the presence of catalysts, preferably homogeneous acids, mineral or organic, and organic amines under increased absolute pressure of more than 2 bar. Examples include in
EP 2 998 284 A1 U.S. 7,141,702 JP 3069420 JP 4173757 EP 0 317 909 U.S. 2,848,499 UK 32113681 - b.
U.S. 4,408,079 - c. The third process variant for the production of methacrolein is characterized in that isobutene or tert-butanol is reacted in the gas phase in heterogeneous contact with steam and oxygen-containing gases at temperatures above 300° C. and is then isolated. A large number of sub-variants and usable catalyst systems as well as isolation options are described in the relevant prior art. The following reference provides a good overview of this:
Trends and Future of Monomer-MMA Technologies, K. Nagai & T. Ui, Sumitomo Chemical Co., Ltd., Basic Chemicals Research Laboratory, 2005, http://ww.sumitomo chem.co.jp/english/rd/report /theses/docs/20040200_30a.pdf
Es ist bevorzugt, dass es sich bei der ersten Reaktionsstufe in Reaktor I um eine Umsetzung von Propanal mit Formalin handelt. In diesem Fall ist es dann weiterhin bevorzugt, dass der Reaktoraustrag des Reaktor II in einer ersten Destillationskolonne von Methacrolein und teilweise von dem Alkohol befreit wird, wobei ein Strom, enthaltend Alkylmethacrylat, Wasser, ein Alkalimethacrylat und/oder Methacrylsäure, MIBSM und Alkohol, erhalten wird. Dieser Strom wird dann anschließend in einer zweiten Destillation in eine leichte Phase, enthaltend Alkylmethacrylat und den Alkohol und eine schwere Phase, enthaltend Wasser, MIBSM, Methacrylsäure, dimeres Methacrolein und optional einen Alkylester des dimeren Methacroleins, getrennt.It is preferred that the first reaction stage in reactor I is a reaction of propanal with formalin. In this case, it is then further preferred that the reactor discharge from reactor II is freed from methacrolein and partially from the alcohol in a first distillation column, a stream comprising alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, MIBSM and alcohol being obtained becomes. This stream is then subsequently separated in a second distillation into a light phase containing alkyl methacrylate and the alcohol and a heavy phase containing water, MIBSM, methacrylic acid, dimeric methacrolein and optionally an alkyl ester of dimeric methacrolein.
Das dimere Methacrolein in Reaktor III in dieser Verfahrensvariante kann anschließend in Methacrolein gespalten werden. Dabei ist es dann auch möglich, den optional vorliegende Alkylester des dimeren Methacroleins in Methacrolein und das dem eingesetzten Alkohol entsprechende Alkylmethacrylat zu spalten. Das so jeweils gewonnene Methacrolein kann dann von dem Alkylmethacrylat in einer späteren Destillationsstufe getrennt und zurück in Reaktor II geführt werden.The dimeric methacrolein in reactor III in this process variant can then be split into methacrolein. It is then also possible to split the optionally present alkyl ester of the dimeric methacrolein into methacrolein and the alkyl methacrylate corresponding to the alcohol used. The methacrolein thus obtained can then be separated from the alkyl methacrylate in a later distillation stage and returned to reactor II.
Alternativ zu der beschriebenen Verfahrensvariante, bei der es sich bei der ersten Reaktionsstufe in Reaktor I um eine Umsetzung von Propanal mit Formalin handelt, kann es sich bei dieser ersten Reaktionsstufe auch um eine Oxidation von tert-Butanol und/oder Isobuten handeln.As an alternative to the process variant described, in which the first reaction stage in reactor I is a reaction of propanal with formalin, this first reaction stage can also be an oxidation of tert-butanol and/or isobutene.
In einer solchen Variante ist es dann besonders bevorzugt, den Reaktoraustrag des Reaktors II in einer ersten Destillationskolonne von Methacrolein und teilweise von dem Alkohol zu befreien. Dabei erhält man einen Strom, der Alkylmethacrylat, Wasser, ein Alkalimethacrylat und/oder Methacrylsäure, MIBSM und Alkohol enthält. Dieser Strom wird üblicherweise zunächst mit Säure behandelt, beispielsweise Mineralsäuren wie etwa Schwefelsäure, wobei der Hauptteil des Alkalimethacrylates neutralsiert und somit die freie Methacrylsäure gebildet wird.In such a variant, it is then particularly preferred to free the reactor discharge from reactor II in a first distillation column from methacrolein and partly from the alcohol. This gives a stream which contains alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, MIBSM and alcohol. This stream is usually first treated with acid, for example mineral acids such as sulfuric acid, neutralizing most of the alkali metal methacrylate and thus forming the free methacrylic acid.
Dieser Strom wird dann anschließend in einer zweiten Destillation und/oder einer Extraktion in eine leichte oder hydrophobe Phase, enthaltend Alkylmethacrylat und die Nebenprodukte der Umsetzung, nämlich den Großteil der gebildeten Methacrylsäure, MIBSM, sowie DIMAL, DIMAL-Ester und kleinere Mengen an Wasser und Methanol, und eine schwere, hydrophile Phase getrennt. Diese zweite, überwiegend wässrige Phase enthält naturgemäß wenig organische Produkte und besteht hauptsächlich aus Wasser und Methanol und enthält Alkali- oder Erdalkali Salz aus der Neutralisation.This stream is then subsequently in a second distillation and / or extraction in a light or hydrophobic phase containing alkyl methacrylate and the by-products of the reaction, namely the majority of the methacrylic acid formed, MIBSM, and DIMAL, DIMAL ester and smaller amounts of water and methanol, and a heavy, hydrophilic phase separated. This second, predominantly aqueous phase naturally contains few organic products and consists mainly of water and methanol and contains alkali or alkaline earth salts from the neutralization.
Als Teilaspekt der vorliegenden Erfindung wird Methacrolein in Gegenwart eines sauerstoffhaltigen Gases bei moderaten Temperaturen zwischen 20 und 150 °C bei moderaten Drücken zwischen 1 und 20 bar in Gegenwart eines heterogenen sphärischen Edelmetall-haltigen Katalysators umgesetzt. Eine Vielzahl von Katalysatoren kann für diese oxidative Veresterung von MAL mit Methanol zu MMA eingesetzt werden:
Die erste bekannte Anwendung der direkten oxidativen Veresterung von MAL mit Methanol zu MMA wurde von Asahi mit einem Pd-Pb-Katalysator, der sich auf einem oxidischen Träger befindet, durchgeführt. In der
The first known application of the direct oxidative esterification of MAL with methanol to MMA was carried out by Asahi with a Pd-Pb catalyst, which is located on an oxidic support. In the
In
Die Herstellung erfolgt durch Auftragen des Goldsalzes und weiteren Metallsalzen auf einen oxidischen Träger.It is produced by applying the gold salt and other metal salts to an oxidic carrier.
In
In
In
So unterschiedlich diese Katalysatorsysteme bezüglich der verwendeten Trägermaterialen sind, so unterschiedlich sind auch deren Präparation und letztlich auch die Performance bezüglich Umsatz und Selektivität. Dennoch führen alle diese Katalysatorsysteme zu ähnlichen Nebenproduktcharakteristika. Allen Katalysatoren ist gemein, dass sich im stationären Betrieb neben dem gewünschten Alkylmethacrylat, auch mehr oder weniger große Mengen an Methacrylsäure, Alkoxyisobuttersäureester (AIBSM), sowie Dimere des eingesetzten Methacroleins und Alkylester dieser Dimere bilden. Daneben bilden sich weitere Nebenprodukte wie Hydroxyisobuttersäure und deren korrespondierenden Ester. Relevant sind diese Nebenprodukte vor allem, da sie gegenüber dem gewünschten Alkylmethacrylat hochsiedend sind, und sich bei der Aufarbeitung gegenüber MMA in schwersiedenden Fraktionen anreichern und letztlich sammeln.As different as these catalyst systems are with regard to the support materials used, their preparation and ultimately also their performance in terms of conversion and selectivity are just as different. Nonetheless, all of these catalyst systems result in similar by-product characteristics. What all catalysts have in common is that, in addition to the desired alkyl methacrylate, more or less large amounts of methacrylic acid, Alkoxyisobutyric acid ester (AIBSM), and form dimers of the methacrolein used and alkyl esters of these dimers. Other by-products such as hydroxyisobutyric acid and its corresponding esters are also formed. These by-products are relevant above all because they are high-boiling compared to the desired alkyl methacrylate and accumulate in high-boiling fractions and ultimately collect during work-up compared to MMA.
- (1) Reaktor I zur MAL-Synthese
- (2) Destillationskolonne
- (3) Reaktor II zur DOE Reaktion
- (4) MAL Abtrennung
- (5) Zwischenkolonne und/oder Extraktion
- (6) Kolonne zur Methanol-Abtrennung
- (7) Kolonne zur MMA-Aufreinigung - Schwersieder
- (8) 2. Kolonne zur MMA-Aufreinigung - Leichtsieder
- (9) 3. Kolonne zur MMA-Aufreinigung - Reinkolonne
- (10) Gereinigtes MMA
- (11) Optionale Kolonne zur Reduzierung der MMA Menge aus Sumpfstrom von (7)
- (12) Zugabe Säure und MeOH für (13)
- (13) Reaktor III zur Spaltung von MIBSM in MMA und DIMAL-Ester in MAL und MMA sowie Veresterung von MAS zu MMA
- (14) Optionale Kolonne zur Trennung der Wertstoffe von Schwersiedern & Schwefelsäure
- (15) Abwasser
- (16) Rückführung für Methacrolein und Methanol
- (1) Reactor I for MAL synthesis
- (2) Distillation Column
- (3) Reactor II for DOE reaction
- (4) MAL separation
- (5) Intermediate column and/or extraction
- (6) Methanol separation column
- (7) MMA purification column - high boilers
- (8) 2nd column for MMA purification - low boilers
- (9) 3rd column for MMA purification - clean column
- (10) Purified MMA
- (11) Optional column to reduce the amount of MMA from the bottom stream of (7)
- (12) Add acid and MeOH for (13)
- (13) Reactor III for cleavage of MIBSM into MMA and DIMAL ester into MAL and MMA and esterification of MAS into MMA
- (14) Optional column for separating valuable materials from high boilers and sulfuric acid
- (15) waste water
- (16) Recycle for methacrolein and methanol
Die Reaktion wird in einem Dreihalskolben aus Glas mit aufgesetzter Kolonne durchgeführt. Der Dreihalskolben ist mit einem KPG Rührer ausgestattet, sowie einer 1 m hohen Kolonne mit einem freien Durchmesser von 40 mm, die Beheizung erfolgt über ein Ölbad. Die Kolonne ist mit Raschigringen gefüllt, am Kopf des Kolonnenschusses ist ein Rücklaufteiler aufgesetzt, um Rücklauf und Abnahme kontrollieren zu können. In einem 1 l Dreihalskolben werden 2 Mol MIBSM und 2 Mol Methacrylsäure vorgelegt, sowie 0,2 Mol Wasser.The reaction is carried out in a three-necked glass flask fitted with a column. The three-necked flask is equipped with a KPG stirrer and a 1 m high column with a free diameter of 40 mm, which is heated via an oil bath. The column is filled with Raschig rings, and a reflux divider is fitted at the top of the column section in order to and to be able to control acceptance. 2 moles of MIBSM and 2 moles of methacrylic acid are placed in a 1 l three-necked flask, as well as 0.2 mole of water.
Zu dieser Mischung werden jeweils 200 ppm Phenothiazin sowie 50 ppm Tempol als Stabilisatoren bzw. zur Inhibierung einer radikalischen Polymerisation von (meth)acrylischen Edukten und Produkten unter den Reaktionsbedingungen gegeben. Die Reaktionsmischung wird mittels Ölbad auf 150°C erwärmt, nach 10 min ist diese Temperatur bei vorgeheiztem Ölbad erreicht, die Kolonne auf vollen Rücklauf gestellt, so dass zunächst kein Destillat anfällt. Nach Erreichen der Innentemperatur von 150°C wird kontinuierlich eine Mischung aus MIBSM, MAS und MeOH, Wasser und Schwefelsäure mit einer Dosiergeschwindigkeit von 150 g/h über die abgetauchte Kapillare in das Reaktionsgemisch zugeführt. Die Dosierung der Feedmischung erfolgt über eine HPLC Pumpe, eine zweite HPLC Pumpe führt über eine Kapillare nachdem die Reaktion stationär eingefahren ist, den entstehenden Reaktionssumpf ab.200 ppm of phenothiazine and 50 ppm of Tempol are added to this mixture as stabilizers or to inhibit free-radical polymerization of (meth)acrylic starting materials and products under the reaction conditions. The reaction mixture is heated to 150° C. using an oil bath, after 10 minutes this temperature is reached with the preheated oil bath, the column is set to full reflux, so that initially no distillate is obtained. After the internal temperature of 150° C. has been reached, a mixture of MIBSM, MAS and MeOH, water and sulfuric acid is fed continuously into the reaction mixture at a metering rate of 150 g/h via the submerged capillary. The feed mixture is dosed via an HPLC pump, a second HPLC pump discharges the resulting reaction bottoms via a capillary after the reaction has been run in stationary.
Edukte sowie Katalysator, Alkohol und Wasser werden separat vorgemischt und über eine Kapillare, die bis unter den Rührer geführt sind in die Reaktion eingebracht. Zusammensetzung der Feedmischung:
Somit entspricht das molare Verhältnis der C4-Nebenprodukte MAS und MIBSM 1:1. Der Wassergehalt beträgt 49 mol% bezüglich MIBSM und 142mol% MeOH bezgl. MIBSM.Thus, the molar ratio of the C4 by-products MAS and MIBSM corresponds to 1:1. The water content is 49 mol% based on MIBSM and 142 mol% MeOH based on MIBSM.
Das Ölbad wird mit beginnender Feeddosierung auf 160°C hochgeheizt, die Innentemperatur im Reaktor steigt allmählich bis etwa 150°C und am Kopf der Kolonne sammelt sich ein Gemisch bestehend aus den azeotropen Zusammensetzungen der binären Azeotrope MeOH und MMA bzw. MMA und Wasser. Sobald der Kopf der Kolonne eine stabile Temperatur von 69°C erreicht hat wird ein Rücklaufverhältnis von 0,8 eingestellt und Destillat abgenommen.The oil bath is heated to 160°C with the start of feed dosing, the internal temperature in the reactor gradually rises to around 150°C and a mixture consisting of the azeotropic compositions of the binary azeotropes MeOH and MMA or MMA and water collects at the top of the column. As soon as the top of the column has reached a stable temperature of 69° C., a reflux ratio of 0.8 is set and the distillate is taken off.
Die Reaktion wird kontinuierlich zunächst 6 h betrieben, wobei jeweils jede Stunde die Destillatmenge quantifiziert und analysiert wurde. Die Anlage wird so betrieben dass im Mittel pro Stunde etwa 90% der zugeführten Eduktmasse am Kopf als Destillat abgezogen werden, während der Reaktionssumpf ebenfalls kontinuierlich ausgeschleust wird, mittels HPLC Pumpe werden durchschnittlich etwa 10% des zugeführten Feedstroms entfernt. Im Mittel bleibt somit der Füllstand im Kolben erhalten und die Reaktion ist in diesem Stadium als Volumen- bzw. Masse-stationär zu betrachten. Am Kopf der Kolonne nachgeschaltet dem Kondensator, der mit Leitungswasser mit einer Kühlwassertemperatur von etwa 18°C betrieben wird, wird eine Kühlfalle installiert, um leichtflüchtige Komponenten zu erfassen; die Kühlfalle wird mit einer Mischung aus Aceton/Trockeneis betrieben bei knapp minus 60°C, die Kühlfalle ist mit THF gefüllt um leichtflüchtige Komponenten zu absorbieren und qualitativ aufzuklären und zu bestimmen.The reaction is initially operated continuously for 6 hours, with the amount of distillate being quantified and analyzed every hour. The system is operated in such a way that on average about 90% of the reactant mass fed in is drawn off as distillate at the top per hour, while the reaction bottoms are also continuously discharged. An average of about 10% of the feed stream fed in is removed by means of an HPLC pump. On average, the fill level in the flask remains the same and the reaction at this stage is to be considered stationary in terms of volume or mass. At the top of the column downstream of the condenser, which is supplied with tap water a cooling water temperature of about 18°C, a cold trap is installed to capture volatile components; the cold trap is operated with a mixture of acetone/dry ice at almost minus 60°C, the cold trap is filled with THF to absorb volatile components and to clarify and determine them qualitatively.
Der Sumpf verfärbt sich zunächst gelblich, innerhalb von 6 h dann hellorange, ein Anstieg der Viskosität ist kaum zu bemerken.The bottom turns yellowish at first, then light orange within 6 hours, and there is hardly any noticeable increase in viscosity.
Das stationär als Destillat erhaltene Kopfprodukt der Kolonne wiegt 134,9 g/h und setzt sich laut GC Chromatographie wie folgt zusammen:
Das stationär erhaltene Sumpfprodukt der Ausschleusung wiegt 15,1 g/h und setzt sich wie folgt zusammen:
Das entspricht bezüglich der zugeführten Eduktmengen einer rechnerischen Ausbeute an MMA bezgl. MIBSM von 96%, bezüglich der zu MMA veresterten Methacrylsäure von 95% und einer Methanol Wiedergewinnungsrate von 93%.This corresponds to a calculated yield of MMA based on MIBSM of 96% based on the amounts of starting material fed in, based on the methacrylic acid esterified to MMA of 95% and a methanol recovery rate of 93%.
In der Kühlfalle werden neben dem als Absorptionsmittel THF eingesetzten Lösungsmittel geringe Mengen an Dimethylether mittels Gaschromatographie (Siedepunkt -24°C) detektiert.In addition to the THF solvent used as the absorbent, small amounts of dimethyl ether are detected in the cold trap by means of gas chromatography (boiling point -24° C.).
Der Versuch zeigt, dass bei den gewählten Bedingungen aus Mischungen enthaltend MAS und MIBSM in Gegenwart stöchiometrischer Mengen an Schwefelsäure und in Gegenwart von MeOH und Wasser hocheffizient und bei hohen Umsetzungsraten (bzgl. der Edukte) Roh-MMA hergestellt werden kann.The experiment shows that under the selected conditions from mixtures containing MAS and MIBSM in the presence of stoichiometric amounts of sulfuric acid and in the presence of MeOH and water, raw MMA can be produced highly efficiently and at high conversion rates (regarding the starting materials).
Herstellung von Methacrolein aus Propanal und Formalin: Methacrolein wurde gemäß
Eine Formalinlösung mit einem Formalingehalt je nach Beispiel von 37 Gew% oder 55 Gew% und Propanal werden mittels eines statischen Mischers vermischt (im Weiteren als Aldehydlösung bezeichnet) und anschließend in einem mit Öl beheizten Wärmetauscher auf die gewünschte Temperatur (siehe Tab.1) erwärmt. Der genaue Wassergehalt des Formalins, abhängig vom Beispiel, spielt keine weitere Rolle, da dieser in den Wassergehalt des Frisch-Feeds gemäß Tabelle 1 vollständig mit eingeht. Ein Recyclestrom aus dem Sumpf der Produktkolonne, die an den Rohrreaktor anschließt, wird mit Essigsäure und Dimethylamin (als 40 %ige Lösung in Wasser) vermischt und ebenfalls auf die gewünschte Temperatur vorgewärmt. Die vorgewärmte Aldehydlösung und die vorgewärmte Katalysatorlösung werden in einem weiteren statischen Mischer vermischt. Diese Eduktmischung wird dann einem mittels Öl temperierten Rohrreaktor zugeführt. Üblicherweise wird die Reaktion bei Drücken von ca. 35 bis 40 bar durchgeführt.A formalin solution with a formalin content of 37% by weight or 55% by weight, depending on the example, and propanal are mixed using a static mixer (hereinafter referred to as aldehyde solution) and then heated to the desired temperature in an oil-heated heat exchanger (see Table 1). . The exact water content of the formalin, depending on the example, is of no further importance, as this is fully included in the water content of the fresh feed according to Table 1. A recycle stream from the bottom of the product column, which is connected to the tubular reactor, is mixed with acetic acid and dimethylamine (as a 40% strength solution in water) and likewise preheated to the desired temperature. The preheated aldehyde solution and the preheated catalyst solution are mixed in another static mixer. This educt mixture is then fed to a tubular reactor that is heated by means of oil. The reaction is usually carried out at pressures of about 35 to 40 bar.
Die Produktmischung am Ablauf des Rohrreaktors wird über ein Ventil entspannt und gelangt in die Produktkolonne zur Destillation. Am Kopf dieser Kolonne wird nach Kondensation und Phasentrennung ein zweiphasiges Gemisch aus Methacrolein und einer wässrigen Phase erhalten. Die wässrige Phase wird in die Kolonne zurückgeführt. Die organische Phase gelangt in die Produktvorlage. Am Sumpf der Kolonne wird ein Teilstrom als Recycle in die Reaktion zurückgeführt. Ein weiterer Teilstrom wird als wässriges Produkt in eine weitere Produktvorlage abgeführt. In Beispiel 1 bis 4 wird eine Methacrolein Qualität mit einem DIMAL-Gehalt kleiner 0,2 Gew% erhalten. Der Wassergehalt beträgt ca. 56 Gew% und der auf das Wasser im Feed bezogene Dimethylamin-Gehalt beträgt ca. 2,7 Gew%. Die Temperatur im Reaktor liegt zwischen 122°C als Eingangstemperatur und 153°C als Austrittstemperatur. Eine erhebliche Temperaturspitze tritt nicht auf.The product mixture at the outlet of the tubular reactor is expanded via a valve and reaches the product column for distillation. After condensation and phase separation, a two-phase mixture of methacrolein and an aqueous phase is obtained at the top of this column. The aqueous phase is returned to the column. The organic phase enters the product receiver. At the bottom of the column, a partial stream is returned to the reaction as recycle. Another partial flow is discharged as an aqueous product into another product receiver. In Examples 1 to 4, a methacrolein quality with a DIMAL content of less than 0.2% by weight is obtained. The water content is about 56% by weight and the dimethylamine content, based on the water in the feed, is about 2.7% by weight. The temperature in the reactor is between 122°C as the inlet temperature and 153°C as the outlet temperature. A significant temperature peak does not occur.
Beispiele 5 bis 7 zeigen, dass die Parameter der Reaktionsführung maßgeblich Umsatz und DIMAL Gehalt beeinflussen, da hier zwar ein Gehalt an dimeren MAL unter 0,4 Gew%, nicht jedoch unterhalb von 0,2 Gew% realisiert werden konnte. Der Unterschied zu den Beispielen 1 bis 4 ist hier neben einer teilweise höheren Eingangstemperatur vor allem die höheren Maximaltemperatur und Ausgangstemperatur.Examples 5 to 7 show that the parameters of the reaction process have a significant influence on conversion and DIMAL content, since a content of dimeric MAL below 0.4% by weight could be achieved here, but not below 0.2% by weight. The difference to Examples 1 to 4 is the higher maximum temperature and the higher outlet temperature, in addition to a partially higher inlet temperature.
Beispiele 8 und 9 zeigen Ausführungsformen die eine Methacrolein Qualität erzeugen mit einem Gehalt an dimeren MAL unter 0,5 Gew%. Hier waren die Eingangstemperaturen und insbesondere die Maximaltemperaturen noch höher. Insbesondere lagen die Maximaltemperaturen oberhalb der bevorzugten Maximaltemperaturen von 165 °C oder sogar von 170°C.
Das wie oben beschrieben hergestellte Methacrolein wird nach der Reaktion entspannt (optional in einer Flashbox teilweise verdampft), und in eine Destillationskolonne geführt. Am Kopf der Destillationskolonne erhält man nach Kondensation ein zweiphasiges Gemisch (je nach Temperatur trennt sich eine mehr oder weniger große Wasserphase ab), wobei die obere Phase Methacrolein in einer Qualität von > 97% enthält, mit einem Wassergehalt von 1-3 wt%. Der Formalingehalt im Methacrolein beträgt < 2000 ppm, der Methanolgehalt beträgt in Abhängigkeit des Methanolgehalts des eingesetzten Formalin zwischen 0,1 bis 1,0 wt%. Gemäß obigen Beispielen enthält das Methacrolein einen DiMAL Gehalt von 0,18 wt% bis < 1wt%. Diese Qualität wird in den folgenden Versuchen für die direkte oxidative Veresterung mit Methanol eingesetzt.After the reaction, the methacrolein prepared as described above is expanded (optionally partially evaporated in a flash box) and fed into a distillation column. After condensation, a two-phase mixture is obtained at the top of the distillation column (depending on the temperature, a more or less large water phase separates), the upper phase containing methacrolein in a quality of >97% with a water content of 1-3 wt%. The formalin content in the methacrolein is <2000 ppm, the methanol content is between 0.1 and 1.0 wt%, depending on the methanol content of the formalin used. According to the above examples, the methacrolein contains a DiMAL content of 0.18 wt% to <1 wt%. This quality is used in the following experiments for the direct oxidative esterification with methanol.
Ein 20 L Reaktor mit Begasungsrührer wird mit einem Reaktionsgemisch aus 36 Gewichtsprozent Methacrolein in Methanol befüllt bei einer Slurrydichte von 8 Gewichtsprozent Katalysator. Das Reaktionsgemisch wird unter Rühren bei 80 °C auf 5 bar gebracht und so Luft zu dosiert, dass die Sauerstoffkonzentration im Restgas nach den Kondensatoren 4.0 Volumenprozent beträgt. Der pH-Wert wird durch kontinuierliche Einbringung von 4 gewichtsprozentiger NaOH in Methanol Lösung auf 7 eingestellt. Das Reaktionsgemisch wird kontinuierlich aus dem Reaktor abgeführt in der Form das die Katalysatorbelastung bei 11 mol MAL / kg Katalysator / Stunde liegt. Die Laufzeit beträgt jeweils 1000 Stunden.
- a) Als Katalysator wird ein Gold-Cobaltoxid Katalysator (
WO2017084969 A1 Selektivität von 94,1% MMA erhalten wird. Die Selektivität 3,1% und die Selektivität zu MIBSM 1.2%zu MAS beträgt - b) Als Katalysator wird ein Gold-Nickeloxid Katalysator (
US8450235 Selektivität von 94,4% MMA erhalten wird. Die Selektivitätzu MAS beträgt 2,5% und die Selektivität zu MIBSM 1.2% - c) Als Katalysator wird ein Palladium-Blei Katalysator (
US5969178 - d) Als Katalysator wird ein Palladium-Bismuth-Tellurium Katalysator (
US20160168072 US20160168072
- a) A gold-cobalt oxide catalyst (
WO2017084969 A1 - b) A gold-nickel oxide catalyst (
US8450235 - c) A palladium-lead catalyst (
US5969178 - d) A palladium-bismuth-tellurium catalyst (
US20160168072 US20160168072
Es wurde das aus Beispiel 3a erhaltene Reaktion Gemisch nach der Aufarbeitung genommen:
Die Aufarbeitung ist exemplarisch beschrieben, wobei die jeweiligen Zusammensetzungen in Tabelle 1 aufgeführt sind.The reaction mixture obtained from Example 3a was taken after work-up:
The work-up is described as an example, with the respective compositions being listed in Table 1.
Der Austrag von Reaktor II (1000g/hr) wurde auf die MAL-Recovery Kolonne auf Stufe 11 von 22 geleitet. Die Temperatur im Sumpf war 70 °C bei einem Druck von 930 mbar. Der Sumpfstrom wurde mit Schwefelsäure auf pH 2 angesäuert, in einem Dekanter getrennt und die Organik in den Sumpf der Extraktionskolonne gefahren, wobei die wässrige Phase in den Kopf der 30-Stufigen Extraktionskolonne eingeleitet wurde. Die Sumpftemperatur der Extraktionskolonne lag bei 43,9 °C bei einem Druck von 1013 mbar. Der Kopfstrom der Extraktionskolonne wurde auf die Stufe 6 von 10 der Schwersieder Kolonne eingeleitet. Die Sumpftemperatur betrug 85,4 °C bei einem Druck von 235 mbar.
Der Sumpf der Schwersieder Kolonne wurde gesammelt und für die Spaltung von MIBSM in MMA und MeOH sowie DIMAL-Ester in MAL und MMA bei gleichzeitiger Veresterung von MAS mit MeOH zu MMA eingesetzt.The bottom of the high boiler column was collected and used for splitting MIBSM into MMA and MeOH and DIMAL ester into MAL and MMA with simultaneous esterification of MAS with MeOH to form MMA.
Ein 500 mL Dreihalskolben wurde mit einer Kolonne und einem Glasthermometer versehen. Am Kopf der Kolonne wurden 50 g MeOH mit Phenothiazin (ca. 500 ppm) in einem Tropftrichter angebracht, um durch kontinuierliche Zugabe eine Polymerisation in der Kolonne zu verhindern. Das Thermoelement wurde im Ölbad (T(ÖI)=165°C) platziert.
- 300 g Feed (1 Eq., 0,73 mol 3-MibsM; 1,17 Eq., 0.85 mol MAS; 0,34 mol MMA, 0,23 mol DIMAL-Ester),
- 2,84 g (0,04 Eq., 0,029 mol) H2SO4 und
- 13,42 g H2O (1,02 Eq., 0,75 mol)
- wurden in dem Dreihalskolben vorgelegt, das Ölbad (Soll Temperatur = 165 °C) geführt wurde.
- 300 g feed (1 eq., 0.73 mol 3-MibsM; 1.17 eq., 0.85 mol MAS; 0.34 mol MMA, 0.23 mol DIMAL ester),
- 2.84 g (0.04 eq., 0.029 mol) H 2 SO 4 and
- 13.42 g H2O (1.02 eq., 0.75 mol)
- were placed in the three-necked flask, the oil bath (set temperature = 165 ° C) was performed.
Das Gemisch wurde 3 h auf 165°C (Ölbad-Soll) erhitzt, wobei eine Sumpftemperatur von 151 °C erreicht wurde. Die Destillatabnahme erfolgte kontinuierlich und wurde per HPLC analysiert. Über den Verlauf der Reaktion von 3 Stunden wurde die Methanol-Stabilisator Lösung (6,54 g/h, 0,20 mol) zugegebenThe mixture was heated to 165° C. (oil bath target) for 3 h, a bottom temperature of 151° C. being reached. The distillate removal took place continuously and was analyzed by HPLC. Over the course of the 3 hour reaction, the methanol stabilizer solution (6.54 g/h, 0.20 mol) was added
Die folgende Tabelle Nr.2 zeigt die eingesetzten Mengen an Schwefelsäure, Wasser, Methanol und Feed Probe. Auch die Zusammensetzung der Feed Probe für 3-MibsM, MAS und MMA samt der molaren Massen ist aufgeführt.
Tabelle Nr.7 zeigt die Wiederfindung der eingesetzten Massen der oben aufgeführten Edukte.
Die Massenbilanz liegt bei einer Wiederfindung von 98,90%. Tabelle Nr.8 zeigt die molare Verteilung der Komponenten in Destillat und Sumpf.
Der Versuch war erfolgreich, es kam zu einer hohen Umsetzung von 3-MIBSM und MAS zu MMA.The trial was successful, with high conversion of 3-MIBSM and MAS to MMA.
Es ergab sich eine Umsetzung von 96,0% 3-MIBSM zu MMA und 87,3% Umsetzung von MAS zu MMA. Die Selektivität zu MMA betrug für MAS und 3-MIBSM in Summe 99,16%. Der Umsatz der thermischen Spaltung von DIMAL-Ester in MAL und MMA betrug 8,26%.There was a conversion of 96.0% 3-MIBSM to MMA and 87.3% conversion of MAS to MMA. The total selectivity to MMA for MAS and 3-MIBSM was 99.16%. The thermal cleavage conversion of DIMAL ester to MAL and MMA was 8.26%.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt und Phosphorsäure anstelle von Schwefelsäure eingesetzt.The reaction was carried out analogously to Example 11 and phosphoric acid was used instead of sulfuric acid.
Der Versuch war erfolgreich, es kam zu einer hohen Umsetzung von 3-MIBSM und MAS zu MMA. Es ergab sich eine Umsetzung von 94,2% 3-MIBSM zu MMA und 86,8% Umsetzung von MAS zu MMA. Die Selektivität zu MMA betrug für MAS und 3-MIBSM in Summe 99,0%. Der Umsatz der thermischen Spaltung von DIMAL-Ester in MAL und MMA betrug 8,25%.The trial was successful, with high conversion of 3-MIBSM and MAS to MMA. There was a conversion of 94.2% 3-MIBSM to MMA and 86.8% conversion of MAS to MMA. The total selectivity to MMA for MAS and 3-MIBSM was 99.0%. The thermal cleavage conversion of DIMAL ester into MAL and MMA was 8.25%.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt und Methansulfonsäure anstelle von Schwefelsäure eingesetzt.The reaction was carried out analogously to Example 11 and methanesulfonic acid was used instead of sulfuric acid.
Der Versuch war erfolgreich, es kam zu einer hohen Umsetzung von 3-MIBSM und MAS zu MMA. Es ergab sich eine Umsetzung von 92,6% 3-MIBSM zu MMA und 84,7% Umsetzung von MAS zu MMA. Die Selektivität zu MMA betrug für MAS und 3-MIBSM in Summe 98,8%. Der Umsatz der thermischen Spaltung von DIMAL-Ester in MAL und MMA betrug 8,20%.The trial was successful, with high conversion of 3-MIBSM and MAS to MMA. There was a conversion of 92.6% 3-MIBSM to MMA and 84.7% conversion of MAS to MMA. The total selectivity to MMA for MAS and 3-MIBSM was 98.8%. The thermal cleavage conversion of DIMAL ester into MAL and MMA was 8.20%.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt bei einer Temperatur von 120 °C.The reaction was carried out analogously to example 11 at a temperature of 120.degree.
Es kam zu einer hohen Umsetzung von 3-MIBSM und MAS zu MMA.There was a high conversion of 3-MIBSM and MAS to MMA.
Es ergab sich eine Umsetzung von 60,4% 3-MIBSM zu MMA und 87,3% Umsetzung von MAS zu MMA. Der Umsatz der thermischen Spaltung von DIMAL-Ester in MAL und MMA betrug 8,20%.There was a conversion of 60.4% 3-MIBSM to MMA and 87.3% conversion of MAS to MMA. The thermal cleavage conversion of DIMAL ester into MAL and MMA was 8.20%.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt bei einer Temperatur von 90 °C.The reaction was carried out analogously to example 11 at a temperature of 90.degree.
Es kam zu keiner hohen Umsetzung von 3-MIBSM zu MMA; aber von MAS zu MMA.There was no high conversion of 3-MIBSM to MMA; but from MAS to MMA.
Es ergab sich eine Umsetzung von kleiner 1% 3-MIBSM zu MMA und 88,0% Umsetzung von MAS zu MMA. Die thermische Spaltung von DIMAL-Ester in MAL und MMA lief nicht ab.There was a conversion of less than 1% 3-MIBSM to MMA and 88.0% conversion of MAS to MMA. The thermal cleavage of DIMAL ester into MAL and MMA did not proceed.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt mit einer erhöhten Schwefelsäuremenge von 40 mol%.The reaction was carried out analogously to Example 11 with an increased amount of sulfuric acid of 40 mol%.
Der Versuch war erfolgreich, es kam zu einer hohen Umsetzung von 3-MIBSM und MAS zu MMA. Es ergab sich eine Umsetzung von 95,9% 3-MIBSM zu MMA und 87,4% Umsetzung von MAS zu MMA. Die Selektivität zu MMA betrug für MAS und 3-MIBSM in Summe 99,14%. Der Umsatz der thermischen Spaltung von DIMAL-Ester in MAL und MMA betrug 8,16%.The trial was successful, with high conversion of 3-MIBSM and MAS to MMA. There was a conversion of 95.9% 3-MIBSM to MMA and 87.4% conversion of MAS to MMA. The total selectivity to MMA for MAS and 3-MIBSM was 99.14%. The thermal cleavage conversion of DIMAL ester into MAL and MMA was 8.16%.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt bei einer Temperatur von 23 °C.The reaction was carried out analogously to example 11 at a temperature of 23.degree.
Es kam zu keinen hohen Umsetzungen von 3-MIBSM zu MMA und von MAS zu MMA.There were no high conversions of 3-MIBSM to MMA and MAS to MMA.
Es ergab sich eine Umsetzung von kleiner 1% 3-MIBSM zu MMA und 20% Umsetzung von MAS zu MMA. Die thermische Spaltung von DIMAL-Ester in MAL und MMA lief nicht ab.There was a conversion of less than 1% 3-MIBSM to MMA and 20% conversion of MAS to MMA. The thermal cleavage of DIMAL ester into MAL and MMA did not proceed.
Die Reaktion wurde analog zu Beispiel 11 ohne Zugabe von Schwefelsäure als Katalysator durchgeführt.The reaction was carried out analogously to Example 11 without adding sulfuric acid as a catalyst.
Es kam zu einer hohen Umsetzung von 3-MIBSM zu MMA aber keine Umsetzung von MAS zu MMA. Es ergab sich eine Umsetzung von 94% 3-MIBSM zu MMA und keiner Umsetzung von MAS zu MMA. Die thermische Spaltung von DIMAL-Ester in MAL und MMA betrug 8,0%.There was high conversion of 3-MIBSM to MMA but no conversion of MAS to MMA. There was 94% conversion of 3-MIBSM to MMA and no conversion of MAS to MMA. The thermal cleavage of DIMAL ester into MAL and MMA was 8.0%.
Die Reaktion wurde analog zu Beispiel 11 durchgeführt. Zusätzlich wurde nach Erreichen der Sumpftemperatur von 151 °C mit einem kontinuierlichen Zulauf an Feed Mischung von 57 g/hr begonnen. Der Versuch lief für 6 Stunden.The reaction was carried out analogously to Example 11. In addition, after the bottom temperature of 151° C. had been reached, a continuous feed of feed mixture at a rate of 57 g/hr was started. The experiment ran for 6 hours.
Der Versuch war erfolgreich, es kam zu einer hohen Umsetzung von 3-MIBSM und MAS zu MMA. Es ergab sich eine Umsetzung von 95,5% 3-MIBSM zu MMA und 87,5% Umsetzung von MAS zu MMA. Die Selektivität zu MMA betrug für MAS und 3-MIBSM in Summe 98,7%. Der Umsatz der thermischen Spaltung von DIMAL-Ester in MAL und MMA betrug 8,05%.The trial was successful, with high conversion of 3-MIBSM and MAS to MMA. There was a conversion of 95.5% 3-MIBSM to MMA and 87.5% conversion of MAS to MMA. The total selectivity to MMA for MAS and 3-MIBSM was 98.7%. The thermal cleavage conversion of DIMAL ester into MAL and MMA was 8.05%.
Claims (18)
- Process for preparing alkyl methacrylates, in which methacrolein is prepared in a first reaction stage in a reactor I and this is oxidatively esterified with an alcohol in a second reaction stage in a reactor II to give an alkyl methacrylate, characterized in thata. the reactor output from reactor II is separated into a fraction containing the predominant portion of the alkyl methacrylate and a second fraction containing methacrylic acid and an alkyl alkoxyisobutyrate, and in thatb. this second fraction is converted in a reactor III in such a way that further alkyl methacrylate is formed from the alkyl alkoxyisobutyrate and the methacrylic acid.
- Process according to Claim 1, characterized in that the separation in step a is effected by means of at least an extraction and/or a distillation.
- Process according to Claim 1 or 2, characterized in that the reaction in step b. is conducted at a temperature equal to or higher than the oxidative reaction in reactor II.
- Process according to at least one of Claims 1 to 3, characterized in that the reaction in step b is conducted with a reaction mixture comprising, as well as alkyl alkoxyisobutyrate, also methacrylic acid, and also dimeric methacrolein (DIMAL) and derivatives of dimeric methacrolein, such as DIMAL esters, and also water and free alcohol.
- Process according to at least one of Claims 1 to 4, characterized in that the second fraction is reacted in reactor III at a temperature of at least 90°C, preferably of at least 110°C.
- Process according to at least one of Claims 1 to 5, characterized in that the second fraction is reacted in reactor III in b in the presence of a catalyst, preferably in the presence of a Bronsted acid.
- Process according to at least one of Claims 1 to 6, characterized in that the reactor output from reactor II is freed of methacrolein and partly of the alcohol in a first distillation column to obtain a stream comprising alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, alkyl alkoxyisobutyrate and alcohol, which is then admixed with a strong acid and separated in an extraction into a hydrophobic phase comprising alkyl methacrylate, the greater fraction of MAA and alkyl alkoxyisobutyrate, and a hydrophilic phase comprising water, the alcohol, and fractions of alkyl methacrylate and methacrylic acid.
- Process according to at least one of Claims 1 to 6, characterized in that the reactor output from reactor II is freed of methacrolein and partly of the alcohol in a first distillation column to obtain a stream comprising alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, alkyl alkoxyisobutyrate and alcohol, which is then separated in a second distillation into a light phase comprising alkyl methacrylate and the alcohol, and a heavy phase comprising water, alkyl alkoxyisobutyrate and methacrylic acid.
- Process according to at least one of Claims 1 to 8, characterized in that the alcohol is methanol, the alkyl methacrylate is methyl methacrylate (MMA) and the alkyl alkoxyisobutyrate is methyl methoxyisobutyrate (MMIB).
- Process according to at least one of Claims 1 to 9, characterized in that the reaction in reactor III is effected at a temperature between 80 and 170°C.
- Process according to Claim 6, characterized in that the Bronsted acid in reactor III is sulfuric acid.
- Process according to at least one of Claims 1 to 11, characterized in that the first reaction stage in reactor I is a reaction of propanal with formalin.
- Process according to at least one of Claims 1 to 11, characterized in that the first reaction stage in reactor I is a reaction of isobutene and/or tert-butanol with atmospheric oxygen in the presence of a heterogeneous catalyst at temperatures of 300 to 500°C to form methacrolein, which is condensed and worked up to a purity of at least 80% and isolated in liquid form and is then sent to the further reaction in reactor II of oxidative esterification.
- Process according to Claim 12, characterized in that the reactor output from reactor II is freed of methacrolein and partly of the alcohol in a first distillation column to obtain a stream comprising alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, alkyl alkoxyisobutyrate and alcohol, which is then separated in a second distillation into a light phase comprising alkyl methacrylate and the alcohol, and a heavy phase comprising water, alkyl alkoxyisobutyrate, methacrylic acid, dimeric methacrolein and optionally an alkyl ester of dimeric methacrolein.
- Process according to Claims 6 and 11, characterized in that the dimeric methacrolein is cleaved in reactor III to methacrolein, and the optionally present alkyl ester of dimeric methacrolein to methacrolein and an alkyl methacrylate.
- Process according to Claims 14 and 15, characterized in that the methacrolein is separated from the alkyl methacrylate in a later distillation stage and returned to reactor II.
- Process according to Claim 16, characterized in that the reactor output from reactor II is freed of methacrolein and partly of the alcohol in a first distillation column to obtain a stream comprising alkyl methacrylate, water, an alkali metal methacrylate and/or methacrylic acid, alkyl alkoxyisobutyrate and alcohol, which is then separated in a second distillation or an extraction into a light or hydrophobic phase comprising alkyl methacrylate, and a heavy or hydrophilic phase comprising water, alkyl alkoxyisobutyrate, methacrylic acid and terephthalic acid, and in that the terephthalic acid is removed from the reactor output from reactor III as high-boiling component by distillation or as hydrophilic component by extraction.
- Process according to at least one of Claims 1 to 6, characterized in that the Bronsted acid used is recycled into reactor III or another workup step.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18179702.8A EP3587390A1 (en) | 2018-06-26 | 2018-06-26 | Method for manufacturing mma in high yields |
PCT/EP2019/064957 WO2020001957A1 (en) | 2018-06-26 | 2019-06-07 | Method for preparing mma with high yields |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3814317A1 EP3814317A1 (en) | 2021-05-05 |
EP3814317B1 true EP3814317B1 (en) | 2023-08-02 |
Family
ID=62784050
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18179702.8A Withdrawn EP3587390A1 (en) | 2018-06-26 | 2018-06-26 | Method for manufacturing mma in high yields |
EP19729742.7A Active EP3814317B1 (en) | 2018-06-26 | 2019-06-07 | Method for manufacturing mma in high yields |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18179702.8A Withdrawn EP3587390A1 (en) | 2018-06-26 | 2018-06-26 | Method for manufacturing mma in high yields |
Country Status (9)
Country | Link |
---|---|
US (1) | US11299449B2 (en) |
EP (2) | EP3587390A1 (en) |
JP (1) | JP7384843B2 (en) |
KR (1) | KR20210025017A (en) |
CN (1) | CN112292369B (en) |
BR (1) | BR112020026544A2 (en) |
SG (1) | SG11202012745YA (en) |
TW (1) | TW202019867A (en) |
WO (1) | WO2020001957A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3798202A1 (en) | 2019-09-25 | 2021-03-31 | Röhm GmbH | Method for purifying methyl methacrylate from low boiling point components |
EP3798206A1 (en) | 2019-09-25 | 2021-03-31 | Röhm GmbH | Method for producing alkyl methacrylates with improved water and acid guidance |
EP4347549A1 (en) | 2021-05-28 | 2024-04-10 | Röhm GmbH | Reactor and process for producing alkyl methacrylates |
EP4347548A1 (en) | 2021-05-28 | 2024-04-10 | Röhm GmbH | Reactor and process for producing alkyl (meth)acrylates |
US12017987B2 (en) | 2021-11-12 | 2024-06-25 | Röhm Gmbh | Process for eliminating interfering by-products in the direct oxidative esterification of methacrolein |
CN116099455B (en) * | 2023-04-12 | 2023-07-07 | 西南化工研究设计院有限公司 | Carbonylation reaction system and method based on multi-kettle serial connection |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2577445A (en) * | 1947-11-04 | 1951-12-04 | Rohm & Haas | Preparing methacrolein from the dimer thereof |
US2562849A (en) * | 1949-07-01 | 1951-07-31 | Shell Dev | Preparation of esters of alpha, betaolefinic carboxylic acids |
US2848499A (en) | 1956-05-09 | 1958-08-19 | Celanese Corp | Preparation of unsaturated aldehydes |
BE626622A (en) | 1961-12-29 | |||
US3642907A (en) * | 1968-10-01 | 1972-02-15 | Atlantic Richfield Co | Acetonylacetone and para-cresol by oxidation of methacrolein dimer |
JPS5212127A (en) * | 1975-07-17 | 1977-01-29 | Mitsubishi Rayon Co Ltd | Process for recovery of methylmethacrylate |
DE3106557A1 (en) | 1981-02-21 | 1982-09-16 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING (ALPHA) ALKYLACROLEINS |
DE3213681A1 (en) | 1982-04-14 | 1983-10-27 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING (ALPHA) ALKYLACROLEINS |
DE3740293A1 (en) | 1987-11-27 | 1989-06-01 | Hoechst Ag | METHOD FOR PRODUCING ALPHA-ALKYLACROLEINES |
JP3069420B2 (en) | 1991-11-05 | 2000-07-24 | ダイセル化学工業株式会社 | Reactor and reaction method |
ATE280750T1 (en) | 1995-07-18 | 2004-11-15 | Asahi Kasei Chemicals Corp | METHOD FOR PRODUCING CARBOXYLIC ACID ESTERS |
SG71815A1 (en) | 1997-07-08 | 2000-04-18 | Asahi Chemical Ind | Method of producing methyl methacrylate |
US7326806B2 (en) | 2001-06-04 | 2008-02-05 | Nippon Shokubai Co., Ltd. | Catalyst for the preparation of carboxylic esters and method for producing carboxylic esters |
JP3963150B2 (en) | 2001-11-28 | 2007-08-22 | 三菱化学株式会社 | Decomposition method of by-products during the production of (meth) acrylic acids |
JP4076227B2 (en) | 2001-12-21 | 2008-04-16 | 旭化成ケミカルズ株式会社 | Oxide catalyst composition |
JP4173757B2 (en) | 2003-03-26 | 2008-10-29 | ジヤトコ株式会社 | Lockup clutch life determination method, slip lockup region setting method, and life determination device |
US7141702B2 (en) | 2004-03-26 | 2006-11-28 | Council Of Scientific And Industrial Research | Process for the synthesis of α-substituted acroleins |
CN101815579A (en) | 2007-08-13 | 2010-08-25 | 旭化成化学株式会社 | Catalyst for production of carboxylic acid ester, method for producing same, and method for producing carboxylic acid ester |
EP2500093B1 (en) | 2007-10-26 | 2020-06-10 | Asahi Kasei Kabushiki Kaisha | Use of a supported composite particle material, production process of said material and process for producing compounds using supported composite particle material as catalyst for chemical synthesis |
SG189244A1 (en) * | 2010-10-07 | 2013-05-31 | Rohm & Haas | Process for production of methacrylic acid ester |
WO2013184345A1 (en) * | 2012-06-04 | 2013-12-12 | Rohm And Haas Company | Process for production of methacrylic acid esters |
JP6501754B2 (en) | 2013-04-19 | 2019-04-17 | エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH | Method for producing methyl methacrylate |
JP2016522256A (en) * | 2013-06-26 | 2016-07-28 | ローム アンド ハース カンパニーRohm And Haas Company | Process for the production of methacrylate esters |
TW201509901A (en) | 2013-07-29 | 2015-03-16 | Rohm & Haas | Oxidative esterification process |
TW201509900A (en) | 2013-07-29 | 2015-03-16 | Rohm & Haas | Oxidative esterification process |
SG11201601069PA (en) * | 2013-09-26 | 2016-03-30 | Evonik Roehm Gmbh | Method for producing methacrolein and the conditioning/draining thereof for direct oxidative esterification |
EP2886529A1 (en) | 2013-12-20 | 2015-06-24 | Evonik Industries AG | Process for producing methyl methacrylate |
EP2886528A1 (en) * | 2013-12-20 | 2015-06-24 | Evonik Industries AG | Method for producing unsaturated esters from aldehydes by direct oxidative esterification |
EP2998284A1 (en) | 2014-09-18 | 2016-03-23 | Evonik Röhm GmbH | Optimised method for the production of methacrolein |
EP3244996B1 (en) * | 2015-01-16 | 2022-06-15 | Röhm GmbH | Catalyst for oxidative esterification of aldehydes to carboxylic acid esters |
GB201506308D0 (en) | 2015-04-14 | 2015-05-27 | Lucite Int Uk Ltd | A process for the production of ethylenically unsaturated carboxylic acids or esters |
TWI715627B (en) * | 2015-09-16 | 2021-01-11 | 德商羅伊姆公司 | Extractive workup of a sodium-salt-containing mma-methanol mixture |
EP3144291A1 (en) | 2015-09-16 | 2017-03-22 | Evonik Röhm GmbH | Synthesis of methacrylic acid from methacrolein based alkyl methacrylate |
EP3170558A1 (en) | 2015-11-19 | 2017-05-24 | Evonik Röhm GmbH | Catalyst for oxidative esterification of aldehydes to carboxylic acid esters |
-
2018
- 2018-06-26 EP EP18179702.8A patent/EP3587390A1/en not_active Withdrawn
-
2019
- 2019-06-07 SG SG11202012745YA patent/SG11202012745YA/en unknown
- 2019-06-07 US US17/250,260 patent/US11299449B2/en active Active
- 2019-06-07 JP JP2020572834A patent/JP7384843B2/en active Active
- 2019-06-07 WO PCT/EP2019/064957 patent/WO2020001957A1/en unknown
- 2019-06-07 CN CN201980039311.XA patent/CN112292369B/en active Active
- 2019-06-07 EP EP19729742.7A patent/EP3814317B1/en active Active
- 2019-06-07 KR KR1020207037252A patent/KR20210025017A/en unknown
- 2019-06-07 BR BR112020026544-6A patent/BR112020026544A2/en not_active Application Discontinuation
- 2019-06-21 TW TW108121637A patent/TW202019867A/en unknown
Also Published As
Publication number | Publication date |
---|---|
US11299449B2 (en) | 2022-04-12 |
CN112292369B (en) | 2023-08-15 |
SG11202012745YA (en) | 2021-01-28 |
EP3587390A1 (en) | 2020-01-01 |
JP7384843B2 (en) | 2023-11-21 |
TW202019867A (en) | 2020-06-01 |
BR112020026544A2 (en) | 2021-03-23 |
JP2021528462A (en) | 2021-10-21 |
KR20210025017A (en) | 2021-03-08 |
WO2020001957A1 (en) | 2020-01-02 |
US20210269385A1 (en) | 2021-09-02 |
EP3814317A1 (en) | 2021-05-05 |
CN112292369A (en) | 2021-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3814317B1 (en) | Method for manufacturing mma in high yields | |
EP3350153B1 (en) | Extractive processing of a sodium saline mma methanol mixture | |
EP3049385B1 (en) | Process for producing methyl methacrylate | |
EP3221287B1 (en) | Optimized process for preparing methacrylic acid | |
EP2225220B1 (en) | Method for producing epsilon-caprolactone | |
DD297802A5 (en) | PROCESS FOR DISPLAYING PHENOL | |
WO2016042000A1 (en) | Optimized method for producing methacrolein | |
EP1357102A1 (en) | Process for the preparation of acetals and ketals using multi-step pervaporation or vapour permeation | |
WO2021037660A1 (en) | Simplified workup of the reactor discharge of an oxidative esterification | |
EP3024812B1 (en) | Method of regulating the water content in a continuous method for producing methacrolein | |
WO2021004719A1 (en) | Process for producting alkylmethacrylates and optional methacrylic acid | |
EP1242346A1 (en) | Method for purifying trimethylolpropane, which is produced by hydrogenation, by means of continuous distillation | |
EP2925714B1 (en) | Method for the catalytic aldol condensation of aldehydes | |
WO2021058293A1 (en) | Method for purifying methyl methacrylate of low-boiling components | |
EP2373601B1 (en) | Method for producing 1,6-hexanediol | |
EP4100387B1 (en) | Optimized method for the preparation of methacrylic acid and/or alkyl methacrylate by reducing interfering byproducts | |
EP4045479B1 (en) | Optimized method for producing alkyl methacrylate by reducing interfering by-products | |
EP0055354B1 (en) | Process for the continuous preparation of 2-alkyl-buten-1-als | |
WO2005056508A1 (en) | Method for the production of tetrahydrogeranylacetone | |
WO2004046072A1 (en) | Method for producing 1,6-hexanediol with a purity of greater than 99.5 % | |
WO2023083869A1 (en) | Process for eliminating troublesome secondary products in the direct oxidative esterification of methacrolein | |
EP4034523A1 (en) | Method for producing alkyl methacrylates with improved water and acid flow | |
WO2023031386A1 (en) | Optimized catalyst processing and recycling in the synthesis of methacrolein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201208 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C07C 67/327 20060101ALI20230208BHEP Ipc: C07C 67/08 20060101ALI20230208BHEP Ipc: C07C 69/54 20060101ALI20230208BHEP Ipc: C07C 67/39 20060101AFI20230208BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230222 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: TRESKOW, MARCEL Inventor name: AIT AISSA, BELAID Inventor name: ZSCHUNKE, FLORIAN Inventor name: KRILL, STEFFEN |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019008781 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231204 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231102 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019008781 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |