[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3894749B1 - Combustion chamber - Google Patents

Combustion chamber Download PDF

Info

Publication number
EP3894749B1
EP3894749B1 EP19842583.7A EP19842583A EP3894749B1 EP 3894749 B1 EP3894749 B1 EP 3894749B1 EP 19842583 A EP19842583 A EP 19842583A EP 3894749 B1 EP3894749 B1 EP 3894749B1
Authority
EP
European Patent Office
Prior art keywords
elements
combustion chamber
heat shield
engagement
holding elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19842583.7A
Other languages
German (de)
French (fr)
Other versions
EP3894749A1 (en
Inventor
Matthias Gralki
Claus Krusch
Daniel Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3894749A1 publication Critical patent/EP3894749A1/en
Application granted granted Critical
Publication of EP3894749B1 publication Critical patent/EP3894749B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/04Supports for linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/60Support structures; Attaching or mounting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00005Preventing fatigue failures or reducing mechanical stress in gas turbine components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00017Assembling combustion chamber liners or subparts

Definitions

  • the invention relates to a combustion chamber, in particular one of a gas turbine, with a support structure, a plurality of holding elements attached to the support structure and a plurality of heat shield elements which together form a heat shield, each having a hot gas side, a cold gas side and end faces connecting the hot gas side and the cold gas side , wherein the holding elements engage in a form-fitting manner in recesses provided on the heat shield elements.
  • the combustion chambers of gas turbines are provided with a heat shield that protects the housing wall of the combustion chamber from the hot atmosphere in the combustion chamber of the combustion chamber.
  • Heat shields that can withstand hot gases with temperatures of, for example, about 1000 ° C to about 1600 ° C are, for example, from DE 10 2017 206 502 A1 known.
  • Such heat shields are composed of many individual flat heat shield elements. Depending on whether metallic or ceramic heat shield elements are used, one speaks of a metallic heat shield, the so-called “Metallic Heat Shield” MHS, or a ceramic heat shield, the so-called “Ceramic Heat Shield” CHS.
  • the heat shield elements are positioned next to one another, leaving gaps between the end faces of adjacent heat shield elements.
  • holding elements made of metal also known as stone holders. This include a C-shaped basic shape with two C-legs, namely a long fastening leg designed for attachment to the support structure and a short engagement leg designed to engage in an end-side holding recess of the heat shield element, which are connected to one another via a web. The fastening leg rests on the support structure and is screwed to it at the end.
  • the main goal in the further development of modern stationary gas turbines is to increase the conversion efficiency, which depends on the one hand on the hot gas temperature and on the other hand on the cooling air volume flow required to cool the metallic gas turbine components.
  • the higher the hot gas temperature the more efficiently the gas turbine works.
  • the higher the cooling air volume flow to protect the metallic components the lower the efficiency.
  • the aforementioned holding elements require sufficient cooling in order to be able to ensure their long-term function at the prevailing high temperatures.
  • the cooling air volume flow required for this cooling which is passed between the support structure and the heat shield elements and exits into the combustion chamber as sealing air through the gaps between the heat shield elements, must be branched off from the main cooling air volume flow provided by the compressor and is therefore not relevant to the combustion process therefore not available for generating power from the gas turbine.
  • the size of the gap has a strong influence on the required cooling air volume flow. The smaller the gaps, the lower the cooling air volume flow required to achieve the barrier effect.
  • a combustion chamber according to the prior art is from DE 10 2016 214 818 A1 known.
  • the present invention creates a combustion chamber of the type mentioned at the outset, in which the holding elements each have at least two engagement sections designed for positive engagement in the recesses of a heat shield element, which are connected to one another in such a tension-resistant manner that at the temperatures prevailing during combustion chamber operation one Movement apart of the engagement sections is effectively counteracted, with spring elements designed as leaf springs extending between the support structure and the heat shield elements, which bring about a frictional connection between the engagement sections of the holding elements and the heat shield elements, the engagement sections themselves being designed to be tensile-resistant in such a way that they are during combustion chamber operation prevailing temperatures are dimensionally stable under the influence of the spring forces.
  • a significant advantage associated with a combustion chamber constructed according to the invention is that, in particular, the gap size between adjacent heat shield elements can be significantly reduced.
  • this is due to the fact that sufficient space can be left between the support structure and the heat shield elements in such a way that the heat shield elements can expand freely in the radial direction during combustion chamber operation, whereby their expansion in the circumferential direction is reduced.
  • additional movements of the heat shield elements caused by deformation of the holding elements are effectively counteracted thanks to the tension-resistant design of the holding elements.
  • the maximum temperature at which the combustion chamber can be operated can be increased, for example up to 1600°C, resulting in an improvement in performance.
  • the cooling air volume flow can be reduced by up to an estimated 50%, which also improves performance.
  • the maintenance intervals can also be increased by shielding the holding elements.
  • the recesses are preferably formed on the cold sides of the heat shield elements. This has the advantage over recesses arranged on the front side that the engagement sections of the holding elements that engage in the recesses are better thermally shielded and can also be better cooled by the cooling air.
  • the support structure is provided with circumferentially extending receiving grooves for receiving the holding elements, thereby improving the assembly and fastening of the holding elements.
  • Holding elements arranged circumferentially adjacent to one another are advantageously releasably connected to one another via connecting elements.
  • Such connecting elements serve to compensate for tolerances in the circumferential direction.
  • the connecting elements are in particular screwed to the support structure in order to position the holding elements and thus the heat shield elements in the circumferential direction of the combustion chamber.
  • the receiving grooves preferably have a cross section provided with undercuts, with the holding elements and/or the connecting elements being received in a form-fitting manner in the receiving grooves. In this way, the holding elements and thus the heat shield elements are secured in the radial and axial directions of the combustion chamber.
  • the holding elements have a tensile-resistant fastening section facing the support structure and at least two engagement sections projecting from the fastening section, in particular formed in one piece with it, each heat shield element having a number of cold gas-side recesses corresponding at least to the number of engagement sections of a holding element , and where each intervention section engages positively in one of the recesses.
  • the cold gas-side recesses of the heat shield elements are preferably elongated and each define an insertion area and an engagement area adjoining this in the longitudinal direction, the insertion area being designed such that an associated engagement section of a holding element can be inserted radially into it, the engagement area for positive reception of the Engagement section is designed, and the insertion area and the engagement area are designed such that an engagement section inserted radially into the insertion area can be transferred into the engagement area by displacement in the longitudinal direction.
  • the fastening section is preferably designed in the form of an elongated plate, in particular curved like a circular ring segment, the engagement sections being provided in the area of the free ends of the fastening section.
  • the engagement portions advantageously protrude from the attachment portion at an angle other than 90°.
  • the engagement sections can be provided with end regions pointing towards or away from one another.
  • the fastening section is advantageously provided with a recess on its upper side facing the heat shield element, which is designed to accommodate at least one of the spring elements. Accordingly, the at least one spring element can be easily positioned during assembly and then retains its positioning.
  • At least one spring element is guided through a through opening formed on the fastening section, that this is supported in a central area against the supporting structure.
  • the fastening sections of the holding elements and the spring elements are advantageously provided with correspondingly arranged elongated holes through which tie rods can be inserted in order to pull the spring elements in the direction of the fastening sections.
  • tie rods are used to overcome the spring force of the at least one spring element while the holding element and the at least one spring element are mounted on a heat shield element. After assembly, the tie rods are then removed again in order to create the desired frictional connection between the engagement sections of the holding element and the heat shield element.
  • each heat shield element is held on the support structure via two holding elements, in particular exactly two holding elements.
  • the holding elements are advantageously shaped using a casting process or an additive manufacturing process, optionally with subsequent mechanical processing.
  • the holding elements according to the invention are therefore in contrast to the holding elements in the DE 10 2017 206 502 described, not bent from a punched sheet metal.
  • Such holding elements made of sheet metal do not have the tensile rigidity required according to the invention in the circumferential direction and in the radial direction.
  • the Figures 1 to 6 show a combustion chamber 1 according to an embodiment of the present invention, which in the present case is the combustion chamber of a gas turbine.
  • the combustion chamber 1 comprises a support structure 2, a plurality of holding elements 3 fastened to the support structure 2, a plurality of connecting elements 4, which connect holding elements 3 arranged adjacently in the circumferential direction U, a plurality of hot gas side 5, each forming a heat shield Cold gas side 6 and the hot gas side 5 and the cold gas side 6 interconnecting end faces 7 having heat shield elements 8, the holding elements 3 engaging positively in recesses 9 provided on the heat shield elements 8, and extending between the support structure 2 and the heat shield elements 8 and held on the holding elements 3
  • Spring elements 10 which are presently provided in the form of wave-shaped bent leaf springs.
  • the support structure 2 is made of metal and is provided with a plurality of circumferentially extending and mutually parallel receiving grooves 11, which have a cross section provided with undercuts, in the present case one with step-shaped groove walls, which decreases in size from the groove base to the groove opening.
  • the receiving grooves 11 serve to accommodate the holding elements 3 and the connecting elements 4, as will be described in more detail below.
  • only the connecting elements 4 point a cross section corresponding to the cross section of the receiving grooves 11, so that after insertion into one of the receiving grooves 11 they are secured by positive locking in the radial direction R and in the axial direction A. After being inserted into a receiving groove 11, the holding elements 3 are only secured in the axial direction A by positive locking.
  • the holding elements 3 are made in one piece from metal and essentially have a U-shape, which is formed by a fastening section 12 in the form of an elongated plate bent like a circular ring segment and two engagement sections 13 projecting from the end regions of the fastening section 12.
  • the fastening section 12 serves to fasten the holding element 3 in one of the receiving grooves 11 of the support structure 2.
  • the width of the fastening section 12 is adapted to the width of the receiving grooves 11 for this purpose.
  • the side walls of the fastening section 12 are designed in a straight line without projections, so that the fastening section 12 can be inserted radially into one of the receiving grooves 11.
  • the engagement elements 13 are connected to one another via the fastening section 12 in such a tension-resistant manner that, at the temperatures prevailing during combustion chamber operation, any movement of the engagement sections 13 apart is effectively counteracted. Furthermore, the engagement sections 13 themselves are designed to be rigid in such a way that they are dimensionally stable at the temperatures prevailing during combustion chamber operation under the influence of the spring forces of the spring elements 10. These tensile strengths are primarily achieved by suitable dimensioning of the webs defining the fastening section 12 and the engagement sections 13. The engagement sections 13 protrude at an angle ⁇ from the fastening section 12, which is different from 90° and in the present case is approximately 60°, so that the engagement sections 13 are inclined to one another.
  • each holding element 3 comprises in the central region of its fastening section 12 an elongated through opening 14, which extends from the top of the fastening section 12, from which the engagement sections 13 protrude, extends to the opposite bottom.
  • the through opening is divided approximately in the middle in the transverse direction by a separating web 15, which, however, only extends in the upper region of the through opening 14. This divider serves to prevent the items from accidentally falling out Figure 1 shown in the through opening 14 to prevent spring elements 10 inserted.
  • elongated holes 16 extend through the fastening section 12 from the top to the underside, which, when the spring elements 10 are inserted, are aligned with elongated holes 17, which are formed in the area of the free ends of the spring elements 10. These elongated holes 16 and 17 serve to insert a tie rod during assembly, as will be explained in more detail below with reference to Figure 5.
  • the free ends of the fastening section are each designed to receive a connecting element 4.
  • the left free end of the in Figure 1 Fully illustrated fastening section 12 is designed in such a way that it can be inserted in the circumferential direction U to form a positive fit into a first end face of a connecting element 4 and screwed to the support structure 2 in such a way that both the holding element 3 and the corresponding connecting element 4 against movement be secured in the circumferential direction U and the holding element is fixed in the radial direction R, for which purpose a corresponding screw hole 18 is provided.
  • the right free end of the in Figure 1 fully illustrated fastening section 12 is designed such that a second end face of a connecting element 4 can be inserted into it in the circumferential direction U to form a positive fit that fixes the holding element 3 radially.
  • the holding elements 3 are shaped using a casting process, which is followed by mechanical processing. In principle, the casting process can also be replaced by an additive manufacturing process.
  • the heat shield elements 8 are designed here as CHS heat shield elements and have a completely closed hot gas side 5.
  • the recesses 9, into which the engagement sections 13 of the holding elements 3 engage, are provided on the cold gas side 6 of the heat shield elements 8.
  • each heat shield element 8 comprises two elongated recesses 9 which extend parallel to one another and are arranged at a distance from one another which corresponds to the distance between the engagement sections 13 of a holding element 3.
  • Each recess 9 defines an insertion area 19 and an engagement area 20 adjoining this in the longitudinal direction.
  • the insertion area 19 is designed such that an associated engagement section 13 of a holding element 3 can be inserted radially into it.
  • the engagement area 20 is, however, designed to positively accommodate the corresponding engagement section 13, with the insertion area 19 and the engagement area 20 being designed such that an engagement section 13 inserted radially into the insertion area 19 can be transferred into the engagement area 20 by displacement in the longitudinal direction, see in this regard in particular Figure 3 .
  • four indentations 21 are provided on the cold gas side 6, the positions of which are adapted to the positions of the free ends of the spring elements 10 in the assembled state.
  • four recesses 22 are formed at those positions that cover the screw holes 18 of the holding elements 3 in the assembled state, which make it possible to screw and unscrew the fastening screws inserted into the screw holes 18.
  • two holding elements 3 and four spring elements 10 are required.
  • two spring elements 10 are inserted into the through opening 14 of a holding element 4.
  • tie rods 23 are inserted through the elongated holes 16 of the fastening section 12 and the elongated holes 17 of the spring elements 10 and the free ends of the spring elements 10 underneath Using the tie rods 23 pulled towards the fastening section 12, as shown in Figure 5 is shown.
  • the engagement sections of the holding elements 3 prepared in this way are inserted into the insertion areas 19 of the associated recesses 9 of the heat shield elements 8 and then pushed in the longitudinal direction into the insertion areas 19, so that the insertion sections 13 of the holding elements 3 are held in a form-fitting manner in the engagement areas 20 of the recesses 9.
  • the tie rods 23 are released again, whereupon the free ends of the spring elements 10 press against the cold gas side 6 of the heat shield element 8. In this way, in addition to the positive connection, a frictional connection between the holding elements 3 and the heat shield element 8 is achieved.
  • two connecting elements 4 are inserted into adjacent receiving grooves 11 and each positioned at a distance from one another in the circumferential direction U and approximately parallel to one another in the axial direction A.
  • the fastening sections 12 of the holding elements 3 are now inserted radially into the receiving grooves 11.
  • the fastening sections 12 of the holding elements 3 are then brought into engagement with each other with the respective connecting elements 4 by moving the corresponding components in the circumferential direction U, with screw holes 18 of the holding elements 3 being positioned in alignment with threaded holes, not shown, which are provided in the support structure 2.
  • Fastening screws are then inserted into the screw holes 18 of the holding elements 3 and screwed into the threaded holes.
  • the assembly of the next heat shield element 8 can now follow, as shown in the Figures 1 , 2 and 4 is shown.
  • the previously described arrangement is characterized in particular by the fact that the gap width B between adjacently arranged heat shield elements 8 can be chosen to be very small. This is primarily due, on the one hand, to the tensile-resistant design of the holding elements 3 and, on the other hand, to the fact that that the heat shield elements 8 are positioned at a comparatively large distance from the support structure 2, which is why the heat shield elements 8 can easily expand in the radial direction R during combustion chamber operation. Thanks to the small gap width B, only a small sealing air volume flow is required, which is accompanied by a significantly increased efficiency of the gas turbine.
  • the holding elements 3 are completely covered by the heat shield elements 8 and are correspondingly better thermally protected, so that the cooling requirement of the holding elements 3 is also lower. The same applies to the maintenance requirement, since the holding elements 3 wear less.
  • FIGS. 7 and 8 show a combustion chamber 1 according to a further embodiment of the present invention, which differs from the previously described embodiment only with regard to some details regarding the design of the holding elements 3, the connecting elements 4 and the spring elements 10, which is why only these details will be discussed below and the rest the previous statements are referred to.
  • the holding elements 3 each had a fastening section 12 and two engagement sections 13.
  • the fastening section is not provided with a through opening 14, but rather on its top with a recess 24 for receiving the lower two of a total of three spring elements 10.
  • the fastening section 12 comprises outwardly projecting projections 25 in its opposite end regions, the contour of which is selected to correspond to the cross section of the receiving grooves 11, so that these projections 25 engage in a form-fitting manner in the receiving grooves 11.
  • the connecting elements 4 is not the fastening sections 12 of the holding elements 3, but rather the connecting elements 4 is provided with a screw hole 18, so that the holding elements 3 and the connecting elements 4 are now fixed in the circumferential direction U by screwing the connecting elements 4 to the support structure 2.
  • three spring elements 10 are provided, with the orientation of the lower two spring elements 10 being chosen opposite to the previously described orientation, i.e. with the wave crest directed upwards.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Connection Of Plates (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Description

Die Erfindung betrifft eine Brennkammer, insbesondere eine solche einer Gasturbine, mit einer Tragstruktur, einer Vielzahl von an der Tragstruktur befestigten Halteelementen und einer Vielzahl von gemeinsam ein Hitzeschild bildenden, jeweils eine Heißgasseite, eine Kaltgasseite und die Heißgasseite und die Kaltgasseite miteinander verbindende Stirnseiten aufweisenden Hitzeschildelementen, wobei die Halteelemente formschlüssig in an den Hitzeschildelementen vorgesehene Ausnehmungen eingreifen.The invention relates to a combustion chamber, in particular one of a gas turbine, with a support structure, a plurality of holding elements attached to the support structure and a plurality of heat shield elements which together form a heat shield, each having a hot gas side, a cold gas side and end faces connecting the hot gas side and the cold gas side , wherein the holding elements engage in a form-fitting manner in recesses provided on the heat shield elements.

Die Brennkammern von beispielsweise Gasturbinen sind aufgrund der während des Betriebs vorherrschenden hohen Temperaturen mit einem Hitzeschild versehen, das die Gehäusewandung der Brennkammer vor der heißen Atmosphäre im Brennraum der Brennkammer schützt. Hitzeschilde, die Heißgasen mit Temperaturen von beispielsweise etwa 1000°C bis etwa 1600°C widerstehen können, sind beispielsweise aus der DE 10 2017 206 502 A1 bekannt. Derartige Hitzeschilde sind aus vielen einzelnen flächigen Hitzeschildelementen zusammengesetzt. Je nachdem, ob metallische oder keramische Hitzeschildelemente verwendet werden, spricht man von einem metallischen Hitzeschild, dem sogenannten "Metallic Heat Shield" MHS, oder einem keramischen Hitzeschild, dem sogenannten "Ceramic Heat Shield" CHS. Die Hitzeschildelemente sind unter Freilassung von Spalten zwischen den Stirnseiten benachbarter Hitzeschildelemente nebeneinanderliegend positioniert. Diese Spalte stellen sicher, dass sich die Hitzeschildelemente während des Betriebs der Brennkammer in Umfangsrichtung des Hitzeschilds thermisch ausdehnen können. Zwischen der Tragstruktur und den Hitzeschildelementen ist indes nur ein kleiner Spalt belassen. Zur Fixierung eines Hitzeschildelementes an der Tragstruktur der Brennkammer werden aus Metall hergestellte, auch als Steinhalter bezeichnete Halteelemente eingesetzt. Diese umfassen eine C-förmige Grundform mit zwei C-Schenkeln, nämlich einen zur Befestigung an der Tragstruktur ausgebildeten langen Befestigungsschenkel und einen zum Eingriff in eine stirnseitige Halteausnehmung des Hitzeschildelements ausgebildeten kurzen Eingriffsschenkel, die über einen Steg miteinander verbundenen sind. Der Befestigungsschenkel liegt auf der Tragstruktur auf und ist endseitig mit dieser verschraubt.Due to the high temperatures prevailing during operation, the combustion chambers of gas turbines, for example, are provided with a heat shield that protects the housing wall of the combustion chamber from the hot atmosphere in the combustion chamber of the combustion chamber. Heat shields that can withstand hot gases with temperatures of, for example, about 1000 ° C to about 1600 ° C are, for example, from DE 10 2017 206 502 A1 known. Such heat shields are composed of many individual flat heat shield elements. Depending on whether metallic or ceramic heat shield elements are used, one speaks of a metallic heat shield, the so-called "Metallic Heat Shield" MHS, or a ceramic heat shield, the so-called "Ceramic Heat Shield" CHS. The heat shield elements are positioned next to one another, leaving gaps between the end faces of adjacent heat shield elements. These gaps ensure that the heat shield elements can expand thermally in the circumferential direction of the heat shield during operation of the combustion chamber. However, only a small gap is left between the supporting structure and the heat shield elements. To fix a heat shield element to the support structure of the combustion chamber, holding elements made of metal, also known as stone holders, are used. This include a C-shaped basic shape with two C-legs, namely a long fastening leg designed for attachment to the support structure and a short engagement leg designed to engage in an end-side holding recess of the heat shield element, which are connected to one another via a web. The fastening leg rests on the support structure and is screwed to it at the end.

Das Hauptziel bei der Weiterentwicklung moderner stationärer Gasturbinen besteht in der Steigerung der Wandlungseffizienz, die zum einen von der Heißgastemperatur und zum anderen von dem zur Kühlung der metallischen Gasturbinenkomponenten benötigten Kühlluftvolumenstrom abhängt. Je höher die Heißgastemperatur ist, desto effizienter arbeitet die Gasturbine. Je höher jedoch der Kühlluftvolumenstrom zum Schutz der metallischen Komponenten ist, desto geringer ist die Effizienz. Insbesondere bedürfen die zuvor genannten Halteelemente einer ausreichenden Kühlung, um ihre Funktion bei den vorherrschenden hohen Temperaturen dauerhaft gewährleisten zu können. Der für diese Kühlung erforderliche Kühlluftvolumenstrom, der zwischen der Tragstruktur und den Hitzeschildelementen hindurchgeleitet wird und durch die zwischen den Hitzeschildelementen vorhandenen Spalte in die Brennkammer als Sperrluft austritt, muss von dem vom Kompressor zur Verfügung gestellten Hauptkühlluftvolumenstrom abgezweigt werden und steht entsprechend nicht für den Verbrennungsprozess und damit nicht zur Leistungsgenerierung der Gasturbine zur Verfügung. Die Größe der Spalte hat dabei einen starken Einfluss auf den benötigten Kühlluftvolumenstrom. Je kleiner die Spalte sind, desto geringer ist der zur Erzielung der Sperrwirkung erforderliche Kühlluftvolumenstrom.The main goal in the further development of modern stationary gas turbines is to increase the conversion efficiency, which depends on the one hand on the hot gas temperature and on the other hand on the cooling air volume flow required to cool the metallic gas turbine components. The higher the hot gas temperature, the more efficiently the gas turbine works. However, the higher the cooling air volume flow to protect the metallic components, the lower the efficiency. In particular, the aforementioned holding elements require sufficient cooling in order to be able to ensure their long-term function at the prevailing high temperatures. The cooling air volume flow required for this cooling, which is passed between the support structure and the heat shield elements and exits into the combustion chamber as sealing air through the gaps between the heat shield elements, must be branched off from the main cooling air volume flow provided by the compressor and is therefore not relevant to the combustion process therefore not available for generating power from the gas turbine. The size of the gap has a strong influence on the required cooling air volume flow. The smaller the gaps, the lower the cooling air volume flow required to achieve the barrier effect.

Eine Brennkammer gemäß dem Stand der Technik ist aus der DE 10 2016 214 818 A1 bekannt.A combustion chamber according to the prior art is from DE 10 2016 214 818 A1 known.

Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, eine Brennkammer der eingangs genannten Art hinsichtlich ihrer Effizient weiter zu optimieren.Based on this prior art, it is an object of the present invention to further optimize a combustion chamber of the type mentioned in terms of its efficiency.

Zur Lösung dieser Aufgabe schafft die vorliegende Erfindung eine Brennkammer der eingangs genannten Art, bei der die Halteelemente jeweils zumindest zwei zum formschlüssigen Eingriff in die Ausnehmungen eines Hitzeschildelementes ausgebildete Eingriffsabschnitte aufweisen, die derart zugsteif miteinander verbunden sind, dass bei den während des Brennkammerbetriebs vorherrschenden Temperaturen einer Auseinanderbewegung der Eingriffsabschnitte effektiv entgegengewirkt wird, wobei sich zwischen der Tragstruktur und den Hitzeschildelementen als Blattfedern ausgebildete Federelemente erstrecken, die einen Kraftschluss zwischen den Eingriffsabschnitten der Halteelemente und den Hitzeschildelementen bewirken, wobei die Eingriffsabschnitte selbst derart zugsteif ausgebildet sind, dass sie bei den während des Brennkammerbetriebs vorherrschenden Temperaturen unter Einwirkung der Federkräfte formstabil sind. Ein wesentlicher Vorteil, der mit einer erfindungsgemäß aufgebauten Brennkammer einhergeht, besteht darin, dass sich insbesondere die Spaltgröße zwischen benachbarten Hitzeschildelementen signifikant reduzieren lässt. Die liegt zum einen daran, dass zwischen der Tragstruktur und den Hitzeschildelementen ausreichend Platz derart belassen werden kann, dass sich die Hitzeschildelemente während des Brennkammerbetriebs in radialer Richtung frei ausdehnen können, wodurch ihre Ausdehnung in Umfangsrichtung reduziert wird. Zum anderen wird zusätzlichen, durch eine Verformung der Halteelemente bedingten Bewegungen der Hitzeschildelemente dank der zugsteifen Ausbildung der Halteelemente effektiv entgegengewirkt. Im Ergebnis kann die maximale Temperatur, bei der die Brennkammer betrieben werden kann, heraufgesetzt werden, beispielsweise bis 1600°C, was eine Leistungsverbesserung nach sich zieht. Gleichzeitig kann der Kühlluftvolumenstrom dank der schmaleren Spalte zwischen den Hitzeschildelementen um schätzungsweise bis zu 50% verringert werden, was ebenfalls der Leistungsverbesserung zuträglich ist. Darüber hinaus können dank der verbesserten thermischen Abschirmung der Halteelemente auch die Wartungsintervalle erhöht werden.To solve this problem, the present invention creates a combustion chamber of the type mentioned at the outset, in which the holding elements each have at least two engagement sections designed for positive engagement in the recesses of a heat shield element, which are connected to one another in such a tension-resistant manner that at the temperatures prevailing during combustion chamber operation one Movement apart of the engagement sections is effectively counteracted, with spring elements designed as leaf springs extending between the support structure and the heat shield elements, which bring about a frictional connection between the engagement sections of the holding elements and the heat shield elements, the engagement sections themselves being designed to be tensile-resistant in such a way that they are during combustion chamber operation prevailing temperatures are dimensionally stable under the influence of the spring forces. A significant advantage associated with a combustion chamber constructed according to the invention is that, in particular, the gap size between adjacent heat shield elements can be significantly reduced. On the one hand, this is due to the fact that sufficient space can be left between the support structure and the heat shield elements in such a way that the heat shield elements can expand freely in the radial direction during combustion chamber operation, whereby their expansion in the circumferential direction is reduced. On the other hand, additional movements of the heat shield elements caused by deformation of the holding elements are effectively counteracted thanks to the tension-resistant design of the holding elements. As a result, the maximum temperature at which the combustion chamber can be operated can be increased, for example up to 1600°C, resulting in an improvement in performance. At the same time, thanks to the narrower gaps between the heat shield elements, the cooling air volume flow can be reduced by up to an estimated 50%, which also improves performance. In addition, thanks to the improved thermal The maintenance intervals can also be increased by shielding the holding elements.

Bevorzugt sind die Ausnehmungen an den Kaltseiten der Hitzeschildelemente ausgebildet. Dies hat gegenüber stirnseitig angeordneten Ausnehmungen den Vorteil, dass die in die Ausnehmungen eingreifenden Eingriffsabschnitte der Halteelemente thermisch besser abgeschirmt sind und auch besser von der Kühlluft gekühlt werden können.The recesses are preferably formed on the cold sides of the heat shield elements. This has the advantage over recesses arranged on the front side that the engagement sections of the holding elements that engage in the recesses are better thermally shielded and can also be better cooled by the cooling air.

Gemäß einer Ausgestaltung der vorliegenden Erfindung ist die Tragstruktur mit sich umfänglich erstreckenden Aufnahmenuten zur Aufnahme der Halteelemente versehen, wodurch die Montage und die Befestigung der Halteelemente verbessert werden.According to one embodiment of the present invention, the support structure is provided with circumferentially extending receiving grooves for receiving the holding elements, thereby improving the assembly and fastening of the holding elements.

Vorteilhaft sind umfänglich benachbart zueinander angeordnete Halteelemente über Verbindungselemente lösbar miteinander verbunden. Derartige Verbindungselemente dienen zum Toleranzausgleich in Umfangsrichtung. Die Verbindungselemente sind insbesondere mit der Tragstruktur verschraubt, um die Halteelemente und damit die Hitzeschildelemente in Umfangsrichtung der Brennkammer zu positionieren.Holding elements arranged circumferentially adjacent to one another are advantageously releasably connected to one another via connecting elements. Such connecting elements serve to compensate for tolerances in the circumferential direction. The connecting elements are in particular screwed to the support structure in order to position the holding elements and thus the heat shield elements in the circumferential direction of the combustion chamber.

Bevorzugt weisen die Aufnahmenuten einen mit Hinterschneidungen versehenen Querschnitt auf, wobei die Halteelemente und/oder die Verbindungselemente formschlüssig in den Aufnahmenuten aufgenommen sind. Auf diese Weise werden die Halteelemente und damit die Hitzeschildelemente in radialer sowie in axialer Richtung der Brennkammer gesichert.The receiving grooves preferably have a cross section provided with undercuts, with the holding elements and/or the connecting elements being received in a form-fitting manner in the receiving grooves. In this way, the holding elements and thus the heat shield elements are secured in the radial and axial directions of the combustion chamber.

Gemäß einer Ausgestaltung der vorliegenden Erfindung weisen die Halteelemente einen zur Tragstruktur weisenden, zugsteif ausgebildeten Befestigungsabschnitt und zumindest zwei von dem Befestigungsabschnitt vorstehende, insbesondere einteilig mit diesem ausgebildete Eingriffsabschnitte auf, wobei jedes Hitzeschildelement eine zumindest der Anzahl der Eingriffsabschnitte eines Halteelementes entsprechende Anzahl von kaltgasseitigen Ausnehmungen aufweist, und wobei jeder Eingriffsabschnitt formschlüssig in eine der Ausnehmungen eingreift. Aus diese Weise wird ein sehr einfacher Aufbau realisiert.According to one embodiment of the present invention, the holding elements have a tensile-resistant fastening section facing the support structure and at least two engagement sections projecting from the fastening section, in particular formed in one piece with it, each heat shield element having a number of cold gas-side recesses corresponding at least to the number of engagement sections of a holding element , and where each intervention section engages positively in one of the recesses. In this way a very simple structure is realized.

Bevorzugt sind die kaltgasseitigen Ausnehmungen der Hitzeschildelemente länglich ausgebildet und definieren jeweils einen Einsetzbereich und einen sich in Längsrichtung an diesen anschließenden Eingriffsbereich, wobei der Einsetzbereich derart ausgebildet ist, dass sich ein zugeordneter Eingriffsabschnitt eines Halteelementes radial in diesen einsetzen lässt, der Eingriffsbereich zur formschlüssigen Aufnahme des Eingriffsabschnittes ausgelegt ist, und der Einsetzbereich und der Eingriffsbereich derart ausgebildet sind, dass sich ein in den Einsetzbereich radial eingesetzter Eingriffsabschnitt durch Verschiebung in Längsrichtung in den Eingriffsbereich überführen lässt. Ein derartiger Aufbau zieht eine einfache Montage nach sich.The cold gas-side recesses of the heat shield elements are preferably elongated and each define an insertion area and an engagement area adjoining this in the longitudinal direction, the insertion area being designed such that an associated engagement section of a holding element can be inserted radially into it, the engagement area for positive reception of the Engagement section is designed, and the insertion area and the engagement area are designed such that an engagement section inserted radially into the insertion area can be transferred into the engagement area by displacement in the longitudinal direction. Such a structure results in simple assembly.

Der Befestigungsabschnitt ist bevorzugt in Form einer länglichen, insbesondere kreisringsegmentartig gebogenen Platte ausgebildet, wobei die Eingriffsabschnitte im Bereich der freien Enden des Befestigungsabschnittes vorgesehen sind.The fastening section is preferably designed in the form of an elongated plate, in particular curved like a circular ring segment, the engagement sections being provided in the area of the free ends of the fastening section.

Die Eingriffsabschnitte stehen vorteilhaft in einem Winkel von dem Befestigungsabschnitt vor, der von 90° verschieden ist. Alternativ oder zusätzlich können die Eingriffsabschnitte mit aufeinander zu oder voneinander weg weisenden Endbereichen versehen sein.The engagement portions advantageously protrude from the attachment portion at an angle other than 90°. Alternatively or additionally, the engagement sections can be provided with end regions pointing towards or away from one another.

Vorteilhaft ist der Befestigungsabschnitt an seiner zum Hitzeschildelement weisenden Oberseite mit einer Vertiefung versehen, die zur Aufnahme zumindest eines der Federelemente ausgelegt ist. Entsprechend kann das zumindest eine Federelement während der Montage einfach positioniert werden und behält auch anschließend seine Positionierung bei.The fastening section is advantageously provided with a recess on its upper side facing the heat shield element, which is designed to accommodate at least one of the spring elements. Accordingly, the at least one spring element can be easily positioned during assembly and then retains its positioning.

Gemäß einer Ausgestaltung der vorliegenden Erfindung ist zumindest ein Federelement jeweils derart durch eine am Befestigungsabschnitt ausgebildete Durchgangsöffnung hindurchgeführt, dass sich dieses in einem mittleren Bereich gegen die Tragstruktur abstützt. Hierdurch ergibt sich der Vorteil einer geringeren Biegebeanspruchung des Befestigungsabschnitts. Infolge der biegesteifen Gegenfläche der Tragstruktur wird der Vorspannverlust der Federelemente infolge Kriechverformung des stützenden Befestigungsabschnitts reduziert.According to an embodiment of the present invention, at least one spring element is guided through a through opening formed on the fastening section, that this is supported in a central area against the supporting structure. This results in the advantage of a lower bending stress on the fastening section. As a result of the rigid counter surface of the support structure, the preload loss of the spring elements due to creep deformation of the supporting fastening section is reduced.

Vorteilhaft sind die Befestigungsabschnitte der Halteelemente und die Federelemente mit korrespondierend angeordneten Langlöchern versehen, durch die Zuganker eingesetzt werden können, um die Federelemente in Richtung der Befestigungsabschnitte zu ziehen. Derartige Zuganker werden dazu verwendet, die Federkraft des zumindest einen Federelementes zu überwinden, während das Halteelement und das zumindest eine Federelement an einem Hitzeschildelement montiert werden. Nach der Montage werden die Zuganker dann wieder entfernt, um den gewünschten Kraftschluss zwischen den Eingriffsabschnitten des Halteelementes und dem Hitzeschildelement zu erzeugen.The fastening sections of the holding elements and the spring elements are advantageously provided with correspondingly arranged elongated holes through which tie rods can be inserted in order to pull the spring elements in the direction of the fastening sections. Such tie rods are used to overcome the spring force of the at least one spring element while the holding element and the at least one spring element are mounted on a heat shield element. After assembly, the tie rods are then removed again in order to create the desired frictional connection between the engagement sections of the holding element and the heat shield element.

Gemäß einer Ausgestaltung der vorliegenden Erfindung ist jedes Hitzeschildelement über zwei Halteelemente an der Tragstruktur gehalten, insbesondere über genau zwei Halteelemente.According to one embodiment of the present invention, each heat shield element is held on the support structure via two holding elements, in particular exactly two holding elements.

Vorteilhaft ist die Formgebung der Halteelemente unter Einsatz eines Gießprozesses oder eines additiven Fertigungsverfahrens erfolgt, optional mit sich anschließender mechanischer Bearbeitung. Die erfindungsgemäßen Halteelemente sind also im Gegensatz zu den Halteelementen, die in der DE 10 2017 206 502 beschrieben sind, nicht aus einem ausgestanzten Blech gebogen. Derartige aus Blech gebogene Halteelemente weisen auch nicht die erfindungsgemäß erforderliche Zugsteifigkeit in Umfangsrichtung und in radialer Richtung auf.The holding elements are advantageously shaped using a casting process or an additive manufacturing process, optionally with subsequent mechanical processing. The holding elements according to the invention are therefore in contrast to the holding elements in the DE 10 2017 206 502 described, not bent from a punched sheet metal. Such holding elements made of sheet metal do not have the tensile rigidity required according to the invention in the circumferential direction and in the radial direction.

Weitere Vorteile und Merkmale der vorliegenden Erfindung werden anhand der nachfolgenden Beschreibung von Brennkammern gemäß Ausführungsformen der vorliegenden Erfindung unter Bezugnahme auf die beiliegende Zeichnung deutlich. Darin ist

Figur 1
eine geschnittene Teilansicht einer Brennkammer gemäß einer Ausführungsform der vorliegenden Erfindung;
Figur 2
eine teilweise gläsern dargestellte perspektivische Unteransicht der in Figur 1 gezeigten Anordnung;
Figur 3
eine weitere teilweise gläsern dargestellte perspektivische Unteransicht der in Figur 1 gezeigten Anordnung;
Figur 4
eine teilweise gläsern dargestellte perspektivische Draufsicht der in Figur 1 gezeigten Anordnung;
Figur 5
eine perspektivische Teilunteransicht der in Figur 1 dargestellten Anordnung während der Montage;
Figur 6
eine vergrößerte perspektivische Teilansicht der in Figur 1 dargestellten Anordnung während der Montage;
Figur 7
eine teilweise gläserne perspektivische Teilansicht einer Brennkammer gemäß einer weiteren Ausführungsform der vorliegenden Erfindung und
Figur 8
eine perspektivische Unteransicht der in Figur 7 gezeigten Anordnung.
Further advantages and features of the present invention will become clear from the following description of combustion chambers according to embodiments of the present invention with reference to the accompanying drawing. There is in it
Figure 1
a partial sectional view of a combustion chamber according to an embodiment of the present invention;
Figure 2
a perspective bottom view of the in. partially shown in glass Figure 1 arrangement shown;
Figure 3
Another perspective bottom view, partially shown in glass, of the in Figure 1 arrangement shown;
Figure 4
a perspective top view of the in. partly shown in glass Figure 1 arrangement shown;
Figure 5
a perspective partial bottom view of the in Figure 1 arrangement shown during assembly;
Figure 6
an enlarged partial perspective view of the in Figure 1 arrangement shown during assembly;
Figure 7
a partial glass perspective view of a combustion chamber according to a further embodiment of the present invention and
Figure 8
a perspective bottom view of the in Figure 7 arrangement shown.

Gleiche Bezugsziffern beziehen sich nachfolgend auf gleiche oder gleichartig ausgebildete Bauteile bzw. Bauteilbereiche.The same reference numbers refer below to the same or similarly designed components or component areas.

Die Figuren 1 bis 6 zeigen eine Brennkammer 1 gemäß einer Ausführungsform der vorliegenden Erfindung, bei der es sich vorliegend um die Brennkammer einer Gasturbine handelt. Die Brennkammer 1 umfasst eine Tragstruktur 2, eine Vielzahl von an der Tragstruktur 2 befestigten Halteelementen 3, eine Vielzahl von Verbindungselementen 4, welche in Umfangsrichtung U benachbart angeordnete Halteelemente 3 miteinander verbinden, eine Vielzahl von gemeinsam ein Hitzeschild bildenden, jeweils eine Heißgasseite 5, eine Kaltgasseite 6 und die Heißgasseite 5 und die Kaltgasseite 6 miteinander verbindende Stirnseiten 7 aufweisenden Hitzeschildelementen 8, wobei die Halteelemente 3 formschlüssig in an den Hitzeschildelementen 8 vorgesehene Ausnehmungen 9 eingreifen, und sich zwischen der Tragstruktur 2 und den Hitzeschildelementen 8 erstreckende, an den Halteelementen 3 gehaltene Federelemente 10, die vorliegend in Form von wellenförmig gebogenen Blattfedern vorgesehen sind.The Figures 1 to 6 show a combustion chamber 1 according to an embodiment of the present invention, which in the present case is the combustion chamber of a gas turbine. The combustion chamber 1 comprises a support structure 2, a plurality of holding elements 3 fastened to the support structure 2, a plurality of connecting elements 4, which connect holding elements 3 arranged adjacently in the circumferential direction U, a plurality of hot gas side 5, each forming a heat shield Cold gas side 6 and the hot gas side 5 and the cold gas side 6 interconnecting end faces 7 having heat shield elements 8, the holding elements 3 engaging positively in recesses 9 provided on the heat shield elements 8, and extending between the support structure 2 and the heat shield elements 8 and held on the holding elements 3 Spring elements 10, which are presently provided in the form of wave-shaped bent leaf springs.

Die Tragstruktur 2 ist aus Metall gefertigt und ist mit einer Vielzahl von sich umfänglich erstreckenden und parallel zueinander angeordneten Aufnahmenuten 11 versehen, die einen mit Hinterschneidungen versehenen Querschnitt haben, vorliegend einen solchen mit treppenstufenförmig ausgebildeten Nutwänden, der sich vom Nutgrund zur Nutöffnung verkleinert. Die Aufnahmenuten 11 dienen zur Aufnahme der Halteelemente 3 sowie der Verbindungselemente 4, wie es nachfolgend noch näher beschrieben ist. Nur die Verbindungselemente 4 weisen jedoch einen zum Querschnitt der Aufnahmenuten 11 korrespondierenden Querschnitt auf, so dass sie nach dem Einsetzen in eine der Aufnahmenuten 11 entsprechend in radialer Richtung R sowie in axialer Richtung A durch Formschluss gesichert sind. Die Halteelemente 3 sind nach dem Einsetzen in eine Aufnahmenut 11 indes nur in axialer Richtung A durch Formschluss gesichert.The support structure 2 is made of metal and is provided with a plurality of circumferentially extending and mutually parallel receiving grooves 11, which have a cross section provided with undercuts, in the present case one with step-shaped groove walls, which decreases in size from the groove base to the groove opening. The receiving grooves 11 serve to accommodate the holding elements 3 and the connecting elements 4, as will be described in more detail below. However, only the connecting elements 4 point a cross section corresponding to the cross section of the receiving grooves 11, so that after insertion into one of the receiving grooves 11 they are secured by positive locking in the radial direction R and in the axial direction A. After being inserted into a receiving groove 11, the holding elements 3 are only secured in the axial direction A by positive locking.

Die Halteelemente 3 sind einteilig aus Metall hergestellt und weisen im Wesentlichen eine U-Form auf, die durch einen Befestigungsabschnitt 12 in Form einer länglichen, kreisringsegmentartig gebogenen Platte und zwei von den Endbereichen des Befestigungsabschnitts 12 vorstehende Eingriffsabschnitte 13 gebildet wird. Der Befestigungsabschnitt 12 dient zur Befestigung des Halteelementes 3 in einer der Aufnahmenuten 11 der Tragstruktur 2. Die Breite des Befestigungsabschnittes 12 ist hierfür an die Breite der Aufnahmenuten 11 angepasst. Die Seitenwände des Befestigungsabschnitts 12 sind geradlinig ohne Vorsprünge ausgebildet, so dass sich der Befestigungsabschnitt 12 radial in eine der Aufnahmenuten 11 einsetzen lässt. Die Eingriffselemente 13 sind über den Befestigungsabschnitt 12 derart zugsteif miteinander verbunden, dass bei den während des Brennkammerbetriebs vorherrschenden Temperaturen einer Auseinanderbewegung der Eingriffsabschnitte 13 effektiv entgegengewirkt wird. Ferner sind die Eingriffsabschnitte 13 selbst derart zugsteif ausgebildet, dass sie bei den während des Brennkammerbetriebs vorherrschenden Temperaturen unter Einwirkung der Federkräfte der Federelemente 10 formstabil sind. Diese Zugfestigkeiten werden in erster Linie durch eine geeignete Dimensionierung der den Befestigungsabschnitt 12 und die Eingriffsabschnitte 13 definierenden Stege erzielt. Die Eingriffsabschnitte 13 stehen in einem Winkel α von dem Befestigungsabschnitt 12 vor, der von 90° verschieden ist und vorliegend etwa 60° beträgt, so dass die Eingriffsabschnitte 13 zueinander geneigt sind. Zur Aufnahme von vorliegend jeweils zwei Federelementen 10 umfasst jedes Halteelement 3 im mittleren Bereich seines Befestigungsabschnitts 12 eine längliche Durchgangsöffnung 14, die sich ausgehend von der Oberseite des Befestigungsabschnitts 12, von der die Eingriffsabschnitte 13 vorstehen, zur gegenüberliegenden Unterseite erstreckt. Die Durchgangsöffnung wird in Querrichtung etwa mittig durch einen Trennsteg 15 unterteilt, der sich jedoch nur im oberen Bereich der Durchgangsöffnung 14 erstreckt. Dieser Trennsteg dient dazu, ein versehentliches Herausfallen der wie in Figur 1 gezeigt in die Durchgangsöffnung 14 eingesetzten Federelemente 10 zu verhindern. Beidseitig der Durchgangsöffnung 14 erstrecken sich Langlöcher 16 durch den Befestigungsabschnitt 12 von dessen Oberseite zu dessen Unterseite, die im eingesetzten Zustand der Federelemente 10 mit Langlöchern 17 fluchten, die im Bereich der freien Enden der Federelemente 10 ausgebildet sind. Diese Langlöcher 16 und 17 dienen während der Montage zum Einführen eines Zugankers, wie es nachfolgend unter Bezugnahme auf Figur 5 noch näher erläutert wird. Die freien Enden des Befestigungsabschnitts sind jeweils zur Aufnahme eines Verbindungselementes 4 ausgelegt. Das linke freie Ende des in Figur 1 vollständig dargestellten Befestigungsabschnitts 12 ist dabei derart ausgestaltet, dass es in Umfangsrichtung U unter Bildung eines Formschlusses in eine erste Stirnseite eines Verbindungselementes 4 eingeschoben und mit der Tragstruktur 2 derart verschraubt werden kann, dass sowohl das Halteelement 3 als auch das entsprechende Verbindungselement 4 gegen eine Bewegung in Umfangsrichtung U gesichert werden und das Halteelement in radialer Richtung R fixiert wird, wozu eine entsprechende Schraubenbohrung 18 vorgesehen ist. Das rechte freie Ende des in Figur 1 vollständig dargestellten Befestigungsabschnitts 12 ist derart ausgestaltet, dass eine zweite Stirnseite eines Verbindungselementes 4 in Umfangsrichtung U in dieses unter Bildung eines das Halteelement 3 radial fixierenden Formschlusses eingeschoben werden kann. Die Formgebung der Halteelemente 3 ist vorliegend unter Einsatz eines Gießprozesses erfolgt, an den sich eine mechanische Bearbeitung angeschlossen hat. Der Gießprozess kann grundsätzlich aber auch durch ein additives Fertigungsverfahren ersetzt werden.The holding elements 3 are made in one piece from metal and essentially have a U-shape, which is formed by a fastening section 12 in the form of an elongated plate bent like a circular ring segment and two engagement sections 13 projecting from the end regions of the fastening section 12. The fastening section 12 serves to fasten the holding element 3 in one of the receiving grooves 11 of the support structure 2. The width of the fastening section 12 is adapted to the width of the receiving grooves 11 for this purpose. The side walls of the fastening section 12 are designed in a straight line without projections, so that the fastening section 12 can be inserted radially into one of the receiving grooves 11. The engagement elements 13 are connected to one another via the fastening section 12 in such a tension-resistant manner that, at the temperatures prevailing during combustion chamber operation, any movement of the engagement sections 13 apart is effectively counteracted. Furthermore, the engagement sections 13 themselves are designed to be rigid in such a way that they are dimensionally stable at the temperatures prevailing during combustion chamber operation under the influence of the spring forces of the spring elements 10. These tensile strengths are primarily achieved by suitable dimensioning of the webs defining the fastening section 12 and the engagement sections 13. The engagement sections 13 protrude at an angle α from the fastening section 12, which is different from 90° and in the present case is approximately 60°, so that the engagement sections 13 are inclined to one another. To accommodate two spring elements 10 in each case, each holding element 3 comprises in the central region of its fastening section 12 an elongated through opening 14, which extends from the top of the fastening section 12, from which the engagement sections 13 protrude, extends to the opposite bottom. The through opening is divided approximately in the middle in the transverse direction by a separating web 15, which, however, only extends in the upper region of the through opening 14. This divider serves to prevent the items from accidentally falling out Figure 1 shown in the through opening 14 to prevent spring elements 10 inserted. On both sides of the through opening 14, elongated holes 16 extend through the fastening section 12 from the top to the underside, which, when the spring elements 10 are inserted, are aligned with elongated holes 17, which are formed in the area of the free ends of the spring elements 10. These elongated holes 16 and 17 serve to insert a tie rod during assembly, as will be explained in more detail below with reference to Figure 5. The free ends of the fastening section are each designed to receive a connecting element 4. The left free end of the in Figure 1 Fully illustrated fastening section 12 is designed in such a way that it can be inserted in the circumferential direction U to form a positive fit into a first end face of a connecting element 4 and screwed to the support structure 2 in such a way that both the holding element 3 and the corresponding connecting element 4 against movement be secured in the circumferential direction U and the holding element is fixed in the radial direction R, for which purpose a corresponding screw hole 18 is provided. The right free end of the in Figure 1 fully illustrated fastening section 12 is designed such that a second end face of a connecting element 4 can be inserted into it in the circumferential direction U to form a positive fit that fixes the holding element 3 radially. In the present case, the holding elements 3 are shaped using a casting process, which is followed by mechanical processing. In principle, the casting process can also be replaced by an additive manufacturing process.

Die Hitzeschildelemente 8 sind vorliegend als CHS-Hitzeschildelemente ausgebildet und weisen eine vollständig geschlossene Heißgasseite 5 auf. Die Ausnehmungen 9, in welche die Eingriffsabschnitte 13 der Halteelemente 3 eingreifen, sind an der Kaltgasseite 6 der Hitzeschildelemente 8 vorgesehen. Jedes Hitzeschildelement 8 umfasst vorliegend zwei sich parallel zueinander erstreckende längliche Ausnehmungen 9, die in einem Abstand zueinander angeordnet sind, der dem Abstand zwischen den Eingriffsabschnitten 13 eines Halteelementes 3 entspricht. Jede Ausnehmung 9 definiert einen Einsetzbereich 19 und einen sich in Längsrichtung an diesen anschließenden Eingriffsbereich 20. Der Einsetzbereich 19 ist derart ausgebildet, dass sich ein zugeordneter Eingriffsabschnitt 13 eines Halteelementes 3 radial in diesen einsetzen lässt. Der Eingriffsbereich 20 ist indes zur formschlüssigen Aufnahme des entsprechenden Eingriffsabschnittes 13 ausgelegt, wobei der Einsetzbereich 19 und der Eingriffsbereich 20 derart ausgebildet sind, dass sich ein in den Einsetzbereich 19 radial eingesetzter Eingriffsabschnitt 13 durch Verschiebung in Längsrichtung in den Eingriffsbereich 20 überführen lässt, siehe hierzu insbesondere Figur 3. Zur Aufnahme von bei der Montage verwendeten Zugankern sind an der Kaltgasseite 6 vier Einbuchtungen 21 vorgesehen, deren Positionen an die Positionen der freien Enden der Federelemente 10 im montierten Zustand angepasst sind. Im Übergangsbereich zwischen den Stirnseiten 7 und der Kaltseite 6 sind an denjenigen Positionen, die im montierten Zustand die Schraubenbohrungen 18 der Halteelemente 3 überdecken, vier Aussparungen 22 ausgebildet, die es ermöglichen, die in die Schraubenbohrungen 18 eingesetzten Befestigungsschrauben ein- und auszudrehen.The heat shield elements 8 are designed here as CHS heat shield elements and have a completely closed hot gas side 5. The recesses 9, into which the engagement sections 13 of the holding elements 3 engage, are provided on the cold gas side 6 of the heat shield elements 8. In the present case, each heat shield element 8 comprises two elongated recesses 9 which extend parallel to one another and are arranged at a distance from one another which corresponds to the distance between the engagement sections 13 of a holding element 3. Each recess 9 defines an insertion area 19 and an engagement area 20 adjoining this in the longitudinal direction. The insertion area 19 is designed such that an associated engagement section 13 of a holding element 3 can be inserted radially into it. The engagement area 20 is, however, designed to positively accommodate the corresponding engagement section 13, with the insertion area 19 and the engagement area 20 being designed such that an engagement section 13 inserted radially into the insertion area 19 can be transferred into the engagement area 20 by displacement in the longitudinal direction, see in this regard in particular Figure 3 . To accommodate tie rods used during assembly, four indentations 21 are provided on the cold gas side 6, the positions of which are adapted to the positions of the free ends of the spring elements 10 in the assembled state. In the transition area between the end faces 7 and the cold side 6, four recesses 22 are formed at those positions that cover the screw holes 18 of the holding elements 3 in the assembled state, which make it possible to screw and unscrew the fastening screws inserted into the screw holes 18.

Zur Montage eines Hitzeschildelements 8 werden zwei Halteelemente 3 und vier Federelemente 10 benötigt. In einem ersten Schritt werden je zwei Federelemente 10 in die Durchgangsöffnung 14 eines Halteelementes 4 eingesetzt. In einem zweiten Schritt werden Zuganker 23 durch die Langlöcher 16 des Befestigungsabschnitts 12 und die Langlöcher 17 der Federelemente 10 eingesetzt und die freien Enden der Federelemente 10 unter Verwendung der Zuganker 23 in Richtung des Befestigungsabschnitts 12 gezogen, wie es in Figur 5 gezeigt ist. Anschließend werden die Eingriffsabschnitte der so präparierten Halteelemente 3 in die Einsetzbereiche 19 der zugehörigen Ausnehmungen 9 der Hitzeschildelemente 8 eingesetzt und dann in Längsrichtung in die Einsetzbereiche 19 geschoben, so dass die Einsetzabschnitte 13 der Halteelemente 3 formschlüssig in den Eingriffbereichen 20 der Ausnehmungen 9 gehalten sind. Nunmehr werden die Zuganker 23 wieder gelöst, woraufhin die freien Enden der Federelemente 10 gegen die Kaltgasseite 6 des Hitzeschildelementes 8 drücken. Auf diese Weise wird zusätzlich zu dem Formschluss ein Kraftschluss zwischen den Halteelementen 3 und dem Hitzeschildelement 8 erzielt. In einem weiteren Schritt werden je zwei Verbindungselemente 4 in benachbarte Aufnahmenuten 11 eingeschoben und jeweils in Umfangsrichtung U in einem Abstand zueinander und in axialer Richtung A etwa parallel zueinander positioniert. Zwischen den beiden jeweils in einer Aufnahmenut 11 angeordneten Verbindungselementen 4 werden nun die Befestigungsabschnitte 12 der Halteelemente 3 radial in die Aufnahmenuten 11 eingesetzt. Daraufhin werden die Befestigungsabschnitte 12 der Halteelemente 3 mit den jeweiligen Verbindungselementen 4 durch Bewegung der entsprechenden Komponenten in Umfangsrichtung U miteinander in Eingriff gebracht, wobei Schraubenbohrungen 18 der der Halteelemente 3 fluchtend mit nicht näher dargestellten Gewindebohrungen positioniert werden, die in der Tragstruktur 2 vorgesehen sind. Anschließend werden Befestigungsschrauben in die Schraubenbohrungen 18 der der Halteelemente 3 eingesetzt und mit den Gewindebohrungen verschraubt. Nunmehr kann die Montage des nächsten Hitzeschildelementes 8 folgen, wie es in den Figuren 1, 2 und 4 gezeigt ist.To assemble a heat shield element 8, two holding elements 3 and four spring elements 10 are required. In a first step, two spring elements 10 are inserted into the through opening 14 of a holding element 4. In a second step, tie rods 23 are inserted through the elongated holes 16 of the fastening section 12 and the elongated holes 17 of the spring elements 10 and the free ends of the spring elements 10 underneath Using the tie rods 23 pulled towards the fastening section 12, as shown in Figure 5 is shown. Subsequently, the engagement sections of the holding elements 3 prepared in this way are inserted into the insertion areas 19 of the associated recesses 9 of the heat shield elements 8 and then pushed in the longitudinal direction into the insertion areas 19, so that the insertion sections 13 of the holding elements 3 are held in a form-fitting manner in the engagement areas 20 of the recesses 9. Now the tie rods 23 are released again, whereupon the free ends of the spring elements 10 press against the cold gas side 6 of the heat shield element 8. In this way, in addition to the positive connection, a frictional connection between the holding elements 3 and the heat shield element 8 is achieved. In a further step, two connecting elements 4 are inserted into adjacent receiving grooves 11 and each positioned at a distance from one another in the circumferential direction U and approximately parallel to one another in the axial direction A. Between the two connecting elements 4 each arranged in a receiving groove 11, the fastening sections 12 of the holding elements 3 are now inserted radially into the receiving grooves 11. The fastening sections 12 of the holding elements 3 are then brought into engagement with each other with the respective connecting elements 4 by moving the corresponding components in the circumferential direction U, with screw holes 18 of the holding elements 3 being positioned in alignment with threaded holes, not shown, which are provided in the support structure 2. Fastening screws are then inserted into the screw holes 18 of the holding elements 3 and screwed into the threaded holes. The assembly of the next heat shield element 8 can now follow, as shown in the Figures 1 , 2 and 4 is shown.

Die zuvor beschriebene Anordnung zeichnet sich insbesondere dadurch aus, dass die Spaltbreite B zwischen benachbart angeordneten Hitzeschildelementen 8 sehr klein gewählt werden kann. Dies liegt vornehmlich zum einen an der zugsteifen Ausbildung der Halteelemente 3 und zum anderen an der Tatsache, dass die Hitzeschildelemente 8 mit vergleichsweise großem Abstand zur Tragstruktur 2 positioniert sind, weshalb sich die Hitzeschildelemente 8 während des Brennkammerbetriebs problemlos in radialer Richtung R ausdehnen können. Dank der geringen Spaltbreite B ist nur ein geringer Sperrluftvolumenstrom erforderlich, was mit einer deutlich gesteigerten Effizienz der Gasturbine einhergeht. Darüber hinaus sind die Halteelemente 3 aufgrund der Tatsache, dass die Ausnehmungen 9 an der Kaltgasseite 6 der Hitzeschildelemente 8 vorgesehen sind, vollständig durch die Hitzeschildelemente 8 verdeckt und entsprechend besser thermisch geschützt, so dass auch der Kühlbedarf der Halteelemente 3 geringer ist. Gleiches gilt für den Wartungsbedarf, da die Halteelemente 3 weniger verschleißen.The previously described arrangement is characterized in particular by the fact that the gap width B between adjacently arranged heat shield elements 8 can be chosen to be very small. This is primarily due, on the one hand, to the tensile-resistant design of the holding elements 3 and, on the other hand, to the fact that that the heat shield elements 8 are positioned at a comparatively large distance from the support structure 2, which is why the heat shield elements 8 can easily expand in the radial direction R during combustion chamber operation. Thanks to the small gap width B, only a small sealing air volume flow is required, which is accompanied by a significantly increased efficiency of the gas turbine. In addition, due to the fact that the recesses 9 are provided on the cold gas side 6 of the heat shield elements 8, the holding elements 3 are completely covered by the heat shield elements 8 and are correspondingly better thermally protected, so that the cooling requirement of the holding elements 3 is also lower. The same applies to the maintenance requirement, since the holding elements 3 wear less.

Die Figuren 7 und 8 zeigen eine Brennkammer 1 gemäß einer weiteren Ausführungsform der vorliegenden Erfindung, die sich nur hinsichtlich einiger Details bezüglich der Ausbildung der Halteelemente 3, der Verbindungselemente 4 und der Federelemente 10 von der zuvor beschriebenen Ausführungsform unterscheidet, weshalb nachfolgend nur auf diese Details eingegangen und im Übrigen auf die vorherigen Ausführungen verwiesen wird. Die Halteelemente 3 wiesen wie zuvor jeweils einen Befestigungsabschnitt 12 und zwei Eingriffsabschnitte 13 auf. Der Befestigungsabschnitt ist allerdings nicht mit einer Durchgangsöffnung 14, sondern an seiner Oberseite mit einer Vertiefung 24 zur Aufnahme der unteren zwei von insgesamt drei Federelementen 10 versehen. Ferner umfasst der Befestigungsabschnitt 12 in seinen gegenüberliegenden Endbereichen auswärts abstehende Vorsprünge 25, deren Kontur korrespondierend zum Querschnitt der Aufnahmenuten 11 gewählt ist, so dass diesen Vorsprünge 25 formschlüssig in die Aufnahmenuten 11 eingreifen. Dies führt dazu, dass auch die Befestigungsabschnitte 12 der Halteelemente 3 ebenso wie die Verbindungselemente 4 in Umfangsrichtung in die Aufnahmenuten 11 einschoben und nicht mehr wie zuvor beschrieben radial in diese eingesetzt werden können. Zudem sind nicht die Befestigungsabschnitte 12 der Halteelemente 3, sondern die Verbindungselemente 4 mit einer Schraubenbohrung 18 versehen, so dass die Fixierung der Halteelemente 3 und der Verbindungselemente 4 in Umfangsrichtung U nunmehr über eine Verschraubung der Verbindungselemente 4 mit der Tragstruktur 2 erfolgt. Wie zuvor bereits erwähnt sind anstelle von zwei Federelementen 10 drei Federelemente 10 vorgesehen, wobei die Ausrichtung der unteren beiden Federelemente 10 entgegen der zuvor beschriebenen Ausrichtung gewählt ist, also mit nach oben gerichtetem Wellenberg.The Figures 7 and 8 show a combustion chamber 1 according to a further embodiment of the present invention, which differs from the previously described embodiment only with regard to some details regarding the design of the holding elements 3, the connecting elements 4 and the spring elements 10, which is why only these details will be discussed below and the rest the previous statements are referred to. As before, the holding elements 3 each had a fastening section 12 and two engagement sections 13. However, the fastening section is not provided with a through opening 14, but rather on its top with a recess 24 for receiving the lower two of a total of three spring elements 10. Furthermore, the fastening section 12 comprises outwardly projecting projections 25 in its opposite end regions, the contour of which is selected to correspond to the cross section of the receiving grooves 11, so that these projections 25 engage in a form-fitting manner in the receiving grooves 11. This means that the fastening sections 12 of the holding elements 3 as well as the connecting elements 4 are pushed into the receiving grooves 11 in the circumferential direction and can no longer be inserted radially into them as described above. In addition, it is not the fastening sections 12 of the holding elements 3, but rather the connecting elements 4 is provided with a screw hole 18, so that the holding elements 3 and the connecting elements 4 are now fixed in the circumferential direction U by screwing the connecting elements 4 to the support structure 2. As previously mentioned, instead of two spring elements 10, three spring elements 10 are provided, with the orientation of the lower two spring elements 10 being chosen opposite to the previously described orientation, i.e. with the wave crest directed upwards.

Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.Although the invention has been illustrated and described in detail by the preferred embodiment, the invention is not limited by the examples disclosed and other variations may be derived therefrom by those skilled in the art without departing from the scope of the invention.

Claims (14)

  1. Combustion chamber (1),
    in particular a combustion chamber of a gas turbine,
    having a support structure (2),
    a multiplicity of holding elements (3) which are fastened to the support structure (2), and
    a multiplicity of heat shield elements (8)
    which conjointly form a heat shield,
    have in each case a hot-gas side (5),
    a cold-gas side (6) and
    end sides (7) that connect the hot-gas side (5) and the cold-gas side (6) to one another,
    wherein the holding elements (3) engage in a form-fitting manner in recesses (9) which are provided on the heat shield elements (8),
    wherein the holding elements (3) have in each case at least two engagement portions (13) configured for engaging in a form-fitting manner in the recesses (9) of a heat shield element (8), said engagement portions (13) being connected to one another so as to provide tensile rigidity in such a manner that a diverging movement of the engagement portions (13) is effectively counteracted at the temperatures prevalent during the operation of the combustion chamber, and
    that spring elements (10), configured as leaf springs, which cause a force-fit between the engagement portions (13) of the holding elements (3) and the heat shield elements (8) extend between the support structure (2) and the heat shield elements (8),
    wherein the engagement portions (13) per se are configured so as to provide tensile rigidity in such a manner that said engagement portions (13) under the effect of the spring forces are dimensionally stable at the temperatures prevalent during the operation of the combustion chamber.
  2. Combustion chamber (1) according to Claim 1,
    characterized in that
    the recesses (9) are configured on the cold sides (6) of the heat shield elements (8).
  3. Combustion chamber (1) according to Claim 1 or 2,
    characterized in that
    the support structure (2) is provided with circumferentially extending receptacle grooves (11) for receiving the holding elements (3).
  4. Combustion chamber (1) according to one of the preceding claims,
    characterized in that
    holding elements (3) which are disposed so as to be circumferentially adjacent to one another are releasably connected to one another by way of connecting elements (4).
  5. Combustion chamber (1) according to Claim 3 or 4,
    characterized in that
    the receptacle grooves (11) have a cross-section provided with undercuts, and in that the holding elements (3) and/or the connecting elements (4) are received in a form-fitting manner in the receptacle grooves (11).
  6. Combustion chamber (1) according to one of the preceding claims,
    characterized in that
    the holding elements (3) have a fastening portion (12) which points toward the support structure (2) and is configured so as to provide tensile rigidity, and at least two engagement portions (13) which project from the fastening portion (12) and are in particular configured so as to be integral to the latter,
    in that each heat shield element (8) has a number of cold-gas proximal recesses (9), the number of the latter corresponding at least to the number of engagement portions (13) of a holding element (3), and
    in that each engagement portion (13) engages in a form-fitting manner in one of the recesses (9).
  7. Combustion chamber (1) according to Claim 6,
    characterized in that
    the cold-gas proximal recesses (9) of the heat shield elements (8) are configured so as to be elongate, defining in each case one insertion region (19) and, adjoining the latter in the longitudinal direction, one engagement region (20),
    in that the insertion region (19) is configured in such a manner that an assigned engagement portion (13) of a holding element (3) can be inserted radially into said insertion region (19), in that the engagement region (20) is conceived for receiving the engagement portion (13) in a form-fitting manner, and
    in that the insertion region (19) and the engagement region (20) are configured in such a manner that an engagement portion (13) which is inserted radially into the insertion region (19) can be transferred into the engagement region (20) by being displaced in the longitudinal direction.
  8. Combustion chamber (1) according to Claim 6 or 7,
    characterized in that
    the fastening portion (12) is configured in the form of an elongate plate which is in particular curved in the manner of a circular ring segment, and
    in that the engagement portions (13) are provided in the region of the free ends of the fastening portion (12).
  9. Combustion chamber (1) according to Claims 6 to 8,
    characterized in that
    the engagement portions (13) project from the fastening portion (12) at an angle (α) which differs from 90°, and/or in that the engagement portions (13) are provided with end regions pointing toward or away from one another.
  10. Combustion chamber (1) according to one of Claims 6 to 9,
    characterized in that
    the fastening portion (12) on the upper side thereof that points toward the heat shield element (8) is provided with a depression (24) which is conceived for receiving at least one of the spring elements (10).
  11. Combustion chamber (1) according to one of Claims 6 to 10,
    characterized in that
    at least one spring element (10) is in each case guided in such a manner through a passage opening (14) configured on the fastening portion (12) that said at least one spring element (10) in a central region is supported in relation to the support structure (2).
  12. Combustion chamber (1) according to one of Claims 6 to 10,
    characterized in that
    the fastening portions (12) of the holding elements (3) and the spring elements (10) are provided with correspondingly disposed elongate bores (16, 17) through which tension bolts (23) for pulling the spring elements (10) in the direction of the fastening portions (12) can be inserted.
  13. Combustion chamber (1) according to one of the preceding claims,
    characterized in that
    each heat shield element (8) is held to the support structure (2) by way of two holding elements (3),
    in particular by way of exactly two holding elements (3).
  14. Combustion chamber (1) according to one of the preceding claims,
    characterized in that
    the shaping of the holding elements (3) takes place while using a casting process or an additive manufacturing method, optionally with subsequent machining.
EP19842583.7A 2019-01-17 2019-12-16 Combustion chamber Active EP3894749B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019200593.4A DE102019200593A1 (en) 2019-01-17 2019-01-17 Combustion chamber
PCT/EP2019/085232 WO2020148045A1 (en) 2019-01-17 2019-12-16 Combustion chamber

Publications (2)

Publication Number Publication Date
EP3894749A1 EP3894749A1 (en) 2021-10-20
EP3894749B1 true EP3894749B1 (en) 2023-11-22

Family

ID=69190738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19842583.7A Active EP3894749B1 (en) 2019-01-17 2019-12-16 Combustion chamber

Country Status (6)

Country Link
US (1) US11821629B2 (en)
EP (1) EP3894749B1 (en)
KR (1) KR20210113348A (en)
CN (1) CN113396304B (en)
DE (1) DE102019200593A1 (en)
WO (1) WO2020148045A1 (en)

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749298A (en) 1987-04-30 1988-06-07 United Technologies Corporation Temperature resistant fastener arrangement
US5104287A (en) * 1989-09-08 1992-04-14 General Electric Company Blade tip clearance control apparatus for a gas turbine engine
EP1288601B1 (en) 2001-08-28 2006-10-25 Siemens Aktiengesellschaft Heat shield brick and its use in a combustion chamber
US7338244B2 (en) * 2004-01-13 2008-03-04 Siemens Power Generation, Inc. Attachment device for turbine combustor liner
EP1591724B1 (en) * 2004-04-30 2011-06-29 Siemens Aktiengesellschaft Gap sealing element for a heat shield
US8695989B2 (en) * 2004-04-30 2014-04-15 Siemens Aktiengesellschaft Hot gas seal
EP1715248A1 (en) * 2005-04-19 2006-10-25 Siemens Aktiengesellschaft Holding element and heatshield member for a heatshield and combustion chamber including said heatshield
CN2837127Y (en) 2005-04-26 2006-11-15 东风汽车悬架弹簧有限公司 A rear composite air suspension frame assembly for coach chassis
FR2920476B1 (en) 2007-09-05 2018-04-27 Safran Aircraft Engines ACTUATING DEVICE, DISCHARGE SYSTEM WHERE IT IS EQUIPPED AND TURBOJET ENGINE COMPRISING THE SAME
JP5328255B2 (en) 2008-08-04 2013-10-30 株式会社キーエンス Waveform observation apparatus and waveform observation system
EP2236928A1 (en) * 2009-03-17 2010-10-06 Siemens Aktiengesellschaft Heat shield element
CN102042776A (en) 2009-10-16 2011-05-04 富准精密工业(深圳)有限公司 Loop heat pipe
EP2522907A1 (en) 2011-05-12 2012-11-14 Siemens Aktiengesellschaft Heat shield assembly
EP2591881A1 (en) * 2011-11-09 2013-05-15 Siemens Aktiengesellschaft Device, method and cast screw for safe exchange of heat shield panels of gas turbines
EP2711633A1 (en) 2012-09-21 2014-03-26 Siemens Aktiengesellschaft Holder element for holding a heat shield and method for cooling the support structure of a heat shield
EP2992270B1 (en) * 2013-06-27 2019-03-27 Siemens Aktiengesellschaft Heat shield
US10969103B2 (en) * 2013-08-15 2021-04-06 Raytheon Technologies Corporation Protective panel and frame therefor
DE102013219187B3 (en) 2013-09-24 2015-02-05 Siemens Aktiengesellschaft Dismantling tool for a heat shield element
US9664389B2 (en) * 2013-12-12 2017-05-30 United Technologies Corporation Attachment assembly for protective panel
US9890953B2 (en) * 2014-01-10 2018-02-13 United Technologies Corporation Attachment of ceramic matrix composite panel to liner
US9612017B2 (en) 2014-06-05 2017-04-04 Rolls-Royce North American Technologies, Inc. Combustor with tiled liner
CN203979237U (en) 2014-07-23 2014-12-03 瑞安市建鑫机械制造有限公司 Leaf spring fastening piece and leaf spring linkage structure
WO2016050535A1 (en) 2014-09-29 2016-04-07 Siemens Aktiengesellschaft Heat shield element for a heat shield of a combustion chamber
DE102016214818A1 (en) * 2015-10-06 2017-04-06 Siemens Aktiengesellschaft Mounting arrangement for mounting a heat shield tile
DE102016211613A1 (en) * 2016-06-28 2017-12-28 Siemens Aktiengesellschaft Heat shield arrangement of a combustion chamber with disc spring package
EP3309456A1 (en) * 2016-10-13 2018-04-18 Siemens Aktiengesellschaft Heat shield element with tile and support
US10378772B2 (en) * 2017-01-19 2019-08-13 General Electric Company Combustor heat shield sealing
US11047576B2 (en) * 2017-03-29 2021-06-29 Delavan, Inc. Combustion liners and attachments for attaching to nozzles
US10801730B2 (en) * 2017-04-12 2020-10-13 Raytheon Technologies Corporation Combustor panel mounting systems and methods
DE102017206502A1 (en) 2017-04-18 2018-10-18 Siemens Aktiengesellschaft Holding element for fixing a heat shield element and combustion chamber with heat shield, which comprises such a holding element
US11536454B2 (en) * 2019-05-09 2022-12-27 Pratt & Whitney Canada Corp. Combustor wall assembly for gas turbine engine
CN214064984U (en) 2020-12-18 2021-08-27 上海电气燃气轮机有限公司 Heat shield for gas turbine combustion chamber

Also Published As

Publication number Publication date
CN113396304B (en) 2022-11-29
EP3894749A1 (en) 2021-10-20
KR20210113348A (en) 2021-09-15
WO2020148045A1 (en) 2020-07-23
CN113396304A (en) 2021-09-14
US20220099296A1 (en) 2022-03-31
US11821629B2 (en) 2023-11-21
DE102019200593A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
DE69000424T2 (en) HEAT-RESISTANT STRUCTURE FOR AN AFTERBURNER OR FOR A GAS TURBINE INTERFACE.
EP2409083B1 (en) Heat shield element of a heat shield
EP0419487B1 (en) Heat shield arrangement with low coolant fluid requirement
EP2363643B1 (en) Heat shield element
EP1922471A1 (en) Arrangement for axially securing rotating blades in a rotor and use
WO1992009850A1 (en) Ceramic heat shield on a bearing structure
DE102009016523A1 (en) Grate bar for an incinerator and method of making a grate bar
DE102012103006A1 (en) Slat cover and spring element for a slat cover
DE2827927A1 (en) SPACER GRILLE
EP2532273B1 (en) Fastening element
EP1260767A1 (en) Heat shield assembly for a high temperature gas conveying component, in particular for structural components of gas turbines, as well as process for producing such an assembly
DE10333314B4 (en) Wegstehelement for fixing thermal insulation panels
EP2407641A1 (en) Sealing element for sealing a gap and sealing arrangement
EP1707759A2 (en) Housing of a turbomachine
WO2013050168A1 (en) Photovoltaic framework, purlin assembly and connecting element
EP3894749B1 (en) Combustion chamber
EP1591724B1 (en) Gap sealing element for a heat shield
EP1820196B1 (en) Fuel element for a boiling water reactor
EP1422479B1 (en) Chamber for the combustion of a fluid combustible mixture
EP1714007B1 (en) Device for suspending guide blades
EP1632723B1 (en) Mounting system for a wall-fixable extractor hood
DE102015207760A1 (en) Hot gas carrying housing
EP2310748B1 (en) Heat shield arrangement
EP2853690A1 (en) Insert for cooling a turbine blade made from a plurality of sections
DE19602943C2 (en) Process for the production of heat sinks for mounting on semiconductor components and shell profiles for the production of such heat sinks

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220610

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230619

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009998

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231226

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231227

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019009998

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

26N No opposition filed

Effective date: 20240823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231122

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231216

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20241220

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20241128

Year of fee payment: 6