[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3872206B1 - Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product - Google Patents

Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product Download PDF

Info

Publication number
EP3872206B1
EP3872206B1 EP21155199.9A EP21155199A EP3872206B1 EP 3872206 B1 EP3872206 B1 EP 3872206B1 EP 21155199 A EP21155199 A EP 21155199A EP 3872206 B1 EP3872206 B1 EP 3872206B1
Authority
EP
European Patent Office
Prior art keywords
cold
flat steel
steel product
rolling
rolled flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21155199.9A
Other languages
German (de)
French (fr)
Other versions
EP3872206A1 (en
Inventor
Annette BÄUMER
Roland Sebald
Hans Ferkel
Karoline Drewes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel Europe AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3872206A1 publication Critical patent/EP3872206A1/en
Application granted granted Critical
Publication of EP3872206B1 publication Critical patent/EP3872206B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a cold-rolled flat steel product which has been post-treated to increase strength and has an increased yield strength and increased tensile strength, and a method for its manufacture.
  • Flat steel products of the type in question are rolled products obtained by cold rolling, such as steel strips or sheets, as well as blanks and blanks made from them.
  • High-strength flat steel products are becoming increasingly important, especially in the field of vehicle construction, since they enable the vehicle's dead weight to be reduced and the payload to be increased.
  • a low weight not only contributes to the optimal use of the technical performance of the respective drive unit, but also supports resource efficiency, cost optimization and climate protection.
  • a significant reduction in the dead weight of sheet steel constructions can be achieved by increasing the mechanical properties, in particular the strength of the processed flat steel product.
  • a steel flat product consisting of a two-phase steel is known.
  • the steel flat product is manufactured by hot and cold rolling. After cold rolling, it goes through an additional heat treatment to increase the yield strength.
  • the steel flat product consists of a steel which (in % by weight) contains 0.05 - 0.20% C, 0.2 - 1.5% Si, 0.01 - 1.5% Al, 1.0 - 3.0% Mn, ⁇ 0.02% P, ⁇ 0.005% S, ⁇ 0.008% N, and optionally 0.05 - 1.0%, 0.05 - 0.2% Mo, 0.005 - 0.2 % Ti, 0.001 - 0.05% Nb, 0.0001 - 0.005% B, balance Fe and unavoidable impurities.
  • the flat steel product has a microstructure consisting of (in area %) ⁇ 5% bainite, ⁇ 5% polygonal ferrite, ⁇ 90% martensite and ⁇ 2% by volume residual austenite, with at least half of the martensite being tempered martensite.
  • a special heat treatment to achieve the mechanical properties and structure.
  • the object of the invention was to specify a method for producing a flat steel product with a high yield point and a high tensile strength R m that can be carried out reliably and thereby leads to an optimal combination of properties of the flat steel product obtained.
  • the yield point of a flat steel product is understood to mean the lower yield point R el if the flat steel product has a pronounced yield point. Otherwise (ie for flat steel products without a pronounced yield point), the yield point of the flat steel product is understood to mean the yield point R p02 for the purposes of this application.
  • tensile strength and yield point are determined in accordance with DIN-EN ISO 6982-1, specimen form 2 (Annex B Tab. B1).
  • a steel flat product of the same quality should be created in the same way.
  • this object has been achieved by the invention in that the work steps specified in claim 1 are carried out when producing a cold-rolled flat steel product with a high yield point and a high tensile strength R m .
  • a flat steel product that achieves the above-mentioned object according to the invention has the features specified in claim 8 .
  • the temper rolling takes place at room temperature, although the flat steel product usually heats up to a certain extent as a result of the temper rolling.
  • the yield point can be increased both by plastic deformation during re-rolling and by tempering.
  • plastic deformation new dislocations occur in the lattice structure, which contribute to the increase in strength.
  • Tempering leads to the formation and growth of precipitations that prevent dislocations from sliding.
  • the subsequent tempering must be designed in such a way that sufficient thermal energy is introduced to enable the local recovery processes, but not too much thermal energy, otherwise global microstructure formation will occur.
  • afterglow temperatures in the range of 100° to 400°C have proven to be appropriate.
  • the afterglow temperature is preferably greater than 130°C and/or less than 330°C.
  • the annealing time is expediently 0.2-25 hours.
  • the tempering provided according to the invention after the skin-pass rolling is carried out as batch annealing.
  • the alloy of the steel from which the flat steel products to be processed according to the invention are made is selected in such a way that optimal mechanical properties are achieved under the influence of the additional post-treatment step.
  • C is present in the steel of a cold rolled steel flat product processed in accordance with the present invention at levels of 0.05-0.25% by weight to produce sufficient martensite to increase strength. At higher C contents, too little ferrite occurs. In addition, too high a C content has a negative effect on weldability.
  • the C content is preferably at most 0.20% by weight, particularly preferably at most 0.18%. On the other hand, if the C content is less than 0.05%, the desired strength is not obtained.
  • the C content is preferably at least 0.08% by weight, particularly preferably at least 0.12% by weight.
  • Si is present in the steel of a cold-rolled flat steel product processed according to the invention in contents of 0.05-0.6% in order to increase the strength by solid solution hardening without impairing the ductility.
  • Si serves as a ferrite former. Excessively high Si contents can impair the surface finish, for example as a result of adherent scale or grain boundary oxidation.
  • the Si content can be limited to a maximum of 0.6% by weight.
  • the Si content is preferably at most 0.42%.
  • the Si content can be set to at least 0.24% by weight.
  • Mn is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 1.0-3.0% by weight in order to promote solid solution strengthening as well as martensite formation to increase strength. This is done by Mn stabilizing the austenite from which the martensite is formed. The volume fraction of the martensite is therefore adjusted by targeted adjustment of the Mn content.
  • the Mn content is preferably at least 1.5% by weight, in particular at least 1.7% by weight.
  • an excessive addition of Mn leads to an insufficient proportion of the martensite phase. Therefore, the Mn content is preferably at most 2.4% by weight.
  • Al is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 0.02-1.5% by weight, on the one hand to serve as a deoxidizing agent and to bind nitrogen during melting and on the other hand to ensure the sufficient amount of ferrite and thus the ductility increase.
  • the maximum content of 1.5% by weight should not be exceeded. Compliance with an upper limit of 0.9% by weight has proven to be particularly advantageous.
  • N is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention must therefore be at most 0.02% by weight. Too high an N content impairs the workability and, if B and/or Al is also present, can lead to the formation of harmful nitrides and thus prevent the effectiveness of these elements.
  • the N content is preferably at most 0.01% by weight. Optimally, it is limited to at most 0.008% by weight, especially at most 0.006% by weight.
  • P is an undesirable alloying component attributable to unavoidable impurities. Excessive addition of P can lead to embrittlement and thus to reduced crash properties. In addition, the weldability is impaired by the P content. For these reasons, the P content should not exceed 0.2% by weight.
  • the P content is preferably at most 0.05%, in particular at most 0.03%.
  • S is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention may therefore not be more than 0.05% by weight. In order to ensure good ductility of the steel product, the formation of MnS or (Mn,Fe)S must be kept as low as possible.
  • the S content is preferably at most 0.01% by weight, particularly preferably at most 0.005% by weight.
  • Cr and Mo contribute to increasing the strength. They favor the formation of martensite by shifting the ferrite-pearlite transformation zones during heat treatment.
  • the Mo content is at least 0.005% by weight, preferably at least 0.005% by weight.
  • the Cr content is at least 0.2% by weight, preferably at least 0.3% by weight. If the Cr or Mo content is too high, however, undesirable carbides can form. In addition, the alloy cost increases excessively.
  • the Mo content is therefore at most 1.0% by weight, preferably at most 0.3% by weight.
  • the Cr content is at most 1.5% by weight, preferably at most 0.8% by weight.
  • Ti, B and Nb contribute to the increase in strength and lead to a finer microstructure.
  • B enables a higher proportion of martensite by suppressing the formation of ferrite and bainite, but can only develop its full effect through the additional addition of Ti, which prevents the formation of unwanted boron nitrides by forming fine Ti(C,N) precipitations.
  • This increase in strength due to the formation of precipitates is favored or reinforced by the additional addition of Nb. It has been shown that the sum of the contents of Ti, Nb and 15 times the content of B should be at least 0.02% by weight in order to achieve these properties (i.e. Ti+Nb+15 ⁇ B >_ 0 .02% by weight).
  • the boron content is less than 0.005% by weight, preferably less than 0.003% by weight.
  • V in the steel of the cold-rolled steel flat product processed according to the present invention results in an improvement in workability and an improved resistance to delayed cracking through a finer microstructure.
  • a V content in the range of 0.0005-0.05% by weight should be chosen, in particular it should be at least 0.005% by weight.
  • the Cu and Ni contribute to strengthening in the steel of the cold-rolled flat steel product processed according to the present invention, and may be added singly or in combination.
  • the Cu content is at least 0.0001% by weight, preferably at least 0.001% by weight. However, the Cu content should not exceed 0.5% by weight, preferably 0.08% by weight.
  • the Ni content is at least 0.002% by weight, preferably at least 0.01% by weight. At maximum, the Ni content should be no greater than 0.2% by weight, preferably no greater than 0.1% by weight.
  • the addition of Ca in the steel of the cold-rolled flat steel product processed according to the invention leads to a finer distribution of inclusions in the steel and forms spherical sulfides, which can reduce disadvantages of other harmful sulfides in further processing.
  • the Ca content should be at least 0.0005% by weight. However, since too high a Ca content can have adverse effects on castability and hot workability, it should be at most 0.007% by weight, preferably at most 0.005% by weight.
  • the steel has a carbon equivalent C eq of between 0.3% and 1.3%.
  • the carbon equivalent is well suited to characterizing the subsequent workability of the steel flat product. With values in the range of 0.3% to 1.3%, the steel flat product can both be welded and coated without any problems compared to other steel alloys with a similar strength and a higher proportion of alloying elements.
  • the carbon equivalent is preferably at most 0.7% for this. More preferably, the carbon equivalent is at least 0.3%.
  • a cold-rolled flat steel product is preferably used as the starting material for the post-treatment process according to the invention, the structure of which consists of at least two phases, of which martensite and ferrite are the dominant phases, with more than 10% by volume martensite and more than 60% by volume ferrite available.
  • the ferrite content is preferably more than 70% by volume, in particular more than 80%.
  • the remainder may contain bainite or precipitates.
  • the structure of the steel flat product should contain at least 60% by volume of ferrite in order to be able to set the necessary elongation. At least 10% by volume of martensite should also be present in the structure of the flat steel product according to the invention in order to achieve the strength and to enable a tempering effect.
  • the post-treated microstructure consists of at least two phases, of which ferrite and martensite are the dominant phases.
  • the martensite is now tempered martensite.
  • the ferrite phase shows slightly stretched grains, any previously present residual austenite has disintegrated.
  • the other phase components are unchanged compared to the starting product.
  • the post-treated flat steel product thus has a structure consisting of at least two phases which (in vol%) more than 10% tempered martensite and more than 60% ferrite.
  • the ferrite content is preferably more than 70% by volume, in particular more than 80%.
  • the cold-rolled flat steel product is coated between temper rolling and tempering. Coating has the advantage that protection against corrosion is guaranteed.
  • the cold-rolled flat steel product is coated, in particular electrolytically coated, between re-rolling and tempering.
  • the advantage of a coating between re-rolling and tempering is that any hydrogen absorbed during the coating is removed again during tempering. Hydrogen can lead to hydrogen embrittlement and should therefore be avoided if possible.
  • An electrolytic coating has the advantage that the flat steel product is not overheated, for example in comparison to hot-dip coating. Excessive heating during coating could affect the structure and thus the mechanical properties.
  • the cooling of the cold-rolled flat steel product to room temperature has two intermediate steps.
  • the cold-rolled flat steel product is cooled to a first cooling temperature T 1 in the first intermediate step and is held at the first cooling temperature T 1 for a first holding time t 1 .
  • the cold-rolled flat steel product is then cooled to a second cooling temperature T 2 in the second intermediate step and is held at the second cooling temperature T 2 for a second holding time t 2 .
  • This two-stage cooling process has the advantage that ferrite is formed in the first intermediate step and the proportion of bainite and residual austenite is adjusted in the second intermediate step.
  • the cooling can also take place in a single cooling step to room temperature.
  • the cold-rolled flat steel product that has been post-treated to increase strength can be provided with a metallic protective coating.
  • a metallic protective coating This is example useful if components are made from the steel flat product that are exposed to a corrosive environment in practical use.
  • the metallic coating can be applied in any suitable manner, application by hot-dip coating being particularly suitable here, for example in a continuous hot-dip coating plant.
  • a post-treated, cold-rolled flat steel product has a yield strength of at least 1000 MPa if the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction).
  • the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction).
  • the after-treatment steps according to the invention regularly result in a yield strength of at least 1000 MPa; preferred variants have a yield strength of at least 1200 MPa, in particular at least 1400 MPa.
  • a tensile strength of at least 1100 MPa is also achieved, with preferred embodiment variants having a tensile strength of at least 1200 MPa, in particular at least 1400 MPa.
  • the alloy-independent tensile strength R m is at least 400 MPa, preferably at least 450 MPa.
  • the high tensile strength is therefore not achieved by high alloying with elements that contribute to hardening (C, Si, Mn, Cr, Mo), but rather by the post-treatment steps of temper rolling and tempering according to the invention.
  • the cold-rolled steel flat product, which has been post-treated to increase strength, has the advantage that high strength can be achieved without excessive alloying. It is therefore correspondingly cheaper to produce.
  • the negative effects of the high alloy content on later processing steps such as welding or coating are eliminated. In this regard, low-alloy steels are easier to process.
  • the sum of the grain boundary lengths for small-angle grain boundaries of a square measuring field of 50 ⁇ m*50 ⁇ m in a longitudinal section is greater than 10 mm, preferably greater than 15 mm, particularly preferably greater than 20 mm.
  • the sum of the grain boundary lengths is determined using the EBSD method.
  • the EBSD method (electron backscattering diffraction) is one of the electron microscopic examination methods. The information from the electrons backscattered by the sample is used. The electron beam scans the surface of the sample during an analysis. The impinging electrons are scattered in the sample. Some of these hit lattice surfaces of the examined grain under Bragg conditions and are diffracted. The resulting diffraction pattern (Kikuchi pattern) is recorded using a phosphor screen and processed and interpreted by software.
  • the Kikuchi patterns contain information about the existing crystal symmetries, which allow conclusions to be drawn about the investigated crystallographic phases and the orientation of the examined grain, as well as lattice distortions, misorientation of grain boundaries, etc. If you now look at a square measuring field of 50 ⁇ m*50 ⁇ m on the surface of a section taken along the rolling direction (longitudinal section), it is possible to add up the total length of the small-angle grain boundaries which separate orientation differences of the lattice of ⁇ 15°.
  • the steel melts 1-17 have been cast into slabs for the subsequent tests 1-17.
  • the slabs cast from the steel melts were reheated to a reheating temperature of 1260-1300°C and then hot-rolled in a conventional manner at a hot-rolling finish temperature of 880-990°C, each into a hot strip having a thickness of 2-3 mm.
  • the hot strips obtained were cooled to a coiling temperature of 525-585° C. and coiled at this coiling temperature to form a coil.
  • the hot strips were cold-rolled in a similarly conventional manner with an overall degree of cold-rolling of 20-60% on average, which was achieved by cold-rolling, to form cold-rolled steel strips.
  • the cold-rolled steel strips then underwent continuous annealing at an annealing temperature of 816-916°C.
  • the steel strips were cooled to room temperature in two intermediate steps.
  • the steel strips were cooled to a first cooling temperature T 1 with 650° C. ⁇ T 1 ⁇ 800° C. and held at the first cooling temperature for a first holding time t 1 with 0s ⁇ t 1 ⁇ 20 s.
  • the steel strips were then cooled to a second cooling temperature T 2 and held at the second cooling temperature T 2 for a second holding time t 2 .
  • the following applied to the second cooling temperature T 2 and the second holding time t 2 450 ° C ⁇ T 2 ⁇ 550 ° C and 60 s ⁇ t 2 ⁇ 500 s
  • All of the steel strips produced in this way had a structure with more than 10% martensite and more than 60% ferrite.
  • Each of the cold-rolled steel strips obtained in the tests described above was then first subjected to temper rolling with a temper rolling degree W G2 and then to an additional tempering anneal carried out as a batch annealing, during which it was held at a temperature T G2 for more than 20 minutes .
  • cold-rolled steel strips according to the invention are optimally suited for the production of components which have high strength but do not have the high-alloy chemical analysis typical of this strength. This reduces the associated welding problems and the cost of the alloying components.
  • FIGs 1 and 2 show, as an example for the steel from example no. 13 described above (see Table 1), the increase in yield strength through temper rolling without tempering ( figure 1 ) and by tempering without prior temper rolling ( figure 2 ).
  • the difference in yield strength between the condition after re-rolling or tempering and the initial condition is plotted in each case. In all cases, the yield point was determined perpendicular to the rolling direction.
  • figure 1 shows this difference as a function of the degree of rolling.
  • figure 2 shows the difference as a function of the glow temperature during the initial glow. The annealing time was 20 minutes in each case. Both figures show a clear increase in the yield strength due to the respective post-treatment.
  • Figure 13 shows the synergistic effect of temper rolling and tempering on strength for steel #13.
  • the difference in yield strength between the condition after temper rolling and tempering and the condition after temper rolling without tempering is plotted.
  • a degree of rolling of 0% means the case without temper rolling. If the two effects (tempering and tempering) on the strength were independent of one another, there should not be any dependency on the degree of rolling, since the effect of rolling has just been subtracted. For all three afterglow temperatures (200°C, 300°C and 400°C) there should be a curve parallel to the x-axis. Instead, however, an increase with increasing degree of rolling can be seen for all three afterglow temperatures. The overall effect therefore goes beyond the sum of the two individual effects.
  • FIGs 4 and 5 show light microscopic longitudinal sections of steel no. 13 after nital etching.
  • the high ferrite content of more than 60% by volume can be clearly seen in both figures.
  • figure 4 shows the steel in its initial state without post-treatment.
  • steel No. 13 is shown after post-treatment to increase strength as shown in Table 2, in which the steel was first temper rolled to a degree of rolling of 30% and then tempered at 300° C. for more than 20 minutes. The rolling direction is included figure 5 in the plane of the drawing and runs horizontally.
  • the slightly stretched grains of the ferrite phase can be clearly seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft ein zur Festigkeitssteigerung nachbehandeltes, kaltgewalztes Stahlflachprodukt mit einer erhöhten Dehngrenze und einer erhöhten Zugfestigkeit sowie ein Verfahren zu dessen Herstellung.The invention relates to a cold-rolled flat steel product which has been post-treated to increase strength and has an increased yield strength and increased tensile strength, and a method for its manufacture.

Bei Stahlflachprodukten der hier in Rede stehenden Art handelt es sich um durch Kaltwalzen erhaltene Walzprodukte, wie Stahlbänder oder Bleche, sowie daraus hergestellte Zuschnitte und Platinen.Flat steel products of the type in question are rolled products obtained by cold rolling, such as steel strips or sheets, as well as blanks and blanks made from them.

Alle Angaben zu Gehalten der in der vorliegenden Anmeldung angegebenen Stahlzusammensetzungen sind auf das Gewicht bezogen, sofern nicht ausdrücklich anders erwähnt. Alle nicht näher bestimmten, im Zusammenhang mit einer Stahllegierung stehenden "%-Angaben" sind daher als Angaben in "Gew.-% " zu verstehen.All information on contents of the steel compositions given in the present application are based on the weight, unless expressly stated otherwise. All "% figures" in connection with a steel alloy that are not specified in more detail are therefore to be understood as figures in "% by weight".

Angaben zu Gefügebestandteilen beziehen sich jeweils auf Volumenprozente ("Vol.-%"), soweit nicht ausdrücklich anders angegeben.Information on structural components refers to percentages by volume (“% by volume”), unless expressly stated otherwise.

Hochfeste Stahlflachprodukte haben insbesondere im Bereich des Fahrzeugbaus eine wachsende Bedeutung, da sie eine Reduzierung des Eigengewichts des Fahrzeugs und eine Steigerung der Nutzlast ermöglichen. Ein geringes Gewicht trägt nicht nur zur optimalen Nutzung der technischen Leistungsfähigkeit des jeweiligen Antriebsaggregats bei, sondern unterstützt die Ressourceneffizienz, Kostenoptimierung und den Klimaschutz.High-strength flat steel products are becoming increasingly important, especially in the field of vehicle construction, since they enable the vehicle's dead weight to be reduced and the payload to be increased. A low weight not only contributes to the optimal use of the technical performance of the respective drive unit, but also supports resource efficiency, cost optimization and climate protection.

Eine entscheidende Reduzierung des Eigengewichts von Stahlblechkonstruktionen kann durch eine Steigerung der mechanischen Eigenschaften, insbesondere der Festigkeit des jeweils verarbeiteten Stahlflachprodukts, erreicht werden.A significant reduction in the dead weight of sheet steel constructions can be achieved by increasing the mechanical properties, in particular the strength of the processed flat steel product.

Neben einer hohen Festigkeit werden von modernen, für den Fahrzeugbau vorgesehenen Stahlflachprodukten aber auch gute Zähigkeitseigenschaften, ein gutes Sprödbruchwiderstandsverhalten sowie eine optimale Eignung zum Kaltumformen und Schweißen erwartet.In addition to high strength, modern flat steel products intended for vehicle construction are expected to have good toughness properties, good resistance to brittle fracture and optimum suitability for cold forming and welding.

Insbesondere existieren Anwendungen im Fahrzeugbau, für die in erster Linie ein besonders hoher Umformwiderstand erforderlich ist. Dies spiegelt sich in den im Zugversuch ermittelten Eigenschaften in Form einer hohen Dehngrenze Rp02 wider.In particular, there are applications in vehicle construction for which a particularly high forming resistance is primarily required. This is reflected in the properties determined in the tensile test in the form of a high yield point R p02 .

Es ist eine große Zahl von Versuchen bekannt, diese Anforderungen durch legierungs- oder verfahrenstechnische Maßnahmen zu erfüllen. Gemeinsam ist diesen Versuchen, dass ihnen jeweils ein so genannter Zwei- oder Mehrphasenstahl zu Grunde liegt, dessen Gefüge jeweils aus mindestens zwei dominierenden Phasen bestehen, wobei bei Mehrphasenstählen geringere Anteile weiterer Phasen vorhanden sein können.A large number of attempts are known to meet these requirements through alloying or process engineering measures. What these tests have in common is that they are based on a so-called two-phase or multi-phase steel, the structure of which consists of at least two dominant phases, with multi-phase steels being able to contain smaller proportions of other phases.

So ist beispielsweise aus der WO 2015/158731 A1 ein aus einem Zweiphasenstahl bestehendes Stahlflachprodukt bekannt. Das Stahlflachprodukt wird durch Warm- und Kaltwalzen hergestellt. Nach dem Kaltwalzen durchläuft es eine zusätzliche Wärmebehandlung zur Steigerung der Streckgrenze.For example, from the WO 2015/158731 A1 a steel flat product consisting of a two-phase steel is known. The steel flat product is manufactured by hot and cold rolling. After cold rolling, it goes through an additional heat treatment to increase the yield strength.

Aus der WO 2016/177420 A1 ist ein Stahlflachprodukt bekannt, das eine Zugfestigkeit Rm ≥ 950 MPa, eine Dehngrenze ≥ 800 MPa und eine Bruchdehnung A50 ≥ 8 % besitzt. Dabei besteht das Stahlflachprodukt aus einem Stahl, der (in Gew.-%) 0,05 - 0,20 % C, 0,2 - 1,5 % Si, 0,01 - 1,5 % Al, 1,0 - 3,0 % Mn, ≤ 0,02 % P, ≤ 0,005 % S, ≤ 0,008 % N, sowie jeweils optional 0,05 - 1,0 %, 0,05 - 0,2 % Mo, 0,005 - 0,2 % Ti, 0,001 - 0,05 % Nb, 0,0001 - 0,005 % B, Rest Fe und unvermeidbaren Verunreinigungen, enthält. Dabei gilt 1,5 ≤ ψ ≤ 3, mit ψ=(%C+%Mn/5+%Cr/6)/(%Al+%Si) und %C, %Mn, %Cr, %Al, %Si jeweiliger C-, Mn-, Cr-, Al- bzw. Si-Gehalt des Stahls. Gleichzeitig weist das Stahlflachprodukt ein Gefüge auf, das aus (in Flächen-%) ≤ 5 % Bainit, ≤ 5 % polygonalen Ferrit, ≥ 90 % Martensit sowie ≤ 2 Volumen-% Restaustenit besteht, wobei mindestens die Hälfte des Martensits angelassener Martensit ist. Ebenso ist in der WO 2016/177420 A1 eine spezielle Wärmebehandlung gezeigt, um die mechanischen Eigenschaften und das Gefüge zu erreichen.From the WO 2016/177420 A1 a steel flat product is known which has a tensile strength Rm ≥ 950 MPa, a yield point ≥ 800 MPa and an elongation at break A50 ≥ 8%. The steel flat product consists of a steel which (in % by weight) contains 0.05 - 0.20% C, 0.2 - 1.5% Si, 0.01 - 1.5% Al, 1.0 - 3.0% Mn, ≤ 0.02% P, ≤ 0.005% S, ≤ 0.008% N, and optionally 0.05 - 1.0%, 0.05 - 0.2% Mo, 0.005 - 0.2 % Ti, 0.001 - 0.05% Nb, 0.0001 - 0.005% B, balance Fe and unavoidable impurities. The following applies: 1.5 ≤ ψ ≤ 3, with ψ=(%C+%Mn/5+%Cr/6)/(%Al+%Si) and %C, %Mn, %Cr, %Al, %Si of the respective C -, Mn, Cr, Al or Si content of the steel. At the same time, the flat steel product has a microstructure consisting of (in area %) ≦5% bainite, ≦5% polygonal ferrite, ≧90% martensite and ≦2% by volume residual austenite, with at least half of the martensite being tempered martensite. Likewise in the WO 2016/177420 A1 shown a special heat treatment to achieve the mechanical properties and structure.

Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Verfahren zum Erzeugen eines Stahlflachprodukts mit einer hohen Dehngrenze und einer hohen Zugfestigkeit Rm anzugeben, das sich betriebssicher durchführen lässt und dabei zu einer optimalen Eigenschaftskombination des erhaltenen Stahlflachprodukts führt.Against the background of the prior art explained above, the object of the invention was to specify a method for producing a flat steel product with a high yield point and a high tensile strength R m that can be carried out reliably and thereby leads to an optimal combination of properties of the flat steel product obtained.

Unter der Dehngrenze eines Stahlflachproduktes wird im Sinne dieser Anmeldung die untere Streckgrenze Rel verstanden, wenn das Stahlflachprodukt eine ausgeprägte Streckgrenze aufweist. Andernfalls (das heißt für Stahlflachprodukte ohne eine ausgeprägte Streckgrenze) wird im Sinne dieser Anmeldung unter der Dehngrenze des Stahlflachproduktes die Dehngrenze Rp02 verstanden.For the purposes of this application, the yield point of a flat steel product is understood to mean the lower yield point R el if the flat steel product has a pronounced yield point. Otherwise (ie for flat steel products without a pronounced yield point), the yield point of the flat steel product is understood to mean the yield point R p02 for the purposes of this application.

Zugfestigkeit und Dehngrenze werden im Sinne dieser Anmeldung nach DIN-EN ISO 6982-1, Probenform 2 (Anhang B Tab. B1) ermittelt.For the purposes of this application, tensile strength and yield point are determined in accordance with DIN-EN ISO 6982-1, specimen form 2 (Annex B Tab. B1).

Genauso sollte ein entsprechend beschaffenes Stahlflachprodukt geschaffen werden.A steel flat product of the same quality should be created in the same way.

In Bezug auf das Verfahren ist diese Aufgabe durch die Erfindung dadurch gelöst worden, dass bei der Erzeugung eines kaltgewalzten Stahlflachprodukts mit einer hohen Dehngrenze und einer hohen Zugfestigkeit Rm in Anspruch 1 angegebenen Arbeitsschritte durchlaufen werden.With regard to the method, this object has been achieved by the invention in that the work steps specified in claim 1 are carried out when producing a cold-rolled flat steel product with a high yield point and a high tensile strength R m .

Ein die voranstehend genannte Aufgabe erfindungsgemäß lösendes Stahlflachprodukt weist die in Anspruch 8 angegebenen Merkmale auf.A flat steel product that achieves the above-mentioned object according to the invention has the features specified in claim 8 .

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous refinements of the invention are specified in the dependent claims and are explained in detail below, along with the general idea of the invention.

Beim erfindungsgemäßen Verfahren zum Herstellen eines zur Festigkeitssteigerung nachbehandelten, kaltgewalzten Stahlflachproduktes wird demnach ein kaltgewalztes Stahlflachprodukt aus einem Stahl bereitgestellt, der die nachfolgend angegebene Zusammensetzung aufweist (in Gew.-%):

  • C: 0,05-0,25 %,
  • Si: 0,05-0,6 %,
  • Mn: 1,0-3,0 %,
  • Al: 0,02-1,5 %,
  • N: weniger als 0,02 %,
  • P: 0,005-0,2 %,
  • S: weniger als 0,05 %
  • einem oder mehrere Elemente aus der Gruppe "Cr, Mo" mit der Maßgabe:
    • Cr: 0,2-1,5 %,
    • Mo: 0,003-1,0 %,
  • optional einem oder mehrere Elemente aus der Gruppe "Ti, Nb, B" mit der Maßgabe:
    • B: weniger als 0,005 %
    • Ti+Nb+15-B : 0,02-0,15 %
  • sowie optional einem oder mehrere Elemente aus der Gruppe "V, Cu, Ni, Ca" mit der Maßgabe:
    • V: 0,0005-0,05 %
    • Cu: 0,0001-0,5 %
    • Ni: 0,002-0,2 %
    • Ca: 0,0005-0,007 %
  • Rest Eisen und unvermeidbare Verunreinigungen.
In the method according to the invention for producing a cold-rolled flat steel product that has been post-treated to increase strength, a cold-rolled flat steel product is made from a steel and has the following composition (in % by weight):
  • C: 0.05-0.25%,
  • Si: 0.05-0.6%,
  • Mn: 1.0-3.0%,
  • Al: 0.02-1.5%,
  • N: less than 0.02%,
  • P: 0.005-0.2%,
  • S: less than 0.05%
  • one or more elements from the group "Cr, Mo" with the proviso:
    • Cr: 0.2-1.5%,
    • Mon: 0.003-1.0%,
  • optionally one or more elements from the group "Ti, Nb, B" with the proviso:
    • B: less than 0.005%
    • Ti+Nb+15-B : 0.02-0.15%
  • and optionally one or more elements from the group "V, Cu, Ni, Ca" with the proviso:
    • V: 0.0005-0.05%
    • Cu: 0.0001-0.5%
    • Ni: 0.002-0.2%
    • Approx: 0.0005-0.007%
  • remainder iron and unavoidable impurities.

Erfindungsgemäß wird das so bereitgestellte kaltgewalzte Stahlflachprodukt zur Festigkeitssteigerung nachbehandelt, wobei die folgenden Arbeitsschritte durchlaufen werden

  • Nachwalzen des kaltgewalzten Stahlflachproduktes, wobei der über das Nachwalzen erzielte Walzgrad WG2 insgesamt 8 - 40 % beträgt;
  • Anlassglühen des nachgewalzten Stahlflachproduktes bei einer Nachglühtemperatur TG2 von 100-400°C über eine Glühdauer von 0,2-25 Stunden.
According to the invention, the cold-rolled flat steel product provided in this way is post-treated to increase strength, with the following work steps being carried out
  • skin-pass rolling of the cold-rolled flat steel product, the rolling degree W G2 achieved via the skin-pass rolling being 8-40% in total;
  • Tempering of the re-rolled steel flat product at a post-annealing temperature T G2 of 100-400°C over an annealing period of 0.2-25 hours.

Dabei findet das Nachwalzen bei Raumtemperatur statt, wobei es allerdings in üblicherweise zu einer gewissen Erwärmung des Stahlflachproduktes aufgrund des Nachwalzens kommt.The temper rolling takes place at room temperature, although the flat steel product usually heats up to a certain extent as a result of the temper rolling.

Grundsätzlich ist bekannt, dass die Dehngrenze sowohl durch plastische Verformung beim Nachwalzen als auch durch Anlassglühen erhöht werden kann. Beim plastischen Verformen kommt es zu neuen Versetzungen in der Gitterstruktur, die zur Festigkeitssteigerung beitragen. Das Anlassglühen führt dagegen zur Bildung und zum Wachstum von Ausscheidungen, die ein Versetzungsgleiten behindern. Man spricht vom "pinning" der Versetzungen.Basically, it is known that the yield point can be increased both by plastic deformation during re-rolling and by tempering. During plastic deformation, new dislocations occur in the lattice structure, which contribute to the increase in strength. Tempering, on the other hand, leads to the formation and growth of precipitations that prevent dislocations from sliding. One speaks of "pinning" the dislocations.

Überraschenderweise hat sich gezeigt, dass ein zusätzlicher Effekt auftritt, wenn das Nachwalzen mit einem anschließenden Anlassglühen kombiniert wird, der zu einer drastischen Steigerung der Dehngrenze führt. Dabei geht die Steigerung der Dehngrenze über die Summe der Einzeleffekte durch Nachwalzen und Anlassglühen hinaus. Es liegt ein unerwarteter Synergieeffekt vor. Zahlreiche Versuche haben hier gezeigt, dass sich durch die Kombination beider Nachbehandlungsschritte eine Erhöhung der Dehngrenze ergibt, die um mindestens 50 MPa größer ist als die Summe der Einzeleffekte, wobei regelmäßig eine Erhöhung von 100 MPa, teilweise sogar mehr 200 MPa, gegenüber der Summe der Einzeleffekte erreicht wird.Surprisingly, it has been shown that an additional effect occurs when temper rolling is combined with subsequent tempering, which leads to a drastic increase in the yield point. The increase in yield point goes beyond the sum of the individual effects of temper rolling and tempering. There is an unexpected synergy effect. Numerous tests have shown that the combination of both post-treatment steps results in an increase in the yield point that is at least 50 MPa greater than the sum of the individual effects, with an increase of 100 MPa, sometimes even more than 200 MPa, compared to the sum of the individual effects is achieved.

Beim Nachwalzen des kaltgewalzten Stahlflachproduktes werden durch die Verformungen Versetzungen ins Gefüge eingebracht. Bei der anschließenden Anlassglühung führen diese Versetzungen dann im Rahmen von Erholungsvorgängen zur Bildung von Subkörnern, so dass die Dehngrenze ähnlich wie bei einer Kornfeinung ansteigt. Es hat sich gezeigt, dass ab einem Walzgrad von 8% ein signifikanter synergetischer Effekt auftritt. Bei einem zu hohen Walzgrad sind die Beschädigungen des Gefüges dagegen so groß, dass das spätere Produkt in der Weiterverarbeitung nicht mehr den Anforderungen entspricht. Optimale Walzgrade beim Nachwalzen liegen daher bei maximal 40%, bevorzugt bei maximal 30% und bei mindestens 8%, bevorzugt mindestens 20%.When the cold-rolled steel flat product is re-rolled, dislocations are introduced into the structure as a result of the deformation. During the subsequent tempering, these dislocations lead then during recovery processes to form sub-grains so that the yield strength increases similar to grain refinement. It has been shown that a significant synergetic effect occurs from a degree of rolling of 8%. On the other hand, if the degree of rolling is too high, the damage to the structure is so great that the subsequent product no longer meets the requirements in further processing. Optimal degrees of rolling during re-rolling are therefore at most 40%, preferably at most 30% and at least 8%, preferably at least 20%.

Das nachgelagerte Anlassglühen muss derart gestaltet sein, dass ausreichend thermische Energie eingebracht wird, um die lokalen Erholungsvorgänge zu ermöglichen, aber nicht zu viel thermische Energie, da es ansonsten zu einer globalen Gefügeneubildung kommt. Hierzu haben sich Nachglühtemperaturen im Bereich 100° bis 400°C als zweckmäßig erwiesen. Bevorzugt ist die Nachglühtemperatur größer als 130°C und/oder kleiner als 330°C. Die Glühdauer beträgt zweckmäßigerweise 0,2-25 Stunden.The subsequent tempering must be designed in such a way that sufficient thermal energy is introduced to enable the local recovery processes, but not too much thermal energy, otherwise global microstructure formation will occur. For this purpose, afterglow temperatures in the range of 100° to 400°C have proven to be appropriate. The afterglow temperature is preferably greater than 130°C and/or less than 330°C. The annealing time is expediently 0.2-25 hours.

Die hier im Allgemeinen und in Bezug auf die nachfolgend dargestellten Ausführungsbeispiele angegebenen mechanischen Eigenschaften erfindungsgemäßer Stahlflachprodukte sind jeweils an Flachzugproben gemäß DIN EN ISO6892-1 bestimmt.The mechanical properties of flat steel products according to the invention, which are specified here in general and in relation to the exemplary embodiments presented below, are each determined on flat tensile specimens in accordance with DIN EN ISO6892-1.

In der Praxis wird die erfindungsgemäß nach dem Nachwalzen vorgesehene Anlassglühung als Haubenglühung durchgeführt.In practice, the tempering provided according to the invention after the skin-pass rolling is carried out as batch annealing.

Die Legierung des Stahls, aus dem die erfindungsgemäß zu verarbeitenden Stahlflachprodukte bestehen, ist so gewählt, dass unter dem Einfluss des zusätzlichen Nachbehandlungsschrittes optimale mechanische Eigenschaften erreicht werden.The alloy of the steel from which the flat steel products to be processed according to the invention are made is selected in such a way that optimal mechanical properties are achieved under the influence of the additional post-treatment step.

C ist im Stahl eines erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts in Gehalten von 0,05-0,25 Gew.-% vorhanden, um ausreichend Martensit zur Steigerung der Festigkeit zu erzeugen. Bei höheren C-Gehalten tritt zu wenig Ferrit auf. Zudem wirkt sich ein zu hoher C-Gehalt negativ auf die Schweißeignung aus. Bevorzugt beträgt der C-Gehalt höchstens 0,20 Gew.-%, besonders bevorzugt höchstens 0,18%. Liegt der C-Gehalt dagegen unter 0,05% wird die gewünschte Festigkeit nicht erhalten. Bevorzugt beträgt der C-Gehalt mindestens 0,08 Gew.-%, besonders bevorzugt mindestens 0,12 Gew.-%.C is present in the steel of a cold rolled steel flat product processed in accordance with the present invention at levels of 0.05-0.25% by weight to produce sufficient martensite to increase strength. At higher C contents, too little ferrite occurs. In addition, too high a C content has a negative effect on weldability. The C content is preferably at most 0.20% by weight, particularly preferably at most 0.18%. On the other hand, if the C content is less than 0.05%, the desired strength is not obtained. The C content is preferably at least 0.08% by weight, particularly preferably at least 0.12% by weight.

Si ist im Stahl eines erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts in Gehalten von 0,05-0,6% vorhanden, um die Festigkeit durch Mischkristallhärtung zu steigern ohne die Duktilität zu beeinträchtigen. Zudem dient Si als Ferritbildner. Zu hohe Si-Gehalte können die Oberflächenbeschaffenheit beispielsweise in Folge von festhaftendem Zunder oder Korngrenzenoxidation beeinträchtigen. Um dies sicher auszuschließen, kann der Si-Gehalt auf höchstens 0,6 Gew.-% beschränkt werden. Bevorzugt beträgt der Si-Gehalt höchstens 0,42%. Ist dagegen der Si-Gehalt zu gering, so ist der festigkeitssteigernde Effekt durch Mischkristallhärtung in der Ferritphase unzureichend. Soll die gewünschte Wirkung von Si besonders sicher zur Verfügung stehen, so kann der Si-Gehalt auf mindestens 0,24 Gew.-% eingestellt werden.Si is present in the steel of a cold-rolled flat steel product processed according to the invention in contents of 0.05-0.6% in order to increase the strength by solid solution hardening without impairing the ductility. In addition, Si serves as a ferrite former. Excessively high Si contents can impair the surface finish, for example as a result of adherent scale or grain boundary oxidation. In order to rule this out with certainty, the Si content can be limited to a maximum of 0.6% by weight. The Si content is preferably at most 0.42%. On the other hand, if the Si content is too low, the strength-increasing effect of solid solution hardening in the ferrite phase is insufficient. If the desired effect of Si is to be available with particular certainty, the Si content can be set to at least 0.24% by weight.

Mn ist im Stahl eines erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts in Gehalten von 1,0-3,0 Gew-% vorhanden, um Mischkristallverfestigung sowie eine Martensitbildung zur Erhöhung der Festigkeit zu unterstützen. Dies erfolgt, indem Mn den Austenit, aus dem der Martensit gebildet wird, stabilisiert. Durch gezielte Einstellung des Mn-Gehaltes wird daher der Volumenanteil des Martensits eingestellt. Bevorzugt beträgt der Mn-Gehalt mindestens 1,5 Gew.-%, insbesondere mindestens 1,7 Gew.-%. Eine übermäßige Zugabe von Mn führt hingegen zu einem zu geringen Anteil der Martensitphase. Daher beträgt der Mn-Gehalt bevorzugt höchstens 2,4 Gew.-%.Mn is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 1.0-3.0% by weight in order to promote solid solution strengthening as well as martensite formation to increase strength. This is done by Mn stabilizing the austenite from which the martensite is formed. The volume fraction of the martensite is therefore adjusted by targeted adjustment of the Mn content. The Mn content is preferably at least 1.5% by weight, in particular at least 1.7% by weight. On the other hand, an excessive addition of Mn leads to an insufficient proportion of the martensite phase. Therefore, the Mn content is preferably at most 2.4% by weight.

Al ist im Stahl eines erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts in Gehalten von 0,02-1,5 Gew.-% vorhanden, um einerseits bei der Erschmelzung als Desoxidationsmittel und zur Stickstoffabbindung zu dienen und andererseits für die ausreichende Ferritmenge zu sorgen und damit die Duktilität zu steigern. Um jedoch einen ungünstigen Einfluß auf die Gießqualität sowie die Beschichtbarkeit zu vermeiden, sollte der maximale Gehalt von 1,5 Gew.-% nicht überschritten werden. Eine Einhaltung einer Obergrenze von 0,9 Gew.-% hat sich als besonders günstig erwiesen.Al is present in the steel of a cold-rolled flat steel product processed according to the invention in amounts of 0.02-1.5% by weight, on the one hand to serve as a deoxidizing agent and to bind nitrogen during melting and on the other hand to ensure the sufficient amount of ferrite and thus the ductility increase. However, in order to avoid an unfavorable influence on the casting quality and the coatability, the maximum content of 1.5% by weight should not be exceeded. Compliance with an upper limit of 0.9% by weight has proven to be particularly advantageous.

N ist ein unerwünschter Legierungsbestandteil, der den unvermeidbaren Verunreinigungen zuzurechnen ist. Daher darf sein Gehalt im Stahl eines erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts höchstens 0,02 Gew.-% betragen. Ein zu hoher Gehalt an N verschlechtert die Verarbeitbarkeit und kann bei zusätzlicher Anwesenheit von B und/oder Al zur Bildung schädlicher Nitride führen und so die Wirksamkeit dieser Elemente verhindern. Bevorzugt beträgt der N-Gehalt höchstens 0,01 Gew.-%. Optimalerweise ist er auf höchstens 0,008 Gew.-%, insbesondere höchstens 0,006 Gew.-% beschränkt.N is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention must therefore be at most 0.02% by weight. Too high an N content impairs the workability and, if B and/or Al is also present, can lead to the formation of harmful nitrides and thus prevent the effectiveness of these elements. The N content is preferably at most 0.01% by weight. Optimally, it is limited to at most 0.008% by weight, especially at most 0.006% by weight.

P ist ein unerwünschter Legierungsbestandteil, der den unvermeidbaren Verunreinigungen zuzurechnen ist. P kann bei übermäßiger Zugabe zu Versprödung und damit zum Herabsetzten der Crasheigenschaften führen. Zusätzlich wird die Schweißbarkeit durch den P-Gehalt beeinträchtigt. Aus diesen Gründen soll der P-Gehalt 0,2 Gew-% nicht übersteigen. Bevorzugt beträgt der P-Gehalt höchstens 0,05%, insbesondere höchstens 0,03%.P is an undesirable alloying component attributable to unavoidable impurities. Excessive addition of P can lead to embrittlement and thus to reduced crash properties. In addition, the weldability is impaired by the P content. For these reasons, the P content should not exceed 0.2% by weight. The P content is preferably at most 0.05%, in particular at most 0.03%.

S ist ein unerwünschter Legierungsbestandteil, der den unvermeidbaren Verunreinigungen zuzurechnen ist. Daher darf sein Gehalt im Stahl eines erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts höchstens 0,05 Gew.-% betragen. Um eine gute Dehnbarkeit des Stahlproduktes zu gewährleisten muss die Bildung von MnS bzw. (Mn,Fe)S möglichst gering gehalten werden. Bevorzugt beträgt der S-Gehalt höchstens 0,01 Gew.-%, besonders bevorzugt höchstens 0,005 Gew.-%.S is an undesirable alloying component attributable to unavoidable impurities. Its content in the steel of a cold-rolled flat steel product processed according to the invention may therefore not be more than 0.05% by weight. In order to ensure good ductility of the steel product, the formation of MnS or (Mn,Fe)S must be kept as low as possible. The S content is preferably at most 0.01% by weight, particularly preferably at most 0.005% by weight.

Cr und Mo tragen im Stahl eines erfindungsgemäß verarbeiteten Stahlflachproduktes zur Festigkeitssteigerung bei. Sie begünstigen die Bildung von Martensit durch Verschiebung der Ferrit-Perlit-Umwandlungsbereiche bei der Wärmebehandlung. Um diesen Effekt zu erreichen beträgt der Mo-Gehalt mindestens 0,005 Gew.-%, bevorzugt mindestens 0,005 Gew.-%. Der Cr-Gehalt beträgt mindestens 0,2 Gew.-%, bevorzugt mindestens 0,3 Gew.-%. Bei zu hohen Gehalten an Cr oder Mo können sich allerdings unerwünschte Carbide bilden. Zudem steigen die Legierungskosten übermäßig an. Der Mo-Gehalt beträgt daher maximal 1,0 Gew.-%, bevorzugt höchstens 0,3 Gew.-%. Der Cr-Gehalt beträgt maximal 1,5 Gew.-%, bevorzugt höchstens 0,8 Gew.-%.In the steel of a steel flat product processed according to the invention, Cr and Mo contribute to increasing the strength. They favor the formation of martensite by shifting the ferrite-pearlite transformation zones during heat treatment. In order to achieve this effect, the Mo content is at least 0.005% by weight, preferably at least 0.005% by weight. The Cr content is at least 0.2% by weight, preferably at least 0.3% by weight. If the Cr or Mo content is too high, however, undesirable carbides can form. In addition, the alloy cost increases excessively. The Mo content is therefore at most 1.0% by weight, preferably at most 0.3% by weight. The Cr content is at most 1.5% by weight, preferably at most 0.8% by weight.

Ti, B und Nb tragen in dem Stahl des erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts zur Festigkeitssteigerung bei und führen zu einer feineren Gefügestruktur. B ermöglicht durch Unterdrückung der Ferrit- und Bainitbildung einen höheren Martensitanteil, kann seine Wirkung aber erst durch zusätzliche Zugabe von Ti voll entfalten, welches durch Bildung feiner Ti(C,N)-Ausscheidungen die Entstehung ungewollter Bornitride verhindert. Diese Festigkeitssteigerung durch Ausscheidungsbildung wird durch die zusätzliche Zugabe von Nb begünstigt bzw. verstärkt. Es hat sich gezeigt, dass die Summe der Gehalte von Ti, Nb und dem 15-fachen Gehalt von B mindestens 0,02 Gew.-% betragen sollte, um diese Eigenschaften zu erreichen (d.h. Ti+Nb+15·B >_ 0,02 Gew.-%). Zur Vermeidung eines negativen Einflusses auf die Verarbeitbarkeit darf jedoch ein maximaler Gehalt für die genannte Summe 0,15 Gew.-% nicht überschritten werden (d.h. Ti+Nb+15·B ≤ 0,15 Gew.-%). Gleichzeitig beträgt der B-Gehalt maximal 0,005 Gew.-%. Übermäßige Zugabe von Bor führt zu erhöhter Sprödigkeit. Daher beträgt der Bor-Gehaltweniger als 0,005 Gew.-%, bevorzugt weniger als 0,003 Gew.-%.In the steel of the cold-rolled flat steel product processed according to the invention, Ti, B and Nb contribute to the increase in strength and lead to a finer microstructure. B enables a higher proportion of martensite by suppressing the formation of ferrite and bainite, but can only develop its full effect through the additional addition of Ti, which prevents the formation of unwanted boron nitrides by forming fine Ti(C,N) precipitations. This increase in strength due to the formation of precipitates is favored or reinforced by the additional addition of Nb. It has been shown that the sum of the contents of Ti, Nb and 15 times the content of B should be at least 0.02% by weight in order to achieve these properties (i.e. Ti+Nb+15·B >_ 0 .02% by weight). In order to avoid a negative influence on the processability, however, a maximum content of 0.15% by weight for the sum mentioned must not be exceeded (i.e Ti+Nb+15·B ≤ 0.15% by weight). At the same time, the B content is at most 0.005% by weight. Excessive addition of boron leads to increased brittleness. Therefore, the boron content is less than 0.005% by weight, preferably less than 0.003% by weight.

Die Zugabe von V in dem Stahl des erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts führt zu einer Verbesserung der Verarbeitbarkeit und einer verbesserten Beständigkeit gegen verzögerte Rissbildung durch eine feinere Gefügestruktur. Zur optimalen Nutzung dieser Vorteile sollte ein V-Gehalt im Bereich 0,0005-0,05 Gew.-% gewählt werden, insbesondere sollte er mindestens 0,005 Gew.-% betragen.The addition of V in the steel of the cold-rolled steel flat product processed according to the present invention results in an improvement in workability and an improved resistance to delayed cracking through a finer microstructure. In order to make optimal use of these advantages, a V content in the range of 0.0005-0.05% by weight should be chosen, in particular it should be at least 0.005% by weight.

Cu und Ni tragen in dem Stahl des erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts zur Festigkeitssteigerung bei und können einzeln oder in Kombination hinzugefügt werden. Dabei beträgt der Cu-Gehalt mindestens 0,0001 Gew.-%, bevorzugt mindestens 0,001 Gew.-%. Allerdings sollte der Cu-Gehalt 0,5 Gew.-%, bevorzugt 0,08 Gew.-%, nicht übersteigen. Der Ni-Gehalt beträgt mindestens 0,002 Gew.-%, bevorzugt mindestens 0,01 Gew.-%. Maximal sollte der Ni-Gehalt nicht größer als 0,2 Gew.-%, bevorzugt nicht größer als 0,1 Gew.-% betragen.Cu and Ni contribute to strengthening in the steel of the cold-rolled flat steel product processed according to the present invention, and may be added singly or in combination. The Cu content is at least 0.0001% by weight, preferably at least 0.001% by weight. However, the Cu content should not exceed 0.5% by weight, preferably 0.08% by weight. The Ni content is at least 0.002% by weight, preferably at least 0.01% by weight. At maximum, the Ni content should be no greater than 0.2% by weight, preferably no greater than 0.1% by weight.

Die Zugabe von Ca in dem Stahl des erfindungsgemäß verarbeiteten kaltgewalzten Stahlflachprodukts führt zu einer feineren Verteilung der Einschlüsse im Stahl und bildet sphärische Sulfide, wodurch Nachteile anderer schädlicher Sulfide bei der weiteren Prozessierung reduziert werden können. Dazu sollte der Ca-Gehalt mindestens 0,0005 Gew.-% betragen. Da jedoch ein zu hoher Ca-Anteil nachteilige Effekte auf Gieß- und Warmumfombarkeit haben kann, sollte er höchstens 0,007 Gew.-%, bevorzugt höchstens 0,005 Gew.-% betragen.The addition of Ca in the steel of the cold-rolled flat steel product processed according to the invention leads to a finer distribution of inclusions in the steel and forms spherical sulfides, which can reduce disadvantages of other harmful sulfides in further processing. For this purpose, the Ca content should be at least 0.0005% by weight. However, since too high a Ca content can have adverse effects on castability and hot workability, it should be at most 0.007% by weight, preferably at most 0.005% by weight.

Bei einer speziellen Ausgestaltung weist der Stahl ein Kohlenstoffäquivalent Cäq auf, dass zwischen 0,3 % und 1,3 % liegt. Dabei ist das Kohlenstoffäquivalent als gewichtete Summe der folgenden Element-Gehalte definiert: C äq = C + 1 6 Mn + 1 5 Mo + 1 15 Ni + 1 5 Cr + 1 5 V + 1 15 Cu ,

Figure imgb0001
In a specific embodiment, the steel has a carbon equivalent C eq of between 0.3% and 1.3%. The carbon equivalent is defined as the weighted sum of the following element contents: C eq = C + 1 6 Mn + 1 5 Mon + 1 15 no + 1 5 Cr + 1 5 V + 1 15 Cu ,
Figure imgb0001

Es hat sich gezeigt, dass das Kohlenstoffäquivalent gut dafür geeignet ist, die nachfolgende Verarbeitbarkeit des Stahlflachproduktes zu charakterisieren. Bei Werten im Bereich 0,3 % bis 1,3 % lässt sich das Stahlflachprodukt sowohl gut schweißen als auch problemlos beschichten im Vergleich zu anderen Stahllegierungen mit einer ähnlichen Festigkeit und einem höheren Anteil von Legierungselementen. Bevorzugt beträgt das Kohlenstoffäquivalent maximal 0,7 % hierfür. Weiterhin bevorzugt beträgt das Kohlenstoffäquivalent mindestens 0,3 %.It has been shown that the carbon equivalent is well suited to characterizing the subsequent workability of the steel flat product. With values in the range of 0.3% to 1.3%, the steel flat product can both be welded and coated without any problems compared to other steel alloys with a similar strength and a higher proportion of alloying elements. The carbon equivalent is preferably at most 0.7% for this. More preferably, the carbon equivalent is at least 0.3%.

Das Verfahren ist insbesondere derart ausgestaltet, dass der Produktionsindex PWG zwischen 0,1 und 2,7 liegt. Dabei ist der Produktionsindex PWG wie folgt definiert: P WG = T G 2 K W G 2 C äq

Figure imgb0002
mit

  • TG2: Nachglühtemperatur in der Einheit °C
  • WG2: Walzgrad beim Nachwalzen in %
  • Cäq: Kohlenstoffäquivalent in %
  • K : Konstante mit dem Wert 10 °C
In particular, the method is designed in such a way that the production index P WG is between 0.1 and 2.7. The production index P WG is defined as follows: P flat share = T G 2 K W G 2 C eq
Figure imgb0002
with
  • T G2 : Afterglow temperature in °C
  • W G2 : Degree of rolling during temper rolling in %
  • C eq : carbon equivalent in %
  • K : constant with the value 10 °C

Umfassende Versuche haben gezeigt, dass sich ein besonders stabiler Prozess mit zuverlässiger Nachbehandlung zur Festigkeitssteigerung ergibt, wenn der Produktionsindex im genannten Bereich liegt.Extensive tests have shown that a particularly stable process with reliable post-treatment to increase strength results when the production index is in the specified range.

Für das erfindungsgemäße Nachbehandlungsverfahren wird als Ausgangsmaterial bevorzugt ein kaltgewalztes Stahlflachprodukt verwendet, dessen Gefüge aus mindestens zwei Phasen, von denen Martensit und Ferrit die dominierenden Phasen sind, besteht, wobei mehr als 10 Vol.- % Martensit und mehr als 60 Vol.-% Ferrit vorhanden sind. Bevorzugt beträgt der Ferrit-Anteil mehr als 70 Vol.-%, insbesondere mehr als 80%. Der verbleibende Anteil kann Bainit oder Ausscheidungen enthalten. Das Gefüge des Stahlflachprodukts sollte dabei mindestens 60 Vol.-% Ferrit enthalten, um die nötige Dehnung einstellen zu können. Auch sollten im Gefüge des erfindungsgemäßen Stahlflachprodukts mindestens 10 Vol.-% Martensit vorhanden sein, um zum einen die Festigkeit zu erreichen und zum anderen einen Anlasseffekt zu ermöglichen. Das nachbehandelte Gefüge besteht aus mindestens zwei Phasen, von denen Ferrit und Martensit die dominierenden Phasen sind. Durch die Nachbehandlung ist der Martensit nun angelassener Martensit. Die Ferritphase weist leicht gestreckte Körner auf, etwaig vorher vorhandener Restaustenit ist zerfallen. Die sonstigen Phasenanteile sind gegenüber dem Ausgangsprodukt unverändert. Damit weist das nachbehandelte Stahlflachprodukt ein mindestens aus zwei Phasen bestehendes Gefüge auf, das (in Vol.-%) mehr als 10 % angelassenen Martensit und mehr als 60 % Ferrit umfasst. Bevorzugt beträgt der Ferrit-Anteil mehr als 70 Vol.-%, insbesondere mehr als 80 %.A cold-rolled flat steel product is preferably used as the starting material for the post-treatment process according to the invention, the structure of which consists of at least two phases, of which martensite and ferrite are the dominant phases, with more than 10% by volume martensite and more than 60% by volume ferrite available. The ferrite content is preferably more than 70% by volume, in particular more than 80%. The remainder may contain bainite or precipitates. The structure of the steel flat product should contain at least 60% by volume of ferrite in order to be able to set the necessary elongation. At least 10% by volume of martensite should also be present in the structure of the flat steel product according to the invention in order to achieve the strength and to enable a tempering effect. The post-treated microstructure consists of at least two phases, of which ferrite and martensite are the dominant phases. As a result of the post-treatment, the martensite is now tempered martensite. The ferrite phase shows slightly stretched grains, any previously present residual austenite has disintegrated. The other phase components are unchanged compared to the starting product. The post-treated flat steel product thus has a structure consisting of at least two phases which (in vol%) more than 10% tempered martensite and more than 60% ferrite. The ferrite content is preferably more than 70% by volume, in particular more than 80%.

Bei einer bevorzugten Ausgestaltung wird das kaltgewalzte Stahlflachprodukt zwischen Nachwalzen und Anlassglühen beschichtet. Das Beschichten hat den Vorteil, dass ein Korrosionsschutz gewährleistet wird. Bei einer besonders vorteilhaften Weiterbildung wird das kaltgewalzte Stahlflachprodukt zwischen Nachwalzen und Anlassglühen beschichtet, insbesondere elektrolytisch beschichtet. Der Vorteil einer Beschichtung zwischen Nachwalzen und Anlassglühen liegt darin, dass eventuell bei der Beschichtung aufgenommener Wasserstoff beim Anlassglühen wieder entfernt wird. Wasserstoff kann zu Wasserstoffversprödung führen und sollte daher möglichst vermieden werden. Eine elektrolytische Beschichtung hat den Vorteil, dass das Stahlflachprodukt dabei nicht hoch erwärmt wird, beispielsweise im Vergleich zum Schmelztauchbeschichten. Eine zu hohe Erwärmung beim Beschichten könnte sich auf das eingestellte Gefüge und damit auf die mechanischen Eigenschaften auswirken.In a preferred embodiment, the cold-rolled flat steel product is coated between temper rolling and tempering. Coating has the advantage that protection against corrosion is guaranteed. In a particularly advantageous development, the cold-rolled flat steel product is coated, in particular electrolytically coated, between re-rolling and tempering. The advantage of a coating between re-rolling and tempering is that any hydrogen absorbed during the coating is removed again during tempering. Hydrogen can lead to hydrogen embrittlement and should therefore be avoided if possible. An electrolytic coating has the advantage that the flat steel product is not overheated, for example in comparison to hot-dip coating. Excessive heating during coating could affect the structure and thus the mechanical properties.

Die zur Durchführung des erfindungsgemäßen Verfahrens bereitgestellten kaltgewalzten Stahlflachprodukte können ausgehend von einem Stahl mit der voranstehend erläuterten Zusammensetzung hergestellt werden. Dazu können bei der Erzeugung des bereitgestellten Stahlflachprodukts folgende Arbeitsschritte durchlaufen werden:

  • Vergießen eines Stahls mit der vorgenannten Zusammensetzung zu einer Bramme;
  • Wiedererwärmen der Bramme auf eine 1200-1500 ° C betragende Wiedererwärmungstemperatur;
  • Warmwalzen der wiedererwärmten Bramme zu einem Warmband, wobei die Warmwalzendtemperatur des Warmbands bei Beendigung des Warmwalzens 800-1000°C beträgt;
  • Haspeln des Warmbands bei einer Haspeltemperatur von 400-700 °C;
  • Beizen des Warmbands
  • Kaltwalzen des Warmbands in einem oder mehreren Kaltwalzschritten zu einem kaltgewalzten Stahlflachprodukt, wobei der über das Kaltwalzen erzielte Kaltwalzgrad insgesamt 20-80 % beträgt;
  • Durchlaufglühen des kaltgewalzten Stahlflachprodukts bei einer Durchlaufglühtemperatur von 700-950 °C; Dabei kann das Durchlaufglühen auch durch ein Feuerbeschichten realisiert werden.
  • Abkühlen des kaltgewalzten Stahlflachprodukts auf Raumtemperatur
The cold-rolled flat steel products provided for carrying out the method according to the invention can be produced starting from a steel with the composition explained above. To do this, the following work steps can be carried out when creating the steel flat product provided:
  • casting a steel having the aforesaid composition into a slab;
  • reheating the slab to a reheating temperature of 1200-1500°C;
  • hot rolling the reheated slab into a hot strip, wherein the hot rolling finish temperature of the hot strip at the completion of the hot rolling is 800-1000°C;
  • coiling of the hot strip at a coiling temperature of 400-700 °C;
  • Pickling the hot strip
  • cold-rolling the hot strip in one or more cold-rolling steps to form a cold-rolled flat steel product, the degree of cold-rolling achieved via the cold-rolling being 20-80% in total;
  • continuous annealing of the cold-rolled steel flat product at a continuous annealing temperature of 700-950 °C; The continuous annealing can also be implemented by hot-dip coating.
  • Cooling the cold-rolled flat steel product to room temperature

Bei einer besonders bevorzugten Variante des Verfahrens weist das Abkühlen des kaltgewalzten Stahlflachprodukts auf Raumtemperatur zwei Zwischenschritte auf. Hierbei wird das kaltgewalzte Stahlflachprodukt in dem ersten Zwischenschritt auf eine erste Abkühltemperatur T1 abgekühlt und eine erste Haltezeit t1 auf der ersten Abkühltemperatur T1 gehalten. Anschließend wird das kaltgewalzte Stahlflachprodukt in dem zweiten Zwischenschritt auf eine zweite Abkühltemperatur T2 abgekühlt wird und eine zweite Haltezeit t2 auf der zweiten Abkühltemperatur T2 gehalten. Hierbei gilt für die Abkühltemperaturen T1, T2: T 1 > T 2 , 450 ° C T 1 80 ° C und 400 ° C T 2 600 ° C

Figure imgb0003
und für die Haltezeiten t1, t2 gilt: 0 s t 1 60 s und 0 s t 2 900 s
Figure imgb0004
In a particularly preferred variant of the method, the cooling of the cold-rolled flat steel product to room temperature has two intermediate steps. In this case, the cold-rolled flat steel product is cooled to a first cooling temperature T 1 in the first intermediate step and is held at the first cooling temperature T 1 for a first holding time t 1 . The cold-rolled flat steel product is then cooled to a second cooling temperature T 2 in the second intermediate step and is held at the second cooling temperature T 2 for a second holding time t 2 . The following applies to the cooling temperatures T 1 , T 2 : T 1 > T 2 , 450 ° C T 1 80 ° C and 400 ° C T 2 600 ° C
Figure imgb0003
and for the holding times t 1 , t 2 applies: 0 s t 1 60 s and 0 s t 2 900 s
Figure imgb0004

Dieses zweistufige Abkühlverfahren hat den Vorteil, dass im ersten Zwischenschritt eine Ferritbildung erfolgt und im zweiten Zwischenschritt der Bainit- und der Restaustenitanteil eingestellt werden.This two-stage cooling process has the advantage that ferrite is formed in the first intermediate step and the proportion of bainite and residual austenite is adjusted in the second intermediate step.

Alternativ kann das Abkühlen aber auch in einem einzigen Abkühlschritt auf Raumtemperatur erfolgen.Alternatively, however, the cooling can also take place in a single cooling step to room temperature.

Optional kann das zur Festigkeitssteigerung nachbehandelte bereitgestellte kaltgewalzte Stahlflachprodukt mit einer metallischen Schutzbeschichtung versehen sein. Dies ist beispielsweise zweckmäßig, wenn aus dem Stahlflachprodukt Bauteile gefertigt werden, die im praktischen Einsatz einer korrosiven Umgebung ausgesetzt sind. Die metallische Beschichtung kann in jeder geeigneten Weise aufgebracht werden, wobei sich hier insbesondere ein Auftrag durch Schmelztauchbeschichten beispielsweise in einer Durchlauf-Feuerbeschichtungsanlage eignet.Optionally, the cold-rolled flat steel product that has been post-treated to increase strength can be provided with a metallic protective coating. This is example useful if components are made from the steel flat product that are exposed to a corrosive environment in practical use. The metallic coating can be applied in any suitable manner, application by hot-dip coating being particularly suitable here, for example in a continuous hot-dip coating plant.

Die erfindungsgemäße Aufgabe wird ebenfalls gelöst durch ein zur Festigkeitssteigerung nachbehandeltes, kaltgewalztes Stahlflachprodukt, das

  • aus einem Stahl mit der nachfolgend angegebenen Zusammensetzung besteht (in Gew.-%)
    • C: 0,05-0,25 %,
    • Si: 0,05-0,6 %,
    • Mn: 1,0-3,0 %,
    • AI: 0,02-1,5 %,
    • N: weniger als 0,02 %,
    • P: 0,005-0,2 %,
    • S: weniger als 0,05 %
    • einem oder mehrere Elemente aus der Gruppe "Cr, Mo" mit der Maßgabe:
      • Cr: 0,2-1,5 %,
      • Mo: 0,003-1,0 %,
    • optional einem oder mehrere Elemente aus der Gruppe "Ti, Nb, B" mit der Maßgabe:
      • B: weniger als 0,005 %
      • Ti+Nb+15*B: 0,02-0,15 %
    • sowie optional einem oder mehrere Elemente aus der Gruppe "V, Cu, Ni, Ca" mit der Maßgabe:
      • V: 0,0005-0,05 %
      • Cu: 0,0001-0,5 %
      • Ni: 0,002-0,2 %
      • Ca: 0,0005-0,007 %
    • Rest Eisen und unvermeidbare Verunreinigungen,
    und
  • eine Dehngrenze von mindestens 1000 MPa und eine Zugfestigkeit Rm von mindestens 1100 MPa aufweist,
  • wobei die legierungsunabhängige Zugfestigkeit R̃m mindestens 400 MPa beträgt, mit R ˜ m = R m C + Si + Mn + Cr + Mo ,
    Figure imgb0005
    wobei C, Si, Mn, Cr und Mo die jeweiligen Elementgehalte in Gewichtsprozent sind.
The object of the invention is also achieved by a cold-rolled flat steel product that has been post-treated to increase strength
  • consists of a steel with the following composition (in % by weight)
    • C: 0.05-0.25%,
    • Si: 0.05-0.6%,
    • Mn: 1.0-3.0%,
    • AI: 0.02-1.5%,
    • N: less than 0.02%,
    • P: 0.005-0.2%,
    • S: less than 0.05%
    • one or more elements from the group "Cr, Mo" with the proviso:
      • Cr: 0.2-1.5%,
      • Mon: 0.003-1.0%,
    • optionally one or more elements from the group "Ti, Nb, B" with the proviso:
      • B: less than 0.005%
      • Ti+Nb+15*B: 0.02-0.15%
    • and optionally one or more elements from the group "V, Cu, Ni, Ca" with the proviso:
      • V: 0.0005-0.05%
      • Cu: 0.0001-0.5%
      • Ni: 0.002-0.2%
      • Approx: 0.0005-0.007%
    • remainder iron and unavoidable impurities,
    and
  • has a yield strength of at least 1000 MPa and a tensile strength R m of at least 1100 MPa,
  • where the alloy-independent tensile strength R̃ m is at least 400 MPa, with R ˜ m = R m C + si + Mn + Cr + Mon ,
    Figure imgb0005
    where C, Si, Mn, Cr and Mo are the respective element contents in percent by weight.

Im Sinne dieser Anmeldung weist ein nachbehandeltes, kaltgewalztes Stahlflachprodukt eine Dehngrenze von mindestens 1000 MPa auf, wenn die Dehngrenze in wenigstens einer Richtung mindestens 1000 MPa beträgt (also beispielsweise quer oder längs zur Walzrichtung). Das entsprechende gilt für die Zugfestigkeit und die legierungsunabhängige Zugfestigkeit.For the purposes of this application, a post-treated, cold-rolled flat steel product has a yield strength of at least 1000 MPa if the yield strength is at least 1000 MPa in at least one direction (ie, for example, transversely or longitudinally to the rolling direction). The same applies to the tensile strength and the alloy-independent tensile strength.

Bezüglich der Elementgehalte und der Gefügedetails gelten die vorstehenden Erläuterungen bezüglich der Vorteile und bevorzugen Ausführungsvarianten.With regard to the element contents and the microstructure details, the above explanations regarding the advantages and preferred embodiment variants apply.

Durch die erfindungsgemäßen Nachbehandlungsschritte Nachwalzen und Anlassglühen ergibt sich regelmäßig eine Dehngrenze von mindestens 1000MPa, bevorzugte Ausführungsvarianten weisen eine Dehngrenze von mindestens 1200 MPa, insbesondere von mindestens 1400 MPa auf. Ebenso wird eine Zugfestigkeit von mindestens 1100 MPa erreicht, wobei bevorzugte Ausführungsvarianten eine Zugfestigkeit von mindestens 1200 MPa, insbesondere mindestens 1400 MPa aufweisen.The after-treatment steps according to the invention, namely re-rolling and tempering, regularly result in a yield strength of at least 1000 MPa; preferred variants have a yield strength of at least 1200 MPa, in particular at least 1400 MPa. A tensile strength of at least 1100 MPa is also achieved, with preferred embodiment variants having a tensile strength of at least 1200 MPa, in particular at least 1400 MPa.

Zudem beträgt die legierungsunabhängige Zugfestigkeit R̃m mindestens 400 MPa, bevorzugt mindestens 450 MPa. Die hohe Zugfestigkeit wird also gerade nicht durch hohe Legierung mit zur Härtung beitragenden Elementen (C, Si, Mn, Cr, Mo), sondern durch die die erfindungsgemäßen Nachbehandlungsschritte Nachwalzen und Anlassglühen erreicht. Das zur Festigkeitssteigerung nachbehandelte, kaltgewalzte Stahlflachprodukt hat damit den Vorteil, dass eine hohe Festigkeit auch ohne übermäßige Beilegierung erreicht wird. Daher ist es entsprechend kostengünstiger zu produzieren. Zudem entfallen die negativen Auswirkungen der hohen Legierungsgehalte auf spätere Bearbeitungsschritte wie Schweißen oder Beschichten. Niedrig legierte Stähle sind in dieser Hinsicht einfacher weiterzuverabeiten.In addition, the alloy-independent tensile strength R m is at least 400 MPa, preferably at least 450 MPa. The high tensile strength is therefore not achieved by high alloying with elements that contribute to hardening (C, Si, Mn, Cr, Mo), but rather by the post-treatment steps of temper rolling and tempering according to the invention. The cold-rolled steel flat product, which has been post-treated to increase strength, has the advantage that high strength can be achieved without excessive alloying. It is therefore correspondingly cheaper to produce. In addition, the negative effects of the high alloy content on later processing steps such as welding or coating are eliminated. In this regard, low-alloy steels are easier to process.

Bei einer bevorzugten Variante des zur Festigkeitssteigerung nachbehandelten, kaltgewalzten Stahlflachproduktes ist die Summe der Korngrenzenlängen für Kleinwinkelkorngrenzen eines quadratischen Messfeldes von 50µm*50µm in einem Längsschliff größer als 10mm, bevorzugt größer 15mm, besonders bevorzugt größer 20mm.In a preferred variant of the cold-rolled steel flat product post-treated to increase strength, the sum of the grain boundary lengths for small-angle grain boundaries of a square measuring field of 50 μm*50 μm in a longitudinal section is greater than 10 mm, preferably greater than 15 mm, particularly preferably greater than 20 mm.

Unter Kleinwinkelkorngrenzen werden Orientierungsunterschiede des Gitters von kleiner als 15° bezeichnet. Die Summe der Korngrenzenlängen wird mittels der EBSD-Methode ermittelt. Die EBSD-Methode (Electron backscattering diffraction) gehört zu den elektronenmikroskopischen Untersuchungsverfahren. Es werden die Informationen der von der Probe rückgestreuten Elektronen genutzt. Der Elektronenstrahl rastert während einer Analyse die Oberfläche der Probe ab. Die auftreffenden Elektronen werden in der Probe gestreut. Zum Teil treffen diese unter Bragg-Bedingungen auf Gitterflächen des untersuchten Kornes und werden gebeugt. Die entstehenden Beugungsmuster (Kikuchi-Pattern) werden mit Hilfe eines Phosphorschirms aufgenommen und durch eine Software verarbeitet und interpretiert. Die Kikuchi-Pattern enthalten Informationen über die vorliegenden Kristallsymmetrien, die Rückschlüsse auf die untersuchten kristallographischen Phasen und die Orientierung des untersuchten Kornes, sowie auf Gitterverzerrungen, Missorientierungen von Korngrenzen etc. zulassen. Betrachtet man nun ein quadratisches Messfeld von 50µm*50µm auf der Oberfläche eines Schliffes entnommen längs zur Walzrichtung (Längsschliff), so ist es möglich die Gesamtlänge der Kleinwinkelkorngrenzen welche Orientierungsunterschiede des Gitters von <15° trennen aufzuaddieren.Differences in orientation of the lattice of less than 15° are referred to as small-angle grain boundaries. The sum of the grain boundary lengths is determined using the EBSD method. The EBSD method (electron backscattering diffraction) is one of the electron microscopic examination methods. The information from the electrons backscattered by the sample is used. The electron beam scans the surface of the sample during an analysis. The impinging electrons are scattered in the sample. Some of these hit lattice surfaces of the examined grain under Bragg conditions and are diffracted. The resulting diffraction pattern (Kikuchi pattern) is recorded using a phosphor screen and processed and interpreted by software. The Kikuchi patterns contain information about the existing crystal symmetries, which allow conclusions to be drawn about the investigated crystallographic phases and the orientation of the examined grain, as well as lattice distortions, misorientation of grain boundaries, etc. If you now look at a square measuring field of 50µm*50µm on the surface of a section taken along the rolling direction (longitudinal section), it is possible to add up the total length of the small-angle grain boundaries which separate orientation differences of the lattice of <15°.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention is explained in more detail below using exemplary embodiments.

Zur Erprobung der Erfindung sind siebzehn Stahlschmelzen 1-17 erschmolzen worden, deren Zusammensetzung in Tabelle 1 angegeben ist. Zudem zeigt Tabelle 1 das aus der Zusammensetzung ermittelte Kohlenstoffäquivalent Cäq.To test the invention, seventeen steel melts 1-17 were melted, the composition of which is given in Table 1. Table 1 also shows the carbon equivalent C eq determined from the composition.

Die Stahlschmelzen 1-17 sind für die nachfolgenden Versuche 1-17 zu Brammen vergossen worden. Die aus den Stahlschmelzen gegossenen Brammen sind auf eine Wiedererwärmungstemperatur von 1260-1300°C wiedererwärmt worden und anschließend in konventioneller Weise bei einer Warmwalzendtemperatur von 880-990°C jeweils zu einem Warmband mit einer Dicke von 2-3 mm warmgewalzt worden.The steel melts 1-17 have been cast into slabs for the subsequent tests 1-17. The slabs cast from the steel melts were reheated to a reheating temperature of 1260-1300°C and then hot-rolled in a conventional manner at a hot-rolling finish temperature of 880-990°C, each into a hot strip having a thickness of 2-3 mm.

Die erhaltenen Warmbänder sind auf eine Haspeltemperatur von 525-585°C abgekühlt und bei dieser Haspeltemperatur zu einem Coil gehaspelt worden.The hot strips obtained were cooled to a coiling temperature of 525-585° C. and coiled at this coiling temperature to form a coil.

Nach der Abkühlung sind die Warmbänder in ebenso konventioneller Weise mit einem über das Kaltwalzen insgesamt erzielten Kaltwalzgrad von im Mittel 20-60 % zu kaltgewalzten Stahlbändern kaltgewalzt worden. Der über das Kaltwalzen erzielte Kaltwalzgrad KWG wird hier in der allgemein üblichen Weise nach der Formel KWG = 100 % * (dV-dN)/dV bestimmt, wobei mit dV die Dicke des Warmbands vor dem Kaltwalzen und mit dN die Dicke des erhaltenen Kaltbands nach dem Kaltwalzen bezeichnet ist. Anschließend haben die kaltgewalzten Stahlbänder eine im Durchlauf absolvierte Glühbehandlung bei einer Glühtemperatur von 816-916°C durchlaufen.After cooling, the hot strips were cold-rolled in a similarly conventional manner with an overall degree of cold-rolling of 20-60% on average, which was achieved by cold-rolling, to form cold-rolled steel strips. The degree of cold rolling KWG achieved via cold rolling is determined here in the usual manner using the formula KWG = 100% * (dV-dN)/dV, where dV is the thickness of the hot strip before cold rolling and dN is the thickness of the cold strip obtained after referred to as cold rolling. The cold-rolled steel strips then underwent continuous annealing at an annealing temperature of 816-916°C.

Die Abkühlung der Stahlbänder auf Raumtemperatur erfolgte in zwei Zwischenschritten. Im ersten Zwischenschritt wurden die Stahlbänder auf eine erste Abkühltemperatur T1 mit 650°C ≤ T 1 ≤ 800°C abgekühlt und für eine erste Haltezeit t1 mit 0s ≤ t 1 ≤ 20s auf der ersten Abkühltemperatur gehalten. Anschließend wurden die Stahlbänder auf eine zweite Abkühltemperatur T2 abgekühlt wird für und eine zweite Haltezeit t2 auf der zweiten Abkühltemperatur T2 gehalten. Hierbei galt für zweite Abkühltemperatur T2 und die zweite Haltezeit t 2: 450 ° C T 2 550 ° C und 60 s t 2 500 s

Figure imgb0006
The steel strips were cooled to room temperature in two intermediate steps. In the first intermediate step, the steel strips were cooled to a first cooling temperature T 1 with 650° C.≦ T 1 ≦800° C. and held at the first cooling temperature for a first holding time t 1 with 0s≦ t 1 ≦20 s. The steel strips were then cooled to a second cooling temperature T 2 and held at the second cooling temperature T 2 for a second holding time t 2 . The following applied to the second cooling temperature T 2 and the second holding time t 2 : 450 ° C T 2 550 ° C and 60 s t 2 500 s
Figure imgb0006

Alle so erzeugten Stahlbänder wiesen ein Gefüge mit mehr als 10% Martensit und mehr als 60% Ferrit auf.All of the steel strips produced in this way had a structure with more than 10% martensite and more than 60% ferrite.

Jedes der in der voranstehend beschriebenen Weise in den Versuchen erhaltenen kaltgewalzten Stahlbänder ist daraufhin zunächst einem Nachwalzen mit einem Nachwalzgrad WG2 unterzogen worden und anschließend einer zusätzlichen als Haubenglühung durchgeführten Anlassglühung, bei der es für mehr als 20 Minuten bei einer Temperatur TG2 gehalten worden ist.Each of the cold-rolled steel strips obtained in the tests described above was then first subjected to temper rolling with a temper rolling degree W G2 and then to an additional tempering anneal carried out as a batch annealing, during which it was held at a temperature T G2 for more than 20 minutes .

Nach der Anlassglühung sind für die erhaltenen Stahlbänder die Dehngrenze und die Zugfestigkeit Rm sowohl längs als auch quer zur Walzrichtung gemessen worden. Die Ergebnisse sind in Tabelle 2 aufgeführt. Aus diesen Messergebnissen wurden zudem der Produktionsindex PWG und die legierungsunabhängige Zugfestigkeit R̃m ermittelt.After the tempering, the yield point and the tensile strength R m were measured for the steel strips obtained, both longitudinally and transversely to the rolling direction. The results are shown in Table 2. The production index PWG and the alloy-independent tensile strength R̃ m were also determined from these measurement results.

Es zeigt sich, dass durch das erfindungsgemäß zusätzlich durchgeführte Nachwalzen mit anschließendem Anlassglühen durchweg eine sehr hohe Dehngrenze und eine sehr hohe Zugfestigkeit Rm erreicht wurde. Zugfestigkeit und Dehngrenze wurden nach DIN-EN ISO 6982-1, Probenform 2 (Anhang B Tab. B1) ermittelt. Lediglich die beiden nicht erfindungsgemäßen Beispiele 6 und 11, die mit 5 % einen geringen Walzgrad WG2 haben, erreichen keine so hohen Festigkeitswerte.It can be seen that a very high yield point and a very high tensile strength R m were consistently achieved by the additional temper rolling carried out according to the invention with subsequent tempering. Tensile strength and yield point were determined according to DIN-EN ISO 6982-1, specimen form 2 (Annex B Tab. B1). Only the two non-inventive examples 6 and 11, which have a low degree of rolling W G2 of 5%, do not achieve such high strength values.

Mit dieser Eigenschaftskombination sind erfindungsgemäße kaltgewalzte Stahlbänder optimal für die Herstellung von Bauteilen geeignet, die eine hohe Festigkeit aufweisen, aber nicht die für diese Festigkeit typische hochlegierte chemische Analyse aufweisen. Dadurch werden die damit verbundenen Probleme beim Schweißen und die Kosten der Legierungsbestandteile reduziert.With this combination of properties, cold-rolled steel strips according to the invention are optimally suited for the production of components which have high strength but do not have the high-alloy chemical analysis typical of this strength. This reduces the associated welding problems and the cost of the alloying components.

Die Figuren 1 und 2 zeigen beispielhaft für den Stahl aus dem vorbeschriebenen Beispiel Nr. 13 (siehe Tabelle 1) die Steigerung der Dehngrenze durch Nachwalzen ohne Anlassglühen (Figur 1) und durch Anlassglühen ohne vorheriges Nachwalzen (Figur 2). Aufgetragen ist jeweils die Differenz der Dehngrenze zwischen dem Zustand nach dem Nachwalzen bzw. Anlassglühen und dem Ausgangszustand. Dabei wurde die Dehngrenze in allen Fällen quer zur Walzrichtung ermittelt. Figur 1 zeigt diese Differenz als Funktion des Walzgrades. Figur 2 zeigt die Differenz als Funktion der Glühtemperatur beim Anlassglühen. Die Glühzeit betrug in jedem Fall 20 Minuten. Beide Figuren zeigen eine deutliche Steigerung der Dehngrenze durch die jeweilige Nachbehandlung. Durch das Anlassglühen bei 300°C, 400°C und 500°C (Figur 2) hatte der Stahl Nr. 13 eine ausgeprägte Streckgrenze ausgebildet, so dass als Dehngrenze Rel ermittelt und bei der Differenzbildung verwendet wurde. In allen anderen Fällen ergab sich bei der Messung keine ausgeprägte Streckgrenze, so dass als Dehngrenze der Wert Rp02 ermittelt und bei der weiteren Auswertung verwendet wurde.The Figures 1 and 2 show, as an example for the steel from example no. 13 described above (see Table 1), the increase in yield strength through temper rolling without tempering ( figure 1 ) and by tempering without prior temper rolling ( figure 2 ). The difference in yield strength between the condition after re-rolling or tempering and the initial condition is plotted in each case. In all cases, the yield point was determined perpendicular to the rolling direction. figure 1 shows this difference as a function of the degree of rolling. figure 2 shows the difference as a function of the glow temperature during the initial glow. The annealing time was 20 minutes in each case. Both figures show a clear increase in the yield strength due to the respective post-treatment. Through tempering at 300°C, 400°C and 500°C ( figure 2 ) steel no. 13 had developed a pronounced yield point, so that R el was determined as the yield point and used to calculate the difference. In all other cases, the measurement did not result in a pronounced yield point, so that the value R p02 was determined as the yield point and used in further evaluation.

Figur 5 zeigt für den Stahl Nr. 13 den synergetischen Effekt von Nachwalzen und Anlassglühen auf die Festigkeit. Aufgetragen ist die Differenz der Dehngrenze zwischen dem Zustand nach Nachwalzen und Anlassglühen und dem Zustand nach Nachwalzen ohne Anlassglühen. (Ein Walzgrad von 0% meint den Fall ohne Nachwalzen). Wären die beiden Effekte (Nachwalzen und Anlassglühen) auf die Festigkeit unabhängig voneinander, dürfte sich keine Abhängigkeit vom Walzgrad zeigen, da der Effekt des Walzens ja gerade subtrahiert wurde. Für alle drei Nachglühtemperaturen (200°C, 300°C und 400°C) müsste sich ein Verlauf parallel zur x-Achse ergeben. Stattdessen ist jedoch bei allen drei Nachglühtemperaturen ein Anstieg mit steigendem Walzgrad zu erkennen. Der Gesamteffekt geht also über die Summe der beiden Einzeleffekte hinaus. Beim Anlassglühen bei 300°C und 400°C ohne vorheriges Nachwalzen und beim Anlassglühen bei 300°C und 400°C mit vorherigem Nachwalzen mit einem Walzgrad von 10% hatte der Stahl Nr. 13 eine ausgeprägte Streckgrenze ausgebildet, so dass als Dehngrenze Rel ermittelt und bei der Auswertung verwendet wurde. Dies betrifft also die vier Datenpunkte oben links in Figur 3. In allen anderen Fällen ergab sich bei der Messung keine ausgeprägte Streckgrenze, so dass als Dehngrenze der Wert Rp02 ermittelt und bei der weiteren Auswertung verwendet wurde. Die Dehngrenze wurde auch hier in allen Fällen quer zur Walzrichtung ermittelt. Das gleiche Verhalten zeigt sich ebenfalls bei Messungen längs zur Walzrichtung. figure 5 Figure 13 shows the synergistic effect of temper rolling and tempering on strength for steel #13. The difference in yield strength between the condition after temper rolling and tempering and the condition after temper rolling without tempering is plotted. (A degree of rolling of 0% means the case without temper rolling). If the two effects (tempering and tempering) on the strength were independent of one another, there should not be any dependency on the degree of rolling, since the effect of rolling has just been subtracted. For all three afterglow temperatures (200°C, 300°C and 400°C) there should be a curve parallel to the x-axis. Instead, however, an increase with increasing degree of rolling can be seen for all three afterglow temperatures. The overall effect therefore goes beyond the sum of the two individual effects. During tempering at 300°C and 400°C without previous skin-pass rolling and during tempering at 300°C and 400°C with previous skin-pass rolling with a rolling degree of 10%, steel no. 13 developed a pronounced yield point, so that the yield strength R el determined and used in the evaluation. So this affects the four data points in the top left figure 3 . In all other cases, the measurement did not result in a pronounced yield point, so that the value R p02 was determined as the yield point and used in further evaluation. Here, too, the yield point was determined in all cases perpendicular to the rolling direction. The same behavior can also be seen in measurements along the rolling direction.

Die Figuren 4 und 5 zeigen lichtmikroskopische Längsschliffe des Stahls Nr.13 nach Nitalätzung. Deutlich ist in beiden Figuren der hohe Ferritanteil von mehr als 60 Vol.-% zu erkennen. Figur 4 zeigt den Stahl im Ausgangszustand ohne Nachbehandlung. In Figur 5 ist dagegen der Stahl Nr. 13 nach einer Nachbehandlung zur Festigkeitssteigerung gemäß Tabelle 2 dargestellt, bei der der Stahl zunächst mit einem Walzgrad von 30% nachgewalzt und anschließend bei 300°C für mehr als 20 Minuten anlassgeglüht wurde. Die Walzrichtung liegt bei Figur 5 in der Zeichenebene und verläuft horizontal. In Figur 5 sind deutlich die leicht gestreckte Körner der Ferritphase zu erkennen.The Figures 4 and 5 show light microscopic longitudinal sections of steel no. 13 after nital etching. The high ferrite content of more than 60% by volume can be clearly seen in both figures. figure 4 shows the steel in its initial state without post-treatment. In figure 5 On the other hand, steel No. 13 is shown after post-treatment to increase strength as shown in Table 2, in which the steel was first temper rolled to a degree of rolling of 30% and then tempered at 300° C. for more than 20 minutes. The rolling direction is included figure 5 in the plane of the drawing and runs horizontally. In figure 5 the slightly stretched grains of the ferrite phase can be clearly seen.

Anhand der in den Figuren 4 und 5 dargestellten Längsschliffe wurden ebenfalls mit der EBSD-Methode die Summen der Korngrenzenlängen für Kleinwinkelkorngrenzen eines quadratischen Messfeldes von 50µm*50µm ermittelt. Dabei beträgt die Summe der Kleinwinkelkorngrenzen im Ausgangszustand (d.h. Figur 4) 4,27mm. Durch die Nachbehandlung vergrößert sich dieser Wert auf 23,04mm (Zustand gemäß Figur 5). Entsprechende Messungen ergeben für die nachbehandelte Stahlflachprodukte Nr. 16 und Nr. 17 gemäß der Tabellen 1 und 2 13,1mm (Nr. 16) und 17 mm (Nr. 17).

Figure imgb0007
Figure imgb0008
Based on the Figures 4 and 5 In the longitudinal sections shown, the sums of the grain boundary lengths for small-angle grain boundaries of a square measuring field of 50 µm*50 µm were also determined using the EBSD method. The sum of the small-angle grain boundaries in the initial state (i.e figure 4 ) 4.27mm. Due to the post-treatment, this value increases to 23.04mm (condition according to figure 5 ). Corresponding measurements result in 13.1 mm (No. 16) and 17 mm (No. 17) for the post-treated steel flat products No. 16 and No. 17 according to Tables 1 and 2.
Figure imgb0007
Figure imgb0008

Claims (9)

  1. Method for producing a cold-rolled flat steel product aftertreated for strength enhancement, wherein a cold-rolled flat steel product is provided, with the flat steel product provided being generated by means of the following operating steps:
    - casting a steel having the composition as indicated below in % by weight to form a slab:
    - C: 0.05 - 0.25%,
    - Si: 0.05 - 0.6%,
    - Mn: 1.0 - 3.0%,
    - Al: 0.02 - 1.5%,
    - N: less than 0.02%,
    - P: 0.005 - 0.2%,
    - S: less than 0.05%
    - one or more elements from the group of "Cr, Mo", subject to the following provisos:
    - Cr: 0.2 - 1.5%,
    - Mo: 0.003 - 1.0%,
    - optionally one or more elements from the group of "Ti, Nb, B", subject to the following provisos:
    - B: less than 0.005%
    - Ti + Nb + 15*B: 0.02 - 0.15%
    - and optionally one or more elements from the group of "V, Cu, Ni, Ca", subject to the following provisos:
    - V: 0.0005 - 0.05%
    - Cu: 0.0001- 0.5%
    - Ni: 0.002 - 0.2%
    - Ca: 0.0005 - 0.007%
    - balance: iron and unavoidable impurities;
    - reheating the slab to a 1200 - 1300°C reheat temperature;
    - hot-rolling the reheated slab to give a hot strip, with the final hot-rolling temperature of the hot strip at the end of hot-rolling being 800 - 1000°C;
    - winding the hot strip at a winding temperature of 400 - 700°C;
    - pickling the hot strip;
    - cold-rolling the hot strip in one or more cold rolling steps to give a cold-rolled flat steel product, with the degree of cold-rolling achieved over the cold-rolling amounting in total to 20 - 80%;
    - subjecting the cold-rolled flat steel product to continuous annealing at a continuous-annealing temperature of 700 - 950°C;
    - cooling the cold-rolled flat steel product to room temperature;
    characterized in that the provided cold-rolled flat steel product is aftertreated for strength enhancement, wherein the following operating steps are traversed:
    - rerolling of the cold-rolled flat steel product, with the degree of rolling WG2 achieved over the rerolling amounting in total to 8 - 40%;
    - temper-annealing the rerolled flat steel product at a reannealing temperature TG2 of 100 - 400°C over an annealing time of 0.2 - 25 hours.
  2. Method according to Claim 1, characterized in that the steel has a carbon equivalent Ceq where C eq = C + 1 6 Mn + 1 5 Mo + 1 15 Ni + 1 5 Cr + 1 5 V + 1 15 Cu ,
    Figure imgb0015
    and the production index PWG where P WG = T G 2 K W G 2 C eq
    Figure imgb0016
    is between 0.1 and 2.7, with:
    TG2: reannealing temperature in the unit °C
    WG2: degree of rolling on rerolling in %
    Ceq: carbon equivalent in %
    K: constant with a value of 10°C.
  3. Method according to either of Claims 1 and 2, characterized in that the steel has a structure consisting of at least two phases and containing in % by volume more than 10% tempered martensite and more than 60% ferrite.
  4. Method according to any of Claims 1 to 3, characterized in that the cold-rolled flat steel product is coated, more particularly coated electrolytically, between rerolling and temper-annealing.
  5. Method according to any of Claims 1 to 4, characterized in that the cooling of the cold-rolled flat steel product to room temperature comprises two intermediate steps, with the cold-rolled flat steel product being cooled in the first intermediate step to a first cooling temperature T1 and being held at the first cooling temperature T1 for a first holding time t1, and with cold-rolled flat steel product being cooled in the second intermediate step to a second cooling temperature T2 and being held at the second cooling temperature T2 for a second holding time t2, with the cooling temperatures T1, T2 obeying the following conditions: T 1 > T 2 , 450 C T 1 800 C and 400 C T 2 600 C
    Figure imgb0017
    and with the holding times t1, t2 obeying the following conditions: 0 s t 1 20 s and 0 s t 2 900 s
    Figure imgb0018
  6. Method according to any of Claims 1 to 5, characterized in that the cold-rolled flat steel product provided for hardening bears a metallic protective coating which is applied in particular by melt dip coating.
  7. Cold-rolled flat steel product aftertreated for strength enhancement and consisting of
    - a steel having the composition as indicated below in % by weight:
    - C: 0.05 - 0.25%,
    - Si: 0.05 - 0.6%,
    - Mn: 1.0 - 3.0%,
    - Al: 0.02 - 1.5%,
    - N: less than 0.02%,
    - P: 0.005 - 0.2%,
    - S: less than 0.05%
    - one or more elements from the group of "Cr, Mo", subject to the following provisos:
    - Cr: 0.2 - 1.5%,
    - Mo: 0.003 - 1.0%,
    - optionally one or more elements from the group of "Ti, Nb, B", subject to the following provisos:
    - B: less than 0.005%
    - Ti + Nb + 15*B: 0.02 - 0.15%
    - and optionally one or more elements from the group of "V, Cu, Ni, Ca", subject to the following provisos:
    - V: 0.0005 - 0.05%
    - Cu: 0.0001- 0.5%
    - Ni: 0.002 - 0.2%
    - Ca: 0.0005 - 0.007%
    - balance: iron and unavoidable impurities,
    and having
    - a yield point of at least 1000 MPa and a tensile strength Rm of at least 1100 MPa, determined according to DIN-EN ISO 6982-1, sample shape 2 (Annex B tab. B1),
    - where the alloy-independent tensile strength R̃m is at least 400 MPa, where R ˜ m = Rm C + Si + Mn + Cr + Mo ,
    Figure imgb0019
    where C, Si, Mn, Cr and Mo are the respective element contents in per cent by weight,
    - and where the steel has a structure consisting of at least two phases and comprising in % by volume more than 10% tempered martensite and more than 60% ferrite.
  8. Cold-rolled flat steel product aftertreated for strength enhancement according to Claim 7, characterized in that the steel has a carbon equivalent Ceq where C eq = C + 1 6 Mn + 1 5 Mo + 1 15 Ni + 1 5 Cr + 1 5 V + 1 15 Cu ,
    Figure imgb0020
    which is in the 0.3% to 1.3% range.
  9. Cold-rolled flat steel product aftertreated for strength enhancement according to either of Claims 7 and 8, characterized in that the sum total of the grain boundary lengths for small-angle grain boundaries in a square measuring field of 50 µm * 50 µm in a polished longitudinal section is greater than 10 mm, preferably greater than 15 mm, more preferably greater than 20 mm.
EP21155199.9A 2020-02-28 2021-02-04 Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product Active EP3872206B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20160000 2020-02-28

Publications (2)

Publication Number Publication Date
EP3872206A1 EP3872206A1 (en) 2021-09-01
EP3872206B1 true EP3872206B1 (en) 2023-06-21

Family

ID=69845829

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21155199.9A Active EP3872206B1 (en) 2020-02-28 2021-02-04 Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product

Country Status (1)

Country Link
EP (1) EP3872206B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948692B (en) * 2022-09-22 2024-06-14 马鞍山钢铁股份有限公司 Cold-rolled hood-type annealed high-strength steel with tensile strength of 450MPa for automobile and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2684975T3 (en) * 2012-07-10 2017-08-31 Thyssenkrupp Steel Europe Ag Cold rolled steel flat product and method for its production
JP6533528B2 (en) 2014-04-15 2019-06-19 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG Method of manufacturing cold rolled flat steel product with high yield strength and cold rolled flat steel product
WO2016177420A1 (en) * 2015-05-06 2016-11-10 Thyssenkrupp Steel Europe Ag Flat steel product and method for the production thereof

Also Published As

Publication number Publication date
EP3872206A1 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
EP2710158B1 (en) High strength steel flat product and method for its production
EP2855717B1 (en) Steel sheet and method to manufacture it
DE60125253T2 (en) High strength hot rolled steel sheet with excellent stretch aging properties
DE60121233T2 (en) High strength cold rolled steel sheet with high r-value, excellent strain aging properties and aging resistance, and process for its production
EP3292228B1 (en) Flat steel product and methode for production of said product
EP3535431B1 (en) Steel product with an intermediate manganese content for low temperature application and production method thereof
DE69708832T2 (en) Cold rolled steel sheet and its manufacturing process
EP3221484B1 (en) Method for manufacturing a high-strength air-hardening multiphase steel strip having excellent processing properties
EP2374910A1 (en) Steel, flat, steel product, steel component and method for producing a steel component
EP3688203B1 (en) Flat steel product and production method thereof
DE112005003112T5 (en) High strength steel sheet and process for its production
DE69228403T2 (en) High-strength, cold-rolled, deep-drawn steel sheet that is age-resistant at room temperature and manufacturing process
EP3692178B1 (en) Method for producing a steel strip from an ultrahigh strength multiphase steel
EP3976838A1 (en) Component produced by forming a sheet steel blank, and method for the production of said component
EP3872206B1 (en) Post-treated cold rolled steel sheet product and method of manufacturing a post-treated cold rolled steel sheet product
EP4298255A1 (en) High-strength hot-rolled flat steel product having high local cold formability and a method of producing such a flat steel product
WO2020038883A1 (en) Hot-rolled non-heat-treated and hot-rolled heat-treated flat steel product and method for the production thereof
WO2023025635A1 (en) Cold-rolled flat steel product and method for the production thereof
EP3469108B1 (en) Method for producing a cold-rolled steel strip having trip-characteristics made of a high-strength mangan-containing steel
DE69012073T2 (en) High strength cold rolled steel sheet, either hot dip galvanized or not, with improved draw flare properties and manufacturing processes.
EP4261309A1 (en) Cold-rolled steel sheet product and method for producing a cold-rolled steel sheet product
DE3441087C2 (en)
WO2024115199A1 (en) Cold-rolled flat-steel product and method for the production thereof
DE102022125128A1 (en) Method for producing a steel strip from a high-strength multi-phase steel and corresponding steel strip
DE102022102418A1 (en) High-strength, hot-dip coated steel strip having structural transformation-induced plasticity and method of making same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211111

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DREWES, KAROLINE

Inventor name: FERKEL, HANS

Inventor name: SEBALD, ROLAND

Inventor name: BAEUMER, ANNETTE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 9/46 20060101ALI20230208BHEP

Ipc: C21D 8/02 20060101ALI20230208BHEP

Ipc: C22C 38/40 20060101ALI20230208BHEP

Ipc: C22C 38/38 20060101ALI20230208BHEP

Ipc: C22C 38/32 20060101ALI20230208BHEP

Ipc: C22C 38/28 20060101ALI20230208BHEP

Ipc: C22C 38/26 20060101ALI20230208BHEP

Ipc: C22C 38/24 20060101ALI20230208BHEP

Ipc: C22C 38/22 20060101ALI20230208BHEP

Ipc: C22C 38/20 20060101ALI20230208BHEP

Ipc: C22C 38/06 20060101ALI20230208BHEP

Ipc: C22C 38/04 20060101ALI20230208BHEP

Ipc: C22C 38/02 20060101ALI20230208BHEP

Ipc: C22C 38/00 20060101AFI20230208BHEP

INTG Intention to grant announced

Effective date: 20230220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021000889

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1580933

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231023

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231021

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021000889

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

26N No opposition filed

Effective date: 20240322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240204

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240229