EP3869824A1 - Holding device for a fibre optic cable of an implantable hearing aid - Google Patents
Holding device for a fibre optic cable of an implantable hearing aid Download PDFInfo
- Publication number
- EP3869824A1 EP3869824A1 EP20020081.4A EP20020081A EP3869824A1 EP 3869824 A1 EP3869824 A1 EP 3869824A1 EP 20020081 A EP20020081 A EP 20020081A EP 3869824 A1 EP3869824 A1 EP 3869824A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- holding
- fastening plate
- holding device
- fiber
- optic line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R25/00—Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
- H04R25/60—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
- H04R25/604—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
- H04R25/606—Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2225/00—Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
- H04R2225/67—Implantable hearing aids or parts thereof not covered by H04R25/606
Definitions
- the invention relates to a holding device for a fiber-optic line of an implantable hearing aid, which is guided to a part of the sound transmission in the ear that can be stimulated to acoustic vibrations, comprising a fastening plate for fastening the holding device to the cranial bone, a holding part for holding the fiber-optic line and at least one joint device for at least two-axis adjustment of the holding part relative to the mounting plate.
- the sound waves are perceived, which are conducted from the auricle to the external auditory canal and set the eardrum in vibration.
- the hammer handle is fused with the eardrum, with further transmission via the ossicles (hammer and anvil) through the stapes to the perilymphatic fluid, which sets the organ of Corti into vibrations.
- the excitation of the hair cells in the organ of Corti generates nerve impulses that the auditory nerve directs into the brain, where they are consciously perceived.
- an implantable sound receptor for hearing aids such as the EP 1 123 635 B1
- the optical sensor here comprises a fiber-optic line with which the light emanating from a light or laser diode is directed onto the part of the sound transmission that can be excited into acoustic oscillations, such as the anvil.
- the reflected signals are transmitted via the fiber optic line to at least one optoelectronic Coupling component, for example a photodiode, and then fed to an evaluation circuit, where the reflected signal is evaluated according to the interferometer principle in order to determine the vibrations of an ossicle, such as the anvil, with high precision.
- at least one optoelectronic Coupling component for example a photodiode
- an evaluation circuit where the reflected signal is evaluated according to the interferometer principle in order to determine the vibrations of an ossicle, such as the anvil, with high precision.
- the advantage of such a design of the vibration measurement is that the part of the sensor to be implanted in the middle ear or the epitympanone or the mastoid (mastoid process) is limited to the relatively small free end of the fiber optic line via which the optical signals are fed in and the reflected signals be removed.
- Another advantage is the non-contact measurement, so that there is no impairment of the acoustic signal and no impairment of quasi-static movements of the ossicles to be feared.
- the free end of the fiber optic line In the case of the implantable sound receptor in the EP 1 123 635 B1 mentioned type, it is necessary that the free end of the fiber optic line to be arranged at a distance from the surface of the part to be scanned, such as the anvil, is precisely aligned. Both the setting of the distance between the fiber optic line and the vibrating part and the precise alignment of the fiber optic line in the direction of the sound waves emanating from the vibrating part are decisive.
- the fiber optic cable is fastened in the ear in accordance with EP 1 123 635 B1 with the help of a holding device, which for this purpose can be fixed directly to a bone, for example with bone screws.
- the Fastening plate carries a receptacle for the fiber-optic line, a hinge device serving for the at least two-axis adjustment of the fiber-optic line relative to the fastening plate.
- the present invention is therefore aimed at improving a holding device for a fiber-optic line for measuring vibration of a part of the sound transmission in the ear that can be excited into acoustic vibrations, so that the above-mentioned disadvantages can be overcome.
- the invention essentially provides for a holding device of the type mentioned at the outset that, in addition to the joint device for at least two-axis adjustment of the holding part relative to the fastening plate, an actuator-driven and preferably telemetrically controllable pivoting device is provided for at least two-axis pivoting of the holding part relative to the mounting plate.
- an actuator-driven pivoting device makes it possible, on the one hand, to carry out a fine adjustment during the implantation phase in addition to the coarse adjustment made possible by the joint device.
- the actuator-driven pivoting device can be used to carry out a subsequent remote-controlled correction of the position and the alignment of the fiber-optic line relative to the vibrating part after the operative access has been closed.
- the actuator drive is preferably carried out by electrical energy, whereby the energy can be supplied via an implantable energy storage device (e.g. battery) which, if required, can be charged wirelessly through the skin, i.e. inductively.
- the actuator-based drive can be controlled by a control device that works in accordance with control signals that are wirelessly transmitted to the control device from outside the patient. In this way, wireless remote control of the swivel device can be realized.
- the actuator is driven by at least one suitable actuator, such as an electric motor.
- the holding part for holding the end region of the fiber-optic line facing the vibrating part can be designed, for example, as a guide tube in which the fiber optic line is received.
- the pivoting device has a first actuator for pivoting the holding part about a first pivot axis and a second actuator for pivoting the holding part about a second pivot axis, the first and second pivot axes preferably running perpendicular to one another.
- the pivoting device can also comprise a third actuator for pivoting the holding part about a third pivot axis, which preferably runs orthogonally to both the first and the second pivot axis.
- the joint device is designed for two-axis pivoting of the holding part, preferably for three-axis pivoting of the holding part.
- the holding device can preferably be designed in such a way that an elongated connecting structure is provided which extends away from the fastening plate and connects the holding part to the fastening plate, at whose end region facing away from the fastening plate the joint device is arranged.
- the elongated connecting structure is used to bridge the distance between the point at which the fastening plate has to be attached to the cranial bone due to the anatomical conditions, and the point at which the end of the fiber-optic line further inside the ear at the required distance to the ossicles, such as e.g. the anvil, is brought up.
- the longitudinal axis of the elongated connecting structure extends away from the mounting plate at an angle of 60-120 °, preferably 80-100 °, to the plane of the mounting plate.
- the longitudinal axis of the elongated connecting structure is to be understood here as the direction in which the connecting structure has its greatest extent.
- the pivoting device is preferably arranged as close as possible to the mounting plate.
- the pivoting device is fastened to the fastening plate in order to pivot the elongate connecting structure together with the joint device and the holding part relative to the fastening plate.
- a preferred embodiment provides that the holding part for setting a distance from the fastening plate is guided in translation relative to the fastening plate and can be locked in the selected translational position and preferably fine-tuned by an actuator and also readjusted telemetrically after healing.
- the elongate connecting structure has a sliding guide running in the direction of its longitudinal axis.
- the joint device preferably comprises a ball joint.
- the ball-and-socket joint allows infinitely variable three-axis pivoting in a simple manner, so that the surgeon makes it easier to adjust the fiber-optic line.
- the ball joint comprises a ball which can be clamped between two jaws of the joint device.
- the clamping mechanism is used to fix the set position.
- the ball can be clamped between the two jaws, for example, by means of a screw connection with which the two jaws are clamped to one another.
- a preferred embodiment provides that the holding part is attached to the joint device by means of a connecting rod.
- the connecting rod is particularly preferably designed to be essentially S-shaped. This brings an advantageous adaptation to the anatomy.
- the S-shaped connecting rod comprises a central section extending in the direction of the longitudinal axis of the elongated connecting structure between two further sections extending transversely to the central section.
- the connecting rod can also be designed as a straight rod.
- a biocompatible material such as polypropylene, Teflon, polyethylene, medical steel or titanium is preferably used as the material for the holding device.
- the invention relates to an implantable hearing aid comprising an optical sensor having a fiber-optic line for contactless vibration and distance measurements on a part of the sound transmission in the ear that can be excited into acoustic oscillations and further comprising a holding device according to the invention that can be attached to a skull bone for holding the fiber-optic line at an adjustable distance and in an adjustable alignment to the part of the sound transmission in the ear that can be stimulated to acoustic oscillations.
- the optical sensor preferably comprises an interferometer.
- the actual design of the interferometer requires the following preferred algorithms (eg arctangent algorithm) for the evaluation.
- Interferometers can be of any design, such as a Michelson, Fabry-Perot or Fizeau interferometer, with suitable stabilization configurations, for example, in the article from KP Koo, AB Tveten, A. Dandridge, "Passive stabilization scheme for fiber interferometers using (3x3) fiber directinal couplers", in Appl.Phys.Lett., Vol. 41, No.7, pp. 616-618, 1982 , G.Schmitt, W. Wenzel, K.
- the oscillation of the auditory ossicles and the tympanic membrane, as observed when excited by acoustic waves, is also superimposed in the ear by a low-frequency, quasi-static or slow dislocation of the eardrum membrane and the ossicles, which can be attributed to differences in air pressure or in the pressure in the middle ear.
- Such low-frequency shifts are caused, for example, by changing the air pressure when driving in elevators, cable cars or airplanes, with significant low-frequency fluctuations also occurring when the Eustachian tube is suddenly opened.
- Such low-frequency shifts can be in their amplitude by a factor of at least 10 2 higher than the maximum amplitudes occurring during physiological sonication.
- the fiber optic line is preferably so arranged that even with such displacements there is no contact with the part to be scanned and it is therefore preferably designed so that the free end of the fiber-optic line is arranged at a distance from the scanned part which is greater than the maximum displacement that occurs of the scanned part is held adjustable in the direction of the free end of the fiber optic line, and / or at a distance preventing a collision.
- the fiber optic line is preferably connected to an electronic evaluation circuit in which the acoustic vibrations of the scanned part are determined on the basis of the optical reflection signals received via the fiber optic line and which signals (corresponding to microphone signals) are used for electromechanical vibration generators and / or for stimulating the organ of Corti and / or the auditory nerve and / or the brain stem generated.
- the evaluation circuit can interact with an algorithm to compensate for the shift in the operating point of the interferometer due to low-frequency shifts of the scanned part.
- the optical parameters of the reflected components of the emitted signal can be measured, whereby the procedure for evaluating the reflected signals is advantageously such that the fiber-optic line is connected to an interferometer to evaluate the amplitude, the frequency and / or the relative phase position the vibration of the scanned part is connected.
- the use of the interferometer principle, for which different types are known, allows even low amplitudes of acoustic vibrations in the area of the ossicles to be reliably detected without contact.
- the range to be recorded extends from amplitudes of 1x10 -14 m / ⁇ Hz (with a sound power of about 40 dB) to about 3-4x10 -9 m / ⁇ Hz (with a sound power of about 90 dB), with higher amplitudes than 3-4x10 -7 m / ⁇ Hz, as can be observed with a sound radiation of about 120 dB, can also be measured, whereby the deflection of the vibrating part to be measured is proportional to the sound pressure level (dB).
- the surface of the part that can be excited to vibrate, facing the sensor carries or has reflection-increasing means for the reflection of electromagnetic radiation in the wavelength range of the sensitivity of the sensor.
- the greater distance also allows the two implant parts (reflection-enhancing agent and free end of the fiber-optic line) to overgrow in isolation through connective tissue and middle ear mucosa without creating visually disruptive connective tissue bridges between the two parts. Although this overgrowth of tissue leads to a dampening of the light intensity, the reflection-increasing agent still produces sufficient signal strengths for the vibrometric processing of the reflected electromagnetic waves to form a microphone signal.
- the greater distance also means that slight relative displacements between the fiber-optic line and the part of the sound transmission in the ear that can be stimulated to vibrate, as can occur through healing processes or child skull growth, do not significantly impair the measurement signal.
- the arrangement of the reflection-increasing means can also have the effect that the reflection surface is increased in comparison to that surface which the part of the sound transmission in the ear that can be excited to vibrate offers for the reflection itself.
- the invention is preferred so that the distance between the reflection-increasing means and the end of the fiber-optic line can be increased to several millimeters (approx. 1 to> 10 mm) and the signal noise and in particular the input power of the sensor is further reduced and thus the battery life is further extended trained in such a way that it is too acoustic Vibrations excitable part facing end of the fiber optic conductor carries a collimator.
- the electromagnetic radiation is not diffusely distributed in the attic space, but sent out in a directed manner towards the reflection-increasing means, whereby multiple reflections in the attic space, which are also received by the sensor, can be excluded or reduced and the available transmission power of the sensor can be better utilized.
- the collimator is preferably formed by a gradient lens, a glass ball, a glass fiber collimator or the shape of the fiber tip of the fiber optic line, or it contains a converging lens system for generating parallel beams. This ensures that a change in the distance to the reflection-increasing means in the millimeter range does not lead to a disruptive change in the signal strength of the optical beam.
- the choice of the collimator type is matched to the wavelength of the sensor, which is located in the near infrared, for example, but it could also offer sufficient collimation in the visible range.
- the implantation time and accordingly the implantation costs can be reduced in that the collimator can be connected to a positioning light source, in particular a laser with a frequency visible to the eye, for adjusting the position of the beam relative to the reflection-increasing means.
- the time for adjusting the collimator to the reflection-increasing means is reduced by the fact that it can be determined with the naked eye whether the collimator is correctly adjusted and signals from the sensor do not have to be evaluated first. Since the positioning light is directed to the reflection-increasing means via the collimator and is in the visible range of the electromagnetic spectrum, both the collimator and the reflection-increasing means should collimate or reflect the selected wavelength as well as the wavelength to which the sensor is tuned. In particular, a red laser as a positioning light stands out clearly as a red point as soon as a successful adjustment has taken place. The positioning light is only used for adjustment and can then be decoupled.
- the implantable sound receptor can be designed in such a way that the reflection-increasing agents or the carrier on which they are applied, with the part that can be excited to vibrate, by gluing, mechanical coupling, for example by cliffs or Tying, or firmly connected by implantation.
- the reflection-increasing means can be formed from reflective materials such as spheres, preferably glass balls, mirrors, pyramids, etc. The reflection-increasing means or their supports should be attached to the point to be scanned without play in order to transfer the vibrations to the reflection-increasing means true to the original.
- the invention is developed in such a way that the reflection-increasing means and possibly the collimator end are coated or encased with an optically transparent, biocompatible material, for example silicone.
- an optically transparent, biocompatible material for example silicone.
- the overgrowth of tissue can be further delayed.
- the reflection-increasing means largely retroreflect independently of the angle of incidence of the beam, that is, largely independently of the orientation of the reflector to the collimator, largely reflect in the direction back to the radiation source. This ensures that the reflection-increasing agent does not have to stand normally on the beam path from the radiation source to the point to be measured, whereby the adjustment is considerably accelerated and a later change in position due to scarring or growth plays a lesser role.
- an actuator-driven pivoting device makes it possible, on the one hand, to carry out a fine adjustment during the implantation phase in addition to the coarse adjustment made possible by the joint device.
- the actuator-driven pivoting device can be used in order to carry out a subsequent remote-controlled correction of the position and the alignment of the fiber optic cable relative to the vibrating part after the surgical access has been closed, if postoperative changes in position require it.
- FIG. 1 a schematic representation of the human ear with an optical sensor
- Fig. 2 a holding device according to the invention for a fiber optic line of the optical sensor in a first sectional view
- Fig. 3 the holding device of the invention Fig. 2 in a second sectional view
- Fig. 4 an embodiment of a connecting rod for holding a holding part for the fiber optic line
- Fig. 5 a schematic representation of a reflection-increasing agent on the anvil of a human ear.
- Fig. 1 shows a view of the implantation area for the implantation of an optical sensor directed at the anvil in the human ear.
- the ear 1 comprises an eardrum 2, which separates the outer ear 3 from the middle ear 4.
- the auditory ossicles including the anvil 5 are arranged in the tympanic cavity of the middle ear 4.
- the optical sensor is arranged to measure the vibrations of the anvil 5 with the aid of a light beam emerging from the free end of a fiber optic line 6.
- the anvil 5 carries a reflector 7 to increase the light reflection.
- a collimator 8 is arranged at a distance from the reflector 7.
- the holder for the fiber-optic line 6 comprises a fastening plate 9 which is fastened to the skull bone.
- the bracket is in Fig. 1 shown only schematically, it being evident that the fastening plate 9, as shown in more detail in FIGS Figs. 2 and 3 is shown, carries a guide tube 10 into which the fiber optic line 6 is inserted.
- the sensor also includes an optoelectronic sound signal processor module 11, which is accommodated in a biocompatible, implantable shell.
- the module 11 is connected to the fiber optic line 6 and receives the light signal reflected by the reflector 7 and coupled into the free end of the fiber optic line 6. The light signal is evaluated in the module 11 in order to determine the vibrations of the anvil 5 or the reflector 7 attached to it.
- the module 11 is implanted in the skull and firmly attached to the bone.
- the fastening plate 9 is fastened to the skull bone with screws 12. Furthermore, an elongated connecting structure 13 extending away from the fastening plate 9 and connecting the guide tube 10 to the fastening plate 9 is provided in the form of a rod, on whose end region facing away from the fastening plate 9 a hinge device 14 is arranged.
- the joint device 14 comprises a ball joint which has a ball 15 which is rotatably held between clamping jaws 16 and 17.
- a connecting rod 18, which carries the guide tube 10, is rigidly attached to the ball 15.
- the clamping force with which the Ball 15 is clamped between the clamping jaws 16 and 17 can be adjusted by means of the adjusting screw 19.
- the ball joint 14 allows a three-axis adjustment of the orientation of the guide tube 10 when the adjusting screw 19 is loosened accordingly. After the desired alignment has been set, this is fixed by tightening the adjusting screw 19.
- a translational adjustment of the guide tube 10 in the direction of the double arrow 20 takes place in that the elongated connecting structure 13 has a sliding guide for the joint device 14 running in the direction of its longitudinal axis.
- the selected translational position is fixed by means of the locking screw 21.
- an actuator-driven, in particular motor-driven pivoting device 37 which enables the guide tube 10 to be adjusted in two orthogonal directions.
- the pivoting device comprises two gear wheels 22 and 23 which are connected to the corresponding counterparts by corresponding screws 24 and 25.
- the screws 24 and 25 can be operated by electric motors 26 and 27, respectively.
- the toothed wheel 23 can be firmly connected to the counterpart 28 of the toothed wheel 22 by welding, in particular laser welding.
- a rotation of the motor 27 in the direction of the double arrow 29 leads to a pivoting of the guide tube 10 according to the double arrow 30.
- a rotation of the motor 26 in the direction of the double arrow 31 leads to a pivoting of the guide tube 10 according to the double arrow 32.
- the motors 26 and 27 can remotely controlled via a wireless connection so that the Alignment of the guide tube 10 together with the fiber optic line received therein is possible even years after the implantation has taken place.
- a modified embodiment of the holder in which the connecting rod 18 between the ball 15 and the guide tube 10 has an S-shape.
- the S-shaped connecting rod 18 comprises a central section 34 which extends in the direction of the longitudinal axis of the elongated connecting structure 13 or in the direction of the longitudinal axis of the guide tube 10 and is arranged between two further sections 35 extending transversely to the central section 34.
- the connection 18 allows an adaptation to the individual distance of the oscillating measurement target from the pivoting device parallel to the guide tube 10.
- the sections 35 allow an adaptation of the distance from the ball in the narrow anterior angle between the tympanum (tegmen tympani) and the wall of the ear canal.
- the guide tube 10 has a conical bevel 33 which facilitates the insertion of the fiber-optic line 6.
- a reflector 7 is fastened to the anvil 5 to increase the reflection, the fastening being carried out, for example, with the aid of a band 36.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Neurosurgery (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Prostheses (AREA)
Abstract
Bei einer Haltevorrichtung für eine faseroptische Leitung einer implantierbaren Hörhilfe, die zu einem zu akustischen Schwingungen anregbaren Teil (5) der Schallübertragung im Ohr geführt ist, umfassend eine Befestigungsplatte (9) zur Befestigung der Haltevorrichtung am Schädelknochen, ein Halteteil (10) zum Halten der faseroptischen Leitung (6) und wenigstens eine Gelenkvorrichtung (14) zur wenigstens zweiachsigen Justierung des Halteteils (10) relativ zur Befestigungsplatte (9), ist zusätzlich eine aktuatorisch antreibbare Schwenkvorrichtung (37) zur wenigstens zweiachsigen Verschwenkung des Halteteils (10) relativ zur Befestigungsplatte (9) vorgesehen.In a holding device for a fiber optic line of an implantable hearing aid, which is guided to a part (5) of the sound transmission in the ear that can be stimulated to acoustic vibrations, comprising a fastening plate (9) for fastening the holding device to the cranial bone, a holding part (10) for holding the fiber-optic line (6) and at least one joint device (14) for at least two-axis adjustment of the holding part (10) relative to the fastening plate (9), there is also an actuator-driven pivoting device (37) for at least two-axis pivoting of the holding part (10) relative to the fastening plate ( 9) provided.
Description
Die Erfindung betrifft eine Haltevorrichtung für eine faseroptische Leitung einer implantierbaren Hörhilfe, die zu einem zu akustischen Schwingungen anregbaren Teil der Schallübertragung im Ohr geführt ist, umfassend eine Befestigungsplatte zur Befestigung der Haltevorrichtung am Schädelknochen, ein Halteteil zum Halten der faseroptischen Leitung und wenigstens eine Gelenkvorrichtung zur wenigstens zweiachsigen Justierung des Halteteils relativ zur Befestigungsplatte.The invention relates to a holding device for a fiber-optic line of an implantable hearing aid, which is guided to a part of the sound transmission in the ear that can be stimulated to acoustic vibrations, comprising a fastening plate for fastening the holding device to the cranial bone, a holding part for holding the fiber-optic line and at least one joint device for at least two-axis adjustment of the holding part relative to the mounting plate.
Beim natürlichen Gehörvorgang werden die Schallwellen wahrgenommen, die von der Ohrmuschel zum äußeren Gehörgang geleitet werden und das Trommelfell in Schwingung versetzen. Mit dem Trommelfell ist der Hammerstiel verwachsen, wobei die weitere Übertragung über die Gehörknöchelchen (Hammer und Amboss) durch die Steigbügelplatte auf die perilymphatische Flüssigkeit erfolgt, die das Cortische Organ in Schwingungen versetzt. Durch die Erregung der Haarzellen im Cortischen Organ werden Nervenimpulse erzeugt, die der Hörnerv in das Gehirn leitet, wo sie bewusst wahrgenommen werden.During the natural auditory process, the sound waves are perceived, which are conducted from the auricle to the external auditory canal and set the eardrum in vibration. The hammer handle is fused with the eardrum, with further transmission via the ossicles (hammer and anvil) through the stapes to the perilymphatic fluid, which sets the organ of Corti into vibrations. The excitation of the hair cells in the organ of Corti generates nerve impulses that the auditory nerve directs into the brain, where they are consciously perceived.
Bei einem implantierbaren Schallrezeptor für Hörhilfen, wie er beispielsweise der
Der Vorteil einer derartigen Ausbildung der Schwingungsmessung liegt darin, dass sich der im Mittelohr oder dem Epitympanon oder dem Mastoid (Warzenfortsatz) zu implantierende Teil des Sensors auf das relativ kleine freie Ende der faseroptischen Leitung beschränkt, über welche die optischen Signale eingespeist und die reflektierten Signale abgenommen werden. Ein weiterer Vorteil besteht in der berührungslosen Messung, sodass keine Beeinträchtigung des akustischen Signals und keine Beeinträchtigung durch quasistatische Bewegungen der Gehörknöchelchen zu befürchten ist.The advantage of such a design of the vibration measurement is that the part of the sensor to be implanted in the middle ear or the epitympanone or the mastoid (mastoid process) is limited to the relatively small free end of the fiber optic line via which the optical signals are fed in and the reflected signals be removed. Another advantage is the non-contact measurement, so that there is no impairment of the acoustic signal and no impairment of quasi-static movements of the ossicles to be feared.
Bei dem implantierbaren Schallrezeptor des in der
Die Befestigung der faseroptischen Leitung im Ohr erfolgt gemäß der
Die vorliegende Erfindung zielt daher darauf ab, eine Haltevorrichtung für eine faseroptische Leitung zur Schwingungsmessung eines zu akustischen Schwingungen anregbaren Teils der Schallübertragung im Ohr dahingehend zu verbessern, dass die oben genannten Nachteile überwunden werden können.The present invention is therefore aimed at improving a holding device for a fiber-optic line for measuring vibration of a part of the sound transmission in the ear that can be excited into acoustic vibrations, so that the above-mentioned disadvantages can be overcome.
Zur Lösung dieser Aufgabe sieht die Erfindung bei einer Haltevorrichtung der eingangs genannten Art im Wesentlichen vor, dass zusätzlich zur Gelenkvorrichtung zur wenigstens zweiachsigen Justierung des Halteteils relativ zur Befestigungsplatte eine aktuatorisch antreibbare und bevorzugt telemetrisch ansteuerbare Schwenkvorrichtung zur wenigstens zweiachsigen Verschwenkung des Halteteils relativ zur Befestigungsplatte vorgesehen ist.To achieve this object, the invention essentially provides for a holding device of the type mentioned at the outset that, in addition to the joint device for at least two-axis adjustment of the holding part relative to the fastening plate, an actuator-driven and preferably telemetrically controllable pivoting device is provided for at least two-axis pivoting of the holding part relative to the mounting plate.
Das zusätzliche Vorsehen einer aktuatorisch antreibbaren Schwenkvorrichtung erlaubt es einerseits, während der Implantierungsphase ergänzend zur durch die Gelenkvorrichtung ermöglichten Grobeinstellung eine Feinjustierung vorzunehmen. Andererseits kann die aktuatorisch antreibbaren Schwenkvorrichtung herangezogen werden, um nach dem Verschließen des operativen Zugangs eine nachträgliche ferngesteuerte Korrektur der Position und der Ausrichtung der faseroptischen Leitung relativ zum schwingenden Teil vorzunehmen.The additional provision of an actuator-driven pivoting device makes it possible, on the one hand, to carry out a fine adjustment during the implantation phase in addition to the coarse adjustment made possible by the joint device. On the other hand, the actuator-driven pivoting device can be used to carry out a subsequent remote-controlled correction of the position and the alignment of the fiber-optic line relative to the vibrating part after the operative access has been closed.
Der aktuatorische Antrieb erfolgt hierbei bevorzugt durch elektrische Energie, wobei die Energieversorgung über einen implantierbaren Energiespeicher (z.B. Batterie) erfolgen kann, der bei Bedarf drahtlos durch die Haut, d.h. induktiv, aufgeladen werden kann. Der aktuatorisch Antrieb kann hierbei von einer Steuervorrichtung angesteuert werden, die in Übereinstimmung mit Steuersignalen arbeitet, welche von außerhalb des Patienten drahtlos an die Steuervorrichtung übermittelt werden. Auf diese Weise kann eine drahtlose Fernsteuerung der Schwenkvorrichtung realisiert werden.The actuator drive is preferably carried out by electrical energy, whereby the energy can be supplied via an implantable energy storage device (e.g. battery) which, if required, can be charged wirelessly through the skin, i.e. inductively. The actuator-based drive can be controlled by a control device that works in accordance with control signals that are wirelessly transmitted to the control device from outside the patient. In this way, wireless remote control of the swivel device can be realized.
Der aktuatorische Antrieb erfolgt durch wenigstens einen geeigneten Aktuator, wie z.B. durch einen elektrischen Motor.The actuator is driven by at least one suitable actuator, such as an electric motor.
Das Halteteil zum Halten des dem schwingenden Teil zugewandten Endbereichs der faseroptischen Leitung kann beispielsweise als Führungsrohr ausgebildet sein, in welchem die faseroptische Leitung aufgenommen ist.The holding part for holding the end region of the fiber-optic line facing the vibrating part can be designed, for example, as a guide tube in which the fiber optic line is received.
Gemäß einer bevorzugten Ausbildung ist vorgesehen, dass die Schwenkvorrichtung einen ersten Aktuator zur Verschwenkung des Halteteils um eine erste Schwenkachse und einen zweiten Aktuator zur Verschwenkung des Halteteils um eine zweite Schwenkachse aufweist, wobei die erste und die zweite Schwenkachse vorzugsweise senkrecht zueinander verlaufen.According to a preferred embodiment, it is provided that the pivoting device has a first actuator for pivoting the holding part about a first pivot axis and a second actuator for pivoting the holding part about a second pivot axis, the first and second pivot axes preferably running perpendicular to one another.
Optional kann die Schwenkvorrichtung auch einen dritten Aktuator zur Verschwenkung des Halteteils um eine dritte Schwenkachse umfassen, die sowohl zur ersten als auch zur zweiten Schwenkachse vorzugsweise orthogonal verläuft.Optionally, the pivoting device can also comprise a third actuator for pivoting the holding part about a third pivot axis, which preferably runs orthogonally to both the first and the second pivot axis.
Die Gelenkvorrichtung ist für eine zweiachsige Verschenkung des Halteteils, bevorzugt für eine dreiachsige Verschwenkung des Halteteils ausgebildet.The joint device is designed for two-axis pivoting of the holding part, preferably for three-axis pivoting of the holding part.
Um der Anatomie des Mittelohrs bestmöglich Rechnung zu tragen, kann die Haltevorrichtung bevorzugt derart ausgebildet sein, dass eine sich von der Befestigungsplatte weg erstreckende, das Halteteil mit der Befestigungsplatte verbindende längliche Verbindungsstruktur vorgesehen ist, an deren von der Befestigungsplatte abgewandten Endbereich die Gelenkvorrichtung angeordnet ist. Die längliche Verbindungsstruktur dient hierbei der Überbrückung des Abstands zwischen derjenigen Stelle, an der die Befestigungsplatte auf Grund der anatomischen Gegebenheiten am Schädelknochen befestigt werden muss, und derjenigen Stelle, an der das Ende der faseroptischen Leitung weiter innen im Ohr im erforderlichen Abstand an Gehörknöchelchen, wie z.B. den Amboss, herangeführt ist.In order to take into account the anatomy of the middle ear in the best possible way, the holding device can preferably be designed in such a way that an elongated connecting structure is provided which extends away from the fastening plate and connects the holding part to the fastening plate, at whose end region facing away from the fastening plate the joint device is arranged. The elongated connecting structure is used to bridge the distance between the point at which the fastening plate has to be attached to the cranial bone due to the anatomical conditions, and the point at which the end of the fiber-optic line further inside the ear at the required distance to the ossicles, such as e.g. the anvil, is brought up.
Bevorzugt ist hierbei vorgesehen, dass die längliche Verbindungsstruktur sich mit ihrer Längsachse in einem Winkel von 60-120°, vorzugsweise 80-100°, zur Plattenebene der Befestigungsplatte von dieser wegerstreckt. Als Längsachse der länglichen Verbindungsstruktur ist hierbei diejenige Richtung zu verstehen, in der die Verbindungsstruktur ihre größte Ausdehnung hat.It is preferably provided here that the longitudinal axis of the elongated connecting structure extends away from the mounting plate at an angle of 60-120 °, preferably 80-100 °, to the plane of the mounting plate. The longitudinal axis of the elongated connecting structure is to be understood here as the direction in which the connecting structure has its greatest extent.
Die Schwenkvorrichtung ist aus Platzgründen bevorzugt möglichst nahe der Befestigungsplatte angeordnet. Zu diesem Zweck kann vorgesehen sein, dass die Schwenkvorrichtung an der Befestigungsplatte befestigt ist, um die längliche Verbindungsstruktur samt der Gelenkvorrichtung und dem Halteteil relativ zur Befestigungsplatte zu verschwenken.For reasons of space, the pivoting device is preferably arranged as close as possible to the mounting plate. For this purpose, it can be provided that the pivoting device is fastened to the fastening plate in order to pivot the elongate connecting structure together with the joint device and the holding part relative to the fastening plate.
Während die aktuatorisch angetriebene Schwenkvorrichtung in erster Linie dafür ausgebildet ist, die winkelmäßige Ausrichtung des freien Endes der faseroptischen Leitung relativ zum schwingenden Teil einzustellen, können von der Schwenkvorrichtung gesonderte Mittel dazu dienen, den Abstand des freien Endes der faseroptischen Leitung zum schwingenden Teil einzustellen. Eine bevorzugte Ausbildung sieht in diesem Zusammenhang vor, dass das Halteteil zur Einstellung eines Abstands von der Befestigungsplatte relativ zur Befestigungsplatte translatorisch geführt und in der gewählten translatorischen Position feststellbar ist und vorzugsweise durch einen Aktuator feineingestellt und nach Einheilung auch telemetrisch nachjustiert werden kann.While the actuator-driven pivoting device is primarily designed to adjust the angular alignment of the free end of the fiber-optic line relative to the vibrating part, means separate from the pivoting device can be used to adjust the distance between the free end of the fiber-optic cable and the vibrating part. In this context, a preferred embodiment provides that the holding part for setting a distance from the fastening plate is guided in translation relative to the fastening plate and can be locked in the selected translational position and preferably fine-tuned by an actuator and also readjusted telemetrically after healing.
Insbesondere weist die längliche Verbindungsstruktur hierbei eine in Richtung ihrer Längsachse verlaufende Gleitführung auf.In particular, the elongate connecting structure has a sliding guide running in the direction of its longitudinal axis.
Für die Grobeinstellung der Ausrichtung der faseroptischen Leitung umfasst die Gelenkvorrichtung bevorzugt ein Kugelgelenk. Das Kugelgelenk erlaubt hierbei in einfacher Weise eine stufenlose dreiachsige Verschwenkung, sodass die Justierung der faseroptischen Leitung durch den Operateur erleichtert wird.For the rough adjustment of the alignment of the fiber-optic line, the joint device preferably comprises a ball joint. The ball-and-socket joint allows infinitely variable three-axis pivoting in a simple manner, so that the surgeon makes it easier to adjust the fiber-optic line.
Eine bevorzugte Ausbildung sieht hierbei vor, dass das Kugelgelenk eine Kugel umfasst, die zwischen zwei Backen der Gelenkvorrichtung klemmbar ist. Der Klemmmechanismus dient hierbei dazu, die jeweils eingestellte Position zu fixieren. Das Klemmen der Kugel zwischen den zwei Backen kann beispielswiese durch eine Schraubverbindung erfolgen, mit welcher die beiden Backen zueinander gespannt werden.A preferred embodiment provides that the ball joint comprises a ball which can be clamped between two jaws of the joint device. The clamping mechanism is used to fix the set position. The ball can be clamped between the two jaws, for example, by means of a screw connection with which the two jaws are clamped to one another.
Um trotz der beengten Platzverhältnisse nahe der Gehörknöchelchen eine möglichst direkte Ausrichtung des freien Endes der faseroptischen Leitung auf den abzutastenden schwingenden Teil zu ermöglichen, sieht eine bevorzugte Ausbildung vor, dass das Halteteil mittels einer Verbindungsstange an der Gelenkvorrichtung befestigt ist.In order to enable the free end of the fiber optic line to be aligned as directly as possible with the vibrating part to be scanned despite the limited space near the ossicles, a preferred embodiment provides that the holding part is attached to the joint device by means of a connecting rod.
Besonders bevorzugt ist die Verbindungsstange im Wesentlichen S-förmig ausgebildet. Dies bringt eine vorteilhafte Anpassung an die Anatomie.The connecting rod is particularly preferably designed to be essentially S-shaped. This brings an advantageous adaptation to the anatomy.
Insbesondere kann hierbei vorgesehen sein, dass die S-förmige Verbindungsstange einen sich in Richtung der Längsachse der länglichen Verbindungsstruktur erstreckenden Mittelabschnitt zwischen zwei sich quer zum Mittelabschnitt erstreckenden weiteren Abschnitten umfasst.In particular, it can be provided here that the S-shaped connecting rod comprises a central section extending in the direction of the longitudinal axis of the elongated connecting structure between two further sections extending transversely to the central section.
Alternativ kann die Verbindungsstange auch als gerade Stange ausgebildet sein.Alternatively, the connecting rod can also be designed as a straight rod.
Als Material für die Haltevorrichtung wird bevorzugt ein biokompatibles Material, wie beispielsweise Polypropylen, Teflon, Polyethylen, medizinischer Stahl oder Titan verwendet.A biocompatible material such as polypropylene, Teflon, polyethylene, medical steel or titanium is preferably used as the material for the holding device.
Die Erfindung betrifft gemäß einem zweiten Aspekt eine implantierbare Hörhilfe umfassend einen eine faseroptische Leitung aufweisenden optischen Sensor für berührungslose Vibrations- und Abstandsmessungen an einem zu akustischen Schwingungen anregbaren Teil der Schallübertragung im Ohr und weiters umfassend eine an einem Schädelknochen befestigbare erfindungsgemäße Haltevorrichtung zum Halten der faseroptischen Leitung in einem justierbaren Abstand und in einer justierbaren Ausrichtung zu dem zu akustischen Schwingungen anregbaren Teil der Schallübertragung im Ohr.According to a second aspect, the invention relates to an implantable hearing aid comprising an optical sensor having a fiber-optic line for contactless vibration and distance measurements on a part of the sound transmission in the ear that can be excited into acoustic oscillations and further comprising a holding device according to the invention that can be attached to a skull bone for holding the fiber-optic line at an adjustable distance and in an adjustable alignment to the part of the sound transmission in the ear that can be stimulated to acoustic oscillations.
Wie für sich gesehen bekannt, umfasst der optische Sensor bevorzugt ein Interferometer. Die tatsächliche Ausgestaltung des Interferometers bedingt jeweils in der Folge bevorzugte Algorithmen (z.B. Arkustangens-Algorithmus) für die Auswertung. Interferometer können hierbei von beliebiger Bauweise, wie beispielsweise als Michelson-, Fabry-Perot- oder Fizeauinterferometer ausgebildet sein, wobei geeignete Stabiliserungskonfigurationen beispielsweise im Artikel von
Der Schwingung der Gehörknöchelchen und des Trommelfells, wie sie bei Anregung durch akustische Wellen beobachtet wird, überlagert sich im Ohr auch eine niederfrequente, quasistatische bzw. langsame Dislozierung der Trommelfellmembran und der Knöchelchen, welche auf Unterschiede im Luftdruck oder im Druck im Mittelohr zurückzuführen sind. Derartige niederfrequente Verschiebungen werden beispielsweise durch Veränderung des Luftdruckes beim Fahren in Aufzügen, Seilbahnen oder Flugzeugen hervorgerufen, wobei bedeutende niederfrequente Schwankungen durch die plötzliche Öffnung der Eustachischen Röhre auch beim Schnäuzen auftreten. Derartig niederfrequente Verschiebungen können in ihrer Amplitude um einen Faktor von wenigstens 102 höher liegen als die maximalen bei der physiologischen Beschallung auftretenden Amplituden. Die faseroptische Leitung wird bevorzugt so angeordnet, dass auch bei derartigen Verschiebungen eine Berührung mit dem abzutastenden Teil nicht erfolgt und es ist daher die Ausbildung bevorzugt so getroffen, dass das freie Ende der faseroptischen Leitung in einem Abstand von dem abgetasteten Teil angeordnet ist, welcher größer ist als die maximal auftretende Verschiebung des abgetasteten Teiles in Richtung zum freien Ende der faseroptischen Leitung, und/oder in einem eine Kollision verhindernden Abstand justierbar gehalten ist.The oscillation of the auditory ossicles and the tympanic membrane, as observed when excited by acoustic waves, is also superimposed in the ear by a low-frequency, quasi-static or slow dislocation of the eardrum membrane and the ossicles, which can be attributed to differences in air pressure or in the pressure in the middle ear. Such low-frequency shifts are caused, for example, by changing the air pressure when driving in elevators, cable cars or airplanes, with significant low-frequency fluctuations also occurring when the Eustachian tube is suddenly opened. Such low-frequency shifts can be in their amplitude by a factor of at least 10 2 higher than the maximum amplitudes occurring during physiological sonication. The fiber optic line is preferably so arranged that even with such displacements there is no contact with the part to be scanned and it is therefore preferably designed so that the free end of the fiber-optic line is arranged at a distance from the scanned part which is greater than the maximum displacement that occurs of the scanned part is held adjustable in the direction of the free end of the fiber optic line, and / or at a distance preventing a collision.
Die faseroptische Leitung ist bevorzugt mit einer elektronischen Auswerteschaltung verbunden, in welcher die akustischen Schwingungen des abgetasteten Teils auf Grund der über die faseroptische Leitung erhaltenen optischen Reflexionssignale ermittelt und welche Signale (entsprechend Mikrofonsignalen) für elektromechanische Schwingungserzeuger und/oder für die Stimulation des Cortischen Organs und/oder des Hörnervs und/oder des Hirnstammes generiert. Zusätzlich kann die Auswerteschaltung mit einem Algorithmus zur Kompensation der Verschiebung des Arbeitspunktes des Interferometers durch niederfrequente Verschiebungen des abgetasteten Teiles zusammenwirken.The fiber optic line is preferably connected to an electronic evaluation circuit in which the acoustic vibrations of the scanned part are determined on the basis of the optical reflection signals received via the fiber optic line and which signals (corresponding to microphone signals) are used for electromechanical vibration generators and / or for stimulating the organ of Corti and / or the auditory nerve and / or the brain stem generated. In addition, the evaluation circuit can interact with an algorithm to compensate for the shift in the operating point of the interferometer due to low-frequency shifts of the scanned part.
In der Auswerteschaltung können beispielsweise die optischen Parameter der reflektierten Anteile des ausgesendeten Signals gemessen werden, wobei mit Vorteil für die Auswertung der reflektierten Signale so vorgegangen wird, dass die faseroptische Leitung mit einem Interferometer zur Auswertung der Amplitude, der Frequenz und/oder der relativen Phasenlage der Schwingung des abgetasteten Teiles verbunden ist. Die Verwendung des Interferometerprinzips, für welches verschiedene Bauarten bekannt sind, erlaubt berührungsfrei auch geringe Amplituden akustischer Schwingungen im Bereich der Gehörknöchelchen sicher zu erfassen. Der zu erfassende Bereich reicht hierbei von Amplituden von 1x10-14 m/√Hz (bei einer Schalleistung von etwa 40 dB) bis etwa 3-4x10-9 m/√Hz (bei einer Schalleistung von etwa 90 dB), wobei höhere Amplituden als etwa 3-4x10-7 m/√Hz, wie sie bei einer Schalleinstrahlung von etwa 120 dB beobachtet werden können, ebenfalls messbar sind, wobei sich die zu messende Auslenkung des schwingenden Teils proportional zum Schalldruckpegel (dB) verhält .In the evaluation circuit, for example, the optical parameters of the reflected components of the emitted signal can be measured, whereby the procedure for evaluating the reflected signals is advantageously such that the fiber-optic line is connected to an interferometer to evaluate the amplitude, the frequency and / or the relative phase position the vibration of the scanned part is connected. The use of the interferometer principle, for which different types are known, allows even low amplitudes of acoustic vibrations in the area of the ossicles to be reliably detected without contact. The range to be recorded extends from amplitudes of 1x10 -14 m / √Hz (with a sound power of about 40 dB) to about 3-4x10 -9 m / √Hz (with a sound power of about 90 dB), with higher amplitudes than 3-4x10 -7 m / √Hz, as can be observed with a sound radiation of about 120 dB, can also be measured, whereby the deflection of the vibrating part to be measured is proportional to the sound pressure level (dB).
Bevorzugt ist vorgesehen, dass die dem Sensor zugewandte Fläche des zu Schwingungen anregbaren Teils reflexionserhöhende Mittel für die Reflexion elektromagnetischer Strahlung im Wellenlängenbereich der Empfindlichkeit des Sensors trägt bzw. aufweist. Durch die Anbringung reflexionserhöhender Mittel für die Reflexion elektromagnetischer Strahlung an der dem freien Ende der faseroptischen Leitung zugewandten Fläche wird erreicht, dass die Eingangsleistung des Sensors bei gleich bleibender Signalqualität verringert werden kann, wodurch die Batterielaufzeit verlängert werden kann, und dass der Störabstand bzw. das Signal-Rausch-Verhältnis erhöht wird, wodurch eine genauere Signalauswertung erfolgen kann und dementsprechend die Reproduktion des akustischen Signals präziser und realitätstreuer stattfinden kann. Auch kann auf diese Weise die Distanz zwischen dem zu Schwingungen anregbaren Teil und dem freien Ende der faseroptischen Leitung soweit erhöht werden, dass ein in Kontakt-Kommen der faseroptischen Leitung mit dem zu Schwingungen anregbaren Teil effektiv verhindert wird.It is preferably provided that the surface of the part that can be excited to vibrate, facing the sensor, carries or has reflection-increasing means for the reflection of electromagnetic radiation in the wavelength range of the sensitivity of the sensor. By attaching reflection-increasing means for the reflection of electromagnetic radiation on the surface facing the free end of the fiber-optic line, it is achieved that the input power of the sensor can be reduced while the signal quality remains the same, whereby the battery life can be extended, and the signal-to-noise ratio or the The signal-to-noise ratio is increased, as a result of which a more precise signal evaluation can take place and, accordingly, the reproduction of the acoustic signal can take place more precisely and more realistically. In this way, the distance between the part that can be excited to vibrate and the free end of the fiber-optic line can also be increased to such an extent that the fiber-optic line is effectively prevented from coming into contact with the part that can be excited to vibrate.
Die größere Distanz erlaubt auch das isolierte Überwachsen der beiden Implantatteile (reflexionserhöhendes Mittel und freies Ende der faseroptischen Leitung) durch Bindegewebe und Mittelohrschleimhaut ohne dass optisch störende Bindegewebsbrücken zwischen beiden Teilen entstehen. Dieses Überwachsen von Gewebe führt zwar zu einer Dämpfung der Lichtintensität, jedoch ergeben sich durch das reflexionserhöhende Mittel noch immer ausreichende Signalstärken für die vibrometrische Verarbeitung der reflektierten elektromagnetischen Wellen zu einem Mikrofonsignal.The greater distance also allows the two implant parts (reflection-enhancing agent and free end of the fiber-optic line) to overgrow in isolation through connective tissue and middle ear mucosa without creating visually disruptive connective tissue bridges between the two parts. Although this overgrowth of tissue leads to a dampening of the light intensity, the reflection-increasing agent still produces sufficient signal strengths for the vibrometric processing of the reflected electromagnetic waves to form a microphone signal.
Die größere Distanz führt weiters dazu, dass geringe Relativverschiebungen zwischen der faseroptischen Leitung und dem zu Schwingungen anregbaren Teil der Schallübertragung im Ohr, wie sie durch Heilungsvorgänge oder das kindliche Schädelwachstum auftreten können, keine wesentliche Beeinträchtigung des Messsignals zur Folge haben.The greater distance also means that slight relative displacements between the fiber-optic line and the part of the sound transmission in the ear that can be stimulated to vibrate, as can occur through healing processes or child skull growth, do not significantly impair the measurement signal.
Die Anordnung der reflexionserhöhenden Mittel kann auch dazu führen, dass die Reflexionsfläche im Vergleich zu derjenigen Fläche, die der zu Schwingungen anregbare Teil der Schallübertragung im Ohr selbst für die Reflexion bietet, erhöht wird.The arrangement of the reflection-increasing means can also have the effect that the reflection surface is increased in comparison to that surface which the part of the sound transmission in the ear that can be excited to vibrate offers for the reflection itself.
Damit der Abstand zwischen reflexionserhöhendem Mittel und dem Ende der faseroptischen Leitung auf mehrere Millimeter (ca 1 bis >10 mm) vergrößert werden kann und das Signalrauschen und insbesondere die Eingangsleistung des Sensors weiter reduziert wird und somit die Batterielaufzeit weiter verlängert wird, ist die Erfindung bevorzugt so weitergebildet, dass das dem zu akustischen Schwingungen anregbaren Teil zugewandte Ende des faseroptischen Leiters einen Kollimator trägt. Die elektromagnetische Strahlung wird dadurch nicht im Attikraum diffus verteilt, sondern gerichtet auf das reflexionserhöhende Mittel ausgesandt, wodurch Mehrfachreflexionen im Attikraum, die ebenso vom Sensor empfangen werden, ausgeschlossen bzw. vermindert werden können und die zu Verfügung stehende Sendeleistung des Sensors besser ausgenutzt werden kann.The invention is preferred so that the distance between the reflection-increasing means and the end of the fiber-optic line can be increased to several millimeters (approx. 1 to> 10 mm) and the signal noise and in particular the input power of the sensor is further reduced and thus the battery life is further extended trained in such a way that it is too acoustic Vibrations excitable part facing end of the fiber optic conductor carries a collimator. The electromagnetic radiation is not diffusely distributed in the attic space, but sent out in a directed manner towards the reflection-increasing means, whereby multiple reflections in the attic space, which are also received by the sensor, can be excluded or reduced and the available transmission power of the sensor can be better utilized.
In bevorzugter Weise ist der Kollimator dabei von einer Gradientenlinse, von einer Glaskugel, von einem Glasfaserkollimator oder durch die Formgebung der Faserspitze der faseroptischen Leitung gebildet oder enthält ein Sammellinsensystem zur Erzeugung paralleler Strahlen. Dadurch wird gewährleistet, dass eine Änderung der Distanz zum reflexionserhöhenden Mittel im Millimeterbereich zu keiner störenden Veränderung der Signalstärke des optischen Strahles führt. Die Wahl des Kollimatortyps ist dabei auf die Wellenlänge des Sensors, welche beispielsweise im nahen Infrarot angesiedelt ist, abgestimmt, er könnte aber auch im sichtbaren Bereich eine ausreichende Kollimation bieten.The collimator is preferably formed by a gradient lens, a glass ball, a glass fiber collimator or the shape of the fiber tip of the fiber optic line, or it contains a converging lens system for generating parallel beams. This ensures that a change in the distance to the reflection-increasing means in the millimeter range does not lead to a disruptive change in the signal strength of the optical beam. The choice of the collimator type is matched to the wavelength of the sensor, which is located in the near infrared, for example, but it could also offer sufficient collimation in the visible range.
Die Implantationszeit und dementsprechend die Implantationskosten lassen sich dadurch reduzieren, dass der Kollimator zum Justieren der Position des Strahles relativ zu dem reflexionserhöhenden Mittel mit einer Positionierlichtquelle, insbesondere einem Laser mit einer für das Auge sichtbaren Frequenz, verbindbar ist. Die Zeit für die Justierung des Kollimators auf die reflexionserhöhenden Mittel wird dadurch reduziert, dass mit bloßem Auge festgestellt werden kann, ob der Kollimator richtig justiert ist und nicht erst Signale des Sensors ausgewertet werden müssen. Da das Positionierlicht über den Kollimator auf die reflexionserhöhenden Mittel geleitet wird und sich im sichtbaren Bereich des elektromagnetischen Spektrums befindet, sollten sowohl der Kollimator als auch die reflexionserhöhenden Mittel die gewählte Wellenlänge ebenso kollimieren bzw. reflektieren wie die Wellenlänge, auf die der Sensors abgestimmt ist. Insbesondere ein roter Laser als Positionierlicht hebt sich deutlich als roter Punkt ab, sobald eine erfolgreiche Justierung erfolgt ist. Das Positionierlicht wird nur für die Justierung verwendet und kann in der Folge abgekoppelt werden.The implantation time and accordingly the implantation costs can be reduced in that the collimator can be connected to a positioning light source, in particular a laser with a frequency visible to the eye, for adjusting the position of the beam relative to the reflection-increasing means. The time for adjusting the collimator to the reflection-increasing means is reduced by the fact that it can be determined with the naked eye whether the collimator is correctly adjusted and signals from the sensor do not have to be evaluated first. Since the positioning light is directed to the reflection-increasing means via the collimator and is in the visible range of the electromagnetic spectrum, both the collimator and the reflection-increasing means should collimate or reflect the selected wavelength as well as the wavelength to which the sensor is tuned. In particular, a red laser as a positioning light stands out clearly as a red point as soon as a successful adjustment has taken place. The positioning light is only used for adjustment and can then be decoupled.
Zur schnellen Anbringung der reflexionserhöhenden Mittel und Reduktion der Implantationszeit, kann der implantierbare Schallrezeptor so ausgebildet sein, dass die reflexionserhöhenden Mittel bzw. der Träger, auf dem diese aufgebracht sind, mit dem zu Schwingungen anregbaren Teil durch Kleben, mechanische Koppelung, beispielsweise durch Klippen oder Anbinden, oder durch Implantieren fest verbunden sind. Die reflexionserhöhenden Mittel können gebildet sein aus reflektierenden Materialien wie z.B. Kugeln, vorzugsweise Glaskugeln, Spiegeln, Pyramiden u.a. Die reflexionserhöhenden Mittel bzw. deren Träger sollten ohne Spiel auf den abzutastenden Punkt angebracht werden, um die Schwingungen originalgetreu auf die reflexionserhöhenden Mittel zu übertragen.For quick attachment of the reflection-increasing agents and reducing the implantation time, the implantable sound receptor can be designed in such a way that the reflection-increasing agents or the carrier on which they are applied, with the part that can be excited to vibrate, by gluing, mechanical coupling, for example by cliffs or Tying, or firmly connected by implantation. The reflection-increasing means can be formed from reflective materials such as spheres, preferably glass balls, mirrors, pyramids, etc.The reflection-increasing means or their supports should be attached to the point to be scanned without play in order to transfer the vibrations to the reflection-increasing means true to the original.
Zur Verbesserung der Biokompatibilität ist die Erfindung so weitergebildet, dass die reflexionserhöhenden Mittel und ggf. das Kollimatorende mit einem optisch durchlässigen biokompatiblen Material, z.B. Silicon, beschichtet bzw. ummantelt sind. Durch die Wahl von geeigneten Materialien bzw. Beschichtung kann das Überwachsen von Gewebe weiter verzögert werden. Durch die Verwendung von reflektierenden Kugeln, Spiegeln, Pyramiden und anderem wird erreicht, dass die reflexionserhöhenden Mittel großteils unabhängig vom Einfallswinkel des Strahles retroreflektieren, d.h. weitgehend unabhängig von der Ausrichtung des Reflektors zum Kollimator großteils in Richtung zurück zur Strahlungsquelle reflektieren. Dadurch wird erzielt, dass das reflexionserhöhende Mittel nicht normal auf den Strahlengang von Strahlungsquelle zu dem zu messenden Punkt stehen muss, wodurch die Justierung erheblich beschleunigt wird und eine spätere Lageveränderung durch Narbenzüge oder Wachstum eine geringere Rolle spielt.In order to improve the biocompatibility, the invention is developed in such a way that the reflection-increasing means and possibly the collimator end are coated or encased with an optically transparent, biocompatible material, for example silicone. By choosing suitable materials or coating, the overgrowth of tissue can be further delayed. By using reflective spheres, mirrors, pyramids and other things, it is achieved that the reflection-increasing means largely retroreflect independently of the angle of incidence of the beam, that is, largely independently of the orientation of the reflector to the collimator, largely reflect in the direction back to the radiation source. This ensures that the reflection-increasing agent does not have to stand normally on the beam path from the radiation source to the point to be measured, whereby the adjustment is considerably accelerated and a later change in position due to scarring or growth plays a lesser role.
Die Kombination dieser Merkmale resultiert in einer vereinfachten Implantation für den implantierenden Arzt, einer Verkürzung des Eingriffs, was sowohl eine Kostenreduktion bringt als auch das Risiko für den Patienten reduziert, einer Verlängerung der Batterielebenszeit, da die Sendeleistung ohne Verlust an Datenqualität reduziert werden kann, und einer weitgehenden Unempfindlichkeit gegen postoperative Probleme durch Gewebswucherungen und Narbenbildungen sowie eine weitgehende Unempfindlichkeit bei postoperativen Lageveränderungen durch narbige Verziehungen oder das kindliche Schädelwachstum.The combination of these features results in a simplified implantation for the implanting doctor, a shortening of the procedure, which brings both a cost reduction and the risk for the patient, an extension of the battery life, since the transmission power can be reduced without loss of data quality, and an extensive insensitivity to postoperative problems due to tissue growth and scar formation as well as an extensive insensitivity to postoperative position changes due to scarred distortions or the child's skull growth.
Das zusätzliche Vorsehen einer aktuatorisch antreibbaren Schwenkvorrichtung erlaubt es einerseits, während der Implantierungsphase ergänzend zur durch die Gelenkvorrichtung ermöglichten Grobeinstellung eine Feinjustierung vorzunehmen. Andererseits kann die aktuatorisch antreibbaren Schwenkvorrichtung herangezogen werden, um nach dem Verschließen des operativen Zugangs eine nachträgliche ferngesteuerte Korrektur der Position und der Ausrichtung der faseroptischen Leitung relativ zum schwingenden Teil vorzunehmen, falls es postoperative Lageveränderungen erfordern.The additional provision of an actuator-driven pivoting device makes it possible, on the one hand, to carry out a fine adjustment during the implantation phase in addition to the coarse adjustment made possible by the joint device. On the other hand, the actuator-driven pivoting device can be used in order to carry out a subsequent remote-controlled correction of the position and the alignment of the fiber optic cable relative to the vibrating part after the surgical access has been closed, if postoperative changes in position require it.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. In dieser zeigen
Die Halterung für die faseroptische Leitung 6 umfasst eine Befestigungsplatte 9, welche am Schädelknochen befestigt ist. Die Halterung ist in
Der Sensor umfasst weiters ein optoelektronisches Schallsignal -Prozessormodul 11, das in einer biokompatiblen, implantierbaren Hülle aufgenommen ist. Das Modul 11 ist an die faseroptische Leitung 6 angeschlossen und erhält das vom Reflektor 7 reflektierte, in das freie Ende der faseroptischen Leitung 6 eingekoppelte Lichtsignal. Das Lichtsignal wird im Modul 11 ausgewertet, um die Schwingungen des Amboss 5 bzw. des daran angebrachten Reflektors 7 zu ermitteln. Das Modul 11 wird in den Schädel implantiert und fest am Knochen befestigt.The sensor also includes an optoelectronic sound
In den
Eine translatorische Verstellung des Führungsrohrs 10 in Richtung des Doppelpfeils 20 erfolgt dadurch, dass die längliche Verbindungsstruktur 13 eine in Richtung ihrer Längsachse verlaufende Gleitführung für die Gelenkvorrichtung 14 aufweist. Die Fixierung der gewählten translatorischen Position erfolgt durch die Feststellschraube 21.A translational adjustment of the
Weiters ist eine aktuatorisch, insbesondere motorisch antreibbare Schwenkvorrichtung 37 vorgesehen, welche eine Justierung des Führungsrohrs 10 in zwei orthogonalen Richtungen ermöglicht. Die Schwenkvorrichtung umfasst zwei Zahnräder 22 und 23, die durch entsprechende Schrauben 24 und 25 mit den entsprechenden Gegenstücken verbunden sind. Die Schrauben 24 und 25 können durch elektrische Motoren 26 bzw. 27 betätigt werden. Das Zahnrad 23 kann hierbei durch Schweißen, insbesondere Laserschweißen, fest mit dem Gegenstück 28 des Zahnrades 22 verbunden. Eine Drehung des Motors 27 in Richtung des Doppelpfeils 29 führt zu einer Verschwenkung des Führungsrohrs 10 entsprechend dem Doppelpfeil 30. Eine Drehung des Motors 26 in Richtung des Doppelpfeils 31 führt zu einer Verschwenkung des Führungsrohrs 10 entsprechend dem Doppelpfeil 32. Die Motoren 26 und 27 können über eine drahtlose Verbindung ferngesteuert werden, sodass eine Nachstellung der Ausrichtung des Führungsrohrs 10 samt darin aufgenommener faseroptischer Leitung auch jahrelang nach erfolgter Implantierung möglich ist.Furthermore, an actuator-driven, in particular motor-driven
In
In
Claims (17)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20020081.4A EP3869824A1 (en) | 2020-02-21 | 2020-02-21 | Holding device for a fibre optic cable of an implantable hearing aid |
PCT/IB2021/051378 WO2021165872A1 (en) | 2020-02-21 | 2021-02-18 | Holding device for a fibre-optic cable of an implantable hearing aid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20020081.4A EP3869824A1 (en) | 2020-02-21 | 2020-02-21 | Holding device for a fibre optic cable of an implantable hearing aid |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3869824A1 true EP3869824A1 (en) | 2021-08-25 |
Family
ID=69726409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20020081.4A Withdrawn EP3869824A1 (en) | 2020-02-21 | 2020-02-21 | Holding device for a fibre optic cable of an implantable hearing aid |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3869824A1 (en) |
WO (1) | WO2021165872A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000025550A2 (en) * | 1998-10-23 | 2000-05-04 | Aleksandar Vujanic | Implantable sound receptor for hearing aids |
DE19915684A1 (en) * | 1999-04-07 | 2000-11-02 | Implex Hear Tech Ag | Implantable positioning and fixing system for actuator and sensory implants |
DE102009035386A1 (en) * | 2009-07-30 | 2011-02-03 | Cochlear Ltd., Lane Cove | Hörhilfeimplantat |
DE102009051771A1 (en) * | 2009-10-29 | 2011-05-05 | Moldenhauer, Martin, Dipl.-Ing. | Completely implantatable optical microphone for use in e.g. implantable hearing aid, has sensor area fixed at ossicles such that movement of ossicles causes modulation of light guided into fiber when natural sound is caused at eardrum |
-
2020
- 2020-02-21 EP EP20020081.4A patent/EP3869824A1/en not_active Withdrawn
-
2021
- 2021-02-18 WO PCT/IB2021/051378 patent/WO2021165872A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000025550A2 (en) * | 1998-10-23 | 2000-05-04 | Aleksandar Vujanic | Implantable sound receptor for hearing aids |
EP1123635B1 (en) | 1998-10-23 | 2002-03-27 | Aleksandar Vujanic | Implantable sound receptor for hearing aids |
DE19915684A1 (en) * | 1999-04-07 | 2000-11-02 | Implex Hear Tech Ag | Implantable positioning and fixing system for actuator and sensory implants |
DE102009035386A1 (en) * | 2009-07-30 | 2011-02-03 | Cochlear Ltd., Lane Cove | Hörhilfeimplantat |
DE102009051771A1 (en) * | 2009-10-29 | 2011-05-05 | Moldenhauer, Martin, Dipl.-Ing. | Completely implantatable optical microphone for use in e.g. implantable hearing aid, has sensor area fixed at ossicles such that movement of ossicles causes modulation of light guided into fiber when natural sound is caused at eardrum |
Non-Patent Citations (6)
Title |
---|
A. DANDRIDGEA.B. TVETENT.G. GIALLORENZI: "Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier", IEEE J.QUANTUM ELEC., vol. QE-18, no. 10, 1982, pages 1647 - 1653 |
G.SCHMITTW. WENZELK. DOLDE: "Integrated optical 3x3-coupler on LiNb03: comparison between theory and experiment", PROC.SPIE, VOL.1141 5TH EUROPEAN CONFERENCE ON INTEGRATED OPTICS: ECIO 89, vol. 1141, 1989, pages 67 - 71 |
J.H. COLEB.A. DANVERJ.A. BUCARO: "Syntetic-Heterodyne Interferometric Demodulation", IEEE J.QUANTUM ELEC., vol. QE-18, no. 4, 1982, pages 694 - 697 |
K.P. KOOA.B. TVETENA. DANDRIDGE: "Passive stabilization scheme for fiber interferometers using (3x3) fiber directinal couplers", APPL.PHYS.LETT., vol. 41, no. 7, 1982, pages 616 - 618, XP000916294, DOI: 10.1063/1.93626 |
L. CHANGCHUNL. FEI: "Passive Interfermetric Optical Fiber Sensor Using 3x3 Directional Coupler", PROC.SPIE, vol. 2895, 1995, pages 565 - 571 |
R. FUESTN. FABRICIUSU. HOLLENBACHB. WOLF: "Interferometric displacement sensor realized with a planar 3x3 directional coupler in glass", PROC.SPIE, VOL.1794 INTEGRATED OPTICAL CIRCUITS II, vol. 1794, 1992, pages 352 - 365, XP000578457, DOI: 10.1117/12.141900 |
Also Published As
Publication number | Publication date |
---|---|
WO2021165872A1 (en) | 2021-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT408607B (en) | IMPLANTABLE SOUND RECEPTOR FOR HEARING AIDS | |
DE102009035386B4 (en) | Hörhilfeimplantat | |
US6381490B1 (en) | Optical scanning and imaging system and method | |
EP1041857B1 (en) | Implantable hearing system with audiometer | |
DE19618964C2 (en) | Implantable positioning and fixing system for actuator and sensory implants | |
US6390970B1 (en) | Implantable positioning and fixing system for actuator and sensor implants | |
DE19882589B3 (en) | Transducer with piezoelectric film | |
DE10047388C1 (en) | Implantable hearing system, includes a detachable coupling for securing and locating a transducer and a micro-manipulator | |
DE112008002383T5 (en) | Precise targeting of surgical photodisruption | |
AU5490599A (en) | Optical scanning and imaging system and method | |
DE19618945A1 (en) | Device for positioning and fixing surgical, therapeutic or diagnostic instruments | |
EP0400630A2 (en) | Implantable hearing aid | |
DE19948375A1 (en) | Arrangement for mechanically coupling a driver to a coupling point of the ossicle chain | |
WO2021165872A1 (en) | Holding device for a fibre-optic cable of an implantable hearing aid | |
WO2016174065A1 (en) | Hearing prosthesis emitting ultrasonic pulses | |
DE10057584A1 (en) | Device for preoperative demonstration of implantable hearing systems | |
DE19801959A1 (en) | Optical construction for non-contact vibration measurement | |
DE10237620A1 (en) | Transmission device for introducing light into the ear | |
DE10014200C2 (en) | Device for electromechanical stimulation and testing of the hearing | |
DE102015117272B4 (en) | Bone Conduction Hearing Aid and Head Set With Such Bone Conduction Hearing Aid | |
DE102009051771A1 (en) | Completely implantatable optical microphone for use in e.g. implantable hearing aid, has sensor area fixed at ossicles such that movement of ossicles causes modulation of light guided into fiber when natural sound is caused at eardrum | |
Khanna | Cellular vibration measurement with a noninvasive optical system | |
DE102004056522A1 (en) | Ear-drum acoustic irradiation measurement device for use during surgery, has microphone to receive acoustic signals irradiated by ear-drum for evaluating coupling quality of stimuli of transducer based on frequency responses of signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20220226 |