EP3861976A1 - Dentalmaterialien auf basis von cyclopolymerisierbaren vernetzern - Google Patents
Dentalmaterialien auf basis von cyclopolymerisierbaren vernetzern Download PDFInfo
- Publication number
- EP3861976A1 EP3861976A1 EP20155585.1A EP20155585A EP3861976A1 EP 3861976 A1 EP3861976 A1 EP 3861976A1 EP 20155585 A EP20155585 A EP 20155585A EP 3861976 A1 EP3861976 A1 EP 3861976A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- hydrocarbon radical
- material according
- dental material
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000005548 dental material Substances 0.000 title claims abstract description 29
- 239000003431 cross linking reagent Substances 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 34
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 30
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 28
- 125000003118 aryl group Chemical group 0.000 claims abstract description 13
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 13
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims abstract description 6
- 125000004185 ester group Chemical group 0.000 claims abstract description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract description 3
- 125000004434 sulfur atom Chemical group 0.000 claims abstract description 3
- 239000000178 monomer Substances 0.000 claims description 78
- 239000000203 mixture Substances 0.000 claims description 38
- 239000000945 filler Substances 0.000 claims description 27
- 239000000463 material Substances 0.000 claims description 23
- -1 di- Chemical compound 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 13
- UEKHZPDUBLCUHN-UHFFFAOYSA-N 2-[[3,5,5-trimethyl-6-[2-(2-methylprop-2-enoyloxy)ethoxycarbonylamino]hexyl]carbamoyloxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC(=O)NCCC(C)CC(C)(C)CNC(=O)OCCOC(=O)C(C)=C UEKHZPDUBLCUHN-UHFFFAOYSA-N 0.000 claims description 12
- 229920006395 saturated elastomer Polymers 0.000 claims description 12
- 239000003999 initiator Substances 0.000 claims description 10
- 150000002734 metacrylic acid derivatives Chemical class 0.000 claims description 10
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 8
- 238000011049 filling Methods 0.000 claims description 8
- 238000010526 radical polymerization reaction Methods 0.000 claims description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 6
- AMFGWXWBFGVCKG-UHFFFAOYSA-N Panavia opaque Chemical compound C1=CC(OCC(O)COC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCC(O)COC(=O)C(C)=C)C=C1 AMFGWXWBFGVCKG-UHFFFAOYSA-N 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 239000003479 dental cement Substances 0.000 claims description 6
- LRZPQLZONWIQOJ-UHFFFAOYSA-N 10-(2-methylprop-2-enoyloxy)decyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCCCCCOC(=O)C(C)=C LRZPQLZONWIQOJ-UHFFFAOYSA-N 0.000 claims description 5
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 claims description 4
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 claims description 4
- NMXWWAMBELVUOS-UHFFFAOYSA-N [2-(2-methylprop-2-enoyloxymethyl)-1-tricyclo[5.2.1.02,6]decanyl]methyl 2-methylprop-2-enoate Chemical compound C12CCCC2(COC(=O)C(C)=C)C2(COC(=O)C(=C)C)CC1CC2 NMXWWAMBELVUOS-UHFFFAOYSA-N 0.000 claims description 4
- QUZSUMLPWDHKCJ-UHFFFAOYSA-N bisphenol A dimethacrylate Chemical compound C1=CC(OC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OC(=O)C(C)=C)C=C1 QUZSUMLPWDHKCJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000012966 redox initiator Substances 0.000 claims description 4
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 3
- 230000008439 repair process Effects 0.000 claims description 3
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 claims description 2
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 claims description 2
- HYQASEVIBPSPMK-UHFFFAOYSA-N 12-(2-methylprop-2-enoyloxy)dodecyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCCCCCCCOC(=O)C(C)=C HYQASEVIBPSPMK-UHFFFAOYSA-N 0.000 claims description 2
- NEBBLNDVSSWJLL-UHFFFAOYSA-N 2,3-bis(2-methylprop-2-enoyloxy)propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(OC(=O)C(C)=C)COC(=O)C(C)=C NEBBLNDVSSWJLL-UHFFFAOYSA-N 0.000 claims description 2
- LTHJXDSHSVNJKG-UHFFFAOYSA-N 2-[2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOCCOC(=O)C(C)=C LTHJXDSHSVNJKG-UHFFFAOYSA-N 0.000 claims description 2
- NGFFKUHICVFZTR-UHFFFAOYSA-N 2-[2-[4-[2-[4-[2-(2-methylprop-2-enoyloxy)ethoxy]phenyl]propan-2-yl]phenoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound C1=CC(OCCOCCOC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(OCCOC(=O)C(C)=C)C=C1 NGFFKUHICVFZTR-UHFFFAOYSA-N 0.000 claims description 2
- DXNINXCZCMZEOY-UHFFFAOYSA-N 2-[4-[2-[4-[1-(2-methylprop-2-enoyloxy)propan-2-yloxy]phenyl]propan-2-yl]phenoxy]propyl 2-methylprop-2-enoate Chemical compound C1=CC(OC(COC(=O)C(C)=C)C)=CC=C1C(C)(C)C1=CC=C(OC(C)COC(=O)C(C)=C)C=C1 DXNINXCZCMZEOY-UHFFFAOYSA-N 0.000 claims description 2
- LIEMOMJIUYRBNE-UHFFFAOYSA-N 2-methylprop-2-enoic acid;1-[4-(2-phenylpropan-2-yl)phenoxy]ethane-1,2-diol Chemical compound CC(=C)C(O)=O.C=1C=C(OC(O)CO)C=CC=1C(C)(C)C1=CC=CC=C1 LIEMOMJIUYRBNE-UHFFFAOYSA-N 0.000 claims description 2
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 2
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 claims description 2
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 claims description 2
- AMUNHMVMESMYQL-UHFFFAOYSA-N [2-hydroxy-3-[4-[2-[4-[2-hydroxy-3-(2-methylprop-2-enoyloxy)propyl]phenyl]propan-2-yl]phenyl]propyl] 2-methylprop-2-enoate Chemical compound C1=CC(CC(O)COC(=O)C(=C)C)=CC=C1C(C)(C)C1=CC=C(CC(O)COC(=O)C(C)=C)C=C1 AMUNHMVMESMYQL-UHFFFAOYSA-N 0.000 claims description 2
- FHLPGTXWCFQMIU-UHFFFAOYSA-N [4-[2-(4-prop-2-enoyloxyphenyl)propan-2-yl]phenyl] prop-2-enoate Chemical class C=1C=C(OC(=O)C=C)C=CC=1C(C)(C)C1=CC=C(OC(=O)C=C)C=C1 FHLPGTXWCFQMIU-UHFFFAOYSA-N 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 125000004386 diacrylate group Chemical group 0.000 claims description 2
- 239000011256 inorganic filler Substances 0.000 claims description 2
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 2
- 229940119545 isobornyl methacrylate Drugs 0.000 claims description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 claims description 2
- 229940113115 polyethylene glycol 200 Drugs 0.000 claims description 2
- 230000001225 therapeutic effect Effects 0.000 claims description 2
- IQQVCMQJDJSRFU-UHFFFAOYSA-N 2-ethyl-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(CO)(CO)CO IQQVCMQJDJSRFU-UHFFFAOYSA-N 0.000 claims 1
- 125000001931 aliphatic group Chemical group 0.000 claims 1
- 239000004557 technical material Substances 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 description 28
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 24
- 239000002245 particle Substances 0.000 description 23
- VVPQDZSFOPUXCX-UHFFFAOYSA-N C=C(CC(CC(C(OCCCCCCOC(C(CC(CC(C(O)=O)=C)(C(O)=O)C(O)=O)=C)=O)=O)=C)(C(O)=O)C(O)=O)C(O)=O Chemical compound C=C(CC(CC(C(OCCCCCCOC(C(CC(CC(C(O)=O)=C)(C(O)=O)C(O)=O)=C)=O)=O)=C)(C(O)=O)C(O)=O)C(O)=O VVPQDZSFOPUXCX-UHFFFAOYSA-N 0.000 description 21
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 15
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 230000009257 reactivity Effects 0.000 description 11
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 238000007334 copolymerization reaction Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 230000008602 contraction Effects 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- 238000005160 1H NMR spectroscopy Methods 0.000 description 7
- OXBLVCZKDOZZOJ-UHFFFAOYSA-N 2,3-Dihydrothiophene Chemical compound C1CC=CS1 OXBLVCZKDOZZOJ-UHFFFAOYSA-N 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000012043 crude product Substances 0.000 description 7
- 239000012074 organic phase Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 238000004440 column chromatography Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- KIMKGBGMXUPKJT-UHFFFAOYSA-N [diethyl-(4-methoxybenzoyl)germyl]-(4-methoxyphenyl)methanone Chemical compound C=1C=C(OC)C=CC=1C(=O)[Ge](CC)(CC)C(=O)C1=CC=C(OC)C=C1 KIMKGBGMXUPKJT-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 150000003926 acrylamides Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- FZUGPQWGEGAKET-UHFFFAOYSA-N parbenate Chemical compound CCOC(=O)C1=CC=C(N(C)C)C=C1 FZUGPQWGEGAKET-UHFFFAOYSA-N 0.000 description 4
- 150000002978 peroxides Chemical class 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 3
- IPOVOSHRRIJKBR-UHFFFAOYSA-N 2-ethylpropanedioyl dichloride Chemical compound CCC(C(Cl)=O)C(Cl)=O IPOVOSHRRIJKBR-UHFFFAOYSA-N 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000012230 colorless oil Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 239000012312 sodium hydride Substances 0.000 description 3
- 229910000104 sodium hydride Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- BVQVLAIMHVDZEL-UHFFFAOYSA-N 1-phenyl-1,2-propanedione Chemical compound CC(=O)C(=O)C1=CC=CC=C1 BVQVLAIMHVDZEL-UHFFFAOYSA-N 0.000 description 2
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000010546 Norrish type I reaction Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- FWGZLZNGAVBRPW-UHFFFAOYSA-N alumane;strontium Chemical compound [AlH3].[Sr] FWGZLZNGAVBRPW-UHFFFAOYSA-N 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 235000019400 benzoyl peroxide Nutrition 0.000 description 2
- 229930006711 bornane-2,3-dione Natural products 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- KPXRGIVPSXFJEX-UHFFFAOYSA-N ethyl 2-(chloromethyl)prop-2-enoate Chemical compound CCOC(=O)C(=C)CCl KPXRGIVPSXFJEX-UHFFFAOYSA-N 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002121 nanofiber Substances 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- FIXNOXLJNSSSLJ-UHFFFAOYSA-N ytterbium(III) oxide Inorganic materials O=[Yb]O[Yb]=O FIXNOXLJNSSSLJ-UHFFFAOYSA-N 0.000 description 2
- XASAPYQVQBKMIN-UHFFFAOYSA-K ytterbium(iii) fluoride Chemical compound F[Yb](F)F XASAPYQVQBKMIN-UHFFFAOYSA-K 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- 0 *C(CC(CC(O)=C)(C(*)=O)C(Oc(cc1)ccc1OC(C(CC(*)=C)(CC(O)=C)C(*)=O)=O)=O)=C Chemical compound *C(CC(CC(O)=C)(C(*)=O)C(Oc(cc1)ccc1OC(C(CC(*)=C)(CC(O)=C)C(*)=O)=O)=O)=C 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- XMAWUPHYEABFDR-UHFFFAOYSA-N 1,2-bis(4-chlorophenyl)ethane-1,2-dione Chemical compound C1=CC(Cl)=CC=C1C(=O)C(=O)C1=CC=C(Cl)C=C1 XMAWUPHYEABFDR-UHFFFAOYSA-N 0.000 description 1
- PZGKKZNEXDOLMI-UHFFFAOYSA-N 1,3-dimorpholin-4-yl-1,3-diphenylurea Chemical class O1CCN(CC1)N(C1=CC=CC=C1)C(=O)N(N1CCOCC1)C1=CC=CC=C1 PZGKKZNEXDOLMI-UHFFFAOYSA-N 0.000 description 1
- UKIODLUVOCRHMM-PLNGDYQASA-N 1-o-methyl 4-o-prop-2-enyl (z)-but-2-enedioate Chemical compound COC(=O)\C=C/C(=O)OCC=C UKIODLUVOCRHMM-PLNGDYQASA-N 0.000 description 1
- CFKBCVIYTWDYRP-UHFFFAOYSA-N 10-phosphonooxydecyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCCCCCCCOP(O)(O)=O CFKBCVIYTWDYRP-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- SQHHYSUNMDYHMI-UHFFFAOYSA-N 2-(2-phenylphenoxy)ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOC1=CC=CC=C1C1=CC=CC=C1 SQHHYSUNMDYHMI-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- PTZRYAAOQPNAKU-UHFFFAOYSA-N 2-[(1-carboxy-3-cyanobutyl)diazenyl]-4-cyanopentanoic acid Chemical compound N#CC(C)CC(C(O)=O)N=NC(C(O)=O)CC(C)C#N PTZRYAAOQPNAKU-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- JUVSRZCUMWZBFK-UHFFFAOYSA-N 2-[n-(2-hydroxyethyl)-4-methylanilino]ethanol Chemical compound CC1=CC=C(N(CCO)CCO)C=C1 JUVSRZCUMWZBFK-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- 238000010146 3D printing Methods 0.000 description 1
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- MIUUNYUUEFHIHM-UHFFFAOYSA-N Bisphenol A bis(2-hydroxypropyl) ether Chemical compound C1=CC(OCC(O)C)=CC=C1C(C)(C)C1=CC=C(OCC(C)O)C=C1 MIUUNYUUEFHIHM-UHFFFAOYSA-N 0.000 description 1
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- WYIDJTVAMOMIBC-UHFFFAOYSA-N C=1(C(=CC=CC=1)C(=O)[GeH3])C Chemical compound C=1(C(=CC=CC=1)C(=O)[GeH3])C WYIDJTVAMOMIBC-UHFFFAOYSA-N 0.000 description 1
- PQYXOUDTPAGGJL-UHFFFAOYSA-N C=C(CC(CC(C(O)=O)=C)(C(O)=O)C(O)=O)C(O)=O Chemical compound C=C(CC(CC(C(O)=O)=C)(C(O)=O)C(O)=O)C(O)=O PQYXOUDTPAGGJL-UHFFFAOYSA-N 0.000 description 1
- LYDODUOPDJULET-UHFFFAOYSA-N CC1=C(C(=C(C(=O)[PH2]=O)C=C1)C)C Chemical compound CC1=C(C(=C(C(=O)[PH2]=O)C=C1)C)C LYDODUOPDJULET-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical group CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- LFZAGIJXANFPFN-UHFFFAOYSA-N N-[3-[4-(3-methyl-5-propan-2-yl-1,2,4-triazol-4-yl)piperidin-1-yl]-1-thiophen-2-ylpropyl]acetamide Chemical compound C(C)(C)C1=NN=C(N1C1CCN(CC1)CCC(C=1SC=CC=1)NC(C)=O)C LFZAGIJXANFPFN-UHFFFAOYSA-N 0.000 description 1
- 238000010547 Norrish type II reaction Methods 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 206010041662 Splinter Diseases 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- CRFFPGKGPOBBHV-UHFFFAOYSA-N [benzoyl(diethyl)germyl]-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)[Ge](CC)(CC)C(=O)C1=CC=CC=C1 CRFFPGKGPOBBHV-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229940125717 barbiturate Drugs 0.000 description 1
- HNYOPLTXPVRDBG-UHFFFAOYSA-N barbituric acid Chemical compound O=C1CC(=O)NC(=O)N1 HNYOPLTXPVRDBG-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- SYFOAKAXGNMQAX-UHFFFAOYSA-N bis(prop-2-enyl) carbonate;2-(2-hydroxyethoxy)ethanol Chemical compound OCCOCCO.C=CCOC(=O)OCC=C SYFOAKAXGNMQAX-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- ZKXWKVVCCTZOLD-FDGPNNRMSA-N copper;(z)-4-hydroxypent-3-en-2-one Chemical compound [Cu].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O ZKXWKVVCCTZOLD-FDGPNNRMSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- GCFAUZGWPDYAJN-UHFFFAOYSA-N cyclohexyl 3-phenylprop-2-enoate Chemical compound C=1C=CC=CC=1C=CC(=O)OC1CCCCC1 GCFAUZGWPDYAJN-UHFFFAOYSA-N 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 239000011350 dental composite resin Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- ISAOCJYIOMOJEB-UHFFFAOYSA-N desyl alcohol Natural products C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-M dihydrogenphosphate Chemical compound OP(O)([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- YIWFBNMYFYINAD-UHFFFAOYSA-N ethenylcyclopropane Chemical class C=CC1CC1 YIWFBNMYFYINAD-UHFFFAOYSA-N 0.000 description 1
- MKVYSRNJLWTVIK-UHFFFAOYSA-N ethyl carbamate;2-methylprop-2-enoic acid Chemical compound CCOC(N)=O.CC(=C)C(O)=O.CC(=C)C(O)=O MKVYSRNJLWTVIK-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012567 medical material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- DCUFMVPCXCSVNP-UHFFFAOYSA-N methacrylic anhydride Chemical compound CC(=C)C(=O)OC(=O)C(C)=C DCUFMVPCXCSVNP-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 230000003641 microbiacidal effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- GYVGXEWAOAAJEU-UHFFFAOYSA-N n,n,4-trimethylaniline Chemical compound CN(C)C1=CC=C(C)C=C1 GYVGXEWAOAAJEU-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- JVCXFJJANZMOCM-UHFFFAOYSA-N phenyl(trimethylgermyl)methanone Chemical compound C[Ge](C)(C)C(=O)C1=CC=CC=C1 JVCXFJJANZMOCM-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000002270 phosphoric acid ester group Chemical group 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- ARJOQCYCJMAIFR-UHFFFAOYSA-N prop-2-enoyl prop-2-enoate Chemical compound C=CC(=O)OC(=O)C=C ARJOQCYCJMAIFR-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001370 static light scattering Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BUUPQKDIAURBJP-UHFFFAOYSA-N sulfinic acid Chemical compound OS=O BUUPQKDIAURBJP-UHFFFAOYSA-N 0.000 description 1
- GJBRNHKUVLOCEB-UHFFFAOYSA-N tert-butyl benzenecarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1=CC=CC=C1 GJBRNHKUVLOCEB-UHFFFAOYSA-N 0.000 description 1
- BWSZXUOMATYHHI-UHFFFAOYSA-N tert-butyl octaneperoxoate Chemical compound CCCCCCCC(=O)OOC(C)(C)C BWSZXUOMATYHHI-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000003585 thioureas Chemical class 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 1
- 229940096522 trimethylolpropane triacrylate Drugs 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/60—Preparations for dentistry comprising organic or organo-metallic additives
- A61K6/61—Cationic, anionic or redox initiators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/80—Preparations for artificial teeth, for filling teeth or for capping teeth
- A61K6/884—Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
- A61K6/887—Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/50—Preparations specially adapted for dental root treatment
- A61K6/54—Filling; Sealing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/20—Protective coatings for natural or artificial teeth, e.g. sealings, dye coatings or varnish
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/60—Preparations for dentistry comprising organic or organo-metallic additives
- A61K6/62—Photochemical radical initiators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/73—Fillers comprising sulfur-containing compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/76—Fillers comprising silicon-containing compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K6/00—Preparations for dentistry
- A61K6/70—Preparations for dentistry comprising inorganic additives
- A61K6/71—Fillers
- A61K6/77—Glass
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/604—Polycarboxylic acid esters, the acid moiety containing more than two carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/612—Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
- C07C69/618—Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F222/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
- C08F222/10—Esters
- C08F222/1006—Esters of polyhydric alcohols or polyhydric phenols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/48—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing ten carbon atoms
Definitions
- the invention relates to radically polymerizable compositions which are particularly suitable as dental materials, such as, for example, cements, filling composites, veneering materials and materials for the production of inlays, onlays, crowns and bridges.
- the compositions contain a cyclopolymerizable crosslinker of the formula I and are notable for a low polymerization shrinkage.
- the polymerization of vinyl compounds or (meth) acrylates is known to lead to a significant volume contraction, since during the formation of the polymer chains per chain growth step, one double bond and one van der Waals bond are converted into two single bonds for each monomer molecule, i.e. the monomer units in the polymer chain move closer together compared to the monomer phase.
- the polymerization shrinkage can lead to disadvantageous shrinkage stresses, to the formation of gaps or reduced substrate adhesion and to impairment of the dimensional stability of moldings.
- the change in density during the polymerization is largely dependent on the molar mass and molar volume of the monomers. Higher molecular weight monomers show a lower volume contraction compared to monomers with a lower molar mass.
- cyclic monomers Compared to linear monomers, the volume contraction in the ring-opening polymerization of cyclic monomers is significantly lower, because in this case one covalent bond is opened and one covalent bond is opened per growth step is formed. Accordingly, cyclic monomers have found great interest as low-shrinkage matrix systems. However, cyclic monomers such as spiroorthocarbonates, cyclic ketene acetals or vinylcyclopropanes are significantly more expensive compared to methacrylates and in some cases have only a limited shelf life.
- the crosslinking thiol-ene polyaddition is distinguished from the radical polymerization of multifunctional methacrylates by an almost complete double bond conversion and a significantly lower polymerization shrinkage.
- the volume contraction per polymerized (meth) acrylate double bond is approx. 22-23 cm 3 / mol, while in the thiol-ene reaction the volume contraction is only 12-15 cm 3 per mole converted double bond.
- the crosslinking thiol-ene polyaddition proceeds according to a step growth mechanism and therefore has a significantly longer pregging phase compared to dimethacrylate polymerization, which also leads to a reduction in the polymerization contraction stress.
- the use of thiol-ene resins is limited by the very unpleasant odor of the thiols, the inherent flexibility of the thiol-ene polymers and the limited storage stability of the thiol-ene resins.
- cyclopolymerizable monomers have also been mentioned. These are di- or higher-functional monomers, the polymerization of which, due to their special monomer structure, takes place in addition to the intermolecular chain growth reaction, with the formation of 5- or 6-membered rings (see overview: D. Pasini, D Takeuchi, Chem. Rev. 118 (2016) 8993-9057 ). Cyclopolymerization was first described by Butler in 1957 for quaternary diallylammonium salts. Further examples of simple cyclopolymerizable monomers are acrylic and methacrylic anhydride, methyl allyl maleate and fumarate, diallyl phthalate and diethylene glycol bisallyl carbonate.
- U.S. 5,145,374 and the U.S. 5,380,901 disclose dental adhesives and composites which contain cyclopolymerizable bisacrylates (I) or oligomers (II).
- the materials should have a low polymerization shrinkage.
- the EP 3 335 688 A1 discloses dental materials containing cyclopolymerizable monomers such as 1,6-diene-2-carboxylic acid (ester) and 1,5-diene-2-carboxylic acid (ester) monomers. Specifically, ⁇ -allyloxymethacrylic acid cyclohexyl ester and methyl- ⁇ -allyloxymethyl methacrylate are mentioned.
- the materials should have a flowability suitable for dental purposes before hardening and a high mechanical strength after hardening, which is attributed to the ring formation during the cyclopolymerization.
- the WO 2014/040729 A1 discloses dental materials which contain N-allyl-substituted (meth) acrylamides, such as, for example, N, N, -di (allylacrylamido) propane.
- N-allyl-substituted (meth) acrylamides should be distinguished by high hydrolytic stability, good copolymerizability with conventional (meth) acrylates, low viscosity and excellent biocompatibility.
- the WO 2018/109041 A1 discloses dental materials which contain N-allyl-substituted (meth) acrylamides with phosphoric acid ester groups, such as, for example, N-acryl-8-allylaminooctylphosphoric acid ester.
- the (meth) acrylamides are said to be distinguished from 10-methyacryloyloxydecyl dihydrogen phosphate by a high chemical purity and a high heat of polymerization. In addition, they should give advantageous mechanical properties after curing.
- the invention is based on the object of providing dental materials which are characterized by low polymerization shrinkage, good mechanical properties and high reactivity in free-radical polymerization, in particular in photopolymerization.
- the substituents which may be present in the radicals R 1 to R 4 are preferably selected from chlorine, hydroxy and methoxy, the radicals optionally being substituted by 1 to 3 substituents.
- the radicals R 1 to R 4 are preferably not substituted by acidic groups and are particularly preferably unsubstituted.
- the formula I extends only to those compounds that are compatible with the chemical valence theory.
- the indication that a radical is interrupted, for example, by one or more O atoms, is to be understood as meaning that these atoms or groups are each inserted into the carbon chain of the radical. These atoms or groups are therefore limited on both sides by carbon atoms and cannot be terminal.
- C 1 radicals can be uninterrupted, branched or cyclic.
- aromatic hydrocarbon radicals are also understood to mean those radicals which contain aromatic and non-aromatic groups.
- a preferred aromatic radical is, for example, the diphenylpropane radical.
- the groups X, Y and Z can be identical or different.
- X and Y preferably have the same meaning; compounds in which X, Y and Z are identical are particularly preferred.
- the preferred, particularly preferred and very particularly preferred definitions given for the individual variables can each be selected independently of one another.
- Compounds in which all variables have the preferred, particularly preferred and very particularly preferred definitions are of course particularly suitable according to the invention.
- hydrocarbon radicals are preferably saturated hydrocarbon radicals. This applies both to the general definition and to the preferred and, in particular, also to the particularly preferred compounds of the formula I.
- Particularly preferred compounds of the formula Ia are the following substances:
- a preferred compound of the formula Ib is:
- the compounds of the formula I according to the invention contain four or six polymerizable groups and have crosslinking properties. They are distinguished by a high reactivity of the cyclopolymerizable groups in free-radical polymerization and are readily copolymerizable with conventional dental monomers, in particular with di (meth) acrylates. Because of their high reactivity, in contrast to the known, cyclopolymerizable N, N-disubstituted methacrylamides, they can also be homopolymerized, for example. In the homo- and copolymerization of the compounds of the formula I according to the invention, polymer networks with good mechanical properties are obtained which are advantageous for dental applications.
- the compounds of the formula I according to the invention are distinguished by a reduced polymerization shrinkage stress and a low polymerization shrinkage as a result of the cyclopolymerization. They thus make it possible to use these advantages for dental applications without impairing other properties that are also essential for dental purposes, such as in particular the mechanical properties.
- the compounds of the formula I are particularly suitable for the production of dental materials, for example for the production of coating or veneering materials, dental cements and, in particular, of filling composites. They are also suitable for the production of materials for the production or repair of dental prostheses, inlays, onlays, crowns or bridges. But they are also suitable for the production of radically polymerizable materials and thermosets for other purposes.
- the (dental) materials according to the invention preferably contain 0.5 to 70% by weight, particularly preferably 1 to 60% by weight and very particularly preferably 3 to 50% by weight of at least one compound of the formula I, based on the total mass of the material.
- the compounds of the formula I according to the invention are preferably used in combination with one or more polymerizable, mono- or multifunctional monomers (comonomers).
- Monofunctional monomers are understood as meaning compounds with one, and multifunctional monomers compounds with two or more, preferably 2 to 4, free-radically polymerizable groups.
- Preferred comonomers are radically polymerizable monomers.
- dental materials are preferred which contain at least one mono- or multifunctional (meth) acrylate as the radically polymerizable comonomer.
- Materials that are to be cured intraorally contain preferably mono- and / or multifunctional methacrylates as the free-radically polymerizable monomer. Methacrylates are therefore particularly preferred as comonomers. It has surprisingly been found that the compounds of the formula I according to the invention are readily copolymerizable with conventional (meth) acrylates.
- Preferred multifunctional methacrylates are dimethacrylates, in particular bisphenol A dimethacrylate, 2,2-bis [4- (2-hydroxy-3-methacryloyloxypropyl) phenyl] propane (Bis-GMA; an addition product of methacrylic acid and bisphenol A diglycidyl ether), ethoxy- or propoxylated bisphenol-A-dimethacrylate, such as 2- [4- (2-methacryloyloxyethoxyethoxy) phenyl] -2- [4- (2-methacryloyloxyethoxy) phenyl] propane) (SR-348c; contains 3 ethoxy groups), 2 , 2-bis [4- (2-methacryloyloxypropoxy) phenyl] propane, 1,6-bis [2-methacryloyloxy-ethoxycarbonylamino] -2,2,4-trimethylhexane (UDMA; an addition product of 2-hydroxyethyl methacrylate and 2, 2,4
- Multifunctional monomers in particular methacrylates, are preferably used in a total amount of at most 70% by weight, particularly preferably 1.5 to 60% by weight and very particularly preferably 2 to 50% by weight, based on the total mass of the material .
- Monofunctional monomers preferred according to the invention are monomethacrylates.
- Particularly preferred monomethacrylates are benzyl, tetrahydrofurfuryl, isobornyl methacrylate, p-cumyl-phenoxyethylene glycol methacrylate (CMP-1E), 2- (2-biphenyloxy) -ethyl methacrylate and mixtures thereof.
- Monofunctional monomers in particular methacrylates, are preferably used in an amount of a maximum of 10% by weight, particularly preferably 0 to 10% by weight and very particularly preferably 0 to 5% by weight, based on the total mass of the material.
- mono- and multifunctional acrylates are also suitable as comonomers.
- Preferred multifunctional acrylates are ethylene glycol diacrylate, hexanediol diacrylate, tripropylene glycol diacrylate, ethoxylated bisphenol A diacrylate, polyethylene glycol 200 diacrylate, trimethylol propane triacrylate, pentaerythritol tetraacrylate and mixtures thereof.
- Mono- and multifunctional acrylates are preferably used in an amount of a maximum of 50% by weight, preferably 0 to 50% by weight and particularly preferably 0 to 30% by weight, based on the total mass of the dental material.
- the total amount of comonomers is preferably a maximum of 70% by weight, particularly preferably 1.5 to 60% by weight and very particularly preferably 2 to 50% by weight, based on the total mass of the material.
- compositions according to the invention preferably contain an initiator for radical polymerization, e.g. for polymerization by UV light, by visible light, a thermal initiator and / or a redox initiator.
- an initiator for radical polymerization e.g. for polymerization by UV light, by visible light, a thermal initiator and / or a redox initiator.
- Photoinitiators are particularly preferred, and photoinitiators which are activated by visible light are very particularly preferred.
- Norrish type I initiators such as benzil dimethyl ketal, benzoin ethers, hydroxyphenyl ketones, dialkoxyacetophenones, benzoylcyclohexanol, trimethylbenzoylphosphine oxide and morpholinophenylaminoketones
- Preferred Norrish type II UV initiators are mixtures of, for example, benzophenone or thioxanthone derivatives with H donors such as alcohols, or thiols or electron donors such as amines.
- Preferred bimolecular photoinitiators for the visible range are ⁇ -diketones and its derivatives, such as 9,10-phenanthrenequinone, 1-phenyl-propane-1,2-dione, diacetyl or 4,4'-dichlorobenzil, and mixtures thereof.
- Camphorquinone (CC) and 2,2-dimethoxy-2-phenyl-acetophenone are particularly preferred, and ⁇ -diketones in combination with amines as reducing agents, such as ethyl 4- (dimethylamino) benzoate (EDMAB), N, N-dimethylaminoethyl methacrylate, N, N-dimethyl-sym.-xylidine or triethanolamine.
- EDMAB dimethylamino benzoate
- Preferred Norrish Type I photoinitiators for the visible range are bisacylphosphine oxides.
- Mixtures of the various photoinitiators can also be used advantageously, such as bis (4-methoxybenzoyl) diethylgerman or tetrakis (o-methyl-benzoyl) german in combination with camphorquinone and ethyl 4-dimethylaminobenzoate.
- Preferred thermal initiators are azo compounds such as 2,2'-azobis (isobutyronitrile) (AIBN), azobis (4-cyanovaleric acid) or peroxides, such as dibenzoyl peroxide, dilauroyl peroxide, tert-butyl peroctoate, tert-butyl perbenzoate or di- ( tert- butyl) peroxide.
- azo compounds such as 2,2'-azobis (isobutyronitrile) (AIBN), azobis (4-cyanovaleric acid) or peroxides, such as dibenzoyl peroxide, dilauroyl peroxide, tert-butyl peroctoate, tert-butyl perbenzoate or di- ( tert- butyl) peroxide.
- peroxides such as dibenzoyl peroxide, dilauroyl peroxide, tert-butyl peroctoate, tert-but
- Preferred combinations are combinations of dibenzoyl peroxide with an amine, preferably an N, N-dialkyl-substituted aromatic amine, which is substituted in the p-position, such as N, N-dimethyl-p-toluidine, N, N-dihydroxyethyl-p-toluidine, p -Dimethylamino benzoic acid ethyl ester.
- an amine preferably an N, N-dialkyl-substituted aromatic amine, which is substituted in the p-position, such as N, N-dimethyl-p-toluidine, N, N-dihydroxyethyl-p-toluidine, p -Dimethylamino benzoic acid ethyl ester.
- Combinations of a photoinitiator with a thermal or preferably a redox initiator are suitable for dual curing.
- Preferred redox initiators for dual curing are systems that contain a peroxide and a reducing agent, such as ascorbic acid, a barbiturate or a sulfinic acid, or a hydroperoxide in combination with a reducing agent and possibly catalytic amounts of metal ions, such as a mixture of cumene hydroperoxide, a thiourea derivative and copper (II) acetylacetonate.
- a peroxide and a reducing agent such as ascorbic acid, a barbiturate or a sulfinic acid
- a hydroperoxide in combination with a reducing agent and possibly catalytic amounts of metal ions, such as a mixture of cumene hydroperoxide, a thiourea derivative and copper (II) acetylacetonate.
- compositions according to the invention can advantageously also contain one or more organic or, preferably, inorganic fillers. Fibrous and, in particular, particulate fillers are preferred. Filler-containing compositions are particularly suitable as dental luting cements or filling composites.
- Fibers, carbon fibers, ceramic and aramid fibers and nanofibers or whiskers are preferred as fibrous fillers.
- Fibrous fillers are particularly suitable for the production of composite materials.
- Nanofibers are understood to mean fibers with a length of less than 100 nm and whiskers are understood to be needle-shaped single crystals, preferably made of aluminum oxide or silicon carbide. Whiskers typically have a diameter of a few ⁇ m and a length of up to 1 mm.
- Preferred particulate fillers are oxides such as SiO 2 , ZrO 2 and TiO 2 or mixed oxides of SiO 2 , ZrO 2 , ZnO and / or TiO 2 , nanoparticulate or microfine fillers such as fumed silica or precipitated silica, glass powder such as quartz, glass ceramic , Borosilicate or X-ray opaque glass powder, preferably barium or strontium aluminum silicate glasses, and X-ray opaque fillers such as ytterbium trifluoride, tantalum (V) oxide, barium sulfate or mixed oxides of SiO 2 with ytterbium (III) oxide or tantalum (V) oxide.
- oxides such as SiO 2 , ZrO 2 and TiO 2 or mixed oxides of SiO 2 , ZrO 2 , ZnO and / or TiO 2
- nanoparticulate or microfine fillers such as fumed silica or precipitated silica
- glass powder such as quartz, glass
- the oxides preferably have a particle size of 0.010 to 15 ⁇ m, the nanoparticulate or microfine fillers a particle size of 10 to 300 nm, the glass powder a particle size of 0.01 to 15 ⁇ m, preferably 0.2 to 1.5 ⁇ m, and the Radiopaque fillers have a particle size of 0.2 to 5 ⁇ m.
- Particularly preferred fillers are mixed oxides of SiO 2 and ZrO 2 , with a particle size of 10 to 300 nm, glass powder with a particle size of 0.2 to 1.5 ⁇ m, in particular X-ray opaque glass powder of, for example, barium or strontium aluminum silicate glasses, and X-ray opaque fillers with a Particle size from 0.2 to 5 ⁇ m, in particular ytterbium trifluoride and / or mixed oxides of SiO 2 with ytterbium (III) oxide.
- all particle sizes are weight-average particle sizes (D50 values), the particle size determination in the range from 0.1 ⁇ m to 1000 ⁇ m preferably being carried out using static light scattering, for example with a static laser scattering particle size analyzer LA- 960 (Horiba, Japan).
- a laser diode with a wavelength of 655 nm and an LED with a wavelength of 405 nm are used as light sources.
- the use of two light sources with different wavelengths enables the entire particle size distribution of a sample to be measured in just one Measurement run, with the measurement being carried out as a wet measurement. For this purpose, a 0.1 to 0.5% aqueous dispersion of the filler is produced and its scattered light is measured in a flow cell.
- the scattered light analysis for calculating the particle size and particle size distribution is carried out according to the Mie theory according to DIN / ISO 13320.
- the measurement of the particle size in the range from 5 nm to 0.1 ⁇ m is preferably carried out by dynamic light scattering (DLS) of aqueous particle dispersions, preferably with a He-Ne laser with a wavelength of 633 nm, at a scattering angle of 90 ° and at 25 ° C., for example with a Malvern Zetasizer Nano ZS (Malvern Instruments, Malvern UK).
- DLS dynamic light scattering
- Particle sizes smaller than 0.1 ⁇ m can also be determined using SEM or TEM images.
- Transmission electron microscopy (TEM) is preferably performed with a Philips CM30 TEM at an acceleration voltage of 300 kV.
- drops of the particle dispersion are applied to a 50 ⁇ thick copper grid (mesh size 300 mesh) that is coated with carbon, and the solvent is then evaporated. The particles are counted and the arithmetic mean is calculated.
- the fillers are divided into macro-fillers and micro-fillers according to their particle size, fillers with an average particle size of 0.2 to 15 ⁇ m being called macro-fillers and fillers with an average particle size of approx. 5 to 100 nm being called micro-fillers.
- Macro fillers are obtained, for example, by grinding quartz, X-ray opaque glasses, borosilicates or ceramics and usually consist of splinter-shaped parts.
- Micro-fillers such as mixed oxides can e.g. be produced by hydrolytic co-condensation of metal alkoxides.
- the fillers are preferably surface-modified.
- SiO 2 -based fillers are preferably surface-modified with methacrylate-functionalized silanes, particularly preferably with 3-methacryloyloxypropyltrimethoxysilane.
- Functionalized acidic phosphates such as 10-methacryloyloxydecyl dihydrogen phosphate can also be used to modify the surface of non-silicate fillers, for example ZrO 2 or TiO 2.
- the dental materials according to the invention can contain one or more other additives, especially stabilizers, colorants, microbiocidal active ingredients, additives that release fluoride ions, propellants, optical brighteners, plasticizers and / or UV absorbers.
- additives especially stabilizers, colorants, microbiocidal active ingredients, additives that release fluoride ions, propellants, optical brighteners, plasticizers and / or UV absorbers.
- Filling composites preferably have a filler content of 50 to 85% by weight, particularly preferably 70 to 80% by weight, and dental cements of 10 to 70% by weight, particularly preferably 60 to 70% by weight.
- Dental materials which consist of the components mentioned are particularly preferred, the individual components preferably each being selected from the preferred and particularly preferred substances mentioned above.
- compositions according to the invention are particularly suitable as dental materials, in particular as dental cements, filling composites and veneering materials and as materials for producing prostheses, artificial teeth, inlays, onlays, crowns and bridges.
- the compositions are primarily suitable for intraoral use by the dentist for the restoration of damaged teeth, i.e. for therapeutic use, e.g. as dental cements, filling composites and veneering materials.
- they can also be used non-therapeutically (extraorally), for example in the production or repair of dental restorations, such as prostheses, artificial teeth, inlays, onlays, crowns and bridges.
- compositions according to the invention are also suitable for the production of molded bodies for dental but also for non-dental purposes, which can be produced, for example, by means of casting, pressing and, in particular, by generative processes such as 3D printing.
- the invention also relates to the use of a compound according to formula I for the production of a free-radically polymerizable material, preferably a medical-technical and in particular a dental-medical material.
- 1,6-Hexanediol (42.3 mmol, 5.00 g) was dissolved in dry dichloromethane (DCM, 150 ml) and the apparatus was flushed with argon. The solution was cooled in ice water, then pyridine (105.8 mmol, 8.37 g) and then ethylmalonyl chloride (105.8 mmol, 15.93 g) were added first. The solution was stirred at room temperature for 4 h and then quenched with 1N HCl (150 ml). The aqueous phase was extracted 3 times with DCM (150 ml), the combined organic phases were washed with saturated NaHCO 3 solution (150 ml) and dried over anhydrous Na 2 SO 4.
- DCM dry dichloromethane
- the aqueous phase was extracted 3 times with diethyl ether (100 ml) and the combined organic phases were dried over anhydrous sodium sulfate. After evaporation of the solvent, the crude product was purified by means of column chromatography (PE: EE 4: 1) and the pure product was obtained as a viscous liquid in a yield of 21.95 g (77% of theory).
- Example 5 The volume contraction during the polymerization (polymerization shrinkage) ⁇ V P of the monomer 1 according to the invention from Example 1 (Example 5, B1) was measured by means of density measurement before and after the polymerization and with the commercially available reference monomer 1,10-decanediol dimethacrylate (D 3 MA, CAS: 6701-13-9) (Example 5: Comparative Example V1). D 3 MA was used as a reference because it also has an alkylene spacer between the polymerizable groups and the same atomic distance as 1 .
- the already known (see: U.S. 5,145,374 ) Cyclopolymerizable monomer 2 from Example 2 is used as a reference monomer (Example 5: Comparative Example V2).
- the density of the monomers was determined using a 1 ml pycnometer, while the density of the cured polymers was determined using the Archimedes method.
- the monomers were mixed with 1 mol% BMDG (bis (4-methoxybenzoyl) diethylgermanium) as photoinitiator, poured into a silicone mold (15 x 10 x 4 mm) and exposed to a light oven (model Lumamat 100, Ivoclar AG, 400-500 nm , 20 mW cm -2 ) hardened for 10 minutes per side.
- BMDG bis (4-methoxybenzoyl) diethylgermanium
- the formulations B1, V1 and V2 produced from Example 5 were measured with a real-time near infrared (RT-NIR) photorheometer MCR302 WESP from Anton Paar, which was coupled to a Bruker Vertex-80-IR spectrometer to monitor the turnover.
- R-NIR near infrared
- a PP-25 measuring system was used and the measuring gap was set to 0.2 mm.
- the storage and loss modulus of the samples were measured in the oscillation mode (1% deflection, 1 Hz).
- a base resin formulation (equimolar mixture of the commercially available dimethacrylates urethane dimethacrylate (UDMA, isomer mixture; CAS: 72869-86-4) and 1,10-decanediol dimethacrylate (D 3 MA) was one in each case Component was replaced by an equimolar amount of monomer 1 or reference monomer 2 and the reactivity and shrinkage force were investigated by means of RT-NIR photorheometry.
- UDMA dimethacrylates urethane dimethacrylate
- D 3 MA 1,10-decanediol dimethacrylate
Landscapes
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Plastic & Reconstructive Surgery (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dental Preparations (AREA)
Abstract
Description
- Die Erfindung betrifft radikalisch polymerisierbare Zusammensetzungen, die sich besonders als Dentalwerkstoffe, wie z.B. Zemente, Füllungskomposite, Verblendmaterialien und Werkstoffe zur Herstellung von Inlays, Onlays, Kronen und Brücken eignen. Die Zusammensetzungen enthalten einen cyclopolymerisierbaren Vernetzer der Formel I und zeichnen sich durch einen geringen Polymerisationsschrumpf aus.
- Die Polymerisation z.B. von Vinylverbindungen oder (Meth)acrylaten führt bekanntlich zu einer deutlichen Volumenkontraktion, da bei der Bildung der Polymerketten pro Kettenwachstumsschritt bei jedem Monomermolekül jeweils eine Doppelbindung und eine Van-der-Waals-Bindung in zwei Einfachbindungen überführt werden, d.h. die Monomerbausteine in der Polymerkette im Vergleich zur Monomerphase näher zusammenrücken. Dabei kann der Polymerisationsschrumpf zu nachteiligen Schrumpfungsspannungen, zur Spaltbildung oder verminderten Substrathaftung sowie zur Beeinträchtigung der Dimensionsstabilität von Formkörpern führen. Die Dichteänderung während der Polymerisation ist maßgeblich von der Molmasse und dem Molvolumen der Monomeren abhängig. Höhermolekulare Monomere zeigen im Vergleich zu Monomeren mit geringer Molmasse eine geringere Volumenkontraktion.
- Im Dentalbereich finden verbreitet als relativ schrumpfungsarme Monomere die höhermolekularen Dimethacrylate Bis-GMA (Molmasse = 512,6 g/mol) und UDMA (Molmasse = 470,6 g/mol) Anwendung, die einen Polymerisationsschrumpf ΔVp von 6,0 (Bis-GMA) bzw. 6,1 Vol.-% zeigen. Da diese Monomeren aber eine sehr hohe Viskosität aufweisen (Bis-GMA: η = 800-1000 Pa·s; UDMA: η = 10 Pa·s), werden sie meist in Mischung mit niedrigviskosen Dimethacrylaten mit geringerer Molmasse eingesetzt, die als Verdünner dienen. Monomere mit geringer Molmasse, wie z.B. Triethylenglycoldimethacrylat (Molmasse = 286,3 g/mol), haben aber einen erhöhten Polymerisationsschrumpf (ΔVp = 14,5 Vol.-%), was sich nachteilig auf den Polymerisationsschrumpf des Werkstoffs auswirkt.
- Zur Herstellung von schrumpfungsarmen Polymerisaten wurden verschiedene Wege verfolgt, wie z.B. die Ringöffnungspolymerisation von cyclischen Monomeren oder der Einsatz von Thiol-En-Harzen.
- Im Vergleich zu linearen Monomeren ist die Volumenkontraktion bei der Ringöffnungspolymerisation von cyclischen Monomeren deutlich geringer, weil hierbei pro Wachstumsschritt jeweils eine kovalente Bindung geöffnet und eine kovalente Bindung gebildet wird. Dementsprechend haben cyclische Monomere als schrumpfungsarme Matrixsysteme großes Interesse gefunden. Jedoch sind cyclische Monomere wie Spiroorthocarbonate, cyclische Ketenacetale oder Vinylcyclopropane im Vergleich zu Methacrylaten deutlich teurer und haben zum Teil nur eine beschränkte Lagerstabilität.
- Die vernetzende Thiol-En-Polyaddition zeichnet sich im Vergleich zur radikalischen Polymerisation von multifunktionellen Methacrylaten durch einen nahezu vollständigen Doppelbindungsumsatz und einen deutlich geringeren Polymerisationsschrumpf aus. So beträgt die Volumenkontraktion pro polymerisierter (Meth)acrylat-Doppelbindung ca. 22-23 cm3/mol, während bei der Thiol-En-Reaktion die Volumenkontraktion nur bei 12-15 cm3 pro Mol umgesetzter Doppelbindung liegt. Außerdem verläuft die vernetzende Thiol-En-Polyaddition nach einem Stufenwachstumsmechanismus und hat deshalb eine im Vergleich zur Dimethacrylatpolymerisation signifikant verlängerte Prägelphase, was zusätzlich zur Verringerung der Polymerisationskontraktionsspannung führt. Leider ist der Einsatz von Thiol-En-Harzen durch den sehr unangenehmen Geruch der Thiole, die inhärente Flexibilität der Thiol-En-Polymerisate und durch die begrenzte Lagerstabilität der Thiol-En-Harze beschränkt.
- Im Zusammenhang mit der Verringerung des Polymerisationsschrumpfes haben auch cyclopolymerisierbare Monomere Erwähnung gefunden. Dabei handelt es sich um di- oder höherfunktionelle Monomere, bei deren Polymerisation aufgrund ihrer speziellen Monomerstruktur neben der intermolekularen Kettenwachstumsreaktion eine intramolekularen Reaktion unter Bildung von 5- oder 6-gliedrigen Ringen stattfindet (vgl. Übersicht: D. Pasini, D Takeuchi, Chem. Rev. 118 (2018) 8993-9057). Die Cyclopolymerisation wurde 1957 von Butler erstmals für quarternäre Diallylammoniumsalze beschrieben. Weitere Beispiele für einfache cyclopolymerisierbare Monomere sind Acryl- und Methacrylsäureanhydrid, Methylallylmaleat und -fumarat, Diallylphthalat und Diethylenglycolbisallylcarbonat.
- Die
US 5,145,374 und dieUS 5,380,901 offenbaren dentale Adhäsive und Komposite, die cyclopolymerisierbare Bisacrylate (I) bzw. Oligomere (II) enthalten. Die Materialien sollen einen geringen Polymerisationsschrumpf aufweisen. - Die
EP 3 335 688 A1 offenbart Dentalwerkstoffe, die cyclopolymerisierbare Monomere, wie z.B. 1,6-Dien-2-carbonsäure(ester)- und 1,5-Dien-2-carbonsäure(ester)-Monomere enthalten. Konkret werden u.a. α-Allyloxymethacrylsäurecyclohexylester und Methyl-α-allyloxymethylmethacrylat genannt. Die Werkstoffe sollen vor der Härtung eine für dentale Zwecke geeignete Fließfähigkeit und nach der Härtung eine hohe mechanische Festigkeit aufweisen, die auf die Ringbildung bei der Cyclopolymerisation zurückgeführt wird. - Die
WO 2014/040729 A1 offenbart Dentalwerkstoffe, die N-allylsubstituierte (Meth)acrylamide enthalten, wie z.B. N,N,-Di(allylacrylamido)propan. Die N-allylsubstituierten (Meth)acrylamide sollen sich durch eine hohe Hydrolysestabilität, gute Copolymerisierbarkeit mit konventionellen (Meth)acrylaten, eine geringe Viskosität und ausgezeichnete Bioverträglichkeit auszeichnen. - Die
WO 2018/109041 A1 offenbart Dentalwerkstoffe, die N-allylsubstituierte (Meth)acrylamide mit Phosphorsäureestergruppen enthalten, wie z.B. N-Acryl-8-allylaminooctylphosphorsäureester. Die (Meth)acrylamide sollen sich im Vergleich zu 10-Methyacryloyloxydecyldihydrogenphosphat durch eine hohe chemische Reinheit und eine hohe Polymerisationswärme auszeichnen. Außerdem sollen sie nach der Härtung vorteilhafte mechanische Eigenschaften ergeben. - Nachteilig an den bekannten cyclopolymerisierbaren Monomeren im Vergleich zu den üblicherweise zur Herstellung von Dentalwerkstoffen verwendeten (Meth)-acrylaten ist ihre deutliche geringere Reaktivität bei der radikalischen Polymerisation, was auf einen degradativen Kettenübertragungsmechanismus zurückzuführen ist. Außerdem sind ihre mechanischen Eigenschaften unbefriedigend.
- Der Erfindung liegt die Aufgabe zugrunde, Dentalwerkstoffe zur Verfügung zu stellen, die sich durch einen geringen Polymerisationsschrumpf, gute mechanische Eigenschaften und eine hohe Reaktivität bei der radikalischen Polymerisation auszeichnen, insbesondere bei der Photopolymerisation.
-
- R1
- ein m-wertiger, linearer, verzweigter oder cyclischer aliphatischer C1-C30-Kohlenwasserstoffrest oder ein aromatischer C6-C30-Kohlenwasserstoffrest ist, wobei der aliphatische oder aromatische Kohlenwasserstoffrest unsubstituiert oder durch einen oder mehrere Substituenten substituiert sein kann, und wobei aliphatische Kohlenwasserstoffreste durch eine oder mehrere, vorzugsweise 1 bis 3, Urethangruppen, Estergruppen, Sauerstoffatome und/oder Schwefelatome unterbrochen sein können,
- X, Y, Z
- unabhängig voneinander jeweils -COOR2, -CON(R3R4), ein aromatischer C6-C10-Kohlenwasserstoffrest oder -CN sind, wobei
- R2, R3, R4
- jeweils unabhängig voneinander Wasserstoff, ein linearer, verzweigter oder cyclischer aliphatischer C1-C30-Kohlenwasserstoffrest, vorzugsweise C1-C10-Kohlenwasserstoffrest, oder ein aromatischer C6-C30-Kohlenwasserstoffrest, vorzugsweise C1-C10-Kohlenwasserstoffrest, sind, wobei der aliphatische oder aromatische Kohlenwasserstoffrest unsubstituiert oder durch einen oder mehreren Substituenten substituiert sein kann und wobei aliphatische Kohlenwasserstoffreste durch ein oder mehrere, vorzugsweise 1 bis 3, Sauerstoffatome, unterbrochen sein können, und
- m
- 2 oder 3 ist.
- Die bei den Resten R1 bis R4 ggf. vorhandenen Substituenten sind vorzugsweise aus Chlor, Hydroxy und Methoxy ausgewählt, wobei die Reste ggf. vorzugsweise durch 1 bis 3 Substituenten substituiert. Die Reste R1 bis R4 sind vorzugsweise nicht mit aciden Gruppen substituiert und besonders bevorzugt unsubstituiert.
-
- Die Formel I erstreckt sich nur auf solche Verbindungen, die mit der chemischen Valenzlehre vereinbar sind. Der Hinweis, dass ein Rest z.B. durch ein oder mehrere O-Atome unterbrochen ist, ist so zu verstehen, dass diese Atome oder Gruppen jeweils in die Kohlenstoffkette des Restes eingeschoben werden. Diese Atome oder Gruppen sind damit beidseitig durch C-Atome begrenzt und können nicht endständig sein. C1-Reste können nicht unterbrochen, verzweigt oder cyclisch sein. Unter aromatischen Kohlenwasserstoffresten werden der üblichen Nomenklatur entsprechend auch solche Reste verstanden, die aromatische und nicht aromatische Gruppen enthalten. Ein bevorzugter aromatischer Rest ist beispielsweise der Diphenylpropanrest.
- Die Gruppen X, Y und Z können gleich oder verschieden sein. Vorzugsweise haben X und Y dieselbe Bedeutung, besonders bevorzugt sind Verbindungen, in denen X, Y und Z gleich sind.
- Vorzugsweise haben die Variablen die folgenden Bedeutungen:
- R1
- ein linearer, verzweigter oder cyclischer aliphatischer C1-C20-Kohlenwasserstoffrest, der durch eine oder mehrere, vorzugsweise 1 bis 3, Urethangruppen, Estergruppen und/oder Sauerstoffatome unterbrochen sein kann,
- X, Y, Z
- unabhängig voneinander jeweils -COOR2, ein aromatischer C6-C10-Kohlenwasserstoffrest oder -CN,
- R2
- ein linearer, verzweigter oder cyclischer aliphatischer C1-C10-Kohlenwasserstoffrest, der durch ein oder mehrere, vorzugsweise 1 bis 3, Sauerstoffatome unterbrochen sein kann, und
- m
- 2 oder 3.
- Besonders bevorzugt sind Verbindung der Formel I, in der die Variablen die folgenden Bedeutungen haben:
- R1
- ein linearer, verzweigter oder cyclischer aliphatischer C1-C12-Kohlenwasserstoffrest, vorzugsweise ein gesättigter, verzweigter oder vorzugsweise linearer C2- bis C8-Kohlenwasserstoffrest, der durch ein oder mehrere, vorzugsweise 1 bis 3, Sauerstoffatome unterbrochen sein kann, und vorzugsweise nicht unterbrochen ist,
- X, Y, Z
- unabhängig voneinander jeweils -COOR2 oder Phenyl, vorzugsweise -COOR2,
- R2
- ein linearer oder verzweigter C1-C4-Kohlenwasserstoffrest, vorzugsweise Ethyl, und
- m
- 2 oder 3, vorzugsweise 2.
- Die für die einzelnen Variablen angegebenen bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Definitionen können jeweils unabhängig voneinander ausgewählt werden. Verbindungen, in denen alle Variablen die bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Definitionen aufweisen, sind naturgemäß erfindungsgemäß besonders geeignet.
- Bei den Kohlenwasserstoffresten handelt es sich in allen Fällen vorzugsweise um gesättigte Kohlenwasserstoffreste. Dies gilt sowohl für die allgemeine Definition als auch für die bevorzugten und insbesondere auch für die besonders bevorzugten Verbindungen der Formel I.
- Die cyclopolymerisierbaren Verbindungen der Formel I sind nicht bekannt und lassen sich in Anlehnung an ähnliche Verbindungen herstellen (vgl. Bourgeois, J.-P.; Echegoyen, L.; Fibbioli, M.; Pretsch, E.; Diederich, F., Angewandte Chemie International Edition 1998, 37 (15), 2118-2121 und Gregg, Z. R.; Griffiths, J. R.; Diver, S. T., Organometallics 2018, 37 (10), 1526-1533). Dabei wird im ersten Schritt ein multifunktioneller Alkohol unter basischen Bedingungen mit einem Säurechlorid verestert. Im zweiten Schritt wird nach Deprotonierung mit einer Vinylquelle auf Basis von 2-Chloromethylalkenen umgesetzt.
- 1. Schritt:
- 2. Schritt:
-
-
-
-
- Die erfindungsgemäßen Verbindungen der Formel I enthalten vier oder sechs polymerisierbare Gruppen und haben vernetzende Eigenschaften. Sie zeichnen sich durch eine hohe Reaktivität der cyclopolymerisierbaren Gruppen bei der radikalischen Polymerisation aus und sind gut mit herkömmlichen Dentalmonomeren, insbesondere mit Di(meth)acrylaten, copolymerisierbar. Aufgrund ihrer hohen Reaktivität lassen sie sich im Gegensatz zu den bekannten, cyclopolymerisierbaren N,N-disubstituierten Methacrylamiden beispielsweise auch homopolymerisieren. Bei der Homo- und Copolymerisation der erfindungsgemäßen Verbindungen der Formel I werden Polymernetzwerke mit guten mechanischen Eigenschaften erhalten, die für dentale Anwendungen vorteilhaft sind.
- Darüber hinaus zeichnen sich die erfindungsgemäßen Verbindungen der Formel I durch eine verminderte Polymerisationsschrumpfungsspannung und einen geringen Polymerisationsschrumpf infolge der Cyclopolymerisation aus. Sie ermöglichen es damit, diese Vorteile für dentale Anwendungen zu nutzen, ohne andere, für dentale Zwecke ebenfalls wesentliche Eigenschaften, wie insbesondere die mechanischen Eigenschaften, zu beeinträchtigen.
- Die Verbindungen der Formel I eignen sich besonders zur Herstellung von Dentalwerkstoffen, beispielsweise zur Herstellung von Beschichtungs- oder Verblendmaterialien, dentalen Zementen und insbesondere von Füllungskompositen. Sie eignen sich weiterhin zur Herstellung von Werkstoffen zur Herstellung oder Reparatur von dentalen Prothesen, Inlays, Onlays, Kronen oder Brücken. Sie eignen sich aber auch zur Herstellung von radikalisch polymerisierbaren Werkstoffen und Duromeren für andere Zwecke. Die erfindungsgemäßen (Dental-)Werkstoffe enthalten vorzugweise 0,5 bis 70 Gew.-%, besonders bevorzugt 1 bis 60 Gew.-% und ganz besonders bevorzugt 3 bis 50 Gew.-% mindestens einer Verbindung der Formel I, bezogen auf die Gesamtmasse des Werkstoffs.
- Die erfindungsgemäßen Verbindungen der Formel I werden vorzugsweise in Kombination mit einem oder mehreren polymerisationsfähigen, mono- oder multifunktionellen Monomeren (Comonomere) eingesetzt. Unter monofunktionellen Monomeren werden Verbindungen mit einer, und unter multifunktionellen Monomeren Verbindungen mit zwei oder mehr, vorzugsweise 2 bis 4 radikalisch polymerisierbaren Gruppen verstanden. Bevorzugte Comonomere sind radikalisch polymerisierbare Monomere.
- Erfindungsgemäß sind Dentalwerkstoffe bevorzugt, die als radikalisch polymerisierbares Comonomer mindestens ein mono- oder multifunktionelles (Meth)acrylat enthalten. Materialien, die intraoral gehärtet werden sollen, enthalten als radikalisch polymerisierbares Monomer vorzugsweise mono- und/oder multifunktionelle Methacrylate. Methacrylate sind als Comonomere daher besonders bevorzugt. Es wurde überraschenderweise gefunden, dass die erfindungsgemäßen Verbindungen der Formel I mit herkömmlichen (Meth)acrylaten gut copolymerisierbar sind.
- Bevorzugte multifunktionelle Methacrylate sind Dimethacrylate, insbesondere Bisphenol-A-dimethacrylat, 2,2-Bis[4-(2-hydroxy-3-methacryloyloxypropyl)phenyl]propan (Bis-GMA; ein Additionsprodukt aus Methacrylsäure und Bisphenol-A-diglycidylether), ethoxy- oder propoxyliertes Bisphenol-A-dimethacrylat, wie z.B. 2-[4-(2-Methacryloyloxyethoxyethoxy)phenyl]-2-[4-(2-methacryloyloxyethoxy)phenyl]propan) (SR-348c; enthält 3 Ethoxygruppen), 2,2-Bis[4-(2-methacryloyloxypropoxy)-phenyl]propan, 1,6-Bis-[2-methacryloyloxy-ethoxycarbonylamino]-2,2,4-trimethylhexan (UDMA; ein Additionsprodukt aus 2-Hydroxyethylmethacrylat und 2,2,4-Trimethylhexamethylen-1,6-diisocyanat), Di-, Tri-und Tetraethylenglycoldimethacrylat, Trimethylolpropantrimethacrylat, Pentaerythrittetramethacrylat, Glycerindi- und Glycerintrimethacrylat, 1,4-Butandioldimethacrylat, 1,10-Decandioldimethacrylat (D3MA), 1,12-Dodecandioldimethacrylat, Bis(methacryloyloxymethyl)tricyclo-[5.2.1.02,6]decan (DCP) und Mischungen davon. Besonders bevorzugte multifunktionelle Methacrylate sind Bis-GMA, SR-348c, UDMA, D3MA, DCP, Triethylenglycoldimethacrylat und Mischungen davon.
- Multifunktionelle Monomere, insbesondere Methacrylate, werden vorzugsweise in einer Menge von insgesamt maximal 70 Gew.-%, besonders bevorzugt 1,5 bis 60 Gew.-% und ganz besonders bevorzugt 2 bis 50 Gew.-% eingesetzt, bezogen auf die Gesamtmasse des Werkstoffs.
- Erfindungsgemäß bevorzugte monofunktionelle Monomere sind Monomethacrylate. Besonders bevorzugte Monomethacrylate sind Benzyl-, Tetrahydrofurfuryl-, Isobornylmethacrylat, p-Cumyl-phenoxyethylenglycolmethacrylat (CMP-1E), 2-(2-Biphenyloxy)-ethylmethacrylat und Mischungen davon.
- Monofunktionelle Monomere, insbesondere Methacrylate, werden vorzugsweise in einer Menge von insgesamt maximal 10 Gew.-%, besonders bevorzugt 0 bis 10 Gew.-% und ganz besonders bevorzugt 0 bis 5 Gew.-% eingesetzt, bezogen auf die Gesamtmasse des Werkstoffs.
- Weiterhin sind als Comonomere auch mono- und multifunktionelle Acrylate geeignet. Bevorzugte multifunktionelle Acrylate sind Ethylenglycoldiacrylat, Hexandioldiacrylat, Tripropylenglycoldiacrylat, ethoxyliertes Bisphenol-A-diacrylat, Polyethylenglycol-200-diacrylat, Trimethylolpropantriacrylat, Pentaerythrittetraacrylat und Mischungen davon.
- Mono- und multifunktionelle Acrylate, werden vorzugsweise in einer Menge von insgesamt maximal 50 Gew.-%, vorzugsweise 0 bis 50 Gew.-% und besonders bevorzugt 0 bis 30 Gew.-% eingesetzt, bezogen auf die Gesamtmasse des Dentalwerkstoffs.
- Die Gesamtmenge an Comonomeren beträgt vorzugsweise maximal 70 Gew.-%, besonders bevorzugt 1,5 bis 60 Gew.-% und ganz besonders bevorzugt 2 bis 50 Gew.-%, bezogen auf die Gesamtmasse des Werkstoffs.
- Die erfindungsgemäßen Zusammensetzungen enthalten vorzugsweise einen Initiator für die radikalische Polymerisation, z.B. für die Polymerisation durch UV-Licht, durch sichtbares Licht, einen thermischen Initiator und/oder einen Redoxinitiator. Photoinitiatoren sind besonders bevorzugt, ganz besonders bevorzugt sind Photoinitiatoren, die durch sichtbares Licht aktiviert werden.
- Als UV-Photoinitiatoren sind Norrish-Typ-I-Initiatoren, wie z.B. Benzildimethylketal, Benzoinether, Hydroxyphenylketone, Dialkoxyacetophenone, Benzoylcyclohexanol, Trimethylbenzoylphosphinoxid und Morpholinophenylaminoketone bevorzugt. Bevorzugte Norrish-Typ-II-UV-Initiatoren sind Mischungen von z.B. Benzophenon oder Thioxanthon-Derivaten mit H-Donatoren wie Alkoholen, oder Thiolen bzw. Elektronendonatoren wie Aminen.
- Bevorzugte bimolekulare Photoinitiatoren für den sichtbaren Bereich sind α-Diketone und dessen Derivate, wie 9,10-Phenanthrenchinon, 1-Phenyl-propan-1,2-dion, Diacetyl oder 4,4'-Dichlorbenzil, sowie Mischungen davon. Besonders bevorzugt sind Campherchinon (CC) und 2,2-Dimethoxy-2-phenyl-acetophenon, und ganz besonders bevorzugt sind α-Diketone in Kombination mit Aminen als Reduktionsmittel, wie z.B. 4-(Dimethylamino)-benzoesäureethylester (EDMAB), N,N-Dimethylaminoethylmethacrylat, N,N-Dimethyl-sym.-xylidin oder Triethanolamin. Bevorzugte Norrish-Typ-I-Photoinitiatoren für den sichtbaren Bereich sind Bisacylphosphinoxide. Besonders bevorzugt sind Monoacyltrialkylgermanium-, Diacyldialkylgermanium- und Tetraacylgermanium-Verbindungen, wie z.B. Benzoyltrimethylgerman, Dibenzoyldiethylgerman, Bis(4-methoxybenzoyl)diethylgerman (Ivocerin®), Tetrabenzoylgerman oder Tetrakis(o-methylbenzoyl)german.
- Außerdem lassen sich vorteilhaft auch Mischungen der verschiedenen Photoinitiatoren einsetzen, wie z.B. Bis(4-methoxybenzoyl)diethylgerman bzw. Tetrakis(o-methyl-benzoyl)german in Kombination mit Campherchinon und 4-Dimethylaminobenzoesäureethylester.
- Bevorzugte thermische Initiatoren sind Azoverbindungen, wie z.B. 2,2'-Azobis(isobutyronitril) (AIBN), Azobis-(4-cyanovaleriansäure) oder Peroxide, wie z.B. Dibenzoylperoxid, Dilauroylperoxid, tert-Butylperoctoat, tert-Butylperbenzoat oder Di-(tert-butyl)-peroxid. Zur Beschleunigung der Initiierung mittels Peroxiden lassen sich auch Kombinationen von Peroxiden mit aromatischen Aminen einsetzen. Bevorzugte Kombinationen sind Kombinationen von Dibenzoylperoxid mit einem Amin, vorzugsweise einem N,N-dialkylsubstituierten aromatischen Amin, das in p-Stellung substituiert ist, wie N,N-Dimethyl-p-toluidin, N,N-Dihydroxyethyl-p-toluidin, p-Dimethylam inobenzoesäureethylester.
- Für eine duale Aushärtung eignen sich Kombinationen eines Photoinitiators mit einem thermischen oder vorzugsweise einem Redoxinitiator. Bevorzugte Redoxinitiatoren für die duale Härtung sind Systeme, die ein Peroxid und ein Reduktionsmittel, wie z.B. Ascorbinsäure, ein Barbiturat oder eine Sulfinsäure, oder ein Hydroperoxid in Kombination mit einem Reduktionsmittel und ggf. katalytischen Mengen an Metallionen enthalten, wie z.B. eine Mischung von Cumolhydroperoxid, einem Thioharnstoffderivat und Kupfer(II)-acetylacetonat.
- Die erfindungsgemäßen Zusammensetzungen können vorteilhaft außerdem einen oder mehrere organische oder vorzugsweise anorganische Füllstoffe enthalten. Bevorzugt sind faserförmige und insbesondere partikuläre Füllstoffe. Füllstoffhaltige Zusammensetzungen eignen sich besonders als dentale Befestigungszemente oder Füllungskomposite.
- Als faserförmige Füllstoffe sind Glasfasern, Kohlenstofffasern, Keramik- und Aramidfasern sowie Nanofasern oder Whiskers bevorzugt. Faserförmige Füllstoffe eignen sich besonders zur Herstellung von Verbundmaterialien. Unter Nanofasern werden Fasern mit einer Länge von weniger als 100 nm verstanden und unter Whiskers nadelförmige Einkristalle, vorzugsweise aus Aluminiumoxid oder Siliciumcarbid. Whiskers haben typischerweise einen Durchmesser von wenigen µm und einer Länge bis zu 1 mm.
- Bevorzugte partikuläre Füllstoffe sind Oxide, wie SiO2, ZrO2 und TiO2 oder Mischoxide aus SiO2, ZrO2, ZnO und/oder TiO2, nanopartikuläre oder mikrofeine Füllstoffe, wie pyrogene Kieselsäure oder Fällungskieselsäure, Glaspulver, wie Quarz-, Glaskeramik-, Borosilikat- oder röntgenopake Glaspulver, vorzugsweise Barium- oder Strontiumaluminiumsilikatgläser, und röntgenopake Füllstoffe, wie Ytterbiumtrifluorid, Tantal(V)-oxid, Bariumsulfat oder Mischoxide von SiO2 mit Ytterbium(III)-oxid oder Tantal(V)-oxid.
- Bevorzugt weisen die Oxide eine Partikelgröße von 0,010 bis 15 µm, die nanopartikulären oder mikrofeinen Füllstoffe eine Partikelgröße von 10 bis 300 nm, die Glaspulver eine Partikelgröße von 0,01 bis 15 µm, vorzugweise von 0,2 bis 1,5 µm, und die röntgenopaken Füllstoffe eine Partikelgröße von 0,2 bis 5 µm auf.
- Besonders bevorzugte Füllstoffe sind Mischoxide aus SiO2 und ZrO2, mit einer Partikelgröße von 10 bis 300 nm, Glaspulver mit einer Partikelgröße von 0,2 bis 1,5 µm, insbesondere röntgenopake Glaspulver von z.B. Barium- oder Strontiumaluminiumsilikatgläsern, und röntgenopake Füllstoffe mit einer Partikelgröße von 0,2 bis 5 µm, insbesondere Ytterbiumtrifluorid und/oder Mischoxide von SiO2 mit Ytterbium(III)-oxid.
- Wenn nicht anders angegeben, handelt es sich bei allen Partikelgrößen um gewichtsmittlere Partikelgrößen (D50-Werte), wobei die Partikelgrößenbestimmung im Bereich von 0,1 µm bis 1000 µm vorzugsweise mittels statischer Lichtstreuung erfolgt, beispielsweise mit einem statischen Laserstreuungs-Partikelgrößen-Analysator LA-960 (Horiba, Japan). Hierbei werden als Lichtquellen eine Laser-Diode mit einer Wellenlänge von 655 nm und eine LED mit einer Wellenlänge von 405 nm verwendet. Der Einsatz von zwei Lichtquellen mit unterschiedlichen Wellenlängen ermöglicht die Ver¬messung der gesamten Partikelgrößenverteilung einer Probe in nur einem Messungsdurchgang, wobei die Messung als Nassmessung durchgeführt wird. Hierzu wird eine 0,1 bis 0,5%ige wässrige Dispersion des Füllstoffs hergestellt und deren Streulicht in einer Durchflusszelle gemessen. Die Streulichtanalyse zur Berechnung von Partikelgröße und Partikel¬größenverteilung erfolgt gemäß der Mie-Theorie nach DIN/ISO 13320. Die Messung der Partikelgröße im Bereich von 5 nm bis 0,1 µm erfolgt vorzugsweise durch Dynamische Lichtstreuung (DLS) von wässrigen Partikeldispersionen, vorzugsweise mit einem He-Ne-Laser mit einer Wellenlänge von 633 nm, bei einem Streuwinkel von 90° und bei 25°C, z.B. mit einem Malvern Zetasizer Nano ZS (Malvern Instruments, Malvern UK).
- Partikelgrößen kleiner als 0,1 µm können auch anhand von REM- oder TEM-Aufnahmen bestimmt werden. Die Transmissions¬elek¬tro¬nen¬mikroskopie (TEM) wird vorzugsweise mit einem Philips CM30 TEM bei einer Beschleunigungsspannung von 300 kV durchgeführt. Für die Probenvorbereitung werden Tropfen der Partikeldispersion auf einem 50 Å dickem Kupfergitter (Maschenweite 300 Mesh) aufgebracht, das mit Kohlenstoff beschichtet ist, und im Anschluss das Lösungsmittel verdampft. Die Partikel werden ausgezählt und der arithmetische Mittelwert berechnet.
- Die Füllstoffe werden nach ihrer Partikelgröße unterteilt in Makrofüller und Mikrofüller, wobei Füllstoffe mit einer mittleren Partikelgröße von 0,2 bis 15 µm als Makrofüller und Füllstoffe mit einer mittlere Partikelgröße von ca. 5 bis 100 nm als Mikrofüller bezeichnet werden. Makrofüller werden z.B. durch Mahlen z.B. von Quarz, röntgenopaken Gläsern, Borosilikaten oder von Keramik gewonnen und bestehen meist aus splitterförmigen Teilen. Mikrofüller wie Mischoxide können z.B. durch hydrolytische Co-Kon¬densation von Metallalkoxiden hergestellt werden.
- Zur Verbesserung des Verbundes zwischen den Füllstoffpartikeln und der vernetzten Polymerisationsmatrix sind die Füllstoffe vorzugsweise oberflächenmodifiziert. SiO2-basierende Füllstoffe sind vorzugsweise mit Methacrylat-funktionalisierten Silanen oberflächenmodifiziert, besonders bevorzugt mit 3-Methacryloyloxypropyltrimethoxysilan. Zur Oberflächenmodifizierung von nichtsilikatischen Füllstoffen, z.B. von ZrO2 oder TiO2 können auch funktionalisierte saure Phosphate, wie z.B. 10-Methacryloyloxydecyldihydrogenphosphat eingesetzt werden.
- Außerdem können die erfindungsgemäßen Dentalwerkstoffe ein oder mehrere weitere Additive enthalten, vor allem Stabilisatoren, Farbmittel, mikrobiozide Wirkstoffe, fluoridionenabgebende Additive, Treibmittel, optische Aufheller, Weichmacher und/oder UV-Absorber.
- Die erfindungsgemäßen Werkstoffe enthalten vorzugsweise:
- a) 0,5 bis 70 Gew.-%, bevorzugt 1 bis 60 Gew.-% und besonders bevorzugt 3 bis 50 Gew.-% mindestens einer Verbindung der Formel I,
- b) 0,01 bis 5 Gew.-%, bevorzugt 0,1 bis 3,0 Gew.-% und besonders bevorzugt 0,1 bis 1,0 Gew.-% mindestens eines Initiators für die radikalische Polymerisation, vorzugsweise eines Photoinitiators,
- c) 1 bis 70 Gew.-%, bevorzugt 1,5 bis 60 Gew.-% und besonders bevorzugt 2 bis 50 Gew.-% mindestens eines radikalisch polymerisierbaren Comonomers,
- d) 0 bis 85 Gew.-% mindestens eines Füllstoffs.
- Alle Mengenangaben hierin beziehen sich auf die Gesamtmasse der Zusammensetzung, wenn nicht anders angegeben.
- Der Füllungsgrad richtet sich nach dem gewünschten Anwendungszweck des Werkstoffs. Füllungskomposite haben vorzugsweise einen Füllstoffgehalt von 50 bis 85 Gew.-%, besonders bevorzugt 70 bis 80 Gew.-%, und dentale Zemente von 10 bis 70 Gew.-%, besonders bevorzugt 60 bis 70 Gew.-%.
- Besonders bevorzugt sind solche Dentalwerkstoffe, die aus den genannten Komponenten bestehen, wobei die einzelnen Komponenten vorzugsweise jeweils aus den oben genannten bevorzugten und besonders bevorzugten Stoffen ausgewählt sind.
- Die erfindungsgemäßen Zusammensetzungen eignen sich besonders als Dentalwerkstoffe, insbesondere als dentale Zemente, Füllungskomposite und Verblendmaterialien sowie als Materialien zur Herstellung von Prothesen, künstlichen Zähnen, Inlays, Onlays, Kronen und Brücken. Die Zusammensetzungen eignen sich primär zur intraoralen Anwendung durch den Zahnarzt zur Restauration geschädigter Zähne, d.h. zur therapeutischen Anwendung, z.B. als dentale Zemente, Füllungskomposite und Verblendmaterialien. Sie können aber auch nicht-therapeutisch (extraoral) eingesetzt werden, beispielsweise bei der Herstellung oder Reparatur von Dentalrestaurationen, wie Prothesen, künstlichen Zähnen, Inlays, Onlays, Kronen und Brücken.
- Die erfindungsgemäßen Zusammensetzungen eignen sich außerdem zur Herstellung von Formkörpern für dentale aber auch für nicht dentale Zwecke, die z.B. mittels Gießen, Pressen und insbesondere durch generative Verfahren wie den 3D Druck hergestellt werden können.
- Gegenstand der Erfindung ist auch die Verwendung einer Verbindung gemäß Formel I zur Herstellung eines radikalisch polymerisierbaren Werkstoffs, vorzugsweise eines medizintechnischen und insbesondere eines zahnmedizinischen Werkstoffs.
- Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher erläutert.
-
-
- 1,6-Hexandiol (42,3 mmol, 5,00 g) wurde in trockenem Dichlormethan (DCM, 150 ml) gelöst und die Apparatur mit Argon gespült. Die Lösung wurde in Eiswasser gekühlt, danach wurde zuerst Pyridin (105,8 mmol, 8,37 g) und dann Ethylmalonylchlorid (105,8 mmol, 15,93 g) hinzugefügt. Die Lösung wurde bei Raumtemperatur 4 h gerührt und anschließend mit 1N HCl (150 ml) gequencht. Die wässrige Phase wurde 3-mal mit DCM (150 ml) extrahiert, die vereinigten organischen Phasen wurden mit gesättigter NaHCO3 Lösung (150 ml) gewaschen und über wasserfreiem Na2SO4 getrocknet. Das Lösungsmittel wurde abdestilliert, das gefärbte Rohprodukt über Kieselgel filtriert (Laufmittel PE:EE 4:1) und so das Reinprodukt ZP1 als farbloses Öl in einer Ausbeute von 12,35 g (84% der Theorie) erhalten.
1H-NMR: (400 MHz, CDCl3) δ (ppm): 4,10 (8H, m, O-CH2-), 3,29 (4H, s, C-CH2-C), 1,59 (4H, m, CH2), 1,32 (4H, m, CH2), 1,28 (6H, m, -CH3). - Natriumhydrid (60 Gew.-%, Suspension in Mineralöl, 178,3 mmol, 4,28 g) wurde in einem Dreihalskolben vorgelegt und die Apparatur mit Argon gespült. Trockenes Tetrahydrofuran (THF) (100 ml) wurde hinzugefügt und die Reaktionslösung im Eisbad gekühlt. ZP1 aus Stufe 1 (35,7 mmol, 12,35 g) wurde langsam zugetropft und die Reaktionslösung 2 h bei Raumtemperatur gerührt. Nach Zugabe von Ethylchloromethylacrylat (146,2 mmol, 21,72 g) wurde über Nacht gerührt und danach mit gesättigter NH4Cl-Lösung (100 ml) gequencht. Die wässrige Phase wurde 3-mal mit Diethylether extrahiert (100 ml) und die vereinigten organischen Phasen über wasserfreiem Natriumsulfat getrocknet. Nach Abdampfen des Lösungsmittels wurde das Rohprodukt mittels Säulenchromatographie gereinigt (PE:EE 4:1) und das Reinprodukt als viskose Flüssigkeit in einer Ausbeute von 21,95 g (77% der Theorie) erhalten.
1H-NMR: (400 MHz, CDCl3) δ (ppm): 6,25 (4H, s, C=CH2), 5,68 (4H, s, C=CH2), 4,22-3,96 (16H, m, O-CH2-), 2,95 (8H, s, C-CH2-C), 1,57 (4H, m), 1,26 (22H, m). 13C-NMR: (100 MHz, CDCl3) δ (ppm): 170,5 (C=O), 170,4 (C=O), 167,1 (C=O), 136,3 (C4), 128,7 (C2), 65,4 (C2), 61,5 (C2), 61,0 (C2), 57,6 (C4), 34,9 (C2), 28,4 (C2), 25,6 (C2), 14,3 (C1), 14,0 (C1). -
- Die Synthese von Verbindung 2 wurde in Anlehnung an Tsuda et al., Polymer, 35 (1994), 3317-3328, durchgeführt:
Ethylacrylat (149,8 mmol, 15,0 g), Paraformaldehyd (149,8 mmol, 4,5 g) und 1,4-Diazabicyclo(2.2.2)octan (1 g) wurden in einem Dreihalskolben vorgelegt und diese Lösung 3 Tage bei 95 °C gerührt. Nach Abkühlen der Lösung wurden 200 ml Petrolether hinzugefügt und die Lösung 3-mal mit 100 ml 3 %-iger HCl und 1-mal mit 100 ml Wasser gewaschen. Die organische Phase wurde über wasserfreiem Natriumsulfat getrocknet und das Lösungsmittel abgezogen. Das Rohprodukt wurde mittels Säulenchromatographie gereinigt und in einer Ausbeute von 11,7 g (65 % der Theorie) als farbloses Öl erhalten.
1H-NMR: (400 MHz, CDCl3) δ (ppm): 6,30 (2H, s, C=CH2), 5,88 (2H, s, C=CH2), 4,31-4,13 (8H, m, O-CH2-), 1,29 (6H, t).
13C-NMR: (100 MHz, CDCl3) δ (ppm): 165,9 (C=O), 137,4 (C4, 125,7 (C2), 69,0 (C2), 60,9 (C2), 14,3 (C1). -
-
- Zu einer Lösung von 1,1'-{[Propan-2,2-diylbis(4,1-phenylen)]bis(oxy)}bis(propan-2-ol) (Isomerengemisch, 17,22 g, 50,0 mmol) in DCM (100 ml) wurden Pyridin (9,89 g; 0,125 mol) und anschließend unter Eiskühlung Ethylmalonylchlorid (18,82 g; 0,125 mol) zugetropft und das Reaktionsgemisch wurde bei Umgebungstemperatur gerührt. Nach 4 h wurde Salzsäure (1N; 100 ml) zugegeben und die Phasen wurden getrennt. Die Wasserphase wurde mit DCM extrahiert (3x 50 ml). Die vereinigten organischen Phasen wurden mit gesättigter wässriger Natriumhydrogencarbonat-Lösung (100 ml) und gesättigter wässriger Natriumchlorid-Lösung (100 ml) gewaschen, über wasserfreiem Natriumsulfat getrocknet, filtriert und am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Reinigung (SiO2, n-Heptan/Ethylacetat 3:1) des Rohprodukts wurden 21,30 g (37,2 mmol; 74 % der Theorie) eines gelblichen Öls erhalten.
1H-NMR (CDCl3, 400 MHz): δ (Hauptisomer) = 7,12 (4H, m; Ar-H), 6,79 (4H, m; Ar-H), 5,29 (2H, m; O-CH), 4,18 (4H, m; O-CH2), 3,98 (4H, m; O-CH2), 3,36 (4H, s; CH2), 1,62 (6H, s; CH3), 1,37 (6H, d; CH-CH 3; J = 6,5 Hz), 1,25 (6H, t; CH3; J = 7,1 Hz).
13C-NMR (CDCl3, 100.6 MHz): δ (Hauptisomer) = 166,3 (C=O), 166,0 (C=O), 156,2 (Ar-C), 143,4 (Ar-C), 127,6 (Ar-CH), 113,8 (Ar-CH), 70,0 (O-CH2), 69,6 (O-CH2), 61,4 (O-CH), 41,6 (CH2), 41,5 (C), 30,9 (CH3), 16,4 (CH3), 13,9 (CH3). - Zu einer Suspension von Natriumhydrid (4,42 g, 0,184 mol) in THF (100 ml) wurde bei 0 °C eine Lösung von ZP-2 (21,05 g, 36,8 mmol) in THF (50 ml) zugetropft und das Reaktionsgemisch wurde bei Umgebungstemperatur gerührt. Nach 3 h wurde unter Eiskühlung eine Lösung von 2-Chlormethylacrylsäureethylester (22,39 g, 0,151 mol) in THF (50 ml) zugetropft. Das Reaktionsgemisch wurde 24 h bei Umgebungstemperatur gerührt, dann wurde gesättigte wässrige Ammoniumchlorid-Lösung (100 ml) zugetropft. Wasser (100 ml) und Ethylacetat (250 ml) wurden zugegeben und die Phasen wurden getrennt. Die Wasserphase wurde mit Ethylacetat (2x 80 ml) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässriger Natriumchlorid-Lösung (2x 80 ml) gewaschen, über wasserfreiem Natriumsulfat getrocknet und filtriert. Das Filtrat wurde am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Reinigung (SiO2, n-Heptan/Ethylacetat 3:1) des Rohprodukts wurden 30,82 g (30,2 mmol; 82 % der Theorie) eines hochviskosen farblosen Öls erhalten.
1H-NMR (CDCl3, 400 MHz): δ (Hauptisomer) = 7,11 (4H, m; Ar-H), 6,77 (4H, m; Ar-H), 6,27 (4H, m; =CH), 5,74 (4H, m; =CH), 5,20 (2H, m; O-CH), 4,15 (8H, m; O-CH2), 4,11 - 3,88 (8H, m; O-CH2), 3,07 - 2,91 (8H, m; CH2), 1,62 (6H, s; CH3), 1,34 (6H, d; CH-CH 3; J = 6,5 Hz), 1,28 (6H, t; CH3; J = 7,1 Hz), 1,18 (6H, t; CH3; J = 7,1 Hz).
13C-NMR (CDCl3, 100,6 MHz): δ (Hauptisomer) = 170,1 (C=O), 169,7 (C=O), 166,9 (C=O), 156,2 (Ar-C), 143,3 (Ar-C), 136,0 (=C), 135,8 (=C), 128,6 (=CH2), 128,3 (=CH2), 127,6 (Ar-CH), 113,7 (Ar-CH), 70,1 (O-CH), 69,3 (O-CH2), 61,3 (O-CH2), 60,8 (O-CH2), 60,7 (O-CH2), 57,4 (C), 41,5 (C), 34,3 (CH2), 34,1 (CH2), 30,9 (CH3), 16,2 (CH3), 14,0 (CH2), 13,7 (CH3). -
-
- Zu einer Lösung von 4,8-Bis(hydroxymethyl)tricyclo[5.2.1.02,6]decan, Isomerengemisch (9,81 g, 50,0 mmol) in DCM (100 ml) wurden Pyridin (9,89 g; 0,125 mol) und anschließend unter Eiskühlung Ethylmalonylchlorid (18,82 g; 0,125 mol) zugetropft und das Reaktionsgemisch wurde bei Umgebungstemperatur gerührt. Nach 4 h wurde Salzsäure (1N; 100 ml) zugegeben und die Phasen wurden getrennt. Die Wasserphase wurde mit Dichlormethan extrahiert (3x 50 ml). Die vereinigten organischen Phasen wurden mit gesättigter wässriger Natriumhydrogencarbonat-Lösung (100 ml) und gesättigter wässriger Natriumchlorid-Lösung (100 ml) gewaschen, über wasserfreiem Natriumsulfat getrocknet, filtriert und am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Reinigung (SiO2, n-Heptan/Ethylacetat 1:1) des Rohprodukts wurden 20,75 g (48,9 mmol; 98 % der Theorie) eines gelblichen Öls erhalten.
1H-NMR (CDCl3, 400 MHz): δ = 4,25 - 4,16 (4H, m; O-CH2), 4,04 - 3,87 (4H, m; O-CH2), 3,40 - 3,34 (4H, m; CH2), 2,56 - 1,32 (14H, m), 1,29 (6H, t; CH3; J = 7,2 Hz).
13C-NMR (CDCl3, 100,6 MHz): δ = 166,5 (C=O), 166,4 (C=O), 166,3 (C=O), 69,6 (O-CH2), 69,0 (O-CH2), 68,6 (O-CH2), 68,6 (O-CH2), 61,3 (O-CH2), 49,1 (CH), 48,6 (CH), 45,3 (CH), 44,7 (CH), 44,6 (CH), 44,3 (CH), 43,5 (CH), 42,8 (CH), 42,5 (CH), 41,5 (CH2), 41,3 (CH), 40,8 (CH), 40,5 (CH), 40,2 (CH2), 40,0 (C), 39,2 (CH2), 38,5 (CH), 37,9 (CH), 33,9 (CH), 33,8 (CH), 33,0 (CH), 32,3 (CH2), 32,1 (CH2), 30,5 (CH2), 30,1 (CH2), 27,9 (CH2), 27,5 (CH2), 25,0 (CH2), 24,2 (CH2), 13,9 (CH3). - Zu einer Suspension von Natriumhydrid (5,78 g, 0,241 mol) in Tetrahydrofuran (100 ml) wurde bei 0 °C eine Lösung von ZP-3, Isomerengemisch (20,45 g, 48,2 mmol) in THF (50 ml) zugetropft und das Reaktionsgemisch wurde bei Umgebungstemperatur gerührt. Nach 3 h wurde unter Eiskühlung eine Lösung von 2-Chlormethylacrylsäureethylester (29,35 g, 0,198 mol) in THF (50 ml) zugetropft. Das Reaktionsgemisch wurde 24 h bei Umgebungstemperatur gerührt, dann wurde gesättigte wässrige Ammoniumchlorid-Lösung (100 ml) zugetropft. Wasser (100 ml) und Ethylacetat (250 ml) wurden zugegeben und die Phasen wurden getrennt. Die Wasserphase wurde mit Ethylacetat (2x 80 ml) extrahiert. Die vereinigten organischen Phasen wurden mit gesättigter wässriger Natriumchlorid-Lösung (2x 80 ml) gewaschen, über wasserfreiem Natriumsulfat getrocknet und filtriert. Das Filtrat wurde am Rotationsverdampfer eingeengt. Nach säulenchromatographischer Reinigung (SiO2, n-Heptan/Ethylacetat 3:1) des Rohprodukts wurden 30,30 g (34,7mmol; 72 % der Theorie) eines hochviskosen gelblichen Öls erhalten.
1H-NMR (CDCl3, 400 MHz): δ = 6,31 - 6,19 (4H, m; =CH), 5,74 - 5,61 (4H, m; =CH), 4,23 - 4,07 (12H, m; O-CH2), 3,91 - 3,73 (4H, m; O-CH2), 3,04 - 2,82 (8H, m; CH2), 2,56 - 1,34 (14H, m), 1,33 - 1,21 (18H, m; CH3).
13C-NMR (CDCl3, 100,6 MHz): δ = 170,3 (C=O), 170,2 (C=O), 170,1 (C=O), 168,7 (C=O), 168,6 (C=O), 166,8 (C=O), 166,1 (C=O), 136,6 (=C), 136,0 (=C), 135,9 (=C), 128,4 (=CH2), 127,5 (=CH2), 69,1 (O-CH2), 68,9 (O-CH2), 68,6 (O-CH2), 68,5 (O-CH2), 61,3 (O-CH2), 60,7 (O-CH2), 57,3 (C), 50,8 (CH), 50,7 (CH), 48,8 (CH), 45,4 (CH), 44,7 (CH), 44,4 (CH), 43,5 (CH), 42,9 (CH), 42,8 (CH), 41,2 (CH), 40,9 (CH), 40,8 (CH), 40,2 (CH2), 40,1 (CH), 39,2 (CH2), 38,3 (CH), 38,0 (CH), 34,7 (CH2), 34,6 (CH2), 33,8 (CH), 33,6 (CH), 32,9 (CH), 32,4 (CH2), 31,3 (CH2), 30,5 (CH2), 27,9 (CH2), 27,4 (CH2), 24,3 (CH2), 14,0 (CH3), 13,9 (CH3), 13,8 (CH3). - Die Volumenkontraktion während der Polymerisation (Polymerisationsschrumpf) ΔVP des erfindungsgemäßen Monomeren 1 aus Beispiel 1 (Beispiel 5, B1) wurde mittels Dichtemessung vor und nach der Polymerisation gemessen und mit dem kommerziell erhältlichen Referenzmonomer 1,10- Decandioldimethacrylat (D3MA, CAS: 6701-13-9) (Beispiel 5: Vergleichsbeispiel V1) verglichen. D3MA wurde als Referenz verwendet, weil es ebenfalls einen Alkylenspacer zwischen den polymerisationsfähigen Gruppen und denselben Atomabstand wie 1 besitzt. Zusätzlich wurde das bereits bekannte (vgl.:
US 5,145,374 ) cyclopolymerisierbare Monomer 2 aus Beispiel 2 als Referenzmonomer verwendet (Beispiel 5: Vergleichsbeispiel V2). Die Dichte der Monomere wurde mittels 1 ml Pyknometer bestimmt, während die Dichte der ausgehärteten Polymere mittels Archimedes Methode bestimmt wurde. Die Monomere wurden mit 1 mol% BMDG (Bis(4-methoxybenzoyl)-diethylgermanium) als Photoinitiator versetzt, in eine Silikonform gegossen (15 x 10 x 4 mm) und mit einem Lichtofen (Modell Lumamat 100, Ivoclar AG, 400-500 nm, 20 mW cm-2) jeweils 10 min pro Seite gehärtet.Tabelle1: Polymerisationsschrumpf ΔVP des erfindungsgemäßen Monomer 1 sowie der Vergleichsverbindungen D3MAa und Monomer 2 Beispiel Monomer ρMonomer [g/mL] ρPolymer [g/mL] ΔPV [Vol-%] V1 D3MA 0,962 1,091 12,8 V2 2 1,055 1,220 12,2 B1 1 1,127 1,194 4,4 - Die Ergebnisse in Tabelle 1 belegen, dass das erfindungsgemäße Monomer 1 im Vergleich zu dem analogen Dimethacrylat-Monomer D3MA und dem aus dem Stand der Technik bekannten cyclopolymerisierbaren Monomer 2 überraschenderweise einen deutlich geringen Polymerisationsschrumpf zeigt und somit einen klaren Vorteil bei möglichst formtreuen Applikationen darstellt.
- Zur Untersuchung der Photoreaktivität und vor allem der polymerisationsinduzierten Schrumpfungskraft des erfindungsgemäßen Monomeren 1 wurden die hergestellten Formulierungen B1, V1 und V2 aus Beispiel 5 mit einem Real-Time-Near-Infra-red (RT-NIR) Photorheometer MCR302 WESP von Anton Paar vermessen, das zur Umsatzkontrolle mit einem Bruker Vertex-80-IR-Spektrometer gekoppelt wurde. Es wurde ein PP-25-Messsystem verwendet, und der Messspalt wurde auf 0,2 mm eingestellt. Vor und während der Aushärtung (10 mW·cm-2 auf Probenoberfläche; 400-500 nm; Omnicure 2000) wurden Speicher- und Verlustmodul der Proben im Oszillationsmodus (1 % Auslenkung, 1 Hz) gemessen. Gleichzeitig wurden während der Messung IR-Spektren der Probe mit einer Frequenz von ∼ 4 Hz aufgezeichnet. Als Maß für die Photoreaktivität wurde das Erreichen des Gelpunkts (Schnittpunkt von Speicher- und Verlustmodul) und die Dauer bis zum Erreichen von 95 % des finalen Doppelbindungsumsatzes (t95%) herangezogen. Zusätzlich wurden der Umsatz am Gelpunkt (DBCg), der Gesamtumsatz (DBC) und die photopolymerisationsinduzierte Schrumpfungsspannung (FS) ermittelt. Die erzielten Ergebnisse sind in Tabelle 2 zusammengefasst.
Tabelle 2: Ergebnisse der Reaktivitätsmessungen mit Monomer 1 und den Referenz-Monomeren 2 und D3MA Beispiel Monomer Gelpunkt [s] DBCg [%] DBC [%] t95% [s] FS [N] V1 D3MA 6,2 12 83 71 -36 V2 2 14,8 23 77 87 -35 B1 1 4,1 13 77 116 -21 - Betrachtet man den Gelpunkt der Monomere, erkennt man, dass das Monomer 1 diesen mit 4,1 s deutlich schneller erreicht als die Referenzverbindungen D3MA und Monomer 2. Dies belegt eine hohe Reaktivität von Monomer 1. Der Umsatz am Gelpunkt hingegen ist mit 12-13% bei D3MA und Monomer 1 ähnlich niedrig. Das cyclopolymerisierbare Referenzmonomer 2 zeigt einen deutlich höheren Umsatz am Gelpunkt (23 %), was durch die partielle Cyclopolymerisation und somit fehlende Quervernetzung zu erklären ist. Der finale Umsatz bewegt sich sowohl bei Monomer 1, und den Vergleichsverbindungen 2 und D3MA um ∼80%, wobei D3MA einen etwas höheren DBC erreicht. Dies ist auf eine höhere Flexibilität der langen Alkylenkette zurückzuführen, während Monomer 1 und auch teilweise Referenzverbindung 2 rigide Ringstrukturen bei der Polymerisation bilden und somit vor allem am Anfang der Polymerisation klar im Vorteil sind. Die auftretende Schrumpfkraft während der Polymerisation ist bei dem erfindungsgemäßen Monomer 1 mit -21 N über ein Drittel geringer als bei der Referenzsubstanz D3MA mit -36 N. Dies zeigt den deutlichen Vorteil von Monomer 1 gegenüber dem konventionellen Dimethacrylat. Überraschenderweise zeigen die Ergebnisse, dass das ebenfalls cyclopolymerisierbare Vergleichsmonomer 2 ebenfalls eine sehr hohe Schrumpfkraft aufweist, was deutlich macht, dass die erfindungsgemäße Verbindung 1 beträchtliche Vorteile gegenüber der bekannten Vergleichsverbindung aufweist.
- Um die Copolymerisationsfähigkeit des erfindungsgemäßen Monomeren 1 zu zeigen, wurde von einer Basis-Harzformulierung (äquimolares Gemisch der kommerziell erhältlichen Dimethacrylate Urethandimethacrylat (UDMA, Isomerengemisch; CAS: 72869-86-4) und 1,10-Decandioldimethacrylat (D3MA) jeweils eine Komponente durch eine äquimolare Menge des Monomers 1 oder des Referenzmonomers 2 ersetzt und mittels RT-NIR-Photorheometrie die Reaktivität und auftretende Schrumpfkraft untersucht. Den Mischungen wurde jeweils 1 mol% BMDG (Bis(4-methoxybenzoyl)-diethylgermanium) als Photoinitiator zugefügt und die RT-NIR-Photorheometrie Messungen analog zu Beispiel 6 durchgeführt.
Tabelle 3: Ergebnisse der Reaktivitätsmessungen der Copolymerisate Beispiel Monomermischung Gelpunkt [s] DBCg [%] DBC [%] t95% [s] FS [N] V3 D3MA-UDMA 1,5 16 78 79 -32 V4 D3MA-2 9,3 12 84 94 -42 V5 UDMA-2 2,4 16 79 88 -33 B2 D3MA-1 3,2 10 83 112 -29 B3 UDMA-1 3,0 18 75 82 -23 - Die Ergebnisse in Tabelle 3 belegen die gute Copolymerisation von Monomer 1 sowohl mit dem niedrigviskosen D3MA, als auch mit dem zähflüssigen UDMA. Die Copolymerisation mit D3MA führt zwar zu einem um 1,7 s späteren Gelpunkt, ist jedoch deutlich schneller als die Copolymerisation von Referenzmonomer 2 mit D3MA (9,3 s). Die Gelierung der Copolymerisationen mit UDMA bewegt sich bei den Monomeren 1 und 2 im selben Rahmen, wobei Monomer 2 um 0,6 s schneller geliert. Sowohl der finale Umsatz (∼80%) als auch t95% (∼90 s) liegen bei allen 5 Formulierungen im selben Bereich. Betrachtet man die auftretende Schrumpfkraft erkennt man erneut den großen Vorteil von Monomer 1. Während die Referenzmischung V3 eine Schrumpfkraft von -32 N aufweist, führt die Substitution von D3MA mit Monomer 1 zu einer Schrumpfkraft von nur -23 N. Verwendet man hingegen das Referenzmonomer 2, kommt es bei Copolymerisation mit UDMA zu keiner Reduktion der Schrumpfkraft und bei der Copolymerisation mit D3MA wird sogar ein Anstieg der Schrumpfkraft auf -42 N beobachtet. Somit konnte gezeigt werden, dass die Copolymerisation von Monomer 1 mit Dimethacrylaten kaum eine Verringerung der Reaktivität mit sich bringt, jedoch den Vorteil einer signifikanten Schrumpfkraftreduktion zeigt. Referenzmonomer 2 als cyclopolymerisierbares Monomer zeigte zwar ebenfalls eine hohe Reaktivität mit Dimethacrylaten, bewirkt jedoch eine Erhöhung der auftretenden Schrumpfkraft und ist gegenüber Monomer 1 damit klar im Nachteil.
Claims (15)
- Dentalwerkstoff, der mindesten eine Verbindung der Formeln I enthält,R1 ein m-wertiger, linearer, verzweigter oder cyclischer aliphatischer C1-C30-Kohlenwasserstoffrest oder ein aromatischer C6-C30-Kohlenwasserstoffrest ist, wobei der aliphatische oder aromatische Kohlenwasserstoffrest substituiert oder unsubstituiert sein kann und wobei aliphatische Kohlenwasserstoffreste durch eine oder mehrere Urethangruppen, Estergruppen, Sauerstoffatome und/oder Schwefelatome unterbrochen sein können,X,Y,Z unabhängig voneinander jeweils -COOR2, -CON(R3R4), ein aromatischer C6-C10-Kohlenwasserstoffrest oder -CN sind, wobeiR2,R3,R4 jeweils unabhängig voneinander Wasserstoff, ein linearer, verzweigter oder cyclischer aliphatischer C1-C30-Kohlenwasserstoffrest oder ein aromatischer C6-C30-Kohlenwasserstoffrest ist, wobei der aliphatische oder aromatische Kohlenwasserstoffrest substituiert oder unsubstituiert sein kann und wobei aliphatische Kohlenwasserstoffreste durch ein oder mehrere Sauerstoffatome unterbrochen sein können, undm 2 oder 3 ist.
- Dentalwerkstoff nach Anspruch 1, wobei die Variablen die folgenden Bedeutungen haben:R1 ein linearer, verzweigter oder cyclischer aliphatischer C1-C20-Kohlenwasserstoffrest, der durch eine oder mehrere, vorzugsweise 1 bis 3, Urethangruppen, Estergruppen und/oder Sauerstoffatome unterbrochen sein kann,X,Y,Z unabhängig voneinander jeweils -COOR2, ein aromatischer C6-C10-Kohlenwasserstoffrest oder -CN,R2 ein linearer, verzweigter oder cyclischer aliphatischer C1-C10-Kohlenwasserstoffrest, der durch ein oder mehrere, vorzugsweise 1 bis 3, Sauerstoffatome unterbrochen sein kann, undm 2 oder 3.
- Dentalwerkstoff nach Anspruch 1, wobei die Variablen die folgenden Bedeutungen haben:R1 ein linearer, verzweigter oder cyclischer, aliphatischer C1-C12-Kohlenwasserstoffrest, vorzugsweise ein gesättigter, verzweigter oder vorzugsweise linearer C2- bis C8-Kohlenwasserstoffrest, der durch ein oder mehrere, vorzugsweise 1 bis 3, Sauerstoffatome unterbrochen sein kann, und vorzugsweise nicht unterbrochen ist,X,Y,Z unabhängig voneinander jeweils -COOR2 oder Phenyl, vorzugsweise -COOR2,R2 ein linearer oder verzweigter C1-C4-Kohlenwasserstoffrest, vorzugsweise Ethyl, undm 2 oder 3, vorzugsweise 2.
- Dentalwerkstoff nach einem der Ansprüche 1 bis 3, der zusätzlich mindestens ein weiteres polymerisierbares Monomer, vorzugsweise mindestens ein radikalisch polymerisierbares mono- oder multifunktionelles (Meth)acrylat, besonders bevorzugt ein Methacrylat enthält.
- Dentalwerkstoff nach Anspruch 4, der als weiteres Monomer ein oder mehrere multifunktionelle Monomere enthält, vorzugsweise Bisphenol-A-dimethacrylat, 2,2-Bis[4-(2-hydroxy-3-methacryloyloxypropyl)phenyl]propan (Bis-GMA), ethoxy- oder propoxyliertes Bisphenol-A-dimethacrylat, vorzugsweise 2-[4-(2-Methacryloyloxyethoxyethoxy)phenyl]-2-[4-(2-methacryloyloxyethoxy)phenyl]-propan) (SR-348c; enthält 3 Ethoxygruppen), 2,2-Bis[4-(2-methacryloyloxypropoxy)phenyl]propan, 1,6-Bis-[2-methacryloyloxy-ethoxycarbonylamino]-2,2,4-trimethylhexan (UDMA), Di-, Tri- oder Tetraethylenglycoldimethacrylat, Trimethylolpropantrimethacrylat, Pentaerythrittetramethacrylat, Glycerindi- oder Glycerintrimethacrylat, 1,4-Butandioldimethacrylat, 1,10-Decandioldimethacrylat (D3MA), 1,12-Dodecandioldimethacrylat, Bis(methacryloyloxymethyl)tricyclo-[5.2.1.02,6]decan (DCP) oder eine Mischung davon enthält.
- Dentalwerkstoff nach einem der Ansprüche 4 bis 5, der als weiteres Monomer ein oder mehrere monofunktionelle Monomere enthält, vorzugsweise ein oder mehrere Monomethacrylate, besonders bevorzugt Benzyl-, Tetrahydrofurfuryl-, Isobornylmethacrylat, p-Cumyl-phenoxyethylenglycolmethacrylat (CMP-1E), 2-(2-Biphenyloxy)-ethylmethacrylat oder eine Mischung davon.
- Dentalwerkstoff nach einem der Ansprüche 4 bis 6, der
0,5 bis 70 Gew.-%, vorzugsweise 1 bis 60 Gew.-% und besonders bevorzugt 3 bis 50 Gew.-% mindestens einer Verbindung der Formel I enthält, und/oder
insgesamt maximal 70 Gew.-%, vorzugsweise 1,5 bis 60 Gew.-% und besonders bevorzugt 2 bis 50 Gew.-% an multifunktionellen Comonomeren enthält, vorzugsweise Methacrylate, und/oder
insgesamt maximal 10 Gew.-%, vorzugsweise 0 bis 10 Gew.-% und besonders bevorzugt 0 bis 5 Gew.-% an monofunktionellen Comonomeren enthält, vorzugsweise Methacrylate,
jeweils bezogen auf die Gesamtmasse des Werkstoffs. - Dentalwerkstoff nach einem der Anspruch 4 bis 7, der als weiteres Monomer ein oder mehrere multifunktionelle Acrylate enthält, vorzugsweise Ethylenglycoldiacrylat, Hexandioldiacrylat, Tripropylenglycoldiacrylat, ethoxyliertes Bisphenol-A-diacrylat, Polyethylenglycol-200-diacrylat, Trimethylolpropantriacrylat, Pentaerythrittetraacrylat oder eine Mischungen davon.
- Dentalwerkstoff nach einem der Ansprüche 1 bis 8, der zusätzlich mindestens einen Initiator für die radikalische Polymerisation durch UV-Licht, durch sichtbares Licht, einen thermischen Initiator und/oder einen Redoxinitiator enthält.
- Dentalwerkstoff nach einem der Ansprüche 1 bis 9, der zusätzlich mindestens einen anorganischen Füllstoff enthält.
- Dentalwerkstoff nach einem der Ansprüche 4 bis 10, dera) 0,5 bis 70 Gew.-%, bevorzugt 1 bis 60 Gew.-% und besonders bevorzugt 3 bis 50 Gew.-% mindestens einer Verbindung der Formel I,b) 0,01 bis 5 Gew.-%, bevorzugt 0,1 bis 3,0 Gew.-% und besonders bevorzugt 0,1 bis 1,0 Gew.-% mindestens eines Initiators, insbesondere eines Photoinitiators,c) 1 bis 70 Gew.-%, bevorzugt 1,5 bis 60 Gew.-% und besonders bevorzugt 2 bis 50 Gew.-% mindestens eines radikalisch polymerisierbaren Comonomers,d) 0 bis 85 Gew.-% mindestens eines Füllstoffs enthält,jeweils bezogen auf die Gesamtmasse des Werkstoffs.
- Dentalwerkstoff nach Anspruch 11, der 50 bis 85 Gew.-%, besonders bevorzugt 70 bis 80 Gew.-%, oder 10 bis 70 Gew.-%, besonders bevorzugt 60 bis 70 Gew.-% Füllstoff enthält.
- Dentalwerkstoff nach einem der Ansprüche 1 bis 12 zur therapeutischen Verwendung als dentaler Zement, Füllungskomposit, Beschichtungs- oder Verblendmaterial.
- Nicht therapeutische Verwendung eines Dentalwerkstoffs gemäß einem der Ansprüche 1 bis 12 zur Herstellung oder Reparatur von dentalen Prothesen, Inlays, Onlays, Kronen oder Brücken.
- Verwendung einer Verbindung gemäß Formel I wie in Anspruch 1 definiert zur Herstellung eines medizintechnischen Werkstoffs.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES20155585T ES2913449T3 (es) | 2020-02-05 | 2020-02-05 | Materiales dentales a base de reticulantes ciclopolimerizables |
EP20155585.1A EP3861976B1 (de) | 2020-02-05 | 2020-02-05 | Dentalmaterialien auf basis von cyclopolymerisierbaren vernetzern |
CN202110143664.3A CN113288817B (zh) | 2020-02-05 | 2021-02-02 | 基于可环化聚合的交联剂的牙科材料 |
US17/166,003 US11793732B2 (en) | 2020-02-05 | 2021-02-03 | Dental materials based on cyclopolymerizable crosslinkers |
JP2021015477A JP7526686B2 (ja) | 2020-02-05 | 2021-02-03 | 環化重合可能なクロスリンカーベースの歯科材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20155585.1A EP3861976B1 (de) | 2020-02-05 | 2020-02-05 | Dentalmaterialien auf basis von cyclopolymerisierbaren vernetzern |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3861976A1 true EP3861976A1 (de) | 2021-08-11 |
EP3861976B1 EP3861976B1 (de) | 2022-03-30 |
Family
ID=69500575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20155585.1A Active EP3861976B1 (de) | 2020-02-05 | 2020-02-05 | Dentalmaterialien auf basis von cyclopolymerisierbaren vernetzern |
Country Status (5)
Country | Link |
---|---|
US (1) | US11793732B2 (de) |
EP (1) | EP3861976B1 (de) |
JP (1) | JP7526686B2 (de) |
CN (1) | CN113288817B (de) |
ES (1) | ES2913449T3 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240274872A1 (en) * | 2023-01-31 | 2024-08-15 | Factorial Inc. | Polymer electrolyte comprising crosslinked polymer and additive |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145374A (en) | 1989-10-03 | 1992-09-08 | The United States Of America As Represented By The Secretary Of Commerce | Synthetic dental compositions formed from cyclopolymerizable bis-acrylate and multi-functional oligomer and bonding method |
US5380901A (en) | 1992-01-30 | 1995-01-10 | The United States Of America As Represented By The Secretary Of Commerce | Multifunctional acrylates and the synthesis thereof |
US20120082958A1 (en) * | 2010-09-30 | 2012-04-05 | Voco Gmbh | Composite Material Comprising a Monomer with a Polyalicyclic Structure Element |
WO2014040729A1 (en) | 2012-09-11 | 2014-03-20 | Dentsply Detrey Gmbh | Dental composition |
EP3335688A1 (de) | 2015-08-11 | 2018-06-20 | GC Corporation | Polymerisierbare dentalzusammensetzung |
WO2018109041A1 (en) | 2016-12-14 | 2018-06-21 | Dentsply Detrey Gmbh | Dental composition |
US20190117523A1 (en) * | 2016-05-19 | 2019-04-25 | Dentsply Sirona Inc. | Dental composition |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4041063A (en) * | 1975-11-18 | 1977-08-09 | Johnson & Johnson | Modified cyanoacrylate monomers and methods of preparation |
US4889948A (en) * | 1987-08-18 | 1989-12-26 | University Of Southern Mississippi | Acrylate ester ether derivatives |
EP2316407B1 (de) * | 2009-10-30 | 2021-04-28 | Dentsply DeTrey GmbH | Dentale Zusammensetzung |
-
2020
- 2020-02-05 EP EP20155585.1A patent/EP3861976B1/de active Active
- 2020-02-05 ES ES20155585T patent/ES2913449T3/es active Active
-
2021
- 2021-02-02 CN CN202110143664.3A patent/CN113288817B/zh active Active
- 2021-02-03 JP JP2021015477A patent/JP7526686B2/ja active Active
- 2021-02-03 US US17/166,003 patent/US11793732B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145374A (en) | 1989-10-03 | 1992-09-08 | The United States Of America As Represented By The Secretary Of Commerce | Synthetic dental compositions formed from cyclopolymerizable bis-acrylate and multi-functional oligomer and bonding method |
US5380901A (en) | 1992-01-30 | 1995-01-10 | The United States Of America As Represented By The Secretary Of Commerce | Multifunctional acrylates and the synthesis thereof |
US20120082958A1 (en) * | 2010-09-30 | 2012-04-05 | Voco Gmbh | Composite Material Comprising a Monomer with a Polyalicyclic Structure Element |
WO2014040729A1 (en) | 2012-09-11 | 2014-03-20 | Dentsply Detrey Gmbh | Dental composition |
EP3335688A1 (de) | 2015-08-11 | 2018-06-20 | GC Corporation | Polymerisierbare dentalzusammensetzung |
US20190117523A1 (en) * | 2016-05-19 | 2019-04-25 | Dentsply Sirona Inc. | Dental composition |
WO2018109041A1 (en) | 2016-12-14 | 2018-06-21 | Dentsply Detrey Gmbh | Dental composition |
Non-Patent Citations (4)
Title |
---|
BOURGEOIS, J.-P.ECHEGOYEN, L.FIBBIOLI, M.PRETSCH, E.DIEDERICH, F., ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 37, no. 15, 1998, pages 2118 - 2121 |
D. PASINID TAKEUCHI, CHEM. REV., vol. 118, 2018, pages 8993 - 9057 |
GREGG, Z. R.GRIFFITHS, J. R.DIVER, S. T., ORGANOMETALLICS, vol. 37, no. 10, 2018, pages 1526 - 1533 |
TSUDA ET AL., POLYMER, vol. 35, 1994, pages 3317 - 3328 |
Also Published As
Publication number | Publication date |
---|---|
CN113288817A (zh) | 2021-08-24 |
JP7526686B2 (ja) | 2024-08-01 |
US20210236388A1 (en) | 2021-08-05 |
US11793732B2 (en) | 2023-10-24 |
EP3861976B1 (de) | 2022-03-30 |
JP2021123593A (ja) | 2021-08-30 |
ES2913449T3 (es) | 2022-06-02 |
CN113288817B (zh) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2450025B1 (de) | Polymerisierbare Phosphorsäurederivate umfassend ein polyalicyclisches Strukturelement | |
EP1222910B2 (de) | Dentalmaterialien auf der Basis polyfunktioneller Amide | |
EP3692976B1 (de) | Dentalmaterialien auf basis von redoxsystemen mit geruchsarmen cumolhydroperoxidderivaten | |
EP3166569B1 (de) | Komposite mit gesteuerter netzwerkstruktur | |
EP1374829A1 (de) | Dentalmaterialien auf der Basis von Acrylesterphosphonsäuren | |
EP3090722B1 (de) | Durch kettenübertragungspolymerisation härtbare dentalmaterialien | |
EP1340483B1 (de) | Dentalmaterialien auf der Basis von (Meth)acrylatsubstuierten Iminooxadiazindion-Derivaten | |
EP2823801B1 (de) | Dentalmaterialien auf der Basis von harnstoffgruppenhaltigen Monomeren | |
EP1825843B1 (de) | Dentalmaterialien auf der Basis von multicyclischen Allylsulfiden | |
EP2289483B1 (de) | Verwendung von polymerisierbaren makrocyclischen Polyethern und makrocyclischen heteroanalogen Polyethern in Dentalmaterialien | |
EP2404916B1 (de) | Dentalmaterialien auf der Basis von Dimersäure-Derivaten mit ringöffnend polymerisierbaren Gruppen | |
EP3861976B1 (de) | Dentalmaterialien auf basis von cyclopolymerisierbaren vernetzern | |
DE102016214389A1 (de) | Dentalmaterialien auf der Basis von monofunktionellen Vinylcyclopropan-Derivaten | |
EP1864642B1 (de) | Dentalmaterialien auf der Basis von ringöffnend polymerisierbaren, aciden Monomeren | |
EP3278786B1 (de) | Dentalmaterialien auf der basis von urethangruppenhaltigen vinylcyclopropan-derivaten | |
EP2065363B1 (de) | Dentalmaterialien auf der Basis von Alkylendiamin-N,N,N',N'-tetraessigsäure-(meth)acrylamiden | |
EP4039220B1 (de) | Dentalmaterialien auf der basis von polymerisationsfähigen thioharnstoff-derivaten | |
EP4094748B1 (de) | Dentalwerkstoffe auf basis von redoxsystemen mit oligomeren cumolhydroperoxid-derivaten | |
EP3590489A1 (de) | Dentalwerkstoffe auf basis von monofunktionellen biphenylmethacrylaten | |
DE10234326B3 (de) | Dentalmaterialien auf der Basis von Acrylesterphosphonsäuren | |
EP3868767B1 (de) | Langwellig absorbierende photoinitiatoren | |
DE10018969B4 (de) | Hydrolysestabile und polymerisierbare Acrylphosphonsäuremonoester | |
EP2883528B1 (de) | Dentalwerkstoffe auf Basis von polymerisierbaren Aziden und Alkinen | |
EP3932383B1 (de) | Komposite mit verringerter polymerisationsschrumpfungsspannung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210824 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08F 222/10 20060101ALI20211102BHEP Ipc: C07C 69/618 20060101ALI20211102BHEP Ipc: C07C 69/604 20060101ALI20211102BHEP Ipc: A61K 6/887 20200101ALI20211102BHEP Ipc: A61K 6/71 20200101ALI20211102BHEP Ipc: A61K 6/61 20200101ALI20211102BHEP Ipc: A61K 6/20 20200101AFI20211102BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211209 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: PEER, GERNOT Inventor name: CATEL, YOHANN Inventor name: GORSCHE, CHRISTIAN Inventor name: LISKA, ROBERT Inventor name: MOSZNER, NORBERT Inventor name: LAMPARTH, IRIS |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1478538 Country of ref document: AT Kind code of ref document: T Effective date: 20220415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020000847 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2913449 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220602 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220630 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220701 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220801 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220730 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020000847 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230103 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230607 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220330 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230205 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230228 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240304 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240108 Year of fee payment: 5 Ref country code: CH Payment date: 20240301 Year of fee payment: 5 Ref country code: GB Payment date: 20240108 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240110 Year of fee payment: 5 Ref country code: FR Payment date: 20240129 Year of fee payment: 5 |