[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3857151A1 - Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque - Google Patents

Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque

Info

Publication number
EP3857151A1
EP3857151A1 EP19795274.0A EP19795274A EP3857151A1 EP 3857151 A1 EP3857151 A1 EP 3857151A1 EP 19795274 A EP19795274 A EP 19795274A EP 3857151 A1 EP3857151 A1 EP 3857151A1
Authority
EP
European Patent Office
Prior art keywords
plate
heat exchanger
coolant
ring
distribution means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19795274.0A
Other languages
German (de)
English (en)
Inventor
Julien Tissot
Kamel Azzouz
Michael LISSNER
Cédric DE VAULX
Patrick LEBLAY
Sébastien Garnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3857151A1 publication Critical patent/EP3857151A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels

Definitions

  • the present invention relates to the constituent plates of a heat exchanger. It relates to such a plate, a tube comprising such a plate, and a heat exchanger comprising at least one such tube.
  • the motor vehicle is equipped with an installation which includes a coolant circuit inside which a coolant circulates and a coolant circuit inside which a coolant circulates.
  • the refrigerant circuit includes a compressor for compressing the refrigerant, a heat exchanger for cooling the refrigerant at constant pressure, an expansion member to allow expansion of the refrigerant and a heat exchanger which is arranged to allow thermal transfer between the coolant and the heat transfer liquid.
  • the heat exchanger is an exchanger formed from stacked plates and joined together to form tubes delimiting a circulation channel for the coolant or the coolant and inlet or outlet manifolds for the coolant or the coolant.
  • the plate includes openings for supplying the circulation channel with heat transfer liquid or coolant.
  • the plate also includes openings arranged to form the collectors.
  • the circulation channel provides a passage section for the coolant or coolant which is a surface taken perpendicular to a plane in which the plate extends and perpendicular to an axis of longitudinal extension of the plate.
  • the tubes are parallel to each other, which extend in a horizontal direction, orthogonal to the direction of the collectors.
  • the collectors are preferably aligned in a vertical direction, parallel to a gravity direction on earth.
  • the heat exchanger includes upper circulation channels which overhang lower circulation channels.
  • a first problem resides in a poor distribution of the coolant and / or the heat transfer liquid inside the circulation channel. Such a poor distribution reduces the efficiency of the heat transfer between the refrigerant and the heat transfer liquid.
  • a second problem resides in too high a speed of circulation of the coolant and / or the heat transfer liquid inside the circulation channel, which also minimizes the heat transfer between the coolant and the heat transfer liquid.
  • a third problem resides in the fact that in the position of use of the exchanger, the coolant and / or the coolant flows in the collectors so as to more supply coolant and / or coolant to the channels. circulation channels than the upper circulation channels, due to the gravitational pull of the coolant and / or the coolant.
  • An object of the present invention is to provide a plate constituting a heat exchanger which allows optimization of a distribution of the coolant and / or the heat transfer liquid inside the circulation channel that partially delimits the plate.
  • An object of the present invention is to provide a plate constituting a heat exchanger which allows optimization of a supply of coolant and / or heat transfer liquid inside the circulation channel that partially delimits the plate.
  • Another object of the present invention is to provide a plate constituting a heat exchanger which decreases a speed of circulation of the coolant and / or the coolant inside the circulation channel, in a particular zone where the distribution is usually inhomogeneous and / or inside the collector.
  • Another object of the present invention is to provide a plate arranged to homogenize a circulation of the coolant and / or the heat transfer liquid in all of the channels, either lower or upper, of the heat exchanger.
  • Another object of the present invention is to provide a particular arrangement of the plate, the latter being indifferently constitutive of a heat exchanger, a circulation path of which is arranged in a "U" shape, indifferently for a heat exchanger between a fluid coolant and a heat-transfer liquid and for a heat exchanger between a coolant and an air flow, or else a heat exchanger whose circulation path is arranged in an "I" shape, in particular for a heat exchanger between a coolant and air flow.
  • Another object of the present invention is to provide a heat exchanger comprising at least one such plate, the heat exchanger being either a heat exchanger between a refrigerant and a heat transfer liquid, such as a heat exchanger interposed between a coolant circuit and a coolant circuit, a heat exchanger between a coolant and an air flow.
  • a plate of the present invention is a plate constituting a heat exchanger and intended to delimit at least one channel for circulation of a fluid.
  • the plate includes a bottom and at least one raised edge which surrounds the bottom.
  • the plate includes at least one opening configured to supply fluid to the channel. The opening being shaped according to an opening profile.
  • the plate is equipped with a distribution means fluid shaped according to a distribution means profile which is homothetic to the opening profile of the opening.
  • the plate advantageously includes any one of the following technical characteristics, taken alone or in combination:
  • the opening profile is circular, the profile being seen in a plane parallel to a bottom plane in which the bottom fits,
  • the plate extending longitudinally and comprising longitudinal ends, the plate comprises at least two openings, which are distributed at each of the longitudinal ends of the plate,
  • the plate comprises at least four openings, which are distributed two-by-two at each longitudinal end of the plate. Two of these openings are configured to communicate with a branch of a first channel formed on one side of the bottom and the other two openings are configured to communicate with a branch of a second channel formed on another side of the bottom,
  • the distribution means comes from material of the plate
  • the distribution means is formed by a deformation of the plate, in particular obtained by stamping the plate,
  • the distribution means and the plate form a one-piece assembly which can only be separated from one another after destruction of one and / or the other of the distribution means and of the plate ,
  • the distribution means comprises at least one projection which emerges from the bottom towards a first channel
  • the opening being shaped as a first circle formed around a first center
  • the distribution means is shaped as an arc formed partially around a second center, the second center being merged with the first center
  • the second center is offset from the first center by a difference of between 5% and 25% of a first radius of the first circle
  • the projections being in plurality, two immediately adjacent projections are separated by a circulation passage, the circulation passage is a passage arranged to allow circulation of the coolant or the coolant,
  • the projections are distributed over the arc of a circle, so that, on the arc of a circle, the projections are formed two by two at equal distance from each other, the distance being taken between two respective planes of symmetry of the two projections,
  • the projections are of a respective projection length taken between two radial ends of projections in a plane parallel to the bottom plane
  • the projections are distinct from each other in shape and / or in volume
  • the projections are distinct from each other in height, the height of a projection being taken between a projection foot which is formed in the bottom plane of the plate and a top of projection formed opposite the projection foot,
  • the top of the projection is formed inside a plane which is parallel to the bottom plane in which the bottom is inscribed
  • the distribution means comprises a ring which is in abutment against the collar
  • the ring is an insert and pressed against the plate
  • the ring comprises a ring which abuts against the collar, the ring being provided with at least one slot which extends from the ring towards a first fluid channel,
  • the ring is circular, seen in a plane parallel to the bottom plane
  • the ring is provided with a plurality of slots, two immediately adjacent slots being separated by a circulation corridor,
  • the third center is offset from the first center by a difference of between 5% and 25% of the first radius of the first circle
  • the circulation passage is a passage arranged to allow circulation of the coolant or the coolant
  • the slots are distinct from each other in shape and / or volume
  • the slots are distinct from each other in length, the length of a slot being taken between two radial ends of the slot,
  • the slots are distinct from each other in height, the height of the slot being taken between a slot base secured to the ring and a slot top arranged opposite the slot base,
  • the top of the niche is formed inside a plane which is parallel to the bottom plane in which the bottom is inscribed
  • the ring is made of a synthetic material
  • the ring is designed to be pressed against the collar
  • the ring is made of a metallic material
  • the metallic material is chosen from thermally conductive metallic materials, in particular aluminum or aluminum alloy, - the ring is designed to be assembled by brazing with the collar,
  • the bottom comprises a rib which is arranged so that the first channel has a U-shaped profile
  • the rib is parallel to a direction of elongation of the longitudinal raised edges
  • the rib extends between a first longitudinal end and a second longitudinal end, the first longitudinal end being in contact with the raised edge, and preferably in contact with a first lateral raised edge that comprises the raised edge, the second longitudinal end being located at a first non-zero distance from the raised edge,
  • the channel is shaped like a U, the branches of which are parallel to the longitudinal raised edges of the plate and the base of which adjoins a second raised lateral edge which is arranged opposite the longitudinal of the first raised lateral edge,
  • the rib is formed at equal distance from the two longitudinal raised edges of the plate
  • the rib is offset by a second non-zero distance relative to a median plane of the plate, the median plane being orthogonal to the bottom and parallel to the axis of longitudinal extension of the plate,
  • the plate is provided with at least one protuberance, the distribution means being interposed between the opening and the protuberance,
  • the protuberance has a frustoconical profile
  • the plate comprises at least two protrusions which are aligned along an axis of lateral extension of the plate orthogonal to an axis of longitudinal extension of the plate.
  • the present invention also relates to a tube formed of at least two plates assembled together, including at least one plate as described.
  • the tube advantageously comprises at least any one of following technical characteristics, taken alone or in combination:
  • the heat exchanger comprises at least one such tube
  • the ring comprises a first annular surface formed by an axial edge of the ring, and a second annular surface formed by a terminal edge of each of the slots, the first annular surface being in contact with the collar of the first plate while the second surface annular is in contact with the bottom of the second plate,
  • the heat exchanger comprises at least a first tube provided with the distribution means and a second tube free from the distribution means
  • the second tube is an upper tube which overhangs the first tube
  • At least three plates are nested one inside the other and delimit two by two a first channel and a second channel, the first channel being configured to be used by a heat-transfer liquid while the second channel is configured to be used by a refrigerant,
  • the heat exchanger comprises a first circulation path participating in a refrigerant circuit inside which circulates a refrigerant fluid and a second circulation path inside which circulates a heat transfer liquid, the first circulation path and the second circulation path being arranged to allow heat exchange between the refrigerant and the heat transfer liquid.
  • the bottom comprises a first face bordering the first circulation path and a second face bordering the second circulation path,
  • the heat transfer fluid circuit comprises a heat exchanger capable of exchanging calories with an element to be cooled and / or to be heated, such as an electric motor, a battery, a device for storing calories and / or frigories or the like.
  • FIG. 1 is a schematic view of an installation comprising at least one heat exchanger according to the invention
  • FIG. 2 is a schematic view of a first heat exchanger participating in the installation shown in FIG. t,
  • FIG. 3 is a schematic front view of a plate constituting the first heat exchanger illustrated in FIG. 2, according to a first alternative embodiment of the plate,
  • FIG. 4 is a schematic front view of a plate constituting the first heat exchanger illustrated in FIG. 2, according to a second alternative embodiment of the plate,
  • FIG. 5 is a schematic front view of a distribution means fitted to the plate illustrated in Figure 3, according to a first embodiment of the distribution means,
  • FIG. 6 is a schematic front view of a distribution means equipping the plate illustrated in FIG. 3, according to a second embodiment of the distribution means,
  • FIG. 7 is a schematic view according to a curvilinear section of the distribution means illustrated in FIGS. 5 or 6, according to a particular variant of the distribution means,
  • FIG. 8 is a schematic front view of a distribution means equipping the plate illustrated in FIG. 4,
  • FIG. 9 is a schematic view in partial section of the first heat exchanger illustrated in FIG. 2
  • FIG. 10 is a diagrammatic view of a second heat exchanger participating in the installation shown in FIG.
  • FIG. n is a schematic front view of a constituent plate of the second heat exchanger illustrated in Figure to, according to a first alternative embodiment of the plate,
  • FIG. 12 is a schematic front view of a constituent plate of the second heat exchanger illustrated in Figure 10, according to a second alternative embodiment of the plate.
  • a motor vehicle is equipped with an element 1 which should be cooled or warmed, for example to optimize its operation.
  • an element 1 is in particular an electric or thermal motor intended to at least partially propel the motor vehicle, a battery provided for storing electric energy, a device for storing calories and / or frigories or the like.
  • the motor vehicle is equipped with an installation 2 which comprises a refrigerant fluid circuit 3 inside which a refrigerant fluid 4, carbon dioxide for example or the like circulates, and a coolant circuit 5 to 1 'inside which circulates a heat transfer liquid 6, in particular glycol water or the like.
  • the installation 2 comprises at least one heat exchanger 11, 12 according to the present invention.
  • the installation 2 is described below to better understand the present invention but the characteristics of the installation 2 described are in no way restrictive for the heat exchanger 11, 12 of the present invention. In other words, the installation 2 is likely to have different structural characteristics and / or different operating modes than those described without the heat exchanger 11, 12 departing from the rules of the present invention.
  • the refrigerant circuit 3 comprises a compressor 7 for compressing the refrigerant 4, a refrigerant / outdoor air exchanger 8 for cooling the refrigerant 4 at constant pressure, for example placed on the front face of the motor vehicle, an expansion member 9 to allow expansion of the fluid refrigerant 4 and a first heat exchanger 11 which is arranged to allow thermal transfer between the refrigerant 4 and the heat transfer liquid 6.
  • the refrigerant circuit 3 comprises a second heat exchanger 12 which is arranged to allow thermal transfer between the refrigerant 4 and an air flow 10, the air flow 10 circulating for example inside a pipe 13 of a ventilation, heating and / or air conditioning system, before being delivered inside a passenger compartment of the motor vehicle.
  • the element 1 is in relation with a heat exchanger 14, the heat exchanger 14 being able to modify a temperature of the element 1, in particular by direct contact formed between the element 1 and the heat exchanger 14 , the heat exchanger 14 constituting the coolant circuit 5.
  • the coolant circuit 5 includes a pump 15 for circulating the coolant 6 inside the coolant circuit 5.
  • the coolant circuit 5 includes the first heat exchanger 11 which is also part of the coolant circuit 3.
  • the first heat exchanger 11 comprises at least a first circulation path 21 of the coolant 4 and at least a second circulation path 22 of the heat transfer liquid 6, the first circulation path 21 and the second circulation path 22 being arranged to allow a heat exchange between the refrigerant 4 present inside the first circulation path 21 and the heat transfer liquid 6 present inside the second circulation path 22.
  • the first heat exchanger 11 comprises several first traffic lanes 21 and several second traffic lanes 22.
  • a first traffic lane circulation 21 is interposed between two second circulation paths 22, and a second circulation path 22 is interposed between two first circulation paths 21.
  • the first heat exchanger 11 thus comprises an alternation of first circulation paths 21 and second circulation paths traffic 22.
  • the heat transfer liquid 6 circulates from the pump 15 to the first heat exchanger 11, then circulates inside the first heat exchanger 11 using the second circulation paths 22 to exchange calories with the refrigerant 4 present at inside the first circulation paths 21, then returns to the pump 15.
  • the coolant 4 flows from the compressor 7 to the coolant / outdoor air exchanger 8, then to the expansion member 9.
  • the refrigerant 4 then circulates inside the first heat exchanger 11 using the first circulation paths 21 inside which the refrigerant 4 exchanges calories with the heat transfer liquid 6 present inside the second circulation paths 22, then returns to the compressor 7.
  • the refrigerant 4 circulates inside the second heat exchanger 12 by using circulation paths inside which the refrigerant 4 exchanges calories with the flow d air 10, then returns to compressor 7.
  • the first heat exchanger 11 is generally parallelepiped and includes a cheek 100 which is provided with an inlet for the heat transfer liquid 101 by means of which the heat transfer liquid 6 penetrates inside the first heat exchanger 11.
  • the cheek 100 is also provided with an evacuation of the heat-transfer liquid 102 by means of which the heat-transfer liquid 6 is evacuated from the first heat exchanger 11.
  • the second circulation paths 22 extend between the admission of the heat transfer liquid 101 and the evacuation of the heat transfer liquid 102.
  • the cheek 100 also includes an inlet for the refrigerant fluid 103 by means of which the coolant 4 penetrates inside the first heat exchanger 11 and an outlet for the coolant 104 by means of which the refrigerant 4 is discharged from the first heat exchanger 11.
  • the first circulation paths 21 extend between the inlet of the coolant 103 and the outlet of the coolant 104.
  • the first heat exchanger 11 is a plate exchanger which comprises a plurality of plates 105, such as the plate 105 illustrated in FIG. 3 or 4.
  • the plate 105 mainly extends along a longitudinal axis of elongation Ai.
  • the plate 105 comprises a bottom 106 and at least one raised edge 107 which surrounds the bottom 106.
  • the raised edge 107 is formed at the periphery of the bottom 106 and the raised edge 107 surrounds the bottom 106.
  • the plate 105 is arranged in a generally rectangular bath, the bottom of the bath being made up of the bottom 106 and the edges of the bath being made up of the raised edge 107.
  • the raised edge 107 comprises two longitudinal raised edges 108a, 108b formed in screws -to each other and two raised side edges 109a, 109b formed opposite one another.
  • the plate 105 comprises four openings 110, in particular circular, which are distributed in pairs at each longitudinal end of the plate 105, and more particularly at each of the corners of the bottom 106 of the plate 105. Two of these openings 110 are configured to communicate with one of the first circulation paths 21 formed on one side of the bottom 106 and the two other openings 110 are configured to communicate with one of the second circulation paths 22 formed on another side of the bottom 106.
  • Two of the openings 110 formed at the same longitudinal end of the plate 105 are each surrounded by a collar 120, so that these openings 110 surrounded by this collar 120 extend in a plane offset with respect to a bottom plane P4 in which the bottom 106 is inscribed.
  • the two other openings 110 situated at the other longitudinal end of the plate 105 extend in the bottom plane P4.
  • Two plates 105 are nested one inside the other and in contact with each other at least via their raised edges 107.
  • two plates 105 are stacked one above the other. 'other and provide between them a space which forms a channel 111a, 111b for circulation of the refrigerant 4 or of the heat transfer liquid 6.
  • the plate 105 borders via one of its faces, called the first face 118a, a first channel 111a for circulation of one of the coolant 4 and of the heat transfer liquid 6 and via the other of its faces, called the second face 118b, a second channel 111b for circulation of the other of the coolant 4 and heat transfer liquid 6.
  • the bottom 106 is provided with a plurality of protrusions 112 which are for example of a frustoconical conformation.
  • the bottom 106 includes a rib 113 which is arranged so that the channel 111 has a U-shaped profile.
  • the rib 113 is parallel to a direction D of elongation of the longitudinal raised edges 108, the direction D of elongation of the longitudinal raised edges 108 being preferably parallel to the longitudinal axis of elongation Ai of the plate. 105.
  • the rib 113 extends between a first longitudinal end 114 and a second longitudinal end 115, the first longitudinal end 114 being in contact with the raised edge 107, and preferably in contact with a first lateral raised edge 109a which the edge comprises. raised 107.
  • the second longitudinal end 115 is located at a first non-zero distance Di from the raised edge 107, the first distance Di being taken between the second longitudinal end 115 and the raised edge 107, measured along the axis of longitudinal extension Ai of the plate 105.
  • the channel 111a, 111b is shaped like a U whose branches of the U are parallel to the raised longitudinal edges 108a, 108b of the plate 105 and are separated by the rib 113, and whose base of the U adjoins a second lateral edge 109b which is formed longitudinally opposite the first lateral edge 109a.
  • the rib 113 is formed at an equal second distance D2 from the two longitudinal edges 108 of the plate 105, the second distance D2 being measured between the rib 113, taken at its center, and one of the raised longitudinal edges 108a, 108b, perpendicularly to the longitudinal elongation axis Ai of the plate 105.
  • the rib 113 is offset by a non-zero distance relative to a median plane Pi of the plate 105, the median plane Pi being orthogonal to the bottom 106 and parallel to the longitudinal elongation axis Ai of the plate 105, the distance being measured between the rib 113, taken at its center, and the median plane Pi perpendicular to the latter.
  • the raised edge 107 extends in an edge plane P3 which is transverse to the bottom plane P4 in which the bottom 106 extends.
  • the lateral raised edges 109a, 109b and the longitudinal raised edges 108a, 108b extend to the interior of respective edge planes P3 which each form with the bottom plane P4 an angle which is between 91 ° and 140 °, preferably between 91 ° and 95 °.
  • the plate 105 is made of a metallic material, capable of being pressed to form in particular the protrusions 112 and the rib 113 by stamping the plate 105, the metallic material being chosen from thermally conductive metallic materials, aluminum or aluminum alloy in particular.
  • the openings 110 are shaped according to an opening profile Xi, which is circular, seen in a plane parallel to the bottom plane P4.
  • the opening 110 is arranged in a first circle Tl, formed around a first center Ci and of first radius Ri.
  • the plate 105 is advantageously equipped with a distribution means 300, 400 of the coolant 4 and / or of the heat transfer liquid 6.
  • the distribution means 300, 400 is shaped according to a profile of distribution means X2 which is homothetic to the profile d opening of opening 110.
  • the distribution means 300, 400 is intended to disturb a flow of the coolant 4 and / or the coolant 6 inside the channels 111a, 111b that the coolant 4 and the coolant 6 occupy respectively.
  • the distribution means is also intended to form an obstacle to the flow of the coolant 4 and / or of the heat transfer liquid 6 directly at the outlet of the opening, in particular inside the lower channels 111a, 111b of the first heat exchanger. 11 relative to upper channels 111a, 111b of the first heat exchanger 11, in the position of use of the latter.
  • the distribution means 300 comes from material of the plate. It is understood that the distribution means 300 consists of at least one deformation of the plate 105, in particular obtained by stamping the plate, for example formed simultaneously with the protuberances 112 and the rib 113.
  • the distribution means 300 comprises at least one projection 301 which emerges from the bottom 106 towards the first channel 111a and which is formed on an arc of a circle Yi.
  • the arc of a circle Yi is formed around a second center C2 which is, for example, merged with the first center Ci around which the opening 110 is formed.
  • the arc of a circle Yi is of a second radius R2.
  • the projections 301 are in plurality, two immediately adjacent projections 301 being separated by a circulation passage 302.
  • the circulation passage 302 is a passage formed to allow circulation of the refrigerant 4 or heat transfer liquid 6 between two projections 301.
  • the projections 301 are angularly distributed equally around the second center C2.
  • the projections 301 being distributed over the arc of a circle Yi so that, on the arc of a circle Yi, the projections 301 are formed in pairs of the same angular sector V from one another, the sector angular V being taken between two respective planes of symmetry Z of the two projections 301.
  • the projections 301 are of a respective projection length W taken between two radial ends 303 of projections 301 in a plane parallel to the bottom plane P4, the lengths of projections W being equal to each other.
  • the projections 301 are distributed over the arc of a circle Yi so that, on the arc of a circle Yi, the projections 301 are formed two by two at a variable distance V from a pair of projections 301 to the other, the distance V being taken between two respective planes of symmetry Z of the two projections 301.
  • the protrusions 301 are of a respective protrusion length W taken between two radial ends 303 of protrusions 301 in a plane parallel to the bottom plane P4, at least two lengths of protrusions W being distinct from each other.
  • the projections 301 are distinct from each other in height.
  • a height Ht, H2 of a projection 301 is taken between a projection foot 304 which is formed in the bottom plane P4 of the plate 105 and a projection apex 305 formed opposite the projection foot 304.
  • the apex projection 305 is formed inside a plane which is parallel to the bottom plane P4 in which the bottom 106 fits.
  • the first height Ht of a projection 301 is less than a second height H2 of another projection 301.
  • the distribution means 400 comprises a ring 401 which is intended to come into abutment against the collar 120 arranged around the opening 110.
  • the ring 401 is an attached part which is intended to be interposed axially between two pairs of successive plates 105, each pair of successive plates 105 comprising a plate 105 provided with a collar 120 and a plate 105 free of collar, in line with the same opening.
  • the ring 401 and the plate 105 are assembled by a solder.
  • the ring 401 is circular seen from a plane parallel to the bottom plane P4 and is arranged in a second circle T2, formed around a third center C3 and third radius R3.
  • the ring 401 comprises a ring 402 which is arranged in the second circle T2.
  • the ring 402 is designed to come into abutment against the collar 120 of a plate 105.
  • the ring 402 is provided with a plurality of slots 404 which extend from the ring 402 towards the channel 111a, 111b, and preferably from the ring 402 towards the bottom 106 of the immediately successive plate, while being in support against this bottom 106.
  • Two slots 404 immediately adjacent are separated by a circulation corridor 405 of the refrigerant 4 or of the heat transfer liquid 6.
  • the circulation corridor 405 is a passage formed to allow circulation of the coolant 4 or of the heat transfer liquid 6 between two slots 404.
  • the slots 404 are angularly distributed around the third center C3.
  • the slots 404 are distributed over the second circle T2 so that, on the second circle T2, the slots 404 are arranged in pairs at the same angular sector V from one another, the angular sector V being taken between two respective Z symmetry planes of the two slots 404.
  • the slots 404 are of a respective slot length W taken between two radial ends 406 of slots 404 in a plane parallel to a ring plane P5 in which the ring 402 is inscribed, the slot lengths W being equal between they.
  • the slots are distributed over the second circle so that, on the second circle, the slots are arranged in pairs at a variable distance from one pair of slots to the other, the distance being taken between two respective planes of symmetry of the two slots.
  • the slots being of a respective length taken between two radial ends of slots in a plane parallel to the bottom plane, at least two lengths of slots are distinct from each other.
  • the slots 404 are of identical height.
  • a height H of a slot 404 is taken between a slot base 407 integral with the ring 402 and a slot top 408 formed opposite the slot base 407.
  • the slot top 408 is formed inside a plane which is parallel to the ring plane P5.
  • the ring 401 comprises a first annular surface Si formed by an axial edge 409 of the ring 401, and a second annular surface S2 formed by a terminal edge 410 of each of the slots 404.
  • the collar 120 delimits a housing which receives the ring 402 of the ring 401, the ring 401 being designed to be assembled with the plate 105 by brazing the ring 402 with the collar 120. More particularly, the first annular surface Si is in contact with the collar 120 of the first plate 105, while the second annular surface S2 is in contact with the bottom 106 of the second plate 105.
  • the first heat exchanger 11 is shown partially and in the position of use in which a collector 30, formed of the openings 110 arranged one above the other, extends vertically along an elongation axis A2 of the collector 30.
  • the collector 30 is formed parallel to a terrestrial gravity axis G.
  • the third center C3 of each of the rings 401 and the first center Ci of each of the openings 110 provided with ring 401 are aligned along the axis of elongation A2 of the manifold 30.
  • the first heat exchanger 11 here comprises, schematically, four first tubes 123a which are provided with the distribution means 400 and four second tubes 123b which are free from the distribution means 400.
  • the second tubes 123b are upper tubes which overhang the first tubes 123a, lower. It is understood that the distribution means 400 form a plug against a rapid flow of the coolant 4 or the heat transfer liquid 6 inside the manifold 3, then inside the first tubes 123a which are preferably supplied in refrigerant 4 or in heat transfer liquid in a first heat exchanger of the prior art.
  • the second heat exchanger 12 is generally parallelepiped and includes a cheek 100 which is provided with an inlet for the refrigerant fluid 103 by means of which the coolant fluid 4 penetrates inside the second heat exchanger 12 and an evacuation of the refrigerant 104 via which the refrigerant 4 is evacuated from the second heat exchanger 12.
  • the circulation paths extend between the intake of the refrigerant 103 and the evacuation of the refrigerant 104.
  • the second heat exchanger 12 is intended to modify a temperature of the air flow 10.
  • the second heat exchanger 12 is a plate exchanger which comprises a plurality of plates 205, such as the plates 205 illustrated in FIG. 11 or 12.
  • the plate 205 mainly extends along a longitudinal axis of elongation A1.
  • the plate 205 comprises a bottom 206 and at least one raised edge 207 which surrounds the bottom 206.
  • the raised edge 207 is formed at the periphery of the bottom 206 and the raised edge 207 surrounds the bottom 206.
  • the plate 205 is arranged in a generally rectangular bath, the bottom of the bath being made up of the bottom 206 and the edges of the bath being made up of the raised edge 207.
  • the raised edge 207 comprises two raised longitudinal edges 208a, 208b arranged opposite -vis from one another and two raised side edges 209a, 209b formed opposite one another.
  • the plate 205 comprises two openings 210, in particular circular, which are distributed at each longitudinal end of the plate 205.
  • One of these openings 110 is configured to communicate with a first circulation path formed on one side of the bottom 206.
  • One of these openings 210 is surrounded by a collar 220, so that this opening 210 surrounded by this collar 220 extends in a plane offset relative to a bottom plane P4 in which the bottom 206 is inscribed.
  • the other opening 210 located at the other longitudinal end of the plate 205 extends in the bottom plane P4.
  • Two plates 205 are nested one inside the other and in contact with each other at least via their raised edges 207.
  • two plates 205 are stacked one in the other and provide a space between them which forms a first channel 111a for circulation of the coolant 4.
  • the plate 205 borders, via one of its faces, called the first face 218a, the first channel 211a for circulation of the refrigerant 4 and via the other of its faces, called the second face 218b, a second channel 111b inside which the air flow 10 circulates.
  • the bottom 206 is provided with a plurality of protrusions 212 which are for example of a frustoconical conformation.
  • the raised edge 207 extends in an edge plane P3 which is transverse to the bottom plane P4 in which the bottom 206 extends.
  • the lateral raised edges 209a, 209b and the longitudinal raised edges 208a, 208b extend to the interior of respective edge planes P3 which each form with the bottom plane P4 an angle which is between 91 ° and 140 °, preferably between 91 ° and 95 °.
  • the plate 205 is made of a metallic material, capable of being stamped to form in particular the protrusions 212 by stamping the plate 205, the metallic material being chosen from thermally conductive metallic materials, aluminum or aluminum alloy in particular.
  • the openings 210 are shaped according to an opening profile Xi, which is circular, seen in a plane parallel to the bottom plane P4.
  • the opening 210 is arranged in a first circle Tl, formed around a first center Ci and of first radius Ri.
  • the plate 205 is advantageously equipped with a distribution means 300, 400 of the refrigerant 4.
  • the distribution means 300, 400 is shaped according to a profile of distribution means X2 which is homothetic to the opening profile Xi of the opening 210.
  • the distribution means 300, 400 is intended to disturb a flow of the coolant 4 inside the first channel 211a that the coolant 4 occupies.
  • the distribution means 300, 400 is also intended to form an obstacle to the flow of the coolant 4 directly at the outlet of the opening 210, in particular inside the first lower channels 211a of the second heat exchanger 12 relative to first upper channels 211a of the second heat exchanger 12, in the position of use of the latter.
  • the distribution means 300 comes from material of the plate. It is understood that the distribution means 300 consists of at least one deformation of the plate 205, in particular obtained by stamping the plate 205, for example formed simultaneously with the protuberances 112.
  • the distribution means 300 illustrated in FIG. 11 includes the same characteristics as the distribution means in FIGS. 5 to 7. It is understood that the characteristics and advantages of the distribution means 300 equipping the plate 105 shown in FIG. 3 are fully transposable for the distribution means 300 fitted to the plate 205 shown in Figure 11 and provide the same effects.
  • the distribution means 400 comprises a ring 401 which is designed to come into contact with the collar 220 arranged around the opening 210.
  • the ring 401 is an insert which is interposed axially between two pairs of successive plates 205 , each pair of successive plates 205 comprising a plate 205 provided with a collar 220 and a plate 205 free of collar, along the same collector.
  • the ring 401 and the plate 205 are assembled by a solder.
  • the distribution means 400 illustrated in FIG. 12 includes the same characteristics as the distribution means in FIGS. 8 and 9. It is understood that the characteristics and advantages of the distribution means 400 equipping the plate 105 shown in FIG. 4 are fully transposable for the distribution means 400 equipping the plate 205 shown in Figure 12 and provide the same effects.
  • the invention achieves well the goals which it had set itself, by making it possible to homogenize the heat exchanges over the entire width of the plate, thus avoiding the zones of least exchange, for example at least inside a peripheral portion of the circulation channel 111, 211 at least partially surrounding the openings 110, 210 of the plate 105, 205.
  • the invention cannot however be limited to the means and configurations exclusively described and illustrated, and also applies to all means or configurations, equivalent and to any combination of such means or configurations.
  • the invention has been described here in its application to a refrigerant heat exchanger / coolant or air, it goes without saying that it applies to any shape and / or size of the plate or to any type of fluid circulating along the plate according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne une plaque (105) constitutive d'un échangeur de chaleur et destinée à délimiter au moins un canal (111a, 111b) de circulation d'un fluide. La plaque (105) comprend un fond (106) et au moins un bord relevé (107) qui entoure le fond (106). La plaque (105) comprend au moins une ouverture (110) configurée pour alimenter le canal (111a, 111b) en fluide. L'ouverture (110) est conformée selon un profil d'ouverture (X1). La plaque (105) est équipée d'un moyen de répartition (300) du fluide conformé selon un profil de moyen de répartition (X2) qui est homothétique au profil d'ouverture (X1) de l'ouverture (110).

Description

PLAQUE CONSTITUTIVE D'UN ÉCHANGEUR DE CHALEUR ET ÉCHANGEUR DE CHALEUR COMPRENANT AU MOINS UNE TELLE PLAQUE
La présente invention se rapporte aux plaques constitutives d’un échangeur de chaleur. Elle a pour objet une telle plaque, un tube comprenant une telle plaque, et un échangeur de chaleur comportant au moins un tel tube.
Dans le domaine automobile, il est courant d’avoir à modifier une température d’un élément, tel qu’un moteur électrique, une batterie, un dispositif de stockage de calories et/ou de frigories ou analogue. A cet effet, le véhicule automobile est équipé d’une installation qui comprend un circuit de fluide réfrigérant à l’intérieur duquel circule un fluide réfrigérant et un circuit de liquide caloporteur à l’intérieur duquel circule un liquide caloporteur. Le circuit de fluide réfrigérant comprend un compresseur pour comprimer le fluide réfrigérant, un échangeur thermique pour refroidir le fluide réfrigérant à pression constante, un organe de détente pour permettre une détente du fluide réfrigérant et un échangeur de chaleur qui est agencé pour permettre un transfert thermique entre le fluide réfrigérant et le liquide caloporteur.
L’échangeur de chaleur est un échangeur formé de plaques empilées et jointes ensemble pour former des tubes délimitant un canal de circulation du fluide réfrigérant ou du liquide caloporteur et des collecteurs d’entrée ou de sortie du fluide réfrigérant ou du liquide caloporteur. La plaque comprend des ouvertures pour alimenter le canal de circulation en liquide caloporteur ou en fluide réfrigérant. La plaque comprend aussi des ouvertures agencées pour former les collecteurs. Le canal de circulation offre une section de passage au liquide caloporteur ou au fluide réfrigérant qui est une surface prise perpendiculairement à un plan dans lequel s’étend la plaque et perpendiculairement à un axe d’allongement longitudinal de la plaque.
Les tubes sont parallèles les uns aux autres, qui s’étendent selon une direction horizontale, orthogonale à la direction des collecteurs. En position d’utilisation de l’échangeur de chaleur, les collecteurs sont préférentiellement alignés selon une verticale, parallèle à une direction gravitaire terrestre. Ainsi, l’échangeur de chaleur comprend des canaux de circulation supérieurs qui surplombent des canaux de circulation inférieurs. Un premier problème réside en une mauvaise répartition du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation. Une telle mauvaise répartition amoindrit une efficacité du transfert thermique entre le fluide réfrigérant et le liquide caloporteur.
Un deuxième problème réside en une trop grande vitesse de circulation du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation, ce qui minimise aussi le transfert thermique entre le fluide réfrigérant et le liquide caloporteur.
Un troisième problème réside dans le fait qu’en position d’utilisation de l’échangeur, le liquide réfrigérant et/ou le liquide caloporteur s’écoule dans les collecteurs de manière à plus alimenter en liquide réfrigérant et/ou en liquide caloporteur les canaux de circulation inférieurs que les canaux de circulation supérieurs, en raison de l’attraction gravitaire du liquide réfrigérant et/ou du liquide caloporteur.
Il est connu de ménager des protubérances à l’intérieur du canal de circulation pour perturber un écoulement du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation.
Il persiste néanmoins une mauvaise répartition du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation et/ou du collecteur ainsi qu’une trop grande vitesse de circulation du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation et/ou du collecteur, notamment au moins à l’intérieur d’une portion périphérique du canal de circulation entourant au moins partiellement les ouvertures de la plaque. On observe qu’une zone centrale de l’échangeur de chaleur et/ou de la section de passage voit sa température moins modifiée que des zones périphériques de l’échangeur de chaleur et/ou de la section de passage, ce qu’il convient d’améliorer.
Un but de la présente invention est de proposer une plaque constitutive d’un échangeur de chaleur qui permet une optimisation d’une répartition du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation que délimite partiellement la plaque.
Un but de la présente invention est de proposer une plaque constitutive d’un échangeur de chaleur qui permet une optimisation d’une alimentation en fluide réfrigérant et/ou en liquide caloporteur à l’intérieur du canal de circulation que délimite partiellement la plaque.
Un autre but de la présente invention est de proposer une plaque constitutive d’un échangeur de chaleur qui diminue une vitesse de circulation du fluide réfrigérant et/ou du liquide caloporteur à l’intérieur du canal de circulation, en une zone particulière où la répartition est habituellement inhomogène et/ou à l’intérieur du collecteur.
Un autre but de la présente invention est de proposer une plaque agencée pour homogénéiser une circulation du fluide réfrigérant et/ou du liquide caloporteur dans l’ensembles des canaux, indifféremment inférieurs ou supérieurs, de l’échangeur de chaleur.
Un autre but de la présente invention est de proposer un agencement particulier de la plaque, celle-ci étant indifféremment constitutive d’un échangeur de chaleur dont un chemin de circulation est agencé en « U », indifféremment pour un échangeur de chaleur entre un fluide réfrigérant et un liquide caloporteur et pour un échangeur de chaleur entre un fluide réfrigérant et un flux d’air, ou bien d’un échangeur de chaleur dont un chemin de circulation est agencé en « I », notamment pour un échangeur de chaleur entre un fluide réfrigérant et un flux d’air.
Un autre but de la présente invention est de proposer un échangeur de chaleur comprenant au moins une telle plaque, l’échangeur de chaleur étant soit un échangeur de chaleur entre un fluide réfrigérant et un liquide caloporteur, tel qu’un échangeur de chaleur interposé entre un circuit de fluide réfrigérant et un circuit de liquide caloporteur, soit un échangeur de chaleur entre un fluide réfrigérant et un flux d’air.
Une plaque de la présente invention est une plaque constitutive d’un échangeur de chaleur et destinée à délimiter au moins un canal de circulation d’un fluide. La plaque comprend un fond et au moins un bord relevé qui entoure le fond. La plaque comprend au moins une ouverture configurée pour alimenter le canal en fluide. L’ouverture étant conformée selon un profil d’ouverture.
Selon la présente invention, la plaque est équipée d’un moyen de répartition du fluide conformé selon un profil de moyen de répartition qui est homothétique au profil d’ouverture de l’ouverture.
La plaque comprend avantageusement l’une quelconque au moins des caractéristiques techniques suivantes, prises seules ou en combinaison :
- le profil d’ouverture est circulaire, le profil étant vu dans un plan parallèle à un plan de fond dans lequel le fond s’inscrit,
- la plaque s’étendant longitudinalement et comprenant des extrémités longitudinales, la plaque comprend au moins deux ouvertures, qui sont réparties à chacune des extrémités longitudinales de la plaque,
- la plaque comprend au moins quatre ouvertures, qui sont répartis deux-à- deux à chaque extrémité longitudinale de la plaque. Deux de ces ouvertures sont configurées pour communiquer avec une branche d’un premier canal ménagé d’un côté du fond et les deux autres ouvertures sont configurées pour communiquer avec une branche d’un deuxième canal ménagé d’un autre côté du fond,
- le moyen de répartition est issu de matière de la plaque,
- le moyen de répartition est formé d’une déformation de la plaque, notamment obtenue par emboutissage de la plaque,
- le moyen de répartition et la plaque forment un ensemble monobloc qui ne sont séparables l’un de l’autre qu’à partir d’une destruction de l’un et/ou de l’autre du moyen de répartition et de la plaque,
- le moyen de répartition comprend au moins une saillie qui émerge depuis le fond vers un premier canal,
- l’ouverture étant conformé en un premier cercle ménagé autour d’un premier centre, le moyen de répartition est conformé en un arc de cercle ménagé partiellement autour d’un deuxième centre, le deuxième centre étant confondu avec le premier centre,
- dans le plan de fond, le deuxième centre est décalé par rapport au premier centre d’un écart compris entre 5% et 25% d’un premier rayon du premier cercle,
- les saillies étant en pluralité, deux saillies immédiatement adjacentes sont séparées par un passage de circulation, - le passage de circulation est un passage ménagé pour permettre une circulation du fluide réfrigérant ou du liquide caloporteur,
- les saillies sont angulairement équiréparties autour du deuxième centre,
- on comprend que les saillies sont réparties sur l’arc de cercle, de telle sorte que, sur le l’arc de cercle, les saillies sont ménagées deux à deux à égale distance l’une de l’autre, la distance étant prise entre deux plans de symétrie respectifs des deux saillies,
- les saillies sont d’une longueur de saillie respective prise entre deux extrémités radiales de saillies dans un plan parallèle au plan de fond
- les longueurs de saillies sont égales entre elles,
- au moins deux longueurs de saillie sont distinctes l’une de l’autre,
- deux saillies consécutives sont espacées d’un secteur angulaire qui varie d’un premier couple de saillies consécutives à un deuxième couple de saillies consécutives,
- les saillies sont identiques en forme et en volume,
- au moins deux saillies sont différentes l’une de l’autre,
- les saillies sont distinctes l’une de l’autre en forme et/ou en volume,
- les saillies sont distinctes l’une de l’autre en hauteur, la hauteur d’une saillie étant prise entre un pied de saillie qui est ménagé dans le plan de fond de la plaque et un sommet de saillie ménagé à l’opposé du pied de saillie,
- le sommet de saillie est ménagé à l’intérieur d’un plan qui est parallèle au plan de fond dans lequel s’inscrit le fond,
- la plaque comprenant un collet ménagé autour de l’ouverture, le moyen de répartition comprend une bague qui est en butée contre le collet,
- la bague est circulaire,
- la bague est une pièce rapportée et mise en appui contre la plaque,
- la bague et la plaque sont reliées par une brasure,
- la bague comprend un anneau qui est en butée contre le collet, l’anneau étant pourvu d’au moins un créneau qui s’étend depuis la bague vers un premier canal du fluide,
- l’anneau est circulaire, vu dans un plan parallèle au plan de fond,
- l’anneau est pourvu d’une pluralité de créneaux, deux créneaux immédiatement adjacents étant séparés par un couloir de circulation,
- les créneaux sont angulairement équirépartis autour d’un troisième centre,
- dans le plan de fond, le troisième centre est décalé par rapport au premier centre d’un écart compris entre 5% et 25% du premier rayon du premier cercle,
- le troisième centre et le premier centre sont confondus,
- deux créneaux consécutifs sont espacés d’une section angulaire qui varie d’un premier couple de créneaux consécutifs à un deuxième couple créneaux consécutifs,
- le passage de circulation est un passage ménagé pour permettre une circulation du fluide réfrigérant ou du liquide caloporteur,
- les créneaux sont identiques en forme et en volume,
- au moins deux créneaux sont distincts l’un de l’autre,
- les créneaux sont distincts l’un de l’autre en forme et/ou en volume,
- les créneaux sont distincts l’un de l’autre en longueur, la longueur d’un créneau étant prise entre deux extrémités radiales du créneau,
- les créneaux sont distincts l’un de l’autre en hauteur, la hauteur du créneau étant prise entre une base de créneau solidaire de la bague et un sommet de créneau ménagé à l’opposé de la base de créneau,
- le sommet de créneau est ménagé à l’intérieur d’un plan qui est parallèle au plan de fond dans lequel s’inscrit le fond,
- la bague est en une matière synthétique,
- la bague est agencée pour être mise en appui contre le collet,
- la bague est en un matériau métallique,
- le matériau métallique est choisi parmi les matériaux métalliques thermiquement conducteurs, aluminium ou alliage d’aluminium notamment, - la bague est prévue pour être assemblée par brasage avec le collet,
- le fond comprend une nervure qui est agencée pour que le premier canal présente un profil en U,
- la nervure est parallèle à une direction d’élongation des bords relevés longitudinaux,
- la nervure s’étend entre une première extrémité longitudinale et une deuxième extrémité longitudinale, la première extrémité longitudinale étant en contact avec le bord relevé, et préférentiellement en contact avec un premier bord relevé latéral que comprend le bord relevé, la deuxième extrémité longitudinale étant située à une première distance non-nulle du bord relevé,
- le canal est conformé en un U dont les branches sont parallèles aux bords relevés longitudinaux de la plaque et dont la base jouxte un deuxième bord relevé latéral qui est ménagé à l’opposé longitudinalement du premier bord relevé latéral,
- la première branche du canal et la deuxième branche du canal sont séparées par la nervure,
- la nervure est ménagée à égale distance des deux bords relevés longitudinaux de la plaque,
- la nervure est décalée d’une deuxième distance non-nulle par rapport à un plan médian de la plaque, le plan médian étant orthogonal au fond et parallèle à l’axe d’allongement longitudinal de la plaque,
- la plaque est pourvue d’au moins une protubérance, le moyen de répartition étant interposé entre l’ouverture et la protubérance,
- la protubérance comporte un profil forme tronconique,
- la plaque comprend au moins deux protubérances qui sont alignées le long d’un axe d’allongement latéral de la plaque orthogonal à un axe d’allongement longitudinal de la plaque.
La présente invention a aussi pour objet un tube formé d’au moins deux plaques assemblées entre elles, dont au moins une plaque telle que décrite.
Le tube comprend avantageusement l’une quelconque au moins des caractéristiques techniques suivantes, prises seule ou en combinaison :
- deux plaques sont imbriquées l’une dans l’autre et entre lesquelles est ménagé un espace qui forme le canal de circulation du fluide,
- l’échangeur de chaleur comprend au moins un tel tube,
- la bague comprend une première surface annulaire formée par un bord axial de la bague, et une deuxième surface annulaire formée par un bord terminal de chacun des créneaux, la première surface annulaire étant au contact du collet de la première plaque tandis que la deuxième surface annulaire est au contact du fond de la deuxième plaque,
- l’échangeur de chaleur comprend au moins un premier tube pourvu du moyen de répartition et d’un deuxième tube exempt du moyen de répartition,
- en position d’utilisation de l’échangeur de chaleur, le deuxième tube est un tube supérieur qui surplombe le premier tube,
- selon une variante de réalisation, au moins trois plaques sont imbriquées les unes dans les autres et délimitent deux à deux un premier canal et un deuxième canal, le premier canal étant configuré pour être emprunté par un liquide caloporteur tandis que le deuxième canal est configuré pour être emprunté par un fluide réfrigérant,
- l’échangeur de chaleur comprend un premier chemin de circulation participant d’un circuit de fluide réfrigérant à l’intérieur duquel circule un fluide réfrigérant et un deuxième chemin de circulation à l’intérieur duquel circule un liquide caloporteur, le premier chemin de circulation et le deuxième chemin de circulation étant agencés pour permettre un échange de chaleur entre le fluide réfrigérant et le liquide caloporteur. A cet effet, le fond comprend une première face bordant le premier chemin de circulation et une deuxième face bordant le deuxième chemin de circulation,
- le premier chemin de circulation et le deuxième chemin de circulation sont agencés en « I »,
- le premier chemin de circulation et le deuxième chemin de circulation sont agencés en « U », - le circuit de fluide caloporteur comprend un échangeur thermique apte à échanger des calories avec un élément à refroidir et/ou à réchauffer, tel qu’un moteur électrique, une batterie, un dispositif de stockage de calories et/ou de frigories ou analogue.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels :
- la figure 1 est une vue schématique d’une installation comprenant au moins un échangeur de chaleur selon l’invention,
- la figure 2 est une vue schématique d’un premier échangeur de chaleur participant de l’installation représentée sur la figure t,
- la figure 3 est une vue schématique de face d’une plaque constitutive du premier échangeur de chaleur illustré sur la figure 2, selon une première variante de réalisation de la plaque,
- la figure 4 est une vue schématique de face d’une plaque constitutive du premier échangeur de chaleur illustré sur la figure 2, selon une deuxième variante de réalisation de la plaque,
- la figure 5 est une vue schématique de face d’un moyen de répartition équipant la plaque illustrée sur la figure 3, selon une première forme de réalisation du moyen de répartition,
- la figure 6 est une vue schématique de face d’un moyen de répartition équipant la plaque illustrée sur la figure 3, selon une deuxième forme de réalisation du moyen de répartition,
- la figure 7 est une vue schématique selon une coupe curviligne du moyen de répartition illustré sur les figures 5 ou 6, selon une variante particulière de réalisation du moyen de répartition,
- la figure 8 est une vue schématique de face d’un moyen de répartition équipant la plaque illustrée sur la figure 4,
- la figure 9 est une vue schématique en coupe partielle du premier échangeur de chaleur illustré sur la figure 2, - la figure io est une vue schématique d’un deuxième échangeur de chaleur participant de l’installation représentée sur la figure t,
- la figure n est une vue schématique de face d’une plaque constitutive du deuxième échangeur de chaleur illustré sur la figure to, selon une première variante de réalisation de la plaque,
- la figure 12 est une vue schématique de face d’une plaque constitutive du deuxième échangeur de chaleur illustré sur la figure 10, selon une deuxième variante de réalisation de la plaque.
Il faut tout d’abord noter que les figures exposent l’invention de manière détaillée pour mettre en œuvre l’invention, lesdites figures pouvant bien entendu servir à mieux définir l’invention le cas échéant.
Sur la figure 1, un véhicule automobile est équipé d’un élément 1 qu’il convient de refroidir ou de réchauffer, par exemple pour optimiser son fonctionnement. Un tel élément 1 est notamment un moteur électrique ou thermique destiné à propulser au moins partiellement le véhicule automobile, une batterie prévue pour stocker une énergie électrique, un dispositif de stockage de calories et/ou de frigories ou analogue. A cet effet, le véhicule automobile est équipé d’une installation 2 qui comprend un circuit de fluide réfrigérant 3 à l’intérieur duquel circule un fluide réfrigérant 4, dioxyde de carbone par exemple ou analogue, et un circuit de liquide caloporteur 5 à l’intérieur duquel circule un liquide caloporteur 6, eau glycolée notamment ou analogue. L’installation 2 comprend au moins un échangeur de chaleur 11, 12 selon la présente invention. L’installation 2 est décrite ci-après pour mieux comprendre la présente invention mais les caractéristiques de l’installation 2 décrite ne sont nullement restrictives pour l’échangeur de chaleur 11, 12 de la présente invention. Autrement dit, l’installation 2 est susceptible de présenter des caractéristiques structurelles distinctes et/ou des modalités de fonctionnement différentes que celles décrites sans que l’échangeur de chaleur 11, 12 déroge aux règles de la présente invention.
Le circuit de fluide réfrigérant 3 comprend un compresseur 7 pour comprimer le fluide réfrigérant 4, un échangeur fluide réfrigérant / air extérieur 8 pour refroidir le fluide réfrigérant 4 à pression constante, par exemple placé en face avant du véhicule automobile, un organe de détente 9 pour permettre une détente du fluide réfrigérant 4 et un premier échangeur de chaleur 11 qui est agencé pour permettre un transfert thermique entre le fluide réfrigérant 4 et le liquide caloporteur 6. Le circuit de fluide réfrigérant 3 comprend un deuxième échangeur de chaleur 12 qui est agencé pour permettre un transfert thermique entre le fluide réfrigérant 4 et un flux d’air 10, le flux d’air 10 circulant par exemple à l’intérieur d’une canalisation 13 d’un système de ventilation, de chauffage et/ou de climatisation, avant d’être délivré à l’intérieur d’un habitacle du véhicule automobile.
A cette fin, l’élément 1 est en relation avec un échangeur thermique 14, l’échangeur thermique 14 étant apte à modifier une température de l’élément 1, notamment par contact direct ménagé entre l’élément 1 et l’échangeur thermique 14, l’échangeur thermique 14 étant constitutif du circuit de liquide caloporteur 5.
Le circuit de liquide caloporteur 5 comprend une pompe 15 pour faire circuler le liquide caloporteur 6 à l’intérieur du circuit de liquide caloporteur 5. Le circuit de liquide caloporteur 5 comprend le premier échangeur de chaleur 11 qui est également constitutif du circuit de fluide réfrigérant 3. Le premier échangeur de chaleur 11 comprend au moins un premier chemin de circulation 21 du fluide réfrigérant 4 et au moins un deuxième chemin de circulation 22 du liquide caloporteur 6, le premier chemin de circulation 21 et le deuxième chemin de circulation 22 étant agencés pour permettre un échange de chaleur entre le fluide réfrigérant 4 présent à l’intérieur du premier chemin de circulation 21 et le liquide caloporteur 6 présent à l’intérieur du deuxième chemin de circulation 22. De préférence, le premier échangeur de chaleur 11 comporte plusieurs premiers chemins de circulation 21 et plusieurs deuxièmes chemins de circulation 22. Un premier chemin de circulation 21 est interposé entre deux deuxièmes chemins de circulation 22, et un deuxième chemin de circulation 22 est interposé entre deux premiers chemins de circulation 21. Le premier échangeur de chaleur 11 comporte ainsi une alternance de premiers chemins de circulation 21 et de deuxièmes chemins de circulation 22.
A l’intérieur du circuit de liquide caloporteur 5, le liquide caloporteur 6 circule depuis la pompe 15 vers le premier échangeur de chaleur 11, puis circule à l’intérieur du premier échangeur de chaleur 11 en empruntant les deuxièmes chemins de circulation 22 pour échanger des calories avec le fluide réfrigérant 4 présent à l’intérieur des premiers chemins de circulation 21, puis retourne vers la pompe 15.
A l’intérieur du circuit de fluide réfrigérant 3, le fluide réfrigérant 4 circule du compresseur 7 vers l’échangeur fluide réfrigérant / air extérieur 8, puis vers l’organe de détente 9.
Selon une première modalité de fonctionnement du circuit de fluide réfrigérant 3, le fluide réfrigérant 4 circule ensuite à l’intérieur du premier échangeur de chaleur 11 en empruntant les premiers chemins de circulation 21 à l’intérieur desquels le fluide réfrigérant 4 échange des calories avec le liquide caloporteur 6 présent à l’intérieur des deuxièmes chemins de circulation 22, puis retourne vers le compresseur 7.
Selon une deuxième modalité de fonctionnement du circuit de fluide réfrigérant 3, le fluide réfrigérant 4 circule à l’intérieur du deuxième échangeur de chaleur 12 en empruntant des chemins de circulation à l’intérieur desquels le fluide réfrigérant 4 échange des calories avec le flux d’air 10, puis retourne vers le compresseur 7.
Sur la figure 2, le premier échangeur de chaleur 11 est globalement parallélépipédique et comprend une joue 100 qui est pourvue d’une admission du liquide caloporteur 101 par l’intermédiaire de laquelle le liquide caloporteur 6 pénètre à l’intérieur du premier échangeur de chaleur 11. La joue 100 est aussi pourvue d’une évacuation du liquide caloporteur 102 par l’intermédiaire de laquelle le liquide caloporteur 6 est évacué hors du premier échangeur de chaleur 11. Les deuxièmes chemins de circulation 22 s’étendent entre l’admission du liquide caloporteur 101 et l’évacuation du liquide caloporteur 102. La joue 100 comporte aussi une admission du fluide réfrigérant 103 par l’intermédiaire de laquelle le fluide réfrigérant 4 pénètre à l’intérieur du premier échangeur de chaleur 11 et une évacuation du fluide réfrigérant 104 par l’intermédiaire de laquelle le fluide réfrigérant 4 est évacué hors du premier échangeur de chaleur 11. Les premiers chemins de circulation 21 s’étendent entre l’admission du fluide réfrigérant 103 et l’évacuation du fluide réfrigérant 104.
Le premier échangeur de chaleur 11 est un échangeur à plaques qui comprend une pluralité de plaques 105, telles que la plaque 105 illustrée sur la figure 3 ou 4. La plaque 105 s’étend principalement selon un axe longitudinal d’allongement Ai. La plaque 105 comprend un fond 106 et au moins un bord relevé 107 qui entoure le fond 106. Autrement dit, le bord relevé 107 est ménagé à la périphérie du fond 106 et le bord relevé 107 entoure le fond 106. On comprend que la plaque 105 est agencée en une baignoire globalement rectangulaire, le fond de la baignoire étant constitué du fond 106 et les bords de la baignoire étant constitués du bord relevé 107. Plus particulièrement, le bord relevé 107 comprend deux bords relevés longitudinaux 108a, 108b ménagés en vis-à-vis l’un de l’autre et deux bords relevés latéraux 109a, 109b ménagés en vis-à-vis l’un de l’autre.
La plaque 105 comprend quatre ouvertures 110, notamment circulaires, qui sont réparties deux-à-deux à chaque extrémité longitudinale de la plaque 105, et plus particulièrement à chacun des angles du fond 106 de la plaque 105. Deux de ces ouvertures 110 sont configurées pour communiquer avec un des premiers chemins de circulation 21 ménagé d’un côté du fond 106 et les deux autres ouvertures 110 sont configurées pour communiquer avec un des deuxièmes chemins de circulation 22 ménagé d’un autre côté du fond 106.
Deux des ouvertures 110 ménagées à une même extrémité longitudinale de la plaque 105 sont chacune entourées par un collet 120, de sorte que ces ouvertures 110 cernées par ce collet 120 s’étendent dans un plan décalé par rapport à un plan de fond P4 dans lequel s’inscrit le fond 106. Les deux autres ouvertures 110 situées à l’autre extrémité longitudinale de la plaque 105 s’étendent dans le plan de fond P4.
Deux plaques 105 sont imbriquées l’une dans l’autre et en contact l’une avec l’autre au moins par l’intermédiaire de leurs bords relevés 107. Autrement dit, deux plaques 105 sont empilées l’une au-dessus de l’autre et ménagent entre elles un espace qui forme un canal 111a, 111b de circulation du fluide réfrigérant 4 ou du liquide caloporteur 6. Plus particulièrement, la plaque 105 borde par l’intermédiaire d’une de ses faces, dite première face 118a, un premier canal 111a de circulation de l’un du fluide réfrigérant 4 et du liquide caloporteur 6 et par l’intermédiaire de l’autre de ses faces, dite deuxième face 118b, un deuxième canal 111b de circulation de l’autre du fluide réfrigérant 4 et du liquide caloporteur 6.
Le fond 106 est pourvu d’une pluralité de protubérances 112 qui sont par exemple d’une conformation tronconique.
Le fond 106 comprend une nervure 113 qui est agencée pour que le canal 111 présente un profil en U. La nervure 113 est parallèle à une direction D d’élongation des bords relevés longitudinaux 108, la direction D d’élongation des bords relevés longitudinaux 108 étant préférentiellement parallèle à l’axe longitudinal d’allongement Ai de la plaque 105. La nervure 113 s’étend entre une première extrémité longitudinale 114 et une deuxième extrémité longitudinale 115, la première extrémité longitudinale 114 étant en contact avec le bord relevé 107, et préférentiellement en contact avec un premier bord relevé latéral 109a que comprend le bord relevé 107. La deuxième extrémité longitudinale 115 est située à une première distance Di non-nulle du bord relevé 107, la première distance Di étant prise entre la deuxième extrémité longitudinale 115 et le bord relevé 107, mesurée le long de l’axe d’allongement longitudinal Ai de la plaque 105.
Ces dispositions sont telles que le canal 111a, 111b est conformé en un U dont les branches du U sont parallèles aux bords relevés longitudinaux 108a, 108b de la plaque 105 et sont séparées par la nervure 113, et dont la base du U jouxte un deuxième bord latéral 109b qui est ménagé à l’opposé longitudinalement du premier bord latéral 109a. La nervure 113 est ménagée à une égale deuxième distance D2 des deux bords longitudinaux 108 de la plaque 105, la deuxième distance D2 étant mesurée entre la nervure 113, prise en son centre, et l’un des bords relevés longitudinaux 108a, 108b, perpendiculairement à l’axe d’allongement longitudinal Ai de la plaque 105.
Selon une variante de réalisation, la nervure 113 est décalée d’une distance non-nulle par rapport à un plan médian Pi de la plaque 105, le plan médian Pi étant orthogonal au fond 106 et parallèle à l’axe d’allongement longitudinal Ai de la plaque 105, la distance étant mesurée entre la nervure 113, prise en son centre, et le plan médian Pi perpendiculairement à ce dernier.
Le bord relevé 107 s’étend dans un plan de bord P3 qui est transversal au plan de fond P4 dans lequel s’étend le fond 106. Les bords relevés latéraux 109a, 109b et les bords relevés longitudinaux 108a, 108b s’étendent à l’intérieur de plans de bord P3 respectifs qui forment chacun avec le plan de fond P4 un angle qui est compris entre 91° et 140°, préférentiellement compris entre 91° et 95°.
La plaque 105 est réalisée en un matériau métallique, apte à être embouti pour former notamment les protubérances 112 et la nervure 113 par emboutissage de la plaque 105, le matériau métallique étant choisi parmi les matériaux métalliques thermiquement conducteurs, aluminium ou alliage d’aluminium notamment.
Les ouvertures 110 sont conformées selon un profil d’ouverture Xi, qui est circulaire, vu dans un plan parallèle au plan de fond P4. Ainsi, l’ouverture 110 est agencé selon un premier cercle Tl, ménagé autour d’un premier centre Ci et de premier rayon Ri.
La plaque 105 est avantageusement équipée d’un moyen de répartition 300, 400 du fluide réfrigérant 4 et/ou du liquide caloporteur 6. Le moyen de répartition 300, 400 est conformé selon un profil de moyen de répartition X2 qui est homothétique au profil d’ouverture Xi de l’ouverture 110.
Le moyen de répartition 300, 400 est destiné à perturber un écoulement du fluide réfrigérant 4 et/ou du liquide caloporteur 6 à l’intérieur des canaux 111a, 111b que le fluide réfrigérant 4 et le liquide caloporteur 6 occupent respectivement. Le moyen de répartition est aussi destiné à former un obstacle à l’écoulement du fluide réfrigérant 4 et/ou du liquide caloporteur 6 directement en sortie de l’ouverture, notamment à l’intérieur de canaux 111a, 111b inférieurs du premier échangeur de chaleur 11 par rapport à des canaux 111a, 111b supérieurs du premier échangeur de chaleur 11, en position d’utilisation de ce dernier.
Sur la figure 3, le moyen de répartition 300 est issu de matière de la plaque. On comprend que le moyen de répartition 300 est constitué d’au moins une déformation de la plaque 105, notamment obtenue par emboutissage de la plaque, par exemple ménagée simultanément aux protubérances 112 et à la nervure 113.
Le moyen de répartition 300 comprend au moins une saillie 301 qui émerge depuis le fond 106 vers le premier canal 111a et qui est ménagée sur un arc de cercle Yi.
Sur les figures 5 et 6, l’arc de cercle Yi est ménagé autour d’un deuxième centre C2 qui est par exemple confondu avec le premier centre Ci autour duquel est ménagée l’ouverture 110. L’arc de cercle Yi est d’un deuxième rayon R2.
Les saillies 301 sont en pluralité, deux saillies 301 immédiatement adjacentes étant séparées par un passage de circulation 302. Le passage de circulation 302 est un passage ménagé pour permettre une circulation du fluide réfrigérant 4 ou du liquide caloporteur 6 entre deux saillies 301.
Sur la figure 5, les saillies 301 sont angulairement équiréparties autour du deuxième centre C2. Les saillies 301 étant réparties sur l’arc de cercle Yi de telle sorte que, sur l’arc de cercle Yi, les saillies 301 sont ménagées deux à deux d’un même secteur angulaire V l’une de l’autre, le secteur angulaire V étant pris entre deux plans de symétrie Z respectifs des deux saillies 301.
Les saillies 301 sont d’une longueur de saillie W respective prise entre deux extrémités radiales 303 de saillies 301 dans un plan parallèle au plan de fond P4, les longueurs de saillies W étant égales entre elles.
Sur la figure 6, les saillies 301 sont réparties sur l’arc de cercle Yi de telle sorte que, sur l’arc de cercle Yi, les saillies 301 sont ménagées deux à deux à une distance V variable d’un couple de saillies 301 à l’autre, la distance V étant prise entre deux plans de symétrie Z respectifs des deux saillies 301.
Les saillies 301 sont d’une longueur de saillie W respective prise entre deux extrémités radiales 303 de saillies 301 dans un plan parallèle au plan de fond P4, au moins deux longueurs de saillies W étant distinctes l’une de l’autre.
Sur la figure 7, prise selon l’arc de cercle Yi, les saillies 301 sont distinctes l’une de l’autre en hauteur. Une hauteur Ht, H2 d’une saillie 301 est prise entre un pied de saillie 304 qui est ménagé dans le plan de fond P4 de la plaque 105 et un sommet de saillie 305 ménagé à l’opposé du pied de saillie 304. Le sommet de saillie 305 est ménagé à l’intérieur d’un plan qui est parallèle au plan de fond P4 dans lequel s’inscrit le fond 106. Ainsi, la première hauteur Ht d’une saillie 301 est inférieure à une deuxième hauteur H2 d’une autre saillie 301.
Sur les figures 8 et 9, le moyen de répartition 400 comprend une bague 401 qui est prévue pour venir en butée contre le collet 120 agencé autour de l’ouverture 110. La bague 401 est une pièce rapportée qui est prévue pour être interposée axialement entre deux couples de plaques successives 105, chaque couple de plaques successives 105 comprenant une plaque 105 pourvue d’un collet 120 et une plaque 105 exempte de collet, au droit de la même ouverture. La bague 401 et la plaque 105 sont assemblées par une brasure.
La bague 401 est circulaire vue d’un plan parallèle au plan de fond P4 et est agencée selon un deuxième cercle T2, ménagée autour d’un troisième centre C3 et de troisième rayon R3.
La bague 401 comprend un anneau 402 qui est agencé selon le deuxième cercle T2. L’anneau 402 est prévu pour venir en butée contre le collet 120 d’une plaque 105.
L’anneau 402 est pourvu d’une pluralité de créneaux 404 qui s’étendent depuis l’anneau 402 vers le canal 111a, 111b, et préférentiellement depuis l’anneau 402 vers le fond 106 de la plaque immédiatement successives, en étant en appui contre ce fond 106. Deux créneaux 404 immédiatement adjacents sont séparés par un couloir de circulation 405 du fluide réfrigérant 4 ou du liquide caloporteur 6. Le couloir de circulation 405 est un passage ménagé pour permettre une circulation du fluide réfrigérant 4 ou du liquide caloporteur 6 entre deux créneaux 404.
Les créneaux 404 sont angulairement équiréparties autour du troisième centre C3. Les créneaux 404 sont répartis sur le deuxième cercle T2 de telle sorte que, sur le deuxième cercle T2, les créneaux 404 sont ménagées deux à deux à un même secteur angulaire V l’un de l’autre, le secteur angulaire V étant pris entre deux plans de symétrie Z respectifs des deux créneaux 404.
Les créneaux 404 sont d’une longueur de créneau W respective prise entre deux extrémités radiales 406 de créneaux 404 dans un plan parallèle à un plan d’anneau P5 dans lequel s’inscrit l’anneau 402, les longueurs de créneau W étant égales entre elles.
Selon une autre forme de réalisation, les créneaux sont répartis sur le deuxième cercle de telle sorte que, sur le deuxième cercle, les créneaux sont ménagés deux à deux à une distance variable d’un couple de créneaux à l’autre, la distance étant prise entre deux plans de symétrie respectifs des deux créneaux. Les créneaux étant d’une longueur respective prise entre deux extrémités radiales de créneaux dans un plan parallèle au plan de fond, au moins deux longueurs de créneaux sont distinctes l’une de l’autre.
Les créneaux 404 sont de hauteur identique. Une hauteur H d’un créneau 404 est prise entre une base de créneau 407 solidaire de l’anneau 402 et un sommet de créneau 408 ménagé à l’opposé de la base de créneau 407. Le sommet de créneau 408 est ménagé à l’intérieur d’un plan qui est parallèle au plan d’anneau P5.
La bague 401 comprend une première surface annulaire Si formée par un bord axial 409 de la bague 401, et une deuxième surface annulaire S2 formée par un bord terminal 410 de chacun des créneaux 404.
Sur la figure 9, le collet 120 délimite un logement qui reçoit l’anneau 402 de la bague 401, la bague 401 étant prévue pour être assemblée avec la plaque 105 par brasage de l’anneau 402 avec le collet 120. Plus particulièrement, la première surface annulaire Si est au contact du collet 120 de la première plaque 105, tandis que la deuxième surface annulaire S2 est au contact du fond 106 de la deuxième plaque 105.
Sur la figure 9, le premier échangeur de chaleur 11 est représenté partiellement et en position d’utilisation dans laquelle un collecteur 30, formé des ouvertures 110 ménagées les unes au-dessus des autres, s’étend verticalement selon un axe d’élongation A2 du collecteur 30. Autrement dit, le collecteur 30 est ménagé parallèlement à un axe gravitaire terrestre G. En position d’utilisation des bagues 401 équipant les plaques 105, le troisième centre C3 de chacune des bagues 401 et le premier centre Ci de chacune des ouvertures 110 pourvues de bague 401 sont alignés selon l’axe d’élongation A2 du collecteur 30.
Le premier échangeur de chaleur 11 comprend ici, et schématiquement, quatre premiers tubes 123a qui sont pourvus du moyen de répartition 400 et quatre deuxièmes tubes 123b qui sont exempts du moyen de répartition 400. Les deuxièmes tubes 123b sont des tubes supérieurs qui surplombent les premiers tubes 123a, inférieurs. On comprend que les moyens de répartition 400 forment un bouchon à l’encontre d’un écoulement rapide du fluide réfrigérant 4 ou du liquide caloporteur 6 à l’intérieur du collecteur 3, puis à l’intérieur des premiers tubes 123a qui sont préférentiellement alimentés en fluide réfrigérant 4 ou en liquide caloporteur dans un premier échangeur de chaleur de l’art antérieur.
Il en résulte une optimisation de la répartition du fluide réfrigérant ou du liquide caloporteur à l’intérieur de l’ensemble des tubes 123a, 123b du premier échangeur de chaleur ce qui optimise un échange thermique entre le fluide réfrigérant et le liquide caloporteur. Sur la figure io, le deuxième échangeur de chaleur 12 est globalement parallélépipédique et comprend une joue 100 qui est pourvue d’une admission du fluide réfrigérant 103 par l’intermédiaire de laquelle le fluide réfrigérant 4 pénètre à l’intérieur du deuxième échangeur de chaleur 12 et une évacuation du fluide réfrigérant 104 par l’intermédiaire de laquelle le fluide réfrigérant 4 est évacué hors du deuxième échangeur de chaleur 12. Les chemins de circulation s’étendent entre l’admission du fluide réfrigérant 103 et l’évacuation du fluide réfrigérant 104. Le deuxième échangeur de chaleur 12 est destiné à modifier une température du flux d’air 10.
Le deuxième échangeur de chaleur 12 est un échangeur à plaques qui comprend une pluralité de plaques 205, telles que les plaque 205 illustrées sur la figure 11 ou 12. La plaque 205 s’étend principalement selon un axe longitudinal d’allongement Al. La plaque 205 comprend un fond 206 et au moins un bord relevé 207 qui entoure le fond 206. Autrement dit, le bord relevé 207 est ménagé à la périphérie du fond 206 et le bord relevé 207 entoure le fond 206. On comprend que la plaque 205 est agencée en une baignoire globalement rectangulaire, le fond de la baignoire étant constitué du fond 206 et les bords de la baignoire étant constitués du bord relevé 207. Plus particulièrement, le bord relevé 207 comprend deux bords relevés longitudinaux 208a, 208b ménagés en vis-à-vis l’un de l’autre et deux bords relevés latéraux 209a, 209b ménagés en vis-à-vis l’un de l’autre.
La plaque 205 comprend deux ouvertures 210, notamment circulaires, qui sont réparties à chaque extrémité longitudinale de la plaque 205. Une de ces ouvertures 110 est configurée pour communiquer avec un premier chemin de circulation ménagé d’un côté du fond 206.
Une de ces ouvertures 210 est entourées par un collet 220, de sorte que cette ouverture 210 cernée par ce collet 220 s’étend dans un plan décalé par rapport à un plan de fond P4 dans lequel s’inscrit le fond 206. L’autre ouverture 210 située à l’autre extrémité longitudinale de la plaque 205 s’étend dans le plan de fond P4.
Deux plaques 205 sont imbriquées l’une dans l’autre et en contact l’une avec l’autre au moins par l’intermédiaire de leurs bords relevés 207. Autrement dit, deux plaques 205 sont empilées l’une dans l’autre et ménagent entre elles un espace qui forme un premier canal 111a de circulation du fluide réfrigérant 4. Plus particulièrement, la plaque 205 borde par l’intermédiaire d’une de ses faces, dite première face 218a, le premier canal 211a de circulation du fluide réfrigérant 4 et par l’intermédiaire de l’autre de ses faces, dite deuxième face 218b, un deuxième canal 111b à l’intérieur duquel circule le flux d’air 10.
Le fond 206 est pourvu d’une pluralité de protubérances 212 qui sont par exemple d’une conformation tronconique.
Le bord relevé 207 s’étend dans un plan de bord P3 qui est transversal au plan de fond P4 dans lequel s’étend le fond 206. Les bords relevés latéraux 209a, 209b et les bords relevés longitudinaux 208a, 208b s’étendent à l’intérieur de plans de bord P3 respectifs qui forment chacun avec le plan de fond P4 un angle qui est compris entre 91° et 140°, préférentiellement compris entre 91° et 95°.
La plaque 205 est réalisée en un matériau métallique, apte à être embouti pour former notamment les protubérances 212 par emboutissage de la plaque 205, le matériau métallique étant choisi parmi les matériaux métalliques thermiquement conducteurs, aluminium ou alliage d’aluminium notamment.
Les ouvertures 210 sont conformées selon un profil d’ouverture Xi, qui est circulaire, vu dans un plan parallèle au plan de fond P4. Ainsi, l’ouverture 210 est agencé selon un premier cercle Tl, ménagé autour d’un premier centre Ci et de premier rayon Ri.
La plaque 205 est avantageusement équipée d’un moyen de répartition 300, 400 du fluide réfrigérant 4. Le moyen de répartition 300, 400 est conformé selon un profil de moyen de répartition X2 qui est homothétique au profil d’ouverture Xi de l’ouverture 210.
Le moyen de répartition 300, 400 est destiné à perturber un écoulement du fluide réfrigérant 4 à l’intérieur du premier canal 211a que le fluide réfrigérant 4 occupe. Le moyen de répartition 300, 400 est aussi destiné à former un obstacle à l’écoulement du fluide réfrigérant 4 directement en sortie de l’ouverture 210, notamment à l’intérieur de premiers canaux 211a inférieurs du deuxième échangeur de chaleur 12 par rapport à des premiers canaux 211a supérieurs du deuxième échangeur de chaleur 12, en position d’utilisation de ce dernier.
Sur la figure 11, le moyen de répartition 300 est issu de matière de la plaque. On comprend que le moyen de répartition 300 est constitué d’au moins une déformation de la plaque 205, notamment obtenue par emboutissage de la plaque 205, par exemple ménagée simultanément aux protubérances 112.
Le moyen de répartition 300 illustrée sur la figure 11 comprend les mêmes caractéristiques que le moyen de répartition sur les figures 5 à 7. On comprend que les caractéristiques et avantages du moyen de répartition 300 équipant la plaque 105 représentée sur la figure 3 sont entièrement transposables pour le moyen de répartition 300 équipant la plaque 205 représentée sur la figure 11 et procurent les mêmes effets.
Sur la figure 12, le moyen de répartition 400 comprend une bague 401 qui est prévue pour venir au contact du collet 220 agencé autour de l’ouverture 210. La bague 401 est une pièce rapportée qui est interposée axialement entre deux couples de plaques successives 205, chaque couple de plaques successives 205 comprenant une plaque 205 pourvue d’un collet 220 et une plaque 205 exempte de collet, le long d’un même collecteur. La bague 401 et la plaque 205 sont assemblées par une brasure.
Le moyen de répartition 400 illustrée sur la figure 12 comprend les mêmes caractéristiques que le moyen de répartition sur les figures 8 et 9. On comprend que les caractéristiques et avantages du moyen de répartition 400 équipant la plaque 105 représentée sur la figure 4 sont entièrement transposables pour le moyen de répartition 400 équipant la plaque 205 représentée sur la figure 12 et procurent les mêmes effets.
Telle qu'elle vient d'être décrite, l’invention atteint bien les buts qu'elle s'était fixés, en permettant d’homogénéiser les échanges de chaleur sur toute la largeur de la plaque, évitant ainsi les zones de moindre échange, par exemple au moins à l’intérieur d’une portion périphérique du canal de circulation 111, 211 entourant au moins partiellement les ouvertures 110, 210 de la plaque 105, 205.
L’invention ne saurait toutefois se limiter aux moyens et configurations exclusivement décrits et illustrés, et s’applique également à tous moyens ou configurations, équivalents et à toute combinaison de tels moyens ou configurations. Notamment, si l'invention a été décrite ici dans son application à un échangeur de chaleur fluide réfrigérant / liquide caloporteur ou air, il va de soi qu'elle s'applique à toute forme et/ou dimension de la plaque ou à tout type de fluide circulant le long de la plaque selon l’invention.

Claims

REVENDICATIONS
1. Plaque (105, 205) constitutive d’un échangeur de chaleur (11, 12) et destinée à délimiter au moins un canal (ma, 111b ; 211a, 211b) de circulation d’un fluide (4, 6), la plaque (105, 205) comprenant un fond (106, 206) et au moins un bord relevé (107, 207) qui entoure le fond (106, 206), la plaque (105, 205) comprenant au moins une ouverture (110, 210) configurée pour alimenter le canal (ma, 111b ; 211a, 211b) en fluide (4, 6), l’ouverture (110, 210) étant conformée selon un profil d’ouverture (Xi), caractérisée en ce que la plaque (105, 205) est équipée d’un moyen de répartition (300, 400) du fluide (4, 6) conformé selon un profil de moyen de répartition (X2) qui est homothétique au profil d’ouverture (Xi) de l’ouverture (110, 210).
2. Plaque (105, 205) selon la revendication 1, caractérisée en ce que le moyen de répartition (300) est issu de matière de la plaque (105, 205).
3. Plaque (105, 205) selon la revendication 2, caractérisée en ce que le moyen de répartition (300) comprend au moins une saillie (301) qui émerge depuis le fond (106) vers un premier canal (111a, 211a).
4. Plaque (105, 205) selon l’une quelconque des revendications précédentes, l’ouverture (110) étant conformé en un premier cercle (Tl) ménagé autour d’un premier centre (Ci), caractérisée en ce que le moyen de répartition (300) est conformé en un arc de cercle (Yi) ménagé partiellement autour d’un deuxième centre (C2), le deuxième centre (C2) étant confondu avec le premier centre (Ci).
5. Plaque (105, 205) selon la revendication 3, caractérisée en ce que les saillies (301) sont en pluralité, deux saillies (301) immédiatement adjacentes étant séparées par un passage de circulation (302).
6. Plaque (105, 205) selon la revendication 1, comprenant un collet (120, 220) ménagé autour de l’ouverture (110, 210), le moyen de répartition (400) comprenant une bague (401) qui est en butée contre le collet (120, 220).
7. Plaque (105, 205) selon la revendication 6, caractérisée en ce que la bague (401) comprend un anneau (402) qui est en butée contre le collet (120, 220), l’anneau (402) étant pourvu d’au moins un créneau (404) qui s’étend depuis la bague (401) vers un premier canal (ma, 211a) du fluide (4, 6).
8. Tube (123a, 123b) formé d’au moins deux plaques assemblées entre elles, dont au moins une plaque est une plaque (105, 205) selon l’une quelconque des revendications précédentes.
9. Echangeur de chaleur (11, 12) comprenant au moins un tube (123a, 123b) selon la revendication 8 ou au moins une plaque selon l’une quelconque des revendications 1 à 7.
10. Echangeur de chaleur (11, 12) selon la revendication précédente, la plaque étant selon la revendication 6 ou 7, dans lequel la bague (401) comprend une première surface annulaire (Si) formée par un bord axial (409) de la bague (401), et une deuxième surface annulaire (S2) formée par un bord terminal (410) de chacun des créneaux (404), la première surface annulaire (Si) étant au contact du collet (110, 210) de la première plaque (105, 205), tandis que la deuxième surface annulaire (S2) est au contact du fond (106) de la deuxième plaque (105, 205).
EP19795274.0A 2018-09-25 2019-09-25 Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque Pending EP3857151A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1858763A FR3086378B1 (fr) 2018-09-25 2018-09-25 Plaque constitutive d'un echangeur de chaleur et echangeur de chaleur comprenant au moins une telle plaque
PCT/FR2019/052268 WO2020065223A1 (fr) 2018-09-25 2019-09-25 Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque

Publications (1)

Publication Number Publication Date
EP3857151A1 true EP3857151A1 (fr) 2021-08-04

Family

ID=66640997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19795274.0A Pending EP3857151A1 (fr) 2018-09-25 2019-09-25 Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque

Country Status (5)

Country Link
US (1) US20210341228A1 (fr)
EP (1) EP3857151A1 (fr)
CN (1) CN217424074U (fr)
FR (1) FR3086378B1 (fr)
WO (1) WO2020065223A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021133073A1 (de) 2021-12-14 2023-06-15 Mahle International Gmbh Stapelscheiben-Wärmeübertrager

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540271C1 (de) * 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
KR100950714B1 (ko) * 2003-05-29 2010-03-31 한라공조주식회사 열교환기용 플레이트
SE531241C2 (sv) * 2005-04-13 2009-01-27 Alfa Laval Corp Ab Plattvärmeväxlare med huvudsakligen jämn cylindrisk inloppskanal
LT2279387T (lt) * 2008-03-13 2018-06-25 Danfoss A/S Dvigubas plokštelinis šilumokaitis
PL3058304T3 (pl) * 2013-10-14 2019-07-31 Alfa Laval Corporate Ab Płyta wymiennika ciepła i wymiennik ciepła
CN103759474B (zh) * 2014-01-28 2018-01-02 丹佛斯微通道换热器(嘉兴)有限公司 板式换热器
DE102016101677B4 (de) * 2016-01-29 2022-02-17 TTZ GmbH & Co. KG Plattenwärmeübertragervorrichtung und Vorrichtung zur Nutzung von Abwärme
KR101784369B1 (ko) * 2016-02-05 2017-10-11 주식회사 경동나비엔 열교환기
FR3059400A1 (fr) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques Echangeur de chaleur entre un fluide refrigerant et un liquide caloporteur
FR3059395B1 (fr) * 2016-11-30 2020-09-25 Valeo Systemes Thermiques Dispositif d’homogeneisation de la distribution d’un fluide refrigerant a l’interieur de tubes d’un echangeur de chaleur constitutif d’un circuit de fluide refrigerant

Also Published As

Publication number Publication date
FR3086378B1 (fr) 2021-01-22
FR3086378A1 (fr) 2020-03-27
US20210341228A1 (en) 2021-11-04
WO2020065223A1 (fr) 2020-04-02
CN217424074U (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
EP0186592A1 (fr) Echangeur à plaques
EP4062120B1 (fr) Système de gestion thermique pour composant électrique
WO2014202523A1 (fr) Tube a reservoir de materiau a changement de phases pour faisceau d'echange de chaleur, notamment pour un evaporateur d'un circuit de climatisation d'un vehicule
WO2020065224A1 (fr) Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque
EP3857151A1 (fr) Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque
EP3857150B1 (fr) Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque
WO2020099739A1 (fr) Dispositif de régulation thermique d'un composant électronique
FR2967246A1 (fr) Echangeur de chaleur pour dispositif de stockage d'energie electrique
FR3111970A1 (fr) Échangeur thermique comprenant un organe hélicoïdal de distribution du liquide caloporteur.
FR3111977A1 (fr) Échangeur thermique comprenant un organe de réduction de section d’un collecteur.
FR3093558A1 (fr) Dispositif d’échange thermique comprenant un échangeur de chaleur et des moyens de contrôle d’une circulation d’au moins un fluide à l’intérieur de l’échangeur de chaleur
FR3086380A1 (fr) Plaque constitutive d'un echangeur de chaleur et echangeur de chaleur comprenant au moins une telle plaque
WO2020178523A1 (fr) Plaque constitutive d'un echangeur de chaleur et echangeur de chaleur comprenant au moins une telle plaque
EP3857156B1 (fr) Plaque d'échangeur de chaleur a ouverture optimisée
EP2936031A1 (fr) Élement d'echange thermique, et echangeur thermique correspondant
WO2020234212A1 (fr) Echangeur de chaleur monobloc comprenant au moins deux blocs d'échange de chaleur comportant chacun un chemin de circulation d'un fluide réfrigérant et un chemin de circulation d'un liquide caloporteur
FR3086377A1 (fr) Plaque constitutive d'un echangeur de chaleur et echangeur de chaleur comprenant au moins une telle plaque
FR3078199A1 (fr) Systeme de refroidissement de cellules de batterie de vehicule automobile
EP3973239A1 (fr) Echangeur de chaleur fluide réfrigérant / liquide caloporteur
WO2021001614A1 (fr) Plaque constitutive d'un échangeur de chaleur et échangeur de chaleur comprenant au moins une telle plaque
WO2021048499A1 (fr) Dispositif de gestion thermique pour composant électrique et système comprenant un tel dispositif
FR3108395A1 (fr) Echangeur thermique pour véhicule automobile
WO2019150051A1 (fr) Dispositif de ventilation pour vehicule automobile
FR3075348A1 (fr) Dispositif de distribution d'un fluide refrigerant destine a etre loge dans une boite collectrice d'un echangeur de chaleur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230824

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED