EP3843202A1 - Horn for ka dual-band satellite antenna with circular polarisation - Google Patents
Horn for ka dual-band satellite antenna with circular polarisation Download PDFInfo
- Publication number
- EP3843202A1 EP3843202A1 EP20216598.1A EP20216598A EP3843202A1 EP 3843202 A1 EP3843202 A1 EP 3843202A1 EP 20216598 A EP20216598 A EP 20216598A EP 3843202 A1 EP3843202 A1 EP 3843202A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- walls
- antenna
- ribs
- pair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000003989 dielectric material Substances 0.000 claims description 12
- 230000006978 adaptation Effects 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 5
- 230000005855 radiation Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0275—Ridged horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
- H01Q1/288—Satellite antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0208—Corrugated horns
- H01Q13/0216—Dual-depth corrugated horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0208—Corrugated horns
- H01Q13/0225—Corrugated horns of non-circular cross-section
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/0241—Waveguide horns radiating a circularly polarised wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/025—Multimode horn antennas; Horns using higher mode of propagation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/02—Waveguide horns
- H01Q13/025—Multimode horn antennas; Horns using higher mode of propagation
- H01Q13/0258—Orthomode horns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/064—Two dimensional planar arrays using horn or slot aerials
Definitions
- the invention lies in the field of antenna devices, and relates more particularly to an antenna horn for radio communications, in particular by satellite in the Ka band.
- Polarization diversity In the field of satellite communications, polarization diversity is frequently used to improve spectral efficiency. Polarization diversity consists of transmitting two orthogonally polarized signals in the same frequency band, or in frequency bands which overlap. This makes it possible, for example, to transmit two signals simultaneously, to receive two signals simultaneously, or to transmit and receive two signals simultaneously.
- Satellite communications are generally done using circularly polarized signals, having both a vertically polarized component and a horizontally polarized component.
- the aiming of the antennas towards the satellite can be carried out mechanically by orienting a passive antenna (of the parabola type for example), or electronically by using active beam scanning antennas.
- Electronic scanning antennas are antennas made up of a large number of elementary antennas placed in an array. By adjusting the amplitude and phase of the signals transmitted by each elementary antenna, the direction of the radiation pattern of the scanning antenna can be adjusted. These antennas are more reliable, less bulky, faster and more precise than antennas mounted on mechanical pointing elements.
- the elementary antennas are arranged in a mesh, the size of the pitch of which impacts the performance of the antenna, in particular its offset.
- the offset capabilities of the satellite antenna increase as the size of the cell pitch decreases.
- the expected performances of current electronic scanning antennas require mesh sizes equal to or less than ⁇ / 2, with ⁇ the wavelength associated with the transmission frequency of the satellite signals.
- ⁇ / 2 is equal to 4.84 mm at the frequency of 31 GHz, which is the highest frequency of the Ka band, and therefore the dimensioning frequency.
- An elementary antenna for satellite transmissions is generally made up of two waveguides making it possible to route the signals to / from radio communications equipment, a polarizer configured to polarize the signals according to orthogonal circular polarizations, and a horn d. antenna through which signals are transmitted / received.
- the antenna horn is generally flared so as to achieve the adaptation between the propagation medium in the elementary antenna and the propagation in free space.
- EP 2,879,236 It consists of a horn having two parts, one part for transmission and one part for reception, connected to a polarizer to polarize the electromagnetic waves circularly.
- a dielectric is inserted into the elements in order to reduce their electrical dimension with respect to the wavelength, which makes it possible to reduce the size of the elementary antenna.
- the signals are polarized outside the antenna horn (before the horn when considering the antenna element in the direction of emission), which is suboptimal in terms of compactness and weight. .
- the use of dielectric to reduce the dimensions of the antenna poses design and reliability problems (detailed below).
- Such a horn 100 is shown in the figure 1a . It comprises a waveguide 101 extending along a longitudinal axis zz '.
- the figure 1a represents the horn from behind, that is to say on the signal access side, opposite the radiating side.
- the waveguide 101 is of square or rectangular section. It is divided in two by a metal wall 102 so as to form two ports 103 and 104, each port being used to inject a signal among the two signals to be transmitted.
- the ports 103 and 104 are each adapted to the propagation of electromagnetic waves according to the fundamental mode TE10 in the frequency band considered.
- the TE10 fundamental mode corresponds to a mode of propagation of electromagnetic waves in a waveguide in which the electric field is linear and oriented perpendicular to the long side of the waveguide.
- the TE10 mode therefore corresponds to a vertically polarized signal, unlike the fundamental TE01 mode, which corresponds to a mode of propagation of electromagnetic waves in a waveguide in which the electric field is linear and oriented horizontally with respect to the long side of the waveguide.
- its largest side must be dimension greater than the minimum guided wavelength in the frequency band considered.
- the width of the metal wall 102 separating the two waveguides 103 and 104 is interrupted in the direction of the radiating side of the antenna along the axis zz ', and has a structure in the form of teeth, so as to implement a polarizer septum.
- a septum polarizer well known to those skilled in the art, makes it possible to circularly polarize a signal by adding a delayed orthogonal component to it. It is designed so that the orthogonal component is 90 ° out of phase and delayed by a quarter of a wavelength, which has the effect of circularly and orthogonally polarizing each of the signals transmitted in ports 103 and 104
- the horn 100 described in figure 1a therefore performs both the role of radiating element and septum polarizer.
- the scanning antennas can have a very large number of elementary antennas (up to several thousand), which entails assembly times and significant costs.
- the non-homogeneous performance of the elementary elements has repercussions on the general performance of the scanning antenna.
- the size of the antenna horn shown in figure 1a is directly related to the electrical permittivity properties of the dielectric component used. Reducing the size of the horn further requires the design of a new dielectric material of higher permittivity, a complex operation and also expensive. In addition, when the permittivity of a dielectric material increases, the losses also increase. The gain of the antenna, and therefore the link budget and the proposed bit rates, then decrease in proportion.
- An object of the invention is therefore to describe an antenna horn allowing the transmission of two signals according to orthogonal circular polarizations in Ka band, compatible with integration into an array antenna having a small mesh size (typically less than or equal to ⁇ / 2), and whose design is simplified compared to the antenna of the figure 1a .
- the antenna horn must make it possible to meet the needs of an increasingly large bandwidth, and an increase in the frequencies used for transmissions.
- the present invention describes an antenna horn, in particular for satellite communications, comprising a waveguide extending along a longitudinal axis.
- the waveguide has one open end and one end allowing access to signals transmitted in the waveguide.
- the opposite widest waveguide walls constitute a first pair of waveguide walls, the other two waveguide walls constitute a second pair of waveguide walls.
- the waveguide has a square section, any two opposite walls of the waveguide constituting the first pair of walls, the other two opposite walls of the waveguide forming the second pair of walls.
- the waveguide, the first pair of ribs and the second pair of ribs have dimensions suitable for the propagation of electromagnetic waves according to the propagation modes TE10 and TE01 in the frequency band of the transmitted signals.
- the two ports have dimensions suitable for the propagation of electromagnetic waves according to the TE10 propagation mode.
- the antenna horn according to the invention further comprises a layer of dielectric material positioned so as to cover the open end of the waveguide and configured to achieve the adaptation between the propagation to the inside the waveguide and free space propagation.
- the first and second ribs extend outside the waveguide through its open end, having a flared shape outside the waveguide.
- the first two ribs have identical heights and widths, and in which the two second ribs have identical heights and widths.
- one of the ports of the antenna horn formed by the central wall and the waveguide is used for the injection of a first signal at a first frequency.
- the other port of the antenna horn is used for extracting a signal at a second frequency different from the first frequency.
- the first frequency and the second frequency are chosen as belonging to the Ka band of the electromagnetic spectrum.
- the antenna horn according to the invention has a waveguide whose sides of the section are of a size less than or equal to ⁇ / 2, with ⁇ the wavelength of the signals to be transmitted.
- the invention also relates to an antenna comprising at least one antenna horn according to the invention.
- the antenna comprises an array of at least two antenna horns according to the invention arranged in a mesh of regular pitch, in which the first and second ribs extend to the outside the waveguides by their open ends having a flared shape.
- the adjacent antenna horns are then connected by the end of one of their ribs outside the waveguides.
- the invention relates to radiocommunications equipment comprising an antenna of the invention, and to a method of telecommunications, in particular by satellite, between two stations, comprising the use of radiocommunications equipment according to the invention.
- the figure 2a shows an antenna horn according to a first embodiment of the invention, in a three-quarter back view.
- the antenna horn 200 comprises a waveguide 201, of rectangular section, which extends along a longitudinal axis zz '.
- the waveguide 201 is open at one end at the front, which is the end through which the horn radiates.
- the other end of the waveguide 201 has ports 202 and 203 through which the signals transmitted by the horn are injected / extracted.
- the two widest opposing walls 204 and 204 'of the waveguide constitute a first pair of walls.
- the other two opposite walls 205 and 205 ' constitute a second pair of walls.
- the first pair of walls can be constituted either by the opposite walls 204 and 204 'or the opposite walls 205 and 205'.
- the antenna horn according to the invention comprises two ribs 206 and 206 ', located inside the waveguide and forming a protuberance in the middle and over the entire length of each of the walls of the first pair of walls 204 and 204 '.
- the two ribs 206 and 206 ' are of identical width and height.
- the antenna horn comprises a flat central wall which extends along the longitudinal axis zz '.
- the central wall 207 connects the midpoints of the walls of the second pair of walls 205 and 205 '. It thus forms, with the waveguide 201, two independent accesses 202 and 203. These accesses each form a waveguide of rectangular section, of width a and of height b.
- each of the accesses 202 and 203 forms a ribbed waveguide whose electrical dimension is reduced with respect to the wavelength, which makes the antenna horn compact.
- the choice in particular of the width a, of the height and of the width of the ribs 206 and 206 ' conditions the propagation of the electromagnetic waves in the waveguides 202 and 203, according to rules known to those skilled in the art, such as described for example in the article WJR Hoefer and MN Burton, "Analytical Expressions for the Parameters of Finned and Ridged Waveguides, "1982 IEEE MTT-S International Microwave Symposium Digest, Dallas, TX, USA, 1982, pp. 311-313 .
- the dimensions of the ports 202 and 203 are chosen to allow the propagation of electromagnetic waves according to the fundamental propagation mode TE10 in the frequency band of interest.
- the frequency band of interest is the Ka band.
- they can be adapted to propagation in the frequency band 17.3 - 31 GHz, which covers the transmission and reception bands for Ka-band satellite transmissions.
- one of the ports can be used to inject a signal to be transmitted into the horn, and the other port can be used to recover a signal received by the horn, the two signals being transmitted to one. same frequency or at different frequencies in the same frequency band.
- Ribbed waveguides do not involve additional losses compared to conventional waveguides.
- the format of the waveguide 201 is directly linked to the format of the two accesses 202 and 203 since the distance between its walls 205 and 205 ′ is equal to the width at the accesses 202 and 203.
- the interior height of the waveguide 201 is equal to twice the height b of the waveguides 202 and 203, plus the thickness of the central wall 207. This wall will therefore be advantageously chosen as being small in front of b.
- commercial waveguides have a ratio of the height b to the width a of 1/2, but the antenna horn according to the invention can be implemented regardless of the a / b ratio.
- the figure 2b represents the antenna horn of the figure 2a in a three-quarter-face view, that is to say from the side of the opening of the waveguide 201.
- the ribs 206, 206 ', 208 and 208' extend outside the waveguide 201, where they take a flared shape so as to achieve the adaptation between the guided propagation to the inside the waveguide 201 and the free space propagation.
- An elliptical shape is used in the illustrations, but any shape allowing a gradual change in dimension between the inside and the outside of the horn is suitable. In particular, progressive flaring by steps can allow fine adaptation in the two frequency bands.
- the grooves form a semicircle and fold over the outside of the waveguide 201.
- This embodiment is advantageous for the networking of antenna horns, but the hatched part of the ribs is not essential for the implementation of an elementary horn according to the invention.
- the figure 2c represents the antenna horn of the figures 2a and 2b in a three-quarter face view in section along a vertical plane located in the middle of the horn.
- the central wall 207 connects the two walls 205 and 205 'of the waveguide continuously in their middle.
- the central wall forms the two ribs 208 and 208 '.
- the central wall is interrupted towards the open part of the waveguide 201, so as to form a septum polarizer making it possible to polarize the signals transmitted in the two ports 202 and 203 in orthogonal circular polarizations.
- the polarization function is achieved by designing the central wall so that it transfers part of the energy from the vertical mode to the horizontal mode while applying a delay equal to ⁇ g / 4 between these two modes , with ⁇ g the guided wavelength of the frequency band of interest taking into account the presence of the ribs.
- the dimensions of the waveguide 201 are chosen so that it is suitable for the propagation of electromagnetic waves according to the propagation modes TE10 and TE01 in the frequency band of interest at its open end, and this in reduced dimensions thanks to the ribs arranged on each of its walls.
- the first ribs 206 and 206 'positioned against the first pair of waveguide walls and the second ribs 208 and 208' positioned against the second pair of waveguide walls are not necessarily of height and width.
- the first ribs being dimensioned from the width a of the walls 204 and 204 'for the TE10 propagation mode
- the second ribs being dimensioned from the width of the walls 205 and 205', equal to 2b plus the height of the central wall 207, for the TE01 propagation mode.
- the height of the central wall 207 is therefore linked to the width of the ribs allowing propagation according to the TE01 mode in the waveguide 201.
- the central wall therefore plays a threefold role: it makes it possible to delimit the accesses 202 and 203, to perform the circular polarization function by forming a quarter-wave septum, and to allow the propagation of the circularly polarized waves in a waveguide. of reduced dimensions thanks to its ends 208 and 208 '.
- the figure 2d represents the antenna horn of the figures 2a and 2b in a three-quarter face view in section along a horizontal plane located in the middle of the horn. It can be observed in particular that the ribs 206 and 206 'form protuberances positioned along and in the middle of opposite walls 204 and 204' of the waveguide 201.
- the waveguide 201 has a square section.
- the walls to which the ribs 206 and 206 'are attached can equally well be chosen as being the opposite horizontal walls 204 and 204' or the opposite vertical walls 205 and 205 '.
- the ribs 206 and 206 'of the horizontal walls and the ribs 208 and 208' of the vertical walls can have the same heights and widths.
- the rate of ellipticity of the transmitted signals is optimal, and the circular polarization is very pure.
- the waveguide 201 can be chosen as having a non-square rectangular section, in order for example to have accesses 202 and 203 of standard format with an a / b ratio equal to 1 ⁇ 2, or for a mesh size constrained in order to meet requirements for maximum sweep angle and maximum operating frequency.
- the figure 3 shows another embodiment of an antenna horn according to the invention, in a three-quarter front view.
- This embodiment differs from that presented to figures 2a to 2d in that the ribs 206, 206 ', 208 and 208' do not extend outside the waveguide 201.
- a dielectric layer such as layer 115 must be added at the end open of the antenna horn 300 in order to achieve the adaptation between the guided propagation inside the horn and the propagation in free space.
- This embodiment has the drawback of requiring the assembly of a layer of dielectric material with the metal part of the horn.
- the dielectric layer 115 is deposited on the opening of the waveguide 201. It is then simple to assemble and can be fitted in one piece to all the horns of an array of antenna horns according to l invention, thus limiting manufacturing costs.
- the figure 4 shows an array of antenna horns according to one embodiment of the invention, implementing elementary antenna horns such as that described in figures 2a to 2d .
- the network 400 has a mesh of pitch ⁇ according to one dimension and of pitch ⁇ according to the other dimension corresponding exactly to the external dimensions of the waveguide 201.
- Each antenna horn then completely follows the space allocated to it, this which is optimal in terms of occupancy.
- the adjacent ribs of adjacent cones such as the ribs 401 and 402 are connected so as to form one and the same continuous rib.
- the absence of discontinuities makes it possible, among other things, to reduce the radar equivalent surface area (SER) of the array antenna.
- SER radar equivalent surface area
- the invention therefore relates to a compact antenna horn that can be integrated into an array of elementary antennas.
- the horn is described in relation to the application case of Ka-band satellite communications, but could be used for any type of communications in a given frequency band involving the transmission of two circularly polarized signals.
- the invention also relates to radiocommunications equipment comprising an antenna horn or an array of antenna horns according to the invention.
- the radiocommunications equipment can for example be on board a land or air vehicle.
- the invention relates to a method of telecommunications, in particular by satellite, between two radiocommunications equipment according to the invention.
- the method comprises transmitting and / or receiving signals using an antenna horn or an antenna horn array according to the invention.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Waveguide Aerials (AREA)
Abstract
L'invention concerne un cornet d'antenne comprenant :- un guide d'onde (201) ayant une extrémité ouverte et une extrémité permettant d'accéder à des signaux transmis, les parois opposées les plus larges (204, 204') constituant une première paire de parois,- deux premières nervures (206, 206') à l'intérieur du guide d'onde, au milieu et sur toute la longueur des parois de la première paire de parois,- une paroi centrale plane (207, 208, 208') reliant (207) les parois de la deuxième paire de parois en leur milieu au niveau des accès (202, 203), s'interrompant en direction de l'extrémité ouverte de manière à polariser des signaux transmis par les deux accès selon des polarisations circulaires orthogonales, et formant deux nervures (208, 208') au milieu des parois de la deuxième paire de parois du côté de l'extrémité ouverte,ainsi que sur une antenne, un équipement de radiocommunications et un procédé utilisant le cornet.The invention relates to an antenna horn comprising: - a waveguide (201) having an open end and an end allowing access to transmitted signals, the opposite widest walls (204, 204 ') constituting a first pair of walls, - two first ribs (206, 206 ') inside the waveguide, in the middle and over the entire length of the walls of the first pair of walls, - a flat central wall (207, 208 , 208 ') connecting (207) the walls of the second pair of walls in their middle at the level of the ports (202, 203), interrupting towards the open end so as to polarize signals transmitted by the two ports in orthogonal circular polarizations, and forming two ribs (208, 208 ') in the middle of the walls of the second pair of walls on the open end side, as well as on an antenna, radio equipment and a method using the horn .
Description
L'invention se situe dans le domaine des dispositifs antennaires, et porte plus particulièrement sur un cornet d'antenne pour radiocommunications, notamment par satellite dans la bande Ka.The invention lies in the field of antenna devices, and relates more particularly to an antenna horn for radio communications, in particular by satellite in the Ka band.
Dans le domaine des communications satellitaires, la diversité de polarisation est fréquemment utilisée pour améliorer l'efficacité spectrale. La diversité de polarisation consiste à transmettre deux signaux polarisés orthogonalement dans une même bande de fréquence, ou dans des bandes de fréquences qui se recoupent. Cela permet par exemple de transmettre simultanément deux signaux, de recevoir simultanément deux signaux, ou d'émettre et de recevoir simultanément deux signaux.In the field of satellite communications, polarization diversity is frequently used to improve spectral efficiency. Polarization diversity consists of transmitting two orthogonally polarized signals in the same frequency band, or in frequency bands which overlap. This makes it possible, for example, to transmit two signals simultaneously, to receive two signals simultaneously, or to transmit and receive two signals simultaneously.
Les communications par satellite se font généralement en utilisant des signaux polarisés circulairement, ayant à la fois une composante en polarisation verticale et une composante en polarisation horizontale.Satellite communications are generally done using circularly polarized signals, having both a vertically polarized component and a horizontally polarized component.
Dans le cas particulier de la bande électromagnétique Ka, deux bandes de fréquences distinctes sont impliquées dans les communications satellites :
- la sous-bande 27.5 - 31 GHz en émission, et
- la sous-bande 17.3 - 21.2 GHz en réception.
- the 27.5 - 31 GHz transmitting sub-band, and
- the sub-band 17.3 - 21.2 GHz in reception.
Le pointage des antennes vers le satellite peut être réalisé mécaniquement par orientation d'une antenne passive (de type parabole par exemple), ou électroniquement en utilisant des antennes actives à balayage de faisceau. Les antennes à balayage électronique sont des antennes constituées d'un grand nombre d'antennes élémentaires mises en réseau. En ajustant l'amplitude et la phase des signaux transmis par chaque antenne élémentaire, la direction du diagramme de rayonnement de l'antenne à balayage peut être ajustée. Ces antennes sont plus fiables, moins encombrantes, plus rapides et plus précises que les antennes montées sur des éléments de pointage mécanique.The aiming of the antennas towards the satellite can be carried out mechanically by orienting a passive antenna (of the parabola type for example), or electronically by using active beam scanning antennas. Electronic scanning antennas are antennas made up of a large number of elementary antennas placed in an array. By adjusting the amplitude and phase of the signals transmitted by each elementary antenna, the direction of the radiation pattern of the scanning antenna can be adjusted. These antennas are more reliable, less bulky, faster and more precise than antennas mounted on mechanical pointing elements.
Les antennes élémentaires sont disposées selon une maille dont la taille du pas impacte les performances de l'antenne, en particulier son dépointage. Les capacités de dépointage de l'antenne satellite augmentent lorsque la taille du pas de maille diminue. Les performances attendues des antennes à balayage électronique actuelles requièrent des pas de maille égaux ou inférieurs à λ/2, avec λ la longueur d'onde associée à la fréquence de transmission des signaux satellites. En bande Ka, λ/2 vaut 4.84 mm à la fréquence de 31 GHz, qui est la fréquence la plus élevée de la bande Ka, et donc la fréquence dimensionnante.The elementary antennas are arranged in a mesh, the size of the pitch of which impacts the performance of the antenna, in particular its offset. The offset capabilities of the satellite antenna increase as the size of the cell pitch decreases. The expected performances of current electronic scanning antennas require mesh sizes equal to or less than λ / 2, with λ the wavelength associated with the transmission frequency of the satellite signals. In Ka band, λ / 2 is equal to 4.84 mm at the frequency of 31 GHz, which is the highest frequency of the Ka band, and therefore the dimensioning frequency.
Une antenne élémentaire pour transmissions satellitaires est généralement composée de deux guides d'onde permettant d'acheminer les signaux vers/depuis un équipement de radiocommunications, d'un polariseur configuré pour polariser les signaux selon des polarisations circulaires orthogonales, et d'un cornet d'antenne par lequel les signaux sont émis/reçus. Le cornet d'antenne est généralement évasé de manière à réaliser l'adaptation entre le milieu de propagation dans l'antenne élémentaire et la propagation en espace libre.An elementary antenna for satellite transmissions is generally made up of two waveguides making it possible to route the signals to / from radio communications equipment, a polarizer configured to polarize the signals according to orthogonal circular polarizations, and a horn d. antenna through which signals are transmitted / received. The antenna horn is generally flared so as to achieve the adaptation between the propagation medium in the elementary antenna and the propagation in free space.
Il est connu de l'état de la technique des antennes élémentaires telles que celle décrite dans la demande de brevet
Il est également connu de l'état de la technique des antennes élémentaires telles que celle décrite dans la demande de brevet international
Enfin, il est connu de l'état de la technique des cornets d'antenne réalisant simultanément la polarisation du signal et son rayonnement dans des dimensions réduites. Un tel cornet 100 est représenté à la
La largeur de la paroi métallique 102 séparant les deux guides d'onde 103 et 104 est interrompue en direction du côté rayonnant de l'antenne selon l'axe zz', et présente une structure en forme de dents, de manière à implémenter un polariseur septum. Un polariseur septum, bien connu de l'homme du métier, permet de polariser circulairement un signal en lui ajoutant une composante orthogonale retardée. Il est conçu de manière à ce que la composante orthogonale soit déphasée de 90° et retardée d'un quart de longueur d'onde, ce qui a pour effet de polariser circulairement et de manière orthogonale chacun des signaux transmis dans les accès 103 et 104. Le cornet 100 décrit à la
De manière à réduire les dimensions du cornet 100, les deux accès du cornet sont remplis de diélectrique. La
- un guide d'onde métallique 101 dans lequel figure une paroi métallique 102 configurée pour former deux guides d'onde 103 et 104, et pour polariser circulairement les deux signaux transmis,
- deux matériaux diélectriques 113 et 114 configurés pour remplir les cavités du guide d'onde métallique 101. On observe en particulier que le
diélectrique 114 épouse la forme de la paroi métallique 102 pour remplir le guide d'onde 101, - un matériau diélectrique 115, positionné devant la tête du guide d'onde 101 afin de réaliser l'adaptation permettant la propagation des ondes électromagnétiques entre le cornet d'antenne 101 et l'espace libre. Il permet d'utiliser un guide d'onde métallique 101 de dimensions réduites et non un cornet évasé, et donc de gagner en compacité et possibilités d'intégration dans un réseau d'antennes élémentaires ayant une maille de taille de pas réduite.
- a
metallic waveguide 101 in which there is ametallic wall 102 configured to form two 103 and 104, and to circularly polarize the two transmitted signals,waveguides - two
113 and 114 configured to fill the cavities of thedielectric materials metallic waveguide 101. It is observed in particular that the dielectric 114 matches the shape of themetallic wall 102 to fill thewaveguide 101, - a
dielectric material 115, positioned in front of the head of thewaveguide 101 in order to achieve the adaptation allowing the propagation of electromagnetic waves between theantenna horn 101 and the free space. It makes it possible to use ametallic waveguide 101 of reduced dimensions and not a flared horn, and therefore to gain in compactness and possibilities of integration into an array of elementary antennas having a mesh of reduced step size.
Si la solution présentée à la
Enfin, la taille du cornet d'antenne représenté à la
Un objet de l'invention est donc de décrire un cornet d'antenne permettant la transmission de deux signaux selon des polarisations circulaires orthogonales en bande Ka, compatible d'une intégration dans une antenne réseau ayant une maille dimensions réduites (typiquement inférieure ou égale à λ/2), et dont la conception soit simplifiée par rapport à l'antenne de la
A cet effet, la présente invention décrit un cornet d'antenne, notamment pour communications satellitaires, comprenant un guide d'onde s'étendant selon un axe longitudinal. Le guide d'onde a une extrémité ouverte et une extrémité permettant d'accéder à des signaux transmis dans le guide d'onde. Les parois opposées du guide d'onde les plus larges constituent une première paire de parois du guide d'onde, les deux autres parois du guide d'onde constituent une deuxième paire de parois du guide d'onde.To this end, the present invention describes an antenna horn, in particular for satellite communications, comprising a waveguide extending along a longitudinal axis. The waveguide has one open end and one end allowing access to signals transmitted in the waveguide. The opposite widest waveguide walls constitute a first pair of waveguide walls, the other two waveguide walls constitute a second pair of waveguide walls.
Le cornet d'antenne selon l'invention comprend en outre :
- deux premières nervures s'étendant selon l'axe longitudinal à l'intérieur du guide d'onde, au milieu et sur toute la longueur de chacune des parois de la première paire de parois,
- une paroi centrale plane s'étendant dans le guide d'onde suivant l'axe longitudinal, la paroi centrale étant configurée pour :
- au niveau de l'extrémité permettant d'accéder aux signaux transmis dans le guide d'onde, relier les deux parois de la deuxième paire de parois en leur milieu formant ainsi deux accès séparés auxdits signaux,
- s'interrompre en direction de l'extrémité ouverte du guide d'onde de manière à polariser des signaux transmis par les deux accès selon des polarisations circulaires orthogonales,
- du côté de l'extrémité ouverte du guide d'onde, former deux deuxièmes nervures s'étendant selon l'axe longitudinal au milieu de chacune des parois de la deuxième paire de parois.
- two first ribs extending along the longitudinal axis inside the waveguide, in the middle and over the entire length of each of the walls of the first pair of walls,
- a flat central wall extending in the waveguide along the longitudinal axis, the central wall being configured for:
- at the end allowing access to the signals transmitted in the waveguide, connecting the two walls of the second pair of walls in their middle thus forming two separate accesses to said signals,
- stop in the direction of the open end of the waveguide so as to polarize signals transmitted by the two ports according to orthogonal circular polarizations,
- on the side of the open end of the waveguide, forming two second ribs extending along the longitudinal axis in the middle of each of the walls of the second pair of walls.
Selon un mode de réalisation, le guide d'onde a une section carrée, deux parois opposées quelconques du guide d'onde constituant la première paire de parois, les deux autres parois opposées du guide d'onde formant la deuxième paire de parois.According to one embodiment, the waveguide has a square section, any two opposite walls of the waveguide constituting the first pair of walls, the other two opposite walls of the waveguide forming the second pair of walls.
Selon un mode de réalisation, le guide d'onde, la première paire de nervures et la deuxième paire de nervures ont des dimensions adaptées pour la propagation d'ondes électromagnétiques selon les modes de propagation TE10 et TE01 dans la bande de fréquence des signaux transmis, et dans lequel les deux accès ont des dimensions adaptées pour la propagation d'ondes électromagnétiques selon le mode de propagation TE10.According to one embodiment, the waveguide, the first pair of ribs and the second pair of ribs have dimensions suitable for the propagation of electromagnetic waves according to the propagation modes TE10 and TE01 in the frequency band of the transmitted signals. , and in which the two ports have dimensions suitable for the propagation of electromagnetic waves according to the TE10 propagation mode.
Selon un mode de réalisation, le cornet d'antenne selon l'invention comprend en outre une couche de matériau diélectrique positionnée de manière à couvrir l'extrémité ouverte du guide d'onde et configurée pour réaliser l'adaptation entre la propagation à l'intérieur du guide d'onde et la propagation en espace libre.According to one embodiment, the antenna horn according to the invention further comprises a layer of dielectric material positioned so as to cover the open end of the waveguide and configured to achieve the adaptation between the propagation to the inside the waveguide and free space propagation.
Selon un mode de réalisation alternatif, les premières et deuxièmes nervures s'étendent à l'extérieur du guide d'onde par son extrémité ouverte en ayant une forme évasée en dehors du guide d'onde.According to an alternative embodiment, the first and second ribs extend outside the waveguide through its open end, having a flared shape outside the waveguide.
Avantageusement, les deux premières nervures ont des hauteurs et des largeurs identiques, et dans lequel les deux deuxièmes nervures ont des hauteurs et des largeurs identiques.Advantageously, the first two ribs have identical heights and widths, and in which the two second ribs have identical heights and widths.
Dans un mode de réalisation de l'invention, adapté aux communications satellitaires, un des accès du cornet d'antenne formés par la paroi centrale et le guide d'onde est utilisé pour l'injection d'un premier signal à une première fréquence. L'autre accès du cornet d'antenne est utilisé pour l'extraction d'un signal à une deuxième fréquence différente de la première fréquence. La première fréquence et la deuxième fréquence sont choisies comme appartenant à la bande Ka du spectre électromagnétique.In one embodiment of the invention, suitable for satellite communications, one of the ports of the antenna horn formed by the central wall and the waveguide is used for the injection of a first signal at a first frequency. The other port of the antenna horn is used for extracting a signal at a second frequency different from the first frequency. The first frequency and the second frequency are chosen as belonging to the Ka band of the electromagnetic spectrum.
Avantageusement, le cornet d'antenne selon l'invention a un guide d'onde dont les côtés de la section sont de taille inférieure ou égale à λ/2, avec λ la longueur d'onde des signaux à émettre.Advantageously, the antenna horn according to the invention has a waveguide whose sides of the section are of a size less than or equal to λ / 2, with λ the wavelength of the signals to be transmitted.
L'invention porte également sur une antenne comprenant au moins un cornet d'antenne selon l'invention.The invention also relates to an antenna comprising at least one antenna horn according to the invention.
Dans un mode de réalisation de l'invention, l'antenne comprend un réseau d'au moins deux cornets d'antenne selon l'invention disposés selon une maille de pas régulier, dans lequel les premières et deuxièmes nervures s'étendent à l'extérieur des guides d'onde par leurs extrémités ouvertes en ayant une forme évasée. Les cornets d'antenne adjacents sont alors reliés par l'extrémité d'une de leurs nervures en dehors des guides d'onde.In one embodiment of the invention, the antenna comprises an array of at least two antenna horns according to the invention arranged in a mesh of regular pitch, in which the first and second ribs extend to the outside the waveguides by their open ends having a flared shape. The adjacent antenna horns are then connected by the end of one of their ribs outside the waveguides.
Enfin, l'invention porte sur un équipement de radiocommunications comprenant une antenne l'invention, et sur un procédé de télécommunications, notamment par satellite, entre deux stations, comprenant l'emploi d'un équipement de radiocommunications selon l'invention.Finally, the invention relates to radiocommunications equipment comprising an antenna of the invention, and to a method of telecommunications, in particular by satellite, between two stations, comprising the use of radiocommunications equipment according to the invention.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages apparaîtront mieux à la lecture de la description qui suit, donnée à titre non limitatif, et grâce aux figures annexées qui suivent, données à titre d'exemple.
- [
Fig. 1a ] Lafigure 1a représente un cornet d'antenne selon l'état de l'art réalisant simultanément la polarisation du signal et son rayonnement dans une maille de dimensions réduites. - [
Fig. 1b ] Lafigure 1b représente en éclaté les différents éléments de lafigure 1a . - [
Fig. 2a ] Lafigure 2a représente un cornet d'antenne selon un premier mode de réalisation de l'invention, en vue de trois-quarts dos. - [
Fig. 2b ] Lafigure 2b représente le cornet d'antenne de lafigure 2a en vue de trois-quarts face. - [
Fig. 2c ] Lafigure 2c représente le cornet d'antenne desfigures 2a et2b dans une vue en trois-quarts face en coupe selon un plan vertical situé au milieu du cornet. - [
Fig. 2d ] Lafigure 2d représente le cornet d'antenne desfigures 2a et2b dans une vue en trois-quarts face en coupe selon un plan horizontal situé au milieu du cornet. - [
Fig. 3 ] Lafigure 3 représente un autre mode de réalisation d'un cornet d'antenne selon l'invention, en vue de trois-quarts face. - [
Fig. 4 ] Lafigure 4 représente un réseau de cornets d'antenne selon un mode de réalisation de l'invention.
- [
Fig. 1a ] Thefigure 1a represents an antenna horn according to the state of the art simultaneously carrying out the polarization of the signal and its radiation in a mesh of reduced dimensions. - [
Fig. 1b ] Thefigure 1b exploded view of the different elements offigure 1a . - [
Fig. 2a ] Thefigure 2a shows an antenna horn according to a first embodiment of the invention, in a three-quarter back view. - [
Fig. 2b ] Thefigure 2b represents the antenna horn of thefigure 2a in three-quarter-face view. - [
Fig. 2c ] Thefigure 2c represents the antenna horn of thefigures 2a and2b in a three-quarter face view in section along a vertical plane located in the middle of the horn. - [
Fig. 2d ] Thefigure 2d represents the antenna horn of thefigures 2a and2b in a three-quarter face view in section along a horizontal plane located in the middle of the horn. - [
Fig. 3 ] Thefigure 3 shows another embodiment of an antenna horn according to the invention, in a three-quarter front view. - [
Fig. 4 ] Thefigure 4 shows an array of antenna horns according to one embodiment of the invention.
Des références identiques sont utilisées dans des figures différentes lorsque les éléments désignés sont identiques.Identical references are used in different figures when the designated elements are identical.
La
Le cornet d'antenne 200 selon l'invention comprend un guide d'onde 201, de section rectangulaire, qui s'étend selon un axe longitudinal zz'. Le guide d'onde 201 est ouvert par une extrémité à l'avant, qui est l'extrémité par laquelle le cornet rayonne. L'autre extrémité du guide d'onde 201 présente des accès 202 et 203 par lesquels les signaux transmis par le cornet sont injectés/extraits.The
Les deux parois opposées les plus larges 204 et 204' du guide d'onde constituent une première paire de parois. Les deux autres parois opposées 205 et 205' constituent une deuxième paire de parois. Lorsque le guide d'onde a une section carrée, qui est un rectangle particulier, la première paire de paroi peut être constituée indifféremment par les parois opposées 204 et 204' ou les parois opposées 205 et 205'.The two widest opposing
Le cornet d'antenne selon l'invention comprend deux nervures 206 et 206', situées à l'intérieur du guide d'onde et venant former une excroissance au milieu et sur toute la longueur de chacune des parois de la première paire de parois 204 et 204'. Les deux nervures 206 et 206' sont de largeur et de hauteur identiques.The antenna horn according to the invention comprises two
Enfin, le cornet d'antenne selon l'invention comprend une paroi centrale plane qui s'étend le long de l'axe longitudinal zz'. Du côté des accès, la paroi centrale 207 relie les milieux des parois de la deuxième paire de parois 205 et 205'. Elle forme ainsi, avec le guide d'onde 201, deux accès indépendants 202 et 203. Ces accès forment chacun un guide d'onde de section rectangulaire, de largeur a et de hauteur b.Finally, the antenna horn according to the invention comprises a flat central wall which extends along the longitudinal axis zz '. On the access side, the
Grâce aux nervures 206 et 206', chacun des accès 202 et 203 forme un guide d'onde nervuré dont la dimension électrique est réduite par rapport à la longueur d'onde, ce qui rend le cornet d'antenne compact. Le choix en particulier de la largeur a, de la hauteur et de la largeur des nervures 206 et 206' conditionne la propagation des ondes électromagnétiques dans les guides d'onde 202 et 203, selon des règles connues de l'homme du métier, comme décrit par exemple dans l'article
Les dimensions des accès 202 et 203 sont choisies pour permettre la propagation des ondes électromagnétiques selon le mode de propagation fondamental TE10 dans la bande de fréquence d'intérêt. Avantageusement, dans le cas d'une antenne pour liaison satellitaire, la bande de fréquence d'intérêt est la bande Ka. En particulier, ils peuvent être adaptés à la propagation dans la bande de fréquence 17.3 - 31 GHz, qui couvre les bandes d'émission et de réception pour des transmission satellite en bande Ka. Dans un cas particulier d'application, l'un des accès peut être utilisé pour injecter un signal à émettre dans le cornet, et l'autre accès peut être utilisé pour récupérer un signal reçu par le cornet, les deux signaux étant transmis à une même fréquence ou à des fréquences différentes dans la même bande de fréquence.The dimensions of the
Les guides d'onde nervurés n'impliquent pas de pertes supplémentaires par rapport à des guides d'onde classiques. Le format du guide d'onde 201 est directement lié au format des deux accès 202 et 203 puisque la distance entre ses parois 205 et 205' est égale à la largeur a des accès 202 et 203. La hauteur intérieure du guide d'onde 201 vaut deux fois la hauteur b des guides d'onde 202 et 203, plus l'épaisseur de la paroi centrale 207. Cette paroi sera donc avantageusement choisie comme étant petite devant b. Typiquement, les guides d'onde du commerce ont un rapport de la hauteur b sur la largeur a valant 1/2, mais le cornet d'antenne selon l'invention peut être implémenté quel que soit le rapport a/b. Ribbed waveguides do not involve additional losses compared to conventional waveguides. The format of the
La
Dans ce mode de réalisation, les nervures 206, 206', 208 et 208' s'étendent à l'extérieur du guide d'onde 201, où ils prennent une forme évasée de manière à réaliser l'adaptation entre la propagation guidée à l'intérieur du guide d'onde 201 et la propagation en espace libre. Une forme elliptique est utilisée dans les illustrations mais toute forme permettant de réaliser un changement de dimensions progressif entre l'intérieur et l'extérieur du cornet sont appropriées. En particulier un évasement progressif par marches peut permettre une adaptation fine dans les deux bandes de fréquences.In this embodiment, the
Dans l'exemple de la
La
Les dimensions du guide d'onde 201 sont choisies de manière à ce qu'il soit adapté pour la propagation des ondes électromagnétiques selon les modes de propagation TE10 et TE01 dans la bande de fréquence d'intérêt au niveau de son extrémité ouverte, et ce dans des dimensions réduites grâce aux nervures disposées sur chacune de ses parois. Ainsi, les premières nervures 206 et 206' positionnées contre la première paire de parois du guide d'onde et les deuxièmes nervures 208 et 208' positionnées contre la deuxième paire de parois du guide d'onde ne sont pas nécessairement de hauteur et de largeur identiques, les premières nervures étant dimensionnées à partir de la largeur a des parois 204 et 204' pour le mode de propagation TE10, les deuxièmes nervures étant dimensionnées à partir de la largeur des parois 205 et 205', égale à 2b plus la hauteur de la paroi centrale 207, pour le mode de propagation TE01. La hauteur de la paroi centrale 207 est donc liée à la largeur des nervures permettant la propagation selon le mode TE01 dans le guide d'onde 201.The dimensions of the
La paroi centrale joue donc un rôle triple: elle permet de délimiter les accès 202 et 203, de réaliser la fonction de polarisation circulaire en formant un septum quart d'onde, et de permettre la propagation des ondes polarisées circulairement dans un guide d'onde de dimensions réduites grâce à ses extrémités 208 et 208'.The central wall therefore plays a threefold role: it makes it possible to delimit the
La
Selon un mode de réalisation de l'invention, le guide d'onde 201 est de section carrée. Dans ce cas, les parois sur lesquelles sont attachées les nervures 206 et 206' peuvent indifféremment être choisies comme étant les parois horizontales opposées 204 et 204' ou les parois verticales opposées 205 et 205'. Dans le deuxième cas, cela implique que la paroi centrale 207 s'étend verticalement le long de l'axe longitudinal zz', de manière à relier les milieux des parois 204 et 204' au niveau des accès.According to one embodiment of the invention, the
En choisissant le guide d'onde 201 de section carrée, les nervures 206 et 206' des parois horizontales et les nervures 208 et 208' des parois verticales peuvent avoir les mêmes hauteurs et largeurs. Dans ce cas, le taux d'ellipticité des signaux transmis est optimal, et la polarisation circulaire est très pure.By choosing the
Le guide d'onde 201 peut être choisi comme ayant une section rectangulaire non carrée, afin par exemple d'avoir des accès 202 et 203 de format standard avec un rapport a/b égal à ½, ou pour une maille de taille contrainte afin de satisfaire à des exigences concernant l'angle maximal de balayage et la fréquence maximale de fonctionnement.The
Le guide d'onde selon l'invention permet de réaliser simultanément l'émission et la réception, par exemple dans la bande Ka pour des communications satellitaires, à partir d'un seul cornet d'antenne de dimensions réduites, répondant ainsi à un besoin de diminution du pas de maille des réseaux de cornets dans les antennes à balayages. Il présente de nombreux avantages par rapport à l'état de la technique :
- il est très compact, de par l'utilisation de guides d'ondes nervurés,
- il ne comprend pas d'éléments diélectriques, ce qui lui permet d'être simple à assembler, peu couteux à fabriquer, et de présenter des performances homogènes dans le temps et lors des variations de température ;
- il ne présente pas de pertes liées à l'utilisation de matériaux diélectriques, ce qui permet d'avoir un gain d'antenne maximal ;
- les dimensions du cornet d'antenne ou de la bande de fréquence de fonctionnement sont très facilement ajustables, puisqu'elles sont liées à la taille des nervures situées dans le guide d'onde. Il est donc compatible du besoin continuel d'augmentation de la fréquence de fonctionnement ;
- il peut être intégré dans une maille de taille plus réduite que les cornets d'antenne de l'état de la technique, en particulier une maille de taille de pas inférieure à λ/2, et permet donc de fabriquer des antennes à balayage sur un angle plus important ;
- il est totalement métallique, et peut être fabriqué par usinage ou par fabrication additive (impression 3D). Ce dernier mode de fabrication permet de produire des cornets d'antenne ou des réseaux de cornets de manière rapide et peu coûteuse, à partir d'une simple modélisation en trois dimensions ;
- les extrémités des nervures 206, 206', 208 et 208' situées à l'extérieur du guide d'onde 201 permettent de prévenir certains effets néfastes en balayage élevé : chute du gain (en anglais scan loss), angle aveugle (perte du faisceau), dépolarisation (effets habituellement encouragés par la présence de diélectrique).
- it is very compact, thanks to the use of ribbed waveguides,
- it does not include dielectric elements, which allows it to be simple to assemble, inexpensive to manufacture, and to have uniform performance over time and during temperature variations;
- it does not present any losses linked to the use of dielectric materials, which makes it possible to have a maximum antenna gain;
- the dimensions of the antenna horn or of the operating frequency band are very easily adjustable, since they are related to the size of the ribs located in the waveguide. It is therefore compatible with the continual need to increase the operating frequency;
- it can be integrated into a mesh size smaller than the antenna horns of the state of the art, in particular a mesh size of step smaller than λ / 2, and therefore makes it possible to manufacture scanning antennas on a greater angle;
- it is completely metallic, and can be manufactured by machining or by additive manufacturing (3D printing). This latter method of manufacture makes it possible to produce antenna horns or arrays of horns quickly and inexpensive, from a simple three-dimensional modeling;
- the ends of the
206, 206 ', 208 and 208' located outside theribs waveguide 201 make it possible to prevent certain harmful effects in high scanning: drop in gain (in English scan loss ), blind angle (loss of the beam ), depolarization (effects usually encouraged by the presence of dielectric).
La
Ce mode de réalisation présente le défaut de nécessiter l'assemblage d'une couche de matériau diélectrique avec la partie métallique du cornet. Cependant, la couche de diélectrique 115 est déposée sur l'ouverture du guide d'onde 201. Elle est alors simple à assembler et peut être ajustée en une pièce à l'ensemble des cornets d'un réseau de cornets d'antenne selon l'invention, limitant ainsi les coûts de fabrication.This embodiment has the drawback of requiring the assembly of a layer of dielectric material with the metal part of the horn. However, the
La
Le réseau 400 présente une maille de pas α selon une dimension et de pas β selon l'autre dimension correspondant exactement aux dimensions extérieures du guide d'onde 201. Chaque cornet d'antenne épouse alors totalement l'espace qui lui est attribuée, ce qui est optimal en termes d'occupation.The
Dans le mode de réalisation de la
L'invention porte donc sur un cornet d'antenne compact pouvant être intégré dans un réseau d'antennes élémentaires. Le cornet est décrit par rapport au cas d'application que constituent les communications satellites en bande Ka, mais pourrait être utilisé pour n'importe quel type de communications dans une bande de fréquence donnée impliquant la transmission de deux signaux polarisés circulairement.The invention therefore relates to a compact antenna horn that can be integrated into an array of elementary antennas. The horn is described in relation to the application case of Ka-band satellite communications, but could be used for any type of communications in a given frequency band involving the transmission of two circularly polarized signals.
L'invention porte également sur un équipement de radiocommunications comprenant un cornet d'antenne ou un réseau de cornets d'antenne selon l'invention. L'équipement de radiocommunications peut par exemple être embarqué sur un véhicule terrestre ou aérien.The invention also relates to radiocommunications equipment comprising an antenna horn or an array of antenna horns according to the invention. The radiocommunications equipment can for example be on board a land or air vehicle.
Enfin, l'invention porte sur un procédé de télécommunications, notamment par satellite, entre deux équipements de radiocommunications selon l'invention. Le procédé comprend l'émission et/ou la réception de signaux en utilisant un cornet d'antenne ou un réseau de cornet d'antenne selon l'invention.Finally, the invention relates to a method of telecommunications, in particular by satellite, between two radiocommunications equipment according to the invention. The method comprises transmitting and / or receiving signals using an antenna horn or an antenna horn array according to the invention.
Claims (12)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1915417A FR3105884B1 (en) | 2019-12-26 | 2019-12-26 | Circular polarization dual band Ka satellite antenna horn |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3843202A1 true EP3843202A1 (en) | 2021-06-30 |
EP3843202B1 EP3843202B1 (en) | 2023-09-20 |
Family
ID=70804664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20216598.1A Active EP3843202B1 (en) | 2019-12-26 | 2020-12-22 | Horn for ka dual-band satellite antenna with circular polarisation |
Country Status (5)
Country | Link |
---|---|
US (1) | US11437727B2 (en) |
EP (1) | EP3843202B1 (en) |
ES (1) | ES2964974T3 (en) |
FR (1) | FR3105884B1 (en) |
IL (1) | IL279708B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113889745B (en) * | 2021-09-30 | 2022-05-03 | 北京星英联微波科技有限责任公司 | Compact broadband circularly polarized antenna |
US11881607B1 (en) * | 2021-10-05 | 2024-01-23 | Lockheed Martin Corporation | Longitudinally ridged septum orthomode transducer polarizer |
CN114744390B (en) * | 2022-04-26 | 2024-01-26 | 北京华镁钛科技有限公司 | Differential waveguide power divider |
CH720221A1 (en) * | 2022-11-11 | 2024-05-31 | Swissto12 Sa | Dual polarization ribbed antenna |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014005691A1 (en) | 2012-07-03 | 2014-01-09 | Qest Quantenelektronische Systeme Gmbh | Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions |
EP2879236A1 (en) | 2013-11-28 | 2015-06-03 | Thales | Horn, elementary antenna, antenna structure and telecommunication method associated therewith |
EP3179634A1 (en) * | 2015-12-11 | 2017-06-14 | Alcatel- Lucent Shanghai Bell Co., Ltd | A radiating/receiving element for a compact multiband antenna |
US20190058260A1 (en) * | 2017-08-18 | 2019-02-21 | Nidec Corporation | Antenna array |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458862A (en) * | 1966-08-08 | 1969-07-29 | Esl Inc | Quadruply ridged waveguide and horn antenna |
US3714652A (en) * | 1971-04-19 | 1973-01-30 | Us Navy | Single error channel monopulse system |
JP3739637B2 (en) * | 2000-07-27 | 2006-01-25 | アルプス電気株式会社 | Primary radiator |
US6323819B1 (en) * | 2000-10-05 | 2001-11-27 | Harris Corporation | Dual band multimode coaxial tracking feed |
US6489931B2 (en) * | 2000-12-21 | 2002-12-03 | Emc Test Systems, Lp | Diagonal dual-polarized broadband horn antenna |
US6507323B1 (en) * | 2001-03-28 | 2003-01-14 | Rockwell Collins, Inc. | High-isolation polarization diverse circular waveguide orthomode feed |
US6650291B1 (en) * | 2002-05-08 | 2003-11-18 | Rockwell Collins, Inc. | Multiband phased array antenna utilizing a unit cell |
ATE403244T1 (en) * | 2004-08-18 | 2008-08-15 | Ericsson Telefon Ab L M | WAVEGUIDE SLOT ANTENNA |
US7688268B1 (en) * | 2006-07-27 | 2010-03-30 | Rockwell Collins, Inc. | Multi-band antenna system |
DE102007044895B4 (en) * | 2007-09-20 | 2013-06-20 | Rohde & Schwarz Gmbh & Co. Kg | horn antenna |
US8026859B2 (en) * | 2008-08-07 | 2011-09-27 | Tdk Corporation | Horn antenna with integrated impedance matching network for improved operating frequency range |
US8248321B2 (en) * | 2009-09-01 | 2012-08-21 | Raytheon Company | Broadband/multi-band horn antenna with compact integrated feed |
KR101117648B1 (en) * | 2010-09-17 | 2012-03-20 | 홍익대학교 산학협력단 | Orthomode transducer using waveguide with the 4-splitted triangular cross-section |
US9112279B2 (en) * | 2011-02-25 | 2015-08-18 | Honeywell International Inc. | Aperture mode filter |
US9640847B2 (en) * | 2015-05-27 | 2017-05-02 | Viasat, Inc. | Partial dielectric loaded septum polarizer |
US9991607B1 (en) * | 2015-06-04 | 2018-06-05 | Rockwell Collins, Inc. | Circular array of ridged waveguide horns |
US10854984B2 (en) * | 2016-03-10 | 2020-12-01 | The Boeing Company | Air-filled quad-ridge radiator for AESA applications |
US9972897B1 (en) * | 2017-08-09 | 2018-05-15 | Northrop Grumman Systems Corporation | L-band array element with integrated triplexer for GPS payloads |
CA3100449C (en) * | 2018-06-01 | 2022-08-30 | Swissto12 Sa | Radiofrequency module |
WO2020124952A1 (en) * | 2018-12-20 | 2020-06-25 | 胡南 | Multiple polarization loudspeaker antenna employing electrically-controlled switching technique |
FR3094575B1 (en) * | 2019-03-28 | 2022-04-01 | Swissto12 Sa | Radiofrequency component comprising one or more waveguide devices fitted with ridges |
US11688939B2 (en) * | 2019-07-29 | 2023-06-27 | KYOCERA AVX Components (San Diego), Inc. | Horn antennas for use in a radio frequency anechoic test chamber |
US11031692B1 (en) * | 2020-04-20 | 2021-06-08 | Nan Hu | System including antenna and ultra-wideband ortho-mode transducer with ridge |
-
2019
- 2019-12-26 FR FR1915417A patent/FR3105884B1/en active Active
-
2020
- 2020-12-22 US US17/131,535 patent/US11437727B2/en active Active
- 2020-12-22 EP EP20216598.1A patent/EP3843202B1/en active Active
- 2020-12-22 ES ES20216598T patent/ES2964974T3/en active Active
- 2020-12-23 IL IL279708A patent/IL279708B2/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014005691A1 (en) | 2012-07-03 | 2014-01-09 | Qest Quantenelektronische Systeme Gmbh | Antenna system for broadband satellite communication in the ghz frequency range, comprising horn antennas with geometrical constrictions |
EP2879236A1 (en) | 2013-11-28 | 2015-06-03 | Thales | Horn, elementary antenna, antenna structure and telecommunication method associated therewith |
EP3179634A1 (en) * | 2015-12-11 | 2017-06-14 | Alcatel- Lucent Shanghai Bell Co., Ltd | A radiating/receiving element for a compact multiband antenna |
US20190058260A1 (en) * | 2017-08-18 | 2019-02-21 | Nidec Corporation | Antenna array |
Non-Patent Citations (2)
Title |
---|
TIANANG ELIE G ET AL: "Wide bandwidth cavity-backed dual-polarized vivaldi array antenna", 2017 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION & USNC/URSI NATIONAL RADIO SCIENCE MEETING, IEEE, 9 July 2017 (2017-07-09), pages 1311 - 1312, XP033229911, DOI: 10.1109/APUSNCURSINRSM.2017.8072698 * |
W. J. R. HOEFERM. N. BURTON: "Analytical Expressions for the Parameters of Finned and Ridged Waveguides", 1982 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, DALLAS, TX, USA, 1982, pages 311 - 313, XP031667333 |
Also Published As
Publication number | Publication date |
---|---|
ES2964974T3 (en) | 2024-04-10 |
FR3105884A1 (en) | 2021-07-02 |
US11437727B2 (en) | 2022-09-06 |
FR3105884B1 (en) | 2021-12-03 |
IL279708B2 (en) | 2024-03-01 |
EP3843202B1 (en) | 2023-09-20 |
IL279708A (en) | 2021-06-30 |
US20210203076A1 (en) | 2021-07-01 |
IL279708B1 (en) | 2023-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3843202B1 (en) | Horn for ka dual-band satellite antenna with circular polarisation | |
EP3547450B1 (en) | Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity | |
EP2415120B1 (en) | Multilayer pillbox antenna having parallel planes, and corresponding antenna system | |
EP2047564B1 (en) | Compact orthomode transduction device optimized in the mesh plane, for an antenna | |
EP3726642B1 (en) | Polarising screen with wideband polarising radiofrequency cell(s) | |
FR2966986A1 (en) | RADIANT ELEMENT OF ANTENNA | |
EP2710676B1 (en) | Radiating element for an active array antenna consisting of elementary tiles | |
EP1075043A1 (en) | Antenna with stacked resonating structures and multiband radiocommunication device using the same | |
FR2655204A1 (en) | WAVEGUIDE SUPPLY NETWORK ANTENNA. | |
FR2652453A1 (en) | COAXIAL ANTENNA HAVING A PROGRESSIVE WAVE POWER TYPE. | |
FR3117685A1 (en) | Antenna source for a direct radiating array antenna, radiating panel comprising several antenna sources. | |
FR2863110A1 (en) | ANTENNA IN MULTI-BAND NETWORK WITH DOUBLE POLARIZATION | |
EP1466384A1 (en) | Device for receiving and/or emitting electromagnetic waves with radiation diversity | |
EP3840124B1 (en) | Antenna with leaky wave in afsiw technology | |
FR3089358A1 (en) | Multiple access radiant element | |
EP0520908B1 (en) | Linear antenna array | |
FR2871619A1 (en) | BROADBAND ANTENNA WITH OMNIDIRECTIONAL RADIATION | |
CA2808511A1 (en) | Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna | |
EP3547449A1 (en) | Wireless communication device including a plurality of horn antennas on a printed circuit board (pcb), associated manufacturing method and use | |
EP3506429A1 (en) | Quasi-optical beam former, basic antenna, antenna system, associated telecommunications platform and method | |
EP0831550B1 (en) | Versatile array antenna | |
EP3306746B1 (en) | Cavity radiating element and radiating network comprising at least two radiating elements | |
WO2022069806A1 (en) | Radio frequency connector | |
EP3075031B1 (en) | Arrangement of antenna structures for satellite telecommunications | |
EP4383458A1 (en) | Improved antenna system and associated decoupling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20211220 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230517 |
|
INTG | Intention to grant announced |
Effective date: 20230531 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602020017927 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231123 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231221 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 4 Ref country code: DE Payment date: 20231121 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1614144 Country of ref document: AT Kind code of ref document: T Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240120 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2964974 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240410 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240115 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240120 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240122 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240102 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602020017927 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
26N | No opposition filed |
Effective date: 20240621 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230920 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231222 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231231 |