EP3789672B1 - Biomass heating system with secondary air conduit, and components of same - Google Patents
Biomass heating system with secondary air conduit, and components of same Download PDFInfo
- Publication number
- EP3789672B1 EP3789672B1 EP20194315.6A EP20194315A EP3789672B1 EP 3789672 B1 EP3789672 B1 EP 3789672B1 EP 20194315 A EP20194315 A EP 20194315A EP 3789672 B1 EP3789672 B1 EP 3789672B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- combustion
- heating system
- secondary air
- biomass heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002028 Biomass Substances 0.000 title claims description 99
- 238000010438 heat treatment Methods 0.000 title claims description 97
- 238000002485 combustion reaction Methods 0.000 claims description 426
- 239000003570 air Substances 0.000 claims description 158
- 239000000446 fuel Substances 0.000 claims description 129
- 239000011449 brick Substances 0.000 claims description 49
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 43
- 239000003546 flue gas Substances 0.000 claims description 43
- 239000008188 pellet Substances 0.000 claims description 34
- 238000002156 mixing Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 230000006872 improvement Effects 0.000 claims description 4
- 239000012080 ambient air Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 description 59
- 230000007246 mechanism Effects 0.000 description 37
- 239000002956 ash Substances 0.000 description 34
- 238000011161 development Methods 0.000 description 30
- 230000018109 developmental process Effects 0.000 description 30
- 239000002023 wood Substances 0.000 description 28
- 239000007789 gas Substances 0.000 description 27
- 239000007921 spray Substances 0.000 description 19
- 239000002893 slag Substances 0.000 description 18
- 238000009826 distribution Methods 0.000 description 17
- 238000012423 maintenance Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 15
- 238000004088 simulation Methods 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 238000000197 pyrolysis Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000000428 dust Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 230000036961 partial effect Effects 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 230000007704 transition Effects 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 239000012717 electrostatic precipitator Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 229910000639 Spring steel Inorganic materials 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000010304 firing Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 238000002309 gasification Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000035 biogenic effect Effects 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000009828 non-uniform distribution Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052902 vermiculite Inorganic materials 0.000 description 2
- 239000010455 vermiculite Substances 0.000 description 2
- 235000019354 vermiculite Nutrition 0.000 description 2
- 241001136792 Alle Species 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 244000181980 Fraxinus excelsior Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/0063—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters using solid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B30/00—Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven means for advancing the burning fuel through the combustion chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/02—Plant or installations having external electricity supply
- B03C3/04—Plant or installations having external electricity supply dry type
- B03C3/10—Plant or installations having external electricity supply dry type characterised by presence of electrodes moving during separating action
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/34—Constructional details or accessories or operation thereof
- B03C3/74—Cleaning the electrodes
- B03C3/76—Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B1/00—Combustion apparatus using only lump fuel
- F23B1/16—Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support
- F23B1/24—Combustion apparatus using only lump fuel the combustion apparatus being modified according to the form of grate or other fuel support using rotating grate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B10/00—Combustion apparatus characterised by the combination of two or more combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B10/00—Combustion apparatus characterised by the combination of two or more combustion chambers
- F23B10/02—Combustion apparatus characterised by the combination of two or more combustion chambers including separate secondary combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B30/00—Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven means for advancing the burning fuel through the combustion chamber
- F23B30/02—Combustion apparatus with driven means for agitating the burning fuel; Combustion apparatus with driven means for advancing the burning fuel through the combustion chamber with movable, e.g. vibratable, fuel-supporting surfaces; with fuel-supporting surfaces that have movable parts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B5/00—Combustion apparatus with arrangements for burning uncombusted material from primary combustion
- F23B5/04—Combustion apparatus with arrangements for burning uncombusted material from primary combustion in separate combustion chamber; on separate grate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B50/00—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
- F23B50/12—Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel being fed to the combustion zone by free fall or by sliding along inclined surfaces, e.g. from a conveyor terminating above the fuel bed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B60/00—Combustion apparatus in which the fuel burns essentially without moving
- F23B60/02—Combustion apparatus in which the fuel burns essentially without moving with combustion air supplied through a grate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B7/00—Combustion techniques; Other solid-fuel combustion apparatus
- F23B7/002—Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements
- F23B7/007—Combustion techniques; Other solid-fuel combustion apparatus characterised by gas flow arrangements with fluegas recirculation to combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/24—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/24—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber
- F23G5/26—Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a vertical, substantially cylindrical, combustion chamber having rotating bottom
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/10—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses
- F23G7/105—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of field or garden waste or biomasses of wood waste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23H—GRATES; CLEANING OR RAKING GRATES
- F23H13/00—Grates not covered by any of groups F23H1/00-F23H11/00
- F23H13/06—Dumping grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23H—GRATES; CLEANING OR RAKING GRATES
- F23H15/00—Cleaning arrangements for grates; Moving fuel along grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23H—GRATES; CLEANING OR RAKING GRATES
- F23H9/00—Revolving-grates; Rocking or shaking grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23H—GRATES; CLEANING OR RAKING GRATES
- F23H9/00—Revolving-grates; Rocking or shaking grates
- F23H9/02—Revolving cylindrical grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J1/00—Removing ash, clinker, or slag from combustion chambers
- F23J1/02—Apparatus for removing ash, clinker, or slag from ash-pits, e.g. by employing trucks or conveyors, by employing suction devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/02—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
- F23J15/022—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
- F23J15/025—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow using filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J3/00—Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
- F23J3/02—Cleaning furnace tubes; Cleaning flues or chimneys
- F23J3/023—Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L1/00—Passages or apertures for delivering primary air for combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L3/00—Arrangements of valves or dampers before the fire
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L9/00—Passages or apertures for delivering secondary air for completing combustion of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L9/00—Passages or apertures for delivering secondary air for completing combustion of fuel
- F23L9/02—Passages or apertures for delivering secondary air for completing combustion of fuel by discharging the air above the fire
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H1/00—Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
- F24H1/18—Water-storage heaters
- F24H1/187—Water-storage heaters using solid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/10—Control of fluid heaters characterised by the purpose of the control
- F24H15/104—Inspection; Diagnosis; Trial operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/0005—Details for water heaters
- F24H9/001—Guiding means
- F24H9/0026—Guiding means in combustion gas channels
- F24H9/0031—Guiding means in combustion gas channels with means for changing or adapting the path of the flue gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2007—Arrangement or mounting of control or safety devices for water heaters
- F24H9/2057—Arrangement or mounting of control or safety devices for water heaters using solid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/25—Arrangement or mounting of control or safety devices of remote control devices or control-panels
- F24H9/28—Arrangement or mounting of control or safety devices of remote control devices or control-panels characterised by the graphical user interface [GUI]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23B—METHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
- F23B2700/00—Combustion apparatus for solid fuel
- F23B2700/018—Combustion apparatus for solid fuel with fume afterburning by staged combustion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2202/00—Combustion
- F23G2202/10—Combustion in two or more stages
- F23G2202/103—Combustion in two or more stages in separate chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2205/00—Waste feed arrangements
- F23G2205/12—Waste feed arrangements using conveyors
- F23G2205/121—Screw conveyor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2209/00—Specific waste
- F23G2209/26—Biowaste
- F23G2209/261—Woodwaste
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2217/00—Intercepting solids
- F23J2217/10—Intercepting solids by filters
- F23J2217/102—Intercepting solids by filters electrostatic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2700/00—Ash removal, handling and treatment means; Ash and slag handling in pulverulent fuel furnaces; Ash removal means for incinerators
- F23J2700/003—Ash removal means for incinerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M2700/00—Constructional details of combustion chambers
- F23M2700/005—Structures of combustion chambers or smoke ducts
- F23M2700/0053—Bricks for combustion chamber walls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/20—Control of fluid heaters characterised by control inputs
- F24H15/281—Input from user
Definitions
- the invention relates to a biomass heating system and its components.
- the invention relates to a flow-optimized biomass heating system.
- Biomass heating systems in particular biomass boilers, in a power range from 20 to 500 kW are known.
- Biomass can be considered a cheap, domestic, crisis-proof and environmentally friendly fuel.
- wood chips or pellets as combustible biomass or biogenic solid fuels.
- the pellets usually consist of wood shavings, sawdust, biomass or other material that has been compacted into small discs or cylinders approximately 3 to 15 mm in diameter and 5 to 30 mm long.
- Wood chips also known as wood chips, woodchips or woodchips
- wood chips are wood that has been crushed with cutting tools.
- Biomass heating systems for fuels in the form of pellets and wood chips essentially have a boiler with a combustion chamber (the combustion chamber) and a heat exchange device connected to it. Due to the stricter legal regulations in many countries, some biomass heating systems also have a fine dust filter. Other various accessories are regularly available, such as fuel delivery devices, Control devices, probes, safety thermostats, pressure switches, flue gas recirculation, boiler cleaning and a separate fuel tank.
- a device for supplying fuel, a device for supplying air and an ignition device for the fuel are regularly provided in the combustion chamber.
- the means for supplying the air normally comprises a low-pressure fan in order to favorably influence the thermodynamic factors of combustion in the combustion chamber.
- a device for supplying fuel can be provided, for example, with a lateral insert (so-called transverse insert firing). The fuel is pushed into the combustion chamber from the side via a screw or a piston.
- a furnace grate In the combustion chamber of a fixed-bed furnace, a furnace grate is also usually provided, on which the fuel is essentially supplied and burned continuously.
- This grate stores the fuel for combustion and has openings, for example slots, which allow the passage of part of the combustion air as primary air to the fuel.
- the grate can be rigid or movable.
- the combustion chamber can also be regularly divided into a primary combustion zone (immediate combustion of the fuel on the grate and in the gas space above it before additional combustion air is supplied) and a secondary combustion zone (post-combustion zone of the flue gas after another air supply) are divided.
- the combustion of the pellets or wood chips essentially has two phases.
- the fuel is at least partially pyrolytically decomposed and converted into gas by high temperatures and air that can be blown into the combustion chamber.
- the (partial) part that has been converted into gas is burned, as well as the burning of any remaining solids (e.g. charcoal).
- the fuel outgasses, and the resulting gas and the charcoal contained therein are also burned.
- Pyrolysis is the thermal decomposition of a solid substance in the absence of oxygen. Pyrolysis can be divided into primary and secondary pyrolysis.
- the products of primary pyrolysis are pyrolysis coke and pyrolysis gases, the pyrolysis gases being divided into room temperature condensable and non-condensable gases.
- the primary pyrolysis takes place at roughly 250-450°C and the secondary pyrolysis at around 450-600°C.
- the secondary pyrolysis that subsequently occurs is based on the further reaction of the pyrolysis products that were primarily formed.
- the drying and pyrolysis take place at least largely without the use of air, since volatile CH compounds escape from the particle and therefore no air can reach the particle surface.
- Gasification can be seen as part of oxidation; the solid, liquid and gaseous products formed during the pyrolytic decomposition are reacted by further exposure to heat. This is done by adding a gasification agent such as air, oxygen, water vapor or carbon dioxide.
- a gasification agent such as air, oxygen, water vapor or carbon dioxide.
- the lambda value during gasification is greater than zero and less than one. Gasification takes place at around 300 to 850°C or even up to 1,200°C.
- the complete oxidation with excess air (lambda greater than 1) takes place by adding more air to these processes.
- the Reaction end products are essentially carbon dioxide, water vapor and ash. In all phases, the boundaries are not rigid, but fluid.
- the combustion process can be advantageously regulated by means of a lambda probe provided at the exhaust gas outlet of the boiler.
- the combustion of biomass produces gaseous or airborne combustion products, the main components of which are carbon, hydrogen and oxygen. These can be divided into emissions from complete oxidation, from incomplete oxidation and substances from trace elements or impurities.
- the emissions from complete oxidation are essentially carbon dioxide (CO 2 ) and water vapor (H 2 O).
- the formation of carbon dioxide from the carbon in the biomass is the goal of combustion, as the released energy can be used more fully.
- the release of carbon dioxide (CO 2 ) is largely proportional to the carbon content of the fuel burned; thus the carbon dioxide is also dependent on the useful energy to be provided. A reduction can essentially only be achieved by improving the efficiency.
- exhaust gas recirculation devices which return exhaust gas from the boiler to the combustion chamber for cooling and renewed combustion.
- Flue gas recirculation can take place below or above the grate.
- the flue gas can be recirculated mixed with the combustion air or separately.
- the exhaust gas from combustion in the combustion chamber is fed to the heat exchanger so that the hot combustion gases flow through the heat exchanger to transfer heat to a heat exchange medium, which is normally water at around 80°C (usually between 70°C and 110°C). °C).
- the boiler further usually has a radiant part, which is integrated into the combustion chamber, and a convection part (the heat exchanger connected thereto).
- the ignition device is mostly a hot air device or a glow device.
- combustion is started by supplying hot air to the combustion chamber, the hot air being heated by an electrical resistance.
- the ignition device comprises a glow plug/rod or several glow plugs to heat the pellets or wood chips by direct contact until combustion begins.
- the glow plugs can also be equipped with a motor to remain in contact with the pellets or wood chips during the ignition phase and then move back to avoid being exposed to the flames. This solution is subject to wear and tear and expensive.
- a disadvantage of traditional pellet biomass heating systems can be that pellets falling into the combustion chamber can roll off the grid or grate, slide off, or land next to the grate and end up in an area of the combustion chamber where the temperature is lower or where the air supply is poor, or they can even fall into the bottom chamber of the boiler or the ash chute. Pellets that do not remain on the grid or grate burn incompletely, causing poor efficiency, excessive ash and a certain amount of unburned pollutant particles. This applies to pellets as well as wood chips.
- the known biomass heating systems for pellets have, for example, baffles in the vicinity of the grate and/or the outlet of the combustion gas in order to retain fuel elements in certain places.
- Some boilers have shoulders on the inside of the combustion chamber to prevent pellets from falling into the ash removal and/or the bottom chamber of the boiler.
- these baffles and ledges can trap combustion residues, making cleaning difficult and can restrict airflow in the combustion chamber, which in turn reduces efficiency.
- these baffles require their own production and assembly costs. This applies to pellets as well as wood chips.
- Biomass heating systems for pellets or wood chips have the following additional disadvantages and problems.
- Another problem is the non-uniform distribution of pellets in the combustion chamber and especially on the grate, which reduces combustion efficiency and increases the emission of harmful substances. This disadvantage can also impede the ignition if there is an area without fuel is near the ignition device. This applies to pellets as well as wood chips.
- Baffles or ledges in the combustion chamber can limit this inconvenience and prevent the fuel from rolling or sliding off the grate or even falling into the bottom chamber of the boiler, but they impede airflow and prevent optimal mixing of air and fuel.
- Another problem is that incomplete combustion as a result of non-uniform distribution of fuel from the grate and as a result of non-optimal mixing of air and fuel can lead to the accumulation and fall of unburned ash through the air intake openings leading directly to the combustion grate, or from the grate end into the air ducts or air supply area.
- Hot air devices require high electrical power and incur high costs. Spark plugs require less power, but they require moving parts because the spark plugs must be motorized. They are expensive, complicated and can pose a problem in terms of reliability.
- the U.S. 2,933,057 A discloses improvements in furnaces adapted for the combustion of such fuels as rubbish, refuse, refuse, rubbish and similar material having a high moisture content.
- One of the aims of this prior art is to provide a grate for the above type of firing, which will ensure a progressive feeding of the material from the inlet of the kiln to the back of the grate, at the same time ensuring a proper consumption of the fuel.
- Another subject of U.S. 2,933,057 A is to provide means by which the grate bars are prevented from warping under the intense heat developed by the consumption of the fuel, and to provide means by which the means for preventing warping of the grate bars for heating water used for can be used for various purposes.
- Another subject of U.S. 2,933,057 A is to provide means to prevent the grates of furnaces of the above type from being overheated when using high temperature preheated air and to prevent the Ash and sand that might enter the furnace with the waste to be burned would melt and form a slag that would stick to the grate.
- a plurality of water-cooled tubes I are provided, arranged side by side and extending from the front to the rear of the furnace.
- the tubes are connected at the rear of the furnace to a header 2 which extends transversely to the rear of the furnace in front of the bridge wall 3 and rests on suitable support brackets 4 fixed in any manner in the front of the bridge wall or to the side walls.
- a biomass heating system for firing fuel in the form of pellets and/or wood chips comprising: a boiler having a burner, a heat exchanger having a plurality of boiler tubes, the burner having the following comprising: a combustor having a rotary grate, having a primary combustion zone and having a secondary combustion zone; the primary combustion zone being encompassed by a plurality of combustion chamber bricks laterally and by the rotary grate from below; a plurality of secondary air nozzles being provided in the combustor bricks; the primary combustion zone and the secondary combustion zone being separated at the level of the secondary air nozzles; wherein the secondary combustion zone of the combustor is fluidly connected to an inlet of the heat exchanger.
- the secondary air nozzles are arranged in such a way that in the secondary combustion zone of the combustion chamber eddy currents of a flue gas-air mixture of secondary air and combustion air (flue gas) arise around a vertical central axis, the Eddy currents improve the mixing of the flue gas-air mixture.
- a biomass heating system is provided, with the secondary air nozzles in the combustion chamber bricks each being designed as a cylindrical or truncated cone-shaped opening in the combustion chamber bricks with a circular or elliptical cross section, the smallest diameter of the respective opening being smaller than its maximum length.
- a biomass heating system is provided, the combustion device with the combustion chamber being set up in such a way that the turbulent flows form spiral-shaped rotational flows after exiting the combustion chamber nozzle, which reach up to a combustion chamber ceiling of the combustion chamber.
- a biomass heating system is provided, with the secondary air nozzles being arranged at least approximately at the same height in the combustion chamber; and the secondary air nozzles are arranged with their central axis and/or (depending on the type of nozzle) aligned in such a way that the secondary air is introduced acentrically to a center of symmetry of the combustion chamber.
- a biomass heating system is provided, the number of secondary air nozzles being between 8 and 14; and/or the secondary air nozzles have a minimum length of at least 50 mm with an inner diameter of 20 to 35 mm.
- a biomass heating system is provided, with the combustion chamber in the secondary combustion zone having a combustion chamber slope which reduces the cross section of the secondary combustion zone in the direction of the inlet of the heat exchanger.
- a biomass heating system is provided, the combustion chamber in the secondary combustion zone having a combustion chamber cover which is provided inclined upwards in the direction of the inlet of the heat exchanger and which reduces the cross section of the combustion chamber in the direction of the inlet.
- a biomass heating system is provided, with the combustion chamber slope and the inclined combustion chamber ceiling forming a funnel, the smaller end of which opens into the inlet of the heat exchanger.
- a biomass heating system is provided, the primary combustion zone and at least part of the secondary combustion zone having an oval horizontal cross-section; and/or the secondary air nozzles are arranged in such a way that they introduce the secondary air tangentially into the combustion chamber.
- a biomass heating system is provided, with the average flow speed of the secondary air in the secondary air nozzles being at least 8 m/s, preferably at least 10 m/s.
- a biomass heating system is provided, with the combustion chamber bricks having a modular structure; and any two semi-circular combustor bricks form a closed ring to form the primary combustion zone and/or part of the secondary combustion zone; and at least two rings of bricks are stacked one on top of the other.
- a biomass heating system having spiral turbulators arranged in the boiler tubes, which extend over the entire length of the boiler tubes; and the heat exchanger includes strip turbulators located in the boiler tubes and extending at least half the length of the boiler tubes.
- a biomass heating system for firing fuel in the form of pellets and/or wood chips which has the following: a boiler with a combustion device, a heat exchanger with a plurality of boiler tubes, preferably arranged in a bundle-like manner, the combustor comprising: a combustor having a rotary grate and having a primary combustion zone and a secondary combustion zone, preferably provided above the primary combustion zone; the primary combustion zone being encompassed by a plurality of combustion chamber bricks laterally and by the rotary grate from below; wherein secondary combustion zone includes a combustor nozzle or burn-through hole; wherein the secondary combustion zone of the combustor is fluidly connected to an inlet of the heat exchanger; wherein the primary combustion zone has an oval horizontal cross-section.
- boiler tubes arranged in a bundle-like manner there can be a plurality of boiler tubes which are arranged parallel to one another and have at least largely the same length.
- the inlet openings and the outlet openings of all boiler tubes can each be arranged in a common plane; i.e. i.e. the inlet openings and the outlet openings of all boiler tubes are at the same level.
- horizontal can denote a level orientation of an axis or a cross section, assuming that the boiler is also set up horizontally, with which, for example, the ground level can be the reference.
- horizontal as used herein means “parallel” to the base plane of vessel 11 as commonly defined. Further alternatively, in particular if there is no reference plane, “horizontal” can be understood merely as “parallel” to the combustion plane of the grate.
- the primary combustion zone can have an oval cross-section.
- the oval horizontal cross-section has no dead corners, and thus has improved air flow and the possibility of largely unhindered vortex flow up. Consequently, the biomass heating system has improved efficiency and lower emissions.
- the oval cross-section is well adapted to the type of fuel distribution when it is fed in from the side and the resulting geometry of the fuel bed on the grate.
- An ideally "round" cross section is also possible, but not so well adapted to the geometry of the fuel distribution and also to the flow technology of the turbulent flow, with the asymmetry of the oval compared to the "ideally" circular cross-sectional shape of the combustion chamber improving the formation of a turbulent flow in the combustion chamber allows.
- a biomass heating system is provided, with the horizontal cross-section of the primary combustion zone being provided at least approximately the same over a height of at least 100 mm. This also serves to ensure the unhindered development of the flow profiles in the combustion chamber.
- a biomass heating system is provided, with the combustion chamber in the secondary combustion zone having a combustion chamber slope which narrows the cross section of the secondary combustion zone in the direction of the inlet or inlet of the heat exchanger.
- a biomass heating system having a first rotary grate element, a second rotary grate element and a third rotary grate element, each of which rotates about a horizontally arranged bearing axis by at least 90 degrees, preferably at least 160 degrees, even more preferably by at least 170 degrees , are rotatably arranged; wherein the rotary grate elements form a combustion surface for the fuel; wherein the rotary grate elements have openings for the air for combustion, wherein the first rotary grate element and the third rotary grate element are identical in their combustion surface.
- the openings in the rotary grate elements are preferably designed in the form of slots and in a regular pattern in order to ensure a uniform flow of air through the fuel bed.
- a biomass heating system is provided, with the second rotary grate element being arranged in a form-fitting manner between the first rotary grate element and the third rotary grate element and having grate lips which are arranged in such a way that, when all three rotary grate elements are in the horizontal position, they at least largely form a seal on the first rotary grate element and the third rotary grate element.
- a biomass heating system with the rotary grate also having a rotary grate mechanism that is configured in such a way that it can rotate the third rotary grate element independently of the first rotary grate element and the second rotary grate element, and that this rotates the first rotary grate element and the second rotary grate element together but can rotate independently of the third rotary grate element.
- a biomass heating system is provided, with the combustion surface of the rotary grate elements being configured as an essentially oval or elliptical combustion surface.
- a biomass heating system having mutually complementary and curved sides, the second rotary grate element preferably having concave sides toward the adjacent first and third rotary grate element, and preferably the first and third rotary grate element each toward the second rotary grate element have a convex side.
- a biomass heating system with the combustion chamber bricks having a modular structure; and every two semi-circular combustor bricks form a closed ring to form the primary combustion zone; and at least two rings of bricks are stacked one on top of the other.
- a biomass heating system having spiral turbulators arranged in the boiler tubes extend along the entire length of the boiler tubes; and the heat exchanger includes strip turbulators located in the boiler tubes and extending at least half the length of the boiler tubes.
- the band turbulators can preferably be arranged in or inside the spiral turbulators.
- the band turbulators can be integrated into the spiral turbulators.
- the band turbulators can preferably extend over a length of 30 to 70% of the length of the spiral turbulators.
- a biomass heating system is provided, with the heat exchanger having between 18 and 24 boiler tubes, each with a diameter of 70 to 85 mm and a wall thickness of 3 to 4 mm.
- a biomass heating system having an integrated electrostatic filter device, which has a spray electrode and a precipitation electrode surrounding the spray electrode and a cage or a cage-like cleaning device; wherein the boiler further comprises a mechanically operable cleaning device with a hammer lever with a stop head; wherein the cleaning device is set up in such a way that it can hit the end of the (spray) electrode with the stop head, so that a shock wave is generated by the electrode and/or a transverse vibration of the (spray) electrode in order to remove impurities from the electrode to clean up.
- a steel is provided as the material for the electrode, which can be caused to oscillate (longitudinally and/or transversely and/or shock wave) by the stop head.
- Spring steel and/or chromium steel can be used for this purpose.
- the material of the spring steel can preferably be an austenitic chromium-nickel steel, for example 1.4310.
- the spring steel can be cambered.
- the cage-shaped cleaning device can be further moved back and forth along the wall of the electrostatic filter device for cleaning the collecting electrode.
- a biomass heating system is provided, with a cleaning device integrated into the boiler in the cold area being provided configured to clean the boiler tubes of the heat exchanger by moving up and down turbulators provided in the boiler tubes.
- the up and down movement can also be understood as the reciprocating movement of the turbulators in the boiler tubes in the longitudinal direction of the boiler tubes.
- a biomass heating system with a fire bed height measuring mechanism being arranged in the combustion chamber above the rotary grate; wherein the firebed height measurement mechanism comprises a fuel level flap mounted on a pivot and having a major surface; wherein a surface parallel of the main surface of the fuel level flap is provided at an angle to a central axis of the axis of rotation, the angle preferably being greater than 20 degrees.
- a combustion chamber slope of a secondary combustion zone of a combustion chamber with the features and properties mentioned herein is disclosed, which is (only) suitable for a biomass heating system.
- a combustion chamber incline for a secondary combustion zone of a combustion chamber of a biomass heating system with the features and properties mentioned herein is disclosed.
- a rotary grate for a combustion chamber of a biomass heating system with its features and properties mentioned herein is disclosed.
- an integrated electrostatic filter device for a biomass heating system with the features and properties mentioned herein is disclosed.
- a ember bed height measuring mechanism for a biomass heating system with the features and properties mentioned herein is disclosed.
- a fuel level flap for a biomass heating system with the features and properties mentioned herein is also disclosed.
- an expression such as “A or B”, “at least one of “A or/and B” or “one or more of A or/and B” can include any possible combination of features listed together.
- Expressions such as “first “, “secondary”, “primary” or “secondary” used herein represent and do not limit various elements regardless of their order and/or importance.
- an element e.g., a first element
- another element e.g., a second element
- the element may be directly connected to the other element become or are connected to the other element via another element (e.g. a third element).
- a phrase “configured for” (or “configured for”) as used in the present disclosure may be replaced with “suitable for,” “suitable for,” “adapted for,” “made for,” “capable of,” or “designed for.” depending on what is technically possible.
- a phrase “device configured to” or “set up to” may mean that the device can operate in conjunction with another device or component, or perform a corresponding function.
- FIG. 1 shows a three-dimensional overview of the biomass heating system 1 according to an exemplary embodiment of the invention.
- the arrow V in the figures indicates the front view of the plant 1
- the arrow S in the figures indicates the side view of the plant 1.
- the biomass heating system 1 has a boiler 11 which is mounted on a base 12 of the boiler.
- the boiler 11 has a boiler housing 13, for example made of sheet steel.
- a combustion device 2 (not shown), which can be reached via a first maintenance opening with a closure 21 .
- a rotary mechanism mount 22 for a rotary grate 25 (not shown) supports a rotary mechanism 23 with which drive forces can be transmitted to bearing axles 81 of the rotary grate 25 .
- a heat exchanger 3 (not shown), which can be reached from above via a second maintenance opening with a closure 31 .
- an optional filter assembly 4 (not shown) having an electrode 44 (not shown) suspended by an insulating electrode support 43 and powered by an electrode supply line 42 .
- the exhaust gas from the biomass heating system 1 is discharged via an exhaust gas outlet 41 which is arranged downstream of the filter device 4 in terms of flow.
- a fan can be provided here.
- a recirculation device 5 is provided downstream of the boiler 11, which recirculates part of the exhaust gas via recirculation channels 51, 53 and 54 and flaps 52 for cooling the combustion process and reuse in the combustion process.
- the biomass heating system 1 has a fuel supply 6, with which the fuel is conveyed in a controlled manner to the combustion device 2 in the primary combustion zone 26 from the side onto the rotary grate 25.
- the fuel supply 6 has a cell wheel sluice 61 with a fuel supply opening 65, the cell wheel sluice 61 having a drive motor 66 with control electronics.
- An axle 62 driven by the drive motor 66 drives a transmission mechanism 63 which can drive a fuel feed screw 67 (not shown) so that the fuel in a fuel feed channel 64 is fed to the combustion device 2 .
- an ash removal device 7 which has an ash discharge screw 71 in an ash discharge channel which is operated by a motor 72 .
- FIG 2 now shows a cross-sectional view through the biomass heating system 1 of FIG 1 , which was taken along a section line SL1 and which is shown viewed from the side S.
- the corresponding 3 which has the same cut as 2 represents, for the sake of clarity, the flows of the flue gas, and fluidic cross-sections are shown schematically. to 3 it should be noted that individual areas compared to the 2 are shown grayed out. This is only for clarity 3 and the visibility of the flow arrows S5, S6 and S7.
- the boiler 11 is mounted on the boiler base 12 and has a multi-walled boiler housing 13 in which water or another fluid heat exchange medium can circulate.
- a water circulation device 14 with a pump, valves, lines, etc. is provided for the supply and removal of the heat exchange medium.
- the combustion device 2 has a combustion chamber 24 in which the combustion process of the fuel takes place in the core.
- the combustion chamber 24 has a multi-part rotary grate 25, which will be explained in more detail later, on which the fuel bed 28 rests.
- the multi-part rotary grate 25 is rotatably mounted by means of a plurality of bearing axles 81 .
- the primary combustion zone 26 of the combustor 24 is encompassed by (a plurality of) combustor brick(s) 29 , whereby the combustor bricks 29 define the geometry of the primary combustion zone 26 .
- the cross-section of the primary combustion zone 26 (for example) along the horizontal section line A1 is substantially oval (for example 380mm +/- 60mm x 320mm +/- 60mm; it should be noted that some of the above size combinations may also result in a circular cross-section).
- the arrow S1 shows the flow from the secondary air nozzle 291 schematically, this flow (this is shown purely schematically) having a twist induced by the secondary air nozzles 291 in order to improve the mixing of the flue gas.
- the secondary air nozzles 291 are designed in such a way that they introduce the secondary air (preheated by the combustion chamber bricks 29) tangentially into the combustion chamber 24 with its oval cross section there (cf. 19 ). This creates a flow S1 with vortices or twists, which runs roughly spirally or helically upwards. In other words, a spiral flow running upwards and rotating about a vertical axis is formed.
- the combustion chamber bricks 29 form the inner lining of the primary combustion zone 26, store heat and are directly exposed to the fire.
- the combustion chamber stones 29 thus also protect the other material of the combustion chamber 24 , for example cast iron, from the direct effect of the flames in the combustion chamber 24 .
- the combustion chamber stones 29 are preferably adapted to the shape of the grate 25 .
- the combustion chamber bricks 29 also have secondary air or recirculation nozzles 291, which recirculate the flue gas into the primary combustion zone 26 for renewed participation in the combustion process and in particular for cooling as required.
- the secondary air nozzles 291 are not aligned with the center of the primary combustion zone 26, but are aligned acentrically in order to cause a swirl of the flow in the primary combustion zone 26 (ie a swirling and turbulent flow, which will be explained in more detail later).
- the combustion chamber bricks 29 will be explained in more detail later.
- Insulation 311 is provided at the boiler tube entrance.
- the oval cross-sectional shape of the primary combustion zone 26 (and the nozzle) and the length and position of the secondary air nozzles 291 favor the formation and maintenance of a turbulent flow, preferably up to the ceiling of the combustion chamber 24.
- a secondary combustion zone 27 adjoins the primary combustion zone 26 of the combustion chamber 26, either at the height of the combustion chamber nozzles 291 (from a functional or combustion technology point of view) or at the height of the combustion chamber nozzle 203 (from a purely structural or constructional point of view) and defines the radiant part of the combustion chamber 26.
- the flue gas produced during combustion releases its thermal energy mainly through thermal radiation, in particular to the heat exchange medium, which is located in the two left-hand chambers for the heat exchange medium 38 .
- the corresponding flue gas flows are in 3 indicated purely by way of example by the arrows S2 and S3.
- These turbulent flows may also contain slight backflows or other turbulences, which are not represented by the purely schematic arrows S2 and S3.
- the basic principle of the development of the flow in the combustion chamber 24 is clear and can be calculated by a person skilled in the art based on the arrows S2 and S3.
- candle-flame-shaped rotary flows S2 appear (cf. also 21 ), which can advantageously reach up to the combustion chamber ceiling 204, whereby the available space in the combustion chamber 24 is better utilized.
- the turbulent flows are concentrated in the center of the combustion chamber A2 and make ideal use of the volume of the secondary combustion zone 27 .
- the constriction which represents the combustion chamber nozzle 203 for the turbulent flows, reduces the rotational flows, with which turbulences are generated to improve the mixing of the air/flue gas mixture. Cross-mixing therefore takes place through the constriction or constriction through the combustion chamber nozzle 203 .
- the rotational momentum of the flows is at least partially maintained above the combustion chamber nozzle 203, which maintains the propagation of these flows up to the combustion chamber ceiling 204.
- the secondary air nozzles 291 are integrated into the elliptical or oval cross-section of the combustion chamber 24 in such a way that, due to their length and their orientation, they induce eddy currents which cause the flue gas/secondary air mixture to rotate and thereby (again in combination with the combustion chamber nozzle 203 positioned above improved) enable complete combustion with minimal excess air and thus maximum efficiency. This is also in the Figures 19 to 21 illustrated.
- the secondary air supply is designed in such a way that it cools the hot combustion chamber bricks 29 by flowing around them and the secondary air itself is preheated in return, whereby the combustion rate of the flue gases is accelerated and the complete combustion even at extreme partial load (e.g. 30% the nominal load) is ensured.
- the first maintenance opening 21 is insulated with an insulating material such as Vermiculite TM .
- the present secondary combustion zone 27 is set up in such a way that burnout of the flue gas is ensured.
- the special geometric design of the secondary combustion zone 27 will be explained in more detail later.
- the flue gas flows into the heat exchange device 3, which has a bundle of boiler tubes 32 provided parallel to one another.
- the flue gas now flows downwards in the boiler tubes 32, as in 3 indicated by the arrows S4.
- This part of the flow can also be referred to as the convection part, since the heat dissipation of the flue gas takes place essentially on the boiler tube walls via forced convection. Due to the temperature gradients in the heat exchanger medium, for example in the water, caused in the boiler 11, natural convection of the water occurs, which promotes thorough mixing of the boiler water.
- the outlet of the boiler tubes 32 opens into the turning chamber 35 via the turning chamber entry 34 or inlet. If the filter device 4 is not provided, the flue gas is discharged upwards again in the boiler 11 . The other case of the optional filter device 4 is in the 2 and 3 shown. In the process, the flue gas is fed back up into the filter device 4 after the turning chamber 35 (cf. arrows S5), which in the present example is an electrostatic filter device 4. Flow screens can be provided at the inlet 44 of the filter device 4, which even out the inflow of the flue gas into the filter.
- Electrostatic dust filters also known as electrostatic precipitators, are devices for separating particles from gases that are based on the electrostatic principle. These filter devices are used in particular for the electrical cleaning of exhaust gases.
- electrostatic precipitators dust particles are electrically charged by a corona discharge of a spray electrode and drawn to the oppositely charged electrode (collecting electrode).
- the corona discharge takes place on a suitable, charged high-voltage electrode (also known as a discharge electrode) inside the electrostatic precipitator.
- the electrode is preferred with protruding tips and possibly sharp edges, because the density of the field lines and thus also the electric field strength is greatest there and the corona discharge is thus favored.
- the opposite electrode precipitation electrode usually consists of a grounded section of exhaust pipe that is mounted around the electrode.
- the degree of separation of an electrostatic precipitator depends in particular on the dwell time of the exhaust gases in the filter system and the voltage between the spray and separation electrodes.
- the rectified high voltage required for this is provided by a high-voltage generating device (not shown).
- the high-voltage generation system and the holder for the electrode must be protected from dust and dirt in order to avoid unwanted leakage currents and to extend the service life of system 1.
- a rod-shaped electrode 45 (which is preferably designed like an elongated, plate-shaped steel spring, cf. 15 ) held approximately centrally in an approximately chimney-shaped interior of the filter device 4.
- the electrode 45 consists at least largely of high-quality spring steel or chromium steel and is held by an electrode holder 43 via a high-voltage insulator, ie an electrode insulation 46 .
- the (spray) electrode 45 hangs downwards into the interior of the filter device 4 so that it can vibrate.
- the electrode 45 can, for example, vibrate back and forth transversely to the longitudinal axis of the electrode 45 .
- a cage 48 simultaneously serves as a counter-electrode and as a cleaning mechanism for the filter device 4.
- the cage 48 is connected to ground or earth potential. Due to the prevailing potential difference, the exhaust gas flowing in the filter device 4 is filtered, cf. the arrows S6, as explained above. In the case of cleaning of the filter device 4, the electrode 45 is switched off.
- the cage 48 preferably has an octagonal regular cross-sectional profile, as can be seen, for example, in FIG 13 can be taken.
- the cage 48 can preferably be laser cut during manufacture.
- the flue gas flows through the turning chamber 34 into the inlet 44 of the filter device 4.
- the (optional) filter device 4 is optionally provided fully integrated in the boiler 11, so that the wall surface facing the heat exchanger 3 and flushed through by the heat exchange medium is also used for heat exchange from the direction of the filter device 4, with which the efficiency of the system 1 is further improved. In this way, at least part of the wall of the filter device 4 can be flushed with the heat exchange medium, with the result that at least part of this wall is cooled with boiler water.
- the cleaned exhaust gas flows out of the filter device 4 at the filter outlet 47, as indicated by the arrows S7. After leaving the filter, part of the exhaust gas is returned to the primary combustion zone 26 via the recirculation device 5 . This will also be explained in more detail later. The remaining part of the exhaust gas is conducted out of the boiler 11 via the exhaust gas outlet 41 .
- An ash discharge 7 is arranged in the lower part of the boiler 11.
- the combustor 24 and boiler 11 of this embodiment were calculated using CFD simulations. Furthermore, practical experiments were carried out to confirm the CFD simulations. The starting point for the considerations were calculations for a 100 kW boiler, although a power range from 20 to 500 kW was taken into account.
- the flow processes can be laminar and/or turbulent, accompanied by chemical reactions, or it can be a act multi-phase system.
- CFD simulations are therefore well suited as a design and optimization tool.
- CFD simulations were used to optimize the fluidic parameters in such a way that the objects of the invention listed above are achieved.
- the mechanical design and dimensioning of the boiler 11, the combustion chamber 24, the secondary air nozzles 291 and the combustion chamber nozzle 203 were largely defined by the CFD simulation and also by associated practical experiments.
- the simulation results are based on a flow simulation taking heat transfer into account. Examples of results from such CFD simulations are given in 20 and 21 shown.
- the design of the combustor shape is important in order to be able to meet the task requirements.
- the shape and geometry of the combustion chamber should ensure the best possible turbulent mixing and homogenization of the flow over the cross-section of the flue gas duct, minimization of the combustion volume, as well as a reduction in the excess air and the recirculation ratio (efficiency, operating costs), a reduction in the CO and CxHx Emissions, NOx emissions, dust emissions, a reduction in local temperature peaks (fouling and slagging) and a reduction in local flue gas velocity peaks (material stress and erosion) can be achieved.
- the 4 showing a partial view of the 2 is, and the figure 5 , which is a sectional view through the boiler 11 along the vertical section line A2, represent a combustion chamber geometry that meets the above-mentioned requirements for biomass heating systems over a wide power range of, for example, 20 to 500 kW will do justice.
- the vertical section line A2 can also be understood as the middle or central axis of the oval combustion chamber 24 .
- BK1 172 mm + ⁇ 40 mm , preferably + ⁇ 17 mm
- BK2 300 mm + ⁇ 50 mm , preferably + ⁇ 30 mm
- BK3 430 mm + ⁇ 80 mm , preferably + ⁇ 40 mm
- BK4 538 mm + ⁇ 80 mm , preferably + ⁇ 50 mm
- BK6 307 mm + ⁇ 50 mm , preferably + ⁇ 20 mm ;
- BK7 82 mm + ⁇ 20 mm , preferably + ⁇ 20 mm ;
- BK8 379 mm + ⁇ 40 mm , preferably + ⁇ 20 mm ;
- BK9 470 mm + ⁇ 50 mm , preferably + ⁇ 20 mm ;
- BK10 232 mm + ⁇ 40 mm , preferably + ⁇ 20 mm ;
- BK 11 380 mm + ⁇ 60 mm , preferably + ⁇ 30 mm ;
- BK 12 460 mm + ⁇ 8th 0 mm , preferably + ⁇ 30 mm .
- both the geometries of the primary combustion zone 26 and the secondary combustion zone 27 of the combustion chamber 24 are optimized with these values.
- the specified size ranges are ranges with which the requirements are (approximately) fulfilled as well as with the specified exact values.
- a chamber geometry of the primary combustion zone 26 and the combustion chamber 24 (or an inner volume of the primary combustion zone 26 of the combustion chamber 24) can preferably be defined using the following basic parameters:
- a volume with an oval horizontal base measuring 380 mm +- 60 mm (preferably +-30 mm) ⁇ 320 mm +- 60 mm (preferably +-30 mm), and a height of 538 mm +- 80 mm ( preferably +- 50 mm).
- the size information given above can also be applied to boilers in other output classes (e.g. 50 kW or 200 kW) scaled in relation to one another.
- the volume defined above can have an upper opening in the form of a combustion chamber nozzle 203, which is provided in the secondary combustion zone 27 of the combustion chamber 24, which has a combustion chamber slope 202 protruding into the secondary combustion zone 27, which preferably contains the heat exchange medium 38.
- Combustion chamber slope 202 reduces the cross section of secondary combustion zone 27.
- Combustion chamber slope 202 is inclined by an angle k of at least 5%, preferably by an angle k of at least 15% and even more preferably by at least an angle k of 19% with respect to an imaginary Horizontal or straight combustion chamber ceiling H (cf. the dashed horizontal line H in 4 ) intended.
- a combustion chamber cover 204 is provided, likewise inclined in the direction of the inlet 33 .
- the combustion chamber 24 in the secondary combustion zone 27 thus has the combustion chamber ceiling 204 which is provided inclined upwards in the direction of the inlet 33 of the heat exchanger 3 .
- This combustion chamber ceiling 204 extends in section 2 at least largely straight or rectilinear and inclined.
- the angle of inclination of the straight or flat combustion chamber ceiling 204 can preferably be 4 to 15 degrees relative to the (fictitious) horizontal.
- a further (ceiling) slope is provided in the combustion chamber 24 in front of the inlet 33, which forms a funnel together with the combustion chamber slope 202.
- This funnel turns the swirl or vortex flow directed upwards to the side and directs this flow roughly into the horizontal around. Due to the already turbulent upward flow and the funnel shape in front of the inlet 33, it is ensured that all heat exchanger tubes 32 or boiler tubes 32 are flown evenly, whereby an evenly distributed flow of the flue gas in all boiler tubes 32 is ensured. This optimizes the heat transfer in the heat exchanger 3 considerably.
- the combination of the vertical and horizontal inclines 203, 204 in the secondary combustion zone in combination as the inflow geometry in the convective boiler can achieve a uniform distribution of the flue gas over the convective boiler tubes.
- the combustion chamber slope 202 serves to homogenize the flow S3 in the direction of the heat exchanger 3 and thus the flow through the boiler tubes 32. This causes the flue gas to be distributed as evenly as possible to the individual boiler tubes in order to optimize the heat transfer there.
- the combination of the inclines with the inflow cross section of the boiler rotates the flue gas flow in such a way that the flue gas flow or the flow rate is distributed as evenly as possible over the respective boiler tubes 32 .
- the combustion chamber 24 is provided without dead corners or dead edges.
- the primary combustion zone 26 of the combustion chamber 24 can comprise a volume which preferably has an oval or approximately circular horizontal cross-section on the outer circumference (such a cross-section is shown in 2 marked with A1 as an example).
- This horizontal cross section can also preferably represent the base area of the primary combustion zone 26 of the combustion chamber 24 .
- the combustion chamber 24 can have an approximately constant cross section over the height indicated by the double arrow BK4.
- the primary combustion zone 24 can have an approximately oval-cylindrical volume.
- the side walls and base (grate) of the primary combustion zone 26 may be perpendicular to one another.
- the bevels 203, 204 described above can be provided as integrated walls of the combustion chamber 24, with the bevels 203, 204 forming a funnel which opens into the inlet 33 of the heat exchanger 33 and has the smallest cross section there.
- the horizontal cross section of the combustion chamber 24 and in particular of the primary combustion zone 26 of the combustion chamber 24 can also preferably be regular. Further, the horizontal cross-section of the combustor 24, and particularly the primary combustion zone 26 of the combustor 24, may preferably be a regular (and/or symmetrical) ellipse.
- the horizontal cross section (the outer circumference) of the primary combustion zone 26 can be made constant over a predetermined height (for example, 20 cm).
- An oval-cylindrical primary combustion zone 26 of the combustion chamber 24 is thus provided in the present case, which, according to CFD calculations, enables a significantly more uniform and better air distribution in the combustion chamber 24 than in the case of rectangular combustion chambers of the prior art.
- the lack of dead spaces also avoids zones in the combustion chamber with poor air flow, which increases efficiency and reduces slag formation.
- the nozzle 203 in the combustion chamber 24 is designed as an oval or approximately circular constriction in order to further optimize the flow conditions.
- This optimized nozzle 203 bundles the flue gas-air mixture flowing upwards rotating and ensures better mixing, preservation of the eddy currents in the secondary combustion zone 27 and thus complete combustion. This also minimizes the excess air required. This improves the combustion process and increases efficiency.
- a turbulent or swirling flow is bundled through the nozzle 203 and directed upwards, with the result that this flow extends further upwards than is usual in the prior art.
- this is due to the reduction in the distance of the swirling air flow to the rotation or swirl center axis, which is forced by the nozzle 203 (compare analogously to the physics of the pirouette effect).
- the combustion chamber slope 202 of 4 which without a reference number in the 2 and 3 can be seen and where the combustion chamber 25 (or its cross-section) tapers at least approximately linearly from bottom to top, according to CFD calculations ensures that the flue gas flow in the direction of the heat exchange device 4 is made more uniform, which means that its efficiency can be improved.
- the horizontal cross-sectional area of the combustion chamber 25 tapers from the beginning to the end of the combustion chamber slope 202, preferably by at least 5%.
- the combustion chamber slope 202 is provided on the side of the combustion chamber 25 to the heat exchange device 4 and is provided rounded at the point of maximum narrowing. Parallel or straight combustion chamber walls without a taper (so as not to impede the flue gas flow) are common in the prior art.
- the combustion chamber cover 204 which extends obliquely upwards towards the inlet 33 to the horizontal and diverts the turbulent flows in the secondary combustion zone 27 laterally, thereby equalizing their flow velocity distribution.
- the inflow or deflection of the flue gas flow in front of the tube bundle heat exchanger is designed in such a way that an uneven flow of the tubes is avoided as far as possible, whereby temperature peaks in individual boiler tubes 32 can be kept low and thus the heat transfer in the heat exchanger 4 can be improved (best possible use of the heat exchanger surfaces). . As a result, the efficiency of the heat exchange device 4 is improved.
- the gaseous volume flow of the flue gas is conducted through the inclined combustion chamber wall 203 at a uniform speed (even in the case of different combustion states) to the heat exchanger tubes or the boiler tubes 32.
- This effect is further intensified by the sloping combustion chamber ceiling 204, with a funnel effect being brought about.
- the result is a uniform heat distribution of the heat exchanger surfaces affecting the individual boiler tubes 32 and thus an improved use of the heat exchanger surfaces.
- the exhaust gas temperature is thus reduced and the efficiency increased.
- the flow distribution is particularly at the in the 3 shown indicator line WT1 much more evenly than in the prior art.
- the line WT1 represents an entry surface for the heat exchanger 3.
- the indicator line WT3 indicates an exemplary cross-sectional line through the filter device 4, in which the flow is set up as homogeneously as possible or is approximately evenly distributed over the cross-section of the boiler tubes 32 (due to of flow screens at the entrance of the filter device 4 and due to the geometry of the turning chamber 35).
- a uniform flow through the filter device 3 or the last boiler train minimizes strand formation and thereby also optimizes the separation efficiency of the filter device 4 and the heat transfer in the biomass heating system 1.
- an ignition device 201 is provided in the lower part of the combustion chamber 25 on the fuel bed 28 . This can cause initial ignition or re-ignition of the fuel.
- the ignition device 201 can be a glow igniter be.
- the ignition device is advantageously stationary and offset horizontally to the side relative to the location at which the fuel is introduced.
- a lambda probe (not shown) can (optionally) be provided after the exit of the flue gas (ie, after S7) from the filter device.
- a controller (not shown) can use the lambda probe to detect the respective calorific value.
- the lambda probe can thus ensure the ideal mixing ratio between the fuels and the oxygen supply. Despite different fuel qualities, the result is high efficiency and higher efficiency.
- the fuel bed 28 shown shows a rough fuel distribution due to the feeding of the fuel from the right side of the figure 5 .
- combustion chamber nozzle 203 is shown in which a secondary combustion zone 27 is provided and which accelerates and focuses the flue gas flow. As a result, the flue gas flow is better mixed and can burn more efficiently in the post-combustion zone 27 or secondary combustion zone 27 .
- the area ratio of the combustion chamber nozzle 203 is in a range from 25% to 45%, but is preferably 30% to 40%, and is, for example for a 100 kW biomass heating system 1, ideally 36% +/- 1% (ratio of the measured input area to the measured exit area of the nozzle 203).
- the 6 shows a three-dimensional sectional view (obliquely from above) of the primary combustion zone 26 and the isolated part of the secondary combustion zone 27 of the combustion chamber 24 with the rotary grate 25, and in particular the special design of the combustion chamber bricks 29.
- the 7 shows according to 6 one Exploded view of the combustion chamber bricks 29.
- the views of 6 and 7 can preferably with the dimensions listed above 4 and 5 be executed. However, this is not necessarily the case.
- the chamber wall of the primary combustion zone 26 of the combustor 24 is provided with a plurality of combustor bricks 29 in a modular construction which, among other things, facilitates manufacture and maintenance. Maintenance is facilitated in particular by the possibility of removing individual combustion chamber bricks 29.
- Form-fitting grooves 261 and projections 262 are provided in order to create a mechanical and largely airtight connection, in order in turn to prevent the ingress of disturbing external air.
- every two at least largely symmetrical combustion chamber bricks (with the possible exception of the openings for the secondary air or the recirculated flue gas) form a complete ring.
- three rings are preferably stacked on top of one another in order to form the primary combustion zone 26 of the combustion chamber 24 which is oval-cylindrical or alternatively at least approximately circular (the latter is not shown).
- Three further combustion chamber bricks 29 are provided as the upper closure, with the annular nozzle 203 being supported by two retaining bricks 264 which are placed on the upper ring 263 in a form-fitting manner. All bearing surfaces 260 have grooves 261 either for mating projections 262 and/or for the insertion of suitable sealing material.
- the mounting stones 264 which are preferably symmetrical, can preferably have an inwardly inclined bevel 265 in order to make it easier for fly ash to be swept away onto the rotary grate 25.
- the lower ring 263 of the combustion chamber bricks 29 rests on a base plate 251 of the rotary grate 25 . Ash is increasingly deposited on the inner edge between this lower ring 263 of the combustion chamber bricks 29 , which advantageously independently and advantageously seals this transition during operation of the biomass heating system 1 .
- the openings for the recirculation nozzles 291 or secondary air nozzles 291 are provided in the middle ring of the combustion chamber bricks 29 .
- the secondary air nozzles 291 are provided at least approximately at the same (horizontal) height of the combustion chamber 24 in the combustion chamber bricks 29 .
- Three rings of combustor bricks 29 are provided here, as this represents the most efficient way of manufacture and also of maintenance. Alternatively, 2, 4 or 5 such rings can also be provided.
- the combustion chamber bricks 29 are preferably made of high-temperature silicon carbide, which makes them very wear-resistant.
- the combustion chamber bricks 29 are provided as molded bricks.
- the combustion chamber bricks 29 are shaped in such a way that the interior volume of the primary combustion zone 26 of the combustion chamber 24 has an oval horizontal cross-section, which means that dead corners or dead spaces, which are usually not optimally flown through by the flue gas-air mixture, are avoided by an ergonomic shape, whereby the fuel present there is not is optimally burned. Due to the present shape of the combustion chamber bricks 29, the flow of primary air through the grate 25, which also suits the distribution of the fuel over the grate 25, and the possibility of unhindered turbulent flows is improved; and consequently the efficiency of combustion is improved.
- the oval horizontal cross section of the primary combustion zone 26 of the combustion chamber 24 is preferably a point-symmetrical and/or regular oval with the smallest inside diameter BK3 and the largest inside diameter BK11.
- FIG 8 shows a plan view of the rotary grate 25 from above seen from the section line A1 of FIG 2 .
- the supervision of 8 can preferably be designed with the dimensions listed above. However, this is not necessarily the case.
- the rotary grate 25 has the base plate 251 as a base element.
- a transition element 255 is provided in a roughly oval-shaped opening in the base plate 251, which bridges a gap between a first rotary grate element 252, a second rotary grate element 253 and a third rotary grate element 254, which are rotatably mounted.
- the rotary grate 25 is provided as a rotary grate with three individual elements, i. i.e. this can also be referred to as a triple rotary grate.
- Air holes are provided in the rotary grate elements 252, 253 and 254 for primary air to flow through.
- the rotary grate elements 252, 253 and 254 are flat and heat-resistant metal plates, for example made of cast metal, which have an at least largely planar configured surface on the upper side and are connected to the bearing axles 81 on the lower side, for example via intermediate mounting elements.
- rotating grate elements 252, 253 and 254 have curved and complementary sides or contours.
- the rotating grate elements 252, 253, 254 may have complementary and curved sides, preferably the second rotating grate element 253 has concave sides to the adjacent first and third rotating grate elements 252, 254, and preferably the first and third rotating grate elements 252, 254 each have a convex side towards the second rotating grate element 253. This improves the crushing function of the rotary grate elements, since the length of the fracture is increased and the forces acting to break (similar to scissors) act in a more targeted manner.
- the rotary grate elements 252, 253 and 254 (and their enclosure in the form of the transition element 255) have an approximately oval outer shape when viewed together, which in turn avoids dead corners or dead spaces in which suboptimal combustion could take place or ash could accumulate could accumulate undesirably.
- the optimal dimensions of this outer shape of the rotating grate elements 252, 253 and 254 are in 8 denoted by the double arrows DR1 and DR2.
- the rotary grate 25 has an oval combustion surface, which is more favorable for the fuel distribution, the air flow through the fuel and the combustion of the fuel than a conventional rectangular combustion surface.
- the combustion surface 258 is formed at the core by the surfaces of the rotary grate members 252, 253 and 254 (in the horizontal state). The combustion surface is therefore the upward-pointing surface of the rotary grate elements 252, 253 and 254.
- This oval combustion surface advantageously corresponds to the fuel support surface if this is applied or pushed laterally onto the rotary grate 25 (cf. arrow E of 9 , 10 and 11 ).
- the fuel can be supplied from a direction that parallel to a longer central axis (main axis) of the oval combustion surface of the rotary grate 25.
- the first rotary grate element 252 and the third rotary grate element 254 can preferably be configured identically in their combustion surface 258 . Furthermore, the first rotary grate element 252 and the third rotary grate element 254 can be identical or structurally identical to one another. For example, this is in 9 1, with the first rotating grate element 252 and the third rotating grate element 254 having the same shape.
- the second rotary grate element 253 is arranged between the first rotary grate element 252 and the third rotary grate element 254 .
- the rotary grate 25 is preferably provided with an approximately point-symmetrical, oval combustion surface 258 .
- the rotary grate 25 can form an approximately elliptical combustion surface 258, with DR2 being the dimensions of its major axis and DR1 being the dimensions of its minor axis.
- the rotary grate 25 can have an approximately oval combustion surface 258 which is axisymmetric with respect to a central axis of the combustion surface 258 .
- the rotary grate 25 can have an approximately circular combustion surface 258, which entails minor disadvantages in terms of fuel supply and distribution.
- Two motors or drives 231 of the rotary mechanism 23 are also provided, with which the rotary grate elements 252, 253 and 254 can be rotated accordingly. More about the special function and the advantages of the present rotary grate 25 is later with reference to the figures 9 , 10 and 11 described.
- the ash melting range (this extends from the sintering point to the flow point) depends very significantly on the fuel used.
- Spruce wood for example, has a critical temperature of around 1,200 °C.
- the ash melting range of a fuel can also be subject to strong fluctuations. Depending on the quantity and composition of the minerals contained in the wood, the behavior of the ash changes during the combustion process.
- Another factor that can influence slag formation is the transport and storage of the wood pellets or chips. This is because they should reach the combustion chamber 24 as undamaged as possible. If the wood pellets have already crumbled when they enter the combustion process, this increases the density of the ember bed. The result is more slag formation. In particular, the transport from the storage room to the combustion chamber 24 is of importance here. Particularly long distances, as well as curves and angles, lead to damage or abrasion of the wood pellets.
- Another factor relates to the control of the combustion process. So far, efforts have been made to keep the temperatures rather high in order to achieve the best possible burnout and low emissions.
- An optimized combustion chamber geometry and geometry of the combustion zone 258 of the rotary grate 25 makes it possible to keep the combustion temperature at the grate lower and high in the area of the secondary air nozzles 291, and thus to reduce slag formation on the grate.
- the resulting slag (and also the ash) can advantageously be removed due to the special shape and the functionality of the present rotary grate 25 .
- This will now be related to the figures 9 , 10 and 11 explained in more detail.
- the figures 9 , 10 and 11 show a three-dimensional view of the rotary grate 25 with the base plate 251, the first rotary grate element 252, the second rotary grate element 253 and the third rotary grate element 254.
- the views of FIG 9 , 10 and 11 can preferably correspond to the dimensions listed above. However, this is not necessarily the case.
- This view shows the rotary grate 25 as a free slide-in part with rotary grate mechanism 23 and drive(s) 231.
- the rotary grate 25 is mechanically provided in such a way that it can be individually prefabricated in the manner of the modular system, and as a slide-in part inserted into a provided elongated opening of the boiler 11 and can be installed. This also facilitates the maintenance of this wear-prone part.
- the rotary grate 25 can thus preferably have a modular design, in which case it can be quickly and efficiently removed and reinserted as a complete part with rotary grate mechanism 23 and drive 231 .
- the modularized rotary grate 25 can thus also be assembled and disassembled using quick-release fasteners.
- prior art rotary grates are typically permanently mounted and thus difficult to maintain or assemble.
- the drive 231 can have two separately controllable electric motors. These are preferably provided on the side of the rotating grate mechanism 23 .
- the electric motors can have reduction gears.
- end stop switches can be provided which provide end stops for the end positions of the rotating grate elements 252, 253 and 254 respectively.
- the individual components of the rotary grate mechanism 23 are intended to be exchangeable.
- the gears are provided to be plugged. This facilitates maintenance and also a side change of the mechanics during assembly, if necessary.
- the rotary grate elements 252, 253 and 254 of the rotary grate 25 can each be rotated by at least 90 degrees, preferably at least 120 degrees, even more preferably by 170 degrees, via their respective bearing axles 81, which are driven by the drive 231, in this case the two motors 231, via the rotary mechanism 23 Degrees are rotated about the respective bearing or axis of rotation 81.
- the maximum angle of rotation can be 180 degrees or a little less than 180 degrees, as the grate lips 257 allow.
- the rotary mechanism 23 is set up in such a way that the third rotary grate element 254 can be rotated individually and independently of the first rotary grate element 252 and the second rotary grate element 243, and that the first rotary grate element 252 and the second rotary grate element 243 are rotated together and independently of the third rotary grate element 254 be able.
- the rotary mechanism 23 can be provided accordingly, for example by means of running wheels, toothed or drive belts and/or gears.
- the rotary grate elements 252, 253 and 254 can preferably be produced as a cast grate with a laser cut in order to ensure precise shape retention. This in particular in order to define the air flow through the fuel bed 28 as precisely as possible and to avoid disturbing air currents, for example strands of air at the edges of the rotating grate elements 252, 253 and 254.
- the openings 256 in the rotating grate elements 252, 253 and 254 are arranged in such a way that they are small enough for the usual pellet material and/or the usual wood chips not to fall through and large enough for the fuel to flow well with air can be.
- the openings 256 are dimensioned large enough that they can be blocked by ash particles or impurities (e.g. no stones in the fuel).
- ash and/or slag accumulates on the rotary grate 25 and in particular on the rotary grate elements 252, 253 and 254.
- the rotary grate 25 can be cleaned efficiently with the present rotary grate 25 .
- any potential slag formation or slag accumulation on the two outer edges of the third rotary grate element 254 is broken up as it rotates, with the curved outer edges of the third rotary grate element 254 not only shearing off over a greater overall length than with conventional rectangular elements of the stand of the technique, but also with an uneven distribution of movement in relation to the outer edge (in the There is more movement in the center than at the bottom and top edges).
- the breaker function of the rotating grate 25 is thus significantly strengthened.
- grate lips 257 (on both sides) of the second rotary grate element 253 can be seen. These grate lips 257 are set up in such a way that the first rotary grate element 252 and the third rotary grate element 254 rest on the upper side of the grate lips 257 when they are closed, and the rotary grate elements 252, 253 and 254 are therefore provided without a gap and are therefore provided with a seal. This avoids strands of air and undesired uneven primary air flows through the bed of embers. This advantageously improves the efficiency of the combustion.
- FIG. 11 shows the rotary grate 25 in the state of universal cleaning, which is preferably carried out during a plant standstill. All three rotary grate elements 252, 253 and 254 are rotated, with the first and second rotary grate elements 252, 253 preferably being rotated in the opposite direction to the third rotary grate element 254. This enables the rotary grate 25 to be completely emptied on the one hand and the ash and slag now broken up on four odd outside edges. In other words, an advantageous 4-fold breaker function is realized.
- the above in relation to 9 What is explained with regard to the geometry of the outer edges also applies with regard to 10 .
- the present rotary grate 25 realizes in addition to normal operation (cf. 9 ) advantageously two different types of cleaning (cf. 10 and 11 ), whereby the partial cleaning allows a cleaning during the operation of the system 1.
- the heat exchanger 3 has a vertically arranged bundle of boiler tubes 32, each boiler tube 32 preferably being provided with both a spring and a band or spiral turbulator.
- the respective spring turbulator 36 preferably extends over the entire length of the respective boiler tube 32 and is designed in the shape of a spring.
- the respective band turbulator 37 preferably extends over about half the length of the respective boiler tube 32 and has a spiral shape in the axial direction of the Boiler tube 32 extending band with a material thickness of 1.5 mm to 3 mm. Furthermore, the respective band turbulator 37 can also be approximately 35% to 65% of the length of the respective boiler tube 32.
- Each band turbulator 37 is preferably disposed with one end at the downstream end of each boiler tube 32 .
- the combination of spring and ribbon or spiral turbulator can also be referred to as a double turbulator.
- Both ribbon and spiral turbulators are shown.
- the band turbulator 37 is located within the spring turbulator 36 .
- Band turbulators 37 are provided because the band turbulator 37 increases the turbulence effect in the boiler tube 32 and causes a more homogeneous temperature and velocity profile viewed over the tube cross-section, while the tube without a band turbulator preferably forms a hot streak with higher velocities in the center of the tube, which extends to the outlet of the boiler tube 32, which would adversely affect the heat transfer efficiency.
- the band turbulators 37 in the lower area of the boiler tubes 32 thus improve the convective heat transfer.
- 22 boiler tubes with a diameter of 76.1 mm and a wall thickness of 3.6 mm can be used.
- the pressure loss in this case can be less than 25 Pa.
- the spring turbulator 36 ideally has an outer diameter of 65 mm, a pitch of 50 mm, and a profile of 10 ⁇ 3 mm.
- the band turbulator 37 can have an outer diameter of 43 mm, a pitch of 150 mm and a profile of 43 ⁇ 2 mm.
- a sheet metal thickness of the band turbulator can be 2 mm.
- the desired target temperature at the outlet of the boiler tubes 32 can preferably be between 100 and 160 degrees Celsius at rated output.
- the 13 shows a cleaning device 9 with which both the heat exchanger 3 and the filter device 4 can be cleaned (off) automatically.
- the 13 shows the cleaning device from the boiler 11 for the sake of clarity.
- the cleaning device 9 relates to the entire boiler 11 and thus relates to the convective part of the boiler 11 and also the last boiler pass, in which the electrostatic filter device 4 can optionally be integrated.
- the cleaning device 9 has two cleaning drives 91, preferably electric motors, which rotatably drive two cleaning shafts 92, which in turn are mounted in a shaft holder 93.
- the cleaning shafts 92 can preferably also be mounted rotatably at another location, for example at the remote ends.
- the cleaning shafts 92 have extensions 94 to which the cage 48 of the filter device 4 and turbulator holders 95 are connected via joints or via rotary bearings.
- the turbulator mount 95 is in 14 highlighted and enlarged.
- the turbulator mount 95 is designed in the manner of a comb and is preferably designed to be horizontally symmetrical. Furthermore, the turbulator mount 95 is a flat metal piece with a material thickness in the thickness direction D between 2 and 5 mm educated.
- the turbulator mount 95 has two pivot bearing mounts 951 on its underside for connection to pivot bearing journals (not shown) of the extensions 94 of the cleaning shafts 92 .
- the pivot mounts 951 have a horizontal clearance in which pivot pins or a pivot linkage 955 can move back and forth.
- Vertically protruding extensions 952 have a plurality of recesses 954 in and with which the double turbulators 36, 37 can be attached.
- the recesses 954 can be at a distance from one another which corresponds to the pitch of the double turbulators 36, 37.
- passages 953 for the flue gas can preferably be arranged in the turbulator holder 95 in order to optimize the flow from the boiler tubes 32 into the filter device 4 . Otherwise the flat metal would be at right angles to the flow and impede it too much.
- the spiral automatically rotates under its own weight into the receptacle of the turbulator holder 95 (which can also be referred to as the receiving rod) and is thus fixed and secured. This makes assembly much easier.
- the figures 15 and 16 show the cleaning mechanism 9 without the cage 48 in two different states.
- the cage mount 481 can be seen better here.
- FIG. 15 shows the cleaning mechanism 9 in a first state, with both the turbulator mounts 95 and the cage mount 481 in a lower position.
- a two-armed hammer 96 with a stop head 97 is attached to one of the cleaning shafts 92 .
- the impact lever 96 can also be provided with one or more arms. The impact lever 96 with the stop head 97 is set up in such a way that it can be moved to the end of the (spray) electrode 45 or can strike against it.
- the impact lever 96 with the stop head 97 can strike the end of the (spray) electrode 45 during the transition from the first state to the second state.
- This striking at the free (ie not suspended) end of the (spray) electrode 45 has the advantage over conventional vibrating mechanisms (in which the electrode is moved on its suspension) that the (spray) electrode 45 according to its vibration characteristics after the excitation the striking itself can vibrate (ideally freely).
- the type of impact determines the oscillations or oscillation modes of the (spray) electrode 45.
- the (spray) electrode 45 can be struck from below (ie from its longitudinal axis direction or from its longitudinal direction) for the excitation of a shock wave or a longitudinal oscillation will.
- the (spray) electrode 45 can also be located on the side (in the figures 15 and 16 be struck, for example, from the direction of arrow V), so that it oscillates transversely. Or it can be the (spray) electrode 45 (as present in figures 15 and 16 shown) are attached at the end from a slightly laterally offset direction from below. In the latter case, a plurality of different vibration modes are generated in the (spray) electrode 45 (by striking), which advantageously add up in the cleaning effect and improve the efficiency of the cleaning. In particular, the shearing effect of the transverse vibration on the surface of the (spray) electrode 45 can improve the cleaning effect.
- an impact or a shock wave can occur in the elastic spring electrode 45 in the longitudinal direction of the electrode 45, which is preferably designed as an elongated plate-shaped rod. It can also lead to a transverse vibration of the (Spray) electrode 45 (which are aligned transversely or at right angles to the direction of the longitudinal axis of the electrode 45) due to the acting transverse forces.
- a shock wave and/or longitudinal wave combined with a transverse vibration of the electrode 45 can again lead to improved cleaning of the electrode 45.
- the cleaning device 9 can be manufactured simply and inexpensively in the manner described and has a simple and low-wear structure.
- the cleaning device 9 is set up with the drive mechanism in such a way that ash residues can advantageously be cleaned off by the turbulators as soon as the boiler tubes 32 are first pulled and can fall down.
- the cleaning device 9 is installed in the lower, so-called “cold area” of the boiler 11, which also reduces wear, since the mechanics are not exposed to very high temperatures (i.e. the thermal load is reduced).
- the cleaning mechanism is installed in the upper area of the system, which correspondingly disadvantageously increases wear.
- the biomass heating system 1 is preferably designed in such a way that the entire drive mechanism in the lower boiler area (including rotary grate mechanism including rotary grate, heat exchanger cleaning mechanism, drive mechanism for moving floor, mechanism for filter device, cleaning basket and drive shafts and ash discharge screw) can be quickly and efficiently removed and removed again using the "drawer principle".
- rotary grate mechanism including rotary grate, heat exchanger cleaning mechanism, drive mechanism for moving floor, mechanism for filter device, cleaning basket and drive shafts and ash discharge screw
- An example of this is above with the rotary grate 25 with respect to the Figures 9 to 11 illustrated. This facilitates maintenance work.
- FIG 17 shows an (exempted) ember bed height measuring mechanism 86 with a fuel level flap 83.
- 18 shows a detailed view of the fuel level flap 83 of FIG 17 .
- the ember bed height measurement mechanism 86 has an axis of rotation 82 for the fuel level flap 83 .
- the pivot 82 has a central axis 832 and has a bearing notch 84 on one side for supporting the pivot 82 and a sensor flange 85 for mounting an angle or rotation sensor (not shown).
- the axis of rotation 82 is preferably provided with a hexagonal profile.
- the holder of the fuel level flap 83 can be provided in such a way that it consists of two openings 834 with a hexagon socket. In this way, the fuel level flap 83 can simply be plugged onto the axis of rotation 82 and fixed. Furthermore, the fuel level flap 83 can be a simple sheet metal part.
- the ember bed height measuring mechanism 86 is provided in the combustion chamber 24, preferably somewhat offset to the center, above the fuel bed 28 or the combustion surface 258, so that the fuel level flap 83 is raised depending on the fuel that may be present, depending on the height of the fuel or fuel bed 28 , whereby the axis of rotation 82 is rotated in dependence on the height of the fuel bed 28 .
- This rotation or also the absolute angle of the axis of rotation 82 can be detected by a non-contact rotation and/or angle sensor (not shown). In this way, an efficient and robust ember bed height measurement can be carried out.
- the fuel level flap 83 is set up in such a way that it is slanted in relation to the central axis 823 of the axis of rotation 82 .
- a surface parallel 835 of a major surface 831 of the fuel level door 83 may be arranged to be angled with respect to the central axis 823 of the axis of rotation 82 . This angle can preferably be between 10 and 45 degrees.
- angle measurement it should be noted that the surface parallel 835 and the central axis 823 are thought of in such a way that they can intersect (projected in the horizontal) in the central axis 823 to form the angle. Further, the surface parallel 835 is not normally oriented parallel to the leading edge of the fuel level door 83 .
- the exact ember bed height can be determined using a non-contact rotary and/or angle sensor, even despite different or varying fuels (wood chips, pellets).
- the ergonomic, sloping shape adapts ideally to the fuel, which is also introduced at an angle due to the stoker screw, and ensures representative measured values.
- the fuel height (and quantity) remaining on the combustion surface 258 of the rotary grate 25 can also be precisely determined by means of the ember bed height measurement, with which the fuel supply and the flow through the fuel bed 28 can be regulated in such a way that the combustion process can be optimized.
- FIG 19 shows a horizontal cross-sectional view through the combustion chamber at the level of the secondary air nozzles 291 and along the horizontal section line A6 of FIG figure 5 .
- a length of a secondary air nozzle 291 can be between 40 and 60 mm, for example.
- a (maximum) diameter of the cylindrical or truncated cone-shaped secondary air nozzle 291 can be between 20 and 25 mm, for example.
- the angle shown relates to the two secondary air nozzles 291 closest to the longer main axis of the oval.
- the angle which is given as 26.1 degrees by way of example, is measured between the central axis of the secondary air nozzle 291 and the longer of the main axes of the oval of the combustion chamber 24.
- the angle can preferably in a range of 15 degrees to 35 degrees.
- the remaining secondary air nozzles 291 may further be provided with a central axis angle functionally equivalent to that of the two closest secondary air nozzles 291 to the longer major axis of the oval for effecting the swirling flow (e.g. with respect to the combustor wall 24).
- secondary air nozzles 291 are shown, which are arranged in such a way that their central axis or orientation, which are shown with the respective dashed (center) lines, is provided acentrically to the (symmetry) center point of the oval of the combustion chamber geometry.
- the secondary air nozzles 291 are not aimed at the center of the oval combustion chamber 24, but at its center or center axis (in 4 labeled A2) over.
- the center axis A2 can also be understood as the axis of symmetry relating to the oval combustion chamber geometry 24 .
- the secondary air nozzles 291 are aligned in such a way that they introduce the secondary air tangentially into the combustion chamber 24—viewed in the horizontal plane.
- the secondary air nozzles 291 are each provided as an inlet for the secondary air that is not aligned with the center of the combustion chamber.
- such a tangential entry can also be used with a circular combustion chamber geometry.
- All secondary air nozzles 291 are aligned in such a way that they each cause either a clockwise or a counterclockwise flow.
- each secondary air nozzle 291 can contribute to the formation of the eddy currents, with each secondary air nozzle 291 having a similar orientation.
- individual secondary air nozzles 291 can also be arranged in a neutral (centered) or counter-rotating (opposite orientation) manner, although this may degrade the aerodynamic efficiency of the arrangement.
- FIG 20 shows three horizontal cross-sectional views for different boiler dimensions (50 kW, 100 kW and 200 kW) through the combustion chamber 24 of FIG 2 and 4 at the height of the secondary air nozzles 291 with information on the flow distributions in this cross section in the respective nominal load case.
- the arrow in the combustion chamber 24 of the CFD calculation for a 200 kW boiler dimensioning indicates the twist or eddy direction of the eddy currents induced by the secondary air nozzles 291 . This also applies analogously to the other two boiler dimensions (50 kW, 100 kW). 20 .
- a clockwise rotating turbulent flow (viewed from above) is given as an example.
- Secondary air (preferably simply ambient air) is introduced into the combustion chamber 24 via the secondary air nozzles 291 .
- the secondary air in the secondary air nozzles is accelerated to more than 10 m/s in the nozzle at nominal load.
- the penetration depth of the resulting air jets in the combustion chamber 24 is increased, which is sufficient to induce an effective turbulent flow which spreads over most of the combustion chamber of the combustion chamber volume extends.
- a relatively undisturbed turbulent flow occurs when air enters the combustion chamber 24 tangentially, which can also be referred to as a swirl flow or as a turbulence sink flow. This creates spiral flows. These spiral flows propagate upwards in the combustion chamber 24 in a helical or spiral manner.
- FIG. 21 shows three vertical cross-sectional views for different boiler dimensions (50 kW, 100 kW and 200 kW) through the biomass heating system along the section line SL1 of the 1 with information on the tangential entry of the secondary nozzle flows into this cross-section.
- rotary grate elements 252, 253 and 254 instead of only three rotary grate elements 252, 253 and 254, two, four or more rotary grate elements can also be provided. With five rotary grate elements, for example, these could be arranged with the same symmetry and functionality as with the three rotary grate elements presented.
- the rotary grate elements can also be shaped or designed differently from one another. More rotary grate elements have the advantage that the crushing function is increased.
- convex sides of the rotary grate elements 252 and 254 concave sides of these can also be provided, with the sides of the rotary grate element 253 being able to have a complementary convex shape as a result. This is functionally almost equivalent.
- the rotational flow or turbulent flow in the combustion chamber 24 can be clockwise or counterclockwise.
- the combustion chamber cover 204 can also be provided with an incline in sections, for example in a stepped manner.
- the secondary air nozzles 291 are not limited to purely cylindrical bores in the combustion chamber bricks 291 . These can also be designed as frustoconical openings or tapered openings.
- the secondary (re)circulation can also only be flown with secondary air or fresh air, and in this respect not recirculate the flue gas, but only supply fresh air.
- Fuels other than wood chips or pellets can also be used as fuels in the biomass heating system.
- the biomass heating system disclosed here can also be fired exclusively with one type of fuel, for example only with pellets.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Solid-Fuel Combustion (AREA)
- Processing Of Solid Wastes (AREA)
- Chimneys And Flues (AREA)
- Gasification And Melting Of Waste (AREA)
Description
Die Erfindung betrifft eine Biomasse-Heizanlage, sowie deren Bestandteile. Insbesondere betrifft die Erfindung eine strömungstechnisch optimierte Biomasse-Heizanlage.The invention relates to a biomass heating system and its components. In particular, the invention relates to a flow-optimized biomass heating system.
Biomasse-Heizanlagen, insbesondere Biomasse-Kessel, in einem Leistungsbereich von 20 bis 500 kW sind bekannt. Biomasse kann als ein günstiger, heimischer, krisensicherer und umweltfreundlicher Brennstoff angesehen werden. Als verfeuerbare Biomasse beziehungsweise als biogene Festbrennstoffe gibt es beispielsweise Hackgut oder Pellets.Biomass heating systems, in particular biomass boilers, in a power range from 20 to 500 kW are known. Biomass can be considered a cheap, domestic, crisis-proof and environmentally friendly fuel. There are, for example, wood chips or pellets as combustible biomass or biogenic solid fuels.
Die Pellets bestehen meistens aus Holzspänen, Sägespänen, Biomasse oder anderen Materialien, die in kleine Scheiben oder Zylinder mit einem Durchmesser von ca. 3 bis 15 mm und einer Länge von 5 bis 30 mm verdichtet worden sind. Hackgut (auch als Holzschnitzel, Holzhackschnitzel oder Hackschnitzel bezeichnet) ist mit schneidenden Werkzeugen zerkleinertes Holz.The pellets usually consist of wood shavings, sawdust, biomass or other material that has been compacted into small discs or cylinders approximately 3 to 15 mm in diameter and 5 to 30 mm long. Wood chips (also known as wood chips, woodchips or woodchips) are wood that has been crushed with cutting tools.
Biomasse-Heizanlagen für Brennstoffe in Form von Pellets und Hackgut weisen im Wesentlichen einen Kessel mit einer Brennkammer (der Verbrennungsraum) und mit einer daran anschließenden Wärmetauschvorrichtung auf. Aufgrund der in vielen Ländern verschärfter gesetzlicher Vorschriften weisen einige Biomasse-Heizanlagen auch einen Feinstaubfilter auf. Regelmäßig ist weiteres verschiedenes Zubehör vorhanden, wie beispielsweise Brennstoff-Fördereinrichtungen, Regelungseinrichtungen, Sonden, Sicherheitsthermostate, Druckschalter, eine Abgasrückführung, eine Kesselabreinigung und ein separater Brennstoffbehälter.Biomass heating systems for fuels in the form of pellets and wood chips essentially have a boiler with a combustion chamber (the combustion chamber) and a heat exchange device connected to it. Due to the stricter legal regulations in many countries, some biomass heating systems also have a fine dust filter. Other various accessories are regularly available, such as fuel delivery devices, Control devices, probes, safety thermostats, pressure switches, flue gas recirculation, boiler cleaning and a separate fuel tank.
Bei der Brennkammer sind regelmäßig eine Einrichtung zur Zuführung von Brennstoff, eine Einrichtung für die Zufuhr der Luft und eine Zündvorrichtung für den Brennstoff vorgesehen. Die Einrichtung zur Zufuhr der Luft weist wiederum normalerweise ein Gebläse mit niedrigem Druck auf, um die thermodynamischen Faktoren bei der Verbrennung in der Brennkammer vorteilhaft zu beeinflussen. Eine Einrichtung zur Zuführung von Brennstoff kann beispielsweise mit einem seitlichen Einschub vorgesehen sein (sog. Quereinschubfeuerung). Dabei wird der Brennstoff von der Seite über eine Schnecke oder einen Kolben in die Brennkammer eingeschoben.A device for supplying fuel, a device for supplying air and an ignition device for the fuel are regularly provided in the combustion chamber. In turn, the means for supplying the air normally comprises a low-pressure fan in order to favorably influence the thermodynamic factors of combustion in the combustion chamber. A device for supplying fuel can be provided, for example, with a lateral insert (so-called transverse insert firing). The fuel is pushed into the combustion chamber from the side via a screw or a piston.
In der Brennkammer einer Festbettfeuerung ist weiter üblicherweise ein Feuerungsrost vorgesehen, auf welchem kontinuierlich der Brennstoff im Wesentlichen zugeführt und verbrannt wird. Dieser Feuerungsrost lagert den Brennstoff für die Verbrennung und weist Öffnungen, beispielsweise Schlitze, auf, die den Durchgang eines Teils der Verbrennungsluft als Primärluft zu dem Brennstoff erlauben. Weiter kann der Rost starr oder beweglich ausgeführt sein. Zudem gibt es Rostfeuerungen, bei denen die Verbrennungsluft nicht durch den Rost, sondern nur seitlich zugeführt wird.In the combustion chamber of a fixed-bed furnace, a furnace grate is also usually provided, on which the fuel is essentially supplied and burned continuously. This grate stores the fuel for combustion and has openings, for example slots, which allow the passage of part of the combustion air as primary air to the fuel. Next, the grate can be rigid or movable. There are also grate furnaces in which the combustion air is not fed through the grate but only from the side.
Beim Durchströmen des Rosts mit der Primärluft wird unter anderem auch der Rost gekühlt, wodurch das Material geschont wird. Zudem kann es bei unzureichender Luftzuführung auf dem Rost zu Schlackenbildung kommen. Insbesondere Feuerungen, die mit unterschiedlichen Brennstoffen beschickt werden sollen, womit sich die vorliegende Offenbarung insbesondere beschäftigt, weisen die inhärente Problematik auf, dass die unterschiedlichen Brennstoffe unterschiedliche Ascheschmelzpunkte, Wassergehalte und unterschiedliches Brennverhalten aufweisen. Damit ist es problematisch eine Heizanlage vorzusehen, die für unterschiedliche Brennstoffe gleichermaßen gut geeignet ist. Die Brennkammer kann weiterhin regelmäßig in eine Primärverbrennungszone (unmittelbare Verbrennung des Brennstoffes auf dem Rost sowie im Gasraum darüber vor Zuführung einer weiteren Verbrennungsluft) und eine Sekundärverbrennungszone (Nachverbrennungszone des Rauchgases nach einer weiteren Luftzufuhr) eingeteilt werden. In der Brennkammer erfolgen die Trocknung, pyrolytische Zersetzung sowie die Vergasung des Brennstoffes und der Holzkohleausbrand. Um die entstehenden brennbaren Gase vollständig zu verbrennen wird zudem eine weitere Verbrennungsluft in einer oder mehreren Stufen (Sekundärluft bzw. Tertiärluft) bei Beginn der Sekundärverbrennungszone eingebracht.When the primary air flows through the grate, the grate is also cooled, which protects the material. In addition, insufficient air supply can lead to slag formation on the grate. In particular furnaces that are to be charged with different fuels, with which the present disclosure is particularly concerned, have the inherent problem that the different fuels have different ash melting points, water contents and different combustion behavior. It is therefore problematic to provide a heating system that is equally well suited for different fuels. The combustion chamber can also be regularly divided into a primary combustion zone (immediate combustion of the fuel on the grate and in the gas space above it before additional combustion air is supplied) and a secondary combustion zone (post-combustion zone of the flue gas after another air supply) are divided. Drying, pyrolytic decomposition, gasification of the fuel and charcoal combustion take place in the combustion chamber. In order to completely burn the resulting combustible gases, additional combustion air is introduced in one or more stages (secondary air or tertiary air) at the beginning of the secondary combustion zone.
Die Verbrennung der Pellets oder des Hackguts weist nach der Trocknung im Wesentlichen zwei Phasen auf. In der ersten Phase wird der Brennstoff durch hohe Temperaturen und Luft, die in die Brennkammer eingeblasen werden kann, und zumindest teilweise pyrolytisch zersetzt und in Gas umgewandelt. In der zweiten Phase treten die Verbrennung des in Gas umgewandelten (An-)Teils sowie die Verbrennung der eventuell vorhandenen restlichen Feststoffe (beispielsweise Holzkohle) ein. Insofern gast der Brennstoff aus, und das entstandene Gas sowie die darin vorhandene Holzkohle werden mitverbrannt.After drying, the combustion of the pellets or wood chips essentially has two phases. In the first phase, the fuel is at least partially pyrolytically decomposed and converted into gas by high temperatures and air that can be blown into the combustion chamber. In the second phase, the (partial) part that has been converted into gas is burned, as well as the burning of any remaining solids (e.g. charcoal). In this respect, the fuel outgasses, and the resulting gas and the charcoal contained therein are also burned.
Unter Pyrolyse versteht man die thermische Zersetzung eines festen Stoffes unter Sauerstoffabschluss. Die Pyrolyse lässt sich in die primäre und sekundäre Pyrolyse aufteilen. Die Produkte der primären Pyrolyse sind Pyrolysekoks und Pyrolysegase, wobei sich die Pyrolysegase in bei Raumtemperatur kondensierbare und nicht kondensierbare Gase unterteilen lassen. Die primäre Pyrolyse findet bei grob 250-450°C und die sekundäre Pyrolyse bei ungefähr 450-600°C statt. Die in weiterer Folge auftretende sekundäre Pyrolyse basiert auf der Weiterreaktion der primär gebildeten Pyrolyseprodukte. Die Trocknung und Pyrolyse finden zumindest weitgehend ohne den Einsatz von Luft statt, da flüchtige CH - Verbindungen vom Partikel austreten und daher keine Luft an die Partikeloberfläche gelangt. Die Vergasung kann als Teil der Oxidation gesehen werden; es werden die bei der pyrolytischen Zersetzung entstandenen festen, flüssigen und gasförmigen Produkte durch weitere Wärmeeinwirkung in Reaktion gebracht. Dies geschieht unter Zugabe eines Vergasungsmittels wie Luft, Sauerstoff, Wasserdampf, oder auch Kohlendioxid. Der Lambda-Wert bei der Vergasung ist größer als null und kleiner als eins. Die Vergasung findet bei rund 300 bis 850°C oder sogar bis 1.200 °C statt. Die vollständige Oxidation mit Luftüberschuss (Lambda größer 1) findet durch weitere Luftzugabe an diese Prozesse anschließend statt. Die Reaktionsendprodukte sind im Wesentlichen Kohlendioxid, Wasserdampf und Asche. Bei allen Phasen sind die Grenzen nicht starr, sondern fließend. Mittels einer am Abgasausgang des Kessels vorgesehenen Lamdasonde kann der Verbrennungsprozess vorteilhaft geregelt werden.Pyrolysis is the thermal decomposition of a solid substance in the absence of oxygen. Pyrolysis can be divided into primary and secondary pyrolysis. The products of primary pyrolysis are pyrolysis coke and pyrolysis gases, the pyrolysis gases being divided into room temperature condensable and non-condensable gases. The primary pyrolysis takes place at roughly 250-450°C and the secondary pyrolysis at around 450-600°C. The secondary pyrolysis that subsequently occurs is based on the further reaction of the pyrolysis products that were primarily formed. The drying and pyrolysis take place at least largely without the use of air, since volatile CH compounds escape from the particle and therefore no air can reach the particle surface. Gasification can be seen as part of oxidation; the solid, liquid and gaseous products formed during the pyrolytic decomposition are reacted by further exposure to heat. This is done by adding a gasification agent such as air, oxygen, water vapor or carbon dioxide. The lambda value during gasification is greater than zero and less than one. Gasification takes place at around 300 to 850°C or even up to 1,200°C. The complete oxidation with excess air (lambda greater than 1) takes place by adding more air to these processes. the Reaction end products are essentially carbon dioxide, water vapor and ash. In all phases, the boundaries are not rigid, but fluid. The combustion process can be advantageously regulated by means of a lambda probe provided at the exhaust gas outlet of the boiler.
Allgemein ausgedrückt wird der Wirkungsgrad der Verbrennung durch die Umwandlung der Pellets in Gas erhöht, weil gasförmiger Brennstoff mit der Verbrennungsluft besser vermischt und damit vollständiger umgesetzt wird, und eine geringere Emission von Schadstoffen, weniger unverbrannte Partikel und Asche (Flugasche bzw. Staubpartikel) erzeugt werden.Generally speaking, converting the pellets to gas increases combustion efficiency because gaseous fuel is better mixed with the combustion air and thus more completely converted, and lower emissions of pollutants, unburned particles and ash (fly ash or dust particles) are produced .
Bei der Verbrennung von Biomasse entstehen gasförmige bzw. luftgetragene Verbrennungsprodukte, deren Hauptbestandteile Kohlenstoff, Wasserstoff und Sauerstoff sind. Diese können in Emissionen aus vollständiger Oxidation, aus unvollständiger Oxidation und Stoffen aus Spurenelementen bzw. Verunreinigungen unterschieden werden. Bei den Emissionen aus vollständiger Oxidation handelt es sich im Wesentlichen um Kohlenstoffdioxid (CO2) und Wasserdampf (H2O). Die Bildung von Kohlenstoffdioxid aus dem Kohlenstoff der Biomasse ist das Ziel der Verbrennung, da so die freigesetzte Energie vollständiger genutzt werden kann. Die Freisetzung von Kohlenstoffdioxid (CO2) verhält sich weitgehend proportional zum Kohlenstoffgehalt der verbrannten Brennstoffmenge; somit ist der Kohlenstoffdioxid auch abhängig von der bereitzustellenden Nutzenergie. Eine Reduzierung kann im Wesentlichen nur durch eine Verbesserung des Wirkungsgrades erzielt werden.The combustion of biomass produces gaseous or airborne combustion products, the main components of which are carbon, hydrogen and oxygen. These can be divided into emissions from complete oxidation, from incomplete oxidation and substances from trace elements or impurities. The emissions from complete oxidation are essentially carbon dioxide (CO 2 ) and water vapor (H 2 O). The formation of carbon dioxide from the carbon in the biomass is the goal of combustion, as the released energy can be used more fully. The release of carbon dioxide (CO 2 ) is largely proportional to the carbon content of the fuel burned; thus the carbon dioxide is also dependent on the useful energy to be provided. A reduction can essentially only be achieved by improving the efficiency.
Allerdings sind die vorstehend beschriebenen komplexen Verbrennungsvorgänge nicht einfach zu beherrschen. So besteht ganz allgemein formuliert ein Verbesserungsbedarf betreffend der Verbrennungsvorgänge in Biomasse-Heizanlagen.However, the complex combustion processes described above are not easy to control. Generally speaking, there is a need for improvement with regard to the combustion processes in biomass heating systems.
Neben der Luftzufuhr in die Brennkammer sind weiterhin Abgasrückführungseinrichtungen bekannt, die Abgas aus dem Kessel zur Kühlung und zur erneuten Verbrennung in die Brennkammer zurückführen. Hierbei existieren im Stand der Technik üblicherweise Öffnungen in der Brennkammer zur Zufuhr von Primärluft durch eine die Brennkammer speisende Primärluftleitung, und weiterhin existieren Umfangsöffnungen in der Brennkammer zur Zufuhr von Sekundärluft aus einer Sekundärluftleitung. Eine Rauchgasrezirkulation kann unter oder über dem Rost erfolgen. Zudem kann die Rauchgasrezirkulation gemischt mit der Verbrennungsluft oder separat erfolgen.In addition to the air supply to the combustion chamber, exhaust gas recirculation devices are also known, which return exhaust gas from the boiler to the combustion chamber for cooling and renewed combustion. In the prior art, there are usually openings in the combustion chamber for the supply of primary air through a primary air duct feeding the combustion chamber, and there are also peripheral openings in the combustion chamber for the supply of secondary air from a secondary air duct. Flue gas recirculation can take place below or above the grate. In addition, the flue gas can be recirculated mixed with the combustion air or separately.
Das Abgas der Verbrennung in der Brennkammer wird dem Wärmetauscher zugeführt, so dass die heißen Verbrennungsgase durch den Wärmetauscher strömen, um Wärme auf ein Wärmetauschmedium zu übertragen, bei dem es sich normalerweise um Wasser bei etwa 80°C (üblicherweise zwischen 70 °C und 110°C) handelt. Der Kessel weist weiter üblicherweise einen Strahlungsteil, der in die Brennkammer integriert ist, und ein Konvektionsteil (dem daran anschließenden Wärmetauscher) auf.The exhaust gas from combustion in the combustion chamber is fed to the heat exchanger so that the hot combustion gases flow through the heat exchanger to transfer heat to a heat exchange medium, which is normally water at around 80°C (usually between 70°C and 110°C). °C). The boiler further usually has a radiant part, which is integrated into the combustion chamber, and a convection part (the heat exchanger connected thereto).
Bei der Zündvorrichtung handelt es sich meistens um eine Heißlufteinrichtung oder eine Glüheinrichtung. Im ersten Fall wird die Verbrennung in Gang gesetzt, indem der Brennkammer Heißluft zugeführt wird, wobei die Heißluft durch einen elektrischen Widerstand aufgeheizt wird. Im zweiten Fall weist die Zündvorrichtung eine Glühkerze / einen Glühstab oder mehrere Glühkerzen auf, um die Pellets oder das Hackgut durch direkten Kontakt zu erhitzen, bis die Verbrennung beginnt. Die Glühkerzen können auch mit einem Motor versehen sein, um während der Zündphase mit den Pellets oder dem Hackgut in Berührung zu bleiben, und dann zurückzufahren, um nicht den Flammen ausgesetzt zu bleiben. Diese Lösung ist verschleißanfällig und aufwändig.The ignition device is mostly a hot air device or a glow device. In the first case, combustion is started by supplying hot air to the combustion chamber, the hot air being heated by an electrical resistance. In the second case, the ignition device comprises a glow plug/rod or several glow plugs to heat the pellets or wood chips by direct contact until combustion begins. The glow plugs can also be equipped with a motor to remain in contact with the pellets or wood chips during the ignition phase and then move back to avoid being exposed to the flames. This solution is subject to wear and tear and expensive.
Grundsätzlich bestehen bei herkömmlichen Biomasse-Heizanlagen die Probleme, dass die gasförmigen oder festen Emissionen zu hoch sind, dass der Wirkungsgrad zu niedrig ist und dass die Staubemissionen zu hoch sind. Problematisch ist weiter die variierende Qualität des Brennstoffs, aufgrund des variierenden Wassergehalts und der Stückigkeit des Brennstoffs, womit ein gleichmäßiger Abbrand des Brennstoffs mit niedriger Emission erschwert wird. Insbesondere bei Biomasse-Heizanlagen, welche für verschiedene Arten von biologischem bzw. biogenem Brennstoff tauglich sein sollen, erschwert es die variierende Qualität und Konsistenz des Brennstoffs, eine durchgängig hohe Effizienz der Biomasse-Heizanlage aufrechtzuerhalten. Diesbezüglich besteht erheblicher Optimierungsbedarf.The basic problems with conventional biomass heating systems are that the gaseous or solid emissions are too high, that the efficiency is too low and that the dust emissions are too high. Another problem is the varying quality of the fuel, due to the varying water content and the lumpiness of the fuel, which makes it difficult to burn the fuel evenly with low emissions. In particular in the case of biomass heating systems, which should be suitable for different types of biological or biogenic fuel, the varying quality and consistency of the fuel makes it difficult to achieve consistent heating maintain high efficiency of the biomass heating system. There is a considerable need for optimization in this regard.
Ein Nachteil der herkömmlichen Biomasse-Heizanlagen für Pellets kann darin bestehen, dass Pellets, die in die Brennkammer fallen, aus dem Gitter bzw. vom Rost herausrollen bzw. abrutschen können oder neben dem Rost landen können und in einen Bereich der Brennkammer gelangen können, in dem die Temperatur niedriger ist oder in dem die Luftzufuhr schlecht ist, oder sie können sogar in die unterste Kammer des Kessels bzw. den Ascheschacht fallen. Pellets, die nicht auf dem Gitter bzw. Rost verbleiben, verbrennen unvollständig und verursachen dadurch einen schlechten Wirkungsgrad, übermäßige Asche und eine bestimmte Menge an unverbrannten Schadstoffpartikeln. Dies gilt für Pellets wie auch für Hackschnitzel.A disadvantage of traditional pellet biomass heating systems can be that pellets falling into the combustion chamber can roll off the grid or grate, slide off, or land next to the grate and end up in an area of the combustion chamber where the temperature is lower or where the air supply is poor, or they can even fall into the bottom chamber of the boiler or the ash chute. Pellets that do not remain on the grid or grate burn incompletely, causing poor efficiency, excessive ash and a certain amount of unburned pollutant particles. This applies to pellets as well as wood chips.
Aus diesem Grund besitzen die bekannten Biomasse-Heizanlagen für Pellets in der Nähe des Gitters bzw. Rostes und/oder des Austritts des Verbrennungsgases beispielsweise Prallbleche, um Brennstoffelemente an bestimmten Orten zurückzuhalten. Bei manchen Kesseln sind an der Innenseite der Brennkammer Absätze vorgesehen, um zu verhindern, dass Pellets in die Entaschung oder/und die unterste Kammer des Kessels hineinfallen. In diesen Prallblechen und Absätzen können sich jedoch wiederum Verbrennungsrückstände festsetzen, was die Reinigung erschwert und Luftströmungen in der Brennkammer behindern kann, was wiederum die Effizienz mindert. Zudem erfordern diese Prallbleche einen eigenen Herstellungs- und Montageaufwand. Dies gilt für Pellets wie auch für Hackschnitzel.For this reason, the known biomass heating systems for pellets have, for example, baffles in the vicinity of the grate and/or the outlet of the combustion gas in order to retain fuel elements in certain places. Some boilers have shoulders on the inside of the combustion chamber to prevent pellets from falling into the ash removal and/or the bottom chamber of the boiler. In turn, these baffles and ledges can trap combustion residues, making cleaning difficult and can restrict airflow in the combustion chamber, which in turn reduces efficiency. In addition, these baffles require their own production and assembly costs. This applies to pellets as well as wood chips.
Biomasse-Heizanlagen für Pellets oder Hackgut weisen die folgenden weiteren Nachteile und Probleme auf.Biomass heating systems for pellets or wood chips have the following additional disadvantages and problems.
Ein Problem besteht auch in der nicht gleichmäßigen Verteilung der Pellets in der Brennkammer und insbesondere auf dem Rost, wodurch der Wirkungsgrad der Verbrennung verringert und die Emission von Schadstoffen erhöht wird. Durch diesen Nachteil kann auch die Zündung behindert werden, wenn sich ein Bereich ohne Brennstoff in der Nähe der Zündvorrichtung befindet. Dies gilt für Pellets wie auch für Hackschnitzel.Another problem is the non-uniform distribution of pellets in the combustion chamber and especially on the grate, which reduces combustion efficiency and increases the emission of harmful substances. This disadvantage can also impede the ignition if there is an area without fuel is near the ignition device. This applies to pellets as well as wood chips.
Prallbleche oder Absätze in der Brennkammer können diesen Nachteil begrenzen und vermeiden, dass der Brennstoff vom Rost herausrollt bzw. abrutscht oder sogar in die unterste Kammer des Kessels hineinfällt, doch sie behindern die Luftströmungen und verhindern eine optimale Mischung von Luft und Brennstoff.Baffles or ledges in the combustion chamber can limit this inconvenience and prevent the fuel from rolling or sliding off the grate or even falling into the bottom chamber of the boiler, but they impede airflow and prevent optimal mixing of air and fuel.
Ein weiteres Problem besteht darin, dass eine unvollständige Verbrennung infolge der nicht gleichmäßigen Verteilung des Brennstoffes aus dem Rost und infolge der nicht optimalen Mischung von Luft und Brennstoff die Anhäufung und das Herabfallen von unverbrannter Asche durch die Lufteintrittsöffnungen, die direkt auf den Verbrennungsrost führen, oder vom Rostende in die Luftkanäle oder den Luftzufuhrbereich begünstigt.Another problem is that incomplete combustion as a result of non-uniform distribution of fuel from the grate and as a result of non-optimal mixing of air and fuel can lead to the accumulation and fall of unburned ash through the air intake openings leading directly to the combustion grate, or from the grate end into the air ducts or air supply area.
Dies ist besonders störend und verursacht häufige Unterbrechungen, um Wartungsarbeiten wie Reinigen durchzuführen. Aus allen diesen Gründen wird in der Brennkammer normalerweise ein großer Luftüberschuss aufrechterhalten, doch dadurch nehmen die Flammentemperatur und der Wirkungsgrad der Verbrennung ab, und es kommt zu erhöhten Emissionen an unverbrannten Gasen (z.B. CO, CyHy), NOx und Staub (bspw. durch die verstärkte Aufwirbelung).This is particularly annoying and causes frequent interruptions to perform maintenance such as cleaning. For all these reasons, a large excess of air is normally maintained in the combustion chamber, but this reduces flame temperature and combustion efficiency, and increases emissions of unburned gases (e.g. CO, CyHy), NOx and dust (e.g. from the increased turbulence).
Der Einsatz eines Gebläses mit niedriger Druckhöhe liefert keine geeignete Wirbelströmung der Luft in der Brennkammer und ermöglicht deshalb auch keine optimale Mischung von Luft und Brennstoff. Generell ist es schwierig, in herkömmlichen Brennkammern eine optimale Wirbelströmung auszubilden.The use of a low head fan does not provide a suitable swirling flow of air in the combustor and therefore does not allow for an optimal mixing of air and fuel. In general, it is difficult to form an optimal turbulent flow in conventional combustion chambers.
Ein weiteres Problem bei den bekannten Brennern ohne Luftstufung besteht noch darin, dass die beiden Phasen, Umwandlung der Pellets in Gas und Verbrennung, mittels der gleichen Luftmenge gleichzeitig in der gesamten Brennkammer stattfinden, womit die Effizienz gesenkt wird.Another problem with the known burners without air staging is that the two phases, conversion of the pellets into gas and combustion, take place simultaneously in the entire combustion chamber by means of the same amount of air, which reduces efficiency.
Schließlich existieren einige Nachteile in Bezug auf die Zündvorrichtungen. Heißluftvorrichtungen benötigen eine hohe elektrische Leistung und verursachen hohe Kosten. Zündkerzen benötigen weniger Strom, doch sie benötigen bewegliche Teile, da die Zündkerzen motorisiert sein müssen. Sie sind teuer, kompliziert und können bezüglich Zuverlässigkeit ein Problem darstellen.Finally, there are some disadvantages related to the ignition devices. Hot air devices require high electrical power and incur high costs. Spark plugs require less power, but they require moving parts because the spark plugs must be motorized. They are expensive, complicated and can pose a problem in terms of reliability.
Weiter besteht insbesondere auch bei den Wärmetauschern von Biomasse-Heizanlagen des Stands der Technik Optimierungsbedarf, d.h., deren Effizienz könnte gesteigert werden. Ebenso besteht Verbesserungsbedarf betreffend der oft umständlichen und ineffizienten Abreinigung von herkömmlichen Wärmetauschern.Furthermore, there is also a need for optimization, especially in the heat exchangers of biomass heating systems of the prior art, i.e. their efficiency could be increased. There is also a need for improvement with regard to the often cumbersome and inefficient cleaning of conventional heat exchangers.
Das gleiche gilt für die üblichen Elektrofilter von Biomasse-Heizanlagen. Deren Sprüh- und auch Abscheideelektroden setzen sich regelmäßig mit Verbrennungsrückständen zu, was die Ausbildung des elektrischen Feldes zur Filterung verschlechtert und die Effizienz der Filterung verringert.The same applies to the usual electrostatic precipitators of biomass heating systems. Their spray and separating electrodes are regularly clogged with combustion residues, which impairs the formation of the electric field for filtering and reduces the efficiency of the filtering.
Die
Ein weiterer Gegenstand der
Ein weiterer Gegenstand der
In der Ausführungsform der
Es ist eine Aufgabe der Erfindung, eine Biomasse-Heizanlage in Hybridtechnologie vorzusehen, welche emissionsarm (v.a. bzgl. Feinstaub, CO, Kohlenwasserstoffen, NOx) ist, welche brennstoffflexibel mit Hackgut und Pellets betrieben werden kann, und welche einen hohen Wirkungsgrad aufweist.It is an object of the invention to provide a biomass heating system in hybrid technology, which is low in emissions (especially with regard to fine dust, CO, hydrocarbons, NOx), which can be operated flexibly with wood chips and pellets, and which has a high degree of efficiency.
Dabei können erfindungsgemäß und ergänzend folgende Überlegungen eine Rolle spielen:
- Die Hybridtechnologie soll sowohl den Einsatz von Pellets als auch von Hackgut mit Wassergehalten zwischen 8 und 35 Gewichtsprozent ermöglichen.
- Möglichst niedrige gasförmige Emissionen (
kleiner als 50 oder 100 mg/Nm3 bezogen auf trockenes Rauchgas und 13 Volumenprozent O2) sollen erzielt werden. - Sehr niedrige Staubemissionen kleiner 15 mg/Nm3 ohne und kleiner 5 mg/Nm3 mit Elektrofilterbetrieb werden angestrebt.
- Ein hoher Wirkungsgrad von bis zu 98% (bezogen auf die zugeführte Brennstoffenergie (Heizwert) soll erreicht werden.
- The hybrid technology should enable the use of both pellets and wood chips with a water content of between 8 and 35 percent by weight.
- Gaseous emissions that are as low as possible (less than 50 or 100 mg/Nm 3 based on dry flue gas and 13 percent by volume O 2 ) should be achieved.
- Very low dust emissions of less than 15 mg/Nm 3 without and less than 5 mg/Nm 3 with electrostatic precipitator operation are aimed for.
- A high degree of efficiency of up to 98% (based on the fuel energy supplied (calorific value) should be achieved.
Weiter kann man berücksichtigen, dass der Betrieb der Anlage optimiert sein soll. Beispielsweise soll eine einfache Entaschung, einfache Reinigung oder eine einfache Wartung ermöglicht werden.Furthermore, one can take into account that the operation of the system should be optimized. For example, simple ash removal, simple cleaning or simple maintenance should be made possible.
Zudem sollte eine hohe Anlagenverfügbarkeit vorhanden sein.In addition, there should be high system availability.
Dabei kann/können sich die vorstehend genannte Aufgabe oder die potentiellen Einzelproblemstellungen auch auf einzelne Teilaspekte der Gesamtanlage beziehen, beispielsweise auf die Brennkammer, den Wärmetauscher oder die elektrische Filtereinrichtung (nicht Gegenstand der Ansprüche).The task mentioned above or the potential individual problems can also relate to individual partial aspects of the overall system, for example to the combustion chamber, the heat exchanger or the electrical filter device (not the subject matter of the claims).
Diese Aufgabe(n) wird/werden durch den Gegenstand des unabhängigen Anspruchs gelöst. Weitere Aspekte und vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.This object(s) is/are solved by the subject matter of the independent claim. Further aspects and advantageous developments are the subject matter of the dependent claims.
Gemäß der vorliegenden Offenbarung der Erfindung ist eine Biomasse-Heizanlage zur Verfeuerung von Brennstoff in Form von Pellets und/oder Hackgut offenbart, die Anlage aufweisend das Folgende: einen Kessel mit einer Brenneinrichtung, einen Wärmetauscher mit einer Mehrzahl von Kesselrohren, wobei die Brenneinrichtung das Folgende aufweist: eine Brennkammer mit einem Drehrost, mit einer Primärverbrennungszone und mit einer Sekundärverbrennungszone; wobei die Primärverbrennungszone durch eine Mehrzahl von Brennkammersteinen seitlich und durch den Drehrost von unten umfasst ist; wobei in den Brennkammersteinen eine Mehrzahl von Sekundärluftdüsen vorgesehen ist; wobei die Primärverbrennungszone und die Sekundärverbrennungszone auf der Höhe der Sekundärluftdüsen separiert werden; wobei die Sekundärverbrennungszone der Brennkammer strömungstechnisch mit einem Eintritt des Wärmetauschers verbunden ist.According to the present disclosure of the invention, there is disclosed a biomass heating system for firing fuel in the form of pellets and/or wood chips, the system comprising: a boiler having a burner, a heat exchanger having a plurality of boiler tubes, the burner having the following comprising: a combustor having a rotary grate, having a primary combustion zone and having a secondary combustion zone; the primary combustion zone being encompassed by a plurality of combustion chamber bricks laterally and by the rotary grate from below; a plurality of secondary air nozzles being provided in the combustor bricks; the primary combustion zone and the secondary combustion zone being separated at the level of the secondary air nozzles; wherein the secondary combustion zone of the combustor is fluidly connected to an inlet of the heat exchanger.
Erfindungsgemäß ist dabei vorgesehen, dass die Sekundärluftdüsen derart angeordnet sind, dass in der Sekundärverbrennungszone der Brennkammer Wirbelströmungen eines Rauchgas-Luft Gemischs aus Sekundärluft und Verbrennungsluft (Rauchgas) um eine vertikale Mittenachse entstehen, wobei die Wirbelströmungen zur Verbesserung der Vermischung des Rauchgas-Luft Gemischs führen.According to the invention it is provided that the secondary air nozzles are arranged in such a way that in the secondary combustion zone of the combustion chamber eddy currents of a flue gas-air mixture of secondary air and combustion air (flue gas) arise around a vertical central axis, the Eddy currents improve the mixing of the flue gas-air mixture.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Sekundärluftdüsen in den Brennkammersteinen jeweils als zylindrische oder kegelstumpfförmige Öffnung in den Brennkammersteinen mit einem kreisförmigen oder elliptischen Querschnitt ausgebildet sind, wobei der kleinste Durchmesser der jeweiligen Öffnung kleiner als dessen maximale Länge ist.According to a development of the invention, a biomass heating system is provided, with the secondary air nozzles in the combustion chamber bricks each being designed as a cylindrical or truncated cone-shaped opening in the combustion chamber bricks with a circular or elliptical cross section, the smallest diameter of the respective opening being smaller than its maximum length.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brenneinrichtung mit der Brennkammer derart eingerichtet ist, dass die Wirbelströmungen nach dem Austritt aus der Brennkammerdüse spiralförmige Rotationsströmungen ausbilden, die bis zu einer Brennkammerdecke der Brennkammer reichen.According to one development, a biomass heating system is provided, the combustion device with the combustion chamber being set up in such a way that the turbulent flows form spiral-shaped rotational flows after exiting the combustion chamber nozzle, which reach up to a combustion chamber ceiling of the combustion chamber.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Sekundärluftdüsen in der Brennkammer auf zumindest annähernd der gleichen Höhe angeordnet sind; und die Sekundärluftdüsen mit deren Mittenachse derart angeordnet und/oder (je nach Art der Düse) derart ausgerichtet sind, dass die Sekundärluft azentrisch zu einem Symmetriemittelpunkt der Brennkammer eingeleitet wird.According to a development of the invention, a biomass heating system is provided, with the secondary air nozzles being arranged at least approximately at the same height in the combustion chamber; and the secondary air nozzles are arranged with their central axis and/or (depending on the type of nozzle) aligned in such a way that the secondary air is introduced acentrically to a center of symmetry of the combustion chamber.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Anzahl der Sekundärluftdüsen zwischen 8 und 14 liegt; und/oder die Sekundärluftdüsen eine Mindestlänge von mindestens 50 mm bei einem Innendurchmesser von 20 bis 35 mm aufweisen.According to a development of the invention, a biomass heating system is provided, the number of secondary air nozzles being between 8 and 14; and/or the secondary air nozzles have a minimum length of at least 50 mm with an inner diameter of 20 to 35 mm.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brennkammer in der Sekundärverbrennungszone eine Brennkammerschräge aufweist, welche den Querschnitt der Sekundärverbrennungszone in Richtung des Eintritts des Wärmetauschers verkleinert.According to a development of the invention, a biomass heating system is provided, with the combustion chamber in the secondary combustion zone having a combustion chamber slope which reduces the cross section of the secondary combustion zone in the direction of the inlet of the heat exchanger.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brennkammer in der Sekundärverbrennungszone eine Brennkammerdecke aufweist, die in Richtung des Eintritts des Wärmetauschers nach oben geneigt vorgesehen ist, und die den Querschnitt der Brennkammer in Richtung des Eintritts verkleinert.According to a further development of the invention, a biomass heating system is provided, the combustion chamber in the secondary combustion zone having a combustion chamber cover which is provided inclined upwards in the direction of the inlet of the heat exchanger and which reduces the cross section of the combustion chamber in the direction of the inlet.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brennkammerschräge und die geneigte Brennkammerdecke einen Trichter ausbilden, dessen kleineres Ende in den Eintritt des Wärmetauschers mündet.According to a development of the invention, a biomass heating system is provided, with the combustion chamber slope and the inclined combustion chamber ceiling forming a funnel, the smaller end of which opens into the inlet of the heat exchanger.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Primärverbrennungszone und zumindest ein Teil der Sekundärverbrennungszone einen ovalen Horizontalquerschnitt aufweist; und/oder die Sekundärluftdüsen derart angeordnet sind, dass diese die Sekundärluft tangential in die Brennkammer einleiten.According to a development of the invention, a biomass heating system is provided, the primary combustion zone and at least part of the secondary combustion zone having an oval horizontal cross-section; and/or the secondary air nozzles are arranged in such a way that they introduce the secondary air tangentially into the combustion chamber.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei die durchschnittliche Strömungsgeschwindigkeit der Sekundärluft in den Sekundärluftdüsen zumindest 8 m/s, vorzugsweise zumindest 10 m/s, beträgt.According to a development, a biomass heating system is provided, with the average flow speed of the secondary air in the secondary air nozzles being at least 8 m/s, preferably at least 10 m/s.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brennkammersteine einen modularen Aufbau aufweisen; und jeweils zwei halbkreisförmige Brennkammersteine einen geschlossenen Ring bilden, um die Primärverbrennungszone und/oder einen Teil der Sekundärverbrennungszone auszubilden; und zumindest zwei Ringe an Brennkammersteinen aufeinandergestapelt angeordnet sind.According to a development of the invention, a biomass heating system is provided, with the combustion chamber bricks having a modular structure; and any two semi-circular combustor bricks form a closed ring to form the primary combustion zone and/or part of the secondary combustion zone; and at least two rings of bricks are stacked one on top of the other.
Gemäß einer Weiterbildung der Erfindung ist eine Biomasse-Heizanlage vorgesehen, wobei der Wärmetauscher in den Kesselrohren angeordnete Spiralturbulatoren aufweist, die sich über die gesamte Länge der Kesselrohre erstrecken; und der Wärmetauscher in den Kesselrohren angeordnete Bandturbulatoren aufweist, die sich zumindest über die halbe Länge der Kesselrohre erstrecken.According to a development of the invention, a biomass heating system is provided, the heat exchanger having spiral turbulators arranged in the boiler tubes, which extend over the entire length of the boiler tubes; and the heat exchanger includes strip turbulators located in the boiler tubes and extending at least half the length of the boiler tubes.
Gemäß einem weiteren Aspekt der vorliegenden Offenbarung ist eine Biomasse-Heizanlage zur Verfeuerung von Brennstoff in Form von Pellets und/oder Hackgut vorgesehen, welche das Folgende aufweist: einen Kessel mit einer Brenneinrichtung, einen Wärmetauscher mit einer, vorzugsweise bündelartig angeordneten, Mehrzahl von Kesselrohren, wobei die Brenneinrichtung das Folgende aufweist: eine Brennkammer mit einem Drehrost und mit einer Primärverbrennungszone und mit einer, bevorzugt über der Primärverbrennungszone vorgesehenen, Sekundärverbrennungszone; wobei die Primärverbrennungszone durch eine Mehrzahl von Brennkammersteinen seitlich und durch den Drehrost von unten umfasst ist; wobei Sekundärverbrennungszone eine Brennkammerdüse bzw. ein Durchbrandloch beinhaltet; wobei die Sekundärverbrennungszone der Brennkammer strömungstechnisch mit einem Eintritt bzw. Einlass des Wärmetauschers verbunden ist; wobei die Primärverbrennungszone einen ovalen Horizontalquerschnitt aufweist.According to a further aspect of the present disclosure, a biomass heating system for firing fuel in the form of pellets and/or wood chips is provided, which has the following: a boiler with a combustion device, a heat exchanger with a plurality of boiler tubes, preferably arranged in a bundle-like manner, the combustor comprising: a combustor having a rotary grate and having a primary combustion zone and a secondary combustion zone, preferably provided above the primary combustion zone; the primary combustion zone being encompassed by a plurality of combustion chamber bricks laterally and by the rotary grate from below; wherein secondary combustion zone includes a combustor nozzle or burn-through hole; wherein the secondary combustion zone of the combustor is fluidly connected to an inlet of the heat exchanger; wherein the primary combustion zone has an oval horizontal cross-section.
Bei bündelartig angeordneten Kesselrohren kann es sich um eine Mehrzahl von parallel zueinander angeordneten Kesselrohren mit zumindest weitgehend gleicher Länge handeln. Vorzugsweise können die Einlassöffnungen und die Auslassöffnungen aller Kesselrohre jeweils in einer gemeinsamen Ebene angeordnet sein; d. h., die Einlassöffnungen und die Auslassöffnungen aller Kesselrohre liegen auf gleicher Höhe.In the case of boiler tubes arranged in a bundle-like manner, there can be a plurality of boiler tubes which are arranged parallel to one another and have at least largely the same length. Preferably, the inlet openings and the outlet openings of all boiler tubes can each be arranged in a common plane; i.e. i.e. the inlet openings and the outlet openings of all boiler tubes are at the same level.
"Horizontal" kann vorliegend eine ebene Ausrichtung einer Achse oder eines Querschnitts in der Annahme bezeichnen, dass der Kessel ebenso horizontal aufgestellt ist, womit beispielsweise das Erdniveau die Referenz sein kann. Alternativ kann "horizontal" vorliegend "parallel" zur Grundebene des Kessels 11 bedeuten, so wie diese üblicherweise definiert wird. Weiter alternativ kann, insbesondere bei einem Fehlen einer Bezugsebene, "horizontal" lediglich als "parallel" zur Verbrennungsebene des Rosts verstanden werden.In the present case, "horizontal" can denote a level orientation of an axis or a cross section, assuming that the boiler is also set up horizontally, with which, for example, the ground level can be the reference. Alternatively, "horizontal" as used herein means "parallel" to the base plane of
Weiter kann die Primärverbrennungszone einen ovalen Querschnitt aufweisen.Furthermore, the primary combustion zone can have an oval cross-section.
Der ovale Horizontalquerschnitt weist keine Totecken auf, und weist somit eine verbesserte Luftdurchströmung und die Möglichkeit zu einer weitgehend unbehinderten Wirbelströmung auf. Folglich weist die Biomasse-Heizanlage eine verbesserte Effizienz und niedrigere Emissionen auf. Zudem ist der ovale Querschnitt gut an die Art der Brennstoffverteilung bei seitlicher Zufuhr dessen und der daraus entstehenden Geometrie des Brennstoffbetts auf dem Rost angepasst. Ein ideal "runder" Querschnitt ist ebenso möglich, jedoch nicht so gut an die Geometrie der Brennstoffverteilung und auch der Strömungstechnik der Wirbelströmung angepasst, wobei die Asymmetrie des Ovals gegenüber der "ideal" Kreisförmigen Querschnittsform der Brennkammer eine verbesserte Ausbildung einer turbulenten Strömung in der Brennkammer ermöglicht.The oval horizontal cross-section has no dead corners, and thus has improved air flow and the possibility of largely unhindered vortex flow up. Consequently, the biomass heating system has improved efficiency and lower emissions. In addition, the oval cross-section is well adapted to the type of fuel distribution when it is fed in from the side and the resulting geometry of the fuel bed on the grate. An ideally "round" cross section is also possible, but not so well adapted to the geometry of the fuel distribution and also to the flow technology of the turbulent flow, with the asymmetry of the oval compared to the "ideally" circular cross-sectional shape of the combustion chamber improving the formation of a turbulent flow in the combustion chamber allows.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei der Horizontalquerschnitt der Primärverbrennungszone über eine Höhe von zumindest 100 mm zumindest annähernd gleichbleibend vorgesehen ist. Auch dies dient der unbehinderten Ausbildung der Strömungsprofile in der Brennkammer.According to a development, a biomass heating system is provided, with the horizontal cross-section of the primary combustion zone being provided at least approximately the same over a height of at least 100 mm. This also serves to ensure the unhindered development of the flow profiles in the combustion chamber.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brennkammer in der Sekundärverbrennungszone eine Brennkammerschräge aufweist, welche den Querschnitt der Sekundärverbrennungszone in Richtung des Eintritts bzw. des Einlasses des Wärmetauschers verjüngt.According to a development, a biomass heating system is provided, with the combustion chamber in the secondary combustion zone having a combustion chamber slope which narrows the cross section of the secondary combustion zone in the direction of the inlet or inlet of the heat exchanger.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei der Drehrost ein erstes Drehrostelement, ein zweites Drehrostelement und ein drittes Drehrostelement aufweist, die jeweils um eine horizontal angeordnete Lagerachse um zumindest 90 Grad, vorzugsweise zumindest 160 Grad, noch weiter bevorzugt um zumindest 170 Grad, drehbar angeordnet sind; wobei die Drehrostelemente eine Verbrennungsfläche für den Brennstoff ausbilden; wobei die Drehrostelemente Öffnungen für die Luft zur Verbrennung aufweisen, wobei das erste Drehrostelement und das dritte Drehrostelement in ihrer Verbrennungsfläche identisch ausgebildet sind.According to one development, a biomass heating system is provided, with the rotary grate having a first rotary grate element, a second rotary grate element and a third rotary grate element, each of which rotates about a horizontally arranged bearing axis by at least 90 degrees, preferably at least 160 degrees, even more preferably by at least 170 degrees , are rotatably arranged; wherein the rotary grate elements form a combustion surface for the fuel; wherein the rotary grate elements have openings for the air for combustion, wherein the first rotary grate element and the third rotary grate element are identical in their combustion surface.
Die Öffnungen in den Drehrostelementen sind dabei bevorzugt schlitzförmig und in einem regelmäßigen Muster ausgebildet, um eine gleichmäßige Luftdurchströmung des Brennstoffbetts sicherzustellen.The openings in the rotary grate elements are preferably designed in the form of slots and in a regular pattern in order to ensure a uniform flow of air through the fuel bed.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei das zweite Drehrostelement formschlüssig zwischen dem ersten Drehrostelement und dem dritten Drehrostelement angeordnet ist und Rostlippen aufweist, die derart angeordnet sind, dass diese in Horizontallage aller drei Drehrostelemente zumindest weitgehend dichtend an dem ersten Drehrostelement und dem dritten Drehrostelement anliegen.According to a further development, a biomass heating system is provided, with the second rotary grate element being arranged in a form-fitting manner between the first rotary grate element and the third rotary grate element and having grate lips which are arranged in such a way that, when all three rotary grate elements are in the horizontal position, they at least largely form a seal on the first rotary grate element and the third rotary grate element.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei der Drehrost weiter eine Drehrostmechanik aufweist, die derart konfiguriert ist, dass diese das dritte Drehrostelement unabhängig von dem ersten Drehrostelement und dem zweiten Drehrostelement drehen kann, und dass diese das erste Drehrostelement und das zweite Drehrostelement gemeinsam aber unabhängig von dem dritten Drehrostelement drehen kann.According to one development, a biomass heating system is provided, with the rotary grate also having a rotary grate mechanism that is configured in such a way that it can rotate the third rotary grate element independently of the first rotary grate element and the second rotary grate element, and that this rotates the first rotary grate element and the second rotary grate element together but can rotate independently of the third rotary grate element.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei die Verbrennungsfläche der Drehrostelemente eine im Wesentlichen ovale oder elliptische Verbrennungsfläche konfiguriert.According to a development, a biomass heating system is provided, with the combustion surface of the rotary grate elements being configured as an essentially oval or elliptical combustion surface.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei die Drehrostelemente zueinander komplementäre und gekrümmte Seiten aufweisen, wobei vorzugsweise das zweite Drehrostelement jeweils zu dem benachbarten ersten und dritten Drehrostelement konkave Seiten aufweist, und vorzugsweise das erste und dritte Drehrostelement jeweils zu dem zweiten Drehrostelement hin eine konvexe Seite aufweisen.According to a development, a biomass heating system is provided, the rotary grate elements having mutually complementary and curved sides, the second rotary grate element preferably having concave sides toward the adjacent first and third rotary grate element, and preferably the first and third rotary grate element each toward the second rotary grate element have a convex side.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei die Brennkammersteine einen modularen Aufbau aufweisen; und jeweils zwei halbkreisförmige Brennkammersteine einen geschlossenen Ring bilden, um die Primärverbrennungszone auszubilden; und zumindest zwei Ringe an Brennkammersteinen aufeinandergestapelt angeordnet sind.According to a development, a biomass heating system is provided, with the combustion chamber bricks having a modular structure; and every two semi-circular combustor bricks form a closed ring to form the primary combustion zone; and at least two rings of bricks are stacked one on top of the other.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei der Wärmetauscher in den Kesselrohren angeordnete Spiralturbulatoren aufweist, die sich über die gesamte Länge der Kesselrohre erstrecken; und der Wärmetauscher in den Kesselrohren angeordnete Bandturbulatoren aufweist, die sich zumindest über die halbe Länge der Kesselrohre erstrecken. Dabei können die Bandturbulatoren bevorzugt in oder innerhalb der Spiralturbulatoren angeordnet sein. Insbesondere können die Bandturbulatoren in den Spiralturbulatoren integriert angeordnet sein. Dabei können sich die Bandturbulatoren bevorzugt über eine Länge von 30 bis 70% der Länge der Spiralturbulatoren erstrecken.According to a further development, a biomass heating system is provided, the heat exchanger having spiral turbulators arranged in the boiler tubes extend along the entire length of the boiler tubes; and the heat exchanger includes strip turbulators located in the boiler tubes and extending at least half the length of the boiler tubes. The band turbulators can preferably be arranged in or inside the spiral turbulators. In particular, the band turbulators can be integrated into the spiral turbulators. The band turbulators can preferably extend over a length of 30 to 70% of the length of the spiral turbulators.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei der Wärmetauscher zwischen 18 und 24 Kesselrohre mit jeweils einem Durchmesser von 70 bis 85 mm und einer Wandstärke von 3 bis 4 mm aufweist.According to a development, a biomass heating system is provided, with the heat exchanger having between 18 and 24 boiler tubes, each with a diameter of 70 to 85 mm and a wall thickness of 3 to 4 mm.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei der Kessel eine integriert angeordnete elektrostatische Filtereinrichtung aufweist, die eine Sprühelektrode und eine die Sprühelektrode umgebende Niederschlagselektrode und einen Käfig bzw. eine käfigförmige Abreinigungseinrichtung aufweist; wobei der Kessel weiter eine mechanisch betätigbare Reinigungseinrichtung mit einem Schlaghebel mit einem Anschlagkopf aufweist; wobei die Reinigungseinrichtung derart eingerichtet ist, dass diese die (Sprüh-) Elektrode an deren Ende mit dem Anschlagkopf anschlagen kann, so dass eine Stoßwelle durch die Elektrode und/oder eine Transversalschwingung der (Sprüh-)Elektrode erzeugt wird, um die Elektrode von Verunreinigungen abzureinigen. Als Material für die Elektrode ist ein Stahl vorgesehen, der durch den Anschlagkopf in Schwingungen (longitudinal und/oder transversal und/oder Stoßwelle) versetzt werden kann. Hierzu kommt beispielsweise Federstahl und/oder Chromstahl in Frage. Der Werkstoff des Federstahls kann vorzugsweise ein austenitischer Chrom-Nickel-Stahl, beispielsweise 1.4310 sein. Weiter kann der Federstahl bombiert ausgeführt sein. Die käfigförmige Abreinigungseinrichtung kann weiter entlang der Wand der elektrostatischen Filtereinrichtung zum Abreinigen der Niederschlagselektrode hin- und herbewegt werden.According to a development, a biomass heating system is provided, the boiler having an integrated electrostatic filter device, which has a spray electrode and a precipitation electrode surrounding the spray electrode and a cage or a cage-like cleaning device; wherein the boiler further comprises a mechanically operable cleaning device with a hammer lever with a stop head; wherein the cleaning device is set up in such a way that it can hit the end of the (spray) electrode with the stop head, so that a shock wave is generated by the electrode and/or a transverse vibration of the (spray) electrode in order to remove impurities from the electrode to clean up. A steel is provided as the material for the electrode, which can be caused to oscillate (longitudinally and/or transversely and/or shock wave) by the stop head. Spring steel and/or chromium steel, for example, can be used for this purpose. The material of the spring steel can preferably be an austenitic chromium-nickel steel, for example 1.4310. Next, the spring steel can be cambered. The cage-shaped cleaning device can be further moved back and forth along the wall of the electrostatic filter device for cleaning the collecting electrode.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei eine in den Kessel im kalten Bereich integrierte Reinigungseinrichtung vorgesehen ist, die derart konfiguriert ist, dass diese die Kesselrohre des Wärmetauschers durch eine Auf- und Abwärtsbewegung von in den Kesselrohren vorgesehenen Turbulatoren abreinigen kann. Die Auf- und Abwärtsbewegung kann auch als Hin- und Herbewegung der Turbulatoren in den Kesselrohren in Längsrichtung der Kesselrohre verstanden werden.According to a further development, a biomass heating system is provided, with a cleaning device integrated into the boiler in the cold area being provided configured to clean the boiler tubes of the heat exchanger by moving up and down turbulators provided in the boiler tubes. The up and down movement can also be understood as the reciprocating movement of the turbulators in the boiler tubes in the longitudinal direction of the boiler tubes.
Gemäß einer Weiterbildung ist eine Biomasse-Heizanlage vorgesehen, wobei in der Brennkammer über dem Drehrost eine Glutbetthöhenmessmechanik angeordnet ist; wobei die Glutbetthöhenmessmechanik eine auf einer Drehachse angebrachte Brennstoff-Niveauklappe mit einer Hauptfläche aufweist; wobei eine Oberflächenparallele der Hauptfläche der Brennstoff-Niveauklappe winklig zu einer Mittenachse der Drehachse vorgesehen ist, wobei der Winkel vorzugsweise größer 20 Grad ist.According to a development, a biomass heating system is provided, with a fire bed height measuring mechanism being arranged in the combustion chamber above the rotary grate; wherein the firebed height measurement mechanism comprises a fuel level flap mounted on a pivot and having a major surface; wherein a surface parallel of the main surface of the fuel level flap is provided at an angle to a central axis of the axis of rotation, the angle preferably being greater than 20 degrees.
Obschon alle vorstehenden Einzelmerkmale und Details eines Aspekts der Erfindung und der Weiterbildungen dieses Aspekts in Zusammenhang mit der Biomasse-Heizanlage beschrieben sind, so sind diese Einzelmerkmale und Details auch als solche unabhängig von der Biomasse-Heizanlage offenbart.Although all the above individual features and details of an aspect of the invention and the developments of this aspect are described in connection with the biomass heating system, these individual features and details are also disclosed as such independently of the biomass heating system.
Beispielsweise ist eine Brennkammerschräge einer Sekundärverbrennungszone einer Brennkammer mit deren hierin genannten Merkmalen und Eigenschaften offenbart, die (lediglich) für eine Biomasse-Heizanlage geeignet ist. Insofern ist eine Brennkammerschräge für eine Sekundärverbrennungszone einer Brennkammer einer Biomasse-Heizanlage mit den hierin genannten Merkmalen und Eigenschaften offenbart.For example, a combustion chamber slope of a secondary combustion zone of a combustion chamber with the features and properties mentioned herein is disclosed, which is (only) suitable for a biomass heating system. In this respect, a combustion chamber incline for a secondary combustion zone of a combustion chamber of a biomass heating system with the features and properties mentioned herein is disclosed.
Weiter ist beispielsweise ein Drehrost für eine Brennkammer einer Biomasse-Heizanlage mit dessen hierin genannten Merkmalen und Eigenschaften offenbart.Furthermore, for example, a rotary grate for a combustion chamber of a biomass heating system with its features and properties mentioned herein is disclosed.
Weiter ist beispielsweise eine Mehrzahl von Brennkammersteinen für eine Brennkammer einer Biomasse-Heizanlage mit deren hierin genannten Merkmalen und Eigenschaften offenbart.Furthermore, for example, a plurality of combustion chamber bricks for a combustion chamber of a biomass heating system with the features and properties mentioned herein is disclosed.
Weiter ist beispielsweise eine integriert angeordnete elektrostatische Filtereinrichtung für eine Biomasse-Heizanlage mit deren hierin genannten Merkmalen und Eigenschaften offenbart.Furthermore, for example, an integrated electrostatic filter device for a biomass heating system with the features and properties mentioned herein is disclosed.
Weiter ist beispielsweise eine Mehrzahl von Kesselrohren für eine Biomasse-Heizanlage mit deren hierin genannten Merkmalen und Eigenschaften offenbart.Furthermore, for example, a plurality of boiler tubes for a biomass heating system with the features and properties mentioned herein are disclosed.
Weiter ist beispielsweise eine Glutbetthöhenmessmechanik für eine Biomasse-Heizanlage mit deren hierin genannten Merkmalen und Eigenschaften offenbart.Furthermore, for example, a ember bed height measuring mechanism for a biomass heating system with the features and properties mentioned herein is disclosed.
Weiter ist beispielsweise ebenso, als solche, eine Brennstoff-Niveauklappe für eine Biomasse-Heizanlage mit deren hierin genannten Merkmalen und Eigenschaften offenbart.Furthermore, for example, as such, a fuel level flap for a biomass heating system with the features and properties mentioned herein is also disclosed.
Die erfindungsgemäße Biomasse-Heizanlage wird nachfolgend in beispielhaften Ausführungsbeispielen und einzelnen Aspekten anhand der Figuren der Zeichnung näher erläutert:
- Fig. 1
- zeigt eine dreidimensionale Überblicksansicht einer Biomasse-Heizanlage gemäß einer Ausführungsform der Erfindung;
- Fig. 2
- zeigt eine Querschnittsansicht durch die Biomasse-Heizanlage der
Fig. 1 , welche entlang einer Schnittlinie SL1 vorgenommen wurde und welche aus der Seitenansicht S betrachtet dargestellt ist; - Fig. 3
- zeigt ebenso eine Querschnittsansicht durch die Biomasse-Heizanlage der
Fig. 1 mit einer Darstellung des Strömungsverlaufs, wobei die Querschnittsansicht entlang einer Schnittlinie SL1 vorgenommen wurde und aus der Seitenansicht S betrachtet dargestellt ist; - Fig. 4
- zeigt eine Teilansicht der
Fig. 2 , die eine Brennkammergeometrie des Kessels derFig. 2 undFig. 3 darstellt; - Fig. 5
- zeigt eine Schnittansicht durch den Kessel bzw. die Brennkammer des Kessels entlang der Vertikalschnittlinie A2 der
Fig. 4 ; - Fig. 6
- zeigt eine dreidimensionale Schnittansicht auf die Primärverbrennungszone der Brennkammer mit dem Drehrost der
Fig. 4 ; - Fig. 7
- zeigt entsprechend zur
Fig. 6 eine Explosionsdarstellung der Brennkammersteine; - Fig. 8
- zeigt eine Aufsicht auf den Drehrost mit Drehrostelementen von oben aus Sicht der Schnittlinie A1 der
Fig. 2 ; - Fig. 9
- zeigt den Drehrost der
Fig. 2 in geschlossener Position, wobei alle Drehrostelemente horizontal ausgerichtet bzw. geschlossen sind; - Fig. 10
- zeigt den Drehrost der
Fig. 9 in dem Zustand einer Teilabreinigung des Drehrosts im Gluterhaltungsbetrieb; - Fig. 11
- zeigt den Drehrost der
Fig. 9 im Zustand der Universalabreinigung, welche bevorzugt während eines Anlagenstillstands durchgeführt wird; - Fig. 12
- zeigt eine Ausschnitt-Detailansicht der
Fig. 2 ; - Fig. 13
- zeigt eine Reinigungseinrichtung, mit der sowohl der Wärmetauscher als auch die Filtereinrichtung der
Fig. 2 automatisch gereinigt werden können; - Fig. 14
- zeigt eine Turbulatorhalterung in herausgestellter und vergrößerter Form;
- Fig. 15
- zeigt eine Abreinigungsmechanik in einem ersten Zustand, wobei sich sowohl die Turbulatorhalterungen der
Fig. 14 als auch eine Käfighalterung in einer unteren Position befinden; - Fig. 16
- zeigt die Abreinigungsmechanik in einem zweiten Zustand, wobei sich sowohl die Turbulatorhalterungen der
Fig. 14 als auch die Käfighalterung in einer oberen Position befinden; - Fig. 17
- zeigt eine freigestellte Glutbetthöhenmessmechanik mit einer Brennstoff-Niveauklappe;
- Fig. 18
- zeigt eine Detailansicht der Brennstoff-Niveauklappe;
- Fig. 19
- zeigt eine horizontale Querschnittsansicht durch die Brennkammer auf der Höhe der Sekundärluftdüsen;
- Fig. 20
- zeigt drei horizontale Querschnittsansichten für unterschiedliche Kesseldimensionierungen durch die Brennkammer auf der Höhe der Sekundärluftdüsen mit Angaben zu den Strömungsverteilungen in diesem Querschnitt;
- Fig. 21
- zeigt drei vertikale Querschnittsansichten für unterschiedliche Kesseldimensionierungen durch die Biomasse-Heizanlage entlang der Schnittlinie SL1 der
Fig. 1 mit Angaben zu den Strömungsverteilungen in diesem Querschnitt.
- 1
- shows a three-dimensional overview of a biomass heating system according to an embodiment of the invention;
- 2
- shows a cross-sectional view through the
biomass heating system 1 , which was taken along a section line SL1 and which is shown viewed from the side view S; - 3
- also shows a cross-sectional view through the biomass heating system of FIG
1 with an illustration of the course of the flow, the cross-sectional view being taken along a cutting line SL1 and being viewed from the side view S; - 4
- shows a partial view of the
2 , which has a combustion chamber geometry of theboiler 2 and3 represents; - figure 5
- shows a sectional view through the boiler or the combustion chamber of the boiler along the vertical section line A2 of FIG
4 ; - 6
- shows a three-dimensional sectional view of the primary combustion zone of the combustion chamber with the
rotary grate 4 ; - 7
- shows according to
6 an exploded view of the combustion chamber bricks; - 8
- shows a top view of the rotary grate with rotary grate elements seen from the section line A1 of FIG
2 ; - 9
- shows the rotary grate of
2 in the closed position, with all rotary grate elements aligned horizontally or closed; - 10
- shows the rotary grate of
9 in the state of a partial cleaning of the rotary grate in ember maintenance mode; - 11
- shows the rotary grate of
9 in the state of universal cleaning, which is preferably carried out during a plant standstill; - 12
- shows a detail view of the
2 ; - 13
- shows a cleaning device with which both the heat exchanger and the filter device of the
2 can be cleaned automatically; - 14
- shows a turbulator mount in exposed and enlarged form;
- 15
- shows a cleaning mechanism in a first state, with both the turbulator mounts of
14 and a cage mount are in a down position; - 16
- shows the cleaning mechanism in a second state, with both the turbulator mounts of
14 and the cage mount are in an up position; - 17
- shows an isolated ember bed height measuring mechanism with a fuel level flap;
- 18
- shows a detailed view of the fuel level flap;
- 19
- shows a horizontal cross-sectional view through the combustion chamber at the level of the secondary air nozzles;
- 20
- shows three horizontal cross-sectional views for different boiler dimensions through the combustion chamber at the level of the secondary air nozzles with information on the flow distributions in this cross-section;
- 21
- shows three vertical cross-sectional views for different boiler dimensions through the biomass heating system along the
section line SL1 1 with information on the flow distributions in this cross-section.
Im Folgenden werden verschiedene Ausführungsformen der vorliegenden Offenbarung unter Bezugnahme auf die beigefügten Zeichnungen lediglich beispielhaft offenbart. Ausführungsformen und darin verwendete Begriffe sollen jedoch nicht dazu dienen, die vorliegende Offenbarung auf bestimmte Ausführungsformen zu beschränken, und sie sollte so ausgelegt werden, dass sie verschiedene Änderungen, Äquivalente und/oder Alternativen gemäß den Ausführungsformen der vorliegenden Offenbarung beinhaltet.Various embodiments of the present disclosure are disclosed below with reference to the accompanying drawings, by way of example only. However, embodiments and terms used therein are not intended to limit the present disclosure to particular embodiments, and it should be construed to include various modifications, equivalents, and/or alternatives according to the embodiments of the present disclosure.
Sollten in der Beschreibung allgemeinere Begriffe für in den Figuren dargestellte Merkmale oder Elemente verwendet werden, so ist beabsichtigt, dass für den Fachmann nicht nur das spezielle Merkmal oder Element in den Figuren offenbart ist, sondern auch die allgemeinere technische Lehre.If more general terms are used in the description for features or elements shown in the figures, it is intended that not only the specific feature or element is disclosed in the figures for the person skilled in the art, but also the more general technical teaching.
In Bezug auf die Beschreibung der Figuren können die gleichen Bezugszeichen in den einzelnen Figuren verwendet werden, um auf ähnliche oder technisch entsprechende Elemente zu verweisen. Weiter können der Übersichtlichkeit halber in einzelnen Detail- oder Ausschnittsansichten mehr Elemente oder Merkmale mit Bezugszeichen dargestellt sein, als in den Überblicksansichten. Dabei ist davon auszugehen, dass diese Elemente oder Merkmale auch entsprechend in den Überblicksdarstellungen offenbart sind, auch wenn diese dort nicht explizit aufgeführt sind.With respect to the description of the figures, the same reference numbers can be used in the individual figures to refer to similar or technically corresponding elements. Furthermore, for the sake of clarity, more elements or features can be shown with reference symbols in individual detailed or sectional views than in the overview views. It can be assumed that these elements or features are also disclosed accordingly in the overview presentations, even if they are not explicitly listed there.
Es ist zu verstehen, dass eine Singularform eines Substantivs, das einem Gegenstand entspricht, eines oder mehrere der Dinge beinhalten kann, es sei denn, der betreffende Kontext weist eindeutig auf etwas anderes hin.It is to be understood that a singular form of a noun corresponding to an object may include one or more of the things, unless the context in question clearly indicates otherwise.
In der vorliegenden Offenbarung kann ein Ausdruck wie "A oder B", "mindestens einer von "A oder/und B" oder "einer oder mehrere von A oder/und B" alle möglichen Kombinationen von zusammen aufgeführten Merkmalen beinhalten. Ausdrücke wie "erster", "zweiter", "primär" oder "sekundär", die hierin verwendet werden, können verschiedene Elemente unabhängig von ihrer Reihenfolge und/oder Bedeutung darstellen und schränken entsprechende Elemente nicht ein. Wenn beschrieben wird, dass ein Element (z. B. ein erstes Element) "funktionsfähig" oder "kommunikativ" mit einem anderen Element (z. B. einem zweiten Element) gekoppelt oder verbunden ist, kann das Element direkt mit dem anderen Element verbunden werden oder mit dem anderen Element über ein anderes Element (z. B. ein drittes Element) verbunden werden.In the present disclosure, an expression such as "A or B", "at least one of "A or/and B" or "one or more of A or/and B" can include any possible combination of features listed together. Expressions such as "first ", "secondary", "primary" or "secondary" used herein represent and do not limit various elements regardless of their order and/or importance. When an element (e.g., a first element) is described as being "operably" or "communicatively" coupled or connected to another element (e.g., a second element), the element may be directly connected to the other element become or are connected to the other element via another element (e.g. a third element).
Ein in der vorliegenden Offenbarung verwendeter Ausdruck "konfiguriert zu" (oder "eingerichtet") kann beispielsweise durch "geeignet für", "geeignet zu", "angepasst zu", "gemacht zu", "fähig zu" oder "entworfen zu" ersetzt werden, je nach dem technisch Möglichen. Alternativ kann in einer bestimmten Situation ein Ausdruck "Vorrichtung konfiguriert zu" oder "eingerichtet zu" bedeuten, dass die Vorrichtung zusammen mit einer anderen Vorrichtung oder Komponente arbeiten kann, oder eine entsprechende Funktion ausführen kann.For example, a phrase "configured for" (or "configured for") as used in the present disclosure may be replaced with "suitable for," "suitable for," "adapted for," "made for," "capable of," or "designed for." depending on what is technically possible. Alternatively, in a particular situation, a phrase "device configured to" or "set up to" may mean that the device can operate in conjunction with another device or component, or perform a corresponding function.
Alle Größenangaben, welche in "mm" angegeben sind, sind als ein Größenbereich von +- 1 mm um den angegebenen Wert zu verstehen, sofern nicht eine andere Toleranz oder andere Bereiche explizit angegeben sind. Alle Maß- und Größenangaben sind lediglich beispielhaft.All sizes specified in "mm" are to be understood as a size range of +- 1 mm around the specified value, unless another tolerance or other ranges are explicitly stated. All dimensions and sizes are only examples.
Anzumerken ist, dass die vorliegenden Einzelaspekte, beispielsweise der Drehrost, die Brennkammer oder die Filtereinrichtung gesondert von bzw. getrennt von der Biomasse-Heizanlage hierin als Einzelteile oder Einzelvorrichtungen offenbart sind. Es ist dem Fachmann also klar, dass auch einzelne Aspekte oder Anlagenteile hierin auch für sich genommen offenbart sind. Vorliegend sind die einzelnen Aspekte oder Anlageteile insbesondere in den durch Klammern gekennzeichneten Unterkapiteln offenbart. Es ist vorgesehen, dass diese einzelnen Aspekte auch gesondert beansprucht werden können.It should be noted that the present individual aspects, for example the rotary grate, the combustion chamber or the filter device, are disclosed here separately from or separately from the biomass heating system as individual parts or individual devices. It is therefore clear to the person skilled in the art that individual aspects or parts of the system are also disclosed here on their own. In the present case, the individual aspects or parts of the system are disclosed in particular in the sub-chapters marked by brackets. It is envisaged that these individual aspects can also be claimed separately.
Weiter sind der Übersichtlichkeit halber in den Figuren nicht alle Merkmale und Elemente, insbesondere wenn sich diese wiederholen, einzeln bezeichnet. Es sind vielmehr die Elemente und Merkmale jeweils exemplarisch bezeichnet. Analoge oder gleiche Elemente sind dann als solche zu verstehen.Furthermore, for the sake of clarity, not all features and elements are individually identified in the figures, especially if they are repeated. There are Rather, the elements and features are each designated as an example. Analogous or identical elements are then to be understood as such.
Der Pfeil V bezeichnet in den Figuren die Vorderansicht der Anlage 1, und der Pfeil S bezeichnet in den Figuren die Seitenansicht der Anlage 1.The arrow V in the figures indicates the front view of the
Die Biomasse-Heizanlage 1 weist einen Kessel 11 auf, der auf einem Kesselfuß 12 gelagert ist. Der Kessel 11 weist ein Kesselgehäuse 13, beispielsweise aus Stahlblech, auf.The
Im vorderen Teil des Kessels 11 befindet sich eine Brenneinrichtung 2 (nicht dargestellt), die über eine erste Wartungsöffnung mit einem Verschluss 21 erreicht werden kann. Eine Drehmechanikhalterung 22 für einen Drehrost 25 (nicht dargestellt) lagert eine Drehmechanik 23, mit der Antriebskräfte auf Lagerachsen 81 des Drehrosts 25 übertragen werden können.In the front part of the
Im Mittelteil des Kessels 11 befindet sich ein Wärmetauscher 3 (nicht dargestellt), der von oben über eine zweite Wartungsöffnung mit einem Verschluss 31 erreicht werden kann.In the central part of the
Im Hinterteil des Kessels 11 befindet sich eine optionale Filtereinrichtung 4 (nicht dargestellt) mit einer Elektrode 44 (nicht dargestellt), die mit einer isolierenden Elektrodenhalterung 43 aufgehängt ist, und die über eine Elektrodenversorgungsleitung 42 unter Spannung gesetzt wird. Das Abgas der Biomasse-Heizanlage 1 wird über einen Abgasausgang 41 abgeführt, der der Filtereinrichtung 4 strömungstechnisch nachgelagert angeordnet ist. Hier kann ein Ventilator vorgesehen sein.In the rear of the
Hinter dem Kessel 11 ist eine Rezirkulationseinrichtung 5 vorgesehen, die einen Teil des Abgases über Rezirkulationskanäle 51, 53 und 54 und Klappen 52 zur Kühlung des Verbrennungsvorgangs und Wiederverwendung beim Verbrennungsvorgang rezirkuliert.A
Weiter weist die Biomasse-Heizanlage 1 eine Brennstoffzufuhr 6 auf, mit der der Brennstoff kontrolliert zu der Brenneinrichtung 2 in die Primärverbrennungszone 26 von der Seite auf den Drehrost 25 befördert wird. Die Brennstoffzufuhr 6 weist eine Zellradschleuse 61 mit einer Brennstoffzufuhröffnung 65 auf, wobei die Zellradschleuse 61 einen Antriebsmotor 66 mit einer Ansteuerelektronik aufweist. Eine von dem Antriebsmotor 66 angetriebene Achse 62 treibt eine Übersetzungsmechanik 63 an, die eine (nicht dargestellte) Brennstoff-Förderschnecke 67 antreiben kann, so dass der Brennstoff in einem Brennstoff-Zufuhrkanal 64 zu der Brenneinrichtung 2 gefördert wird.Furthermore, the
Im unteren Teil der Biomasse-Heizanlage 1 ist eine Ascheabfuhreinrichtung 7 vorgesehen, welche eine Ascheaustragungsschnecke 71 in einem Ascheaustragungskanal aufweist, die von einem Motor 72 betrieben wird.In the lower part of the
Von links nach rechts sind in
Die Brenneinrichtung 2 weist eine Brennkammer 24 auf, in der im Kern der Verbrennungsprozess des Brennstoffes stattfindet. Die Brennkammer 24 weist einen, später näher erläuterten, mehrteiligen Drehrost 25 auf, auf dem das Brennstoffbett 28 aufliegt. Der mehrteilige Drehrost 25 ist mittels einer Mehrzahl von Lagerachsen 81 drehbar gelagert angeordnet.The
Weiter bezugnehmend auf
Dabei sind die Sekundärluftdüsen 291 derart ausgestaltet, dass diese die (durch die Brennkammersteine 29 vorgewärmte) Sekundärluft tangential in die Brennkammer 24 mit ihrem dortigen ovalen Querschnitt einführen (vgl.
Die Brennkammersteine 29 bilden die Innenverkleidung der Primärverbrennungszone 26 aus, speichern Wärme und sind dem Feuer direkt ausgesetzt. Damit schützen die Brennkammersteine 29 auch das weitere Material der Brennkammer 24, beispielsweise Gusseisen, vor der direkten Flammeneinwirkung in der Brennkammer 24. Die Brennkammersteine 29 sind vorzugsweise an die Form des Rosts 25 angepasst. Die Brennkammersteine 29 weisen weiter Sekundärluft- bzw. Rezirkulationsdüsen 291 auf, die das Rauchgas in die Primärverbrennungszone 26 zur erneuten Teilnahme am Verbrennungsprozess und insbesondere zur bedarfsweisen Kühlung rezirkulieren. Die Sekundärluftdüsen 291 sind dabei nicht auf die Mitte der Primärverbrennungszone 26 ausgerichtet, sondern azentrisch ausgerichtet, um einen Drall der Strömung in der Primärverbrennungszone 26 zu bewirken (d. h., eine Drall- und Wirbelströmung, welche später näher erläutert wird). Die Brennkammersteine 29 werden später noch eingehender erläutert. Eine Isolation 311 ist am Kesselrohreintritt vorgesehen. Die ovale Querschnittsform der Primärverbrennungszone 26 (und der Düse) sowie die Länge und Lage der Sekundärluftdüsen 291 begünstigen die Ausbildung und den Erhalt einer Wirbelströmung vorzugsweise bis zur Decke der Brennkammer 24 vorteilhaft.The
Eine Sekundärverbrennungszone 27 schließt sich, entweder auf der Höhe der Brennkammerdüsen 291 (funktional bzw. verbrennungstechnisch betrachtet) oder auf Höhe der Brennkammerdüse 203 (rein strukturell bzw. baulich betrachtet) an die Primärverbrennungszone 26 der Brennkammer 26 an und definiert den Strahlungsteil der Brennkammer 26. In dem Strahlungsteil gibt das bei der Verbrennung entstandene Rauchgas seine Wärmeenergie hauptsächlich durch Wärmestrahlung insbesondere an das Wärmetauschmedium ab, welches sich in den beiden linken Kammern für das Wärmetauschmedium 38 befindet. Die entsprechenden Rauchgasströmungen sind in
Durch die Sekundärlufteindüsung hervorgerufen bilden sich in der isolierten bzw. begrenzten Brennkammer 24 ausgeprägt Drall- bzw. Rotations- bzw. Wirbelströmungen (vgl.
Nach dem Austritt aus der Düse 203, die diese Wirbelströmungen nochmals bündelt, zeigen sich kerzenflammenförmige Rotationsströmungen S2 (vgl. auch
Die Sekundärluftdüsen 291 sind in den elliptischen bzw. ovalen Querschnitt der Brennkammer 24 somit derart integriert, dass sie aufgrund ihrer Länge und ihrer Ausrichtung Wirbelströmungen induzieren, die das Rauchgas-Sekundärluftgemisch in Rotation versetzen und dadurch (nochmals durch in Kombination mit der darüber positionierten Brennkammerdüse 203 verbessert) eine vollständige Verbrennung bei minimalem Luftüberschuss und somit maximalem Wirkungsgrad ermöglichen. Dies ist auch in den
Dabei ist die Sekundärluftzufuhr derart gestaltet ist, dass diese die heißen Brennkammersteine 29 durch Umströmung derselben kühlt und die Sekundärluft im Gegenzug selbst vorgewärmt wird, wodurch die Ausbrandgeschwindigkeit der Rauchgase beschleunigt wird und die Vollständigkeit des Ausbrandes auch bei extremer Teillast (z. B. 30% der Nennlast) sichergestellt wird.The secondary air supply is designed in such a way that it cools the hot
Die erste Wartungsöffnung 21 ist mit einem Dämmmaterial, beispielsweise Vermiculite™, isoliert. Die vorliegende Sekundärverbrennungszone 27 ist derart eingerichtet, dass ein Ausbrand des Rauchgases gewährleistet wird. Die spezielle geometrische Ausgestaltung der Sekundärverbrennungszone 27 wird später noch eingehender erläutert.The
Nach der Sekundärverbrennungszone 27 strömt das Rauchgas in die Wärmetauscheinrichtung 3, welche ein Bündel von parallel zueinander vorgesehenen Kesselrohren 32 aufweist. In den Kesselrohren 32 strömt das Rauchgas nun abwärts, wie in
In den Kesselrohren 32 sind Federturbulatoren 36 und Spiral- bzw. Bandturbulatoren 37 angeordnet, um den Wirkungsgrad der Wärmetauscheinrichtung 4 zu verbessern. Dies wird später noch eingehender erläutert werden.
Der Ausgang der Kesselrohre 32 mündet über den Wendekammereintritt 34 bzw. -einlass in die Wendekammer 35. Falls die Filtereinrichtung 4 nicht vorgesehen ist, wird das Rauchgas wieder im Kessel 11 nach oben abgeführt. Der andere Fall der optionalen Filtereinrichtung 4 ist in den
Elektrostatische Staubfilter, oder auch Elektroabscheider genannt, sind Einrichtungen zur Abscheidung von Partikeln aus Gasen, die auf dem elektrostatischen Prinzip beruhen. Diese Filtereinrichtungen werden insbesondere zur elektrischen Reinigung von Abgasen verwendet. Bei Elektrofiltern werden Staubteilchen durch eine Koronaentladung einer Sprühelektrode elektrisch aufgeladen und zur entgegengesetzt aufgeladenen Elektrode (Niederschlagselektrode) gezogen. Die Koronaentladung findet auf einer dafür geeigneten, geladenen Hochspannungselektrode (auch als Sprühelektrode bezeichnet) im Inneren des Elektrofilters statt. Die Elektrode ist bevorzugt mit herausragenden Spitzen und eventuell scharfen Kanten ausgeführt, weil dort die Dichte der Feldlinien und damit auch die elektrische Feldstärke am größten und somit die Koronaentladung begünstigt ist. Die gegengesetzte Elektrode (Niederschlagselektrode) besteht für gewöhnlich aus einem geerdeten Abgasrohrabschnitt, der um die Elektrode gelagert ist. Der Abscheidungsgrad eines Elektrofilters ist insbesondere von der Verweilzeit der Abgase im Filtersystem und der Spannung zwischen Sprüh- und Abscheidungselektrode abhängig. Die dafür notwendige gleichgerichtete Hochspannung wird von einer Hochspannungserzeugungseinrichtung (nicht dargestellt) bereitgestellt. Die Hochspannungserzeugungsanlage und die Halterung für die Elektrode sind vor Staub und Verschmutzung zu schützen, um ungewollte Kriechströme zu vermeiden und die Standzeit der Anlage 1 zu verlängern.Electrostatic dust filters, also known as electrostatic precipitators, are devices for separating particles from gases that are based on the electrostatic principle. These filter devices are used in particular for the electrical cleaning of exhaust gases. With electrostatic precipitators, dust particles are electrically charged by a corona discharge of a spray electrode and drawn to the oppositely charged electrode (collecting electrode). The corona discharge takes place on a suitable, charged high-voltage electrode (also known as a discharge electrode) inside the electrostatic precipitator. The electrode is preferred with protruding tips and possibly sharp edges, because the density of the field lines and thus also the electric field strength is greatest there and the corona discharge is thus favored. The opposite electrode (precipitation electrode) usually consists of a grounded section of exhaust pipe that is mounted around the electrode. The degree of separation of an electrostatic precipitator depends in particular on the dwell time of the exhaust gases in the filter system and the voltage between the spray and separation electrodes. The rectified high voltage required for this is provided by a high-voltage generating device (not shown). The high-voltage generation system and the holder for the electrode must be protected from dust and dirt in order to avoid unwanted leakage currents and to extend the service life of
Wie in
Die (Sprüh-) Elektrode 45 hängt schwingungsfähig nach unten in den Innenraum der Filtereinrichtung 4. Dabei kann die Elektrode 45 beispielsweise quer zur Längsachse der Elektrode 45 hin- und herschwingen.The (spray)
Ein Käfig 48 dient gleichzeitig als Gegenelektrode und als Abreinigungsmechanik für die Filtereinrichtung 4. Der Käfig 48 ist mit dem Masse- bzw. Erdpotential verbunden. Durch den herrschenden Potentialunterschied wird das in der Filtereinrichtung 4 strömende Abgas, vgl. die Pfeile S6, gefiltert wie vorstehend erläutert. Im Falle der Abreinigung der Filtereinrichtung 4 wird die Elektrode 45 stromlos geschaltet. Der Käfig 48 weist vorzugsweise ein achteckiges regelmäßiges Querschnittsprofil auf, so wie sich das beispielsweise der Ansicht der
Das Rauchgas strömt nach dem Austritt aus dem Wärmetauscher 3 durch die Wendekammer 34 in den Eintritt 44 der Filtereinrichtung 4.After leaving the
Dabei ist die (optionale) Filtereinrichtung 4 optional vollintegriert in den Kessel 11 vorgesehen, womit die dem Wärmetauscher 3 zugewandte und von dem Wärmetauschermedium durchspülte Wandfläche auch aus Richtung der Filtereinrichtung 4 zum Wärmetausch eingesetzt wird, womit die Effizienz der Anlage 1 nochmals verbessert wird. Damit kann zumindest ein Teil der Wand die Filtereinrichtung 4 mit dem Wärmetauschmedium durchspült sein, womit zumindest ein Teil dieser Wand mit Kesselwasser gekühlt wird.The (optional)
Am Filteraustritt 47 strömt das gereinigte Abgas aus der Filtereinrichtung 4 hinaus, wie durch die Pfeile S7 angegeben. Nach dem Filteraustritt wird ein Teil des Abgases über die Rezirkulationseinrichtung 5 wieder zu der Primärverbrennungszone 26 zurückgeführt. Auch dies wird später noch näher erläutert werden. Der verbleibende Teil des Abgases wird über den Abgasausgang 41 aus dem Kessel 11 hinausgeleitet.The cleaned exhaust gas flows out of the
Eine Ascheabfuhr 7 ist im unteren Teil des Kessels 11 angeordnet. Über eine Ascheaustragungsschnecke 71 wird die beispielsweise aus der Brennkammer 24, den Kesselrohren 32 und der Filtereinrichtung 4 abgeschiedene und herausfallende Asche seitlich aus dem Kessel 11 ausgefördert.An
Die Brennkammer 24 und der Kessel 11 dieser Ausführungsform wurden mittels CFD-Simulationen berechnet. Weiter wurden Praxisexperimente durchgeführt, um die CFD-Simulationen zu bestätigen. Ausgangspunkt der Überlegungen waren Berechnungen für einen 100 kW Kessel, wobei jedoch ein Leistungsbereich von 20 bis 500 kW berücksichtigt wurde.The
Eine CFD-Simulation (CFD = Computational Fluid Dynamics = numerische Strömungsmechanik) ist die räumlich und zeitlich aufgelöste Simulation von Strömungs- und Wärmeleitprozessen. Dabei können die Strömungsprozesse laminar und/oder turbulent sein, von chemischen Reaktionen begleitet auftreten, oder es kann sich um ein mehrphasiges System handeln. CFD-Simulationen eignen sich somit gut als Design- und Optimierungswerkzeug. Bei der vorliegenden Erfindung wurden CFD-Simulationen eingesetzt, um die strömungstechnischen Parameter derart zu optimieren, dass die vorstehend aufgeführten Aufgaben der Erfindung gelöst werden. Insbesondere wurden im Ergebnis die mechanische Ausgestaltung und Dimensionierung des Kessels 11, der Brennkammer 24, der Sekundärluftdüsen 291 und der Brennkammerdüse 203 maßgeblich durch die CFD-Simulation und auch durch zugehörige praktische Experimente definiert. Die Simulationsergebnisse basieren auf einer Strömungssimulation mit Berücksichtigung der Wärmeübertragung. Beispiele von Ergebnissen solcher CFD-Simulationen sind in den
Die vorstehend aufgeführten Bestandteile der Biomasse-Heizanlage 1 und des Kessels 11, die Ergebnisse der CFD-Simulationen sind, werden nachstehend eingehender beschrieben.The components of the
Die Gestaltung der Brennkammerform ist von Wichtigkeit, um die aufgabengemäßen Anforderungen einhalten zu können. Durch die Brennkammerform bzw. -geometrie sollen eine möglichst gute turbulente Durchmischung und Homogenisierung der Strömung über den Querschnitt des Rauchgaskanals, eine Minimierung des Feuerungsvolumens, sowie eine Reduktion des Luftüberschusses und des Rezirkulationsverhältnisses (Wirkungsgrad, Betriebskosten), eine Reduktion der CO- und CxHx- Emissionen, der NOx-Emissionen, der Staubemissionen, eine Reduktion von lokalen Temperaturspitzen (Fouling und Verschlackung) sowie eine Reduktion von lokalen Rauchgas-Geschwindigkeitsspitzen (Materialbeanspruchung und Erosion) erreicht werden.The design of the combustor shape is important in order to be able to meet the task requirements. The shape and geometry of the combustion chamber should ensure the best possible turbulent mixing and homogenization of the flow over the cross-section of the flue gas duct, minimization of the combustion volume, as well as a reduction in the excess air and the recirculation ratio (efficiency, operating costs), a reduction in the CO and CxHx Emissions, NOx emissions, dust emissions, a reduction in local temperature peaks (fouling and slagging) and a reduction in local flue gas velocity peaks (material stress and erosion) can be achieved.
Die
Die in den
Mit diesen Werten werden vorliegend sowohl die Geometrien der Primärverbrennungszone 26 als auch der Sekundärverbrennungszone 27 der Brennkammer 24 optimiert. Die angegebenen Größenbereiche sind Bereiche, mit denen die Anforderungen ebenso (annähernd) erfüllt werden, wie mit den angegebenen exakten Werten.In the present case, both the geometries of the
Dabei kann vorzugsweise eine Kammergeometrie der Primärverbrennungszone 26 und der Brennkammer 24 (bzw. ein Innenvolumen der Primärverbrennungszone 26 der Brennkammer 24) anhand der folgenden Grundparameter definiert werden:A chamber geometry of the
Ein Volumen mit einer ovalen horizontalen Grundfläche mit den Maßen von 380 mm +- 60 mm (vorzugsweise +-30 mm) × 320 mm +- 60 mm (vorzugsweise +-30 mm), sowie einer Höhe von 538 mm +- 80 mm (vorzugsweise +- 50 mm).A volume with an oval horizontal base measuring 380 mm +- 60 mm (preferably +-30 mm) × 320 mm +- 60 mm (preferably +-30 mm), and a height of 538 mm +- 80 mm ( preferably +- 50 mm).
Die vorstehenden Größenangaben können im Verhältnis dieser zueinander skaliert auch Anwendung auf Kessel anderer Leistungsklassen (bspw. 50 kW oder 200 kW) finden.The size information given above can also be applied to boilers in other output classes (e.g. 50 kW or 200 kW) scaled in relation to one another.
Als Fortbildung dessen kann das vorstehend definierte Volumen eine obere Öffnung in Form einer Brennkammerdüse 203 aufweisen, die in der Sekundärverbrennungszone 27 der Brennkammer 24 vorgesehen ist, welche eine in die Sekundärverbrennungszone 27 hineinragende Brennkammerschräge 202 aufweist, welche vorzugsweise das Wärmetauschmedium 38 beinhaltet. Die Brennkammerschräge 202 verringert den Querschnitt der Sekundärverbrennungszone 27. Dabei ist die Brennkammerschräge 202 um einen Winkel k von zumindest 5%, bevorzugt um einen Winkel k von zumindest 15% und noch mehr bevorzugt um zumindest einen Winkel k von 19% in Bezug auf eine fiktive horizontale bzw. gerade vorgesehene Brennkammerdecke H (vgl. die gestrichelte Horizontallinie H in
Zudem ist eine Brennkammerdecke 204 ebenfalls in Richtung des Eintritts 33 aufsteigend geneigt vorgesehen. Die Brennkammer 24 in der Sekundärverbrennungszone 27 weist somit die Brennkammerdecke 204 auf, die in Richtung des Eintritts 33 des Wärmetauschers 3 nach oben geneigt vorgesehen ist. Diese Brennkammerdecke 204 erstreckt sich im Schnitt der
Mit der Brennkammerdecke 204 ist eine weitere (Decken-)Schräge in der Brennkammer 24 vor dem Eintritt 33 vorgesehen, die zusammen mit der Brennkammerschräge 202 einen Trichter ausbildet. Dieser Trichter dreht die nach oben gerichtete Drall- bzw. Wirbelströmung zur Seite und lenkt diese Strömung in etwa in das Horizontale um. Aufgrund der schon turbulenten Aufwärtsströmung und der Trichterform vor dem Eintritt 33 wird sichergestellt, dass alle Wärmetauscherrohre 32 bzw. Kesselrohe 32 gleichmäßig beströmt werden, womit ein gleichverteilter Durchfluss des Rauchgases in allen Kesselrohren 32 sichergestellt ist. Dies optimiert den Wärmeübergang im Wärmetauscher 3 ganz erheblich.With the
Dabei kann insbesondere die Kombination der vertikalen und horizontalen Schrägen 203, 204 in der Sekundärverbrennungszone in Kombination als Einströmgeometrie in dem konvektiven Kessel eine gleichmäßige Verteilung des Rauchgases auf die konvektiven Kesselrohre erreichen.In particular, the combination of the vertical and horizontal inclines 203, 204 in the secondary combustion zone in combination as the inflow geometry in the convective boiler can achieve a uniform distribution of the flue gas over the convective boiler tubes.
Die Brennkammerschräge 202 dient der Homogenisierung der Strömung S3 in Richtung des Wärmetauschers 3 und damit der Beströmung der Kesselrohre 32. Somit wird eine möglichst gleichmäßige Verteilung des Rauchgases auf die einzelnen Kesselrohre bewirkt, um dort den Wärmeübergang zu optimieren.The
Im Detail dreht die Kombination der Schrägen mit dem Einströmquerschnitt des Kessels die Rauchgasströmung so, dass eine möglichst gleichmäßige Verteilung des Rauchgasdurchflusses bzw. der Durchflussmenge auf die jeweiligen Kesselrohre 32 erfolgt.In detail, the combination of the inclines with the inflow cross section of the boiler rotates the flue gas flow in such a way that the flue gas flow or the flow rate is distributed as evenly as possible over the
Im Stand der Technik gibt es häufig Brennkammern mit rechteckiger oder polygonaler Brennkammer und Düse, wobei jedoch die unregelmäßige Form der Brennkammer und der Düse sowie deren Zusammenspiel ein weiteres Hindernis für eine gleichmäßige Luftverteilung und eine gute Mischung von Luft und Brennstoff und somit einen guten Ausbrand darstellen, wie vorliegend erkannt wurde. Insbesondere mit einer eckigen Geometrie der Brennkammer entstehen Strömungsfäden bzw. Vorzugsströmungen, die nachteilhaft zu einer ungleichmäßigen Beströmung der Wärmetauscherrohre 32 führen.In the prior art, there are often combustion chambers with a rectangular or polygonal combustion chamber and nozzle, but the irregular shape of the combustion chamber and the nozzle and their interaction represent a further obstacle to an even air distribution and a good mixture of air and fuel and thus good combustion , as recognized herein. In particular, with an angular geometry of the combustion chamber, flow threads or preferential flows arise, which disadvantageously lead to an uneven flow of the
Deshalb ist vorliegend die Brennkammer 24 ohne Totecken oder Totkanten vorgesehen.Therefore, in the present case, the
Vorliegend wurde somit erkannt, dass die Geometrie der Brennkammer (und des gesamten Strömungsverlaufs im Kessel) eine maßgebliche Rolle bei den Überlegungen zur Optimierung der Biomasse-Heizanlage 1 spielt. Deshalb wurde (in Abkehr von den üblichen rechteckigen oder mehr-eckigen oder rein zylindrischen Formgebungen) die hierin beschriebene ovale oder runde Grundgeometrie ohne Totecken gewählt. Zudem wurde auch diese Grundgeometrie der Brennkammer und deren Aufbau mit den vorstehend angegebenen Maßen / Maßbereichen optimiert. Dabei sind diese Maße /Maßbereiche derart gewählt, dass insbesondere auch unterschiedliche Brennstoffe (Hackgut und Pellets) mit unterschiedlicher Qualität (beispielsweise mit unterschiedlichem Wassergehalt) bei sehr hohem Wirkungsgrad verbrannt werden können. Dies haben die Praxistests und CFD-Simulationen ergeben.It was thus recognized in the present case that the geometry of the combustion chamber (and the entire course of flow in the boiler) plays a decisive role in the considerations for optimizing the
Insbesondere kann die Primärverbrennungszone 26 der Brennkammer 24 ein Volumen umfassen, das bevorzugt im Außenumfang einen ovalen oder annähernd kreisförmigen Horizontalquerschnitt aufweist (ein solcher Querschnitt ist in
Vorstehend wird der Begriff "annähernd" verwendet, da selbstverständlich einzelne Kerben, konstruktiv bedingte Abweichungen oder kleine Asymmetrien vorhanden sein können, beispielsweise bei den Übergängen der einzelnen Brennkammersteine 29 zueinander. Diese geringfügigen Abweichungen spielen strömungstechnisch jedoch nur eine untergeordnete Rolle.The term "approximately" is used above because of course individual notches, design-related deviations or small asymmetries can be present, for example at the transitions of the individual
Der Horizontalquerschnitt der Brennkammer 24 und insbesondere der Primärverbrennungszone 26 der Brennkammer 24 können ebenso bevorzugt regelmäßig ausgeführt sein. Weiter kann der Horizontalquerschnitt der Brennkammer 24 und insbesondere der Primärverbrennungszone 26 der Brennkammer 24 bevorzugt eine regelmäßige (und/oder symmetrische) Ellipse sein.The horizontal cross section of the
Zudem kann der Horizontalquerschnitt (der Außenumfang) der Primärverbrennungszone 26 über eine vorgegebene Höhe, (beispielsweise 20 cm) gleichbleibend ausgestaltet sein.In addition, the horizontal cross section (the outer circumference) of the
Damit ist vorliegend eine oval-zylindrische Primärverbrennungszone 26 der Brennkammer 24 vorgesehen, die nach CFD-Berechnungen eine deutlich gleichmäßigere und bessere Luftverteilung in der Brennkammer 24 ermöglicht als bei rechteckigen Brennkammern des Stands der Technik. Die fehlenden Toträume vermeiden zudem Zonen in der Brennkammer mit schlechter Luftdurchströmung, was die Effizienz steigert und die Schlackebildung verringert.An oval-cylindrical
Ebenso ist die Düse 203 in der Brennkammer 24 als ovale oder annähernd kreisförmige Verengung ausgestaltet, um die Strömungsverhältnisse noch weiter zu optimieren. Der vorstehend erläuterte Drall der Strömung in der Primärverbrennungszone 26, welcher durch die erfindungsgemäßen speziell konzipierten Sekundärluftdüsen 291 bedingt ist, führt zu einem grob helixförmig oder spiralförmig nach oben gerichteten Strömungsverlauf, wobei eine ebenso ovale oder annähernd kreisförmige Düse diesen Strömungsverlauf begünstigt, und nicht wie übliche rechteckige Düsen stört. Diese optimierte Düse 203 bündelt das nach oben rotierend strömende Rauchgas-Luft-Gemisch und sorgt für eine bessere Durchmischung, einen Erhalt der Wirbelströmungen in der Sekundärverbrennungszone 27 und damit für eine vollständige Verbrennung. Dadurch wird auch der erforderliche Luftüberschuss minimiert. Dies verbessert den Verbrennungsvorgang und erhöht die Effizienz.Likewise, the
Damit dient insbesondere die Kombination der vorstehend erläuterten (und nachstehend nochmals in Bezug auf die
Somit wird eine wirbel- bzw. drallbehaftete Strömung durch die Düse 203 gebündelt und nach oben gerichtet, womit sich diese Strömung weiter nach oben erstreckt als im Stand der Technik üblich. Dies hat, wie für den Fachmann aus den Gesetzen der Physik betreffend des Drehimpulses ersichtlich, seine Ursache in der durch die Düse 203 erzwungenen Verkleinerung des drallbehafteten Abstandes des Luftstromes zur Rotations- bzw. Drallmittenachse (vgl. analog die Physik des Pirouetteneffekts).Thus, a turbulent or swirling flow is bundled through the
Zudem wird vorliegend der Strömungsverlauf in der Sekundärverbrennungszone 27 und aus der Sekundärverbrennungszone 27 zu den Kesselrohren 32 optimiert, wie nachstehend näher erläutert.In addition, the course of the flow in the
Die Brennkammerschräge 202 der
Die Einströmung bzw. Umlenkung des Rauchgasstromes vor dem Rohrbündelwärmetauscher ist derart ausgestaltet, dass eine ungleichmäßige Anströmung der Rohre bestmöglich vermieden wird, womit Temperaturspitzen in einzelnen Kesselrohren 32 niedrig gehalten werden können und damit der Wärmeübergang im Wärmetauscher 4 verbessert werden kann (bestmögliche Nutzung der Wärmetauscherflächen). In der Folge ist die Effizienz der Wärmetauscheinrichtung 4 verbessert.The inflow or deflection of the flue gas flow in front of the tube bundle heat exchanger is designed in such a way that an uneven flow of the tubes is avoided as far as possible, whereby temperature peaks in
Im Detail wird der gasförmige Volumenstrom des Rauchgases durch die schräge Brennkammerwandung 203 mit einer gleichmäßigen Geschwindigkeit (auch im Falle unterschiedlicher Verbrennungszustände) zu den Wärmetauscherrohren bzw. den Kesselrohren 32 geführt. Durch die schräge Brennkammerdecke 204 wird dieser Effekt nochmals verstärkt, wobei ein Trichtereffekt bewirkt wird. Im Ergebnis entsteht eine gleichmäßige Wärmeverteilung der einzelnen Kesselrohre 32 betreffenden Wärmetauscherflächen und damit eine verbesserte Nutzung der Wärmetauscherflächen. Die Abgastemperatur wird somit gesenkt und der Wirkungsgrad erhöht. Dabei ist die Strömungsverteilung insbesondere an der in der
Weiter ist im unteren Teil der Brennkammer 25 am Brennstoffbett 28 eine Zündeinrichtung 201 vorgesehen. Diese kann eine Initialzündung oder eine erneute Zündung des Brennstoffes bewirken. Es kann die Zündeinrichtung 201 ein Glühzünder sein. Die Zündeinrichtung ist vorteilhaft ortsfest und horizontal seitlich versetzt zum Ort der Einführung des Brennstoffs angeordnet.Furthermore, an
Weiter kann (optional) nach dem Ausgang des Rauchgases (d. h., nach S7) aus der Filtereinrichtung eine Lamdasonde (nicht dargestellt) vorgesehen sein. Durch die Lambdasonde kann eine Steuerung (nicht dargestellt) den jeweiligen Heizwert erkennen. Die Lambdasonde kann somit für das ideale Mischverhältnis zwischen den Brennstoffen und der Sauerstoffzufuhr sorgen. Trotz unterschiedlicher Brennstoffqualitäten werden im Ergebnis eine hohe Effizienz und ein höherer Wirkungsgrad erreichbar.Furthermore, a lambda probe (not shown) can (optionally) be provided after the exit of the flue gas (ie, after S7) from the filter device. A controller (not shown) can use the lambda probe to detect the respective calorific value. The lambda probe can thus ensure the ideal mixing ratio between the fuels and the oxygen supply. Despite different fuel qualities, the result is high efficiency and higher efficiency.
Das in
Weiter ist in den
Mithin stellen die vorstehenden Angaben zur Brennkammergeometrie der Primärverbrennungszone 26 zusammen mit der Geometrie der Sekundärluftdüsen 291 und der Düse 203 eine vorteilhafte Weiterbildung der vorliegenden Offenbarung dar.Consequently, the above information on the combustion chamber geometry of the
Die
Die Kammerwand der Primärverbrennungszone 26 der Brennkammer 24 ist mit einer Mehrzahl von Brennkammersteinen 29 in einem modularen Aufbau vorgesehen, was unter anderem die Fertigung und die Wartung erleichtert. Die Wartung wird insbesondere durch die Möglichkeit der Entnahme einzelner Brennkammersteine 29 erleichtert.The chamber wall of the
An den Auflageflächen 260 der Brennkammersteine 29 sind formschlüssige Nuten 261 und Vorsprünge 262 (in
Als oberer Abschluss sind drei weitere Brennkammersteine 29 vorgesehen, wobei die ringförmige Düse 203 durch zwei Halterungssteine 264 gelagert wird, die formschlüssig auf den oberen Ring 263 aufgesetzt werden. Bei allen Auflageflächen 260 sind Nuten 261 entweder für passende Vorsprünge 262 und/oder zur Einfügung von geeignetem Dichtmaterial vorgesehen.Three further
Die Halterungssteine 264, welche bevorzugt symmetrisch ausgebildet sind, können bevorzugt eine nach innen geneigte Schräge 265 aufweisen, um ein Abkehren von Flugasche auf den Drehrost 25 zu vereinfachen.The mounting
Der untere Ring 263 der Brennkammersteine 29 liegt auf einer Bodenplatte 251 des Drehrosts 25 auf. An der Innenkannte zwischen diesem unteren Ring 263 der Brennkammersteine 29 lagert sich vermehrt Asche ab, was somit diesen Übergang vorteilhaft im Betrieb der Biomasse-Heizanlage 1 selbstständig und vorteilhaft abdichtet.The
Im mittleren Ring der Brennkammersteine 29 sind die Öffnungen für die Rezirkulationsdüsen 291 bzw. Sekundärluftdüsen 291 vorgesehen. Dabei sind die Sekundärluftdüsen 291 zumindest annähernd auf der gleichen (horizontalen) Höhe der Brennkammer 24 in den Brennkammersteinen 29 vorgesehen.The openings for the
Vorliegend sind drei Ringe von Brennkammersteinen 29 vorgesehen, da dies den effizientesten Weg der Herstellung und auch der Wartung darstellt. Alternativ können auch 2, 4 oder 5 solcher Ringe vorgesehen sein.Three rings of
Die Brennkammersteine 29 bestehen vorzugsweise aus Hochtemperatur-Siliziumkarbid, wodurch diese sehr verschleißfest sind.The
Die Brennkammersteine 29 sind als Formsteine vorgesehen. Die Brennkammersteine 29 sind derart geformt, dass das Innenvolumen der Primärverbrennungszone 26 der Brennkammer 24 einen ovalen Horizontalquerschnitt aufweist, womit durch eine ergonomische Formgebung Totecken bzw. Toträume vermieden werden, die üblicherweise vom Rauchgas- Luftgemisch nicht optimal durchströmt werden, wodurch der dort vorhandene Brennstoff nicht optimal verbrannt wird. Aufgrund der vorliegenden Formgebung der Brennkammersteine 29 wird die Durchströmung des Rosts 25 mit Primärluft, die auch zur Verteilung des Brennstoffs über dem Rost 25 passt, und die Möglichkeit von unbehinderten Wirbelströmungen verbessert; und folglich wird die Effizienz der Verbrennung verbessert.The
Der ovale Horizontalquerschnitt der Primärverbrennungszone 26 der Brennkammer 24 ist bevorzugt ein punktsymmetrisches und/oder regelmäßiges Oval mit dem kleinsten Innendurchmesser BK3 und dem größten Innendurchmesser BK11. Diese Maße waren das Ergebnis der Optimierung der Primärverbrennungszone 26 der Brennkammer 24 mittels CFD-Simulation und von praktischen Versuchen.The oval horizontal cross section of the
Die Aufsicht der
Der Drehrost 25 weist die Bodenplatte 251 als Basiselement auf. In einer grob ovalförmigen Öffnung der Bodenplatte 251 ist ein Übergangselement 255 vorgesehen, welches einen Zwischenraum zwischen einem ersten Drehrostelement 252, einem zweiten Drehrostelement 253 und einem dritten Drehrostelement 254 überbrückt, welche drehbar gelagert sind. Damit ist der Drehrost 25 als Drehrost mit drei Einzelelementen vorgesehen, d. h., dieser kann auch als 3-fach Drehrost bezeichnet werden. In den Drehrostelementen 252, 253 und 254 sind Luftlöcher zur Durchströmung mit Primärluft vorgesehen.The
Die Drehrostelemente 252, 253 und 254 sind flache und hitzebeständige Metallplatten, beispielsweise aus einem Metallguss, die auf deren Oberseite eine zumindest weitgehend eben konfigurierte Oberfläche aufweisen und an deren Unterseite mit den Lagerachsen 81 beispielsweise über Zwischenhalterungselemente verbunden sind. Von oben betrachtet weisen die Drehrostelemente 252, 253 und 254 gekrümmte und komplementäre Seiten bzw. Umrisse auf.The
Insbesondere können die Drehrostelemente 252, 253, 254 zueinander komplementäre und gekrümmte Seiten aufweisen, wobei vorzugsweise das zweite Drehrostelement 253 jeweils zu dem benachbarten ersten und dritten Drehrostelement 252, 254 konkave Seiten aufweist, und vorzugsweise das erste und dritte Drehrostelement 252, 254 jeweils zu dem zweiten Drehrostelement 253 hin eine konvexe Seite aufweist. Damit wird die Brecherfunktion der Drehrostelemente verbessert, da die Länge des Bruchs vergrößert wird, und die zum Brechen wirkenden Kräfte (ähnlich wie bei einer Schere) gezielter angreifen.In particular, the
Die Drehrostelemente 252, 253 und 254 (sowie deren Umfassung in Form des Übergangselements 255) weisen gemeinsam betrachtet in der Aufsicht eine annähernd ovale Außenform auf, womit hier wiederum Totecken bzw. Toträume vermieden werden, in denen eine nicht optimale Verbrennung stattfinden könnte oder sich Asche unerwünscht ansammeln könnte. Die optimalen Abmessungen dieser Außenform der Drehrostelemente 252, 253 und 254 sind in
Diese Werte haben sich bei den CFD-Simulationen und dem folgenden Praxistest als Optimalwerte (-bereiche) herausgestellt. Diese Maße korrespondieren mit denen der
Dabei weist der Drehrost 25 eine ovale Verbrennungsfläche auf, die für die Brennstoffverteilung, die Luftdurchströmung des Brennstoffs und den Abbrand des Brennstoffs günstiger ist als eine übliche rechteckige Verbrennungsfläche. Die Verbrennungsfläche 258 wird im Kern durch die Oberflächen der Drehrostelemente 252, 253 und 254 (im horizontalen Zustand) gebildet. Die Verbrennungsfläche ist somit die nach oben zeigende Oberfläche der Drehrostelemente 252, 253 und 254. Diese ovale Verbrennungsfläche entspricht vorteilhaft der Brennstoffauflagefläche, wenn diese seitlich auf den Drehrost 25 aufgebracht bzw. aufgeschoben wird (vgl. der Pfeil E der
Das erste Drehrostelement 252 und das dritte Drehrostelement 254 können bevorzugt in deren Verbrennungsfläche 258 identisch ausgebildet sein. Weiter können das erste Drehrostelement 252 und das dritte Drehrostelement 254 identisch oder baugleich zueinander sein. Dies ist beispielsweise in
Weiter ist das zweite Drehrostelement 253 zwischen dem ersten Drehrostelement 252 und dem dritten Drehrostelement 254 angeordnet.Furthermore, the second
Bevorzugt ist der Drehrost 25 mit einer annähernd punktsymmetrischen ovalen Verbrennungsfläche 258 vorgesehen.The
Ebenso kann der Drehrost 25 eine annähernd elliptische Verbrennungsfläche 258 ausbilden, wobei DR2 die Maße von deren Hauptachse und DR1 die Maße von deren Nebenachse ist.Likewise, the
Weiter kann der Drehrost 25 eine annähernd ovale Verbrennungsfläche 258 aufweisen, welche achsensymmetrisch in Bezug auf eine Mittenachse der Verbrennungsfläche 258 ist.Furthermore, the
Weiter kann der Drehrost 25 eine annähernd kreisförmige Verbrennungsfläche 258 aufweisen, wobei dies geringfügige Nachteile bei der Brennstoffzuführung und der - verteilung nach sich zieht.Furthermore, the
Weiter sind zwei Motoren bzw. Antriebe 231 der Drehmechanik 23 vorgesehen, mit denen die Drehrostelemente 252, 253 und 254 entsprechend gedreht werden können. Näheres zur besonderen Funktion und zu den Vorteilen des vorliegenden Drehrosts 25 wird später mit Bezug auf die
Insbesondere bei Pellet- und Hackgutheizungen (und insbesondere bei hybriden Biomasse-Heizanlagen) kann es vermehrt zu Ausfällen durch Schlacke-Bildung in der Brennkammer 24, insbesondere auf dem Drehrost 25, kommen. Schlacke entsteht bei einem Verbrennungsvorgang immer dann, wenn in der Glut Temperaturen über dem Ascheschmelzpunkt erreicht werden. Die Asche wird dann weich, verklebt und bildet nach dem Abkühlen feste, und oft dunkel gefärbte Schlacke. Dieser auch als Versinterung bezeichnete Vorgang ist bei der Biomasse-Heizanlage 1 unerwünscht, da es durch die Anreicherung von Schlacke in der Brennkammer 24 zu einer Funktionsstörung kommen kann: sie schaltet sich ab. Die Brennkammer 24 muss üblicherweise geöffnet werden und die Schlacke muss entfernt werden.In particular in the case of pellet and wood chip heating systems (and in particular in the case of hybrid biomass heating systems), failures due to slag formation in the
Der Ascheschmelzbereich (dieser erstreckt sich vom Sinterpunkt bis zum Fließpunkt) hängt ganz wesentlich von dem verwendeten Brennmaterial ab. Fichtenholz hat beispielsweise eine kritische Temperatur von ca. 1.200 °C. Doch auch der Ascheschmelzbereich eines Brennstoffes kann starken Schwankungen unterliegen. Je nach Menge und Zusammensetzung der im Holz enthaltenen Mineralien ändert sich das Verhalten der Asche im Verbrennungsprozess.The ash melting range (this extends from the sintering point to the flow point) depends very significantly on the fuel used. Spruce wood, for example, has a critical temperature of around 1,200 °C. However, the ash melting range of a fuel can also be subject to strong fluctuations. Depending on the quantity and composition of the minerals contained in the wood, the behavior of the ash changes during the combustion process.
Ein weiterer Faktor, der die Schlackebildung beeinflussen kann, sind Transport und Lagerung der Holzpellets oder der Hackschnitzel. Diese sollten nämlich möglichst unbeschädigt in die Brennkammer 24 gelangen. Sind die Holzpellets bereits zerbröselt, wenn sie in den Verbrennungsprozess gelangen, so erhöht sich dadurch die Dichte des Glutbetts. Stärkere Schlackebildung ist die Folge. Insbesondere der Transport vom Lagerraum zur Brennkammer 24 ist hier von Bedeutung. Besonders lange Wege, sowie Bögen und Winkel, führen zu einer Beschädigung bzw. einem Abrieb der Holzpellets.Another factor that can influence slag formation is the transport and storage of the wood pellets or chips. This is because they should reach the
Ein weiterer Faktor betrifft die Führung des Verbrennungsvorgangs. Bislang war man bestrebt, die Temperaturen eher hoch zu halten, um einen möglichst guten Ausbrand und niedrige Emissionen zu erzielen. Durch eine optimierte Brennkammergeometrie und Geometrie der Verbrennungszone 258 des Drehrosts 25 ist es möglich, die Verbrennungstemperatur am Rost niedriger und im Bereich der Sekundärluftdüsen 291 hoch zu halten, und somit die Schlackebildung am Rost zu verringern.Another factor relates to the control of the combustion process. So far, efforts have been made to keep the temperatures rather high in order to achieve the best possible burnout and low emissions. An optimized combustion chamber geometry and geometry of the
Zudem kann entstehende Schlacke (und auch die Asche) durch die besondere Formgebung und die Funktionalität des vorliegenden Drehrosts 25 vorteilhaft entfernt werden. Dies wird nun mit Bezug auf die
Die
Diese Ansicht zeigt den Drehrost 25 als freigestelltes Einschubteil mit Drehrostmechanik 23 und Antrieb(en) 231. Der Drehrost 25 ist mechanisch derart vorgesehen, dass er nach Art des Baukastensystems einzeln vorgefertigt werden kann, und als Einschubteil in eine vorgesehene längliche Öffnung des Kessels 11 eingeführt und eingebaut werden kann. Dies erleichtert zudem die Wartung dieses verschleißanfälligen Teils. Damit kann der Drehrost 25 bevorzugt modular ausgebildet sein, wobei dieser als Komplettteil mit Drehrostmechanik 23 und Antrieb 231 schnell und effizient entnommen und wieder eingesetzt werden kann. Der modularisierte Drehrost 25 kann damit auch mittels Schnellverschlüssen montiert und demontiert werden. Im Gegensatz dazu sind die Drehroste des Stands der Technik regelmäßig fest montiert, und somit schwer zu warten oder zu montieren.This view shows the
Der Antrieb 231 kann zwei getrennt ansteuerbare Elektromotoren aufweisen. Diese sind vorzugsweise seitlich an der Drehrostmechanik 23 vorgesehen. Die Elektromotoren können Untersetzungsgetriebe aufweisen. Weiter können Endanschlagsschalter vorgesehen sein, die Endanschläge jeweils für die Endpositionen der Drehrostelemente 252, 253 und 254 vorsehen.The
Die Einzelkomponenten der Drehrostmechanik 23 sind austauschbar vorgesehen. Beispielsweise sind die Zahnräder aufsteckbar vorgesehen. Dies erleichtert die Wartung und auch einen Seitenwechsel der Mechanik bei der Montage, falls erforderlich.The individual components of the
In den Drehrostelementen 252, 253 und 254 des Drehrosts 25 sind die schon erwähnten Öffnungen 256 vorgesehen. Die Drehrostelemente 252, 253 und 254 können über deren jeweilige Lagerachsen 81, die über die Drehmechanik 23 von dem Antrieb 231, vorliegend den beiden Motoren 231, angetrieben werden, jeweils zumindest um 90 Grad, bevorzugt zumindest um 120 Grad, noch mehr bevorzugt um 170 Grad um die jeweilige Lager- bzw. Drehachse 81 gedreht werden. Dabei kann der maximale Drehwinkel 180 Grad, oder auch etwas weniger als 180 Grad sein, so wie das die Rostlippen 257 zulassen. Dabei ist die Drehmechanik 23 derart eingerichtet, dass das dritte Drehrostelement 254 einzeln und unabhängig vom ersten Drehrostelement 252 und vom zweiten Drehrostelement 243 gedreht werden kann, und dass das erste Drehrostelement 252 und das zweite Drehrostelement 243 gemeinsam und unabhängig von dem dritten Drehrostelement 254 gedreht werden können. Die Drehmechanik 23 kann beispielsweise mittels Laufrädern, Zahn- oder Antriebsriemen und/oder Zahnrädern entsprechend vorgesehen sein.In the
Die Drehrostelemente 252, 253 und 254 können bevorzugt als Gussrost mit einem Laserzuschnitt hergestellt werden, um eine exakte Formhaltigkeit sicherzustellen. Dies insbesondere um die Luftführung durch das Brennstoffbett 28 so genau wie möglich zu definieren, und störende Luftströmungen, beispielsweise Luftsträhnen an den Rändern der Drehrostelemente 252, 253 und 254, zu vermeiden.The
Die Öffnungen 256 in den Drehrostelementen 252, 253 und 254 sind derart eingerichtet, dass diese für das übliche Pelletmaterial und/oder die üblichen Hackschnitzel klein genug sind, dass diese nicht hindurchfallen, und dass diese groß genug sind, dass der Brennstoff gut mit Luft beströmt werden kann. Zudem sind die Öffnungen 256 groß genug bemessen, dass diese durch Aschepartikel oder Störstoffe (z. B. keine Steine im Brennstoff) blockiert werden können.The
Im Betrieb sammelt sich Asche und oder Schlacke auf dem Drehrost 25 und insbesondere auf den Drehrostelementen 252, 253 und 254 an. Mit dem vorliegenden Drehrost 25 kann eine effiziente Abreinigung des Drehrosts 25 erfolgen.During operation, ash and/or slag accumulates on the
Zudem wird eine potentielle Schlackebildung bzw. Schlackeansammlung an den beiden Außenkanten des dritten Drehrostelements 254 bei der Drehung dessen (auf-)gebrochen, wobei aufgrund der kurvenförmigen Außenkanten des dritten Drehrostelements 254 nicht nur die Abscherung über eine größere Gesamtlänge als bei herkömmlichen rechteckigen Elementen des Stands der Technik erfolgt, sondern auch mit einer ungleichmäßigen Bewegungsverteilung in Bezug auf die Außenkante (in der Mitte erfolgt eine größere Bewegung als an den unteren und oberen Rändern). Damit ist die Brecherfunktion des Drehrosts 25 deutlich verstärkt.In addition, any potential slag formation or slag accumulation on the two outer edges of the third
In
Zusammengefasst realisiert der vorliegende Drehrost 25 neben dem Normalbetrieb (vgl.
Im Vergleich dazu sind marktübliche Drehrostsysteme nicht ergonomisch und haben durch ihre rechteckige Geometrie nachteilige Totecken, in welchen die Primärluft den Brennstoff nicht optimal durchströmen kann, womit eine Luftsträhnenbildung auftreten kann. An diesen Ecken kommt es auch gehäuft zu einer Schlackenbildung. Diese Punkte sorgen für eine schlechtere Verbrennung mit einem schlechteren Wirkungsgrad.In comparison to this, commercially available rotary grate systems are not ergonomic and, due to their rectangular geometry, have disadvantageous dead spots in which the primary air cannot optimally flow through the fuel, with the result that air strands can form. At these corners, there is also an accumulation of slag formation. These points ensure poorer combustion with poorer efficiency.
Der vorliegende einfache mechanische Aufbau des Drehrosts 25 gestaltet diesen robust, zuverlässig und langlebig.The existing simple mechanical structure of the
Zur Optimierung des Wärmetauschers 3 wurden, in Synergie mit den vorstehend beschriebenen Brennkammergeometrien, wiederum CFD-Simulationen und Praxistests durchgeführt. Dabei wurde auch überprüft, inwieweit ein Federturbulator oder ein Bandturbulator oder eine Kombination aus beidem die Effizienz des Wärmetauschvorganges verbessern können, ohne jedoch den Druckverlust in dem Wärmetauscher 3 zu groß werden zu lassen. Turbulatoren verstärken die Turbulenzbildung in den Kesselrohren 32, womit die Strömungsgeschwindigkeit gesenkt, die Verweildauer des Rauchgases im Kesselrohr 32 erhöht und damit die Effizienz des Wärmeaustauschs erhöht wird. Im Detail wird die Grenzschicht der Strömung an der Rohrwandung aufgebrochen, wodurch der Wärmeübergang verbessert wird. Allerdings wird der Druckverlust auch umso größer, je turbulenter die Strömung ist.To optimize the
Vorliegend wurde zudem für alle mit Rauchgas in Berührung stehenden Flächen eine leichte Verschmutzung (sogenanntes Fouling mit einer Dicke von 1 mm) berücksichtigt. Die Emissivität einer derartigen Fouling-Schicht wurde mit 0,6 angesetzt.In the present case, slight soiling (so-called fouling with a thickness of 1 mm) was also taken into account for all surfaces in contact with flue gas. The emissivity of such a fouling layer was set at 0.6.
Das Ergebnis dieser Optimierung ist in
Der Wärmetauscher 3 weist ein vertikal angeordnetes Bündel an Kesselrohren 32 auf, wobei bevorzugt in jedem Kesselrohr 32 jeweils sowohl ein Feder- als auch ein Band- oder Spiralturbulator vorgesehen ist. Der jeweilige Federturbulator 36 erstreckt sich bevorzugt über die gesamte Länge des jeweiligen Kesselrohrs 32 und ist federförmig ausgestaltet. Der jeweilige Bandturbulator 37 erstreckt sich bevorzugt über etwa die halbe Länge des jeweiligen Kesselrohrs 32 und weist ein sich spiralförmig in Achsrichtung des Kesselrohrs 32 erstreckendes Band mit einer Materialstärke von 1,5 mm bis 3 mm auf. Weiter kann der jeweilige Bandturbulator 37 auch etwa 35 % bis 65 % der Länge des jeweiligen Kesselrohrs 32 lang sein. Der jeweilige Bandturbulator 37 ist bevorzugt mit einem Ende am stromabwärtigen Ende des jeweiligen Kesselrohrs 32 angeordnet. Die Kombination aus Feder- und Band- bzw. Spiralturbulator kann auch als Doppelturbulator bezeichnet werden. In
Bandturbulatoren 37 sind vorgesehen, da der Bandturbulator 37 die Turbulenzwirkung im Kesselrohr 32 erhöht und ein über den Rohrquerschnitt betrachtet homogeneres Temperatur- und Geschwindigkeitsprofil hervorruft, währenddessen das Rohr ohne einen Bandturbulator bevorzugt eine heiße Strähne mit höheren Geschwindigkeiten im Rohrzentrum ausbildet, die sich bis zum Austritt des Kesselrohrs 32 fortsetzt, was sich negativ auf die Effizienz der Wärmeübertragung auswirken würde. Damit verbessern die Bandturbulatoren 37 im unteren Bereich der Kesselrohre 32 die konvektive Wärmeübertragung.Band turbulators 37 are provided because the
Als Optimum bevorzugt können beispielhaft 22 Kesselrohre mit einem Durchmesser von 76,1 mm und 3,6 mm Wandstärke verwendet werden.As an optimum example, 22 boiler tubes with a diameter of 76.1 mm and a wall thickness of 3.6 mm can be used.
Der Druckverlust kann in diesem Fall weniger als 25 Pa betragen. Der Federturbulator 36 weist in diesem Fall idealerweise einen Außendurchmesser von 65 mm, eine Steigung von 50 mm, und ein Profil von 10 × 3 mm auf. Der Bandturbulator 37 kann in diesem Fall einen Außendurchmesser von 43 mm, eine Steigung von 150 mm und ein Profil von 43 × 2 mm aufweisen. Eine Blechstärke des Bandturbulators kann 2 mm betragen.The pressure loss in this case can be less than 25 Pa. In this case, the
Eine gute Effizienz wird mittels 18 bis 24 Kesselrohren und einen Durchmesser von 70 bis 85 mm bei einer Wandstärke von 3 bis 4,5 mm erreicht. Dabei können entsprechend angepasste Feder- und Bandturbulatoren zum Einsatz kommen.Good efficiency is achieved with 18 to 24 boiler tubes and a diameter of 70 to 85 mm with a wall thickness of 3 to 4.5 mm. Correspondingly adapted spring and band turbulators can be used.
Allerdings können zur Erreichung einer ausreichenden Effizienz zwischen 14 und 28 Kesselrohre 32 mit einem Durchmesser zwischen 60 und 80 mm mit einer Wandstärke von 2 bis 5 mm verwendet werden. Der Druckverlust kann in diesen Fällen zwischen 20 und 40 Pa betragen, und ist mithin als positiv zu bewerten. Der Außendurchmesser, die Steigung und das Profil der Feder- und Bandturbulatoren 36, 37 ist entsprechend angepasst vorgesehen.However, in order to achieve sufficient efficiency, between 14 and 28
Die gewünschte Zieltemperatur am Austritt der Kesselrohre 32 kann bei Nennleistung bevorzugt zwischen 100 und 160 Grad Celsius liegen.The desired target temperature at the outlet of the
Die Reinigungseinrichtung 9 weist zwei Reinigungsantriebe 91, vorzugsweise Elektromotoren, auf, die zwei Reinigungswellen 92 drehbar antreiben, die wiederum in einer Wellenhalterung 93 gelagert sind. Die Reinigungswellen 92 können bevorzugt auch noch an weiterer Stelle, beispielsweise an den entfernten Enden, ebenso drehbar gelagert sein. Die Reinigungswellen 92 weisen Fortsätze 94 auf, mit denen über Gelenke oder über Drehlager der Käfig 48 der Filtereinrichtung 4 und Turbulatorhalterungen 95 verbunden sind.The
Die Turbulatorhalterung 95 ist in
Zudem dreht sich bei der Montage des jeweiligen Federturbulators 36 inkl. des Spiralturbulators (Doppelturbulator) die Spirale durch ihr Eigengewicht automatisch in die Aufnahme der Turbulatorhalterung 95 (die auch als Aufnahmestange bezeichnet werden kann) und ist somit fixiert und gesichert. Dies erleichtert die Montage deutlich.In addition, when the
Die
Beim Übergang vom ersten Zustand in den zweiten Zustand (und umgekehrt) wird durch Drehung der Reinigungswellen 92 mittels der Reinigungsantriebe 91 sowohl die Turbulatorhalterung 95 als auch die Käfighalterung 481 über die Fortsätze 952 (und ein Drehlagergestänge 955) vertikal angehoben. Damit können die Doppelturbulatoren 36, 37 in den Kesselrohren 32 und auch der Käfig 48 in dem Kamin der Filtereinrichtung 4 nach oben und nach unten bewegt werden und können die jeweiligen Wände entsprechend von Flugasche oder Ähnlichem abreinigen.During the transition from the first state to the second state (and vice versa), rotation of the
Es kann zudem der Schlaghebel 96 mit dem Anschlagkopf 97 beim Übergang vom ersten Zustand in den zweiten Zustand an das Ende der (Sprüh-) Elektrode 45 anschlagen. Dieses Anschlagen am freien (d.h. nicht aufgehängten) Ende der(Sprüh-) Elektrode 45 hat den Vorteil gegenüber herkömmlichen Rüttelmechaniken (bei diesen wird die Elektrode an deren Aufhängung bewegt), dass die (Sprüh-) Elektrode 45 entsprechend ihrer Schwingungscharakteristika nach der Anregung durch das Anschlagen selbst (im Idealfall frei) schwingen kann. Dabei bestimmt die Art des Anschlags die Schwingungen bzw. Schwingungsmodi der (Sprüh-) Elektrode 45. Es kann die (Sprüh-) Elektrode 45 von unten (d.h. aus deren Längsachsenrichtung bzw. aus deren Longitudinalrichtung) für die Erregung einer Stoßwelle oder einer Longitudinalschwingung angeschlagen werden. Es kann die (Sprüh-) Elektrode 45 aber auch seitlich (in den
Insofern kann es in der elastischen Federelektrode 45 zu einem Stoß bzw. einer Stoßwelle in Längsrichtung der bevorzugt als länglicher plattenförmiger Stab ausgeführten Elektrode 45 kommen. Ebenso kann es zu einer Transversalschwingung der (Sprüh-) Elektrode 45 aufgrund der wirkenden Querkräfte (die quer bzw. rechtwinklig zur Längsachsenrichtung der Elektrode 45 ausgerichtet sind) kommen.In this respect, an impact or a shock wave can occur in the
Ebenso kann man mehrere Schwingungsarten gleichzeitig erzeugen. Insbesondere eine Stoßwelle und/oder Longitudinalwelle kombiniert mit einer Transversalschwingung der Elektrode 45 kann nochmals zu einer verbesserten Abreinigung der Elektrode 45 führen.It is also possible to generate several types of vibration at the same time. In particular, a shock wave and/or longitudinal wave combined with a transverse vibration of the
Im Ergebnis ist eine vollautomatische Abreinigung während der Entaschung in eine gemeinsame Aschebox an der Vorderseite der Heizanlage (nicht dargestellt) über die Austragungsschnecke 71 realisierbar. Ebenso kann die Federstahlelektrode 48 verschleißfrei und geräuscharm abgereinigt werden.As a result, a fully automatic cleaning during the ash removal in a common ash box at the front of the heating system (not shown) can be realized via the
Weiter ist die Reinigungseinrichtung 9 auf die beschriebene Weise einfach und kostengünstig zu fertigen und weist einen einfachen und verschleißarmen Aufbau auf.Furthermore, the
Weiter ist die Reinigungseinrichtung 9 mit der Antriebsmechanik derart eingerichtet, dass Ascherückstände vorteilhaft schon ab dem ersten Zug der Kesselrohre 32 durch die Turbulatoren abgereinigt werden können und nach unten abfallen können.Furthermore, the
Zudem ist die Reinigungseinrichtung 9 im unteren, sogenannten "kalten Bereich" des Kessels 11 verbaut, was den Verschleiß ebenso verringert, da die Mechanik keinen sehr hohen Temperaturen ausgesetzt ist (d.h. die thermische Belastung ist verringert). Im Gegensatz dazu wird im Stand der Technik die Reinigungsmechanik im oberen Bereich der Anlage verbaut, was den Verschleiß entsprechend nachteilig erhöht.In addition, the
Durch eine regelmäßige automatisierte Abreinigung wird zudem der Wirkungsgrad der Anlage 1 verbessert, da die Oberflächen des Wärmetauschers 3 sauberer sind. Ebenso kann die Filtereinrichtung 4 effizienter arbeiten, da auch deren Oberflächen sauberer sind. Dies ist auch deshalb wichtig, da die Elektroden der Filtereinrichtung 4 schneller verschmutzen als der konvektive Teil des Kessels 11.In addition, regular automated cleaning improves the efficiency of the
Dabei ist eine Abreinigung der Elektroden der Filtereinrichtung 4 vorteilhaft auch im Betrieb bzw. während des Betriebs des Kessels 11 möglich.In this way, cleaning of the electrodes of the
Bevorzugt ist die Biomasse-Heizanlage 1 derart ausgestaltet, dass die komplette Antriebsmechanik im unteren Kesselbereich (u.a. Drehrostmechanik inkl. Drehrost, Wärmetauscherreinigungsmechanik, Antriebsmechanik für Schubboden, Mechanik für Filtereinrichtung, Reinigungskorb und Antriebswellen und Ascheaustragungsschnecke) im "Schubladenprinzip" schnell und effizient entnommen und wieder eingesetzt werden kann. Ein Beispiel hierfür ist vorstehend mit dem Drehrost 25 in Bezug auf die
Die Glutbetthöhenmessmechanik 86 weist im Detail eine Drehachse 82 für die Brennstoff-Niveauklappe 83 auf. Die Drehachse 82 weist eine Mittenachse 832 auf und weist an einer Seite eine Lagerkerbe 84 zur Halterung der Drehachse 82, sowie einen Sensorflansch 85 zur Befestigung eines Winkel- oder -drehsensors (nicht dargestellt) auf.In detail, the ember bed
Die Drehachse 82 ist bevorzugt mit einem Sechskantprofil versehen. Die Halterung der Brennstoff-Niveauklappe 83 kann derart vorgesehen sein, dass diese aus zwei Öffnungen 834 mit einem Innensechskant besteht. Damit kann die Brennstoff-Niveauklappe 83 einfach auf die Drehachse 82 aufgesteckt und fixiert werden. Weiter kann die Brennstoff-Niveauklappe 83 ein einfaches Blechformteil sein.The axis of
Die Glutbetthöhenmessmechanik 86 ist in der Brennkammer 24, bevorzugt etwas zur Mitte versetzt, über dem Brennstoffbett 28 bzw. der Verbrennungsfläche 258 vorgesehen, dass die Brennstoff-Niveauklappe 83 in Abhängigkeit zu dem etwaig vorhandenen Brennstoff je nach Höhe des Brennstoffs bzw. Brennstoffbetts 28 angehoben wird, womit die Drehachse 82 in Abhängigkeit zu der Höhe des Brennstoffbetts 28 gedreht wird. Diese Drehung oder auch der Absolutwinkel der Drehachse 82 kann/können durch einen (nicht dargestellten) berührungslosen Drehund/oder Winkelsensor erfasst werden. Damit kann vorliegend eine effiziente und robuste Glutbetthöhenmessung erfolgen.The ember bed
Dabei ist die Brennstoff-Niveauklappe 83 derart eingerichtet, dass diese in Bezug auf die Mittenachse 823 der Drehachse 82 angeschrägt ausgeführt ist. Im Detail kann eine Oberflächenparallele 835 einer Hauptfläche 831 der Brennstoff-Niveauklappe 83 derart angeordnet sein, dass diese winklig in Bezug auf die Mittenachse 823 der Drehachse 82 vorgesehen ist. Dieser Winkel kann bevorzugt zwischen 10 und 45 Grad betragen. Zur Winkelmessung anzumerken ist, dass die Oberflächenparallele 835 und die Mittenachse 823 derart gedacht werden, dass sich diese (in der Horizontalen projiziert) in der Mittenachse 823 zur Winkelbildung schneiden können. Weiter ist die Oberflächenparallele 835 normalerweise nicht parallel zu der Vorderkante der Brennstoff-Niveauklappe 83 ausgerichtet.In this case, the
Nun wird bei der Brennstoffzuführung 6 in die Brennkammer 24 keine ebene Brennstoffverteilung verursacht, sondern es wird eher ein länglicher Hügel aufgeworfen. Mit einer angeschrägten Brennstoff-Niveauklappe 83 und einer parallelen Ausrichtung der Mittenachse 823 der Drehachse 82 zu der Fläche des Drehrosts 25 wird folglich der eher schrägen Verteilung des Brennstoffs derart Rechnung getragen, dass die Hauptfläche 831 der Brennstoff-Niveauklappe 83 flächig auf dem Brennstoffhügel bzw. Brennstoffbett 28 aufliegen kann. Durch diese flächigere Auflage der Brennstoff-Niveauklappe 83 werden Messfehler durch Unregelmäßigkeiten im Brennstoffbett 28 verringert, und die Messgenauigkeit und die Ergonomie der Messung werden verbessert.Now, when fuel is supplied 6 into the
Zudem kann mittels der vorstehend dargestellten Geometrie der Brennstoff-Niveauklappe 83 auch trotz unterschiedlichem bzw. variierendem Brennstoff (Hackgut, Pellets) die exakte Glutbetthöhe mittels berührungslosem Dreh- und/oder Winkelsensor ermittelt werden. Die ergonomisch-schräge Form passt sich ideal an den auch durch die Stokerschnecke eher schräg eingeführten Brennstoff an und sorgt für repräsentative Messwerte.In addition, by means of the geometry of the fuel level flap shown above 83 the exact ember bed height can be determined using a non-contact rotary and/or angle sensor, even despite different or varying fuels (wood chips, pellets). The ergonomic, sloping shape adapts ideally to the fuel, which is also introduced at an angle due to the stoker screw, and ensures representative measured values.
Mittels der Glutbetthöhenmessung kann weiter die auf der Verbrennungsfläche 258 des Drehrosts 25 verbleibende Brennstoffhöhe (und Menge) genau ermittelt werden, womit die Brennstoffzufuhr und die Durchströmung des Brennstoffbetts 28 derart geregelt werden kann, dass der Verbrennungsprozess optimiert werden kann.The fuel height (and quantity) remaining on the
Zudem ist die Herstellung und Montage dieses Sensors einfach und kostengünstig.In addition, the production and assembly of this sensor is simple and inexpensive.
Die in der
Eine Länge einer Sekundärluftdüse 291 kann beispielsweise zwischen 40 und 60 mm betragen. Ein (Maximal-) Durchmesser der zylindrischen oder kegelstumpfförmigen Sekundärluftdüse 291 kann beispielsweise zwischen 20 und 25 mm betragen.A length of a
Der dargestellte Winkel betrifft die beiden zur längeren Hauptachse des Ovals nächstliegenden Sekundärluftdüsen 291. Der Winkel, der beispielhaft mit 26,1 Grad angegeben ist, wird zwischen der Mittenachse der Sekundärluftdüse 291 und der längeren der Hauptachsen des Ovals der Brennkammer 24 gemessen. Der Winkel kann vorzugsweise in einem Bereich von 15 Grad bis 35 Grad liegen. Die verbleibenden Sekundärluftdüsen 291 können weiter mit einem Winkel deren Mittenachse vorgesehen werden, der funktional demjenigen der beiden zur längeren Hauptachse des Ovals nächstliegenden Sekundärluftdüsen 291 zur Bewirkung der Wirbelströmung entspricht (beispielsweise in Bezug auf die Brennkammerwand 24).The angle shown relates to the two
In
Es sind die Sekundärluftdüsen 291 derart ausgerichtet, dass diese die Sekundärluft -in der horizontalen Ebene betrachtet- tangential in die Brennkammer 24 einführen. In anderen Worten sind die Sekundärluftdüsen 291 jeweils als nicht auf die Brennkammermitte ausgerichteter Eintritt für die Sekundärluft vorgesehen. Im Übrigen kann ein solcher tangentialer Eintritt auch bei einer kreisförmigen Brennkammergeometrie zum Einsatz kommen.The
Es sind alle Sekundärluftdüsen 291 derart ausgerichtet, dass diese jeweils entweder eine rechtsdrehende oder eine linksdrehende Strömung bewirken. Insofern kann jede Sekundärluftdüse 291 zur Entstehung der Wirbelströmungen beitragen, wobei jede Sekundärluftdüse 291 eine gleichartige Ausrichtung aufweist. Zu Vorstehendem ist anzumerken, dass in Ausnahmefällen einzelne Sekundärluftdüsen 291 auch neutral (mit Ausrichtung in die Mitte) oder gegenläufig (mit entgegengesetzter Ausrichtung) angeordnet sein können, obschon dies die strömungstechnische Effizienz der Anordnung verschlechtern kann.All
Gleiche Grautöne in der
Zur Verdeutlichung sind die relevanten Strömungsgeschwindigkeiten dieser Düsenströmungen beispielhaft explizit in
Der Pfeil in der Brennkammer 24 der CFD-Berechnung zu einer 200 kW Kesseldimensionierung gibt die Drall- bzw. Wirbelrichtung der durch die Sekundärluftdüsen 291 induzierten Wirbelströmungen an. Diese gilt analog auch für die beiden anderen Kesseldimensionierungen (50 kW, 100 kW) der
Über die Sekundärluftdüsen 291 wird Sekundärluft (vorzugsweise einfach Umgebungsluft) in die Brennkammer 24 eingeführt. Dabei wird die Sekundärluft in den Sekundärluftdüsen im Nennlastfall auf mehr als 10 m/s in der Düse beschleunigt. Im Vergleich zu den im Stand der Technik üblichen Sekundärluftöffnungen wird die Eindringtiefe der resultierenden Luftstrahlen in der Brennkammer 24 erhöht, womit diese ausreichend ist, eine effektive Wirbelströmung zu induzieren, die sich über den Großteil des Brennkammervolumens erstreckt.Secondary air (preferably simply ambient air) is introduced into the
Bei einem ovalen (oder auch kreisförmigen) Querschnitt einer Brennkammer 24 entsteht bei einem tangentialen Eintritt von Luft in die Brennkammer 24 eine relativ ungestörte Wirbelströmung, die auch als Drallströmung oder als Wirbelsenkenströmung bezeichnet werden kann. Hierbei bilden sich Spiralströmungen aus. Diese Spiralströmungen pflanzen sich in der Brennkammer 24 helix- oder spiralförmig nach oben fort.In the case of an oval (or also circular) cross section of a
Auch in
Die Erfindung lässt neben den erläuterten Ausführungsformen und Aspekten weitere Gestaltungsgrundsätze zu. So können einzelne Merkmale der verschiedenen Ausführungsformen und Aspekte auch beliebig miteinander kombiniert werden, solange dies für den Fachmann als ausführbar ersichtlich ist und unter den in den Ansprüchen definierten Gegenstand fällt.In addition to the explained embodiments and aspects, the invention permits further design principles. Thus, individual features of the various embodiments and aspects can also be combined with one another as desired, as long as this is apparent to the person skilled in the art and falls within the subject matter defined in the claims.
Weiter können anstatt von nur drei Drehrostelementen 252, 253 und 254 auch zwei, vier oder mehr Drehrostelemente vorgesehen sein. Bei beispielsweise fünf Drehrostelementen könnten diese mit der gleichen Symmetrie und Funktionalität angeordnet sein, wie bei den vorgestellten drei Drehrostelementen. Zudem können die Drehrostelemente auch unterschiedlich zueinander geformt oder ausgebildet sein. Mehr Drehrostelemente haben den Vorteil, dass die Brecherfunktion verstärkt wird.Furthermore, instead of only three
Zu den angegebenen Maßen ist anzumerken, dass auch abweichend von diesen andere Maße bzw. Maßkombinationen vorgesehen werden können.With regard to the specified dimensions, it should be noted that other dimensions or combinations of dimensions can also be provided that deviate from these.
Anstelle der konvexen Seiten der Drehrostelemente 252 und 254 können auch konkave Seiten dieser vorgesehen sein, wobei die Seiten des Drehrostelements 253 in Folge komplementär konvex geformt sein können. Dies ist funktional annähernd gleichwertig.Instead of the convex sides of the
Obschon in
Die Rotationsströmung bzw. Wirbelströmung in der Brennkammer 24 kann rechtsdrehend oder linksdrehend vorgesehen sein.The rotational flow or turbulent flow in the
Die Brennkammerdecke 204 kann auch abschnittsweise, beispielsweise stufenförmig, geneigt vorgesehen sein.The
Die Sekundärluftdüsen 291 sind nicht auf rein zylindrische Bohrungen in den Brennkammersteinen 291 beschränkt. Diese können auch als kegelstumpfförmige Öffnungen oder taillierte Öffnungen ausgebildet sein.The
Die Sekundär(re)zirkulation kann auch nur mit Sekundärluft bzw. Frischluft beströmt werden, und insofern nicht das Rauchgas rezirkulieren, sondern lediglich Frischluft zuführen.The secondary (re)circulation can also only be flown with secondary air or fresh air, and in this respect not recirculate the flue gas, but only supply fresh air.
Die in Bezug auf die beispielhaften Ausführungsformen angegebenen Maße und Anzahlen sind lediglich beispielhaft zu verstehen. Diese vorliegend offenbarte technische Lehre ist nicht auf diese Maße beschränkt und kann beispielsweise bei Abwandlung der Dimensionierung des Kessels 11 (kW) abgewandelt werden.The dimensions and numbers given in relation to the exemplary embodiments are to be understood only as examples. This technical teaching disclosed here is not limited to these dimensions and can be modified, for example, by modifying the dimensioning of the boiler 11 (kW).
Als Brennstoffe der Biomasse-Heizanlage können auch andere Brennstoffe als Hackgut oder Pellets verwendet werden.Fuels other than wood chips or pellets can also be used as fuels in the biomass heating system.
Die vorliegend offenbarte Biomasse-Heizanlage kann auch ausschließlich mit einer Art eines Brennstoffs befeuert werden, beispielsweise nur mit Pellets.The biomass heating system disclosed here can also be fired exclusively with one type of fuel, for example only with pellets.
Die hierin offenbarten Ausführungsformen wurden zur Beschreibung und zum Verständnis der offenbarten technischen Sachverhalte bereitgestellt und sollen den Umfang der vorliegenden Offenbarung nicht einschränken.The embodiments disclosed herein were provided for description and understanding of the disclosed technical matters and are not intended to limit the scope of the present disclosure.
- 11
- Biomasse-HeizanlageBiomass heating system
- 1111
- Kesselboiler
- 1212
- Kesselfußboiler foot
- 1313
- Kesselgehäuseboiler housing
- 1414
- Wasserzirkulationseinrichtungwater circulation device
- 22
- Brenneinrichtungburner
- 2121
- erste Wartungsöffnung für Brenneinrichtungfirst maintenance opening for burner
- 2222
- Drehmechanikhalterungrotary mechanism mount
- 2323
- Drehmechanikturning mechanism
- 2424
- Brennkammercombustion chamber
- 2525
- Drehrostrotary grate
- 2626
- Primärverbrennungszone der BrennkammerPrimary combustion zone of the combustor
- 2727
- Sekundärverbrennungszone bzw. Strahlungsteil der BrennkammerSecondary combustion zone or radiant part of the combustion chamber
- 2828
- Brennstoffbettfuel bed
- 2929
- Brennkammersteinecombustion chamber bricks
- A1A1
- erste Horizontalschnittliniefirst horizontal cutting line
- A2A2
-
erste Vertikalschnittlinie und vertikale Mittenachse der ovalen Brennkammer 24first vertical section line and vertical central axis of the
oval combustion chamber 24
- 201201
- Zündeinrichtungignition device
- 202202
- Brennkammerschrägecombustion chamber slope
- 203203
- Brennkammerdüsecombustor nozzle
- 204204
- Brennkammerdeckecombustor ceiling
- 231231
- Antrieb bzw. Motor(en) der DrehmechanikDrive or motor(s) of the turning mechanism
- 251251
- Bodenplatte des Drehrostsbottom plate of the rotary grate
- 252252
- Erstes DrehrostelementFirst rotary grate element
- 253253
- Zweites DrehrostelementSecond rotary grate element
- 254254
- Drittes DrehrostelementThird rotary grate element
- 255255
- Übergangselementtransition element
- 256256
- Öffnungenopenings
- 257257
- Rostlippenrust lips
- 258258
- Verbrennungsflächeburn surface
- 260260
- Auflageflächen der BrennkammersteineSupport surfaces of the combustion chamber bricks
- 261261
- Nutgroove
- 262262
- Vorsprunghead Start
- 263263
- Ringring
- 264264
- Halterungssteinebracket stones
- 265265
- Schräge der Halterungssteineslope of the support stones
- 33
- Wärmetauscherheat exchanger
- 3131
- Wartungsöffnung für WärmetauscherMaintenance opening for heat exchanger
- 3232
- Kesselrohreboiler tubes
- 3333
- KesselrohreintrittBoiler tube entry
- 3434
- Wendekammereintrittreversing chamber entry
- 3535
- Wendekammerturning chamber
- 3636
- Federturbulatorspring turbulator
- 3737
- Band- oder SpiralturbulatorBand or spiral turbulator
- 3838
- Wärmetauschmediumheat exchange medium
- 44
- Filtereinrichtungfilter device
- 4141
- Abgasausgangexhaust outlet
- 4242
- Elektrodenversorgungsleitungelectrode supply line
- 4343
- Elektrodenhalterungelectrode holder
- 4444
- Filtereintrittfilter inlet
- 4545
- Elektrodeelectrode
- 4646
- Elektrodenisolationelectrode insulation
- 4747
- Filteraustrittfilter outlet
- 4848
- KäfigCage
- 55
- Rezirkulationseinrichtungrecirculation device
- 51, 5451, 54
- Rezirkulationskanal / RezirkulationskanäleRecirculation channel / recirculation channels
- 5252
- KlappenSucceed
- 5353
- Rezirkulationseintrittrecirculation entry
- 66
- Brennstoffzufuhrfuel supply
- 6161
- Zellradschleuserotary valve
- 6262
- Achse der BrennstoffzufuhrFuel supply axis
- 6363
- Übersetzungsmechaniktranslation mechanics
- 6464
- Brennstoffzufuhrkanalfuel supply channel
- 6565
- Brennstoffzufuhröffnungfuel supply opening
- 6666
- Antriebsmotordrive motor
- 6767
- Brennstoff-Förderschneckefuel auger
- 77
- Ascheabfuhrash removal
- 7171
- Ascheaustragungsschneckeash discharge screw
- 7272
- Motor der Ascheabfuhr mit MechanikAsh removal motor with mechanics
- 8181
- Lagerachsenbearing axles
- 8282
- Drehachseaxis of rotation
- 8383
- Brennstoff-Niveauklappefuel level flap
- 831831
- Hauptflächemain surface
- 832832
- Mittenachsecenter axis
- 835835
- Oberflächenparallelesurface parallel
- 8484
- Lagerkerbebearing notch
- 8585
- Sensorflanschsensor flange
- 8686
- GlutbetthöhenmessmechanikEmber bed height measurement mechanism
- 99
- Reinigungseinrichtungcleaning device
- 9191
- Reinigungsantriebcleaning drive
- 9292
- Reinigungswellencleaning shafts
- 9393
- Wellenhalterungshaft mount
- 9494
- Fortsatzextension
- 9595
- Turbulatorhalterungenturbulator mounts
- 951951
- DrehlageraufnahmePivot bearing mount
- 952952
- Fortsätzeappendages
- 953953
- Durchlässeculverts
- 954954
- Ausnehmungenrecesses
- 955955
- Drehlagergestängepivot linkage
- 9696
- zweiarmiger Schlaghebeltwo-armed hammer
- 9797
- Anschlagkopfstop head
- 211211
- Dämmmaterial, beispielsweise VermiculiteInsulating material such as vermiculite
- 291291
- Sekundärluft bzw. RezirkulationsdüsenSecondary air or recirculation nozzles
- EE
- Einschubrichtung des Brennstoffsinsertion direction of the fuel
- 331331
- Isolation am KesselrohreintrittInsulation at the boiler tube inlet
- 481481
- Käfighalterungcage mount
Claims (11)
- Biomass heating system (1) for the combustion of fuel in the form of pellets and/or chips, possessing:a boiler (11) with a combustion unit (2),a heat exchanger (3) with a plurality of boiler tubes (32),wherein said combustion unit (2) possesses the following:a combustion chamber (24) with a revolving grate (25), with a primary combustion zone (26) and with a secondary combustion zone (27);wherein the primary combustion zone (26) is encompassed laterally by a plurality of combustion chamber bricks (29) and from below by the revolving grate (25); wherein the fuel on the revolving grate (25) is combusted with primary air that flows through the revolving grate (25);wherein a plurality of secondary air nozzles (291) is provided in the combustion chamber bricks (29);wherein the primary combustion zone (26) and the secondary combustion zone (27) are separated at the level of the secondary air nozzles (291);wherein the secondary combustion zone (27) of the combustion chamber (24) is fluidically connected to an inlet (33) of the heat exchanger (3)characterised in thatthe secondary air nozzles (291) are arranged in such a way that in the secondary combustion zone (27) of the combustion chamber (24) eddy currents of a flue gas-air mixture of secondary air and flue gas that results from the combustion of the fuel develop about a vertical central axis (A2),wherein the eddy currents lead to an improvement in the mixing of the flue gas/air mixture.
- Biomass heating system (1) according to claim 1, wherein
the secondary air is ambient air fed to the combustion chamber (24). - Biomass heating system (1) according to claim 1 or 2, wherein
the secondary air nozzles (291) in the combustion chamber bricks (29) are each designed as a cylindrical or truncated cone-shaped opening in the combustion chamber bricks (29) with a circular or elliptical cross section, wherein the smallest diameter of the respective opening is smaller than its maximum length. - Biomass heating system (1) according to one of the preceding claims, whereinthe secondary air nozzles (291) are arranged in the combustion chamber (24) at at least approximately the same height; andthe secondary air nozzles (291) are each oriented such that the secondary air is introduced peripherally with respect to the centre of symmetry of the combustion chamber (24).
- Biomass heating system (1) according to one of the preceding claims, whereinthe number of secondary air nozzles (291) is between 8 and 14; and/orthe secondary air nozzles (291) have a minimum length of at least 50 mm with a minimum inner diameter of 20 to 35 mm.
- Biomass heating system (1) according to one of the preceding claims, wherein
the combustion chamber (24) in the secondary combustion zone (27) has a combustion chamber slope (202) that reduces the cross-section of the secondary combustion zone (27) in the direction of the inlet (33) of the heat exchanger (3). - Biomass heating system (1) according to one of the preceding claims, wherein
the combustion chamber (24) in the secondary combustion zone (27) has a combustion chamber ceiling (204) that is provided to incline upwards towards the inlet (33) of the heat exchanger (3), and which reduces the cross section of the combustion chamber (24) in the direction of the inlet (33). - Biomass heating system (1) according to claim 6 and 7, wherein the combustion chamber slope (202) and the inclined combustion chamber ceiling (204) form a funnel, the smaller end of which ends in the inlet (33) of the heat exchanger (3).
- Biomass heating system (1) according to one of the preceding claims, whereinthe primary combustion zone (26) and at least part of the secondary combustion zone (27) have an oval horizontal cross-section;
and/orthe secondary air nozzles (291) are arranged in such a way that they introduce the secondary air tangentially into the combustion chamber (24). - Biomass heating system (1) according to one of the preceding claims, whereinthe combustion chamber bricks (29) have a modular structure; and each two semi-circular combustion bricks (29) form a closed ring so as to form the primary combustion zone (26) and/or part of the secondary combustion zone (27); andat least two rings of combustor bricks (29) are stacked one on top of the other.
- Biomass heating system (1) according to one of the preceding claims, whereinthe heat exchanger (3) has spiral turbulators arranged in the boiler tubes (32) and extend over the entire length of the boiler tubes (32); andthe heat exchanger (3) has strip turbulators which are arranged in the boiler tubes (32) and extend at least over half the length of the boiler tubes (32).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22178909.2A EP4086510A1 (en) | 2019-09-03 | 2020-09-03 | Combustor for a biomass-heating system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19195118.5A EP3789670B1 (en) | 2019-09-03 | 2019-09-03 | Biomass heating system and components of same |
EP19210080.8A EP3789671B1 (en) | 2019-09-03 | 2019-11-19 | Biomass heating system with recirculation system with optimized flue gas treatment |
EP19210444.6A EP3789685B1 (en) | 2019-09-03 | 2019-11-20 | Method for commissioning a biomass heating system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22178909.2A Division EP4086510A1 (en) | 2019-09-03 | 2020-09-03 | Combustor for a biomass-heating system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3789672A1 EP3789672A1 (en) | 2021-03-10 |
EP3789672B1 true EP3789672B1 (en) | 2022-06-29 |
Family
ID=72355879
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22178909.2A Pending EP4086510A1 (en) | 2019-09-03 | 2020-09-03 | Combustor for a biomass-heating system |
EP20194315.6A Active EP3789672B1 (en) | 2019-09-03 | 2020-09-03 | Biomass heating system with secondary air conduit, and components of same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22178909.2A Pending EP4086510A1 (en) | 2019-09-03 | 2020-09-03 | Combustor for a biomass-heating system |
Country Status (6)
Country | Link |
---|---|
US (4) | US20220333822A1 (en) |
EP (2) | EP4086510A1 (en) |
JP (2) | JP7233614B2 (en) |
CN (4) | CN114729747B (en) |
AU (2) | AU2020342698B2 (en) |
CA (4) | CA3152400C (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114087622B (en) * | 2021-11-23 | 2023-11-17 | 吉林同鑫热力集团股份有限公司 | Flue gas waste heat recovery device of coal-fired boiler |
CN114484573B (en) * | 2021-12-18 | 2023-08-29 | 嘉寓光能科技(阜新)有限公司 | Domestic multi-functional intelligent heating stove of living beings |
EP4332436A1 (en) * | 2022-09-01 | 2024-03-06 | SL-Technik GmbH | Biomass heating system with an improved electrostatic filter device |
IT202200021555A1 (en) * | 2022-10-19 | 2024-04-19 | Unitech Ind S R L | DUAL FEED SYSTEM FOR OVENS |
PL131058U1 (en) * | 2022-10-26 | 2024-04-29 | Nocoń Zygmunt P.P.U.H. Zamech | Heating boiler for solid fuels, especially solid biofuels in the form of pellets |
Family Cites Families (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US36055A (en) | 1862-07-29 | Improvement in stove-grates | ||
US422472A (en) | 1890-03-04 | Parlor-grate | ||
US2233066A (en) | 1941-02-25 | Cleaning device | ||
DE277440C (en) | ||||
CH40299A (en) | 1907-05-07 | 1908-06-16 | Karl Kiess | Tilting grate |
US1393712A (en) | 1918-11-04 | 1921-10-11 | Frank W Steere | Process and means for removing suspended matter from gas |
US1371995A (en) | 1920-12-10 | 1921-03-15 | Arthur F Nesbit | Art of electrical precipitation |
GB273032A (en) | 1926-04-07 | 1927-06-30 | Lebrecht Steinmueller | Improvements relating to cleaning devices for travelling grates for furnaces |
GB323186A (en) | 1928-08-23 | 1929-12-23 | Gen Electric Co Ltd | Improvements in the electrical precipitation of dust from gases |
GB376143A (en) | 1930-11-12 | 1932-07-07 | Bemberg Ag | An improved device for clearing mechanical stoker grates |
GB371779A (en) | 1931-01-08 | 1932-04-28 | Duerrwerke Ag | Improvements in or relating to a grate-bar cleaning device |
DE557091C (en) | 1931-01-09 | 1932-08-25 | Duerrwerke Akt Ges | Grate bar cleaning device for traveling grids |
GB671597A (en) | 1950-04-14 | 1952-05-07 | William Perkins Smith | Furnace comprising coking and combustion grates |
DE1094912B (en) | 1955-06-15 | 1960-12-15 | William Herbert Smith | Device for cleaning the flue gas side of the flue pipes of standing boilers |
DE1056052B (en) | 1958-01-07 | 1959-04-23 | Buehler Ag Geb | Safety device for a rotary valve |
US2933057A (en) * | 1958-01-20 | 1960-04-19 | Babcock & Wilcox Co | Furnace with dumping hearth |
US3010450A (en) | 1959-05-05 | 1961-11-28 | Morse Boulger Destructor Compa | Incinerator apparatus |
BE627851A (en) | 1962-02-06 | |||
DE2206056A1 (en) | 1972-02-09 | 1973-08-16 | Dortmunder Brueckenbau C H Juc | Electrofilter for flue gas - manual or mechanical operated brush arrangement cleans high tension and precipitation electrodes |
US4092134A (en) | 1976-06-03 | 1978-05-30 | Nipponkai Heavy Industries Co., Ltd. | Electric dust precipitator and scraper |
US4093431A (en) | 1976-12-13 | 1978-06-06 | American Air Filter Company, Inc. | Rapping assembly and electrode supports for electrostatic precipitators |
DE2755059A1 (en) | 1977-12-08 | 1979-06-13 | Delbag Luftfilter Gmbh | Electrostatic filter for high temp. gas - has tubular electrodes through which second gas or liq. flows |
US4254715A (en) * | 1978-11-15 | 1981-03-10 | Hague International | Solid fuel combustor and method of burning |
US4258692A (en) * | 1979-01-30 | 1981-03-31 | Washington Stove Works | Combination wood and coal stove |
US4319555A (en) | 1980-11-24 | 1982-03-16 | Melvin Morton A | Dual grate for burning wood and coal |
DE3136195C2 (en) | 1981-09-12 | 1985-06-20 | Norbert Dr.-Ing. 4030 Ratingen Hering | Electric dust separator for heat recovery and / or improvement of the working method |
DE3200727A1 (en) | 1982-01-13 | 1983-07-21 | Koch Transporttechnik GmbH, 6633 Wadgassen | Apparatus for removing the contents of a silo |
DE3410546A1 (en) | 1984-03-22 | 1985-10-03 | Robert 8831 Meinheim Bloos | Gasification system |
EP0156363A3 (en) * | 1984-03-30 | 1986-04-09 | Hans Dr. Viessmann | Solid fuel gasifying combustion apparatus |
SE443798C (en) * | 1984-03-30 | 1987-03-16 | Norrkoepings Kraft Ab | SET FOR FUELING OF THE SOLID FUEL IN A LOW RANGE, PREFERRED WANDERROST, PROVIDED PANNA REDUCE EMISSIONS OF SULFUR AND NITROGEN OXIDES |
US4675029A (en) | 1984-11-21 | 1987-06-23 | Geoenergy International, Corp. | Apparatus and method for treating the emission products of a wood burning stove |
DE3500431A1 (en) | 1985-01-09 | 1986-07-10 | Metallgesellschaft Ag, 6000 Frankfurt | Drive device for a drop hammer knocking device |
DE3833494A1 (en) * | 1988-10-01 | 1990-04-05 | Festo Kg | FLOW CONTROL VALVE |
DE3842811A1 (en) | 1988-12-20 | 1990-06-28 | Koellemann A J Gmbh | Star feeder lock with blow-through arrangement |
FR2655570B1 (en) | 1989-12-12 | 1992-06-19 | Commissariat Energie Atomique | ELECTROSTATIC FILTER PROVIDED WITH A CLEANING SYSTEM. |
US5497824A (en) | 1990-01-18 | 1996-03-12 | Rouf; Mohammad A. | Method of improved heat transfer |
SU1755005A1 (en) | 1990-07-03 | 1992-08-15 | Киргизский Научно-Исследовательский Отдел Энергетики Министерства Энергетики И Электрификации Ссср | Method of crushed-coal grate firing |
DE59101576D1 (en) | 1991-02-07 | 1994-06-09 | Martin Umwelt & Energietech | Combustion air supply method and furnace. |
RU2066816C1 (en) | 1992-09-04 | 1996-09-20 | Сергей Александрович Побегалов | Hot-water boiler |
US5645363A (en) | 1994-04-15 | 1997-07-08 | Dana Corporation | Bearing cap and pump mounting flange for power take-off unit |
US5823122A (en) | 1994-09-30 | 1998-10-20 | Alternative Energy Development, Inc. | System and process for production of fuel gas from solid biomass fuel and for combustion of such fuel gas |
DE19528422C1 (en) * | 1995-08-02 | 1997-04-03 | Hung Lin Wen Chiang | Furnace for burning waste |
EP0885113B1 (en) | 1996-03-06 | 2000-04-26 | Schering Aktiengesellschaft | Device for feeding moulding masses to tablet-compressing machines |
DE19650585C2 (en) | 1996-12-06 | 2001-11-22 | Appbau Rothemuehle Brandt | Method and device for electrically charging and separating particles that are difficult to separate from a gas fluid |
DE19706067A1 (en) * | 1997-02-17 | 1998-08-20 | Paul Schmidhuber | Heating system control method for biomass burner e.g. for wood burning system |
US5937772A (en) | 1997-07-30 | 1999-08-17 | Institute Of Gas Technology | Reburn process |
DE19825442A1 (en) | 1998-04-17 | 1999-10-21 | Mannesmann Ag | Torque arm |
DE19817930A1 (en) | 1998-04-17 | 1999-10-28 | Mannesmann Ag | Torque support |
AT408846B (en) | 1999-05-03 | 2002-03-25 | Forsthuber Paul | TUBE POWER FILTER |
JP4936299B2 (en) | 2000-08-21 | 2012-05-23 | メレクシス・テクノロジーズ・ナムローゼフェンノートシャップ | Magnetic field direction detection sensor |
CZ20032262A3 (en) | 2001-03-02 | 2003-12-17 | Powitec Intelligent Technologies Gmbh | Method for regulating a thermodynamic process in particular a combustion process and apparatus for making the same |
AT5587U1 (en) | 2001-08-27 | 2002-08-26 | Guntamatic Heiztechnik Gmbh | HEAT EXCHANGER FOR A BOILER |
US6485296B1 (en) * | 2001-10-03 | 2002-11-26 | Robert J. Bender | Variable moisture biomass gasification heating system and method |
DE10216376B4 (en) | 2002-04-12 | 2005-08-25 | Sick Stegmann Gmbh | Rotation angle measuring system |
DE10219251B3 (en) | 2002-04-30 | 2004-01-22 | Robert Bosch Gmbh | heater |
DE20210190U1 (en) * | 2002-07-02 | 2003-11-13 | Conrad, Mechthild, 57627 Hachenburg | Biomass heating system has separate units for burner, heat exchange from flue gasses and condensing unit for removing steam |
AT6972U1 (en) * | 2003-06-13 | 2004-06-25 | Hartl Energy Technology Keg | SMALL COMBUSTION PLANT OR OVEN FOR GIANT FUELS, IN PARTICULAR WOOD PELLETS, WITH AUTOMATIC COMBUSTION CHAMBER DISCHARGING |
EP1678445B1 (en) * | 2003-09-26 | 2016-09-07 | Ebara Corporation | Incombustible withdrawing system from a fluidized-bed furnace |
CH694645A5 (en) | 2003-12-01 | 2005-05-13 | Empa | Device is for electrostatic separation of particles in gas flow and is suitable for flue gas cleaning in small heating systems |
JP4244022B2 (en) | 2004-04-28 | 2009-03-25 | 日新電機株式会社 | Gas processing equipment |
US20060112955A1 (en) | 2004-11-30 | 2006-06-01 | Ranco Incorporated Of Delaware | Corona-discharge air mover and purifier for fireplace and hearth |
DE102006009760B3 (en) | 2006-03-01 | 2007-10-04 | HDG Bavaria GmbH Heizsysteme für Holz | Boilers, in particular solid fuel boilers, with flue damper |
JP4816184B2 (en) | 2006-03-24 | 2011-11-16 | 株式会社巴商会 | Combustion device |
AT503043B1 (en) | 2006-04-26 | 2007-07-15 | Haslmayr Johann Dipl Ing | KIPPROST FOR BIOMASS BOILER |
JP4958485B2 (en) | 2006-06-26 | 2012-06-20 | 株式会社タクマ | A combustion control method for a fluidized bed combustion furnace using a chromium-containing organic substance whose production is controlled as hexavalent chromium as a fuel. |
AT503813B1 (en) | 2006-07-14 | 2008-01-15 | Bicker Leopold | OVEN WITH RUST CLEANING MECHANISM |
DE102007010973B4 (en) | 2007-03-05 | 2008-10-16 | Schmatloch Nückel Technologietransfer | Electrostatic precipitator for a small combustion plant |
US7870854B2 (en) * | 2007-03-12 | 2011-01-18 | FPI Fireplace Products International Ltd | Closed-loop control system for heating systems |
US7954438B2 (en) * | 2007-03-13 | 2011-06-07 | Dennis Brazier | Wood fired boiler |
AT505295B1 (en) | 2007-07-12 | 2008-12-15 | Kwb Kraft Und Waerme Aus Bioma | firing unit |
DE502007005484D1 (en) | 2007-10-12 | 2010-12-09 | Powitec Intelligent Tech Gmbh | Control circuit for controlling a process, in particular combustion process |
CH697852B1 (en) | 2007-10-17 | 2009-02-27 | Eneftech Innovation Sa | compression spiral device or expansion. |
US20090199747A1 (en) * | 2008-02-08 | 2009-08-13 | Wood-Mizer Products, Inc. | Biomass burner system |
AT506615B1 (en) | 2008-03-18 | 2010-02-15 | Manglberger Heizungsbau Gmbh | DEVICE FOR BURNING BIOMASS, ESPECIALLY ON CELLULOSE BASE |
AT506411B1 (en) | 2008-04-29 | 2009-09-15 | Eta Heiztechnik Gmbh | RUST FOR SOLID FUELS |
AT506970B1 (en) | 2008-10-27 | 2010-01-15 | Haas & Sohn Ofentechnik Gmbh | CLEANING SYSTEM FOR AN OVEN |
US9182115B2 (en) | 2009-03-12 | 2015-11-10 | Kenneth A. DONGO | Fluid heating system |
US8901921B2 (en) | 2009-11-25 | 2014-12-02 | Infineon Technologies Ag | Angle measurement system for determining an angular position of a rotating shaft |
AT509487B1 (en) | 2009-12-10 | 2011-09-15 | Froeling Heizkessel Und Behaelterbau Ges M B H | HEATING BOILERS FOR SOLID FUELS |
WO2011106550A2 (en) | 2010-02-26 | 2011-09-01 | Global Greensteam Llc | Biomass-to-energy combustion method |
WO2012019196A2 (en) * | 2010-08-06 | 2012-02-09 | Greenwood Clean Energy, Inc. | Systems and methods for heating water using biofuel |
US9714772B2 (en) | 2010-11-19 | 2017-07-25 | Google Inc. | HVAC controller configurations that compensate for heating caused by direct sunlight |
JP5631197B2 (en) | 2010-12-27 | 2014-11-26 | バブコック日立株式会社 | Biomass mixed boiler system |
CN202109645U (en) | 2011-03-08 | 2012-01-11 | 郑文虎 | Biomass particle semi-gasification water heating boiler with reciprocating fire grate |
AT511456B1 (en) | 2011-10-28 | 2012-12-15 | Hargassner Gmbh | DEVICE FOR TRANSFERRING BULK GOODS |
WO2013082146A1 (en) * | 2011-11-28 | 2013-06-06 | Scott Laskowski | Non-catalytic biomass fuel burner and method |
KR101149359B1 (en) | 2011-12-05 | 2012-05-30 | (주)규원테크 | Pellet boiler |
FR2990463B1 (en) | 2012-05-10 | 2014-05-23 | Eneftech Innovation Sa | LUBRICATION OF A TURBINE IN A RANKINE CYCLE |
GB2505001B (en) * | 2012-08-17 | 2018-12-19 | Autoflame Eng Ltd | Burner installations and methods of commissioning and operating burner installations |
AT15458U1 (en) | 2013-02-25 | 2017-09-15 | Ing Russ Egon | Process for burning fuel |
RU2518772C1 (en) | 2013-03-26 | 2014-06-10 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) | Furnace with tilt-pushing furnace grate for combustion of wood wastes |
DE102013103298A1 (en) * | 2013-04-03 | 2014-10-09 | Viessmann Werke Gmbh & Co Kg | Method of operating a solid fuel boiler |
AT13782U1 (en) | 2013-04-18 | 2014-08-15 | Hargassner Gmbh | Rotary valve for feeding a fuel with lumpy fuel |
AT13825U1 (en) | 2013-05-31 | 2014-09-15 | Hargassner Gmbh | boiler |
CN203442792U (en) * | 2013-06-14 | 2014-02-19 | 山东多乐采暖设备有限责任公司 | Intelligent boiler using biomass particles for burning |
KR20150038977A (en) | 2013-10-01 | 2015-04-09 | 엘지전자 주식회사 | heating, ventilation, and/or air conditioning controller |
DE102014213340B4 (en) | 2014-07-09 | 2017-10-19 | Heizomat-Gerätebau + Energiesysteme GmbH | Discharge device for small pieces of bulk material |
AT516061B1 (en) | 2015-03-04 | 2016-02-15 | Gerlinger Ernst | boiler |
JP2016223758A (en) | 2015-05-27 | 2016-12-28 | オリンピア工業株式会社 | Structure of wooden biomass burning hot air heater and control method |
GB201513912D0 (en) * | 2015-08-06 | 2015-09-23 | Bdr Thermea Group B V | Boiler inhibiting |
RU2015141253A (en) | 2015-09-28 | 2017-04-05 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) | FURNITURE DEVICE |
FR3047471B1 (en) | 2016-02-08 | 2018-02-16 | Safran Transmission Systems | CHAIN MOTOR |
AT518707B1 (en) | 2016-06-02 | 2018-02-15 | DISTAND GmbH | Solid fuel burner |
CN106642692B (en) * | 2016-07-28 | 2022-08-19 | 艾欧史密斯(中国)热水器有限公司 | Condensation gas water heater and condensation heat exchanger |
ES2761870T3 (en) | 2016-08-25 | 2020-05-21 | Doosan Lentjes Gmbh | Circulating fluidized bed apparatus |
KR101919359B1 (en) * | 2016-12-28 | 2018-11-16 | 주식회사 서연기술정보 | Pellet stove and method of controlling it |
CN206904963U (en) | 2017-07-18 | 2018-01-19 | 黄延辉 | Biomass boiler |
CN207091367U (en) | 2017-08-07 | 2018-03-13 | 张卓宾 | Biomass gasifying furnace |
IT201800001712A1 (en) | 2018-01-24 | 2019-07-24 | Giuseppe Sorrentino | SYSTEM FOR THE OPTIMIZATION OF THE COMBUSTION PROCESS OF A STOVE / BOILER, IN PARTICULAR WITH PELLETS |
CN108506924B (en) * | 2018-05-17 | 2024-06-04 | 北京国奥天开信息技术有限公司 | Biomass particle furnace |
CN108662581A (en) | 2018-05-24 | 2018-10-16 | 姜凤山 | three-dimensional vortex burner |
CN108826310A (en) | 2018-07-20 | 2018-11-16 | 株洲中车南方环保科技有限公司 | A kind of segmented small refuse incinerator |
US10626817B1 (en) | 2018-09-27 | 2020-04-21 | General Electric Company | Control and tuning of gas turbine combustion |
KR102130838B1 (en) | 2018-12-17 | 2020-07-07 | 두산중공업 주식회사 | Apparatus and method for constructing a boiler combustion model |
CN109915816B (en) | 2019-03-12 | 2024-02-13 | 范建书 | Biomass particle heating stove |
EP4184056A1 (en) | 2019-09-03 | 2023-05-24 | SL-Technik GmbH | Combustion chamber for a biomass heating installation |
EP3892918A1 (en) | 2019-09-03 | 2021-10-13 | SL-Technik GmbH | Cleaning device for a rotary grate of a biomasse heating system, process of cleaning the rotary grate |
-
2020
- 2020-09-03 CN CN202080076165.0A patent/CN114729747B/en active Active
- 2020-09-03 EP EP22178909.2A patent/EP4086510A1/en active Pending
- 2020-09-03 CA CA3152400A patent/CA3152400C/en active Active
- 2020-09-03 US US17/753,430 patent/US20220333822A1/en not_active Abandoned
- 2020-09-03 US US17/753,398 patent/US11708999B2/en active Active
- 2020-09-03 US US17/753,397 patent/US20220341625A1/en not_active Abandoned
- 2020-09-03 AU AU2020342698A patent/AU2020342698B2/en active Active
- 2020-09-03 CN CN202080075360.1A patent/CN114729743B/en active Active
- 2020-09-03 EP EP20194315.6A patent/EP3789672B1/en active Active
- 2020-09-03 CN CN202080075833.8A patent/CN114729744A/en active Pending
- 2020-09-03 CA CA3152397A patent/CA3152397C/en active Active
- 2020-09-03 CA CA3152396A patent/CA3152396C/en active Active
- 2020-09-03 CN CN202080074653.8A patent/CN114729748B/en active Active
- 2020-09-03 JP JP2022528202A patent/JP7233614B2/en active Active
- 2020-09-03 CA CA3152394A patent/CA3152394C/en active Active
- 2020-09-03 JP JP2022528203A patent/JP7196365B2/en active Active
- 2020-09-03 AU AU2020342700A patent/AU2020342700B2/en active Active
- 2020-09-03 US US17/753,433 patent/US11635231B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CA3152397A1 (en) | 2021-03-11 |
US20220333770A1 (en) | 2022-10-20 |
JP7196365B2 (en) | 2022-12-26 |
JP2022536880A (en) | 2022-08-19 |
CN114729747A (en) | 2022-07-08 |
CN114729743B (en) | 2023-04-11 |
AU2020342698A1 (en) | 2022-04-07 |
AU2020342700A1 (en) | 2022-04-21 |
CN114729747B (en) | 2023-04-21 |
US11635231B2 (en) | 2023-04-25 |
AU2020342700B2 (en) | 2022-07-28 |
CA3152400A1 (en) | 2021-03-11 |
CA3152394A1 (en) | 2021-03-11 |
US20220333822A1 (en) | 2022-10-20 |
CA3152397C (en) | 2022-11-29 |
CA3152400C (en) | 2022-11-01 |
EP4086510A1 (en) | 2022-11-09 |
CA3152394C (en) | 2022-11-22 |
CN114729744A (en) | 2022-07-08 |
CA3152396C (en) | 2022-11-29 |
CN114729748A (en) | 2022-07-08 |
US20220341625A1 (en) | 2022-10-27 |
US20220333817A1 (en) | 2022-10-20 |
US11708999B2 (en) | 2023-07-25 |
CN114729748B (en) | 2023-05-12 |
JP7233614B2 (en) | 2023-03-06 |
EP3789672A1 (en) | 2021-03-10 |
CN114729743A (en) | 2022-07-08 |
AU2020342698B2 (en) | 2022-06-30 |
JP2022537844A (en) | 2022-08-30 |
CA3152396A1 (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3789672B1 (en) | Biomass heating system with secondary air conduit, and components of same | |
EP3889502B1 (en) | Combustor arrangement for a biomass heating system | |
EP3789673B1 (en) | Biomass heating system with optimized flue gas treatment | |
DE60209759T2 (en) | COMBUSTION DEVICE | |
EP4056900B1 (en) | Biomass heating system with an improved cleaning device | |
EP4056899B1 (en) | Rotary grate with a fuel-independent cleaning device for a biomasse heating system and method for cleaning the grate | |
EP4305347A1 (en) | Biomass heating system for fuel-flexible burning of biogenic fuels and method for operating same | |
EP0952396B1 (en) | Device for burning particulate combustible material | |
EP2689187A1 (en) | Incinerator having afterburner grate | |
DE3524962C2 (en) | ||
EP4375570A1 (en) | Biomass heating system with improved cleaning and blockage detection thereof | |
EP4332436A1 (en) | Biomass heating system with an improved electrostatic filter device | |
AT412306B (en) | SOLID FUEL OVEN | |
AT412305B (en) | Kiln for combustion of solid fuel - has disc grid rotating against flame pipe to carry waste to ash trap chamber | |
DE29704116U1 (en) | Solid fuel furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17P | Request for examination filed |
Effective date: 20200903 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20210215 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1501574 Country of ref document: AT Kind code of ref document: T Effective date: 20220715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502020001297 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220929 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220930 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220929 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221031 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221029 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502020001297 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20230330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20230918 Year of fee payment: 4 Ref country code: IE Payment date: 20230926 Year of fee payment: 4 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230911 Year of fee payment: 4 Ref country code: BE Payment date: 20230908 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20231001 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20200903 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220629 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240904 Year of fee payment: 5 |